WorldWideScience

Sample records for salinity gradient suggested

  1. 40 CFR 230.25 - Salinity gradients.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Salinity gradients. 230.25 Section 230.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity...

  2. Mapping the Salinity Gradient in a Microfluidic Device with Schlieren Imaging

    Directory of Open Access Journals (Sweden)

    Chen-li Sun

    2015-05-01

    Full Text Available This work presents the use of the schlieren imaging to quantify the salinity gradients in a microfluidic device. By partially blocking the back focal plane of the objective lens, the schlieren microscope produces an image with patterns that correspond to spatial derivative of refractive index in the specimen. Since salinity variation leads to change in refractive index, the fluid mixing of an aqueous salt solution of a known concentration and water in a T-microchannel is used to establish the relation between salinity gradients and grayscale readouts. This relation is then employed to map the salinity gradients in the target microfluidic device from the grayscale readouts of the corresponding micro-schlieren image. For saline solution with salinity close to that of the seawater, the grayscale readouts vary linearly with the salinity gradient, and the regression line is independent of the flow condition and the salinity of the injected solution. It is shown that the schlieren technique is well suited to quantify the salinity gradients in microfluidic devices, for it provides a spatially resolved, non-invasive, full-field measurement.

  3. Penaeid Shrimp Salinity Gradient Tank Study 2005-2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We designed an experimental gradient tank to examine salinity preferences of juvenile brown shrimp and white shrimp. Although no strong pattern of salinity avoidance...

  4. Resource competition model predicts zonation and increasing nutrient use efficiency along a wetland salinity gradient

    Science.gov (United States)

    Schoolmaster, Donald; Stagg, Camille L.

    2018-01-01

    A trade-off between competitive ability and stress tolerance has been hypothesized and empirically supported to explain the zonation of species across stress gradients for a number of systems. Since stress often reduces plant productivity, one might expect a pattern of decreasing productivity across the zones of the stress gradient. However, this pattern is often not observed in coastal wetlands that show patterns of zonation along a salinity gradient. To address the potentially complex relationship between stress, zonation, and productivity in coastal wetlands, we developed a model of plant biomass as a function of resource competition and salinity stress. Analysis of the model confirms the conventional wisdom that a trade-off between competitive ability and stress tolerance is a necessary condition for zonation. It also suggests that a negative relationship between salinity and production can be overcome if (1) the supply of the limiting resource increases with greater salinity stress or (2) nutrient use efficiency increases with increasing salinity. We fit the equilibrium solution of the dynamic model to data from Louisiana coastal wetlands to test its ability to explain patterns of production across the landscape gradient and derive predictions that could be tested with independent data. We found support for a number of the model predictions, including patterns of decreasing competitive ability and increasing nutrient use efficiency across a gradient from freshwater to saline wetlands. In addition to providing a quantitative framework to support the mechanistic hypotheses of zonation, these results suggest that this simple model is a useful platform to further build upon, simulate and test mechanistic hypotheses of more complex patterns and phenomena in coastal wetlands.

  5. Species Sorting of Benthic Invertebrates in a Salinity Gradient - Importance of Dispersal Limitation.

    Directory of Open Access Journals (Sweden)

    Alf B Josefson

    Full Text Available The relative importance of environment and dispersal related processes for community assembly has attracted great interest over recent decades, but few empirical studies from the marine/estuarine realm have examined the possible effects of these two types of factors in the same system. Importance of these processes was investigated in a hypothetical metacommunity of benthic invertebrates in 16 micro-tidal estuaries connected to the same open sea area. The estuaries differed in size and connectivity to the open sea and represented a salinity gradient across the estuaries. The Elements of Metacommunity Structure (EMS approach on estuary scale was complemented with a mechanistic variance partitioning approach on sample scale to disentangle effects of factors affecting assembly of three trait groups of species with different dispersivity. A quasi-Clementsian pattern was observed for all three traits, a likely response to some latent gradient. The primary axis in the pattern was most strongly related to gradients in estuary salinity and estuary entrance width and correlation with richness indicated nestedness only in the matrix of the most dispersive trait group. In the variance partitioning approach measures of turnover and nestedness between paired samples each from different estuaries were related to environmental distance in different gradients. Distance between estuaries was unimportant suggesting importance of factors characterizing the estuaries. While the high dispersive species mainly were sorted in the salinity gradient, apparently according to their tolerance ranges towards salinity, the two less dispersive traits were additionally affected by estuary entrance width and possibly also area. The results exemplify a mechanism of community assembly in the marine realm where the niche factor salinity in conjunction with differential dispersal structure invertebrates in a metacommunity of connected estuaries, and support the idea that dispersive

  6. Species Sorting of Benthic Invertebrates in a Salinity Gradient - Importance of Dispersal Limitation.

    Science.gov (United States)

    Josefson, Alf B

    2016-01-01

    The relative importance of environment and dispersal related processes for community assembly has attracted great interest over recent decades, but few empirical studies from the marine/estuarine realm have examined the possible effects of these two types of factors in the same system. Importance of these processes was investigated in a hypothetical metacommunity of benthic invertebrates in 16 micro-tidal estuaries connected to the same open sea area. The estuaries differed in size and connectivity to the open sea and represented a salinity gradient across the estuaries. The Elements of Metacommunity Structure (EMS) approach on estuary scale was complemented with a mechanistic variance partitioning approach on sample scale to disentangle effects of factors affecting assembly of three trait groups of species with different dispersivity. A quasi-Clementsian pattern was observed for all three traits, a likely response to some latent gradient. The primary axis in the pattern was most strongly related to gradients in estuary salinity and estuary entrance width and correlation with richness indicated nestedness only in the matrix of the most dispersive trait group. In the variance partitioning approach measures of turnover and nestedness between paired samples each from different estuaries were related to environmental distance in different gradients. Distance between estuaries was unimportant suggesting importance of factors characterizing the estuaries. While the high dispersive species mainly were sorted in the salinity gradient, apparently according to their tolerance ranges towards salinity, the two less dispersive traits were additionally affected by estuary entrance width and possibly also area. The results exemplify a mechanism of community assembly in the marine realm where the niche factor salinity in conjunction with differential dispersal structure invertebrates in a metacommunity of connected estuaries, and support the idea that dispersive species are more

  7. Species Sorting of Benthic Invertebrates in a Salinity Gradient – Importance of Dispersal Limitation

    Science.gov (United States)

    Josefson, Alf B.

    2016-01-01

    The relative importance of environment and dispersal related processes for community assembly has attracted great interest over recent decades, but few empirical studies from the marine/estuarine realm have examined the possible effects of these two types of factors in the same system. Importance of these processes was investigated in a hypothetical metacommunity of benthic invertebrates in 16 micro-tidal estuaries connected to the same open sea area. The estuaries differed in size and connectivity to the open sea and represented a salinity gradient across the estuaries. The Elements of Metacommunity Structure (EMS) approach on estuary scale was complemented with a mechanistic variance partitioning approach on sample scale to disentangle effects of factors affecting assembly of three trait groups of species with different dispersivity. A quasi-Clementsian pattern was observed for all three traits, a likely response to some latent gradient. The primary axis in the pattern was most strongly related to gradients in estuary salinity and estuary entrance width and correlation with richness indicated nestedness only in the matrix of the most dispersive trait group. In the variance partitioning approach measures of turnover and nestedness between paired samples each from different estuaries were related to environmental distance in different gradients. Distance between estuaries was unimportant suggesting importance of factors characterizing the estuaries. While the high dispersive species mainly were sorted in the salinity gradient, apparently according to their tolerance ranges towards salinity, the two less dispersive traits were additionally affected by estuary entrance width and possibly also area. The results exemplify a mechanism of community assembly in the marine realm where the niche factor salinity in conjunction with differential dispersal structure invertebrates in a metacommunity of connected estuaries, and support the idea that dispersive species are more

  8. Anomalous pH-Dependent Nanofluidic Salinity Gradient Power.

    Science.gov (United States)

    Yeh, Li-Hsien; Chen, Fu; Chiou, Yu-Ting; Su, Yen-Shao

    2017-12-01

    Previous studies on nanofluidic salinity gradient power (NSGP), where energy associated with the salinity gradient can be harvested with ion-selective nanopores, all suggest that nanofluidic devices having higher surface charge density should have higher performance, including osmotic power and conversion efficiency. In this manuscript, this viewpoint is challenged and anomalous counterintuitive pH-dependent NSGP behaviors are reported. For example, with equal pH deviation from its isoelectric point (IEP), the nanopore at pH IEP is shown to have smaller surface charge density but remarkably higher NSGP performance than that at pH > IEP. Moreover, for sufficiently low pH, the NSGP performance decreases with lowering pH (increasing nanopore charge density). As a result, a maximum osmotic power density as high as 5.85 kW m -2 can be generated along with a conversion efficiency of 26.3% achieved for a single alumina nanopore at pH 3.5 under a 1000-fold concentration ratio. Using the rigorous model with considering the surface equilibrium reactions on the pore wall, it is proved that these counterintuitive surface-charge-dependent NSGP behaviors result from the pH-dependent ion concentration polarization effect, which yields the degradation in effective concentration ratio across the nanopore. These findings provide significant insight for the design of next-generation, high-performance NSGP devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Coastal microbial mat diversity along a natural salinity gradient.

    Directory of Open Access Journals (Sweden)

    Henk Bolhuis

    Full Text Available The North Sea coast of the Dutch barrier island of Schiermonnikoog is covered by microbial mats that initiate a succession of plant communities that eventually results in the development of a densely vegetated salt marsh. The North Sea beach has a natural elevation running from the low water mark to the dunes resulting in gradients of environmental factors perpendicular to the beach. These gradients are due to the input of seawater at the low water mark and of freshwater from upwelling groundwater at the dunes and rainfall. The result is a natural and dynamic salinity gradient depending on the tide, rainfall and wind. We studied the microbial community composition in thirty three samples taken every ten meters along this natural salinity gradient by using denaturing gradient gel electrophoresis (DGGE of rRNA gene fragments. We looked at representatives from each Domain of life (Bacteria, Archaea and Eukarya and with a particular emphasis on Cyanobacteria. Analysis of the DGGE fingerprints together with pigment composition revealed three distinct microbial mat communities, a marine community dominated by diatoms as primary producers, an intermediate brackish community dominated by Cyanobacteria as primary producers and a freshwater community with Cyanobacteria and freshwater green algae.

  10. Organic matter dynamics along a salinity gradient in Siberian steppe soils

    Science.gov (United States)

    Bischoff, Norbert; Mikutta, Robert; Shibistova, Olga; Dohrmann, Reiner; Herdtle, Daniel; Gerhard, Lukas; Fritzsche, Franziska; Puzanov, Alexander; Silanteva, Marina; Grebennikova, Anna; Guggenberger, Georg

    2018-01-01

    Salt-affected soils will become more frequent in the next decades as arid and semiarid ecosystems are predicted to expand as a result of climate change. Nevertheless, little is known about organic matter (OM) dynamics in these soils, though OM is crucial for soil fertility and represents an important carbon sink. We aimed at investigating OM dynamics along a salinity and sodicity gradient in the soils of the southwestern Siberian Kulunda steppe (Kastanozem, non-sodic Solonchak, Sodic Solonchak) by assessing the organic carbon (OC) stocks, the quantity and quality of particulate and mineral-associated OM in terms of non-cellulosic neutral sugar contents and carbon isotopes (δ13C, 14C activity), and the microbial community composition based on phospholipid fatty acid (PLFA) patterns. Aboveground biomass was measured as a proxy for plant growth and soil OC inputs. Our hypotheses were that (i) soil OC stocks decrease along the salinity gradient, (ii) the proportion and stability of particulate OM is larger in salt-affected Solonchaks compared to non-salt-affected Kastanozems, (iii) sodicity reduces the proportion and stability of mineral-associated OM, and (iv) the fungi : bacteria ratio is negatively correlated with salinity. Against our first hypothesis, OC stocks increased along the salinity gradient with the most pronounced differences between topsoils. In contrast to our second hypothesis, the proportion of particulate OM was unaffected by salinity, thereby accounting for only soil types, while mineral-associated OM contributed > 90 %. Isotopic data (δ13C, 14C activity) and neutral sugars in the OM fractions indicated a comparable degree of OM transformation along the salinity gradient and that particulate OM was not more persistent under saline conditions. Our third hypothesis was also rejected, as Sodic Solonchaks contained more than twice as much mineral-bound OC than the Kastanozems, which we ascribe to the flocculation of OM and mineral components under

  11. Organic matter dynamics along a salinity gradient in Siberian steppe soils

    Directory of Open Access Journals (Sweden)

    N. Bischoff

    2018-01-01

    Full Text Available Salt-affected soils will become more frequent in the next decades as arid and semiarid ecosystems are predicted to expand as a result of climate change. Nevertheless, little is known about organic matter (OM dynamics in these soils, though OM is crucial for soil fertility and represents an important carbon sink. We aimed at investigating OM dynamics along a salinity and sodicity gradient in the soils of the southwestern Siberian Kulunda steppe (Kastanozem, non-sodic Solonchak, Sodic Solonchak by assessing the organic carbon (OC stocks, the quantity and quality of particulate and mineral-associated OM in terms of non-cellulosic neutral sugar contents and carbon isotopes (δ13C, 14C activity, and the microbial community composition based on phospholipid fatty acid (PLFA patterns. Aboveground biomass was measured as a proxy for plant growth and soil OC inputs. Our hypotheses were that (i soil OC stocks decrease along the salinity gradient, (ii the proportion and stability of particulate OM is larger in salt-affected Solonchaks compared to non-salt-affected Kastanozems, (iii sodicity reduces the proportion and stability of mineral-associated OM, and (iv the fungi : bacteria ratio is negatively correlated with salinity. Against our first hypothesis, OC stocks increased along the salinity gradient with the most pronounced differences between topsoils. In contrast to our second hypothesis, the proportion of particulate OM was unaffected by salinity, thereby accounting for only  <  10 % in all three soil types, while mineral-associated OM contributed  >  90 %. Isotopic data (δ13C, 14C activity and neutral sugars in the OM fractions indicated a comparable degree of OM transformation along the salinity gradient and that particulate OM was not more persistent under saline conditions. Our third hypothesis was also rejected, as Sodic Solonchaks contained more than twice as much mineral-bound OC than the Kastanozems, which we ascribe

  12. Life in the salinity gradient: Discovering mechanisms behind a new biodiversity pattern

    Science.gov (United States)

    Telesh, Irena; Schubert, Hendrik; Skarlato, Sergei

    2013-12-01

    A recently discovered paradoxical maximum of planktonic protistan species in the salinity gradient of the Baltic Sea revealed an inverse trend of species number/salinity relation in comparison to the previously accepted species-minimum model for macrozoobenthos. Here, we review long-term data on organisms of different size classes and ecological groups to show that eukaryotic and prokaryotic microbes in plankton demonstrate a maximum species richness in the challenging zone of the critical salinity 5-8, where the large-bodied bottom dwellers (macrozoobenthos, macroalgae and aquatic higher plants) experience large-scale salinity stress which leads to an impoverished diversity. We propose a new conceptual model to explain why the diversity of small, fast-developing, rapidly evolving unicellular plankton organisms benefits from relative vacancy of brackish-water ecological niches and impaired competitiveness therein. The ecotone theory, Hutchinson's Ecological Niche Concept, species-area relationships and the Intermediate Disturbance Hypothesis are considered as a theoretical framework for understanding extinctions, speciation and variations in the evolution rates of different aquatic species in ecosystems with the pronounced salinity gradient.

  13. High-performance ionic diode membrane for salinity gradient power generation.

    Science.gov (United States)

    Gao, Jun; Guo, Wei; Feng, Dan; Wang, Huanting; Zhao, Dongyuan; Jiang, Lei

    2014-09-03

    Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.

  14. Thermal Desalination using MEMS and Salinity-Gradient Solar Pond Technology

    Science.gov (United States)

    Lu, H.; Walton, J. C.; Hein, H.

    2002-08-01

    MEMS (multi-effect, multi-stage) flash desalination (distillation) driven by thermal energy derived from a salinity-gradient solar pond is investigated in this study for the purpose of improving the thermodynamic efficiency and economics of this technology. Three major tasks are performed: (1) a MEMS unit is tested under various operating conditions at the El Paso Solar Pond site; (2) the operation and maintenance procedures of the salinity-gradient solar pond coupled with the MEMS operation is studied; and (3) previous test data on a 24-stage, falling-film flash distillation unit (known as the Spinflash) is analyzed and compared with the performance of the MEMS unit. The data and information obtained from this investigation is applicable to a variety of thermal desalination processes using other solar options and/or waste heat.

  15. Towards a theory of ecotone resilience: coastal vegetation on a salinity gradient.

    Science.gov (United States)

    Jiang, Jiang; Gao, Daozhou; DeAngelis, Donald L

    2012-08-01

    Ecotones represent locations where vegetation change is likely to occur as a result of climate and other environmental changes. Using a model of an ecotone vulnerable to such future changes, we estimated the resilience of the ecotone to disturbances. The specific ecotone is that between two different vegetation types, salinity-tolerant and salinity-intolerant, along a gradient in groundwater salinity. In the case studied, each vegetation type, through soil feedback loops, promoted local soil salinity levels that favor itself in competition with the other type. Bifurcation analysis was used to study the system of equations for the two vegetation types and soil salinity. Alternative stable equilibria, one for salinity-tolerant and one for salinity intolerant vegetation, were shown to exist over a region of the groundwater salinity gradient, bounded by two bifurcation points. This region was shown to depend sensitively on parameters such as the rate of upward infiltration of salinity from groundwater into the soil due to evaporation. We showed also that increasing diffusion rates of vegetation can lead to shrinkage of the range between the two bifurcation points. Sharp ecotones are typical of salt-tolerant vegetation (mangroves) near the coastline and salt-intolerant vegetation inland, even though the underlying elevation and groundwater salinity change very gradually. A disturbance such as an input of salinity to the soil from a storm surge could upset this stable boundary, leading to a regime shift of salinity-tolerant vegetation inland. We showed, however, that, for our model as least, a simple pulse disturbance would not be sufficient; the salinity would have to be held at a high level, as a 'press', for some time. The approach used here should be generalizable to study the resilience of a variety of ecotones to disturbances. Published by Elsevier Inc.

  16. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    Directory of Open Access Journals (Sweden)

    Caroline S Fortunato

    Full Text Available Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33, the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1 the taxonomy of the community changed strongly with salinity, 2 metabolic potential was highly similar across samples, with few differences in

  17. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    Science.gov (United States)

    Fortunato, Caroline S; Crump, Byron C

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance

  18. Salinity Gradient Energy from Expansion and Contraction of Poly(allylamine hydrochloride) Hydrogels.

    Science.gov (United States)

    Bui, Tri Quang; Cao, Vinh Duy; Do, Nu Bich Duyen; Christoffersen, Trine Eker; Wang, Wei; Kjøniksen, Anna-Lena

    2018-06-22

    Salinity gradients exhibit a great potential for production of renewable energy. Several techniques such as pressure-retarded osmosis and reverse electrodialysis have been employed to extract this energy. Unfortunately, these techniques are restricted by the high costs of membranes and problems with membrane fouling. However, the expansion and contraction of hydrogels can be a new and cheaper way to harvest energy from salinity gradients since the hydrogels swell in freshwater and shrink in saltwater. We have examined the effect of cross-linker concentration and different external loads on the energy recovered for this type of energy-producing systems. Poly(allylamine hydrochloride) hydrogels were cross-linked with glutaraldehyde to produce hydrogels with excellent expansion and contraction properties. Increasing the cross-linker concentration markedly improved the energy that could be recovered from the hydrogels, especially at high external loads. A swollen hydrogel of 60 g could recover more than 1800 mJ when utilizing a high cross-linker concentration, and the maximum amount of energy produced per gram of polymer was 3.4 J/g. Although more energy is recovered at high cross-linking densities, the maximum amount of energy produced per gram of polymer is highest at an intermediate cross-linking concentration. Energy recovery was reduced when the salt concentration was increased for the low-concentration saline solution. The results illustrate that hydrogels are promising for salinity gradient energy recovery, and that optimizing the systems significantly increases the amount of energy that can be recovered.

  19. Methane fluxes along a salinity gradient on a restored salt marsh, Harpswell, ME

    Science.gov (United States)

    Gunn, Cailene; Johnson, Beverly, ,, Dr.; Dostie, Phil; Bohlen, Curtis; Craig, Matthew

    2016-04-01

    This study functions as a pilot project to understand the relationship between salinity and methane emissions on a recently restored salt marsh in Casco Bay, Maine. Salt marshes are dynamic and highly productive ecosystems that provide a multitude of ecosystem services including nutrient filtration, storm-water buffering and carbon sequestration. These ecosystems are highly susceptible to anthropogenic alteration. The emplacement of causeways and narrow culverts, restricts tidal flow and leads to loss of healthy salinity gradients. Consequently, numerous salt marshes have experienced increases in freshwater vegetation growth as a result of coastal population expansion. Recent restoration efforts on Long Marsh, Harpswell, ME replaced a severely undersized culvert with a larger one in February, 2014. The salinity gradient has since been restored along much of the marsh, and freshwater vegetation that encroached on the marsh platform has died back. Vegetation and salinity are key indicators and drivers of CH4 emissions on salt marshes. Using static gas chambers, we quantified CH4 fluxes along two transects at five diverse sites ranging from healthy marsh (salinity of 27 to 31 psu) with Spartina vegetation, to regions invaded by Typha and other freshwater vegetation (salinity of 0 to 4 psu). Sampling was executed in the months of July, August and October. CH4 concentrations were determined using a gas chromatograph with a flame-ionization detector. Preliminary findings suggest reintroduction of healthy tidal flows into the marsh inhibits CH4 production, where the lowest fluxes with least variability were observed at the most saline sites with Spartina vegetation. The largest range of CH4 fluxes exhibited emissions from 0.75 μmol CH4/m2/hr to 518.4 μmol CH4/m2/hr at the Typha dominated sites from July to October. Fluxes at the saltwater and brackish regions were far less variable with ranges from 0.94 μmol CH4/m2/hr to 8.2 μmol CH4/m2/hr and 2.6 to 9.5 μmol CH4/m2

  20. Power generation from water salinity gradient via osmosis and reverse osmosis

    International Nuclear Information System (INIS)

    Ivanov, Milancho

    2015-01-01

    To reduce dependence on fossil fuels, while at the same time to meet the growing energy demands of the world, it is necessary to explore and promote new alternative energy sources. One such type of renewable energy sources, which recently gained greater credibility is the energy extracted from the water salinity gradient, which is also called blue energy. In this research project will be described a new model of osmotic power plant (MIOS plant), which uses a combination of reverse osmosis and osmosis to convert the energy from the water salinity gradient into electricity. MIOS plant can be built as a vessel anywhere on the surface of the oceans or in the form of dam on the land, which will have a huge advantage over existing plants that can be built only on mouths of rivers. (author)

  1. Towards implementation of reverse electrodialysis for power generation from salinity gradients

    NARCIS (Netherlands)

    Post, J.W.; Goeting, C.H.; Valk, J.; Goinga, S.; Veerman, J.; Hamelers, H.V.M.; Hack, P.J.F.M.

    2010-01-01

    Reverse electrodialysis is a conversion technique to obtain electricity from salinity gradients. Over the past few years, the performance of reverse electrodialysis on laboratory scale has improved considerably. In this paper, we discuss the challenges we are still facing concerning the economic and

  2. Plant distributions along salinity and tidal gradients in Oregon tidal marshes

    Science.gov (United States)

    Accurately modeling climate change effects on tidal marshes in the Pacific Northwest requires understanding how plant assemblages and species are presently distributed along gradients of salinity and tidal inundation. We outline on-going field efforts by the EPA and USGS to dete...

  3. Ecosystem variability along the estuarine salinity gradient: Examples from long-term study of San Francisco Bay

    Science.gov (United States)

    Cloern, James E.; Jassby, Alan D.; Schraga, Tara; Kress, Erica S.; Martin, Charles A.

    2017-01-01

    The salinity gradient of estuaries plays a unique and fundamental role in structuring spatial patterns of physical properties, biota, and biogeochemical processes. We use variability along the salinity gradient of San Francisco Bay to illustrate some lessons about the diversity of spatial structures in estuaries and their variability over time. Spatial patterns of dissolved constituents (e.g., silicate) can be linear or nonlinear, depending on the relative importance of river-ocean mixing and internal sinks (diatom uptake). Particles have different spatial patterns because they accumulate in estuarine turbidity maxima formed by the combination of sinking and estuarine circulation. Some constituents have weak or no mean spatial structure along the salinity gradient, reflecting spatially distributed sources along the estuary (nitrate) or atmospheric exchanges that buffer spatial variability of ecosystem metabolism (dissolved oxygen). The density difference between freshwater and seawater establishes stratification in estuaries stronger than the thermal stratification of lakes and oceans. Stratification is strongest around the center of the salinity gradient and when river discharge is high. Spatial distributions of motile organisms are shaped by species-specific adaptations to different salinity ranges (shrimp) and by behavioral responses to environmental variability (northern anchovy). Estuarine spatial patterns change over time scales of events (intrusions of upwelled ocean water), seasons (river inflow), years (annual weather anomalies), and between eras separated by ecosystem disturbances (a species introduction). Each of these lessons is a piece in the puzzle of how estuarine ecosystems are structured and how they differ from the river and ocean ecosystems they bridge.

  4. Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage

    NARCIS (Netherlands)

    Tufa, Ramato Ashu; Pawlowski, Sylwin; Veerman, Joost; Bouzek, Karel; Fontananova, Enrica; di Profio, Gianluca; Velizarov, Svetlozar; Goulão Crespo, João; Nijmeijer, Kitty; Curcio, Efrem

    2018-01-01

    Salinity gradient energy is currently attracting growing attention among the scientific community as a renewable energy source. In particular, Reverse Electrodialysis (RED) is emerging as one of the most promising membrane-based technologies for renewable energy generation by mixing two solutions of

  5. Electrochemical characterization of a supercapacitor flow cell for power production from salinity gradients

    NARCIS (Netherlands)

    Sales, B.B.; Liu, F.; Schaetzle, O.; Buisman, C.J.N.; Hamelers, H.V.M.

    2012-01-01

    Salinity gradients could be a great source of energy in the future. Capacitive energy extraction based on Donnan Potential (CDP) is a new technique to directly convert this energy into electricity. COP uses a supercapacitor-like device combining ion exchange membranes and capacitive materials to

  6. Electrochemical Systems for Renewable Energy Conversion from Salinity and Proton Gradients

    OpenAIRE

    Morais, William G.; Lima, Gilberto; Gomes, Wellington J. A. S.; Huguenin, Fritz

    2018-01-01

    Ever-rising energy demand, fossil fuel dependence, and climate issues have harmful consequences to the society. Exploring clean and renewable energy to diversify the world energy matrix has become an urgent matter. Less explored or unexplored renewable energy sources like the salinity and proton gradient energy are an attractive alternative with great energy potential. This paper discusses important electrochemical systems for energy conversion from natural and artificial concentration gradie...

  7. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China

    NARCIS (Netherlands)

    Wu, Q.L.; Zwart, G.; Schauer, M.; Kamst-van Agterveld, M.P.; Hahn, M.W.

    2006-01-01

    The influence of altitude and salinity on bacterioplankton community composition (BCC) in 16 high-mountain lakes located at altitudes of 2,817 to 5,134 m on the Eastern Qinghai-Xizang (Tibetan) Plateau, China, spanning a salinity gradient from 0.02% (freshwater) to 22.3% (hypersaline), was

  8. Contribution of trace metals in structuring in situ macroinvertebrate community composition along a salinity gradient

    NARCIS (Netherlands)

    Peeters, E.T.H.M.; Gardeniers, J.J.P.; Koelmans, A.A.

    2000-01-01

    Macroinvertebrates were studied along a salinity gradient in the North Sea Canal, The Netherlands, to quantify the effect of trace metals (cadmium, copper, lead, zinc) on community composition. In addition, two methods for assessing metal bioavailability (normalizing metal concentrations on organic

  9. Evolution of bacterial communities in the Gironde Estuary (France) according to a salinity gradient

    Science.gov (United States)

    Prieur, D.; Troussellier, M.; Romana, A.; Chamroux, S.; Mevel, G.; Baleux, B.

    1987-01-01

    Three surveys were performed in the Gironde Estuary (France) in August 1981, March 1982 and July 1982. For each campaign, seventy samples were taken by helicopter, in order to follow the tide along the estuary. Of the parameters that were studied, salinity appeared to be the most important and which controls the bacterial communities along the estuary. This paper deals with the evolution of bacterial communities along a salinity gradient. The information obtained from various bacteriological parameters (total bacterial counts, viable counts on salted and unsalted media, functional evenness) were convergent. The bacterial community is dominated by an halotolerant microflora. In the estuary, a continental microflora is followed by a marine microflora. The succession zone between these two microflora is located between 5 and 10‰ areas of salinity.

  10. Capacitive mixing power production from salinity gradient energy enhanced through exoelectrogen-generated ionic currents

    KAUST Repository

    Hatzell, Marta C.; Cusick, Roland D.; Logan, Bruce E.

    2014-01-01

    Several approaches to generate electrical power directly from salinity gradient energy using capacitive electrodes have recently been developed, but power densities have remained low. By immersing the capacitive electrodes in ionic fields generated by exoelectrogenic microorganisms in bioelectrochemical reactors, we found that energy capture using synthetic river and seawater could be increased ∼65 times, and power generation ∼46 times. Favorable electrochemical reactions due to microbial oxidation of organic matter, coupled to oxygen reduction at the cathode, created an ionic flow field that enabled more effective passive charging of the capacitive electrodes and higher energy capture. This ionic-based approach is not limited to the use of river water-seawater solutions. It can also be applied in industrial settings, as demonstrated using thermolytic solutions that can be used to capture waste heat energy as salinity gradient energy. Forced charging of the capacitive electrodes, using energy generated by the bioelectrochemical system and a thermolytic solution, further increased the maximum power density to 7 W m -2 (capacitive electrode). © 2014 The Royal Society of Chemistry.

  11. The Effect of Large Scale Salinity Gradient on Langmuir Turbulence

    Science.gov (United States)

    Fan, Y.; Jarosz, E.; Yu, Z.; Jensen, T.; Sullivan, P. P.; Liang, J.

    2017-12-01

    Langmuir circulation (LC) is believed to be one of the leading order causes of turbulent mixing in the upper ocean. It is important for momentum and heat exchange across the mixed layer (ML) and directly impact the dynamics and thermodynamics in the upper ocean and lower atmosphere including the vertical distributions of chemical, biological, optical, and acoustic properties. Based on Craik and Leibovich (1976) theory, large eddy simulation (LES) models have been developed to simulate LC in the upper ocean, yielding new insights that could not be obtained from field observations and turbulent closure models. Due its high computational cost, LES models are usually limited to small domain sizes and cannot resolve large-scale flows. Furthermore, most LES models used in the LC simulations use periodic boundary conditions in the horizontal direction, which assumes the physical properties (i.e. temperature and salinity) and expected flow patterns in the area of interest are of a periodically repeating nature so that the limited small LES domain is representative for the larger area. Using periodic boundary condition can significantly reduce computational effort in problems, and it is a good assumption for isotropic shear turbulence. However, LC is anisotropic (McWilliams et al 1997) and was observed to be modulated by crosswind tidal currents (Kukulka et al 2011). Using symmetrical domains, idealized LES studies also indicate LC could interact with oceanic fronts (Hamlington et al 2014) and standing internal waves (Chini and Leibovich, 2005). The present study expands our previous LES modeling investigations of Langmuir turbulence to the real ocean conditions with large scale environmental motion that features fresh water inflow into the study region. Large scale gradient forcing is introduced to the NCAR LES model through scale separation analysis. The model is applied to a field observation in the Gulf of Mexico in July, 2016 when the measurement site was impacted by

  12. Uranium geochemistry on the Amazon shelf: Chemical phase partitioning and cycling across a salinity gradient

    International Nuclear Information System (INIS)

    Swarzenski, P.W.; McKee, B.A.; Booth, J.G.

    1995-01-01

    The size distribution of U was examined in surface waters of the Amazon shelf. Water samples were collected during a low discharge river stage across a broad salinity gradient (0.3-35.4%) and fractionated by planar filtration and tangential-flow ultrafiltration into (1) solution (U s , c , 10,000 MW-0.4 μm), (3) dissolved (U d p >0.4 μm) phases. Concentrations of colloidal U comprise up to 92% of the dissolved U fraction at the river mouth and attain highest values (∼0.45 μg/L) in the productive, biogenic region of the Amazon shelf (salinities above ∼20%). U d and U c distributions are highly nonconservative relative to ideal dilution of river water and seawater, indicating extensive removal at salinities below ∼10%. The distribution of U s also shows some nonconservative behavior, yet removal, if any, is minimal. Saltwater-induced precipitation and aggregation of riverine colloidal material is most likely the dominant mechanism of U removal in the low salinity, terrigenous region of the Amazon shelf. There is evident of a substantial colloidal U input (∼245% of the riverine U c flux) into surface waters above 5%. Such U c enrichment most likely is the result of colloidal U-rich porewater diffusion/advection from the seabed and fluid muds or shelf-wide particle-colloid disaggregation. Removal of solution and dissolved phase U via a colloidal intermediate and U c aggregation in terms of coagulation phase U via a colloidal intermediate and U c aggregation was examined in terms of coagulation theory. The high reactive nature of all U phases on the Amazon shelf suggests that remobilization and fractionation of U may also occur in other river-influenced coastal environments

  13. Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient

    Science.gov (United States)

    Stagg, Camille L.; Baustian, Melissa M.; Perry, Carey L.; Carruthers, Tim J.B.; Hall, Courtney T.

    2018-01-01

    Coastal wetlands store more carbon than most ecosystems globally. As sea level rises, changes in flooding and salinity will potentially impact ecological functions, such as organic matter decomposition, that influence carbon storage. However, little is known about the mechanisms that control organic matter loss in coastal wetlands at the landscape scale. As sea level rises, how will the shift from fresh to salt-tolerant plant communities impact organic matter decomposition? Do long-term, plant-mediated, effects of sea-level rise differ from direct effects of elevated salinity and flooding?We identified internal and external factors that regulated indirect and direct pathways of sea-level rise impacts, respectively, along a landscape-scale salinity gradient that incorporated changes in wetland type (fresh, oligohaline, mesohaline and polyhaline marshes). We found that indirect and direct impacts of sea-level rise had opposing effects on organic matter decomposition.Salinity had an indirect effect on litter decomposition that was mediated through litter quality. Despite significant variation in environmental conditions along the landscape gradient, the best predictors of above- and below-ground litter decomposition were internal drivers, initial litter nitrogen content and initial litter lignin content respectively. Litter decay constants were greatest in the oligohaline marsh and declined with increasing salinity, and the fraction of litter remaining (asymptote) was greatest in the mesohaline marsh. In contrast, direct effects of salinity and flooding were positive. External drivers, salinity and flooding, stimulated cellulytic activity, which was highest in the polyhaline marsh.Synthesis. Our results indicate that as sea level rises, initial direct effects of salinity will stimulate decay of labile carbon, but over time as plant communities shift from fresh to polyhaline marsh, litter decay will decline, yielding greater potential for long-term carbon storage

  14. Spatial pattern formation of coastal vegetation in response to external gradients and positive feedbacks affecting soil porewater salinity: A model study

    Science.gov (United States)

    Jiang, J.; DeAngelis, D.L.; Smith, T. J.; Teh, S.Y.; Koh, H. L.

    2012-01-01

    Coastal vegetation of South Florida typically comprises salinity-tolerant mangroves bordering salinity-intolerant hardwood hammocks and fresh water marshes. Two primary ecological factors appear to influence the maintenance of mangrove/hammock ecotones against changes that might occur due to disturbances. One of these is a gradient in one or more environmental factors. The other is the action of positive feedback mechanisms, in which each vegetation community influences its local environment to favor itself, reinforcing the boundary between communities. The relative contributions of these two factors, however, can be hard to discern. A spatially explicit individual-based model of vegetation, coupled with a model of soil hydrology and salinity dynamics is presented here to simulate mangrove/hammock ecotones in the coastal margin habitats of South Florida. The model simulation results indicate that an environmental gradient of salinity, caused by tidal flux, is the key factor separating vegetation communities, while positive feedback involving the different interaction of each vegetation type with the vadose zone salinity increases the sharpness of boundaries, and maintains the ecological resilience of mangrove/hammock ecotones against small disturbances. Investigation of effects of precipitation on positive feedback indicates that the dry season, with its low precipitation, is the period of strongest positive feedback. ?? 2011 Springer Science+Business Media B.V. (outside the USA).

  15. Competitive ability, stress tolerance and plant interactions along stress gradients.

    Science.gov (United States)

    Qi, Man; Sun, Tao; Xue, SuFeng; Yang, Wei; Shao, DongDong; Martínez-López, Javier

    2018-04-01

    Exceptions to the generality of the stress-gradient hypothesis (SGH) may be reconciled by considering species-specific traits and stress tolerance strategies. Studies have tested stress tolerance and competitive ability in mediating interaction outcomes, but few have incorporated this to predict how species interactions shift between competition and facilitation along stress gradients. We used field surveys, salt tolerance and competition experiments to develop a predictive model interspecific interaction shifts across salinity stress gradients. Field survey and greenhouse tolerance tests revealed tradeoffs between stress tolerance and competitive ability. Modeling showed that along salinity gradients, (1) plant interactions shifted from competition to facilitation at high salinities within the physiological limits of salt-intolerant plants, (2) facilitation collapsed when salinity stress exceeded the physiological tolerance of salt-intolerant plants, and (3) neighbor removal experiments overestimate interspecific facilitation by including intraspecific effects. A community-level field experiment, suggested that (1) species interactions are competitive in benign and, facilitative in harsh condition, but fuzzy under medium environmental stress due to niche differences of species and weak stress amelioration, and (2) the SGH works on strong but not weak stress gradients, so SGH confusion arises when it is applied across questionable stress gradients. Our study clarifies how species interactions vary along stress gradients. Moving forward, focusing on SGH applications rather than exceptions on weak or nonexistent gradients would be most productive. © 2018 by the Ecological Society of America.

  16. A Tree-Ring Reconstruction of the Salinity Gradient in the Northern Estuary of San Francisco Bay

    Directory of Open Access Journals (Sweden)

    David W. Stahle

    2011-04-01

    Full Text Available Blue oak tree-ring chronologies correlate highly with winter–spring precipitation totals over California, with Sacramento and San Joaquin river stream flow, and with seasonal variations in the salinity gradient in San Francisco Bay. The convergence of fresh and saline currents can influence turbidity, sediment accumulation, and biological productivity in the estuary. Three selected blue oak chronologies were used to develop a 625-year-long reconstruction of the seasonal salinity gradient, or low salinity zone (LSZ, which provides a unique perspective on the interannual-to-decadal variability of this important estuarine habitat indicator. The reconstruction was calibrated with instrumental LSZ data for the winter–spring season, and explains 73% of the variance in the February–June position of the LSZ from 1956 to 2003. Because this calibration period post-dates the sweeping changes that have occurred to land cover, channel morphology, and natural streamflow regimes in California, the reconstruction provides an idealized estimate for how the LSZ might have fluctuated under the seasonal precipitation variations of the past 625 years, given the modern geometry and bathymetry of the estuary and land cover across the drainage basin. The February–June season integrates precipitation and runoff variability during the cool season, and does not extend into the late-summer dry season when LSZ extremes can negatively affect Sacramento–San Joaquin Delta (Delta agriculture and some aquatic organisms. However, there is such strong inter-seasonal persistence in the instrumental LSZ data that precipitation totals during the cool season can strongly pre-condition LSZ position in late summer. The 625-year-long reconstruction indicates strong interannual and decadal variability, the frequent recurrence of consecutive 2-year LSZ maxima and minima, large-scale ocean atmospheric forcing, and an interesting asymmetrical influence of warm El Ni

  17. Spatial patterns of littoral zooplankton assemblages along a salinity gradient in a brackish sea: A functional diversity perspective

    Science.gov (United States)

    Helenius, Laura K.; Leskinen, Elina; Lehtonen, Hannu; Nurminen, Leena

    2017-11-01

    The distribution patterns and diversity of littoral zooplankton are both key baseline information for understanding the functioning of coastal ecosystems, and for identifying the mechanisms by which the impacts of recently increased eutrophication are transferred through littoral food webs. In this study, zooplankton community structure and diversity along a shallow coastal area of the northern Baltic Sea were determined in terms of horizontal environmental gradients. Spatial heterogeneity of the zooplankton community was examined along the gradient. Altogether 31 sites in shallow sandy bays on the coast of southwest Finland were sampled in the summer periods of 2009 and 2010 for zooplankton and environmental variables (surface water temperature, salinity, turbidity, wave exposure, macrophyte coverage, chlorophyll a and nutrients). Zooplankton diversity was measured as both taxonomic as well as functional diversity, using trait-based classification of planktonic crustaceans. Salinity, and to a lesser extent turbidity and temperature, were found to be the main predictors of the spatial patterns and functional diversity of the zooplankton community. Occurrence of cyclopoid copepods, as well as abundances of the calanoid copepod genus Acartia and the rotifer genus Keratella were found to be key factors in differentiating sites along the gradient. As far as we know, this is the first extensive study of functional diversity in Baltic Sea coastal zooplankton communities.

  18. Sensitivity to cadmium along a salinity gradient in populations of the periwinkle, Littorina littorea, using time-to-death analysis

    International Nuclear Information System (INIS)

    Wolf, Hans de; Backeljau, Thierry; Blust, Ronny

    2004-01-01

    In this study, we assessed the combined effect of Cd concentration and salinity, on Cd uptake and mortality rate of Littorina littorea, collected along a salinity and pollution gradient in the Western Scheldt estuary (The Netherlands). Animals kept at their field salinity levels were exposed to three Cd concentrations (i.e. 10, 40 and 320 μM), while animals kept in 10 μM of Cd were subjected to five salinity treatments (i.e. 15, 20, 25, 30 and 35%o). Mortality was recorded every 24 h and Cd body burdens were measured with ICP-AES. Time-to-death data were analysed via Cox proportional hazard models, including the co-variates 'site-Cd treatment' in the Cd experiment and 'site-salinity treatment' in the salinity experiment. 'Cd-treatment' and 'field-salinity' affected mortality rates significantly in the Cd experiment, such that the mortality risk increased by 2.3 times when salinity was lowered from 35 to 15%o, while it decreased by 19.7 times when Cd dropped from 320 to 10 μM. 'Site' did not significantly affect the mortality risk in the salinity experiment but affected time-to-death via its interaction with the 'salinity-treatment'. Generally, mortality did not occur at a given threshold Cd tissue level, but changed over time and treatments, in function of the site. The results demonstrate the importance of the animals' environmental history and illustrate the usefulness of time-to-death analyses in ecotoxicological experiments

  19. Salinity gradient in the Manamo River, a dammed distributary of the Orinoco Delta, and its influence on the presence of Eichhornia crassipes and Paspalum repens

    International Nuclear Information System (INIS)

    Olivares, E.; Colonnello, G.

    2000-01-01

    We describe a saline gradient established by the damming of the Manamo River, a former freshwater environment, in the Orinoco Delta and the influence of this gradient on the distribution of Eichhornia crassipes Solms (water hyacinth), and Paspalum repens Berg, The two most abundant aquatic macrophytes. The present work demonstrates, on the basis of measurements of leaf osmolality and ion concentrations, that salinity is acting in the dammed river as a regulator of the studied species E. Crassipes is a potential weed which was originally controlled by the hydrodynamics of waters in the Orinoco River. Plants and river water were sampled in ten sites, three of them with high salinity. The osmolality as well as relative proportions of the main soluble ions explain the relative tolerance to salinity of E. Crassipes in comparison with P. Repens. In sites where both species were present, the K+/Na+ ratio in the leaf sap was higher in the E. Crassipes than in P. repens (authors)

  20. Dietary flexibility in three representative waterbirds across salinity and depth gradients in salt ponds of San Francisco Bay

    Science.gov (United States)

    Takekawa, John Y.; Miles, A.K.; Tsao-Melcer, D. C.; Schoellhamer, D.H.; Fregien, S.; Athearn, N.D.

    2009-01-01

    Salt evaporation ponds have existed in San Francisco Bay, California, for more than a century. In the past decade, most of the salt ponds have been retired from production and purchased for resource conservation with a focus on tidal marsh restoration. However, large numbers of waterbirds are found in salt ponds, especially during migration and wintering periods. The value of these hypersaline wetlands for waterbirds is not well understood, including how different avian foraging guilds use invertebrate prey resources at different salinities and depths. The aim of this study was to investigate the dietary flexibility of waterbirds by examining the population number and diet of three feeding guilds across a salinity and depth gradient in former salt ponds of the Napa-Sonoma Marshes. Although total invertebrate biomass and species richness were greater in low than high salinity salt ponds, waterbirds fed in ponds that ranged from low (20 g l-1) to very high salinities (250 g l -1). American avocets (surface sweeper) foraged in shallow areas at pond edges and consumed a wide range of prey types (8) including seeds at low salinity, but preferred brine flies at mid salinity (40-80 g l-1). Western sandpipers (prober) focused on exposed edges and shoal habitats and consumed only a few prey types (2-4) at both low and mid salinities. Suitable depths for foraging were greatest for ruddy ducks (diving benthivore) that consumed a wide variety of invertebrate taxa (5) at low salinity, but focused on fewer prey (3) at mid salinity. We found few brine shrimp, common in higher salinity waters, in the digestive tracts of any of these species. Dietary flexibility allows different guilds to use ponds across a range of salinities, but their foraging extent is limited by available water depths. ?? 2009 USGS, US Government.

  1. Power generation enhancement in a salinity-gradient solar pond power plant using thermoelectric generator

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Saadat, Mohammad; Palideh, Vahid; Afzal, Sadegh

    2017-01-01

    Highlights: • Thermoelectric generator was used and simulated within a salinity-gradient solar pond power plant. • Results showed that the thermoelectric generator can be able to enhance the power plant efficiency. • Results showed that the presented models can be able to produce generation even in the cold months. • The optimum size of area of solar pond based on its effect on efficiency is 50,000 m 2 . - Abstract: Salinity-gradient solar pond (SGSP) has been a reliable supply of heat source for power generation when it has been integrated with low temperature thermodynamics cycles like organic Rankine cycle (ORC). Also, thermoelectric generator (TEG) plays a critical role in the production of electricity from renewable energy sources. This paper investigates the potential of thermoelectric generator as a power generation system using heat from SGSP. In this work, thermoelectric generator was used instead of condenser of ORC with the purpose of improving the performance of system. Two new models of SGSP have been presented as: (1) SGSP using TEG in condenser of ORC without heat exchanger and (2) SGSP using TEG in condenser of ORC with heat exchanger. These proposed systems was evaluated through computer simulations. The ambient conditions were collected from beach of Urmia lake in IRAN. Simulation results indicated that, for identical conditions, the model 1 has higher performance than other model 2. For models 1 and 2 in T LCZ = 90 °C, the overall thermal efficiency of the solar pond power plant, were obtained 0.21% and 0.2% more than ORC without TEG, respectively.

  2. Eddy-induced Sea Surface Salinity changes in the tropical Pacific

    Science.gov (United States)

    Delcroix, T. C.; Chaigneau, A.; Soviadan, D.; Boutin, J.

    2017-12-01

    We analyse the Sea Surface Salinity (SSS) signature of westward propagating mesoscale eddies in the tropical Pacific by collocating 5 years (2010-2015) of SMOS (Soil Moisture and Ocean Salinity) SSS and altimetry-derived sea level anomalies. The main characteristics of mesoscale eddies are first identified in SLA maps. Composite analyses in the Central and Eastern ITCZ regions then reveal regionally dependent impacts with opposite SSS anomalies for the cyclonic and anticyclonic eddies. In the Central region (where we have the largest meridional SSS gradient), we found dipole-like SSS changes with maximum anomalies on the leading edge of the eddy. In the Eastern region (where we have the largest near-surface vertical salinity gradient) we found monopole-like SSS changes with maximum anomalies in the eddy centre. These dipole/monopole patterns and the rotational sense of eddies suggest the dominant role of horizontal and vertical advection in the Central and Eastern ITCZ regions, respectively.

  3. Are there general spatial patterns of mangrove structure and composition along estuarine salinity gradients in Todos os Santos Bay?

    Science.gov (United States)

    Costa, Patrícia; Dórea, Antônio; Mariano-Neto, Eduardo; Barros, Francisco

    2015-12-01

    Species distribution and structural patterns of mangrove fringe forests along three tropical estuaries were evaluated in northeast of Brazil. Interstitial water salinity, percentage of fine sediments and organic matter content were investigated as explanatory variables. In all estuaries (Jaguaripe, Paraguaçu and Subaé estuaries), it was observed similar distribution patterns of four mangrove species and these patterns were mostly related with interstitial water salinity. Rhizophora mangle and Avicennia schaueriana tended to dominate sites under greater marine influence (lower estuary), while Avicennia germinans and Laguncularia racemosa dominated areas under greater freshwater influence (upper estuary), although the latter showed a wider distribution over these tropical estuarine gradients. Organic matter best explained canopy height and mean height. At higher salinities, there was practically no correlation between organic matter and density, but at lower salinity, organic matter was related to decreases in abundances. The described patterns can be related to interspecific differences in salt tolerance and competitive abilities and they are likely to be found at other tropical Atlantic estuaries. Future studies should investigate anthropic influences and causal processes in order to further improve the design of monitoring and restoration projects.

  4. Diversity of pico- to mesoplankton along the 2000 km salinity gradient of the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Yue O.O. Hu

    2016-05-01

    Full Text Available Microbial plankton form the productive base of both marine and freshwater ecosystems and are key drivers of global biogeochemical cycles of carbon and nutrients. Plankton diversity is immense with representations from all major phyla within the three domains of life. So far, plankton monitoring has mainly been based on microscopic identification, which has limited sensitivity and reproducibility, not least because of the numerical majority of plankton being unidentifiable under the light microscope. High-throughput sequencing of taxonomic marker genes offers a means to identify taxa inaccessible by traditional methods; thus, recent studies have unveiled an extensive previously unknown diversity of plankton. Here, we conducted ultra-deep Illumina sequencing (average 105 sequences/sample of rRNA gene amplicons of surface water eukaryotic and bacterial plankton communities sampled in summer along a 2000 km transect following the salinity gradient of the Baltic Sea. Community composition was strongly correlated with salinity for both bacterial and eukaryotic plankton assemblages, highlighting the importance of salinity for structuring the biodiversity within this ecosystem. In contrast, no clear trends in alpha-diversity for bacterial or eukaryotic communities could be detected along the transect. The distribution of major planktonic taxa followed expected patterns as observed in monitoring programs, but groups novel to the Baltic Sea were also identified, such as relatives to the coccolithophore Emiliana huxleyi detected in the northern Baltic Sea. This study provides the first ultra-deep sequencing-based survey on eukaryotic and bacterial plankton biogeography in the Baltic Sea.

  5. Salinity-gradient energy driven microbial electrosynthesis of hydrogen peroxide

    DEFF Research Database (Denmark)

    Li, Xiaohu; Angelidaki, Irini; Zhang, Yifeng

    2017-01-01

    Hydrogen peroxide (H2O2) as a strong oxidant, is widely used in various chemical industries and environmental remediation processes. In this study, we developed an innovative method for cost-effective production of H2O2 by using a microbial reverse-electrodialysis electrolysis cell (MREC). In the......Hydrogen peroxide (H2O2) as a strong oxidant, is widely used in various chemical industries and environmental remediation processes. In this study, we developed an innovative method for cost-effective production of H2O2 by using a microbial reverse-electrodialysis electrolysis cell (MREC......). In the MREC, electrical potential generated by the exoelectrogens and the salinity-gradient between salt and fresh water were utilized to drive the high-rate H2O2 production. Operational parameters such as air flow rate, pH, cathodic potential, flow rate of salt and fresh water were investigated. The optimal...... H2O2 production was observed at salt and fresh water flow rate of 0.5 mL min−1, air flow rate of 12–20 mL min−1, cathode potential of −0.485 ± 0.025 V (vs Ag/AgCl). The maximum H2O2 accumulated concentration of 778 ± 11 mg L−1 was obtained at corresponding production rate of 11.5 ± 0.5 mg L−1 h−1...

  6. Flow Convergence Caused by a Salinity Minimum in a Tidal Channel

    Directory of Open Access Journals (Sweden)

    John C. Warner

    2006-12-01

    Full Text Available Residence times of dissolved substances and sedimentation rates in tidal channels are affected by residual (tidally averaged circulation patterns. One influence on these circulation patterns is the longitudinal density gradient. In most estuaries the longitudinal density gradient typically maintains a constant direction. However, a junction of tidal channels can create a local reversal (change in sign of the density gradient. This can occur due to a difference in the phase of tidal currents in each channel. In San Francisco Bay, the phasing of the currents at the junction of Mare Island Strait and Carquinez Strait produces a local salinity minimum in Mare Island Strait. At the location of a local salinity minimum the longitudinal density gradient reverses direction. This paper presents four numerical models that were used to investigate the circulation caused by the salinity minimum: (1 A simple one-dimensional (1D finite difference model demonstrates that a local salinity minimum is advected into Mare Island Strait from the junction with Carquinez Strait during flood tide. (2 A three-dimensional (3D hydrodynamic finite element model is used to compute the tidally averaged circulation in a channel that contains a salinity minimum (a change in the sign of the longitudinal density gradient and compares that to a channel that contains a longitudinal density gradient in a constant direction. The tidally averaged circulation produced by the salinity minimum is characterized by converging flow at the bed and diverging flow at the surface, whereas the circulation produced by the constant direction gradient is characterized by converging flow at the bed and downstream surface currents. These velocity fields are used to drive both a particle tracking and a sediment transport model. (3 A particle tracking model demonstrates a 30 percent increase in the residence time of neutrally buoyant particles transported through the salinity minimum, as compared to

  7. Variability in δ{sup 15}N of intertidal brown algae along a salinity gradient: Differential impact of nitrogen sources

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Inés G., E-mail: inesgviana@gmail.com; Bode, Antonio

    2015-04-15

    While it is generally agreed that δ{sup 15}N of brown macroalgae can discriminate between anthropogenic and natural sources of nitrogen, this study provides new insights on net fractionation processes occurring in some of these species. The contribution of continental and marine sources of nitrogen to benthic macroalgae in the estuary-ria system of A Coruña (NW Spain) was investigated by analyzing the temporal (at a monthly and annual basis) and spatial (up to 10 km) variability of δ{sup 15}N in the macroalgae Ascophyllum nodosum and three species of the genus Fucus (F. serratus, F. spiralis and F. vesiculosus). Total nitrate and ammonium concentrations and δ{sup 15}N-DIN, along with salinity and temperature in seawater were also studied to address the sources of such variability. Macroalgal δ{sup 15}N and nutrient concentrations decreased from estuarine to marine waters, suggesting larger dominance of anthropogenic nitrogen sources in the estuary. However, δ{sup 15}N values of macroalgae were generally higher than those of ambient nitrogen at all temporal and spatial scales considered. This suggests that the isotopic composition of these macroalgae is strongly affected by fractionation during uptake, assimilation or release of nitrogen. The absence of correlation between macroalgal and water samples suggests that the δ{sup 15}N of the species considered cannot be used for monitoring short-term changes. But their long lifespan and slow turnover rates make them suitable to determine the impact of the different nitrogen sources integrated over long-time periods. - Highlights: • Variability of Fucacean δ{sup 15}N indicates N sources along a salinity gradient. • δ{sup 15}N of Fucaceae and seawater are not correlated at short time scales. • Isotopic fractionation in macroalgal tissue varies at seasonal and at local scale. • Fucacean species are suitable for monitoring chronic N loadings.

  8. Combined use of heat and saline tracer to estimate aquifer properties in a forced gradient test

    Science.gov (United States)

    Colombani, N.; Giambastiani, B. M. S.; Mastrocicco, M.

    2015-06-01

    Usually electrolytic tracers are employed for subsurface characterization, but the interpretation of tracer test data collected by low cost techniques, such as electrical conductivity logging, can be biased by cation exchange reactions. To characterize the aquifer transport properties a saline and heat forced gradient test was employed. The field site, located near Ferrara (Northern Italy), is a well characterized site, which covers an area of 200 m2 and is equipped with a grid of 13 monitoring wells. A two-well (injection and pumping) system was employed to perform the forced gradient test and a straddle packer was installed in the injection well to avoid in-well artificial mixing. The contemporary continuous monitor of hydraulic head, electrical conductivity and temperature within the wells permitted to obtain a robust dataset, which was then used to accurately simulate injection conditions, to calibrate a 3D transient flow and transport model and to obtain aquifer properties at small scale. The transient groundwater flow and solute-heat transport model was built using SEAWAT. The result significance was further investigated by comparing the results with already published column experiments and a natural gradient tracer test performed in the same field. The test procedure shown here can provide a fast and low cost technique to characterize coarse grain aquifer properties, although some limitations can be highlighted, such as the small value of the dispersion coefficient compared to values obtained by natural gradient tracer test, or the fast depletion of heat signal due to high thermal diffusivity.

  9. Surface pH changes suggest a role for H+/OH- channels in salinity response of Chara australis.

    Science.gov (United States)

    Absolonova, Marketa; Beilby, Mary J; Sommer, Aniela; Hoepflinger, Marion C; Foissner, Ilse

    2018-05-01

    To understand salt stress, the full impact of salinity on plant cell physiology has to be resolved. Electrical measurements suggest that salinity inhibits the proton pump and opens putative H + /OH - channels all over the cell surface of salt sensitive Chara australis (Beilby and Al Khazaaly 2009; Al Khazaaly and Beilby 2012). The channels open transiently at first, causing a characteristic noise in membrane potential difference (PD), and after longer exposure remain open with a typical current-voltage (I/V) profile, both abolished by the addition of 1 mM ZnCl 2 , the main known blocker of animal H + channels. The cells were imaged with confocal microscopy, using fluorescein isothiocyanate (FITC) coupled to dextran 70 to illuminate the pH changes outside the cell wall in artificial fresh water (AFW) and in saline medium. In the early saline exposure, we observed alkaline patches (bright fluorescent spots) appearing transiently in random spatial distribution. After longer exposure, some of the spots became fixed in space. Saline also abolished or diminished the pH banding pattern observed in the untreated control cells. ZnCl 2 suppressed the alkaline spot formation in saline and the pH banding pattern in AFW. The osmotic component of the saline stress did not produce transient bright spots or affect banding. The displacement of H + from the cell wall charges, the H + /OH - channel conductance/density, and self-organization are discussed. No homologies to animal H + channels were found. Salinity activation of the H + /OH - channels might contribute to saline response in roots of land plants and leaves of aquatic angiosperms.

  10. Estimation of salinity power potential in India

    Digital Repository Service at National Institute of Oceanography (India)

    Das, V.K.; RamaRaju, D.V.

    Salinity gradient as a source of energy has much potential, but this has been recognized only recently. The energy density of this source is equivalent to about 250 m water head for a salinity difference of 35 ppt. This source exists...

  11. Influence of natural organic matter fouling and osmotic backwash on pressure retarded osmosis energy production from natural salinity gradients.

    Science.gov (United States)

    Yip, Ngai Yin; Elimelech, Menachem

    2013-01-01

    Pressure retarded osmosis (PRO) has the potential to produce clean, renewable energy from natural salinity gradients. However, membrane fouling can lead to diminished water flux productivity, thus reducing the extractable energy. This study investigates organic fouling and osmotic backwash cleaning in PRO and the resulting impact on projected power generation. Fabricated thin-film composite membranes were fouled with model river water containing natural organic matter. The water permeation carried foulants from the feed river water into the membrane porous support layer and caused severe water flux decline of ∼46%. Analysis of the water flux behavior revealed three phases in membrane support layer fouling. Initial foulants of the first fouling phase quickly adsorbed at the active-support layer interface and caused a significantly greater increase in hydraulic resistance than the subsequent second and third phase foulants. The water permeability of the fouled membranes was lowered by ∼39%, causing ∼26% decrease in projected power density. A brief, chemical-free osmotic backwash was demonstrated to be effective in removing foulants from the porous support layer, achieving ∼44% recovery in projected power density. The substantial performance recovery after cleaning was attributed to the partial restoration of the membrane water permeability. This study shows that membrane fouling detrimentally impacts energy production, and highlights the potential strategies to mitigate fouling in PRO power generation with natural salinity gradients.

  12. Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis.

    Science.gov (United States)

    Yip, Ngai Yin; Elimelech, Menachem

    2012-05-01

    The Gibbs free energy of mixing dissipated when fresh river water flows into the sea can be harnessed for sustainable power generation. Pressure retarded osmosis (PRO) is one of the methods proposed to generate power from natural salinity gradients. In this study, we carry out a thermodynamic and energy efficiency analysis of PRO work extraction. First, we present a reversible thermodynamic model for PRO and verify that the theoretical maximum extractable work in a reversible PRO process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible constant-pressure PRO process is then examined. We derive an expression for the maximum extractable work in a constant-pressure PRO process and show that it is less than the ideal work (i.e., Gibbs free energy of mixing) due to inefficiencies intrinsic to the process. These inherent inefficiencies are attributed to (i) frictional losses required to overcome hydraulic resistance and drive water permeation and (ii) unutilized energy due to the discontinuation of water permeation when the osmotic pressure difference becomes equal to the applied hydraulic pressure. The highest extractable work in constant-pressure PRO with a seawater draw solution and river water feed solution is 0.75 kWh/m(3) while the free energy of mixing is 0.81 kWh/m(3)-a thermodynamic extraction efficiency of 91.1%. Our analysis further reveals that the operational objective to achieve high power density in a practical PRO process is inconsistent with the goal of maximum energy extraction. This study demonstrates thermodynamic and energetic approaches for PRO and offers insights on actual energy accessible for utilization in PRO power generation through salinity gradients. © 2012 American Chemical Society

  13. A THEORETICAL AND NUMERICAL STUDY OF THERMOSOLUTAL CONVECTION: STABILITY OF A SALINITY GRADIENT SOLAR POND

    Directory of Open Access Journals (Sweden)

    Djamel Kalache

    2011-01-01

    Full Text Available A theoretical and numerical study of the effect of thermodiffusion on the stability of a gradient layer is presented. It intends to clarify the mechanisms of fluid dynamics and the processes which occur in a salinity gradient solar pond. A mathematical modelling is developed to describe the thermodiffusion contribution on the solar pond where thermal, radiative, and massive fluxes are coupled in the double diffusion. More realistic boundary conditions for temperature and concentration profiles are used. Our results are compared with those obtained experimentally by authors without extracting the heat flux from the storage zone. We have considered the stability analysis of the equilibrium solution. We assumed that the perturbation of quantities such as velocity, temperature, and concentration are infinitesimal. Linearized equations satisfying appropriate prescribed boundary conditions are then obtained and expanded into polynomials form. The Galerkin method along with a symbolic algebra code (Maple are used to solve these equations. The effect of the separation coefficient y is analyzed in the positive and negative case. We have also numerically compared the critical Rayleigh numbers for the onset of convection with those obtained by the linear stability analysis for Le = 100, µa = 0.8, and f = 0.5.

  14. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress

    Science.gov (United States)

    Gao, Hui-Juan; Yang, Hong-Yu; Bai, Jiang-Ping; Liang, Xin-Yue; Lou, Yan; Zhang, Jun-Lian; Wang, Di; Zhang, Jin-Lin; Niu, Shu-Qi; Chen, Ying-Long

    2015-01-01

    Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. “Longshu No. 3”) plantlets to gradient saline stress (0, 25, 50, 100, and 200 mM NaCl) with two consequent observations (2 and 6 weeks, respectively). The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1) the number of chloroplasts and cell intercellular spaces markedly decreased, (2) cell walls were thickened and even ruptured, (3) mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4) leaf Na and Cl contents increased while leaf K content decreased, (5) leaf proline content and the activities of catalase (CAT) and superoxide dismutase (SOD) increased significantly, and (6) leaf malondialdehyde (MDA) content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl) inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars. PMID:25628634

  15. Effects of salinity and flooding on post-hurricane regeneration potential in coastal wetland vegetation.

    Science.gov (United States)

    Middleton, Beth A

    2016-08-01

    The nature of regeneration dynamics after hurricane flooding and salinity intrusion may play an important role in shaping coastal vegetation patterns. The regeneration potentials of coastal species, types and gradients (wetland types from seaward to landward) were studied on the Delmarva Peninsula after Hurricane Sandy using seed bank assays to examine responses to various water regimes (unflooded and flooded to 8 cm) and salinity levels (0, 1, and 5 ppt). Seed bank responses to treatments were compared using a generalized linear models approach. Species relationships to treatment and geographical variables were explored using nonmetric multidimensional scaling. Flooding and salinity treatments affected species richness even at low salinity levels (1 and 5 ppt). Maritime forest was especially intolerant of salinity intrusion so that species richness was much higher in unflooded and low salinity conditions, despite the proximity of maritime forest to saltmarsh along the coastal gradient. Other vegetation types were also affected, with potential regeneration of these species affected in various ways by flooding and salinity, suggesting relationships to post-hurricane environment and geographic position. Seed germination and subsequent seedling growth in coastal wetlands may in some cases be affected by salinity intrusion events even at low salinity levels (1 and 5 ppt). These results indicate that the potential is great for hurricanes to shift vegetation type in sensitive wetland types (e.g., maritime forest) if post-hurricane environments do not support the regeneration of extent vegetation. This article is a U.S. Government work and is in the public domain in the USA. © Botanical Society of America (outside the USA) 2016.

  16. Plasma osmolyte concentrations and rectal gland mass of bull sharks Carcharhinus leucas, captured along a salinity gradient.

    Science.gov (United States)

    Pillans, Richard D; Franklin, Craig E

    2004-07-01

    Bull sharks (Carcharhinus leucas) were captured across a salinity gradient from freshwater (FW) to seawater (SW). Across all salinities, C. leucas were hyperosmotic to the environment. Plasma osmolarity in FW-captured animals (642 +/- 7 mosM) was significantly reduced compared to SW-captured animals (1067 +/- 21 mosM). In FW animals, sodium, chloride and urea were 208 +/- 3, 203 +/- 3 and 192 +/- 2 mmol l(-1), respectively. Plasma sodium, chloride and urea in SW-captured C. leucas were 289 +/- 3, 296 +/- 6 and 370 +/- 10 mmol l(-1), respectively. The increase in plasma osmolarity between FW and SW was not linear. Between FW (3 mosM) and 24 per thousand SW (676 mosM), plasma osmolarity increased by 22% or 0.92% per 1 per thousand rise in salinity. Between 24 per thousand and 33 per thousand, plasma osmolarity increased by 33% or 4.7% per 1 per thousand rise in salinity, largely due to a sharp increase in plasma urea between 28 per thousand and 33 per thousand. C. leucas moving between FW and SW appear to be faced with three major osmoregulatory challenges, these occur between 0-10 per thousand, 11-20 per thousand and 21-33 per thousand. A comparison between C. leucas captured in FW and estuarine environments (20-28 per thousand ) in the Brisbane River revealed no difference in the mass of rectal glands between these animals. However, a comparison of rectal gland mass between FW animals captured in the Brisbane River and Rio San Juan/Lake Nicaragua showed that animals in the latter system had a significantly smaller rectal gland mass at a given length than animals in the Brisbane River. The physiological challenges and mechanisms required for C. leucas moving between FW and SW, as well as the ecological implications of these data are discussed.

  17. Particles and solutes migration in porous medium : radionuclides and clayey particles simultaneous transport under the effect of a salinity gradient

    International Nuclear Information System (INIS)

    Faure, M.H.

    1994-01-01

    This work deals with the radiation protection of high-level and long-life radioactive waste storages. The colloids presence in ground waters can accelerate the radionuclides migration in natural geological deposits. The aim of this thesis is then to control particularly the particles motion in porous medium in order to anticipate quantitatively their migration. Liquid chromatography columns are filled with a clayey sand and fed with a decreasing concentration sodium chloride solution in order to study the particles outlet under a salinity gradient. When the porous medium undergoes a decrease of salinity it deteriorates. The adsorption of the cations : sodium 22, calcium 45, cesium 137 and neptunium 237 is then studied by the ions exchange method. The radionuclide solution is injected before the decrease of the feed solution salinity. The decrease of the sodium chloride concentration leads to the decrease of the radionuclides concentration because the adsorption competition between the sodium ion and the injected cation is lower. The particles transport, without fouling of the porous medium, is carried out in particular physical and chemical conditions which are described. (O.L.). 71 refs., 105 figs., 26 tabs

  18. Epiphytic invertebrate patterns in coastal lakes along a gradient of salinity and water exchange with the sea

    Science.gov (United States)

    Obolewski, Krystian; Bąkowska, Martyna

    2017-10-01

    The species composition and abundance of epiphytic fauna inhabiting common reed (Phragmites australis (Cav.) Trin. ex Steud.) was performed in five coastal lakes in Słowiński National Park (southern Baltic coast in northern Poland). The lakes represent a salinity gradient (from freshwater to β-oligohaline waters) and four types of coastal lakes: (1) lagoon, L (Lake Łebsko, seawater enters it permanently); (2) coastal lake with periodically brackish water, CLB (Lake Gardno); (3) freshwater costal lake, CLF (Lake Smołdzińskie); and (4) coastal dune lakes, CLD (Dołgie Wielkie and Dołgie Małe). Using statistical ordination techniques, we found that the structure of epiphytic fauna (microinvertebrates and macroinvertebrates) is determined primarily by hydrological connectivity (water exchange) with the sea. Canonical Correspondence Analysis, coupled with variance partitioning, showed that hydrological connectivity accounted for 24% of the variation in the invertebrate community, followed by physico-chemical (19%) and trophic (8%) factors. Our results indicate that the assemblages of Ciliata-libera and Cnidaria are characteristic for L (β-oligohaline), Rotifera, Suctoria, Chaetogaster sp., Gastropoda and Trichoptera are characteristic for CLB (limnetic/β-oligohaline), but no taxonomic groups are characteristic for CLF and CLD (both limnetic). The index of multivariate dispersion showed a decreasing trend with the increasing lake isolation from the open sea, except for CLD. However, in terms of the structure of epiphytic fauna, Multi-Response Permutation Procedures showed that CLD significantly differed only from CLB. Our results suggest that the identified characteristic taxonomic groups of plant-associated macroinvertebrates have a high potential to be used as bioindicators of salinity and water exchange with the sea, due to their sensitivity to environmental stress.

  19. Functional tradeoffs underpin salinity-driven divergence in microbial community composition.

    Directory of Open Access Journals (Sweden)

    Chris L Dupont

    Full Text Available Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.

  20. Submesoscale-selective compensation of fronts in a salinity-stratified ocean.

    Science.gov (United States)

    Spiro Jaeger, Gualtiero; Mahadevan, Amala

    2018-02-01

    Salinity, rather than temperature, is the leading influence on density in some regions of the world's upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity.

  1. Ultrastructural and physiological responses of potato (Solanum tuberosum L. plantlets to gradient saline stress

    Directory of Open Access Journals (Sweden)

    Hui-Juan eGao

    2015-01-01

    Full Text Available Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. ‘Longshu No. 3’ plantlets to gradient saline stress (0, 25, 50, 100 and 200 mM NaCl with two consequent observations (two and six weeks, respectively. The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1 the number of chloroplasts and cell intercellular spaces markedly decreased, (2 cell walls were thickened and even ruptured, (3 mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4 leaf Na and Cl contents increased while leaf K content decreased, (5 leaf proline content and the activities of catalase (CAT and superoxide dismutase (SOD increased significantly, and (6 leaf malondialdehyde (MDA content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars.

  2. The effectiveness of dispersants under various temperature and salinity regimes

    International Nuclear Information System (INIS)

    Fingas, M.; Fieldhouse, B.; Wang, Z.; Environment Canada, Ottawa, ON

    2005-01-01

    A series of tests were conducted to determine the effectiveness of dispersants in Arctic waters where salinity and temperature interactions play a critical role. In particular, Corexit 9500 was tested on Alaska North Slope oil at different temperatures and salinity using the ASTM standard test and variations of this test. Results were compared to the only historically reported test in which both temperature and salinity were changed over a range of values. This series of tests demonstrated that there is an interaction between salinity, temperature and dispersant effectiveness. It was shown that conventional and currently available dispersants are nearly ineffective at 0 salinity. Dispersant effectiveness peaks at 20 to 40 units of salinity, depending on the type of dispersant. Corexit is less sensitive to salinity, while Corexit 9527 is more sensitive to salinity. There is a smooth gradient of effectiveness with salinity both as the salinity rises to a peak point of effectiveness and as it exceeds this value. Results from the 2 field trials in fresh water suggest that laboratory tests correctly conclude that the effectiveness of dispersants is very low in freshwater. The study also examined several analytical factors such as the total petroleum hydrocarbon (TPH) versus relative petroleum hydrocarbon (RPH) methods, specific versus general calibration curves, and automatic versus manual baseline placement. The analytical variations of effectiveness by RPH or TPH methods do not affect the fundamental relationship between salinity and temperature. 6 refs., 6 tabs., 8 figs

  3. Integrated electrokinetics-adsorption remediation of saline-sodic soils: effects of voltage gradient and contaminant concentration on soil electrical conductivity.

    Science.gov (United States)

    Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Lukman, Salihu; Bukhari, Alaadin

    2013-01-01

    In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD) was used for the experimental design and response surface methodology (RSM) was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R (2) ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.

  4. Integrated Electrokinetics-Adsorption Remediation of Saline-Sodic Soils: Effects of Voltage Gradient and Contaminant Concentration on Soil Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Mohammed Hussain Essa

    2013-01-01

    Full Text Available In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg, was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD was used for the experimental design and response surface methodology (RSM was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R2 ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.

  5. Effects of imidacloprid on soil microbial communities in different saline soils.

    Science.gov (United States)

    Zhang, Qingming; Xue, Changhui; Wang, Caixia

    2015-12-01

    The effects of imidacloprid in the soil environment are a worldwide concern. However, the impact of imidacloprid on soil microorganisms under salt stress is almost unknown. Therefore, an indoor incubation test was performed, and the denaturing gradient gel electrophoresis (DGGE) approach was used to determine the response of different saline soil bacterial and fungal community structures to the presence of imidacloprid (0.4, 2, 10 mg kg(-1)). The results showed that the soil bacterial diversity slightly declined with increasing imidacloprid concentration in soils with low salinity. In moderately saline soils, a new band in the DGGE profile suggested that imidacloprid could improve the soil bacterial diversity to some degree. An analysis of variance indicated that the measured soil bacterial diversity parameters were significantly affected by dose and incubation time. Compared with the control, the soil fungal community structure showed no obvious changes in low and moderately saline soils treated with imidacloprid. The results of these observations provide a basic understanding of the potential ecological effects of imidacloprid on different microorganisms in saline soils.

  6. Site condition, structure, and growth of baldcypress along tidal/non-tidal salinity gradients

    Science.gov (United States)

    Krauss, K.W.; Duberstein, J.A.; Doyle, T.W.; Conner, W.H.; Day, Richard H.; Inabinette, L.W.; Whitbeck, J.L.

    2009-01-01

    This report documents changes in forest structure and growth potential of dominant trees in salt-impacted tidal and non-tidal baldcypress wetlands of the southeastern United States. We inventoried basal area and tree height, and monitored incremental growth (in basal area) of codominant baldcypress (Taxodium distichum) trees monthly, for over four years, to examine the inter-relationships among growth, site fertility, and soil physico-chemical characteristics. We found that salinity, soil total nitrogen (TN), flood duration, and flood frequency affected forest structure and growth the greatest. While mean annual site salinity ranged from 0.1 to 3.4 ppt, sites with salinity concentrations of 1.3 ppt or greater supported a basal area of less than 40 m2/ha. Where salinity was < 0.7 ppt, basal area was as high as 87 m2/ha. Stand height was also negatively affected by higher salinity. However, salinity related only to soil TN concentrations or to the relative balance between soil TN and total phosphorus (TP), which reached a maximum concentration between 1.2 and 2.0 ppt salinity. As estuarine influence shifts inland with sea-level rise, forest growth may become more strongly linked to salinity, not only due to salt effects but also as a consequence of site nitrogen imbalance.

  7. Metagenomic covariation along densely sampled environmental gradients in the Red Sea

    KAUST Repository

    Thompson, Luke R

    2016-07-15

    Oceanic microbial diversity covaries with physicochemical parameters. Temperature, for example, explains approximately half of global variation in surface taxonomic abundance. It is unknown, however, whether covariation patterns hold over narrower parameter gradients and spatial scales, and extending to mesopelagic depths. We collected and sequenced 45 epipelagic and mesopelagic microbial metagenomes on a meridional transect through the eastern Red Sea. We asked which environmental parameters explain the most variation in relative abundances of taxonomic groups, gene ortholog groups, and pathways—at a spatial scale of <2000 km, along narrow but well-defined latitudinal and depth-dependent gradients. We also asked how microbes are adapted to gradients and extremes in irradiance, temperature, salinity, and nutrients, examining the responses of individual gene ortholog groups to these parameters. Functional and taxonomic metrics were equally well explained (75–79%) by environmental parameters. However, only functional and not taxonomic covariation patterns were conserved when comparing with an intruding water mass with different physicochemical properties. Temperature explained the most variation in each metric, followed by nitrate, chlorophyll, phosphate, and salinity. That nitrate explained more variation than phosphate suggested nitrogen limitation, consistent with low surface N:P ratios. Covariation of gene ortholog groups with environmental parameters revealed patterns of functional adaptation to the challenging Red Sea environment: high irradiance, temperature, salinity, and low nutrients. Nutrient-acquisition gene ortholog groups were anti-correlated with concentrations of their respective nutrient species, recapturing trends previously observed across much larger distances and environmental gradients. This dataset of metagenomic covariation along densely sampled environmental gradients includes online data exploration supplements, serving as a community

  8. Using growth-based methods to determine direct effects of salinity on soil microbial communities

    Science.gov (United States)

    Rath, Kristin; Rousk, Johannes

    2015-04-01

    Soil salinization is a widespread agricultural problem and increasing salt concentrations in soils have been found to be correlated with decreased microbial activity. A central challenge in microbial ecology is to link environmental factors, such as salinity, to responses in the soil microbial community. That is, it can be difficult to distinguish direct from indirect effects. In order to determine direct salinity effects on the community we employed the ecotoxicological concept of Pollution-Induced Community Tolerance (PICT). This concept is built on the assumption that if salinity had an ecologically relevant effect on the community, it should have selected for more tolerant species and strains, resulting in an overall higher community tolerance to salt in communities from saline soils. Growth-based measures, such as the 3H-leucine incorporation into bacterial protein , provide sensitive tools to estimate community tolerance. They can also provide high temporal resolution in tracking changes in tolerance over time. In our study we used growth-based methods to investigate: i) at what levels of salt exposure and over which time scales salt tolerance can be induced in a non-saline soil, and (ii) if communities from high salinity sites have higher tolerance to salt exposure along natural salinity gradients. In the first part of the study, we exposed a non-saline soil to a range of salinities and monitored the development of community tolerance over time. We found that community tolerance to intermediate salinities up to around 30 mg NaCl per g soil can be induced at relatively short time scales of a few days, providing evidence that microbial communities can adapt rapidly to changes in environmental conditions. In the second part of the study we used soil samples originating from natural salinity gradients encompassing a wide range of salinity levels, with electrical conductivities ranging from 0.1 dS/m to >10 dS/m. We assessed community tolerance to salt by

  9. Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea

    KAUST Repository

    Ngugi, David; Antunes, Andre; Brune, Andreas; Stingl, Ulrich

    2011-01-01

    The Red Sea is a unique marine ecosystem with contrasting gradients of temperature and salinity along its north-to-south axis. It is an extremely oligotrophic environment that is characterized by perpetual year-round water column stratification, high annual solar irradiation, and negligible riverine and precipitation inputs. In this study, we investigated whether the contemporary environmental conditions shape community assemblages by pyrosequencing 16S rRNA genes of bacteria in surface water samples collected from the northeastern half of this water body. A combined total of 1855 operational taxonomic units (OTUs) were recovered from the 'small-cell' and 'large-cell' fractions. Here, a few major OTUs affiliated with Cyanobacteria and Proteobacteria accounted for â93% of all sequences, whereas a tail of 'rare' OTUs represented most of the diversity. OTUs allied to Surface 1a/b SAR11 clades and Prochlorococcus related to the high-light-adapted (HL2) ecotype were the most widespread and predominant sequence types. Interestingly, the frequency of taxa that are typically found in the upper mesopelagic zone was significantly elevated in the northern transects compared with those in the central, presumably as a direct effect of deep convective mixing in the Gulf of Aqaba and water exchange with the northern Red Sea. Although temperature was the best predictor of species richness across all major lineages, both spatial and environmental distances correlated strongly with phylogenetic distances. Our results suggest that the bacterial diversity of the Red Sea is as high as in other tropical seas and provide evidence for fundamental differences in the biogeography of pelagic communities between the northern and central regions. © 2011 Blackwell Publishing Ltd.

  10. Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea

    KAUST Repository

    Ngugi, David

    2011-12-01

    The Red Sea is a unique marine ecosystem with contrasting gradients of temperature and salinity along its north-to-south axis. It is an extremely oligotrophic environment that is characterized by perpetual year-round water column stratification, high annual solar irradiation, and negligible riverine and precipitation inputs. In this study, we investigated whether the contemporary environmental conditions shape community assemblages by pyrosequencing 16S rRNA genes of bacteria in surface water samples collected from the northeastern half of this water body. A combined total of 1855 operational taxonomic units (OTUs) were recovered from the \\'small-cell\\' and \\'large-cell\\' fractions. Here, a few major OTUs affiliated with Cyanobacteria and Proteobacteria accounted for â93% of all sequences, whereas a tail of \\'rare\\' OTUs represented most of the diversity. OTUs allied to Surface 1a/b SAR11 clades and Prochlorococcus related to the high-light-adapted (HL2) ecotype were the most widespread and predominant sequence types. Interestingly, the frequency of taxa that are typically found in the upper mesopelagic zone was significantly elevated in the northern transects compared with those in the central, presumably as a direct effect of deep convective mixing in the Gulf of Aqaba and water exchange with the northern Red Sea. Although temperature was the best predictor of species richness across all major lineages, both spatial and environmental distances correlated strongly with phylogenetic distances. Our results suggest that the bacterial diversity of the Red Sea is as high as in other tropical seas and provide evidence for fundamental differences in the biogeography of pelagic communities between the northern and central regions. © 2011 Blackwell Publishing Ltd.

  11. Effects of exogenous salinity (NaCl) gradient on Cd release in acidified contaminated brown soil

    Science.gov (United States)

    Zhang, Lina; Rong, Yong; Mao, Li; Gao, Zhiyuan; Liu, Xiaoyu; Dong, Zhicheng

    2018-02-01

    Taking acidified Cd contaminated brown soil in Yantai as the research object, based on different exogenous salinity (NaCl) gradient (0%, 0.3%, 0.6%, 0.9%, 1.5%, 2% and 5%), indoor simulation experiments of Cd release were carried out after field investigation. Results showed that there was a significantly positive relation (r>0.90) between Cd release concentration/amount/ratio and exogenous salt (NaCl). Besides, the more exogenous salt (NaCl) was added; maximum release concentration/amount of Cd appeared the earlier. It was found that exogenous salt (NaCl) addition could obviously promote Cd release from acidified Cd contaminated brown soil. It was believed that this could be mainly due to the cation exchange between Cd2+ and Na+, together with the dissociation and/or complexation between Cl- and Cd2+. In addition, available adsorption sites reduction by exchange base in soil causing Cd changed from solid state to soil solution was also a probable reason.

  12. Structure and flow-induced variability of the subtidal salinity field in northern San Francisco Bay

    Science.gov (United States)

    Monismith, Stephen G.; Kimmerer, W.; Burau, J.R.; Stacey, M.T.

    2002-01-01

    The structure of the salinity field in northern San Francisco Bay and how it is affected by freshwater flow are discussed. Two datasets are examined: the first is 23 years of daily salinity data taken by the U.S. Bureau of Reclamation along the axis of northern San Francisco Bay: the second is a set of salinity transects taken by the U.S. Geological Survey between 1988 and 1993. Central to this paper is a measure of salinity intrusion. X2: the distance from the Golden Gate Bridge to where the bottom salinity is 2 psu. Using X2 to scale distance, the authors find that for most flow conditions, the mean salinity distribution of the estuary is nearly self-similar with a salinity gradient in the center 70% of the region between the Golden Gate and X2 that is proportional to X2-1. Analysis of covariability of Q and X2 showed a characteristics timescale of adjustment of the salinity field of approximately 2 weeks. The steady-state response deduced from the X2 time series implies that X2 is proportional to riverflow to the 1/7 power. This relation, which differs from the standard 1/3 power dependence that is derived theoretically assuming constant exchange coefficients, shows that the upstream salt flux associated with gravitational circulation is more sensitive to the longitudinal salinity gradient than theory supposes. This is attributed to the strengthening of stratification caused by the stronger longitudinal salinity gradient that accompanies larger river flows.

  13. Metagenomic covariation along densely sampled environmental gradients in the Red Sea

    Science.gov (United States)

    Thompson, Luke R; Williams, Gareth J; Haroon, Mohamed F; Shibl, Ahmed; Larsen, Peter; Shorenstein, Joshua; Knight, Rob; Stingl, Ulrich

    2017-01-01

    Oceanic microbial diversity covaries with physicochemical parameters. Temperature, for example, explains approximately half of global variation in surface taxonomic abundance. It is unknown, however, whether covariation patterns hold over narrower parameter gradients and spatial scales, and extending to mesopelagic depths. We collected and sequenced 45 epipelagic and mesopelagic microbial metagenomes on a meridional transect through the eastern Red Sea. We asked which environmental parameters explain the most variation in relative abundances of taxonomic groups, gene ortholog groups, and pathways—at a spatial scale of water mass with different physicochemical properties. Temperature explained the most variation in each metric, followed by nitrate, chlorophyll, phosphate, and salinity. That nitrate explained more variation than phosphate suggested nitrogen limitation, consistent with low surface N:P ratios. Covariation of gene ortholog groups with environmental parameters revealed patterns of functional adaptation to the challenging Red Sea environment: high irradiance, temperature, salinity, and low nutrients. Nutrient-acquisition gene ortholog groups were anti-correlated with concentrations of their respective nutrient species, recapturing trends previously observed across much larger distances and environmental gradients. This dataset of metagenomic covariation along densely sampled environmental gradients includes online data exploration supplements, serving as a community resource for marine microbial ecology. PMID:27420030

  14. Fine-scale variability of isopycnal salinity in the California Current System

    Science.gov (United States)

    Itoh, Sachihiko; Rudnick, Daniel L.

    2017-09-01

    This paper examines the fine-scale structure and seasonal fluctuations of the isopycnal salinity of the California Current System from 2007 to 2013 using temperature and salinity profiles obtained from a series of underwater glider surveys. The seasonal mean distributions of the spectral power of the isopycnal salinity gradient averaged over submesoscale (12-30 km) and mesoscale (30-60 km) ranges along three survey lines off Monterey Bay, Point Conception, and Dana Point were obtained from 298 transects. The mesoscale and submesoscale variance increased as coastal upwelling caused the isopycnal salinity gradient to steepen. Areas of elevated variance were clearly observed around the salinity front during the summer then spread offshore through the fall and winter. The high fine-scale variances were observed typically above 25.8 kg m-3 and decreased with depth to a minimum at around 26.3 kg m-3. The mean spectral slope of the isopycnal salinity gradient with respect to wavenumber was 0.19 ± 0.27 over the horizontal scale of 12-60 km, and 31%-35% of the spectra had significantly positive slopes. In contrast, the spectral slope over 12-30 km was mostly flat, with mean values of -0.025 ± 0.32. An increase in submesoscale variability accompanying the steepening of the spectral slope was often observed in inshore areas; e.g., off Monterey Bay in winter, where a sharp front developed between the California Current and the California Under Current, and the lower layers of the Southern California Bight, where vigorous interaction between a synoptic current and bottom topography is to be expected.

  15. Particle and solute migration in porous media. Modeling of simultaneous transport of clay particles and radionuclides in a salinity gradient

    International Nuclear Information System (INIS)

    Faure, M.H.

    1994-03-01

    Understanding the mechanisms which control the transient transport of particles and radionuclides in natural and artificial porous media is a key problem for the assessment of safety of radioactive waste disposals. An experimental study has been performed to characterize the clayey particle mobility in porous media: a laboratory- made column, packed with an unconsolidated sand bentonite (5% weight) sample, is flushed with a salt solution. An original method of salinity gradient allowed us to show and to quantify some typical behaviours of this system: threshold effects in the peptization of particles, creation of preferential pathways, formation of immobile water zones induce solute-transfer limitation. The mathematical modelling accounts for a phenomenological law, where the distribution of particles between the stagnant water zone and the porous medium is a function of sodium chloride concentration. This distribution function is associated with a radionuclide adsorption model, and is included in a convective dispersive transport model with stagnant water zones. It allowed us to simulate the particle and solute transport when the salt environment is modified. The complete model has been validated with experiments involving cesium, calcium and neptunium in a sodium chloride gradient. (author). refs., figs., tabs

  16. Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy

    KAUST Repository

    Geise, Geoffrey M.

    2013-09-17

    Many salinity gradient energy technologies such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange membranes. While there is considerable interest in using thermolytic solutions such as ammonium bicarbonate (AmB) in RED processes for closed-loop conversion of heat energy to electricity, little is known about membrane performance in this electrolyte. The resistances of two commercially available cation exchange membranes in AmB were lower than their resistances in NaCl. However, the resistances of commercially available anion exchange membranes (AEMs) were much larger in AmB than in NaCl, which would adversely affect energy recovery. The properties of a series of quaternary ammonium-functionalized poly(phenylene oxide) and Radel-based AEMs were therefore examined to understand the reasons for increased resistance in AmB to overcome this performance penalty due to the lower mobility of bicarbonate, 4.59 × 10-4 cm2/(V s), compared to chloride, 7.90 × 10-4 cm2/(V s) (the dilute aqueous solution mobility ratio of HCO3 - to Cl- is 0.58). Most membrane resistances were generally consistent with the dilute solution mobilities of the anions. For a few key samples, however, increased water uptake in AmB solution reduced the ionic resistance of the polymer compared to its resistance in NaCl solution. This increased water uptake was attributed to the greater hydration of the bicarbonate ion compared to the chloride ion. The increased resistance due to the use of bicarbonate as opposed to chloride ions in AEMs can therefore be mitigated by designing polymers that swell more in AmB compared to NaCl solutions, enabling more efficient energy recovery using AmB thermolytic solutions in RED. © 2013 American Chemical Society.

  17. Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy

    KAUST Repository

    Geise, Geoffrey M.; Hickner, Michael A.; Logan, Bruce E.

    2013-01-01

    Many salinity gradient energy technologies such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange membranes. While there is considerable interest in using thermolytic solutions such as ammonium bicarbonate (AmB) in RED processes for closed-loop conversion of heat energy to electricity, little is known about membrane performance in this electrolyte. The resistances of two commercially available cation exchange membranes in AmB were lower than their resistances in NaCl. However, the resistances of commercially available anion exchange membranes (AEMs) were much larger in AmB than in NaCl, which would adversely affect energy recovery. The properties of a series of quaternary ammonium-functionalized poly(phenylene oxide) and Radel-based AEMs were therefore examined to understand the reasons for increased resistance in AmB to overcome this performance penalty due to the lower mobility of bicarbonate, 4.59 × 10-4 cm2/(V s), compared to chloride, 7.90 × 10-4 cm2/(V s) (the dilute aqueous solution mobility ratio of HCO3 - to Cl- is 0.58). Most membrane resistances were generally consistent with the dilute solution mobilities of the anions. For a few key samples, however, increased water uptake in AmB solution reduced the ionic resistance of the polymer compared to its resistance in NaCl solution. This increased water uptake was attributed to the greater hydration of the bicarbonate ion compared to the chloride ion. The increased resistance due to the use of bicarbonate as opposed to chloride ions in AEMs can therefore be mitigated by designing polymers that swell more in AmB compared to NaCl solutions, enabling more efficient energy recovery using AmB thermolytic solutions in RED. © 2013 American Chemical Society.

  18. Near-surface temperature gradient in a coastal upwelling regime

    Science.gov (United States)

    Maske, H.; Ochoa, J.; Almeda-Jauregui, C. O.; Ruiz-de la Torre, M. C.; Cruz-López, R.; Villegas-Mendoza, J. R.

    2014-08-01

    In oceanography, a near homogeneous mixed layer extending from the surface to a seasonal thermocline is a common conceptual basis in physics, chemistry, and biology. In a coastal upwelling region 3 km off the coast in the Mexican Pacific, we measured vertical density gradients with a free-rising CTD and temperature gradients with thermographs at 1, 3, and 5 m depths logging every 5 min during more than a year. No significant salinity gradient was observed down to 10 m depth, and the CTD temperature and density gradients showed no pronounced discontinuity that would suggest a near-surface mixed layer. Thermographs generally logged decreasing temperature with depth with gradients higher than 0.2 K m-1 more than half of the time in the summer between 1 and 3 m, 3 and 5 m and in the winter between 1 and 3 m. Some negative temperature gradients were present and gradients were generally highly variable in time with high peaks lasting fractions of hours to hours. These temporal changes were too rapid to be explained by local heating or cooling. The pattern of positive and negative peaks might be explained by vertical stacks of water layers of different temperatures and different horizontal drift vectors. The observed near-surface gradient has implications for turbulent wind energy transfer, vertical exchange of dissolved and particulate water constituents, the interpretation of remotely sensed SST, and horizontal wind-induced transport.

  19. Salinity and Temperature Tolerance of the Nemertean Worm Carcinonemertes errans, an Egg Predator of the Dungeness Crab.

    Science.gov (United States)

    Dunn, Paul H; Young, Craig M

    2015-04-01

    Estuaries can be harsh habitats for the marine animals that enter them, but they may also provide these species with sub-saline refuges from their parasites. The nemertean egg predator Carcinonemertes errans is known to occur less frequently and in smaller numbers on its host, the Dungeness crab Metacarcinus magister, when the hosts are found within estuaries. We examined the temperature and salinity tolerances of C. errans to determine if this observed distribution represents a true salinity refuge. We monitored the survival of juvenile and larval worms exposed to ecologically relevant salinities (5-30) and temperatures (8-20 °C) over the course of several days under laboratory conditions. Juvenile worms were unaffected by the experimental temperature levels and exhibited robustness to salinity treatments 25 and 30. However, significant mortality was seen at salinity treatments 20 and below. Larvae were less tolerant than juveniles to lowered salinity and were also somewhat more susceptible to the higher temperatures tested. Given that the Dungeness crab can tolerate forays into mesohaline (salinity 5-18) waters for several days at a time, our findings suggest that salinity gradients play an important role in creating a parasite refuge for this species within the estuaries of the Pacific Northwest. © 2015 Marine Biological Laboratory.

  20. Absence of genetic differentiation in the coral Pocillopora verrucosa along environmental gradients of the Saudi Arabian Red Sea

    Directory of Open Access Journals (Sweden)

    Vanessa eRobitzch

    2015-02-01

    Full Text Available The Red Sea is the world’s northernmost tropical sea. The 2,000 km long, but narrow basin creates distinct environmental conditions along its latitudinal spread. The Red Sea displays a pronounced salinity gradient from 41 to 37 PSU (north to south with an opposing temperature gradient from 21-27°C in the north to 27-33.8°C in the south. The Red Sea further displays a decreasing nutrient gradient from south to north that can also influence underwater light fields due to higher phytoplankton content and turbidity. Despite this strong variation in temperature, salinity, nutrients, and light conditions, the Red Sea supports large and diverse coral reef ecosystems along its nearly entire coastline. Only few studies have targeted whether these prevailing gradients affect genetic connectivity of reef organisms in the Red Sea. In this study, we sampled the abundant reef-building coral Pocillopora verrucosa from ten reefs along a latitudinal gradient in the Red Sea covering an area of more than 850 km. We used nine Pocillopora microsatellite markers to assess the underlying population genetic structure and effective population size. To assure the exclusion of cryptic species, all analyzed specimens were chosen from a single mitochondrial lineage. Despite large distances between sampled regions covering pronounced, but smooth temperature and salinity gradients, no significant genetic population structure was found. Rather, our data indicate panmixia and considerable gene flow among regions. The absence of population subdivision driven by environmental factors and over large geographic distances suggests efficient larval dispersal and successful settlement of recruits from a wide range of reef sites. It also advocates, broadcast spawning as the main reproductive strategy of Pocillopora verrucosa in the Red Sea as reflected by the absence of clones in sampled colonies. These factors might explain the success of Pocillopora species throughout the Indo

  1. Absence of genetic differentiation in the coral Pocillopora verrucosa along environmental gradients of the Saudi Arabian Red Sea

    KAUST Repository

    Robitzch, Vanessa S.N.; Banguera Hinestroza, Eulalia; Sawall, Yvonne; Al-Sofyani, Abdulmohsin; Voolstra, Christian R.

    2015-01-01

    The Red Sea is the world's northernmost tropical sea. The 2000 km long, but narrow basin creates distinct environmental conditions along its latitudinal spread. The Red Sea displays a pronounced salinity gradient from 41 to 37 PSU (north to south) with an opposing temperature gradient from 21 to 27°C in the north to 27–33.8°C in the south. The Red Sea further displays a decreasing nutrient gradient from south to north that can also influence underwater light fields due to higher phytoplankton content and turbidity. Despite this strong variation in temperature, salinity, nutrients, and light conditions, the Red Sea supports large and diverse coral reef ecosystems along its nearly entire coastline. Only few studies have targeted whether these prevailing gradients affect genetic connectivity of reef organisms in the Red Sea. In this study, we sampled the abundant reef-building coral Pocillopora verrucosa from 10 reefs along a latitudinal gradient in the Red Sea covering an area of more than 850 km. We used nine Pocillopora microsatellite markers to assess the underlying population genetic structure and effective population size. To assure the exclusion of cryptic species, all analyzed specimens were chosen from a single mitochondrial lineage. Despite large distances between sampled regions covering pronounced, but smooth temperature and salinity gradients, no significant genetic population structure was found. Rather, our data indicate panmixia and considerable gene flow among regions. The absence of population subdivision driven by environmental factors and over large geographic distances suggests efficient larval dispersal and successful settlement of recruits from a wide range of reef sites. It also advocates, broadcast spawning as the main reproductive strategy of Pocillopora verrucosa in the Red Sea as reflected by the absence of clones in sampled colonies. These factors might explain the success of Pocillopora species throughout the Indo-Pacific and Arabian

  2. Absence of genetic differentiation in the coral Pocillopora verrucosa along environmental gradients of the Saudi Arabian Red Sea

    KAUST Repository

    Robitzch, Vanessa S.N.

    2015-02-11

    The Red Sea is the world\\'s northernmost tropical sea. The 2000 km long, but narrow basin creates distinct environmental conditions along its latitudinal spread. The Red Sea displays a pronounced salinity gradient from 41 to 37 PSU (north to south) with an opposing temperature gradient from 21 to 27°C in the north to 27–33.8°C in the south. The Red Sea further displays a decreasing nutrient gradient from south to north that can also influence underwater light fields due to higher phytoplankton content and turbidity. Despite this strong variation in temperature, salinity, nutrients, and light conditions, the Red Sea supports large and diverse coral reef ecosystems along its nearly entire coastline. Only few studies have targeted whether these prevailing gradients affect genetic connectivity of reef organisms in the Red Sea. In this study, we sampled the abundant reef-building coral Pocillopora verrucosa from 10 reefs along a latitudinal gradient in the Red Sea covering an area of more than 850 km. We used nine Pocillopora microsatellite markers to assess the underlying population genetic structure and effective population size. To assure the exclusion of cryptic species, all analyzed specimens were chosen from a single mitochondrial lineage. Despite large distances between sampled regions covering pronounced, but smooth temperature and salinity gradients, no significant genetic population structure was found. Rather, our data indicate panmixia and considerable gene flow among regions. The absence of population subdivision driven by environmental factors and over large geographic distances suggests efficient larval dispersal and successful settlement of recruits from a wide range of reef sites. It also advocates, broadcast spawning as the main reproductive strategy of Pocillopora verrucosa in the Red Sea as reflected by the absence of clones in sampled colonies. These factors might explain the success of Pocillopora species throughout the Indo-Pacific and

  3. Population dynamics and antimicrobial susceptibility of Aeromonas spp. along a salinity gradient in an urban estuary in Northeastern Brazil.

    Science.gov (United States)

    Silva, Camila Magalhães; Evangelista-Barreto, Norma Suely; Vieira, Regine Helena Silva Dos Fernandes; Mendonça, Kamila Vieira; Sousa, Oscarina Viana de

    2014-12-15

    The main objective of this study was to quantify population and identify culturable species of Aeromonas in sediment and surface water collected along a salinity gradient in an urban estuary in Northeastern Brazil. Thirty sediment samples and 30 water samples were collected from 3 sampling locations (A, B and C) between October 2007 and April 2008. The Aeromonas count was 10-7050CFU/mL (A), 25-38,500CFU/mL (B) andwater samples, and ∼100-37,500CFU/g (A), 1200-43,500CFU/g (B) andantibiotics tested. Resistance to erythromycin was mostly plasmidial. In conclusion, due to pollution, the Cocó River is contaminated by pathogenic strains of Aeromonas spp. with a high incidence of antibacterial resistance, posing a serious risk to human health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Characteristics of the ichthyofauna of a temperate microtidal estuary with a reverse salinity gradient, including inter-decadal comparisons.

    Science.gov (United States)

    Veale, L; Tweedley, J R; Clarke, K R; Hallett, C S; Potter, I C

    2014-11-01

    Data on the fish fauna of the Leschenault Estuary on the lower west coast of Australia were collected and used as a model to elucidate the characteristics of permanently open estuaries with a reverse salinity gradient, which undergo seasonal changes similar to many other estuaries with Mediterranean climate. Focus was placed on determining (1) the relationships of the number of species, density, life cycle category and species composition of fishes with region (within estuary), season and year and salinity, (2) whether species are partitioned along the lengths of such systems and (3) the extent and significance of any inter-decadal changes in species composition. The analyses and interpretation involved using multi-factorial permutational multivariate analysis of variance (PERMANOVA) and analysis of similarity (ANOSIM) designs, and three new or recently published visualization tools, i.e. modified non-metric multidimensional scaling (nMDS) plots, coherent species curves and segmented bubble plots. The base, lower, upper and apex regions of the Leschenault Estuary, along which the salinity increased in each season except in winter when most rainfall occurs, were sampled seasonally for the 2 years between winter 2008 and autumn 2010. Estuarine residents contributed twice as many individuals, but less than half the number of species as marine taxa. While the numbers of marine species and estuarine residents declined between the base or lower and apex regions, the individuals of marine species dominated the catches in the base region and estuarine residents in the other three regions. Ichthyofaunal composition in each region underwent conspicuous annual cyclical changes, due to time-staggered differences in recruitment among species, and changed sequentially along the estuary, both paralleling salinity trends. Different groups of species characterized the fauna in the different regions and seasons, thereby partitioning resources among species. The ichthyofauna of the

  5. Plasticity to salinity and transgenerational effects in the nonnative shrub Baccharis halimifolia: Insights into an estuarine invasion.

    Science.gov (United States)

    Caño, Lidia; Fuertes-Mendizabal, Teresa; García-Baquero, Gonzalo; Herrera, Mercedes; González-Moro, M Begoña

    2016-05-01

    Abiotic constraints act as selection filters for plant invasion in stressful habitats. Adaptive phenotypic plasticity and transgenerational effects play a major role in colonization of heterogeneous habitats when the scale of environmental variation is smaller than that of gene flow. We investigated how plasticity and parental salinity conditions influence the performance of the invasive dioecious shrub Baccharis halimifolia, which replaces heterogeneous estuarine communities in Europe with monospecific and continuous stands. In two greenhouse experiments, we grew plants derived from seeds and cuttings collected through interspersed patches differing in edaphic salinity from an invasive population. We estimated parental environmental salinity from leaf Na(+) content in parental plants, and we measured fitness and ion homeostasis of the offspring grown in contrasting salinity conditions. Baccharis halimifolia tolerates high salinity but experiences drastic biomass reduction at moderate salinity. At moderate salinity, responses to salinity are affected by the parental salinity: flowering initiation in seedlings and male cuttings is positively correlated with parental leaf Na(+) content, and biomass is positively correlated with maternal leaf Na(+) in female cuttings and seedlings. Plant height, leaf production, specific leaf area, and ionic homeostasis at the low part of the gradient are also affected by parental salinity, suggesting enhanced shoot growth as parental salinity increases. Our results support plasticity to salinity and transgenerational effects as factors with great potential to contribute to the invasive ability of B. halimifolia through estuarine communities of high conservation value. © 2016 Botanical Society of America.

  6. Tidal switch on metabolic activity: Salinity induced responses on bacterioplankton metabolic capabilities in a tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Thottathil, S.D.; Balachandran, K.K.; Jayalakshmy, K.V.; Gupta, G.V.M.; Nair, S.

    , P.A., 2002. Compositional change in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnology and Oceanography 47, 453e470. Cottrell, M.T., Kirchman, D.L., 2000. Natural assemblages of marine proteo- bacteria...) according to a salinity gradient. Estuarine, Coastal and Shelf Science 24, 95e108. Pullin, M.J., Bertilsson, S., Goldstone, J.V., Voelker, B.M., 2004. Effects of sunlight and hydroxyl radical on dissolved organic matter: bacterial growth efficiency...

  7. Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea.

    Science.gov (United States)

    Swan, Brandon K; Ehrhardt, Christopher J; Reifel, Kristen M; Moreno, Lilliana I; Valentine, David L

    2010-02-01

    Sulfidic, anoxic sediments of the moderately hypersaline Salton Sea contain gradients in salinity and carbon that potentially structure the sedimentary microbial community. We investigated the abundance, community structure, and diversity of Bacteria and Archaea along these gradients to further distinguish the ecologies of these domains outside their established physiological range. Quantitative PCR was used to enumerate 16S rRNA gene abundances of Bacteria, Archaea, and Crenarchaeota. Community structure and diversity were evaluated by terminal restriction fragment length polymorphism (T-RFLP), quantitative analysis of gene (16S rRNA) frequencies of dominant microorganisms, and cloning and sequencing of 16S rRNA. Archaea were numerically dominant at all depths and exhibited a lesser response to environmental gradients than that of Bacteria. The relative abundance of Crenarchaeota was low (0.4 to 22%) at all depths but increased with decreased carbon content and increased salinity. Salinity structured the bacterial community but exerted no significant control on archaeal community structure, which was weakly correlated with total carbon. Partial sequencing of archaeal 16S rRNA genes retrieved from three sediment depths revealed diverse communities of Euryarchaeota and Crenarchaeota, many of which were affiliated with groups previously described from marine sediments. The abundance of these groups across all depths suggests that many putative marine archaeal groups can tolerate elevated salinity (5.0 to 11.8% [wt/vol]) and persist under the anaerobic conditions present in Salton Sea sediments. The differential response of archaeal and bacterial communities to salinity and carbon patterns is consistent with the hypothesis that adaptations to energy stress and availability distinguish the ecologies of these domains.

  8. Identification of RAPD markers linked to salinity tolerance in wheat

    African Journals Online (AJOL)

    armghan_shehzad

    The individual plants from F2 population segregation for salinity tolerance and the parents ..... plasma membrane Na+/H+ antiporters that are energized by proton gradients ... tonoplast by vascular Na+/ H+ antiporters into the cell vacuoles ...

  9. Potential effects of physiological plastic responses to salinity on population networks of the estuarine crab Chasmagnathus granulata

    Science.gov (United States)

    Giménez, Luis

    2003-01-01

    Chasmagnathus granulata is a South American crab occurring in estuarine salt marshes of the Brazilian, Uruguayan and Argentine coasts. Life history is characterized by an export strategy of its larval stages. I reviewed information on experimental manipulation of salinity during embryonic and larval development (pre- and posthatching salinities), and on habitat characteristics of C. granulata in order to determine potential effects of larval response to salinity in the field and to suggest consequences for the population structure. Local populations are spread over coastal areas with different physical characteristics. Benthic phases occupy estuaries characterized by different patterns of salinity variation, and release larvae to coastal waters characterized by strong salinity gradients. The zoea 1 of C. granulata showed a strong acclimatory response to low salinity. This response operated only during the first weeks of development (during zoeae 1 and 2) since subsequent larval survival at low posthatching salinities was consistently low. Larvae developing at low salinity frequently followed a developmental pathway with five instead of four zoeal stages. The ability to acclimate and the variability in larval development (i.e. the existence of alternative developmental pathways) could be interpreted as a strategy to buffer environmental variability at spatial scales of local or population networks. Early survivorship and production of larvae may be relatively high across a rather wide range of variability in salinity (5-32‰). Plastic responses to low salinity would therefore contribute to maintain a certain degree of population connectivity and persistence regardless of habitat heterogeneity.

  10. Bank storage buffers rivers from saline regional groundwater: an example from the Avon River Australia

    Science.gov (United States)

    Gilfedder, Benjamin; Hofmann, Harald; Cartwrighta, Ian

    2014-05-01

    Groundwater-surface water interactions are often conceptually and numerically modeled as a two component system: a groundwater system connected to a stream, river or lake. However, transient storage zones such as hyporheic exchange, bank storage, parafluvial flow and flood plain storage complicate the two component model by delaying the release of flood water from the catchment. Bank storage occurs when high river levels associated with flood water reverses the hydraulic gradient between surface water and groundwater. River water flows into the riparian zone, where it is stored until the flood water recede. The water held in the banks then drains back into the river over time scales ranging from days to months as the hydraulic gradient returns to pre-flood levels. If the frequency and amplitude of flood events is high enough, water held in bank storage can potentially perpetually remain between the regional groundwater system and the river. In this work we focus on the role of bank storage in buffering river salinity levels against saline regional groundwater on lowland sections of the Avon River, Victoria, Australia. We hypothesize that the frequency and magnitude of floods will strongly influence the salinity of the stream water as banks fill and drain. A bore transect (5 bores) was installed perpendicular to the river and were instrumented with head and electrical conductivity loggers measuring for two years. We also installed a continuous 222Rn system in one bore. This data was augmented with long-term monthly EC from the river. During high rainfall events very fresh flood waters from the headwaters infiltrated into the gravel river banks leading to a dilution in EC and 222Rn in the bores. Following the events the fresh water drained back into the river as head gradients reversed. However the bank water salinities remained ~10x lower than regional groundwater levels during most of the time series, and only slightly above river water. During 2012 SE Australia

  11. Modified whole effluent toxicity test to assess and decouple wastewater effects from environmental gradients.

    Directory of Open Access Journals (Sweden)

    Sebastián Sauco

    Full Text Available Environmental gradients and wastewater discharges produce aggregated effects on marine populations, obscuring the detection of human impact. Classical assessment methods do not include environmental effects in toxicity tests designs, which could lead to incorrect conclusions. We proposed a modified Whole Effluent Toxicity test (mWET that includes environmental gradients in addition to effluent dilutions, together with the application of Generalized Linear Mixed Models (GLMM to assess and decouple those effects. We tested this approach, analyzing the lethal effects of wastewater on a marine sandy beach bivalve affected by an artificial canal freshwater discharge used for rice crops irrigation. To this end, we compared bivalve mortality between canal water dilutions (CWd and salinity controls (SC: without canal water. CWd were prepared by diluting the water effluent (sampled during the pesticide application period with artificial marine water. The salinity gradient was included in the design by achieving the same final salinities in both CWd and SC, allowing us to account for the effects of salinity by including this variable as a random factor in the GLMM. Our approach detected significantly higher mortalities in CWd, indicating potential toxic effects of the effluent discharge. mWET represents an improvement over the internationally standardized WET tests, since it considers environmental variability and uses appropriate statistical analyses.

  12. Parallel structure among environmental gradients and three trophic levels in a subarctic estuary

    Science.gov (United States)

    Speckman, Suzann G.; Piatt, John F.; Minte-Vera, Carolina V.; Parrish, Julia K.

    2005-07-01

    We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong ( r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 ( r = 0.87) and 1998 ( r = 0.82). The correlation was poor ( r = 0.32) in

  13. Salinity variations and chemical compositions of waters in the Frio Formation, Texas Gulf Coast. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Morton, R.A.; Garrett, C.M. Jr.; Posey, J.S.; Han, J.H.; Jirik, L.A.

    1981-11-01

    Waters produced from sandstone reservoirs of the deep Frio Formation exhibit spatial variations in chemical composition that roughly coincide with the major tectonic elements (Houston and Rio Grande Embayments, San Marcos Arch) and corresponding depositional systems (Houston and Norias deltas, Greta-Carancahua barrier/strandplain system) that were respectively active along the upper, lower, and middle Texas Coast during Frio deposition. Within an area, salinities are usually depth dependent, and primary trends closely correspond to pore pressure gradients and thermal gradients. Where data are available (mainly in Brazoria County) the increases in TDS and calcium with depth coincide with the zone of albitization, smectite-illite transition, and calcite decrease in shales. Waters have fairly uniform salinities when produced from the same sandstone reservoir within a fault block or adjacent fault blocks with minor displacement. In contrast, stratigraphically equivalent sandstones separated by faults with large displacement usually yield waters with substantially different salinities owing to the markedly different thermal and pressure gradients across the faults that act as barriers to fluid movement.

  14. Episodic Salinization of Urban Rivers: Potential Impacts on Carbon, Cation, and Nutrient Fluxes

    Science.gov (United States)

    Haq, S.; Kaushal, S.

    2017-12-01

    Human dominated watersheds are subjected to an array of salt inputs (e.g. road salts), and in urban areas, infrastructure and impervious surfaces quickly drain applied road salts into the river channel. As a result, many streams experience episodic salinization over the course of hours to days following a snow event (e.g. road salt pulse), and long-term salinization over the course of seasons to decades. Salinization of streams can release contaminants (e.g. heavy metals), reduce biodiversity, and degrade drinking water quality. We investigated the water quality effects of episodic salinization in urban streams. Sediment and streamwater were incubated from twelve sites in the Baltimore-Washington Metropolitan Area under a range of sodium chloride treatments in a lab environment to mimic a vertical stream column with a sediment-water interface undergoing episodic salinization, and to characterize relationships between experimental salinization and nutrient/cation fluxes. Eight sites (Baltimore) exhibit a land use gradient and are routinely monitored within the Baltimore Ecosystem Study LTER project, and four sites (Washington DC) are suburban and offer a contrasting lithology and physiographic province. Our research suggests that salinization can mobilize total dissolved nitrogen, soluble reactive phosphorous, and base cations; potentially due to coupled biotic-abiotic processes, such as ion exchange, rapid nitrification, pH changes, and chloride-organic matter dispersal. The impact of salinization on dissolved inorganic and organic carbon varied between sites, potentially due to sediment composition, organic matter content, and ambient water quality. We contrasted the experimental results with measurements of salinization (specific conductance) and nutrients (nitrate) from real-time sensors operated by the US Geological Survey that encompass the same watersheds as our experimental sites. Sensor data was analyzed to provide insight on the timescales of salinity

  15. Modelling the salinization of a coastal lagoon-aquifer system

    Science.gov (United States)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer salinization from a saltwater wedge intruding from the sea is often not representative of the actual aquifer’s salinization mechanisms.

  16. Finding a solution: Heparinised saline versus normal saline in the maintenance of invasive arterial lines in intensive care.

    Science.gov (United States)

    Everson, Matthew; Webber, Lucy; Penfold, Chris; Shah, Sanjoy; Freshwater-Turner, Dan

    2016-11-01

    We assessed the impact of heparinised saline versus 0.9% normal saline on arterial line patency. Maintaining the patency of arterial lines is essential for obtaining accurate physiological measurements, enabling blood sampling and minimising line replacement. Use of heparinised saline is associated with risks such as thrombocytopenia, haemorrhage and mis-selection. Historical studies draw variable conclusions but suggest that normal saline is at least as effective at maintaining line patency, although recent evidence has questioned this. We conducted a prospective analysis of the use of heparinised saline versus normal saline on unselected patients in the intensive care of our hospital. Data concerning duration of 471 lines insertion and reason for removal was collected. We found a higher risk of blockage for lines flushed with normal saline compared with heparinised saline (RR = 2.15, 95% CI 1.392-3.32, p  ≤ 0.001). Of the 56 lines which blocked initially (19 heparinised saline and 37 normal saline lines), 16 were replaced with new lines; 5 heparinised saline lines and 11 normal saline lines were reinserted; 5 of these lines subsequently blocked again, 3 of which were flushed with normal saline. Our study demonstrates a clinically important reduction in arterial line longevity due to blockages when flushed with normal saline compared to heparinised saline. We have determined that these excess blockages have a significant clinical impact with further lines being inserted after blockage, resulting in increased risks to patients, wasted time and cost of resources. Our findings suggest that the current UK guidance favouring normal saline flushes should be reviewed.

  17. The comparative osmoregulatory ability of two water beetle genera whose species span the fresh-hypersaline gradient in inland waters (Coleoptera: Dytiscidae, Hydrophilidae.

    Directory of Open Access Journals (Sweden)

    Susana Pallarés

    Full Text Available A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh-hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae and Enochrus (Hydrophilidae. Their osmoregulatory strategy (osmoconformity or osmoregulation was identified and osmotic capacity (the osmotic gradient between the animal's haemolymph and the external medium was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg(-1. In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg(-1 across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm(-1, respectively, and maintained osmotic gradients over 3500 mosmol kg(-1, comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels

  18. The hydrological and geochemical isolation of a freshwater bog within a saline fen in north-eastern Alberta

    Directory of Open Access Journals (Sweden)

    S.J. Scarlett

    2013-10-01

    Full Text Available In the oil sands development region near Fort McMurray, Alberta, wetlands cover ~62 % of the landscape, and ~95 % of these wetlands are peatlands. A saline fen was studied as a reference site for peatland reclamation. Despite highly saline conditions, a freshwater bog was observed in the path of local saline groundwater flow. The purpose of this study was to identify the hydrological controls that have allowed the development and persistence of a bog in this setting. The presence of bog vegetation and its dilute water chemistry suggest that saline groundwater from the fen rarely enters the bog, which functions predominantly as a groundwater recharge system. Chloride (Cl– and sodium (Na+ were the dominant ions in fen water, with concentrations averaging 5394 and 2307 mg L-1, respectively, while the concentrations in bog water were 5 and 4 mg L-1, respectively. These concentrations were reflected by salinity and electrical conductivity measurements, which in the fen averaged 9.3 ppt, and 15.8 mS cm-1, respectively, and in the bog averaged 0.1 ppt and 0.3 mS cm-1, respectively. A small ridge in the mineral substratum was found at the fen–bog margin, which created a persistent groundwater mound. Under the dry conditions experienced in early summer, groundwater flow was directed away from the bog at a rate of 14.6 mm day-1. The convex water table at the fen-bog margin impeded flow of saline water into the bog and instead directed it around the bog margin. However, the groundwater mound was eliminated during flooding in autumn, when the horizontal hydraulic gradient across the margin became negligible, suggesting the possibility of saline water ingress into the bog under these conditions.

  19. Salinization and Saline Environments

    Science.gov (United States)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  20. Finite elements-based 2D theoretical analysis of the effect of IEX membrane thickness and salt solution residence time on the ion transport within a salinity gradient power reverse electrodialysis half cell pair

    OpenAIRE

    Etienne, Brauns

    2013-01-01

    Reverse electrodialysis electrical power generation is based on the transport of salt ions through ion conductive membranes. The ion flux, equivalent to an electric current, results from a salinity gradient, induced by two salt solutions at significantly different concentrations. Such equivalent electric current in combination with the corresponding electrochemical potential difference across the membrane, equivalent to an electric potential, results in a battery equivalency. While having a c...

  1. Impact of hydrogeological factors on groundwater salinization due to ocean-surge inundation

    Science.gov (United States)

    Yang, Jie; Zhang, Huichen; Yu, Xuan; Graf, Thomas; Michael, Holly A.

    2018-01-01

    Ocean surges cause seawater inundation of coastal inland areas. Subsequently, seawater infiltrates into coastal aquifers and threatens the fresh groundwater resource. The severity of resulting salinization can be affected by hydrogeological factors including aquifer properties and hydrologic conditions, however, little research has been done to assess these effects. To understand the impacts of hydrogeological factors on groundwater salinization, we numerically simulated an ocean-surge inundation event on a two-dimensional conceptual coastal aquifer using a coupled surface-subsurface approach. We varied model permeability (including anisotropy), inland hydraulic gradient, and recharge rate. Three salinization-assessment indicators were developed, based on flushing time, depth of salt penetration, and a combination of the two, weighted flushing time, with which the impact of hydrogeological factors on groundwater vulnerability to salinization were quantitatively assessed. The vulnerability of coastal aquifers increases with increasing isotropic permeability. Low horizontal permeability (kx) and high vertical permeability (kz) lead to high aquifer vulnerability, and high kx and low kz lead to low aquifer vulnerability. Vulnerability decreases with increasing groundwater hydraulic gradient and increasing recharge rate. Additionally, coastal aquifers with a low recharge rate (R ≤ 300 mm yr-1) may be highly vulnerable to ocean-surge inundation. This study shows how the newly introduced indicators can be used to quantitatively assess coastal aquifer vulnerability. The results are important for global vulnerability assessment of coastal aquifers to ocean-surge inundation.

  2. Particles and solutes migration in porous medium : radionuclides and clayey particles simultaneous transport under the effect of a salinity gradient; Migration de particules et de solutes en milieu poreux : modelisation du transport simultane de particules argileuses et de radionucleides sous l`effet d`un gradient de salinite

    Energy Technology Data Exchange (ETDEWEB)

    Faure, M H

    1994-03-29

    This work deals with the radiation protection of high-level and long-life radioactive waste storages. The colloids presence in ground waters can accelerate the radionuclides migration in natural geological deposits. The aim of this thesis is then to control particularly the particles motion in porous medium in order to anticipate quantitatively their migration. Liquid chromatography columns are filled with a clayey sand and fed with a decreasing concentration sodium chloride solution in order to study the particles outlet under a salinity gradient. When the porous medium undergoes a decrease of salinity it deteriorates. The adsorption of the cations : sodium 22, calcium 45, cesium 137 and neptunium 237 is then studied by the ions exchange method. The radionuclide solution is injected before the decrease of the feed solution salinity. The decrease of the sodium chloride concentration leads to the decrease of the radionuclides concentration because the adsorption competition between the sodium ion and the injected cation is lower. The particles transport, without fouling of the porous medium, is carried out in particular physical and chemical conditions which are described. (O.L.). 71 refs., 105 figs., 26 tabs.

  3. SMAP Salinity Artifacts Associated With Presence of Rain

    Science.gov (United States)

    Jacob, M. M.; Santos-Garcia, A.; Jones, L.

    2016-02-01

    The Soil Moisture Active Passive (SMAP) satellite carries an L-band radiometer, which measures sea surface salinity (SSS) over a swath of 1000 km @ 40 km resolution. SMAP can extend the Aquarius (AQ) salinity data record with improved temporal/spatial sampling. Previous studies [see references] have demonstrated significant differences between satellite and in-situ salinity measurements during rain. In the presence of precipitation, salinity stratification exists near the sea surface, which nullifies the presumption of a well-mixed salinity. In general, these salinity gradients last only a few hours and the upper layer becomes slightly fresher in salinity. This paper describes the Rain Impact Model (RIM) that simulates the effects of rain accumulation on the SSS [Santos-Garcia et al., 2014] applied to SMAP. This model incorporates rainfall information for the previous 24 hours to the measurement sample (in this case SMAP) and uses as initialization the Hybrid Coordinate Ocean Model (HYCOM) data. Given the better resolution of SMAP, the goal of this paper is to continue the analysis previously done with AQ to better understand the effects of the instantaneous and accumulated rain on the salinity measurements. Boutin, J., N. Martin, G. Reverdin, X. Yin, and F. Gaillard (2013), Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain, Ocean Sci., 9(1), 183-192, doi:10.5194/os-9-183-2013. Santos-Garcia, A., M. Jacob, L. Jones, W. Asher, Y. Hejazin, H. Ebrahimi, and M. Rabolli (2014), Investigation of rain effects on Aquarius Sea Surface Salinity measurements, J. Geophys. Res. Oceans, 119, 7605-7624, doi:10.1002/2014JC010137. Tang, W., S.H Yueh, A. Hayashi, A.G. Fore, W.L. Jones, A. Santos-Garcia, and M.M. Jacob, (2015), Rain-Induced Near Surface Salinity Stratification and Rain Roughness Correction for Aquarius SSS Retrieval, in Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 8(99), 1-11, doi: 10.1109/JSTARS.2015.2463768.

  4. Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA Sur, Mexico

    Directory of Open Access Journals (Sweden)

    Jesse G Dillon

    2013-12-01

    Full Text Available The goal of this study was to use environmental sequencing of 16S rRNA and bop genes to compare the diversity of planktonic bacteria and archaea across ponds with increasing salinity in the Exportadora de Sal (ESSA evaporative saltern in Guerrero Negro, Baja CA S., Mexico. We hypothesized that diverse communities of heterotrophic bacteria and archaea would be found in the ESSA ponds, but that bacterial diversity would decrease relative to archaea at the highest salinities. Archaeal 16S rRNA diversity was higher in Ponds 11 and 12 (370 & 380 g l-1 total salts respectively compared to Pond 9 (180 g l-1 total salts. Both Pond 11 and 12 communities had high representation (47 and 45% of clones respectively by Haloquadratum walsbyi-like (99% similarity lineages. The archaeal community in Pond 9 was dominated (79% by a single uncultured phylotype with 99% similarity to sequences recovered from the Sfax saltern in Tunisia. This pattern was mirrored in bop gene diversity with greater numbers of highly supported phylotypes including many Haloquadratum-like sequences from the two highest salinity ponds. In Pond 9, most bop sequences, were not closely related to sequences in databases. Bacterial 16S rRNA diversity was higher than archaeal in both Pond 9 and Pond 12 samples, but not Pond 11, where a non-Salinibacter lineage within the Bacteroidetes >98% similar to environmental clones recovered from Lake Tuz in Turkey and a saltern in Chula Vista, CA was most abundant (69% of community. This OTU was also the most abundant in Pond 12, but only represented 14% of clones in the more diverse pond. The most abundant OTU in Pond 9 (33% of community was 99% similar to an uncultured gammaproteobacterial clone from the Salton Sea. Results suggest that the communities of saltern bacteria and archaea vary even in ponds with similar salinity and further investigation into the ecology of diverse, uncultured halophile communities is warranted.

  5. Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections

    International Nuclear Information System (INIS)

    Deli, Martin; Fritz, Jan; Mateiescu, Serban; Busch, Martin; Carrino, John A.; Becker, Jan; Garmer, Marietta; Grönemeyer, Dietrich

    2013-01-01

    Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 with gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 ± 9 min in the gadolinium-enhanced saline solution group and 22 ± 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.

  6. Isotopic composition of methane and inferred methanogenic substrates along a salinity gradient in a hypersaline microbial mat system.

    Science.gov (United States)

    Potter, Elyn G; Bebout, Brad M; Kelley, Cheryl A

    2009-05-01

    The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt). Pore water and microbial mat samples were analyzed for the carbon isotopic composition of dissolved methane, dissolved inorganic carbon (DIC), and mat material (particulate organic carbon or POC). The POC delta(13)C values ranged from -6.7 to -13.5 per thousand, and DIC delta(13)C values ranged from -1.4 to -9.6 per thousand. These values were similar to previously reported values. The delta(13)C values of methane ranged from -49.6 to -74.1 per thousand; the methane most enriched in (13)C was obtained from the highest salinity area. The apparent fractionation factors between methane and DIC, and between methane and POC, within the mats were also determined and were found to change with salinity. The apparent fractionation factors ranged from 1.042 to 1.077 when calculated using DIC and from 1.038 to 1.068 when calculated using POC. The highest-salinity area showed the least fractionation, the moderate-salinity area showed the highest fractionation, and the lower-salinity sites showed fractionations that were intermediate. These differences in fractionation are most likely due to changes in the dominant methanogenic pathways and substrates used at the different sites because of salinity differences.

  7. Salinity controls on Na incorporation in Red Sea planktonic foraminifera

    Science.gov (United States)

    Mezger, E. M.; de Nooijer, L. J.; Boer, W.; Brummer, G. J. A.; Reichart, G. J.

    2016-12-01

    Whereas several well-established proxies are available for reconstructing past temperatures, salinity remains challenging to assess. Reconstructions based on the combination of (in)organic temperature proxies and foraminiferal stable oxygen isotopes result in relatively large uncertainties, which may be reduced by application of a direct salinity proxy. Cultured benthic and planktonic foraminifera showed that Na incorporation in foraminiferal shell calcite provides a potential independent proxy for salinity. Here we present the first field calibration of such a potential proxy. Living planktonic foraminiferal specimens from the Red Sea surface waters were collected and analyzed for their Na/Ca content using laser ablation quadrupole inductively coupled plasma mass spectrometry. Using the Red Sea as a natural laboratory, the calibration covers a broad range of salinities over a steep gradient within the same water mass. For both Globigerinoides ruber and Globigerinoides sacculifer calcite Na/Ca increases with salinity, albeit with a relatively large intraspecimen and interspecimen variability. The field-based calibration is similar for both species from a salinity of 36.8 up to 39.6, while values for G. sacculifer deviate from this trend in the northernmost transect. It is hypothesized that the foraminifera in the northernmost part of the Red Sea are (partly) expatriated and hence should be excluded from the Na/Ca-salinity calibration. Incorporation of Na in foraminiferal calcite therefore provides a potential proxy for salinity, although species-specific calibrations are still required and more research on the effect of temperature is needed.

  8. Nekton use of intertidal creek edges in low salinity salt marshes of the Yangtze River estuary along a stream-order gradient

    Science.gov (United States)

    Jin, Binsong; Qin, Haiming; Xu, Wang; Wu, Jihua; Zhong, Junsheng; Lei, Guangchun; Chen, Jiakuan; Fu, Cuizhang

    2010-07-01

    Non-vegetated creek edges were investigated to explore spatial nekton use patterns in a low salinity intertidal salt marsh creek network of the Yangtze River estuary along a stream-order gradient with four creek orders. Non-vegetated creek edges were arbitrarily defined as the approximately 3 m extending from the creek bank (the marsh-creek interface) into open water. Nekton was sampled using seine nets during daytime high slack water during spring tides for two or three days each in May through July 2008. Twenty-three nekton species (16 fishes and 7 crustaceans) were caught during the study. Fishes were dominated by gobies ( Mugilogobius abei, Periophthalmus magnuspinnatus, Periophthalmus modestus, Synechogobius ommaturus), mullets ( Chelon haematocheilus, Liza affinis) and Chinese sea bass ( Lateolabrax maculatus). Crustaceans were dominated by mud crab ( Helice tientsinensis) and white prawn ( Exopalaemon carinicauda). Rank abundance curves revealed higher evenness of nekton assemblages in lower-order creeks compared to higher-order creeks. Fish abundance tended to increase with increasing creek order. Crustacean abundance was higher in the first-third order creeks than in the fourth-order creek. Dominant nekton species displayed various trends in abundance and length-frequency distributions along the stream-order gradient. The spatial separation of nekton assemblages between the first-third order creeks and the fourth-order creek could be attributed to geomorphological factors (distance to mouth and cross-sectional area). These findings indicate that both lower- and higher-order creek edges play important yet different roles for nekton species and life history stages in salt marshes.

  9. Salinity shapes food webs in shallow lakes: implications for increasing aridity with climate change

    DEFF Research Database (Denmark)

    Vidal, Nicolas; Yu, Jinlei; Gutierrez, Maria Florencia

    2015-01-01

    on community and food web structure in 24 lakes along a wide salinity gradient, from freshwater (0.5 g L-1) to hypersaline lakes (115 g L-1), in a semiarid region in North West China. Fish, zooplankton and macroinvertebrate communities were sampled during July 2014 for determination of taxonomy and size......A reduction in runoff and higher evaporation rates are expected to occur towards 2050 in arid and semiarid regions of the world, resulting in a reduction of water level and salinization of inland waters. Besides the natural process of catchment erosion, human activities such as irrigation of crops...... may also increase salinization. Reduced biodiversity in freshwater systems is the most commonly reported effect of salinization, which may have implications for food web structure and likely for ecosystem functioning as well. The objective of the study was to analyze the effects of salinity...

  10. A literature review of the variation of dispersant effectiveness and salinity

    International Nuclear Information System (INIS)

    Fingas, M.

    2005-01-01

    Surfactants have varying solubilities in water and varying actions toward oil and water. This paper presents a summary of the effects of water salinity on chemical dispersion. Literature reveals that effectiveness testing with salinity variations shows a consistent decrease in effectiveness at lower salinities and a decrease after a maximum salinity is reached between 20 to 40 units of salinity. In waters with 0 salinity, conventional and currently available dispersants have a very low effectiveness or are sometimes even completely ineffective, a fact which is consistent in surfactant literature. Dispersant effectiveness peaks in waters with a salinity ranging from 20 to 40. Corexit 9500 appears to be less sensitive to salinity, but still peaks at about 35. There is a relatively smooth gradient of effectiveness with salinity both as the salinity rises to a peak point of effectiveness and after it exceeds this value. The curves for this salinity effect appear to be Gaussian. While there is some evidence for a temperature-salinity interaction as noted in the data, there is not enough data to make solid conclusions. Recent data is almost exclusively measured using Corexit 9527 and Corexit 9500. Since these have the same surfactant packages, there is a concern that the results may be more relevant to these formulations than to all possible formulations. Observations on 2 field trials in freshwater appear to indicate that the laboratory tests were correct in concluding very low dispersant effectiveness in freshwater. There were few studies on the biological effects of varying salinity and given oil exposure. It was concluded that the findings in the dispersant literature reviewed here are in agreement with those in the theoretical and basic surfactant literature. The effect of ionic strength and salinity on both hydrophilic-lipophilic balance and stability is the reason for the decreased effectiveness noted at low salinities and the same decrease at high salinities

  11. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Energy Recovery from Solutions with Different Salinities Based on Swelling and Shrinking of Hydrogels

    KAUST Repository

    Zhu, Xiuping

    2014-06-17

    Several technologies, including pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix), are being developed to recover energy from salinity gradients. Here, we present a new approach to capture salinity gradient energy based on the expansion and contraction properties of poly(acrylic acid) hydrogels. These materials swell in fresh water and shrink in salt water, and thus the expansion can be used to capture energy through mechanical processes. In tests with 0.36 g of hydrogel particles 300 to 600 μm in diameter, 124 mJ of energy was recovered in 1 h (salinity ratio of 100, external load of 210 g, water flow rate of 1 mL/min). Although these energy recovery rates were relatively lower than those typically obtained using PRO, RED, or CapMix, the costs of hydrogels are much lower than those of membranes used in PRO and RED. In addition, fouling might be more easily controlled as the particles can be easily removed from the reactor for cleaning. Further development of the technology and testing of a wider range of conditions should lead to improved energy recoveries and performance. © 2014 American Chemical Society.

  13. Energy Recovery from Solutions with Different Salinities Based on Swelling and Shrinking of Hydrogels

    KAUST Repository

    Zhu, Xiuping; Yang, Wulin; Hatzell, Marta C.; Logan, Bruce E.

    2014-01-01

    Several technologies, including pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix), are being developed to recover energy from salinity gradients. Here, we present a new approach to capture salinity gradient energy based on the expansion and contraction properties of poly(acrylic acid) hydrogels. These materials swell in fresh water and shrink in salt water, and thus the expansion can be used to capture energy through mechanical processes. In tests with 0.36 g of hydrogel particles 300 to 600 μm in diameter, 124 mJ of energy was recovered in 1 h (salinity ratio of 100, external load of 210 g, water flow rate of 1 mL/min). Although these energy recovery rates were relatively lower than those typically obtained using PRO, RED, or CapMix, the costs of hydrogels are much lower than those of membranes used in PRO and RED. In addition, fouling might be more easily controlled as the particles can be easily removed from the reactor for cleaning. Further development of the technology and testing of a wider range of conditions should lead to improved energy recoveries and performance. © 2014 American Chemical Society.

  14. Assessing sandy beach macrofaunal patterns along large-scale environmental gradients: A Fuzzy Naïve Bayes approach

    Science.gov (United States)

    Bozzeda, Fabio; Zangrilli, Maria Paola; Defeo, Omar

    2016-06-01

    A Fuzzy Naïve Bayes (FNB) classifier was developed to assess large-scale variations in abundance, species richness and diversity of the macrofauna inhabiting fifteen Uruguayan sandy beaches affected by the effects of beach morphodynamics and the estuarine gradient generated by Rio de la Plata. Information from six beaches was used to estimate FNB parameters, while abiotic data of the remaining nine beaches were used to forecast abundance, species richness and diversity. FNB simulations reproduced the general increasing trend of target variables from inner estuarine reflective beaches to marine dissipative ones. The FNB model also identified a threshold value of salinity range beyond which diversity markedly increased towards marine beaches. Salinity range is suggested as an ecological master factor governing distributional patterns in sandy beach macrofauna. However, the model: 1) underestimated abundance and species richness at the innermost estuarine beach, with the lowest salinity, and 2) overestimated species richness in marine beaches with a reflective morphodynamic state, which is strongly linked to low abundance, species richness and diversity. Therefore, future modeling efforts should be refined by giving a dissimilar weigh to the gradients defined by estuarine (estuarine beaches) and morphodynamic (marine beaches) variables, which could improve predictions of target variables. Our modeling approach could be applied to a wide spectrum of issues, ranging from basic ecology to social-ecological systems. This approach seems relevant, given the current challenge to develop predictive methodologies to assess the simultaneous and nonlinear effects of anthropogenic and natural impacts in coastal ecosystems.

  15. Disentangling diversity patterns in sandy beaches along environmental gradients.

    Science.gov (United States)

    Barboza, Francisco R; Gómez, Julio; Lercari, Diego; Defeo, Omar

    2012-01-01

    Species richness in sandy beaches is strongly affected by concurrent variations in morphodynamics and salinity. However, as in other ecosystems, different groups of species may exhibit contrasting patterns in response to these environmental variables, which would be obscured if only aggregate richness is considered. Deconstructing biodiversity, i.e. considering richness patterns separately for different groups of species according to their taxonomic affiliation, dispersal mode or mobility, could provide a more complete understanding about factors that drive species richness patterns. This study analyzed macroscale variations in species richness at 16 Uruguayan sandy beaches with different morphodynamics, distributed along the estuarine gradient generated by the Rio de la Plata over a 2 year period. Species richness estimates were deconstructed to discriminate among taxonomic groups, supralittoral and intertidal forms, and groups with different feeding habits and development modes. Species richness was lowest at intermediate salinities, increasing towards oceanic and inner estuarine conditions, mainly following the patterns shown for intertidal forms. Moreover, there was a differential tolerance to salinity changes according to the habitat occupied and development mode, which determines the degree of sensitivity of faunal groups to osmotic stress. Generalized (additive and linear) mixed models showed a clear increase of species richness towards dissipative beaches. All taxonomic categories exhibited the same trend, even though responses to grain size and beach slope were less marked for crustaceans and insects than for molluscs or polychaetes. However, supralittoral crustaceans exhibited the opposite trend. Feeding groups decreased from dissipative to reflective systems, deposit feeders being virtually absent in the latter. This deconstructive approach highlights the relevance of life history strategies in structuring communities, highlighting the relative

  16. Mechanisms of Mixed-Layer Salinity Seasonal Variability in the Indian Ocean

    Science.gov (United States)

    Köhler, Julia; Serra, Nuno; Bryan, Frank O.; Johnson, Benjamin K.; Stammer, Detlef

    2018-01-01

    Based on a joint analysis of an ensemble mean of satellite sea surface salinity retrievals and the output of a high-resolution numerical ocean circulation simulation, physical processes are identified that control seasonal variations of mixed-layer salinity (MLS) in the Indian Ocean, a basin where salinity changes dominate changes in density. In the northern and near-equatorial Indian Ocean, annual salinity changes are mainly driven by respective changes of the horizontal advection. South of the equatorial region, between 45°E and 90°E, where evaporation minus precipitation has a strong seasonal cycle, surface freshwater fluxes control the seasonal MLS changes. The influence of entrainment on the salinity variance is enhanced in mid-ocean upwelling regions but remains small. The model and observational results reveal that vertical diffusion plays a major role in precipitation and river runoff dominated regions balancing the surface freshwater flux. Vertical diffusion is important as well in regions where the advection of low salinity leads to strong gradients across the mixed-layer base. There, vertical diffusion explains a large percentage of annual MLS variance. The simulation further reveals that (1) high-frequency small-scale eddy processes primarily determine the salinity tendency in coastal regions (in particular in the Bay of Bengal) and (2) shear horizontal advection, brought about by changes in the vertical structure of the mixed layer, acts against mean horizontal advection in the equatorial salinity frontal regions. Observing those latter features with the existing observational components remains a future challenge.

  17. Population specific salinity tolerance in eelgrass (Zostera marina)

    DEFF Research Database (Denmark)

    Salo, Tiina Elina; Pedersen, Morten Foldager; Boström, Christoffer

    2014-01-01

    and that the lowsaline population is better adapted to hyposaline conditions. Despite the long-term adaptation of the low saline population to stable, low salinity, these plants were still able to function normally in high salinities, indicating remarkable plasticity. The results further suggest that altered salinity...

  18. Thin-Film Composite Pressure Retarded Osmosis Membranes for Sustainable Power Generation from Salinity Gradients

    KAUST Repository

    Yip, Ngai Yin

    2011-05-15

    Pressure retarded osmosis has the potential to produce renewable energy from natural salinity gradients. This work presents the fabrication of thin-film composite membranes customized for high performance in pressure retarded osmosis. We also present the development of a theoretical model to predict the water flux in pressure retarded osmosis, from which we can predict the power density that can be achieved by a membrane. The model is the first to incorporate external concentration polarization, a performance limiting phenomenon that becomes significant for high-performance membranes. The fabricated membranes consist of a selective polyamide layer formed by interfacial polymerization on top of a polysulfone support layer made by phase separation. The highly porous support layer (structural parameter S = 349 μm), which minimizes internal concentration polarization, allows the transport properties of the active layer to be customized to enhance PRO performance. It is shown that a hand-cast membrane that balances permeability and selectivity (A = 5.81 L m-2 h-1 bar-1, B = 0.88 L m-2 h-1) is projected to achieve the highest potential peak power density of 10.0 W/m2 for a river water feed solution and seawater draw solution. The outstanding performance of this membrane is attributed to the high water permeability of the active layer, coupled with a moderate salt permeability and the ability of the support layer to suppress the undesirable accumulation of leaked salt in the porous support. Membranes with greater selectivity (i.e., lower salt permeability, B = 0.16 L m-2 h-1) suffered from a lower water permeability (A = 1.74 L m-2 h-1 bar-1) and would yield a lower peak power density of 6.1 W/m2, while membranes with a higher permeability and lower selectivity (A = 7.55 L m-2 h-1 bar-1, B = 5.45 L m-2 h-1) performed poorly due to severe reverse salt permeation, resulting in a similar projected peak power density of 6.1 W/m2. © 2011 American Chemical Society.

  19. Environmental drivers defining linkages among life-history traits: mechanistic insights from a semiterrestrial amphipod subjected to macroscale gradients.

    Science.gov (United States)

    Gómez, Julio; Barboza, Francisco R; Defeo, Omar

    2013-10-01

    Determining the existence of interconnected responses among life-history traits and identifying underlying environmental drivers are recognized as key goals for understanding the basis of phenotypic variability. We studied potentially interconnected responses among senescence, fecundity, embryos size, weight of brooding females, size at maturity and sex ratio in a semiterrestrial amphipod affected by macroscale gradients in beach morphodynamics and salinity. To this end, multiple modelling processes based on generalized additive mixed models were used to deal with the spatio-temporal structure of the data obtained at 10 beaches during 22 months. Salinity was the only nexus among life-history traits, suggesting that this physiological stressor influences the energy balance of organisms. Different salinity scenarios determined shifts in the weight of brooding females and size at maturity, having consequences in the number and size of embryos which in turn affected sex determination and sex ratio at the population level. Our work highlights the importance of analysing field data to find the variables and potential mechanisms that define concerted responses among traits, therefore defining life-history strategies.

  20. Body size and allometric shape variation in the molly Poecilia vivipara along a gradient of salinity and predation.

    Science.gov (United States)

    Araújo, Márcio S; Perez, S Ivan; Magazoni, Maria Julia C; Petry, Ana C

    2014-12-04

    Phenotypic diversity among populations may result from divergent natural selection acting directly on traits or via correlated responses to changes in other traits. One of the most frequent patterns of correlated response is the proportional change in the dimensions of anatomical traits associated with changes in growth or absolute size, known as allometry. Livebearing fishes subject to predation gradients have been shown to repeatedly evolve larger caudal peduncles and smaller cranial regions under high predation regimes. Poecilia vivipara is a livebearing fish commonly found in coastal lagoons in the north of the state of Rio de Janeiro, Brazil. Similar to what is observed in other predation gradients, lagoons inhabited by P. vivipara vary in the presence of piscivorous fishes; contrary to other poeciliid systems, populations of P. vivipara vary greatly in body size, which opens the possibility of strong allometric effects on shape variation. Here we investigated body shape diversification among six populations of P. vivipara along a predation gradient and its relationship with allometric trajectories within and among populations. We found substantial body size variation and correlated shape changes among populations. Multivariate regression analysis showed that size variation among populations accounted for 66% of shape variation in females and 38% in males, suggesting that size is the most important dimension underlying shape variation among populations of P. vivipara in this system. Changes in the relative sizes of the caudal peduncle and cranial regions were only partly in line with predictions from divergent natural selection associated with predation regime. Our results suggest the possibility that adaptive shape variation among populations has been partly constrained by allometry in P. vivipara. Processes governing body size changes are therefore important in the diversification of this species. We conclude that in species characterized by substantial

  1. Decadal trends in deep ocean salinity and regional effects on steric sea level

    Science.gov (United States)

    Purkey, S. G.; Llovel, W.

    2017-12-01

    We present deep (below 2000 m) and abyssal (below 4000 m) global ocean salinity trends from the 1990s through the 2010s and assess the role of deep salinity in local and global sea level budgets. Deep salinity trends are assessed using all deep basins with available full-depth, high-quality hydrographic section data that have been occupied two or more times since the 1980s through either the World Ocean Circulation Experiment (WOCE) Hydrographic Program or the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). All salinity data is calibrated to standard seawater and any intercruise offsets applied. While the global mean deep halosteric contribution to sea level rise is close to zero (-0.017 +/- 0.023 mm/yr below 4000 m), there is a large regional variability with the southern deep basins becoming fresher and northern deep basins becoming more saline. This meridional gradient in the deep salinity trend reflects different mechanisms driving the deep salinity variability. The deep Southern Ocean is freshening owing to a recent increased flux of freshwater to the deep ocean. Outside of the Southern Ocean, the deep salinity and temperature changes are tied to isopycnal heave associated with a falling of deep isopycnals in recent decades. Therefore, regions of the ocean with a deep salinity minimum are experiencing both a halosteric contraction with a thermosteric expansion. While the thermosteric expansion is larger in most cases, in some regions the halosteric compensates for as much as 50% of the deep thermal expansion, making a significant contribution to local sea level rise budgets.

  2. Variation in biochemical composition of Saccharina latissima and Laminaria digitata along an estuarine salinity gradient in inner Danish waters

    DEFF Research Database (Denmark)

    Nielsen, Mette Møller; Manns, Dirk Martin; D'Este, Martina

    2016-01-01

    , the highest protein content (7.5% of dry matter), and the highest capacity for bio-remediation of nitrogen (1.88% N of dry matter) at high salinities, as opposed to the highest concentrations of fermentable sugars (90% of dry matter) and pigments at low salinities. Thus, areas suitable for high biomass...

  3. Seasonal pattern of anthropogenic salinization in temperate forested headwater streams.

    Science.gov (United States)

    Timpano, Anthony J; Zipper, Carl E; Soucek, David J; Schoenholtz, Stephen H

    2018-04-15

    Salinization of freshwaters by human activities is of growing concern globally. Consequences of salt pollution include adverse effects to aquatic biodiversity, ecosystem function, human health, and ecosystem services. In headwater streams of the temperate forests of eastern USA, elevated specific conductance (SC), a surrogate measurement for the major dissolved ions composing salinity, has been linked to decreased diversity of aquatic insects. However, such linkages have typically been based on limited numbers of SC measurements that do not quantify intra-annual variation. Effective management of salinization requires tools to accurately monitor and predict salinity while accounting for temporal variability. Toward that end, high-frequency SC data were collected within the central Appalachian coalfield over 4 years at 25 forested headwater streams spanning a gradient of salinity. A sinusoidal periodic function was used to model the annual cycle of SC, averaged across years and streams. The resultant model revealed that, on average, salinity deviated approximately ±20% from annual mean levels across all years and streams, with minimum SC occurring in late winter and peak SC occurring in late summer. The pattern was evident in headwater streams influenced by surface coal mining, unmined headwater reference streams with low salinity, and larger-order salinized rivers draining the study area. The pattern was strongly responsive to varying seasonal dilution as driven by catchment evapotranspiration, an effect that was amplified slightly in unmined catchments with greater relative forest cover. Evaluation of alternative sampling intervals indicated that discrete sampling can approximate the model performance afforded by high-frequency data but model error increases rapidly as discrete sampling intervals exceed 30 days. This study demonstrates that intra-annual variation of salinity in temperate forested headwater streams of Appalachia USA follows a natural seasonal

  4. Electrocapillary Phenomena at Edible Oil/Saline Interfaces.

    Science.gov (United States)

    Nishimura, Satoshi; Ohzono, Takuya; Shoji, Kohei; Yagihara, Shin; Hayashi, Masafumi; Tanaka, Hisao

    2017-03-01

    Interfacial tension between edible oil and saline was measured under applied electric fields to understand the electrocapillary phenomena at the edible oil/saline interfaces. The electric responses of saline droplets in edible oil were also observed microscopically to examine the relationship between the electrocapillary phenomena and interfacial polarization. When sodium oleate (SO) was added to edible oil (SO-oil), the interfacial tension between SO-oil and saline decreased. However, no decrease was observed for additive-free oil or oleic acid (OA)-added oil (OA-oil). Microscopic observations suggested that the magnitude of interfacial polarization increased in the order of additive-free oil oil oil. The difference in electrocapillary phenomena between OA- and SO-oils was closely related to the polarization magnitude. In the case of SO-oil, the decrease in interfacial tension was remarkably larger for saline (pH 5.4~5.6) than that for phosphate-buffered saline (PBS, pH 7.2~7.4). However, no difference was observed between the electric responses of PBS and saline droplets in SO-oil. The difference in electrocapillary phenomena for PBS and saline could not be simply explained in terms of polarization magnitude. The ratio of ionized and non-ionized OA at the interfaces changed with the saline pH, possibly leading to the above difference.

  5. Experimental measurements of the SP response to concentration and temperature gradients in sandstones with application to subsurface geophysical monitoring

    Science.gov (United States)

    Leinov, E.; Jackson, M. D.

    2014-09-01

    Exclusion-diffusion potentials arising from temperature gradients are widely neglected in self-potential (SP) surveys, despite the ubiquitous presence of temperature gradients in subsurface settings such as volcanoes and hot springs, geothermal fields, and oil reservoirs during production via water or steam injection. Likewise, with the exception of borehole SP logging, exclusion-diffusion potentials arising from concentration gradients are also neglected or, at best, it is assumed that the diffusion potential dominates. To better interpret these SP sources requires well-constrained measurements of the various coupling terms. We report measurements of thermoelectric and electrochemical exclusion-diffusion potentials across sandstones saturated with NaCl brine and find that electrode effects can dominate the measured voltage. After correcting for these, we find that Hittorf transport numbers are the same within experimental error regardless of whether ion transport occurs in response to temperature or concentration gradients over the range of NaCl concentration investigated that is typical of natural systems. Diffusion potentials dominate only if the pore throat radius is more than approximately 4000 times larger than the diffuse layer thickness. In fine-grained sandstones with small pore throat diameter, this condition is likely to be met only if the saturating brine is of relatively high salinity; thus, in many cases of interest to earth scientists, exclusion-diffusion potentials will comprise significant contributions from both ionic diffusion through, and ionic exclusion from, the pore space of the rock. However, in coarse-grained sandstones, or sandstones saturated with high-salinity brine, exclusion-diffusion potentials can be described using end-member models in which ionic exclusion is neglected. Exclusion-diffusion potentials in sandstones depend upon pore size and salinity in a complex way: they may be positive, negative, or zero depending upon sandstone

  6. Dwarfism of blue mussels in the low saline Baltic Sea — growth to the lower salinity limit

    DEFF Research Database (Denmark)

    Riisgård, Hans Ulrik; Larsen, Poul Scheel; Turja, Raisa

    2014-01-01

    Mussels within the Baltic Mytilus edulis × M. trossulus hybrid zone have adapted to the low salinities in the Baltic Sea which, however, results in slow-growing dwarfed mussels. To get a better understanding of the nature of dwarfism, we studied the ability of M. trossulus to feed and grow at low...... to become negative below 4.5 psu. We suggest that reduced ability to produce shell material at extremely low salinity may explain dwarfism of mussels in the Baltic Sea. Reduced bio-calcification at low salinity, however, may impede shell growth, but not somatic growth, and this may at first result...

  7. Simulated Effects of Soil Temperature and Salinity on Capacitance Sensor Measurements

    Directory of Open Access Journals (Sweden)

    Timothy R. Green

    2007-04-01

    Full Text Available Dielectric measurement techniques are used widely for estimation of water contentin environmental media. However, factors such as temperature and salinity affecting thereadings require further quantitative investigation and explanation. Theoretical sensitivities ofcapacitance sensors to liquid salinity and temperature of porous media were derived andcomputed using a revised electrical circuit analogue model in conjunction with a dielectricmixing model and a finite element model of Maxwell’s equation to compute electrical fielddistributions. The mixing model estimates the bulk effective complex permittivities of solid-water-air media. The real part of the permittivity values were used in electric field simulations,from which different components of capacitance were calculated via numerical integration forinput to the electrical circuit analogue. Circuit resistances representing the dielectric losses werecalculated from the complex permittivity of the bulk soil and from the modeled fields. Resonantfrequencies from the circuit analogue were used to update frequency-dependent variables in aniterative manner. Simulated resonant frequencies of the capacitance sensor display sensitivitiesto both temperature and salinity. The gradients in normalized frequency with temperatureranged from negative to positive values as salinity increased from 0 to 10 g L-1. The modeldevelopment and analyses improved our understanding of processes affecting the temperatureand salinity sensitivities of capacitance sensors in general. This study provides a foundation forfurther work on inference of soil water content under field conditions.

  8. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na(+) root-to-shoot distribution.

    Science.gov (United States)

    Porcel, Rosa; Aroca, Ricardo; Azcon, Rosario; Ruiz-Lozano, Juan Manuel

    2016-10-01

    Rice is a salt-sensitive crop whose productivity is strongly reduced by salinity around the world. Plants growing in saline soils are subjected to the toxicity of specific ions such as sodium, which damage cell organelles and disrupt metabolism. Plants have evolved biochemical and molecular mechanisms to cope with the negative effects of salinity. These include the regulation of genes with a role in the uptake, transport or compartmentation of Na(+) and/or K(+). Studies have shown that the arbuscular mycorrhizal (AM) symbiosis alleviates salt stress in several host plant species. However, despite the abundant literature showing mitigation of ionic imbalance by the AM symbiosis, the molecular mechanisms involved are barely explored. The objective of this study was to elucidate the effects of the AM symbiosis on the expression of several well-known rice transporters involved in Na(+)/K(+) homeostasis and measure Na(+) and K(+) contents and their ratios in different plant tissues. Results showed that OsNHX3, OsSOS1, OsHKT2;1 and OsHKT1;5 genes were considerably upregulated in AM plants under saline conditions as compared to non-AM plants. Results suggest that the AM symbiosis favours Na(+) extrusion from the cytoplasm, its sequestration into the vacuole, the unloading of Na(+) from the xylem and its recirculation from photosynthetic organs to roots. As a result, there is a decrease of Na(+) root-to-shoot distribution and an increase of Na(+) accumulation in rice roots which seems to enhance the plant tolerance to salinity and allows AM rice plants to maintain their growing processes under salt conditions.

  9. A retrospective analysis to explore the applicability of fish biomarkers and sediment bioassays along contaminated salinity transects

    NARCIS (Netherlands)

    Schipper, C.A.; Lahr, J.; Brink, van den P.J.; George, S.G.; Hansen, P.D.; Silva de Assis, Da H.C.; Oost, van der R.; Thain, J.E.; Livingstone, D.; Mitchelmore, C.; Schooten, van F.J.; Ariese, F.; Murk, A.J.; Grinwis, G.C.M.; Klamer, H.; Kater, J.; Postma, J.F.; Werf, van der B.; Vethaak, A.D.

    2009-01-01

    Biological-effects monitoring in estuarine environments is complex as a result of strong gradients and fluctuations in salinity and other environmental conditions, which may influence contaminant bioavailability and the physiology and metabolism of the organisms. To select the most robust and

  10. Turbidity and salinity affect feeding performance and physiological stress in the endangered delta smelt.

    Science.gov (United States)

    Hasenbein, Matthias; Komoroske, Lisa M; Connon, Richard E; Geist, Juergen; Fangue, Nann A

    2013-10-01

    Coastal estuaries are among the most heavily impacted ecosystems worldwide with many keystone fauna critically endangered. The delta smelt (Hypomesus transpacificus) is an endangered pelagic fish species endemic to the Sacramento-San Joaquin Estuary in northern California, and is considered as an indicator species for ecosystem health. This ecosystem is characterized by tidal and seasonal gradients in water parameters (e.g., salinity, temperature, and turbidity), but is also subject to altered water-flow regimes due to water extraction. In this study, we evaluated the effects of turbidity and salinity on feeding performance and the stress response of delta smelt because both of these parameters are influenced by water flows through the San Francisco Bay Delta (SFBD) and are known to be of critical importance to the completion of the delta smelt's life cycle. Juvenile delta smelt were exposed to a matrix of turbidities and salinities ranging from 5 to 250 nephelometric turbidity units (NTUs) and 0.2 to 15 parts per thousand (ppt), respectively, for 2 h. Best statistical models using Akaike's Information Criterion supported that increasing turbidities resulted in reduced feeding rates, especially at 250 NTU. In contrast, best explanatory models for gene transcription of sodium-potassium-ATPase (Na/K-ATPase)-an indicator of osmoregulatory stress, hypothalamic pro-opiomelanocortin-a precursor protein to adrenocorticotropic hormone (expressed in response to biological stress), and whole-body cortisol were affected by salinity alone. Only transcription of glutathione-S-transferase, a phase II detoxification enzyme that protects cells against reactive oxygen species, was affected by both salinity and turbidity. Taken together, these data suggest that turbidity is an important determinant of feeding, whereas salinity is an important abiotic factor influencing the cellular stress response in delta smelt. Our data support habitat association studies that have shown greater

  11. Seasonal variations of the upper ocean salinity stratification in the Tropics

    Science.gov (United States)

    Maes, Christophe; O'Kane, Terence J.

    2014-03-01

    In comparison to the deep ocean, the upper mixed layer is a region typically characterized by substantial vertical gradients in water properties. Within the Tropics, the rich variability in the vertical shapes and forms that these structures can assume through variation in the atmospheric forcing results in a differential effect in terms of the temperature and salinity stratification. Rather than focusing on the strong halocline above the thermocline, commonly referred to as the salinity barrier layer, the present study takes into account the respective thermal and saline dependencies in the Brunt-Väisälä frequency (N2) in order to isolate the specific role of the salinity stratification in the layers above the main pycnocline. We examine daily vertical profiles of temperature and salinity from an ocean reanalysis over the period 2001-2007. We find significant seasonal variations in the Brunt-Väisälä frequency profiles are limited to the upper 300 m depth. Based on this, we determine the ocean salinity stratification (OSS) to be defined as the stabilizing effect (positive values) due to the haline part of N2 averaged over the upper 300 m. In many regions of the tropics, the OSS contributes 40-50% to N2 as compared to the thermal stratification and, in some specific regions, exceeds it for a few months of the seasonal cycle. Away from the tropics, for example, near the centers of action of the subtropical gyres, there are regions characterized by the permanent absence of OSS. In other regions previously characterized with salinity barrier layers, the OSS obviously shares some common variations; however, we show that where temperature and salinity are mixed over the same depth, the salinity stratification can be significant. In addition, relationships between the OSS and the sea surface salinity are shown to be well defined and quasilinear in the tropics, providing some indication that in the future, analyses that consider both satellite surface salinity

  12. Hurricane-induced failure of low salinity wetlands

    Science.gov (United States)

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  13. In situ release rates of Cu and Zn from commercial antifouling paints at different salinities.

    Science.gov (United States)

    Lagerström, Maria; Lindgren, J Fredrik; Holmqvist, Albin; Dahlström, Mia; Ytreberg, Erik

    2018-02-01

    Antifouling paints are environmentally risk assessed based on their biocidal release rates to the water phase. In situ release rates of copper (Cu) and zinc (Zn) were derived for five commercial paints in two recreational marinas with different salinities (5 and 14 PSU) using an X-Ray Fluorescence spectrometer (XRF). Salinity was found to significantly affect the Cu release, with twice the amount of Cu released at the higher salinity, while its influence on the Zn release was paint-specific. Site-specific release rates for water bodies with salinity gradients, e.g. the Baltic Sea, are therefore necessary for more realistic risk assessments of antifouling paints. Furthermore, the in situ release rates were up to 8 times higher than those generated using standardized laboratory or calculation methods. The environmental risk assessment repeated with the field release rates concludes that it is questionable whether the studied products should be allowed on the Swedish market. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrão, Sónia

    2016-10-06

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments.

  15. Benthic foraminifera cultured over a large salinity gradient: first results and comparison with field data from the Baltic Sea.

    Science.gov (United States)

    Groeneveld, Jeroen; Filipsson, Helena L.; Austin, William E. N.; Darling, Kate; Quintana Krupinski, Nadine B.

    2015-04-01

    Some of the most significant challenges in paleoclimate research arise from the need to both understand and reduce the uncertainty associated with proxy methods for climate reconstructions. This is especially important for shelf and coastal environments where increasing numbers of high-resolution paleorecords are being generated. These challenges are further highlighted in connection with ECORD/IODP Expedition 347: Baltic Sea Paleoenvironments. This large-scale drilling operation took place in the Baltic Sea region during the autumn of 2013. At this time, there is a pressing need for proxy calibrations directly targeted at the brackish Baltic environment. Within the CONTEMPORARY project we are investigating different temperature and salinity proxy variables through a combination of field- and culture-based benthic foraminiferal samples, together with genetic characterization (genotyping) of the morphospecies. We have completed two field campaigns where we collected (living) foraminifera and water samples at several sites, ranging from fully marine to low salinity conditions. The core-top foraminifera have been analysed for trace metal/Ca, stable oxygen and carbon isotopes, and faunal composition. Living foraminifera collected from the sediment-water interface were cultured in sea water in two long-term experiments at different temperatures (5°C and 10°C) and at three different salinities (15, 25, and 35). The first experiment yielded a large number of reproduced and experimentally-grown Elphidium specimens. The second experiment resulted in growth but no reproduction. We will provide a summary of the experimentally grown material and discuss the challenges of generating new proxy calibrations for foraminiferal shell geochemistry in the Baltic Sea. Furthermore, specimens of Elphidium and Ammonia, found at two sampling sites (Anholt, Kattegat and Hanöbay) with differing salinities, were genotyped and the results indicate that the same genotype of Elphidium is

  16. Particle and solute migration in porous media. Modeling of simultaneous transport of clay particles and radionuclides in a salinity gradient; Migration de particules et de solutes en milieu poreux. Modelisation du transport simultane de particules argileuses et de radionucleides sous l`effet d`un gradient de salinite

    Energy Technology Data Exchange (ETDEWEB)

    Faure, M H

    1994-03-01

    Understanding the mechanisms which control the transient transport of particles and radionuclides in natural and artificial porous media is a key problem for the assessment of safety of radioactive waste disposals. An experimental study has been performed to characterize the clayey particle mobility in porous media: a laboratory- made column, packed with an unconsolidated sand bentonite (5% weight) sample, is flushed with a salt solution. An original method of salinity gradient allowed us to show and to quantify some typical behaviours of this system: threshold effects in the peptization of particles, creation of preferential pathways, formation of immobile water zones induce solute-transfer limitation. The mathematical modelling accounts for a phenomenological law, where the distribution of particles between the stagnant water zone and the porous medium is a function of sodium chloride concentration. This distribution function is associated with a radionuclide adsorption model, and is included in a convective dispersive transport model with stagnant water zones. It allowed us to simulate the particle and solute transport when the salt environment is modified. The complete model has been validated with experiments involving cesium, calcium and neptunium in a sodium chloride gradient. (author). refs., figs., tabs.

  17. Vertical stratification of physical, chemical and biological components in two saline lakes Shira and Shunet (South Siberia, Russia)

    NARCIS (Netherlands)

    Degermendzhy, A.G.; Zadereev, E.S.; Rogozin, D.Y.; Prokopkin, I.; Barkhatov, Y.V.; Tolomeev, A.; Khromechek, E.B.; Janse, J.H.; Mooij, W.M.; Gulati, R.D.

    2010-01-01

    A feature of meromictic lakes is that several physicochemical and biological gradients affect the vertical distribution of different organisms. The vertical stratification of physical, chemical and biological components in saline, fishless meromictic lakes Shira and Shunet (Siberia, Russia) is quite

  18. Salinity Trends within the Upper Layers of the Subpolar North Atlantic

    Science.gov (United States)

    Tesdal, J. E.; Abernathey, R.; Goes, J. I.; Gordon, A. L.; Haine, T. W. N.

    2017-12-01

    Examination of a range of salinity products collectively suggest widespread freshening of the North Atlantic from the mid-2000 to the present. Monthly salinity fields reveal negative trends that differ in magnitude and significance between western and eastern regions of the North Atlantic. These differences can be attributed to the large negative interannual excursions in salinity in the western subpolar gyre and the Labrador Sea, which are not apparent in the central or eastern subpolar gyre. This study demonstrates that temporal trends in salinity in the northwest (including the Labrador Sea) are subject to mechanisms that are distinct from those responsible for the salinity trends in central and eastern North Atlantic. In the western subpolar gyre a negative correlation between near surface salinity and the circulation strength of the subpolar gyre suggests that negative salinity anomalies are connected to an intensification of the subpolar gyre, which is causing increased flux of freshwater from the East Greenland Current and subsequent transport into the Labrador Sea during the melting season. Analyses of sea surface wind fields suggest that the strength of the subpolar gyre is linked to the North Atlantic Oscillation and Arctic Oscillation-driven changes in wind stress curl in the eastern subpolar gyre. If this trend of decreasing salinity continues, it has the potential to enhance water column stratification, reduce vertical fluxes of nutrients and cause a decline in biological production and carbon export in the North Atlantic Ocean.

  19. Low buoyant density proteoglycans from saline and dissociative extracts of embryonic chicken retinas

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.E.; Ting, Y.P.; Birkholz-Lambrecht, A.

    1984-03-01

    Retinas were labeled in culture with (/sup 3/H)glucosamine or (/sup 3/H)leucine and (/sup 35/S)sulfate and extracted sequentially with physiologically balanced saline and 4 M guanidine HCl. They were dialyzed into associative conditions (0.5 M NaCl) and chromatographed on agarose columns. Under these conditions, some of the proteoglycans were associated in massive complexes that showed low buoyant densities when centrifuged in CsCl density gradients under dissociative conditions (4 M guanidine HCl). Much of the label in these complexes was in molecules other than proteoglycans. Most of the proteoglycans, however, were included on the agarose columns, where they appeared to be constitutionally of low buoyant density. They resisted attempts to separate potential low buoyant density contaminants from the major proteoglycans by direct CsCl density gradient centrifugation or by the fractionation of saline or 8 M urea extracts on diethylaminoethyl-Sephacel. The diethylaminoethyl-Sephacel fractions were either subjected to CsCl density gradient centrifugation or were chromatographed on Sephacryl S-300, in both cases before and after alkaline cleavage, to confirm the presence of typical O-linked glycosaminoglycans. The medium and balanced salt extracts were enriched in chondroitin sulfate and other sulfated macromolecules, possibly highly sulfated oligosaccharides, that resisted digestion by chondroitinase ABC but were electrophoretically less mobile than heparan sulfate. Guanidine HCl or urea extracts of the residues were mixtures of high and low density proteoglycans that were enriched in heparan sulfate.

  20. Soil Fertility Gradient in the Restinga Ecosystem

    Science.gov (United States)

    América Castelar da Cunha, Joana; Casagrande, José Carlos; Soares, Marcio Roberto; Martins Bonilha, Rodolfo

    2013-04-01

    The restinga ecosystem (coastal plain vegetation) can be termed as a set of plant communities that suffer strong influenced by fluvial and marine factors and is characterized as an ecosystem of great biological diversity, therefore, represents areas of great importance in the context of ecological preservation. The degradation processes from many forms of anthropogenic disturbances that has taken place since the colonization of the country, made studies on the characterization and dynamics of soil fertility of these areas even more important in relation to the maintenance of its biodiversity and conservation. The sites studied were the Cardoso Island and Comprida Island, and in these, we analyzed four physiognomies, restinga, low restinga, dune and antedune (from continent to ocean). Chemical analyses were performed and soil salinity in these areas in depths 0-5; 0-10; 0-20; 20-40; 40-60 cm. In all soils the cationic exchange capacity was intimately associated with the concentration of soil organic matter, which makes this parameter essential to the maintenance of soil fertility of these areas; in more superficial layers (0-20 cm) there was an increase of pH and base saturation and decline of organic matter, aluminum saturation and cationic exchange capacity in the nearby sea, physiognomies what determines the existence of fertility gradient towards the continent-coast; restinga forests showed a chemical standard that is heavily marked by sandy texture, high degree of leaching, nutrient poverty, low base saturation, high saturation by aluminum and acidity, opposite conditions to soils of the dunes and antedunes, with the exception of sandy texture; despite the existence of a chemical gradient of fertility among the physiognomies studied it is possible to determine the soil acts more strongly as a physical support than as provider of fertility; as for salinity, soil collected in Cardoso Island did not present salinity in any depth, a fact which can be explained due

  1. Combining Step Gradients and Linear Gradients in Density.

    Science.gov (United States)

    Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M

    2015-06-16

    Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.

  2. Interactive effects of chemical and biological controls on food-web composition in saline prairie lakes.

    Science.gov (United States)

    Cooper, Ryan N; Wissel, Björn

    2012-11-27

    Salinity is restricting habitatability for many biota in prairie lakes due to limited physiological abilities to cope with increasing osmotic stress. Yet, it remains unclear how salinity effects vary among major taxonomic groups and what role other environmental parameters play in shaping food-web composition. To answer these questions, we sampled fish, zooplankton and littoral macroinvertebrates in 20 prairie lakes (Saskatchewan, Canada) characterized by large gradients in water chemistry and lake morphometry. We showed that salinity thresholds differed among major taxonomic groups, as most fishes were absent above salinities of 2 g L-1, while littoral macroinvertebrates were ubiquitous. Zooplankton occurred over the whole salinity range, but changed taxonomic composition as salinity increased. Subsequently, the complexity of fish community (diversity) was associated with large changes in invertebrate communities. The directional changes in invertebrate communities to smaller taxa indicated that complex fish assemblages resulted in higher predation pressure. Most likely, as the complexity of fish community decreased, controls of invertebrate assemblages shifted from predation to competition and ultimately to productivity in hypersaline lakes. Surprisingly, invertebrate predators did not thrive in the absence of fishes in these systems. Furthermore, the here identified salinity threshold for fishes was too low to be a result of osmotic stress. Hence, winterkill was likely an important factor eliminating fishes in low salinity lakes that had high productivity and shallow water depth. Ultimately, while salinity was crucial, intricate combinations of chemical and biological mechanisms also played a major role in controlling the assemblages of major taxonomic groups in prairie lakes.

  3. Rocky intertidal macrobenthic communities across a large-scale estuarine gradient

    Directory of Open Access Journals (Sweden)

    Luis Giménez

    2010-03-01

    Full Text Available We evaluated relationships between (1 salinity and species richness and (2 frontal zones and community structure for the rocky intertidal macrobenthic community of the Uruguayan coast. A large-scale sampling design (extent ~500 km covering 9 rocky shores across 3 intertidal levels was performed between September and November 2002. The linear relationship between salinity and species richness (minimum at the freshwater extreme and the lack of correlation between variation in salinity and richness rejected two previous empirical models, explaining variations in species richness along the salinity gradient. Other factors (e.g. turbidity may explain this discrepancy. The estuarine front defined two communities—freshwater and estuarine-marine—differing in species composition and richness. The freshwater community was characterised by low richness and few individuals confined to crevices or tide pools, and must be structured by physical processes (e.g. desiccation; the estuarine-marine community, with individuals occupying almost all available substrata, must be structured by both physical and biological processes. A marine front, separating estuarine and marine habitats, had a weak effect on community structure although estuarine and marine assemblages differed according to species characterising different functional groups. We conclude that the position of the estuarine frontal zones is important for explaining large-scale patterns of community structure in the study area.

  4. Spatial patterns of fish communities along two estuarine gradients in southern Florida

    Science.gov (United States)

    Green, D.P.J.; Trexler, J.C.; Lorenz, J.J.; McIvor, C.C.; Philippi, T.

    2006-01-01

    In tropical and subtropical estuaries, gradients of primary productivity and salinity are generally invoked to explain patterns in community structure and standing crops of fishes. We documented spatial and temporal patterns in fish community structure and standing crops along salinity and nutrient gradients in two subtropical drainages of Everglades National Park, USA. The Shark River drains into the Gulf of Mexico and experiences diurnal tides carrying relatively nutrient enriched waters, while Taylor River is more hydrologically isolated by the oligohaline Florida Bay and experiences no discernable lunar tides. We hypothesized that the more nutrient enriched system would support higher standing crops of fishes in its mangrove zone. We collected 50 species of fish from January 2000 to April 2004 at six sampling sites spanning fresh to brackish salinities in both the Shark and Taylor River drainages. Contrary to expectations, we observed lower standing crops and density of fishes in the more nutrient rich tidal mangrove forest of the Shark River than in the less nutrient rich mangrove habitats bordering the Taylor River. Tidal mangrove habitats in the Shark River were dominated by salt-tolerant fish and displayed lower species richness than mangrove communities in the Taylor River, which included more freshwater taxa and yielded relatively higher richness. These differences were maintained even after controlling for salinity at the time of sampling. Small-scale topographic relief differs between these two systems, possibly created by tidal action in the Shark River. We propose that this difference in topography limits movement of fishes from upstream marshes into the fringing mangrove forest in the Shark River system, but not the Taylor River system. Understanding the influence of habitat structure, including connectivity, on aquatic communities is important to anticipate effects of construction and operational alternatives associated with restoration of the

  5. Changes in standing stocks and fluxes of carbon due to salinization: tidal freshwater wetland forest retreat to marsh

    Science.gov (United States)

    Krauss, K.; Noe, G. B.; Duberstein, J. A.; Conner, W. H.; Stagg, C. L.; Jones, M.; Bernhardt, C. E.; Cormier, N.

    2017-12-01

    Assessments of organic carbon (C) standing stocks and fluxes as wetland ecosystems transition from tidally influenced freshwater forested wetlands to low-salinity marshes are not typically included in "blue carbon" accounting. However, these ecosystems have the potential to store and convey large quantities of C. Here, we report on data collected from eight riverine sites along salinity and hydro-edaphic gradients in South Carolina and Georgia to provide the first complete estimates of C storage, flux, and burial, including estimation of C export to aquatic environments, in tidal freshwater forested wetlands undergoing transition to oligohaline marsh. Total standing stocks of C ranged from 280 to 891 Mg C/ha along both rivers but with no consistent trend in standing stock shifts along salinity gradients between the two rivers. Soil C standing stocks were most variable among sites. Furthermore, we assessed input (litterfall, woody growth, herbaceous growth, root growth and surface sediment C accretion) in comparison with output (surface litter decomposition, root decomposition and gaseous C) fluxes over periods ranging from 2 to 11 years. C sequestration from mass balance calculations ranged from 103 to 728 g C/m2/year among sites, with generally greater C sequestration on sites with prominent salinity-mediated conversion to oligohaline marsh. Dissolved C export was estimated as the difference between C sequestration and soil C burial using 14C dating of cores, and ranged from 144 to 404 g C/m2/year, representing a large amount of C export to feed aquatic biogeochemical transformations and secondary productivity. Along with C accounting, these sites also differed in how N and P were mineralized in soils, with considerable N mineralization on salinity-stressed (2.4-4.3 parts per thousand) forested sites with newly encroached marsh plants and considerable P mineralization on slightly higher salinity marshes. In all, C storage from tidal freshwater forested wetlands

  6. Introgression between ecologically distinct species following increased salinity in the Colorado Delta- Worldwide implications for impacted estuary diversity.

    Science.gov (United States)

    Lau, Clive L F; Jacobs, David K

    2017-01-01

    We investigate hybridization and introgression between ecologically distinct sister species of silverside fish in the Gulf of California through combined analysis of morphological, sequence, and genotypic data. Water diversions in the past century turned the Colorado River Delta from a normal estuary to a hypersaline inverse estuary, raising concerns for the local fauna, much of which is endangered. Salinity differences are known to generate ecological species pairs and we anticipated that loss of the fresher-water historic salinity regime could alter the adaptive factors maintaining distinction between the broadly distributed Gulf-endemic Colpichthys regis and the narrowly restricted Delta-endemic Colpichthys hubbsi , the species that experienced dramatic environmental change. In this altered environmental context, these long-isolated species (as revealed by Cytochrome b sequences) show genotypic (RAG1, microsatellites) evidence of active hybridization where the species ranges abut, as well as directional introgression from C. regis into the range center of C. hubbsi . Bayesian group assignment (STRUCTURE) on six microsatellite loci and multivariate analyses (DAPC) on both microsatellites and phenotypic data further support substantial recent admixture between the sister species. Although we find no evidence for recent population decline in C. hubbsi based on mitochondrial sequence, introgression may be placing an ancient ecological species at risk of extinction. Such introgressive extinction risk should also pertain to other ecological species historically sustained by the now changing Delta environment. More broadly, salinity gradient associated ecological speciation is evident in silverside species pairs in many estuarine systems around the world. Ecological species pairs among other taxa in such systems are likely poorly understood or cryptic. As water extraction accelerates in river systems worldwide, salinity gradients will necessarily be altered, impacting

  7. Introgression between ecologically distinct species following increased salinity in the Colorado Delta- Worldwide implications for impacted estuary diversity

    Directory of Open Access Journals (Sweden)

    Clive L.F. Lau

    2017-12-01

    Full Text Available We investigate hybridization and introgression between ecologically distinct sister species of silverside fish in the Gulf of California through combined analysis of morphological, sequence, and genotypic data. Water diversions in the past century turned the Colorado River Delta from a normal estuary to a hypersaline inverse estuary, raising concerns for the local fauna, much of which is endangered. Salinity differences are known to generate ecological species pairs and we anticipated that loss of the fresher-water historic salinity regime could alter the adaptive factors maintaining distinction between the broadly distributed Gulf-endemic Colpichthys regis and the narrowly restricted Delta-endemic Colpichthys hubbsi, the species that experienced dramatic environmental change. In this altered environmental context, these long-isolated species (as revealed by Cytochrome b sequences show genotypic (RAG1, microsatellites evidence of active hybridization where the species ranges abut, as well as directional introgression from C. regis into the range center of C. hubbsi. Bayesian group assignment (STRUCTURE on six microsatellite loci and multivariate analyses (DAPC on both microsatellites and phenotypic data further support substantial recent admixture between the sister species. Although we find no evidence for recent population decline in C. hubbsi based on mitochondrial sequence, introgression may be placing an ancient ecological species at risk of extinction. Such introgressive extinction risk should also pertain to other ecological species historically sustained by the now changing Delta environment. More broadly, salinity gradient associated ecological speciation is evident in silverside species pairs in many estuarine systems around the world. Ecological species pairs among other taxa in such systems are likely poorly understood or cryptic. As water extraction accelerates in river systems worldwide, salinity gradients will necessarily be

  8. Larval tolerance to salinity in three species of Australian anuran: an indication of saline specialisation in Litoria aurea.

    Directory of Open Access Journals (Sweden)

    Brian D Kearney

    Full Text Available Recent anthropogenic influences on freshwater habitats are forcing anuran populations to rapidly adapt to high magnitude changes in environmental conditions or face local extinction. We examined the effects of ecologically relevant elevated salinity levels on larval growth, metamorphosis and survival of three species of Australian anuran; the spotted marsh frog (Limnodynastes tasmaniensis, the painted burrowing frog (Neobatrachus sudelli and the green and golden bell frog (Litoria aurea, in order to better understand the responses of these animals to environmental change. Elevated salinity (16% seawater negatively impacted on the survival of L. tasmaniensis (35% survival and N sudelli (0% survival, while reduced salinity had a negative impact on L. aurea. (16% seawater: 85% survival; 0.4% seawater: 35% survival. L. aurea tadpoles survived in salinities much higher than previously reported for this species, indicating the potential for inter-populations differences in salinity tolerance. In L. tasmaniensis and L. aurea, development to metamorphosis was fastest in low and high salinity treatments suggesting it is advantageous for tadpoles to invest energy in development in both highly favourable and developmentally challenging environments. We propose that this response might either maximise potential lifetime fecundity when tadpoles experience favourable environments, or, facilitate a more rapid escape from pond environments where there is a reduced probability of survival.

  9. The hydrography of the Mozambique Channel from six years of continuous temperature, salinity, and velocity observations

    Science.gov (United States)

    Ullgren, J. E.; van Aken, H. M.; Ridderinkhof, H.; de Ruijter, W. P. M.

    2012-11-01

    Temperature, salinity and velocity data are presented, along with the estimated volume transport, from seven full-length deep sea moorings placed across the narrowest part of the Mozambique Channel, southwest Indian Ocean, during the period November 2003 to December 2009. The dominant water mass in the upper layer is Sub-Tropical Surface Water (STSW) which overlies South Indian Central Water (SICW), and is normally capped by fresher Tropical Surface Water (TSW). Upper ocean salinity increased through 2005 as a result of saline STSW taking up a relatively larger part of the upper layer, at the expense of TSW. Upper waters are on average warmer and lighter in the central Channel than on the sides. Throughout the upper 1.5 km of the water column there is large hydrographic variability, short-term as well as interannual, and in particular at frequencies (four to seven cycles per year) associated with the southward passage of anticyclonic Mozambique Channel eddies. The eddies have a strong T-S signal, in the upper and central waters as well as on the intermediate level, as the eddies usually carry saline Red Sea Water (RSW) in their core. While the interannual frequency band displays an east-west gradient with higher temperature variance on the western side, the eddy frequency band shows highest variance in the centre of the Channel, where the eddy band contains about 40% of the total isopycnal hydrographic variability. Throughout the >6 years of measurements, the frequency and characteristics of eddies vary between periods, both in terms of strength and vertical structure of eddy T-S signals. These changes contribute to the interannual variability of water mass properties: an increase in central water salinity to a maximum in late 2007 coincided with a period of unusually frequent eddies with strong salinity signals. The warmest and most saline deep water is found within the northward flowing Mozambique Undercurrent, on the western side of the Channel. The Undercurrent

  10. SSEM: A model for simulating runoff and erosion of saline-sodic soil slopes under coastal reclamation

    Science.gov (United States)

    Liu, Dongdong; She, Dongli

    2018-06-01

    Current physically based erosion models do not carefully consider the dynamic variations of soil properties during rainfall and are unable to simulate saline-sodic soil slope erosion processes. The aim of this work was to build upon a complete model framework, SSEM, to simulate runoff and erosion processes for saline-sodic soils by coupling dynamic saturated hydraulic conductivity Ks and soil erodibility Kτ. Sixty rainfall simulation rainfall experiments (2 soil textures × 5 sodicity levels × 2 slope gradients × 3 duplicates) provided data for model calibration and validation. SSEM worked very well for simulating the runoff and erosion processes of saline-sodic silty clay. The runoff and erosion processes of saline-sodic silt loam were more complex than those of non-saline soils or soils with higher clay contents; thus, SSEM did not perform very well for some validation events. We further examined the model performances of four concepts: Dynamic Ks and Kτ (Case 1, SSEM), Dynamic Ks and Constant Kτ (Case 2), Constant Ks and Dynamic Kτ (Case 3) and Constant Ks and Constant Kτ (Case 4). The results demonstrated that the model, which considers dynamic variations in soil saturated hydraulic conductivity and soil erodibility, can provide more reasonable runoff and erosion prediction results for saline-sodic soils.

  11. Intraspecific variation in growth of marsh macrophytes in response to salinity and soil type: Implications for wetland restoration

    Science.gov (United States)

    Howard, R.J.

    2010-01-01

    Genetic diversity within plant populations can influence plant community structure along environmental gradients. In wetland habitats, salinity and soil type are factors that can vary along gradients and therefore affect plant growth. To test for intraspecific growth variation in response to these factors, a greenhouse study was conducted using common plants that occur in northern Gulf of Mexico brackish and salt marshes. Individual plants of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected from several locations along the coast in Louisiana, USA. Plant identity, based on collection location, was used as a measure of intraspecific variability. Prepared soil mixtures were organic, silt, or clay, and salinity treatments were 0 or 18 psu. Significant intraspecific variation in stem number, total stem height, or biomass was found in all species. Within species, response to soil type varied, but increased salinity significantly decreased growth in all individuals. Findings indicate that inclusion of multiple genets within species is an important consideration for marsh restoration projects that include vegetation plantings. This strategy will facilitate establishment of plant communities that have the flexibility to adapt to changing environmental conditions and, therefore, are capable of persisting over time. ?? Coastal and Estuarine Research Federation 2009.

  12. Meteorological Aspects of the Eastern North American Pattern with Impacts on Long Island Sound Salinity

    Directory of Open Access Journals (Sweden)

    Justin A. Schulte

    2017-07-01

    Full Text Available The eastern North American sea level pressure dipole (ENA pattern is a recently identified teleconnection pattern that has been shown to influence mid-Atlantic United States (U.S streamflow variability. Because the pattern was only recently identified, its impacts on U.S. precipitation and estuaries on daily to seasonal timescales is unknown. Thus, this paper presents the first seasonal investigation of ENA relationships with global atmospheric fields, U.S. precipitation, and mid-Atlantic estuarine salinity. We show that the ENA pattern explains up to 25–36% of precipitation variability across Texas and the western U.S. We also show that, for the Northeast U.S, the ENA pattern explains up to 65% of precipitation variability, contrasting with previous work showing how well-known climate indices can only explain a modest amount of precipitation variability. The strongest ENA-precipitation relationships are in the spring and fall. The relationships between the ENA pattern and precipitation across remote regions reflect the upper-atmospheric Rossby wave pattern associated with the ENA pattern that varies seasonally. The El-Nino/Southern Oscillation (ENSO is related to the spring ENA pattern, indicating that extended outlooks of the ENA pattern may be possible. We also show that the ENA index is strongly correlated with salinity and vertical haline stratification across coastal portions of the mid-Atlantic Bight so that hypoxia forecasts based on the ENA index may be possible. Statistical connections between vertical salinity gradient and ENSO were identified at lags of up two years, further highlighting the potential for extended hypoxia outlooks. The strong connection between anomalies for precipitation and mid-Atlantic Bight salinity suggests that the ENA pattern may be useful at an interdisciplinary level for better understanding historical regional climate variability and future impacts of climate change on regional precipitation and the

  13. Effect of Different Alternate Irrigation Strategies using Saline and Non-Saline Water on Corn Yield, Salinity and Moisture Distribution in Soil Profile

    Directory of Open Access Journals (Sweden)

    Ali Reza Kiani

    2017-01-01

    resources and increase total production and farmer's income. If the region is facing a shortage of water resources and saline water is available nearby agricultural land, it is suggested to use alternate furrow irrigation with saline and non-saline water; with the crop water requirement being met by the saline water, the total output will be higher than using deficit irrigation management with non-saline water. Comparision of the distribution of moisture in deficit irrigation treatments showed that surface soil moisture was lower in the treatment of T5 because it was more lateral distribution. In the deeper layers, soil moisture of the treatment T2 was more than others, because it was the predominant infiltration. The two treatments T3 and T4 because of the combined matric and osmotic potential and the movement of water along the sides and deep percolation, resulting widely distributed in soil moisture and thus remaining lower moisture in the soil compare to full irrigation treatments. Consequently, this finding indicates that after two years of corn irrigation using saline (8 dS/m and non-saline water in every other row (treatments T3 and T4 production can be increased, and in case of proper leaching and drainage management, agricultural sustainability will also preserve.

  14. Impacts of Salinity and Oxygen on Particle-Associated Microbial Communities in the Broadkill River, Lewes DE

    Directory of Open Access Journals (Sweden)

    Kristin M. Yoshimura

    2018-03-01

    Full Text Available Particulate matter in estuarine systems hosts microbial communities that can impact biogeochemical cycles. While the bacterial community composition on suspended particles has been previously investigated, especially with regards to how salinity may structure these communities, the archaeal fraction of the microbial community has not received the same attention. Here we investigate both the bacterial and archaeal community composition on two sizes of particles along a riverine discharge gradient in the Broadkill River, DE, USA, to determine whether the archaeal community is selected by similar environmental stressors as the bacteria. We measured salinity, nutrients, and diatom abundances, and use particle size as a proxy for oxygen concentrations. We show that salinity is a strong environmental factor that controls both bacterial and archaeal community composition and oxygen is an additional factor, impacting archaea more than bacteria.

  15. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    Energy Technology Data Exchange (ETDEWEB)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-06-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC{sub 50} values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC{sub 50} obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC{sub 50}). This LC{sub 50} value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC{sub 50}. For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC{sub 50} and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC{sub 50} of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC{sub 50} values. In contrast, LC{sub 50} determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature.

  16. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    International Nuclear Information System (INIS)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-01-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC 50 values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC 50 obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC 50 ). This LC 50 value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC 50 . For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC 50 and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC 50 of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC 50 values. In contrast, LC 50 determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature

  17. Salinity guidelines for irrigation: Case studies from Water Research ...

    African Journals Online (AJOL)

    Salinity guidelines for irrigation: Case studies from Water Research Commission projects along the Lower Vaal, Riet, Berg and Breede Rivers. ... It is suggested that a more dynamic approach be used for managing salinity under irrigation at farm level, i.e. the use of models. Amongst others, future research should focus on ...

  18. Age-related environmental gradients influence invertebrate distribution in the Prince Charles Mountains, East Antarctica.

    Science.gov (United States)

    Czechowski, Paul; White, Duanne; Clarke, Laurence; McKay, Alan; Cooper, Alan; Stevens, Mark I

    2016-12-01

    The potential impact of environmental change on terrestrial Antarctic ecosystems can be explored by inspecting biodiversity patterns across large-scale gradients. Unfortunately, morphology-based surveys of Antarctic invertebrates are time-consuming and limited by the cryptic nature of many taxa. We used biodiversity information derived from high-throughput sequencing (HTS) to elucidate the relationship between soil properties and invertebrate biodiversity in the Prince Charles Mountains, East Antarctica. Across 136 analysed soil samples collected from Mount Menzies, Mawson Escarpment and Lake Terrasovoje, we found invertebrate distribution in the Prince Charles Mountains significantly influenced by soil salinity and/or sulfur content. Phyla Tardigrada and Arachnida occurred predominantly in low-salinity substrates with abundant nutrients, whereas Bdelloidea (Rotifera) and Chromadorea (Nematoda) were more common in highly saline substrates. A significant correlation between invertebrate occurrence, soil salinity and time since deglaciation indicates that terrain age indirectly influences Antarctic terrestrial biodiversity, with more recently deglaciated areas supporting greater diversity. Our study demonstrates the value of HTS metabarcoding to investigate environmental constraints on inconspicuous soil biodiversity across large spatial scales.

  19. Salinity anomaly as a trigger for ENSO events.

    Science.gov (United States)

    Zhu, Jieshun; Huang, Bohua; Zhang, Rong-Hua; Hu, Zeng-Zhen; Kumar, Arun; Balmaseda, Magdalena A; Marx, Lawrence; Kinter, James L

    2014-10-29

    According to the classical theories of ENSO, subsurface anomalies in ocean thermal structure are precursors for ENSO events and their initial specification is essential for skillful ENSO forecast. Although ocean salinity in the tropical Pacific (particularly in the western Pacific warm pool) can vary in response to El Niño events, its effect on ENSO evolution and forecasts of ENSO has been less explored. Here we present evidence that, in addition to the passive response, salinity variability may also play an active role in ENSO evolution, and thus important in forecasting El Niño events. By comparing two forecast experiments in which the interannually variability of salinity in the ocean initial states is either included or excluded, the salinity variability is shown to be essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate salinity observations with large-scale spatial coverage.

  20. The density-salinity relation of standard seawater

    Science.gov (United States)

    Schmidt, Hannes; Seitz, Steffen; Hassel, Egon; Wolf, Henning

    2018-01-01

    The determination of salinity by means of electrical conductivity relies on stable salt proportions in the North Atlantic Ocean, because standard seawater, which is required for salinometer calibration, is produced from water of the North Atlantic. To verify the long-term stability of the standard seawater composition, it was proposed to perform measurements of the standard seawater density. Since the density is sensitive to all salt components, a density measurement can detect any change in the composition. A conversion of the density values to salinity can be performed by means of a density-salinity relation. To use such a relation with a target uncertainty in salinity comparable to that in salinity obtained from conductivity measurements, a density measurement with an uncertainty of 2 g m-3 is mandatory. We present a new density-salinity relation based on such accurate density measurements. The substitution measurement method used is described and density corrections for uniform isotopic and chemical compositions are reported. The comparison of densities calculated using the new relation with those calculated using the present reference equations of state TEOS-10 suggests that the density accuracy of TEOS-10 (as well as that of EOS-80) has been overestimated, as the accuracy of some of its underlying density measurements had been overestimated. The new density-salinity relation may be used to verify the stable composition of standard seawater by means of routine density measurements.

  1. Jupiter's evolution with primordial composition gradients

    Science.gov (United States)

    Vazan, Allona; Helled, Ravit; Guillot, Tristan

    2018-02-01

    Recent formation and structure models of Jupiter suggest that the planet can have composition gradients and not be fully convective (adiabatic). This possibility directly affects our understanding of Jupiter's bulk composition and origin. In this Letter we present Jupiter's evolution with a primordial structure consisting of a relatively steep heavy-element gradient of 40 M⊕. We show that for a primordial structure with composition gradients, most of the mixing occurs in the outer part of the gradient during the early evolution (several 107 yr), leading to an adiabatic outer envelope (60% of Jupiter's mass). We find that the composition gradient in the deep interior persists, suggesting that 40% of Jupiter's mass can be non-adiabatic with a higher temperature than the one derived from Jupiter's atmospheric properties. The region that can potentially develop layered convection in Jupiter today is estimated to be limited to 10% of the mass. Movies associated to Figs. 1-3 are available at http://https://www.aanda.org

  2. Selection by higher-order effects of salinity and bacteria on early life-stages of Western Baltic spring-spawning herring.

    Science.gov (United States)

    Poirier, Maude; Listmann, Luisa; Roth, Olivia

    2017-07-01

    Habitat stratification by abiotic and biotic factors initiates divergence of populations and leads to ecological speciation. In contrast to fully marine waters, the Baltic Sea is stratified by a salinity gradient that strongly affects fish physiology, distribution, diversity and virulence of important marine pathogens. Animals thus face the challenge to simultaneously adapt to the concurrent salinity and cope with the selection imposed by the changing pathogenic virulence. Western Baltic spring-spawning herring ( Clupea harengus ) migrate to spawning grounds characterized by different salinities to which herring are supposedly adapted. We hypothesized that herring populations do not only have to cope with different salinity levels but that they are simultaneously exposed to higher-order effects that accompany the shifts in salinity, that is induced pathogenicity of Vibrio bacteria in lower saline waters. To experimentally evaluate this, adults of two populations were caught in their spawning grounds and fully reciprocally crossed within and between populations. Larvae were reared at three salinity levels, representing the spawning ground salinity of each of the two populations, or Atlantic salinity conditions resembling the phylogenetic origin of Clupea harengus . In addition, larvae were exposed to a Vibrio spp . infection. Life-history traits and gene expression analysis served as response variables. Herring seem adapted to Baltic Sea conditions and cope better with low saline waters. However, upon a bacterial infection, herring larvae suffer more when kept at lower salinities implying reduced resistance against Vibrio or higher Vibrio virulence. In the context of recent climate change with less saline marine waters in the Baltic Sea, such interactions may constitute key future stressors.

  3. Unwinding after high salinity stress: Pea DNA helicase 45 over- expression in tobacco confers high salinity tolerance without affecting yield (abstract)

    International Nuclear Information System (INIS)

    Tuteja, N.

    2005-01-01

    Soil salinity is an increasing threat for agriculture and is a major factor in reducing plant productivity; therefore, it is necessary to obtain salinity-tolerant varieties. A typical characteristic of soil salinity is the induction of multiple stress- inducible genes. Some of the genes encoding osmolytes, ion channels or enzymes are able to confer salinity-tolerant phenotypes when transferred to sensitive plants. As salinity stress affects the cellular gene-expression machinery, it is evident that molecules involved in nucleic acid processing including helicases, are likely to be affected as well. DNA helicases unwind duplex DNA and are involved in replication, repair, recombination and transcription while RNA helicases unfold the secondary structures in RNA and are involved in transcription, ribosome biogenesis and translation initiation. We have earlier reported the isolation of a pea DNA helicase 45 (PDH45) that exhibits striking homology with eIF-4A (Plant J. 24:219-230,2000). Here we report that PDH45 mRNA is induced in pea seedlings in response to high salt and its over- expression driven by a constitutive CAMV-355-promoter in tobacco plants confers salinity tolerance, thus suggesting a new pathway for manipulating stress tolerance in crop plants. The T0 transgenic plants showed high-levels of PDH45 protein in normal and stress conditions, as compared to wild type (WT) plants. The T0 transgenics also showed tolerance to high salinity as tested by a leaf disc senescence assay. The T1 transgenics were able to grow to maturity and set normal viable seeds under continuous salinity stress, without any reduction in plant yield, in terms of seed weight. Measurement of Na/sup +/ ions in different parts of the plant showed higher accumulation in the old leaves and negligible in seeds of T1 transgenic lines as compared with the WT plants. The possible mechanism of salinity tolerance will be discussed. Over-expression of PDH45 provides a possible example of the

  4. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Science.gov (United States)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2011-01-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  5. Absolute Salinity, "Density Salinity" and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Science.gov (United States)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2010-08-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. The Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  6. Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation

    KAUST Repository

    Cheng, Zhen Lei; Li, Xue; Liu, Ying Da; Chung, Neal Tai-Shung

    2016-01-01

    This study reports outer-selective thin-film composite (TFC) hollow fiber membranes with extremely low reverse salt fluxes and robustness for harvesting salinity-gradient energy from pressure retarded osmosis (PRO) processes. Almost defect-free polyamide layers with impressive low salt permeabilities were synthesized on top of robust polyethersulfone porous supports. The newly developed TFC-II membrane shows a maximum power density of 7.81 W m−2 using 1 M NaCl and DI water as feeds at 20 bar. Reproducible data obtained in the 2nd and 3rd runs confirm its stability under high hydraulic pressure differences. Comparing to other PRO membranes reported in the literature, the newly developed membrane exhibits not only the smallest slope between water flux decline and ΔPΔP increase but also the lowest ratio of reverse salt flux to water flux. Thus, the effective osmotic driving force could be well maintained even under high pressure operations. For the first time, the effect of feed pressure buildup induced by feed flowrate was evaluated towards PRO performance. A slight increment in feed pressure buildup was found to be beneficial to water flux and power density up to 10.06 W m−2 without comprising the reverse salt flux. We believe this study may open up new perspectives on outer-selective PRO hollow fiber membranes and provide useful insights to understand and design next-generation outer-selective TFC hollow fiber membranes for osmotic power generation.

  7. Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation

    KAUST Repository

    Cheng, Zhen Lei

    2016-01-08

    This study reports outer-selective thin-film composite (TFC) hollow fiber membranes with extremely low reverse salt fluxes and robustness for harvesting salinity-gradient energy from pressure retarded osmosis (PRO) processes. Almost defect-free polyamide layers with impressive low salt permeabilities were synthesized on top of robust polyethersulfone porous supports. The newly developed TFC-II membrane shows a maximum power density of 7.81 W m−2 using 1 M NaCl and DI water as feeds at 20 bar. Reproducible data obtained in the 2nd and 3rd runs confirm its stability under high hydraulic pressure differences. Comparing to other PRO membranes reported in the literature, the newly developed membrane exhibits not only the smallest slope between water flux decline and ΔPΔP increase but also the lowest ratio of reverse salt flux to water flux. Thus, the effective osmotic driving force could be well maintained even under high pressure operations. For the first time, the effect of feed pressure buildup induced by feed flowrate was evaluated towards PRO performance. A slight increment in feed pressure buildup was found to be beneficial to water flux and power density up to 10.06 W m−2 without comprising the reverse salt flux. We believe this study may open up new perspectives on outer-selective PRO hollow fiber membranes and provide useful insights to understand and design next-generation outer-selective TFC hollow fiber membranes for osmotic power generation.

  8. Soil Porewater Salinity Response to Sea-level Rise in Tidal Freshwater Forested Wetlands: A Modeling Study

    Science.gov (United States)

    Stagg, C. L.; Wang, H.; Krauss, K.; Conrads, P. A.; Swarzenski, C.; Duberstein, J. A.; DeAngelis, D.

    2017-12-01

    There is a growing concern about the adverse effects of salt water intrusion via tidal rivers and creeks into tidal freshwater forested wetlands (TFFWs) due to rising sea levels and reduction of freshwater flow. The distribution and composition of plant species, vegetation productivity, and biogeochemical functions including carbon sequestration capacity and flux rates in TFFWs have been found to be affected by increasing river and soil porewater salinities, with significant shifts occurring at a porewater salinity threshold of 3 PSU. However, the drivers of soil porewater salinity, which impact the health and ecological functions of TFFWs remains unclear, limiting our capability of predicting the future impacts of saltwater intrusion on ecosystem services provided by TFFWs. In this study, we developed a soil porewater salinity model for TFFWs based on an existing salt and water balance model with modifications to several key features such as the feedback mechanisms of soil salinity on evapotranspiration reduction and hydraulic conductivity. We selected sites along the floodplains of two rivers, the Waccamaw River (SC, USA) and the Savannah River (GA and SC, USA) that represent landscape salinity gradients of both surface water and soil porewater from tidal influence of the Atlantic Ocean. These sites represent healthy, moderately and highly salt-impacted forests, and oligohaline marshes. The soil porewater salinity model was calibrated and validated using field data collected at these sites throughout 2008-2016. The model results agreed well with field measurements. Analyses of the preliminary simulation results indicate that the magnitude, seasonal and annual variability, and duration of threshold salinities (e.g., 3 PSU) tend to vary significantly with vegetation status and type (i.e., healthy, degraded forests, and oligohaline marshes), especially during drought conditions. The soil porewater salinity model could be coupled with a wetland soil biogeochemistry

  9. amoA Gene abundances and nitrification potential rates suggest that benthic ammonia-oxidizing bacteria and not Archaea dominate N cycling in the Colne Estuary, United Kingdom.

    Science.gov (United States)

    Li, Jialin; Nedwell, David B; Beddow, Jessica; Dumbrell, Alex J; McKew, Boyd A; Thorpe, Emma L; Whitby, Corinne

    2015-01-01

    Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA communities were investigated by measuring ammonia monooxygenase (amoA) gene abundance and nitrification potentials both spatially and temporally. Nitrification potentials differed along the estuary and over time, with the greatest nitrification potentials occurring mid-estuary (8.2 μmol N grams dry weight [gdw](-1) day(-1) in June, increasing to 37.4 μmol N gdw(-1) day(-1) in January). At the estuary head, the nitrification potential was 4.3 μmol N gdw(-1) day(-1) in June, increasing to 11.7 μmol N gdw(-1) day(-1) in January. At the estuary head and mouth, nitrification potentials fluctuated throughout the year. AOB amoA gene abundances were significantly greater (by 100-fold) than those of AOA both spatially and temporally. Nitrosomonas spp. were detected along the estuary by denaturing gradient gel electrophoresis (DGGE) band sequence analysis. In conclusion, AOB dominated over AOA in the estuarine sediments, with the ratio of AOB/AOA amoA gene abundance increasing from the upper (freshwater) to lower (marine) regions of the Colne estuary. These findings suggest that in this nutrified estuary, AOB (possibly Nitrosomonas spp.) were of major significance in nitrification. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Experimental and numerical analysis of sodium-carbonate salt gradient solar-pond performance under simulated solar-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kurt, Hueseyin; Ozkaymak, Mehmet [Zonguldak Karaelmas University, Technical Education Faculty, 78200 Karabuk (Turkey); Binark, A. Korhan [Marmara University, Technical Education Faculty, 34722 Kuyubasi-Istanbul (Turkey)

    2006-04-01

    The objective of this study is to investigate experimentally and theoretically whether sodium carbonate (Na{sub 2}CO{sub 3}) salt is suitable for establishing a salinity gradient in a salt-gradient solar-pond (SGSP). For this purpose, a small-scale prismatic solar-pond was constructed. Experiments were conducted in the laboratory under the incident radiation from two halogen-lamps acting as a solar simulator. Furthermore, a one-dimensional transient mathematical model that describes the heat and mass transfer behaviour of the SGSP was developed. The differential equations obtained were solved numerically using a finite-difference method. It was found from the experiments that the density gradient, achieved using sodium carbonate salt, can suppress convection from the bottom to the surface of the pond. (author)

  11. Experimental and numerical analysis of sodium-carbonate salt gradient solar-pond performance under simulated solar-radiation

    International Nuclear Information System (INIS)

    Kurt, Hueseyin; Ozkaymak, Mehmet; Binark, A. Korhan

    2006-01-01

    The objective of this study is to investigate experimentally and theoretically whether sodium carbonate (Na 2 CO 3 ) salt is suitable for establishing a salinity gradient in a salt-gradient solar-pond (SGSP). For this purpose, a small-scale prismatic solar-pond was constructed. Experiments were conducted in the laboratory under the incident radiation from two halogen-lamps acting as a solar simulator. Furthermore, a one-dimensional transient mathematical model that describes the heat and mass transfer behaviour of the SGSP was developed. The differential equations obtained were solved numerically using a finite-difference method. It was found from the experiments that the density gradient, achieved using sodium carbonate salt, can suppress convection from the bottom to the surface of the pond

  12. Soil Nematodes and Their Prokaryotic Prey Along an Elevation Gradient in The Mojave Desert (Death Valley National Park, California, USA

    Directory of Open Access Journals (Sweden)

    Alyxandra Pikus

    2012-10-01

    Full Text Available We characterized soil communities in the Mojave Desert across an elevation gradient. Our goal was to test the hypothesis that as soil quality improved with increasing elevation (due to increased productivity, the diversity of soil prokaryotes and nematodes would also increase. Soil organic matter and soil moisture content increased with elevation as predicted. Soil salinity did not correlate to elevation, but was highest at a mid-gradient, alluvial site. Soil nematode density, community trophic structure, and diversity did not show patterns related to elevation. Similar results were obtained for diversity of bacteria and archaea. Relationships between soil properties, nematode communities, and prokaryotic diversity were site-specific. For example, at the lowest elevation site, nematode communities contained a high proportion of fungal-feeding species and diversity of bacteria was lowest. At a high-salinity site, nematode density was highest, and overall, nematode density showed an unexpected, positive correlation to salinity. At the highest elevation site, nematode density and species richness were attenuated, despite relatively high moisture and organic matter content for the soils. Our results support emerging evidence for the lack of a relationship between productivity and the diversity of soil nematodes and prokaryotes.

  13. Trophic–salinity gradients and environmental redundancy resolve mesozooplankton dynamics in a large tropical coastal lagoon

    Digital Repository Service at National Institute of Oceanography (India)

    Rakesh, M.; Madhavirani, K.S.V.K.S.; Kumar, B.C.; Raman, A.V.; Kalavati, C.; Rao, Y.P.; Stephen, R.; Rao, V.R.; Gupta, G.V.M.; Subramanian, B.R.

    –light gradients majorly influence MSP structure in one of Asia’s largest brackish water lagoons in India. Multivariate analysis of environmental variables (May 2004–September 2006; View the MathML source) and MSP examined (May 2004 to October 2005; View the Math...

  14. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Directory of Open Access Journals (Sweden)

    D. G. Wright

    2011-01-01

    Full Text Available Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models.

    First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies.

    Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol

  15. Algal and cyanobacterial saline biofilms of the Grande Coastal Lagoon, Lima, Peru

    OpenAIRE

    Montoya, Haydee

    2009-01-01

    Tropical coastal wetland ecosystems are widely distributed in arid regions. The Grande coastal lagoon in Peru's central plain is shallow, eutrophic and alkaline, exposed to the annual hydrological regime with flooding and desiccation periods, when a salt crust is formed. The brackish to hypersaline habitats showed salinity gradients from 2-90 ppt (NaCl) to saturation, pH values from 7.0 to 10.5, temperatures from 18 to 31 C, phosphate concentrations from 0.5 to 50 mg 1-1. Dominance of halophi...

  16. Modeling SST gradient changes, the hydrological cycle response, and deep water formation in the North Pacific

    Science.gov (United States)

    Burls, N.; Ford, H. L.; Fedorov, A. V.; Jahn, A.; Jacobs, P.

    2017-12-01

    The absence of deep-water formation and a deep meridional overturning cell in the modern North Pacific has been attributed to the relatively fresh surface conditions in the subarctic. These conditions are, in turn, best explained by the local excess of precipitation over evaporation in the northern Pacific due to net moisture transport from the Atlantic to the Pacific and/or moisture transport associated with the Asian monsoon. Some studies link the lack of deep-water formation in the Pacific directly to its occurrence in the Atlantic via the Atlantic-Pacific seesaw effect and idealized experiments indicate that the smaller width of the Atlantic predisposes it to higher salinity and deep-water formation. We have conducted a series of coupled model experiments across which global mean temperatures and large-scale meridional SST gradients are varied. We perturb either atmospheric CO2 concentrations or the meridional gradient in cloud radiative forcing and run each experiment out to 3000 years so that the deep ocean has equilibrated. As the strength of the meridional temperature gradient decreases across our experiments, a Pacific Meridional Overturning Circulation develops. The strength of this Pacific Meridional Overturning Circulation generally increases as the gradient weakens. In one of these experiments where the meridional SST gradient most closely resembles Pliocene reconstructions, a PMOC exists of comparable in strength to the modern AMOC. We will describe how the hydrological cycle response to reduced meridional SST gradients acts to increase the strength of the PMOC across our sensitivity experiments. Additionally, we will discuss our effort to include carbon isotopes in our Pliocene-like simulation for data-model comparisons. Calcium carbonate accumulation data from Subarctic North Pacific Site 882 and new and previously published carbon isotope records from the Pacific appear to support our modelling results suggesting that weaker meridonal SST gradients

  17. Alteration in Solid State Phosphorous With Depth in Sediments Along the Salinity Transition Zone of a Major Chesapeake Bay Tributary

    Science.gov (United States)

    Hartzell, J. L.; Jordan, T. E.

    2006-05-01

    Determining the fate of particulate phosphorus in estuaries is essential for addressing the widespread problem of estuarine eutrophication, and is key to understanding P cycling and developing accurate global P budgets. Prominent reservoirs of P in surficial sediments include particulate P associated with iron or organic C. However, the importance of these reservoirs changes with the decomposition of organic matter and the reduction of iron. Also, the importance of iron bound P may decrease with increasing salinity due to the formation of iron sulfides. To investigate estuarine P burial and its relationship to salinity, we collected sediment cores of one-meter depth along the salinity gradient of the Patuxent River estuary (Maryland, USA), a major tributary of Chesapeake Bay. The sediments were analyzed using a sequential sedimentary extraction procedure that quantifies five separate reservoirs of particulate P. Total phosphorus concentrations in freshwater sediments were significantly higher than those in more saline sediments at all depths. Conversely, porewater phosphate concentrations were significantly lower in freshwater sediments than in the more saline sediments. Total P in the saline sediment cores decreased with depth, correlating to a reduction in iron-bound P. However, we did not find a concurrent increase in authigenic apatite with depth. Our findings indicate that mechanisms controlling changes in P sorption to sediments change profoundly with salinity and may contribute to increased bioavailability of phosphates with increasing salinity.

  18. Cuticle hydrocarbons in saline aquatic beetles

    Directory of Open Access Journals (Sweden)

    María Botella-Cruz

    2017-07-01

    Full Text Available Hydrocarbons are the principal component of insect cuticle and play an important role in maintaining water balance. Cuticular impermeability could be an adaptative response to salinity and desiccation in aquatic insects; however, cuticular hydrocarbons have been poorly explored in this group and there are no previous data on saline species. We characterized cuticular hydrocarbons of adults and larvae of two saline aquatic beetles, namely Nebrioporus baeticus (Dytiscidae and Enochrus jesusarribasi (Hydrophilidae, using a gas chromatograph coupled to a mass spectrometer. The CHC profile of adults of both species, characterized by a high abundance of branched alkanes and low of unsaturated alkenes, seems to be more similar to that of some terrestrial beetles (e.g., desert Tenebrionidae compared with other aquatic Coleoptera (freshwater Dytiscidae. Adults of E. jesusarribasi had longer chain compounds than N. baeticus, in agreement with their higher resistance to salinity and desiccation. The more permeable cuticle of larvae was characterized by a lower diversity in compounds, shorter carbon chain length and a higher proportion of unsaturated hydrocarbons compared with that of the adults. These results suggest that osmotic stress on aquatic insects could exert a selection pressure on CHC profile similar to aridity in terrestrial species.

  19. Past 100 Ky surface salinity-gradient response in the eastern Arabian Sea to the summer monsoon variation recorded by delta super(18)O of G. sacculifer

    Digital Repository Service at National Institute of Oceanography (India)

    Chodankar, A.R.; Banakar, V.K.; Oba, T.

    tongue may therefore provide a potential tool for understanding the past variation in the intensity of Indian summer monsoons. In response to past fluctuations in the summer- and winter-monsoon intensity, the salinities in both the basins have oscillated... glacial cycle. Mar. Geol. Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J., Lancelot, Y., 1994. The astronomical theory the Bay of Bengal, suggesting weakest summer monsoons. On the other hand, the lowest contrast indicating...

  20. Do Acartia tonsa (Dana) eggs regulate their volume and osmolality as salinity changes?

    DEFF Research Database (Denmark)

    Hansen, Benni Winding; Drillet, Guillaume; Pedersen, Morten Foldager

    2012-01-01

    Subitaneous eggs from an euryhaline calanoid copepod Acartia tonsa were challenged by changes in salinity within the range from full strength salinity, down to zero and up to >70 psu. Egg volume changed immediately, increasing from 2.8 × 105 μm3 at full strength salinity (35 psu) to 3.8 × 105 μm3...... at 0 psu and back to its initial volume when gradually being returned to full strength salinity. Egg osmolality followed the molality of the surrounding water when challenged within a salinity range from 2 to 50 psu. Egg respiration was not affected when eggs kept at 35 psu was exposed to low salinity...... (2 psu). These results suggest that eggs are unable to regulate their volume or osmolality when challenged with changes in salinity. Gradual changes in salinity from 35 to 2 psu and back did not harm the eggs (embryos), since the hatching success remained unaffected by such changes in salinity...

  1. Intestinal glucose transport and salinity adaptation in a euryhaline teleost

    International Nuclear Information System (INIS)

    Reshkin, S.J.; Ahearn, G.A.

    1987-01-01

    Glucose transport by upper and lower intestinal brush-border membrane vesicles of the African tilapia (Oreochromis mossambicus) was characterized in fish acclimated to either freshwater of full-strength sea water. D-[ 3 H]-glucose uptake by vesicles was stimulated by a transmembrane Na gradient, was electrogenic, and was enhanced by countertransport of either D-glucose or D-galactose. Glucose transport was greater in the upper intestine than in the lower intestine and in sea water animals rather than in fish acclimated to freshwater. Glucose influx (10-s uptake) involved both saturable and nonsaturable transport components. Sea water adaptation increased apparent glucose influx K/sub t/, J/sub max/, apparent diffusional permeability (P), and the apparent Na affinity of the cotransport system in both intestinal segments, but the stoichiometry of Na-glucose transfer (1:1) was unaffected by differential saline conditions or gut region. It is suggested that increased sugar transport in sea water animals is due to the combination of enhanced Na-binding properties and an increase in number or transfer rate of the transport proteins. Freshwater animals compensate for reduced Na affinity of the coupled process by markedly increasing the protein affinity for glucose

  2. Influence of salinity on prevalence of the parasite Loxothylacus panopaei in the xanthid Panopeus obesus in SW Florida.

    Science.gov (United States)

    Tolley, S Gregory; Winstead, James T; Haynes, Lesli; Volety, Aswani K

    2006-06-23

    This study was conducted to examine the potential influence of salinity, a proxy for freshwater inflow, on the prevalence of the castrator parasite Loxothylacus panopaei on saltmarsh mud crabs Panopeus obesus on SW Florida oyster reefs. Spatial and seasonal patterns of the presence of potential host crabs and the prevalence of the parasite were assessed in the Caloosahatchee, Estero, and Faka Union estuaries. Lift nets (1 m2) containing 5 1 of oyster clusters were deployed on intertidal reefs at 3 sites along the salinity gradient of each estuary. Nets were deployed during 3 seasonally dry and 3 seasonally wet months for a period of 30 d. P. obesus densities tended to increase downstream in higher salinity waters, with crabs being absent from the upper station in the Caloosahatchee during both seasons and absent from the upper station of the Faka Union during wet months. Parasite prevalence was reduced upstream in each estuary during wet months compared to dry months, and for those estuaries that experienced higher relative levels of freshwater inflow. Furthermore, parasite prevalence was positively correlated with the mean salinity of capture of host crabs. Based on the distribution of P. obesus and the above patterns related to salinity, it appears that freshwater inflow and seasonal rains might regulate the prevalence of this parasite in SW Florida by creating spatiotemporal, low salinity refuges for its host.

  3. Coagulation processes of kaolinite and montmorillonite in calm, saline water

    Science.gov (United States)

    Zhang, Jin-Feng; Zhang, Qing-He; Maa, Jerome P.-Y.

    2018-03-01

    A three dimensional numerical model for simulating the coagulation processes of colloids has been performed by monitoring the time evolution of particle number concentration, the size distribution of aggregates, the averaged settling velocity, the collision frequency, and the collision efficiency in quiescent water with selected salinities. This model directly simulates all interaction forces between particles based on the lattice Boltzmann method (LBM) and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and thus, can reveal the collision and coagulation processes of colloidal suspensions. Although using perfect spherical particles in the modeling, the results were compared with those for kaolinite and montmorillonite suspensions to demonstrate the capability of simulating the responses of these particles with highly irregular shape. The averaged settling velocity of kaolinite aggregates in quiescent saline water reached a maximum of 0.16 mm/s when the salinity increasing to about 3, and then, exhibited little dependence on salinity thereafter. Model simulations results (by choosing specific values that represent kaolinite's characteristics) indicate a similar trend: rapid decrease of the particle number concentration (i.e., rapidly flocculated, and thus, settling velocity also increases rapidly) when salinity increases from 0 to 2, and then, only increased slightly when salinity was further increased from 5 to 20. The collision frequency for kaolinite only decreases slightly with increasing salinity because that the fluid density and viscosity increase slightly in sea water. It suggests that the collision efficiency for kaolinite rises rapidly at low salinities and levels off at high salinity. For montmorillonite, the settling velocity of aggregates in quiescent saline water continuedly increases to 0.022 mm/s over the whole salinity range 0-20, and the collision efficiency for montmorillonite rises with increasing salinities.

  4. The role of salinity tolerance and competition in the distribution of an endangered desert salt marsh endemic

    Science.gov (United States)

    DeFalco, Lesley; Scoles, Sara; Beamguard, Emily R.

    2017-01-01

    Rare plants are often associated with distinctive soil types, and understanding why endemic species occur in unique environments is fundamental for their management. At Ash Meadows National Wildlife Refuge in southern Nevada, USA, we evaluated whether the limited distribution of endangered Amargosa niterwort (Nitrophila mohavensis) is explained by this species’ tolerance of saline soils on salt-encrusted mud flats compared with the broadly distributed desert saltgrass (Distichlis spicata var. stricta). We simultaneously explored whether niterwort distribution is restricted from expanding due to interspecific competition with saltgrass. Surface soils collected throughout niterwort’s range were unexpectedly less saline with lower extractable Na, seasonal electroconductivity, and Na absorption ratio, and higher soil moisture than in adjacent saltgrass or mixed shrub habitats. Comparison of niterwort and saltgrass growth along an experimental salinity gradient in a greenhouse demonstrated lower growth of niterwort at all but the highest NaCl concentrations. Although growth of niterwort ramets was similar when transplanted into both habitats at the refuge below Crystal Reservoir, niterwort reproductive effort was considerably higher in saltgrass compared to its own habitat, implying reallocation of resources to sexual reproduction to maximize fitness when the probability of ramet mortality increases with greater salinity stress. Saltgrass was not a demonstrated direct competitor of niterwort; however, this species is known to increase soil salinity by exuding salt ions and through litterfall. Niterwort conservation will benefit from protecting hydrological processes that reduce salinity stress and preventing saltgrass colonization into niterwort habitat.

  5. The effect of salinity levels on the structure of zooplankton communities

    Directory of Open Access Journals (Sweden)

    Paturej Ewa

    2015-01-01

    Full Text Available The objective of this study was to determine the qualitative and quantitative structure of zooplankton communities in the Vistula Lagoon and to establish whether zooplankton abundance and biodiversity are affected by salinity levels. Samples for biological analyses were collected in the summer (June-September of 2007-2011 at eleven sampling sites. Statistical analysis revealed a significant correlation between salinity levels and the number of species (r= -0.2020, abundance (r= 0.1967 and biomass (r= 0.3139 of zooplankton. No significant correlations were found between salinity and the biodiversity of zooplankton. The results of the study suggest that salinity affects the abundance and structure, but not the diversity of zooplankton communities in the Vistula Lagoon.

  6. Latitudinal environmental gradients and diel variability influence abundance and community structure of Chaetognatha in Red Sea coral reefs

    KAUST Repository

    Al-aidaroos, Ali M.

    2016-08-15

    The Red Sea has been recognized as a unique region to study the effects of ecohydrographic gradients at a basin-wide scale. Its gradient of temperature and salinity relates to the Indian Ocean monsoon and associated wind-driven transport of fertile and plankton-rich water in winter from the Gulf of Aden into the Red Sea. Subsequent evaporation and thermohaline circulation increase the salinity and decrease water temperatures toward the North. Compared with other ocean systems, however, relatively little is known about the zooplankton biodiversity of the Red Sea and how this relates to Red Sea latitudinal gradients. Among the most abundant zooplankton taxa are Chaetognatha, which play an important role as secondary consumers in most marine food webs. Since Chaetognatha are sensitive to changes in temperature and salinity, we surmised latitudinal changes in their biodiversity, community structure and diel variability along the coast of Saudi Arabia. Samples were collected at nine coral reefs spanning approximately 1500km, from the Gulf of Aqaba in the northern Red Sea to the Farasan Archipelago in the southern Red Sea. Thirteen Chaetognatha species belonging to two families (Sagittidae and Krohnittidae) were identified. Latitudinal environmental changes and availability of prey (i.e. Copepoda, Crustacea) altered Chaetognatha density and distribution. The cosmopolitan epiplanktonic Flaccisagitta enflata (38.1%) dominated the Chaetognatha community, and its abundance gradually decreased from South to North. Notable were two mesopelagic species (Decipisagitta decipiens and Caecosagitta macrocephala) in the near-reef surface mixed layers at some sites. This was related to wind-induced upwelling of deep water into the coral reefs providing evidence of trophic oceanic subsidies. Most Sagittidae occurred in higher abundances at night, whereas Krohnittidae were more present during the day. Chaetognatha with developing (stage II) or mature ovaries (stage III) were more active

  7. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Lampen, P.

    1992-11-01

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  8. Influence of salinity on bacterioplankton communities from the brazilian rain forest to the coastal Atlantic Ocean

    OpenAIRE

    Silveira, Cynthia Barbosa da; Vieira, Ricardo Pilz; Cardoso, Alexander Machado; Paranhos, Rodolfo Pinheiro da Rocha; Albano, Rodolpho Mattos; Martins, Orlando Bonifácio

    2011-01-01

    BACKGROUND: Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. MET...

  9. Conductivity gradients as inferred by electromagnetic-induction meter (EM38) readings within a salt-affected wetland in Saskatchewan, Canada

    Science.gov (United States)

    Mirck, Jaconette; Schroeder, William

    2018-01-01

    The change from deep-rooted grass and shrub vegetation to annual-cropping dryland farming has contributed to serious soil salinization challenges on the semi-arid North American Great Plains. In some cases, cultivation of the Great Plains has increased the availability of water, causing dominant sulfate salts to travel from the uphill areas to depressions where it will surface when water evaporates at the soil surface. A potential solution could include the replanting of the native deep-rooted vegetation, which requires knowledge of the spatial distribution of soil salinity. This study tested the soil factors influencing electromagnetic-induction meter (EM38) readings of soil salinity distribution around wetlands. The objectives were to: (1) predict growth and survival of Salix dasyclados Wimm. (cv. `India') along a salinity gradient in a small wetland, and (2) investigate whether newly established willows affected water-table fluctuations, which would indicate their phreatophytic nature or their ability to obtain their water supply from the zone of saturation. Results indicated significantly lower salinity values for sampling points with EM38 readings above 175 and 250 mS m-1 for height and survival, respectively. In addition, diurnal fluxes of the water table in areas of good willow growth and lower salinity indicated that cultivar `India' was phreatophytic in these areas and therefore has great potential for being used to combat saline seeps.

  10. Characterization of mechanisms and processes of groundwater salinization in irrigated coastal area using statistics, GIS, and hydrogeochemical investigations.

    Science.gov (United States)

    Bouzourra, Hazar; Bouhlila, Rachida; Elango, L; Slama, Fairouz; Ouslati, Naceur

    2015-02-01

    Coastal aquifers are at threat of salinization in most parts of the world. This study was carried out in coastal shallow aquifers of Aousja-Ghar El Melh and Kalâat el Andalous, northeastern of Tunisia with an objective to identify sources and processes of groundwater salinization. Groundwater samples were collected from 42 shallow dug wells during July and September 2007. Chemical parameters such as Na(+), Ca(2+), Mg(2+), K(+), Cl(-), SO4 (2-), HCO3 (-), NO3 (-), Br(-), and F(-) were analyzed. The combination of hydrogeochemical, statistical, and GIS approaches was used to understand and to identify the main sources of salinization and contamination of these shallow coastal aquifers as follows: (i) water-rock interaction, (ii) evapotranspiration, (iii) saltwater is started to intrude before 1972 and it is still intruding continuously, (iv) irrigation return flow, (v) sea aerosol spray, and finally, (vi) agricultural fertilizers. During 2005/2006, the overexploitation of the renewable water resources of aquifers caused saline water intrusion. In 2007, the freshening of a brackish-saline groundwater occurred under natural recharge conditions by Ca-HCO3 meteoric freshwater. The cationic exchange processes are occurred at fresh-saline interfaces of mixtures along the hydraulic gradient. The sulfate reduction process and the neo-formation of clays minerals characterize the hypersaline coastal Sebkha environments. Evaporation tends to increase the concentrations of solutes in groundwater from the recharge areas to the discharge areas and leads to precipitate carbonate and sulfate minerals.

  11. Growth and root development of four mangrove seedlings under varying salinity

    Science.gov (United States)

    Basyuni, M.; Keliat, D. A.; Lubis, M. U.; Manalu, N. B.; Syuhada, A.; Wati, R.; Yunasfi

    2018-03-01

    This present study describes four mangrove seedlings namely Bruguiera cylindrica, B. sexangula, Ceriops tagal, and Rhizophora apiculata in response to salinity with particular emphasis to root development. The seedlings of four mangroves were grown for 5 months in 0%, 0.5%, 1.5%, 2.0% and 3.0% salt concentration. Salinity significantly decreased the growth (diameter and plant height) of all mangrove seedlings. Root developments were observed from the tap and lateral root. The number, length and diameter of both roots-typed of B. cylindrica, B. sexangula and C. tagal seedlings significantly decreased with increasing salt concentration with optimum development at 0.5% salinity. By contrast, the number, length, and diameter of tap root of R. apiculata seedlings were significantly enhanced by salt with maximal stimulation at 0.5%, and this increase was attenuated by increasing salinity. On the other hand, lateral root development of R. apiculata significantly thrived up to 1.5% salinity then decreasing with the increasing salinity. The different response of root development suggested valuable information for mangrove rehabilitation in North Sumatra and their adaption to withstand salt stress.

  12. Low-gradient aortic stenosis.

    Science.gov (United States)

    Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe

    2016-09-07

    An important proportion of patients with aortic stenosis (AS) have a 'low-gradient' AS, i.e. a small aortic valve area (AVA gradient (gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA-low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  13. Leaf gas exchange and nutrient use efficiency help explain the distribution of two Neotropical mangroves under contrasting flooding and salinity

    Science.gov (United States)

    Cardona-Olarte, Pablo; Krauss, Ken W.; Twilley, Robert R.

    2013-01-01

    Rhizophora mangle and Laguncularia racemosa co-occur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1) were simulated over 10 months. Assimilation (A), stomatal conductance (gw), intercellular CO2 concentration (Ci), instantaneous photosynthetic water use efficiency (PWUE), and photosynthetic nitrogen use efficiency (PNUE) were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and stomatal conductance and gw, accordingly, had greater intercellular CO2 (calculated) during measurements. Both species maintained similar capacities for assimilation at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

  14. Leaf Gas Exchange and Nutrient Use Efficiency Help Explain the Distribution of Two Neotropical Mangroves under Contrasting Flooding and Salinity

    Directory of Open Access Journals (Sweden)

    Pablo Cardona-Olarte

    2013-01-01

    Full Text Available Rhizophora mangle and Laguncularia racemosa cooccur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1 were simulated over 10 months. Assimilation (A, stomatal conductance (gw, intercellular CO2 concentration (Ci, instantaneous photosynthetic water use efficiency (PWUE, and photosynthetic nitrogen use efficiency (PNUE were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and gw and, accordingly, had greater intercellular CO2 (calculated during measurements. Both species maintained similar capacities for A at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

  15. Dual energy CT monitoring of the renal corticomedullary sodium gradient in swine

    International Nuclear Information System (INIS)

    Kumar, Rahi; Wang, Zhen J.; Forsythe, Carlos; Fu Yanjun; Chen, Yunn-Yi; Yeh, Benjamin M.

    2012-01-01

    Objective: To evaluate the feasibility of dual-energy CT (DECT) for monitoring dynamic changes in the renal corticomedullary sodium gradient in swine. Material and methods: This study was approved by our Institutional Animal Care and Use Committee. Four water-restricted pigs were CT-scanned at 80 and 140 kVp at baseline and at 5 min intervals for 30 min during saline or furosemide diuresis. The renal cortical and medullary CT numbers were recorded. A DECT basis material decomposition method was used to quantify renal cortical and medullary sodium concentrations and medulla-to-cortex sodium ratios at each time point based on the measured CT numbers. The sodium concentrations and medulla-to-cortex sodium ratios were compared between baseline and at 30 min diuresis using paired Student t-tests. The medulla-to-cortex sodium ratios were considered to reflect the corticomedullary sodium gradient. Results: At baseline prior to saline diuresis, the mean medullary and cortical sodium concentrations were 103.8 ± 8.7 and 65.3 ± 1.7 mmol/l, respectively, corresponding to a medulla-to-cortex sodium ratio of 1.59. At 30 min of saline diuresis, the medullary and cortical sodium concentrations decreased to 72.3 ± 1.0 and 56.0 ± 1.4 mmol/l, respectively, corresponding to a significantly reduced medulla-to-cortex sodium ratio of 1.29 (P < 0.05). At baseline prior to furosemide diuresis, the mean medullary and cortical sodium concentrations were 110.5 ± 3.6 and 66.7 ± 4.1 mmol/l, respectively, corresponding to a medulla-to-cortex sodium ratio of 1.66. At 30 min of furosemide diuresis, the medullary and cortical sodium concentrations decreased to 68.5 ± 0.3 and 58.9 ± 4.0 mmol/l, respectively, corresponding to a significantly reduced medulla-to-cortex sodium ratio of 1.16 (P < 0.05). One of the 4 pigs developed acute tubular necrosis likely related to prolonged hypoxia during intubation prior to the furosemide diuresis experiment. The medulla-to-cortex sodium ratio for this

  16. High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52

    Science.gov (United States)

    Qiu, Xuan; Wang, Hongmei; Yao, Yanchen; Duan, Yong

    2017-08-01

    Although most modern dolomites occur in hypersaline environments, the effects of elevated salinity on the microbial mediation of dolomite precipitation have not been fully evaluated. Here we report results of dolomite precipitation in association with a batch culture of Haloferax volcanii DS52, a halophilic archaeon, under various salinities (from 120‰ to 360‰) and the impact of salinity on microbe-mediated dolomite formation. The mineral phases, morphology and atomic arrangement of the precipitates were analyzed by XRD, SEM and TEM, respectively. The amount of amino acids on the archaeal cell surface was quantified by HPLC/MS. The XRD analysis indicated that disordered dolomite formed successfully with the facilitation of cells harvested from cultures with relatively high salinities (200‰ and 280‰) but was not observed in association with cells harvested from cultures with lower salinity (120‰) or the lysates of cells harvested from extremely high salinity (360‰). The TEM analysis demonstrated that the crystals from cultures with a salinity of 200‰ closely matched that of dolomite. Importantly, we found that more carboxyl groups were presented on the cell surface under high salinity conditions to resist the high osmotic pressure, which may result in the subsequent promotion of dolomite formation. Our finding suggests a link between variations in the hydro-chemical conditions and the formation of dolomite via microbial metabolic activity and enhances our understanding about the mechanism of microbially mediated dolomite formation under high salinity conditions.

  17. Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses.

    Science.gov (United States)

    Yu, Ying; Wu, Guangwen; Yuan, Hongmei; Cheng, Lili; Zhao, Dongsheng; Huang, Wengong; Zhang, Shuquan; Zhang, Liguo; Chen, Hongyu; Zhang, Jian; Guan, Fengzhi

    2016-05-27

    MicroRNAs (miRNAs) play a critical role in responses to biotic and abiotic stress and have been characterized in a large number of plant species. Although flax (Linum usitatissimum L.) is one of the most important fiber and oil crops worldwide, no reports have been published describing flax miRNAs (Lus-miRNAs) induced in response to saline, alkaline, and saline-alkaline stresses. In this work, combined small RNA and degradome deep sequencing was used to analyze flax libraries constructed after alkaline-salt stress (AS2), neutral salt stress (NSS), alkaline stress (AS), and the non-stressed control (CK). From the CK, AS, AS2, and NSS libraries, a total of 118, 119, 122, and 120 known Lus-miRNAs and 233, 213, 211, and 212 novel Lus-miRNAs were isolated, respectively. After assessment of differential expression profiles, 17 known Lus-miRNAs and 36 novel Lus-miRNAs were selected and used to predict putative target genes. Gene ontology term enrichment analysis revealed target genes that were involved in responses to stimuli, including signaling and catalytic activity. Eight Lus-miRNAs were selected for analysis using qRT-PCR to confirm the accuracy and reliability of the miRNA-seq results. The qRT-PCR results showed that changes in stress-induced expression profiles of these miRNAs mirrored expression trends observed using miRNA-seq. Degradome sequencing and transcriptome profiling showed that expression of 29 miRNA-target pairs displayed inverse expression patterns under saline, alkaline, and saline-alkaline stresses. From the target prediction analysis, the miR398a-targeted gene codes for a copper/zinc superoxide dismutase, and the miR530 has been shown to explicitly target WRKY family transcription factors, which suggesting that these two micRNAs and their targets may significant involve in the saline, alkaline, and saline-alkaline stress response in flax. Identification and characterization of flax miRNAs, their target genes, functional annotations, and gene

  18. Monitoring and Modelling of Salinity Behaviour in Drinking Water Ponds in Southern Bangladesh

    Science.gov (United States)

    Hoque, M. A.; Williams, A.; Mathewson, E.; Rahman, A. K. M. M.; Ahmed, K. M.; Scheelbeek, P. F. D.; Vineis, P.; Butler, A. P.

    2015-12-01

    Drinking water in southern Bangladesh is provided by a variety of sources including constructed storage ponds, seasonal rainwater and, ubiquitously saline, shallow groundwater. The ponds, the communal reservoirs for harvested rainwater, also tend to be saline, some as high as 2 g/l. Drinking water salinity has several health impacts including high blood pressure associated major risk factor for several cardio-vascular diseases. Two representative drinking water ponds in Dacope Upazila of Khulna District in southwest Bangladesh were monitored over two years for rainfall, evaporation, pond and groundwater level, abstraction, and solute concentration, to better understand the controls on drinking water salinity. Water level monitoring at both ponds shows groundwater levels predominantly below the pond level throughout the year implying a downward gradient. The grain size analysis of the underlying sediments gives an estimated hydraulic conductivity of 3E-8 m/s allowing limited seepage loss. Water balance modelling indicates that the seepage has a relatively minor effect on the pond level and that the bulk of the losses come from the combination of evaporation and abstraction particularly in dry season when precipitation, the only inflow to the pond, is close to zero. Seasonal variation in salinity (electrical conductivities, EC, ranged between 1500 to 3000 μS/cm) has been observed, and are primarily due to dilution from rainfall and concentration from evaporation, except on one occasion when EC reached 16,000 μS/cm due to a breach in the pond levee. This event was analogous to the episodic inundation that occurs from tropical cyclone storm surges and appears to indicate that such events are important for explaining the widespread salinisation of surface water and shallow groundwater bodies in coastal areas. A variety of adaptations (either from practical protection measures) or novel alternative drinking sources (such as aquifer storage and recovery) can be applied

  19. Fingerprinting groundwater salinity sources in the Gulf Coast Aquifer System, USA

    Science.gov (United States)

    Chowdhury, Ali H.; Scanlon, Bridget R.; Reedy, Robert C.; Young, Steve

    2018-02-01

    Understanding groundwater salinity sources in the Gulf Coast Aquifer System (GCAS) is a critical issue due to depletion of fresh groundwater and concerns for potential seawater intrusion. The study objective was to assess sources of groundwater salinity in the GCAS using ˜1,400 chemical analyses and ˜90 isotopic analyses along nine well transects in the Texas Gulf Coast, USA. Salinity increases from northeast (median total dissolved solids (TDS) 340 mg/L) to southwest (median TDS 1,160 mg/L), which inversely correlates with the precipitation distribution pattern (1,370- 600 mm/yr, respectively). Molar Cl/Br ratios (median 540-600), depleted δ2H and δ18O (-24.7‰, -4.5‰) relative to seawater (Cl/Br ˜655 and δ2H, δ18O 0‰, 0‰, respectively), and elevated 36Cl/Cl ratios (˜100), suggest precipitation enriched with marine aerosols as the dominant salinity source. Mass balance estimates suggest that marine aerosols could adequately explain salt loading over the large expanse of the GCAS. Evapotranspiration enrichment to the southwest is supported by elevated chloride concentrations in soil profiles and higher δ18O. Secondary salinity sources include dissolution of salt domes or upwelling brines from geopressured zones along growth faults, mainly near the coast in the northeast. The regional extent and large quantities of brackish water have the potential to support moderate-sized desalination plants in this location. These results have important implications for groundwater management, suggesting a current lack of regional seawater intrusion and a suitable source of relatively low TDS water for desalination.

  20. Life-history responses to changing temperature and salinity of the Baltic Sea copepod Eurytemora affinis.

    Science.gov (United States)

    Karlsson, Konrad; Puiac, Simona; Winder, Monika

    2018-01-01

    To understand the effects of predicted warming and changing salinity of marine ecosystems, it is important to have a good knowledge of species vulnerability and their capacity to adapt to environmental changes. In spring and autumn of 2014, we conducted common garden experiments to investigate how different populations of the copepod Eurytemora affinis from the Baltic Sea respond to varying temperatures and salinity conditions. Copepods were collected in the Stockholm archipelago, Bothnian Bay, and Gulf of Riga (latitude, longitude: 58°48.19', 17°37.52'; 65°10.14', 23°14.41'; 58°21.67', 24°30.83'). Using individuals with known family structure, we investigated within population variation of the reaction norm (genotype and salinity interaction) as a means to measure adaptive capacity. Our main finding was that low salinity has a detrimental effect on development time, the additive effects of high temperature and low salinity have a negative effect on survival, and their interaction has a negative effect on hatching success. We observed no variation in survival and development within populations, and all genotypes had similar reaction norms with higher survival and faster development in higher salinities. This suggests that there is no single genotype that performs better in low salinity or high salinity; instead, the best genotype in any given salinity is best in all salinities. Genotypes with fast development time also had higher survival compared to slow developing genotypes at all salinities. Our results suggest that E. affinis can tolerate close to freshwater conditions also in high temperatures, but with a significant reduction in fitness.

  1. Differences in extreme low salinity timing and duration differentially affect eastern oyster (Crassostrea virginica) size class growth and mortality in Breton Sound, LA

    Science.gov (United States)

    LaPeyre, Megan K.; Eberline, Benjamin S.; Soniat, Thomas M.; La Peyre, Jerome F.

    2013-01-01

    Understanding how different life history stages are impacted by extreme or stochastic environmental variation is critical for predicting and modeling organism population dynamics. This project examined recruitment, growth, and mortality of seed (25–75 mm) and market (>75 mm) sized oysters along a salinity gradient over two years in Breton Sound, LA. In April 2010, management responses to the Deepwater Horizon oil spill resulted in extreme low salinity (25 °C) significantly and negatively impacted oyster recruitment, survival and growth in 2010, while low salinity (25 °C). With increasing management of our freshwater inputs to estuaries combined with predicted climate changes, how extreme events affect different life history stages is key to understanding variation in population demographics of commercially important species and predicting future populations.

  2. Remote sensing of drought and salinity stressed turfgrass

    Science.gov (United States)

    Ikemura, Yoshiaki

    The ability to detect early signs of stress in turfgrass stands using a rapid, inexpensive, and nondestructive method would be a valuable management tool. Studies were conducted to determine if digital image analysis and spectroradiometric readings obtained from drought- and salinity-stressed turfgrasses accurately reflected the varying degrees of stress and correlated strongly with visual ratings, relative water content (RWC) and leaf osmolality, standard methods for measuring stress in plants. Greenhouse drought and salinity experiments were conducted on hybrid bluegrass [Poa arachnifera (Torn.) x pratensis (L.)] cv. Reveille and bermudagrass [Cynodon dactylon (L.)] cv. Princess 77. Increasing drought and salinity stress led to decreased RWC, increased leaf osmolality, and decreased visual ratings for both species. Percent green cover and hue values obtained from digital image analysis, and Normalized Difference Vegetation Index (NDVI), calculated from spectroradiometric readings, were moderately to highly correlated with visual ratings, RWC, and leaf osmolality. Similarly, in a field validation study conducted on hybrid bluegrass, spectral reflectance ratios were moderately to highly correlated with visual ratings. In addition, percent green cover obtained from digital image analysis was strongly correlated with most of the spectral ratios, particularly the ratio of fluorescence peaks (r = -0.88 to -0.99), modified triangular vegetation index (MTVI) (r = 0.82 to 0.98), and NDVI (r = 0.84 to 0.99), suggesting that spectral reflectance and digital image analysis are equally effective at detecting changes in color brought on by stress. The two methods differed in their ability to distinguish between drought salinity stress. Hue values obtained from digital image analysis responded differently to increasing drought stress than to increasing salinity stress. Whereas the onset of drought stress was reflected by increased hue values followed by a decrease in values as

  3. Elemental gradients in macrophytes from a reactor effluent gradient

    International Nuclear Information System (INIS)

    Grace, J.B.; Tilly, L.J.

    1978-01-01

    The tissues of submersed macrophtes from along the thermal gradient were analyzed for phosphorus to determine whether any pattern correspondent to standing crop distributions could be detected. Although water concentrations of phosphorus showed no detectable relationship to the thermal effluent, tissue concentrations of this element in submersed macrophytes declined with distance from the effluent entry point. The occurrence of this concentration pattern suggests that phosphorus availability is greater near the discharge. Because phosphorus is the element most often determined to limit aquatic productivity, its greater availability may partially account for the apparent enhancement of macrophte growth near the thermal discharge. A patter of macrophyte abundance which indicated enchancement related to the discharge gradient in the reactor-cooling reservoir, Par Pond is reported. Correlative data tended to implicate light and temperature as important in influencing the differential abundance pattern

  4. Assessment of groundwater salinity in Nellore district using multi ...

    Indian Academy of Sciences (India)

    water samples at six locations close to the electrical resistivity survey sites also suggest high ... Electrical resistivity imaging; Nellore district; groundwater salinity; geochemistry. ..... Sasaki Y 1992 Resolution of resistivity tomography inferred.

  5. Effects of temperature and salinity on the development of the amphipod crustacean Eogammarus sinensis

    Science.gov (United States)

    Xue, Suyan; Fang, Jianguang; Zhang, Jihong; Jiang, Zengjie; Mao, Yuze; Zhao, Fazhen

    2013-09-01

    The amphipod crustacean Eogammarus sinensis has useful features that make it suitable for use in the aquaculture of fish and large decapod crustaceans. In this study, we investigated the effects of temperature and salinity on the development, fecundity, survival, and growth rate of E. sinensis. The results show that temperature significantly affected E. sinensis development, but salinity. As temperature increased, the duration of E. sinensis embryonic development decreased. Fecundity was affected significantly by temperature and the combination of temperature and salinity, but by salinity alone. In addition, high temperatures accelerated E. sinensis juvenile growth rates, whereas high salinity reduced it. Therefore, our data suggest that E. sinensis tolerates a wide range of salinities and that temperature has more significant effects than salinity on the embryonic development, fecundity, and growth of E. sinensis. Our results shall be useful for mass production of this species for use in aquaculture.

  6. The plasma membrane transport systems and adaptation to salinity.

    Science.gov (United States)

    Mansour, Mohamed Magdy F

    2014-11-15

    Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Rapid intravenous infusion of 20 mL/kg saline alters the distribution of perfusion in healthy supine humans.

    Science.gov (United States)

    Henderson, A C; Sá, R C; Barash, I A; Holverda, S; Buxton, R B; Hopkins, S R; Prisk, G K

    2012-03-15

    Rapid intravenous saline infusion, a model meant to replicate the initial changes leading to pulmonary interstitial edema, increases pulmonary arterial pressure in humans. We hypothesized that this would alter lung perfusion distribution. Six healthy subjects (29 ± 6 years) underwent magnetic resonance imaging to quantify perfusion using arterial spin labeling. Regional proton density was measured using a fast-gradient echo sequence, allowing blood delivered to the slice to be normalized for density and quantified in mL/min/g. Contributions from flow in large conduit vessels were minimized using a flow cutoff value (blood delivered > 35% maximum in mL/min/cm(3)) in order to obtain an estimate of blood delivered to the capillary bed (perfusion). Images were acquired supine at baseline, after infusion of 20 mL/kg saline, and after a short upright recovery period for a single sagittal slice in the right lung during breath-holds at functional residual capacity. Thoracic fluid content measured by impedance cardiography was elevated post-infusion by up to 13% (pchanges in conduit vessels, there were no significant changes in perfusion in dependent lung following infusion (7.8 ± 1.9 mL/min/g baseline, 7.9 ± 2.0 post, 8.5 ± 2.1 recovery, p=0.36). There were no significant changes in lung density. These data suggest that saline infusion increased perfusion to nondependent lung, consistent with an increase in intravascular pressures. Dependent lung may have been "protected" from increases in perfusion following infusion due to gravitational compression of the pulmonary vasculature. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. The structural modification of cassava starch using a saline water pretreatment

    Directory of Open Access Journals (Sweden)

    Hanny Frans SANGIAN

    2018-04-01

    Full Text Available Abstract The cassava has been modified successfully by using the saline water, which was abundantly available on the planet. The biomass was submerged in saline waters that salt concentrations were altered at 0, 3.5 percent (seawater and 10 percent (w/w and were kept 5 days. After recovery by washing steps, the treated solids were characterized by using XRD (X-ray diffraction , FTIR (Fourier transform infra-red, and SEM (Scanning electron microscopic. The results showed that the XRD pattern of saline water pretreatment decreased significantly. The biggest decrease of X-ray intensity occurred at around 18o. Meanwhile, the fingerprint of FTIR revealed the transmittance intensity of infra-red ray of saline water treated solid inclined for all wave constant numbers, suggesting that many hydrogen bonds were disconnected. Those findings also were enhanced by SEM pictures that showed the change of surface morphology of treated biomass. It was indicative that cassava structure was modified becoming more textured after employing saline water pretreatment. This work is an innovative finding to gradually substitute commercial ionic liquids that are very expensive with saline water for biomass pretreatment.

  9. Surface Energy Balance of Fresh and Saline Waters: AquaSEBS

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelrady

    2016-07-01

    Full Text Available Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System model for large water bodies and add the effect of water salinity to the evaporation rate. Firstly, SEBS is modified for fresh-water whereby new parameterizations of the water heat flux and sensible heat flux are suggested. This is achieved by adapting the roughness heights for momentum and heat transfer. Secondly, a salinity correction factor is integrated into the adapted model. Eddy covariance measurements over Lake IJsselmeer (The Netherlands are carried out and used to estimate the roughness heights for momentum (~0.0002 m and heat transfer (~0.0001 m. Application of these values over the Victoria and Tana lakes (freshwater in Africa showed that the calculated latent heat fluxes agree well with the measurements. The root mean-square of relative-errors (rRMSE is about 4.1% for Lake Victoria and 4.7%, for Lake Tana. Verification with ECMWF data showed that the salinity reduced the evaporation at varying levels by up to 27% in the Great Salt Lake and by 1% for open ocean. Our results show the importance of salinity to the evaporation rate and the suitability of the adapted-SEBS model (AquaSEBS for fresh and saline waters.

  10. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming.

    Science.gov (United States)

    Lin, Qiuqi; Xu, Lei; Hou, Juzhi; Liu, Zhengwen; Jeppesen, Erik; Han, Bo-Ping

    2017-11-01

    Warming has pronounced effects on lake ecosystems, either directly by increased temperatures or indirectly by a change in salinity. We investigated the current status of zooplankton communities and trophic structure in 45 Tibetan lakes along a 2300 m altitude and a 76 g/l salinity gradient. Freshwater to hyposaline lakes mainly had three trophic levels: phytoplankton, small zooplankton and fish/Gammarus, while mesosaline to hypersaline lakes only had two: phytoplankton and large zooplankton. Zooplankton species richness declined significantly with salinity, but did not relate with temperature. Furthermore, the decline in species richness with salinity in lakes with two trophic levels was much less abrupt than in lakes with three trophic levels. The structural variation of the zooplankton community depended on the length of the food chain, and was significantly explained by salinity as the critical environmental variable. The zooplankton community shifted from dominance of copepods and small cladoceran species in the lakes with low salinity and three trophic levels to large saline filter-feeding phyllopod species in those lakes with high salinity and two trophic levels. The zooplankton to phytoplankton biomass ratio was positively related with temperature in two-trophic-level systems and vice versa in three-trophic-level systems. As the Tibetan Plateau is warming about three times faster than the global average, our results imply that warming could have a considerable impact on the structure and function of Tibetan lake ecosystems, either via indirect effects of salinization/desalinization on species richness, composition and trophic structure or through direct effects of water temperature on trophic interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Salinity tolerance of northern Brazilian mangrove crab larvae, Ucides cordatus (Ocypodidae): Necessity for larval export?

    Science.gov (United States)

    Diele, Karen; Simith, Darlan J. B.

    2006-07-01

    The life cycle of the semiterrestrial mangrove crab Ucides cordatus includes pelagic larvae that are released into estuarine waters during the wet season and who may thus encounter potentially stressful low and variable salinity conditions. The effect of salinity on the survival of the zoea larvae, the number of zoeal stages and the duration of development from hatching to megalopa was experimentally studied by rearing larvae from the Caeté estuary, Northern Brazil, in seven salinity treatments (0, 5, 10, 15, 20, 25, and 30). For a better interpretation of the laboratory results, estuarine salinities were measured over five consecutive years during the species' reproductive season. The survival of the zoea larvae varied significantly with salinity, while the number of stages and the duration of their development remained constant. Development to megalopa took 20.77 ± 1.57 days and comprised five zoeal stages with ZI and ZII being euryhaline and later stages stenohaline. The newly hatched larvae stayed alive for up to 6 days in freshwater (average 4.32 ± 0.82 days), but did not moult to the second zoeal stage. ZII larvae first occurred from salinity 5 onwards and later zoeal stages at all tested salinities ≥10. However, the larvae only survived to megalopa at salinities ≥15, with highest numbers at salinity 30 (72%) and lowest at 15 (16%). Lethal salinities ≤10 occurred frequently in the estuary during the reproductive season. This suggests a need for larval export to offshore and thus more saline waters to allow for significant larval survival and maintenance of viable populations of this commercially important species. A regional rather than local approach for management is suggested due to the likelihood of long distance larval dispersal by offshore currents.

  12. Simulation of salinity effects on past, present, and future soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Smith, Pete; Marschner, Petra; Gottschalk, Pia; Baldock, Jeff; Verma, Vipan; Setia, Deepika; Smith, Jo

    2012-02-07

    Soil organic carbon (SOC) models are used to predict changes in SOC stocks and carbon dioxide (CO(2)) emissions from soils, and have been successfully validated for non-saline soils. However, SOC models have not been developed to simulate SOC turnover in saline soils. Due to the large extent of salt-affected areas in the world, it is important to correctly predict SOC dynamics in salt-affected soils. To close this knowledge gap, we modified the Rothamsted Carbon Model (RothC) to simulate SOC turnover in salt-affected soils, using data from non-salt-affected and salt-affected soils in two agricultural regions in India (120 soils) and in Australia (160 soils). Recently we developed a decomposition rate modifier based on an incubation study of a subset of these soils. In the present study, we introduce a new method to estimate the past losses of SOC due to salinity and show how salinity affects future SOC stocks on a regional scale. Because salinity decreases decomposition rates, simulations using the decomposition rate modifier for salinity suggest an accumulation of SOC. However, if the plant inputs are also adjusted to reflect reduced plant growth under saline conditions, the simulations show a significant loss of soil carbon in the past due to salinization, with a higher average loss of SOC in Australian soils (55 t C ha(-1)) than in Indian soils (31 t C ha(-1)). There was a significant negative correlation (p < 0.05) between SOC loss and osmotic potential. Simulations of future SOC stocks with the decomposition rate modifier and the plant input modifier indicate a greater decrease in SOC in saline than in non-saline soils under future climate. The simulations of past losses of SOC due to salinity were repeated using either measured charcoal-C or the inert organic matter predicted by the Falloon et al. equation to determine how much deviation from the Falloon et al. equation affects the amount of plant inputs generated by the model for the soils used in this study

  13. Geochemical Modeling of Trivalent Chromium Migration in Saline-Sodic Soil during Lasagna Process: Impact on Soil Physicochemical Properties

    Science.gov (United States)

    Bukhari, Alaadin; Al-Malack, Muhammad H.; Mu'azu, Nuhu D.; Essa, Mohammed H.

    2014-01-01

    Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75 %. PMID:25152905

  14. Late Neogene benthic stable isotope record of ODP Site 999: Implications for Caribbean paleoceanography, organic carbon burial and the Messininian salinity crisis

    Science.gov (United States)

    Bickert, T.; Haug, G.; Tiedemann, R.

    2003-04-01

    The late Neogene closure of the seaway between the North and South American continents is thought to have caused extensive changes in ocean circulation and Northern Hemisphere climate. The timing and consequences of the emergence of the Isthmus of Panama for the ocean circulation have been addressed in several papers which indicate a marked reorganization of surface and deep ocean circulation starting 4.6 million years ago. However, the biogeographic development of marine faunas and floras on both sides of the Panama Isthmus suggests that the paleoceanographic changes related to the closing of the isthmus started much earlier. Furthermore, the closing history of the Panama Seaway overlaps with the tectonic evolution of other ocean gateways in the late Miocene, especially the closure of the Strait of Gibraltar, which led to a transient isolation of the Mediterranean Sea from the Atlantic Ocean, known as the Messinian Salinity Crisis. We report on epibenthic foraminiferal d18O and d13C and percentage sand records of the carbonate fraction from Caribbean ODP Site 999 (12°44´N, 78° 44´W, water depth 2828 m) spanning the interval from 8.6 to 5.3 Ma. Low epibenthic d13C values and low sand contents indicate a poorly ventilated deep Caribbean throughout the late Miocene. At this time the deep Caribbean was dominated by a nutrient-rich Southern Ocean water mass. A mostly constant d13C gradient between the Caribbean and deep Atlantic records suggests that the fluctuations in d13C reflect rather global changes in d13C of the dissolved inorganic carbon due to varying erosion of organic carbon from terrigenous soils and shelf sediments. The observed 100-ky cyclicity of epibenthic d13C is in well accordance with the variability of the terrigenous input to the equatorial Atlantic as recorded by susceptibility records of the Ceara Rise. However, some gradient changes between 6.8 and 5.6 Ma indicate a poorer ventilation of the deep Atlantic related to a reduced production of

  15. Saline agriculture: A technology for economic utilization and improvement of saline environments (abstract)

    International Nuclear Information System (INIS)

    Aslam, Z.; Malik, K.A.; Khurshid, S.J.; Awan, A.R.; Akram, M.; Hashmi, Z.; Ali, Y.; Gulnaz, A.; Hussain, M.; Hussain, F.

    2005-01-01

    The salinity problem is one of the severe constraints for agriculture in Pakistan. In a socio-economic and salinity and drainage survey over an area of about 25000 acres of salt-affected land recently, crop production is found to be very low. Livestock is underfed and malnourished. Pakistan has spent and allocated over one billion US dollars on Salinity Control and Reclamation Projects (SCARP), of course, with dubious results. Over the years, a Saline Agriculture Technology has been developed as a cheap alternative at NIAB for comfortably living with salinity and to profitably utilize saline land rather than its reclamation. The soil improvement is a fringe benefit in this approach. The Saline Agriculture Technology has been tested at laboratory level, at field stations and at farms of some progressive farmers. Now we are sharing this technology with farming communities through a 'Saline Agriculture Farmer Participatory Development Project in Pakistan', with assistance from the National Rural Support Programme. The new project has been launched simultaneously in all four provinces of Pakistan on 25000 acres of salt-affected land. Under this project seeds of salt tolerant crop varieties wheat, cotton, rice, castor, brassica and barley and saplings of trees/shrubs, e.g. Acacia ampliceps, A. nilotica, Casuarina glauca, ber, jaman, etc selected for development work in various institutions of Pakistan are being provided to farmers. Know-how on new irrigation techniques like bed-and-corrugation and bed-and-furrow, agronomic practices like laser land leveling, planting on beds and in auger holes and soil/water amendment practices (use of gypsum and mineral acids) are being shared with farmers. These interventions are quite efficient, save water up to 40% and enable farmers to utilize bad quality water. In general, farmers are being familiarized with prevalent animal diseases, nutritional problems and prophylactic techniques. They are being helped in developing Saline

  16. Integrated approach for demarcating subsurface pollution and saline water intrusion zones in SIPCOT area: a case study from Cuddalore in Southern India.

    Science.gov (United States)

    Sankaran, S; Sonkamble, S; Krishnakumar, K; Mondal, N C

    2012-08-01

    This paper deals with a systematic hydrogeological, geophysical, and hydrochemical investigations carried out in SIPCOT area in Southern India to demarcate groundwater pollution and saline intrusion through Uppanar River, which flows parallel to sea coast with high salinity (average TDS 28, 870 mg/l) due to back waters as well as discharge of industrial and domestic effluents. Hydrogeological and geophysical investigations comprising topographic survey, self-potential, multi-electrode resistivity imaging, and water quality monitoring were found the extent of saline water intrusion in the south and pockets of subsurface pollution in the north of the study area. Since the area is beset with highly permeable unconfined quaternary alluvium forming potential aquifer at shallow depth, long-term excessive pumping and influence of the River have led to lowering of the water table and degradation of water quality through increased salinity there by generating reversal of hydraulic gradient in the south. The improper management of industrial wastes and left over chemicals by closed industries has led surface and subsurface pollution in the north of the study area.

  17. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    Science.gov (United States)

    Nyman, J.A.; LaPeyre, Megan K.; Caldwell, Andral W.; Piazza, Sarai C.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable.

  18. Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation

    Science.gov (United States)

    Asmala, Eero; Bowers, David G.; Autio, Riitta; Kaartokallio, Hermanni; Thomas, David N.

    2014-10-01

    The flocculation of dissolved organic matter (DOM) was studied along transects through three boreal estuaries. Besides the bulk concentration parameters, a suite of DOM quality parameters were investigated, including colored DOM (CDOM), fluorescent DOM, and the molecular weight of DOM as well as associated dissolved iron concentrations. We observed significant deviations from conservative mixing at low salinities (DOC), UV absorption (a(CDOM254)), and humic-like fluorescence. The maximum deviation from conservative mixing for DOC concentration was -16%, at salinities between 1 and 2. An associated laboratory experiment was conducted where an artificial salinity gradient between 0 and 6 was created. The experiment confirmed the findings from the estuarine transects, since part of the DOC and dissolved iron pools were transformed to particulate fraction (>0.2 µm) and thereby removing them from the dissolved phase. We also measured flocculation of CDOM, especially in the UV region of the absorption spectrum. Protein-like fluorescence of DOM decreased, while humic-like fluorescence increased because of salt-induced flocculation. Additionally, there was a decrease in molecular weight of DOM. Consequently, the quantity and quality of the remaining DOM pool was significantly changed after influenced to flocculation. Based on these results, we constructed a mechanistic, two-component flocculation model. Our findings underline the importance of the coastal filter, where riverine organic matter is flocculated and exported to the sediments.

  19. Saline flushing fluids restricting contamination of the near-face zone

    Energy Technology Data Exchange (ETDEWEB)

    Weil, W

    1982-01-01

    Questions are covered which concern the characteristics and main properties of saline solutions without solid phase and their use as flushing fluids. Attention is drawn to the fact that these solutions are universally used in flushing and other operations of wells with high gradients of bed pressures, and also in those cases where the oil and gas levels are especially sensitive to negative influence of traditional clay solutions which cause irreversible decrease in permeability of the reservoirs through contamination and plugging of the pores in the near-face zone, and consequently, influence the decrease in bed productivity. The described methods and chemical reagents decrease the filtering of these solutions in the reservoirs, improve viscosity and stabilize the near-face zone.

  20. Ontogenetic optimal temperature and salinity envelops of the copepod Eurytemora affinis in the Seine estuary (France)

    Science.gov (United States)

    Dur, Gaël; Souissi, Sami

    2018-01-01

    Temperature and salinity are important factors shaping the habitats of estuarine ectotherms. Their respective effect varies along the life history moments of species with a complex life cycle. Estuarine species, particularly those living in the salinity gradient, are concerned by habitat changes that can reduce their fitness. Consequently, efforts to define the importance of those two environmental variables on developmental stages are required to enable forecasting estuarine species' future distributions. The present study focuses on the main component of the Seine estuary's zooplankton, i.e. the calanoid copepod Eurytemora affinis, and aims: (i) to establish the role of temperature and salinity in designing the habitat of E. affinis within the Seine estuary; and (ii) to model the habitat of three groups of E. affinis defined through the life cycle as follows: all larval instars (N1-N6), the first to fourth juvenile instars (C1-C4), and the pre-adult and adults instars (C5-Adults). For this purpose, data from intensive field studies of zooplankton sampling during 2002-2010 were used. The fine-scale data, i.e., every 10-20 min, on density and abiotic conditions (salinity, temperature) provided inputs for the computation. We established regions in salinity-temperature space where the three groups of developmental instars exhibit higher densities. The computed habitats differ between developmental groups. In general, the preferendum of salinity increases with ontogeny. The optima of temperature are rather constant between developmental stages (∼14 °C). Our model can be used to determine E. affinis functional habitat (i.e., the spatial relation with structuring factors), to carry out retrospective analysis, and to test future distributions. The present study also emphasizes the need of data from appropriate sampling strategies to conduct habitat definition.

  1. Dextrose saline compared with normal saline rehydration of hyperemesis gravidarum: a randomized controlled trial.

    Science.gov (United States)

    Tan, Peng Chiong; Norazilah, Mat Jin; Omar, Siti Zawiah

    2013-02-01

    To compare 5% dextrose-0.9% saline against 0.9% saline solution in the intravenous rehydration of hyperemesis gravidarum. Women at their first hospitalization for hyperemesis gravidarum were enrolled on admission to the ward and randomly assigned to receive either 5% dextrose-0.9% saline or 0.9% saline by intravenous infusion at a rate 125 mL/h over 24 hours in a double-blind trial. All participants also received thiamine and an antiemetic intravenously. Oral intake was allowed as tolerated. Primary outcomes were resolution of ketonuria and well-being (by 10-point visual numerical rating scale) at 24 hours. Nausea visual numerical rating scale scores were obtained every 8 hours for 24 hours. Persistent ketonuria rates after the 24-hour study period were 10 of 101 (9.9%) compared with 11 of 101 (10.9%) (P>.99; relative risk 0.9, 95% confidence interval 0.4-2.2) and median (interquartile range) well-being scores at 24 hours were 9 (8-10) compared with 9 (8-9.5) (P=.73) in the 5% dextrose-0.9% saline and 0.9% saline arms, respectively. Repeated measures analysis of variance of the nausea visual numerical rating scale score as assessed every 8 hours during the 24-hour study period showed a significant difference in favor of the 5% dextrose-0.9% saline arm (P=.046) with the superiority apparent at 8 and 16 hours, but the advantage had dissipated by 24 hours. Secondary outcomes of vomiting, resolution of hyponatremia, hypochloremia and hypokalemia, length of hospitalization, duration of intravenous antiemetic, and rehydration were not different. Intravenous rehydration with 5% dextrose-0.9% saline or 0.9% saline solution in women hospitalized for hyperemesis gravidarum produced similar outcomes. ISRCTN Register, www.controlled-trials.com/isrctn, ISRCTN65014409. I.

  2. The effects of acute salinity challenges on osmoregulation in Mozambique tilapia reared in a tidally changing salinity.

    Science.gov (United States)

    Moorman, Benjamin P; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2015-03-01

    This study characterizes the differences in osmoregulatory capacity among Mozambique tilapia, Oreochromis mossambicus, reared in freshwater (FW), in seawater (SW) or under tidally driven changes in salinity. This was addressed through the use of an abrupt exposure to a change in salinity. We measured changes in: (1) plasma osmolality and prolactin (PRL) levels; (2) pituitary expression of prolactin (PRL) and its receptors, PRLR1 and PRLR2; (3) branchial expression of PRLR1, PRLR2, Na(+)/Cl(-) co-transporter (NCC), Na(+)/K(+)/2Cl(-) co-transporter (NKCC), α1a and α1b isoforms of Na(+)/K(+)-ATPase (NKA), cystic fibrosis transmembrane conductance regulator (CFTR), aquaporin 3 (AQP3) and Na(+)/H(+) exchanger 3 (NHE3). Mozambique tilapia reared in a tidal environment successfully adapted to SW while fish reared in FW did not survive a transfer to SW beyond the 6 h sampling. With the exception of CFTR, the change in the expression of ion pumps, transporters and channels was more gradual in fish transferred from tidally changing salinities to SW than in fish transferred from FW to SW. Upon transfer to SW, the increase in CFTR expression was more robust in tidal fish than in FW fish. Tidal and SW fish successfully adapted when transferred to FW. These results suggest that Mozambique tilapia reared in a tidally changing salinity, a condition that more closely represents their natural history, gain an adaptive advantage compared with fish reared in FW when facing a hyperosmotic challenge. © 2015. Published by The Company of Biologists Ltd.

  3. Tight junction regulates epidermal calcium ion gradient and differentiation

    International Nuclear Information System (INIS)

    Kurasawa, Masumi; Maeda, Tetsuo; Oba, Ai; Yamamoto, Takuya; Sasaki, Hiroyuki

    2011-01-01

    Research highlights: → We disrupted epidermal tight junction barrier in reconstructed epidermis. → It altered Ca 2+ distribution and consequentially differentiation state as well. → Tight junction should affect epidermal homeostasis by maintaining Ca 2+ gradient. -- Abstract: It is well known that calcium ions (Ca 2+ ) induce keratinocyte differentiation. Ca 2+ distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca 2+ gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca 2+ gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca 2+ flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca 2+ gradient.

  4. Investigation of Lake Water Salinity by Using Four-Band Salinity Algorithm on WorldView-2 Satellite Image for a Saline Industrial Lake

    Science.gov (United States)

    Budakoǧlu, Murat; Karaman, Muhittin; Damla Uça Avcı, Z.; Kumral, Mustafa; Geredeli (Yılmaz), Serpil

    2014-05-01

    Salinity of a lake is an important characteristic since, these are potentially industrial lakes and the degree of salinity can significantly be used for determination of mineral resources and for the production management. In the literature, there are many studies of using satellite data for salinity related lake studies such as determination of salinity distribution and detection of potential freshwater sources in less salt concentrated regions. As the study area Lake Acigol, located in Denizli (Turkey) was selected. With it's saline environment, it's the major sodium sulphate production resource of Turkey. In this study, remote sensing data and data from a field study was used and correlated. Remote sensing is an efficient tool to monitor and analyze lake properties by using it complementary to field data. Worldview-2 satellite data was used in this study which consists of 8 bands. At the same time with the satellite data acquisition, a field study was conducted to collect the salinity values in 17 points of the laker with using YSI 556 Multiparametre for measurements. The values were measured as salinity amount in grams per kilogram solution and obtained as ppt unit. It was observed that the values vary from 34 ppt - 40.1 ppt and the average is 38.056 ppt. In Thalassic serie, the lake was in mixoeuhaline state in the time of issue. As a first step, ATCOR correction was performed on satellite image for atmospheric correction. There were some clouds on the lake field, hence it was decided to continue the study by using the 12 sampling points which were clear on the image. Then, for each sampling point, a spectral value was obtained by calculating the average at a 11*11 neighborhood. The relation between the spectral reflectance values and the salinity was investigated. The 4-band algorithm, which was used for determination of chlorophyll-a distribution in highly turbid coastal environment by Wei (2012) was applied. Salinity α (Λi-1 / Λj-1) * (Λk-1 / Λm-1) (i

  5. Mesohaline submerged aquatic vegetation survey along the U.S. gulf of Mexico coast, 2001 and 2002: A salinity gradient approach

    Science.gov (United States)

    Merino, J.H.; Carter, J.; Merino, S.L.

    2009-01-01

    Distribution of marine submerged aquatic vegetation (SAV; i.e., seagrass) in the northern Gulf of Mexico coast has been documented, but there are nonmarine submersed or SAV species occurring in estuarine salinities that have not been extensively reported. We sampled 276 SAV beds along the gulf coast in Florida, Alabama, Mississippi, Louisiana, and Texas in 2001 and 2002 in oligohaline to polyhaline (0 to 36 parts per thousand) waters to determine estuarine SAV species distribution and identify mesohaline SAV communities. A total of 20 SAV and algal species was identified and habitat characteristics such as salinity, water depth, pH, conductivity, turbidity, dissolved oxygen, and sediment composition were collected. Fourteen SAV species occurred two or more times in our samples. The most frequently occurring species was Ruppia maritima L. (n = 148), occurring in over half of SAV beds sampled. Eleocharis sp. (n = 47), characterized with an emergent rather than submerged growth form, was a common genus in the SAV beds sampled. A common marine species was Halodule wrightii Asch. (n = 36). Nonindigenous species Myriophyllum spicatum L. (n = 31) and Hydrilla verticillata (L. f.) Royle (n = 6) were present only in oligohaline water. Analyzing species occurrence and environmental characteristics using canonical correspondence and two-way indicator species analysis, we identify five species assemblages distinguished primarily by salinity and depth. Our survey increases awareness of nonmarine SAV as a natural resource in the gulf, and provides baseline data for future research. ?? 2009 by the Marine Environmental Sciences Consortium of Alabama.

  6. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    Science.gov (United States)

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    In 1974, the Colorado River Basin Salinity Control Act was passed into law. This law was enacted to address concerns regarding the salinity content of the Colorado River. The law authorized various construction projects in selected areas or 'units' of the Colorado River Basin intended to reduce the salinity load in the Colorado River. One such area was the Grand Valley Salinity Control Unit in western Colorado. The U. S. Geological Survey has done extensive studies and research in the Grand Valley Salinity Control Unit that provide information to aid the U.S. Bureau of Reclamation and the Natural Resources Conservation Service in determining where salinity-control work may provide the best results, and to what extent salinity-control work was effective in reducing salinity concentrations and loads in the Colorado River. Previous studies have indicated that salinity concentrations and loads have been decreasing downstream from the Grand Valley Salinity Control Unit, and that the decreases are likely the result of salinity control work in these areas. Several of these reports; however, also document decreasing salinity loads upstream from the Grand Valley Salinity Control Unit. This finding was important because only a small amount of salinity-control work was being done in areas upstream from the Grand Valley Salinity Control Unit at the time the findings were reported (late 1990?s). As a result of those previous findings, the U.S. Bureau of Reclamation entered into a cooperative agreement with the U.S. Geological Survey to investigate salinity trends in selected areas bracketing the Grand Valley Salinity Control Unit and regions upstream from the Grand Valley Salinity Control Unit. The results of the study indicate that salinity loads were decreasing upstream from the Grand Valley Salinity Control Unit from 1986 through 2003, but the rates of decrease have slowed during the last 10 years. The average rate of decrease in salinity load upstream from the Grand Valley

  7. Dynamics and fate of SOC in tidal marshes along a salinity gradient (Scheldt estuary, Belgium)

    Science.gov (United States)

    Van de Broek, Marijn; Temmermann, Stijn; Merckx, Roel; Wang, Zhengang; Govers, Gerard

    2016-04-01

    Coastal ecosystems have been attributed the potential to store large amounts of organic carbon (OC), often referred to as blue carbon, of which a considerable amount is stored in tidal marsh soils. Large uncertainties still exist with respect to the amount and controlling factors of soil organic carbon (SOC) stored in these ecosystems. Moreover, most research has focused on SOC dynamics of saltmarshes, while brackish and freshwater marshes are often even more productive and thus receive even larger organic carbon inputs. Therefore, in this study the OC dynamics of tidal marsh soils along an estuarine gradient are studied in order to contribute to our knowledge of 1) the stocks, 2) the controlling factors and 3) the fate of SOC in tidal marshes with different environmental characteristics. This research thus contributes to a better understanding of the potential of coastal environments to store organic carbon under future climatic changes. Soil and vegetation samples are collected in tidal salt-, brackish- and freshwater marshes in the Scheldt estuary (Belgium - The Netherlands). At each tidal marsh, three replicate soil cores up to 1.5m depth in 0.03m increments are collected at locations with both a low and a high elevation. These cores are analyzed for OC, stable C and N isotopes, bulk density and texture. Incubation experiments of topsoil samples were conducted and both aboveground and belowground biomass were collected. The results show that SOC stocks (range: 13,5 - 35,4 kg OC m-2), standing biomass (range: 2000 - 7930 g DW m-2) and potential soil respiration of CO2 (range: 0,03 - 0,12 % per unit OC per day) decrease with increasing salinity. This shows that both the amount of OC from local macrophytes and the quality of the organic matter are important factors controlling the SOC stocks. In addition, based on the analysis of stable C and N isotopes, it appears that when a significant fraction of SOC is derived from local macrophytes, higher SOC stocks are

  8. Saline agriculture in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2011-03-01

    Full Text Available Salinization is increasingly affecting world's agricultural land causing serious yield loss and soil degradation. Understanding how we could improve crop productivity in salinized environments is therefore critical to meet the challenging goal of feeding 9.3 billion people by 2050. Our comprehension of fundamental physiological mechanisms in plant salt stress adaptation has greatly advanced over the last decades. However, many of these mechanisms have been linked to salt tolerance in simplified experimental systems whereas they have been rarely functionally proven in real agricultural contexts. In-depth analyses of specific crop-salinity interactions could reveal important aspects of plant salt stress adaptation as well as novel physiological/agronomic targets to improve salinity tolerance. These include the developmental role of root vs. shoot systems respect to water-ion homeostasis, morphological vs. metabolic contributions to stress adaptation, developmental processes vs. seasonal soil salinity evolution, residual effects of saline irrigation in non-irrigated crops, critical parameters of salt tolerance in soil-less systems and controlled environments, response to multiple stresses. Finally, beneficial effects of salinization on qualitative parameters such as stress-induced accumulation of high nutritional value secondary metabolites should be considered, also. In this short review we attempted to highlight the multifaceted nature of salinity in Mediterranean agricultural systems by summarizing most experimental activity carried out at the Department of Agricultural Engineering and Agronomy of University of Naples Federico II in the last few years.

  9. Assessing Salinity in Cotton and Tomato Plants by Using Reflectance Spectroscopy

    Science.gov (United States)

    Goldshleger, Naftaly

    2016-04-01

    Irrigated lands in semi-arid and arid areas are subjected to salinization processes. An example of this phenomenon is the Jezreel Valley in northern Israel where soil salinity has increased over the years. The increase in soil salinity results in the deterioration of the soil structure and crops damage. In this experiment we quantified the relation between the chemical and spectral features of cotton and tomato plants and their mutual relationship to soil salinity. The experiment was carried out as part of ongoing research aiming to detect and monitor saline soils and vegetation by combining different remote sensing methods. The aim of this study was to use vegetation reflectance measurements to predict foliar Cl and Na concentration and assess salinity in the soil and in vegetation by their reflectance measurements. The model developed for determining concentrations of chlorine and sodium in tomato and cotton produced good results ( R2 = 0.92 for sodium and 0.85 for chlorine in tomato and R2 = 0.84 for sodium and 0.82 for chlorine in cotton). Lately, we extend the method to calculate vegetation salinity, by doing correlation between the reflectance slopes of the tested crops CL and Na from two research areas. The developed model produced a good results for all the data (R2=0.74) Our method can be implemented to assess vegetation salinity ahead of planting, and developed as a generic tool for broader use for agriculture in semi-arid regions. In our opinion these results show the possibility of monitoring for a threshold level of salinity in tomato and cotton leaves so remedial action can be taken in time to prevent crop damage. Our results strongly suggest that future imaging spectroscopy remote sensing measurements collected by airborne and satellite platforms could measure the salinity of soil and vegetation over larger areas. These results can be the first steps for generic a model which includes more vegetation for salinity measurements.

  10. N2-fixation in fababean (vicia faba l.) grown in saline and non saline conditions using 15N tracer technique

    International Nuclear Information System (INIS)

    Khalifa, Kh.; Kurdali, F.

    2002-09-01

    A pot experiment was conducted to study the performance of growing fababean and barley under saline conditions, in terms of, dry matter yield, total nitrogen and, percentages and amount of N derived from soil, fertilizer and atmosphere using 15 N isotope dilution method. Three saline treatments were performed: First, plants were grown in saline soil and irrigated with saline water (Ws Ss), Second, Plants were grown in saline soil and irrigated with saline water (Ws Ss); and Third, Plants grown in non saline soil and irrigated with saline water (Ws Sn). Furthermore, a control treatment was performed by using non-saline soil and non-saline water (Wn Sn). The different salinity treatments reduced plant growth and the reduction was more pronounced in fababean than in barley. However, under conditions of either saline soil-soft irrigation water or non saline soil-salty irrigation water, the relative growth reduction did not exceed 50% of the control; whereas, a significant negative effect was obtained when plants were grown under completely saline conditions of both soil and irrigation water. Percentage of N 2 -fixed (% Ndfa) was not negatively affected by saline conditions. However, our results clearly demonstrated that the effect of salinity in fababean was more evident on plant growth than on N 2 -fixing activity. Further studies are needed to obtain more salt tolerant faba bean genotypes in terms of growth and yield. This could be simultaneously improve yield and N 2 -fixation under sever saline conditions. (author)

  11. Re-modeling Chara action potential: II. The action potential form under salinity stress

    Directory of Open Access Journals (Sweden)

    Mary Jane Beilby

    2017-04-01

    Full Text Available In part I we established Thiel-Beilby model of the Chara action potential (AP. In part II the AP is investigated in detail at the time of saline stress. Even very short exposure of salt-sensitive Chara cells to artificial pond water with 50 mM NaCl (Saline APW modified the AP threshold and drastically altered the AP form. Detailed modeling of 14 saline APs from 3 cells established that both the Ca2+ pump and the Ca2+ channels on internal stores seem to be affected, with the changes sometimes cancelling and sometimes re-enforcing each other, leading to APs with long durations and very complex forms. The exposure to salinity offers further insights into AP mechanism and suggests future experiments. The prolonged APs lead to greater loss of chloride and potassium ions, compounding the effects of saline stress.

  12. Physical hydrogeology and environmental isotopes to constrain the age, origins, and stability of a low-salinity groundwater lens formed by periodic river recharge: Murray Basin, Australia

    Science.gov (United States)

    Cartwright, Ian; Weaver, Tamie R.; Simmons, Craig T.; Fifield, L. Keith; Lawrence, Charles R.; Chisari, Robert; Varley, Simon

    2010-01-01

    SummaryA low-salinity (total dissolved solids, TDS, Australia. Hydraulic heads, surface water elevations, δ 18O values, major ion geochemistry, 14C activities, and 3H concentrations show that the lens is recharged from the Murray River largely through the riverbank with limited recharge through the floodplain. Recharge of the lens occurs mainly at high river levels and the low-salinity groundwater forms baseflow to some river reaches during times of low river levels. Within the lens, flow through the shallow Channel Sands and deeper Parilla Sands aquifers is sub-horizontal. While the Blanchetown Clay locally separates the Channel Sands and the Parilla Sands, the occurrence of recently recharged low-salinity groundwater below the Blanchetown Clay suggests that there is considerable leakage through this unit, implying that it is not an efficient aquitard. The lateral margin of the lens with the regional groundwater (TDS >25,000 mg/L) is marked by a hectometer to kilometer scale transition in TDS concentrations that is not stratigraphically controlled. Rather this boundary represents a mixing zone with the regional groundwater, the position of which is controlled by the rate of recharge from the river. The lens is part of an active and dynamic hydrogeological system that responds over years to decades to changes in river levels. The lens has shrunk during the drought of the late 1990s to the mid 2000s, and it will continue to shrink unless regular high flows in the Murray River are re-established. Over longer timescales, the rise of the regional water table due to land clearing will increase the hydraulic gradient between the regional groundwater and the groundwater in the lens, which will also cause it to degrade. Replacement of low-salinity groundwater in the lens with saline groundwater will ultimately increase the salinity of the Murray River reducing its utility for water supply and impacting riverine ecosystems.

  13. Growth and Physiological Responses of Phaseolus Species to Salinity Stress

    Directory of Open Access Journals (Sweden)

    J. S. Bayuelo-Jiménez

    2012-01-01

    Full Text Available This paper reports the changes on growth, photosynthesis, water relations, soluble carbohydrate, and ion accumulation, for two salt-tolerant and two salt-sensitive Phaseolus species grown under increasing salinity (0, 60 and 90 mM NaCl. After 20 days exposure to salt, biomass was reduced in all species to a similar extent (about 56%, with the effect of salinity on relative growth rate (RGR confined largely to the first week. RGR of salt-tolerant species was reduced by salinity due to leaf area ratio (LAR reduction rather than a decline in photosynthetic capacity, whereas unit leaf rate and LAR were the key factors in determining RGR on salt-sensitive species. Photosynthetic rate and stomatal conductance decreased gradually with salinity, showing significant reductions only in salt-sensitive species at the highest salt level. There was little difference between species in the effect of salinity on water relations, as indicated by their positive turgor. Osmotic adjustment occurred in all species and depended on higher K+, Na+, and Cl− accumulation. Despite some changes in soluble carbohydrate accumulation induced by salt stress, no consistent contributions in osmotic adjustment could be found in this study. Therefore, we suggest that tolerance to salt stress is largely unrelated to carbohydrate accumulation in Phaseolus species.

  14. Role of polarized G protein signaling in tracking pheromone gradients

    Science.gov (United States)

    McClure, Allison W.; Minakova, Maria; Dyer, Jayme M.; Zyla, Trevin R.; Elston, Timothy C.; Lew, Daniel J.

    2015-01-01

    Summary Yeast cells track gradients of pheromones to locate mating partners. Intuition suggests that uniform distribution of pheromone receptors over the cell surface would yield optimal gradient sensing. However, yeast cells display polarized receptors. The benefit of such polarization was unknown. During gradient tracking, cell growth is directed by a patch of polarity regulators that wanders around the cortex. Patch movement is sensitive to pheromone dose, with wandering reduced on the up-gradient side of the cell, resulting in net growth in that direction. Mathematical modeling suggests that active receptors and associated G proteins lag behind the polarity patch and act as an effective drag on patch movement. In vivo, the polarity patch is trailed by a G protein-rich domain, and this polarized distribution of G proteins is required to constrain patch wandering. Our findings explain why G protein polarization is beneficial, and illuminate a novel mechanism for gradient tracking. PMID:26609960

  15. Golden alga presence and abundance are inversely related to salinity in a high-salinity river ecosystem, Pecos River, USA

    Science.gov (United States)

    Israël, Natascha M.D.; VanLandeghem, Matthew M.; Denny, Shawn; Ingle, John; Patino, Reynaldo

    2014-01-01

    Prymnesium parvum (golden alga, GA) is a toxigenic harmful alga native to marine ecosystems that has also affected brackish inland waters. The first toxic bloom of GA in the western hemisphere occurred in the Pecos River, one of the saltiest rivers in North America. Environmental factors (water quality) associated with GA occurrence in this basin, however, have not been examined. Water quality and GA presence and abundance were determined at eight sites in the Pecos River basin with or without prior history of toxic blooms. Sampling was conducted monthly from January 2012 to July 2013. Specific conductance (salinity) varied spatiotemporally between 4408 and 73,786 mS/cm. Results of graphical, principal component (PCA), and zero-inflated Poisson (ZIP) regression analyses indicated that the incidence and abundance of GA are reduced as salinity increases spatiotemporally. LOWESS regression and correlation analyses of archived data for specific conductance and GA abundance at one of the study sites retrospectively confirmed the negative association between these variables. Results of PCA also suggested that at <15,000 mS/cm, GA was present at a relatively wide range of nutrient (nitrogen and phosphorus) concentrations whereas at higher salinity, GA was observed only at mid-to-high nutrient levels. Generally consistent with earlier studies, results of ZIP regression indicated that GA presence is positively associated with organic phosphorus and in samples where GA is present, GA abundance is positively associated with organic nitrogen and negatively associated with inorganic nitrogen. This is the first report of an inverse relation between salinity and GA presence and abundance in riverine waters and of interaction effects of salinity and nutrients in the field. These observations contribute to a more complete understanding of environmental conditions that influence GA distribution in inland waters.

  16. Hypertonic saline reduces inflammation and enhances the resolution of oleic acid induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-07-01

    Full Text Available Abstract Background Hypertonic saline (HTS reduces the severity of lung injury in ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. However, the potential for HTS to modulate the resolution of lung injury is not known. We investigated the potential for hypertonic saline to modulate the evolution and resolution of oleic acid induced lung injury. Methods Adult male Sprague Dawley rats were used in all experiments. Series 1 examined the potential for HTS to reduce the severity of evolving oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 12 or hypertonic saline (HTS, n = 12, and the extent of lung injury assessed after 6 hours. Series 2 examined the potential for HTS to enhance the resolution of oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 6 or hypertonic saline (HTS, n = 6, and the extent of lung injury assessed after 6 hours. Results In Series I, HTS significantly reduced bronchoalveolar lavage (BAL neutrophil count compared to Control [61.5 ± 9.08 versus 102.6 ± 11.89 × 103 cells.ml-1]. However, there were no between group differences with regard to: A-a O2 gradient [11.9 ± 0.5 vs. 12.0 ± 0.5 KPa]; arterial PO2; static lung compliance, or histologic injury. In contrast, in Series 2, hypertonic saline significantly reduced histologic injury and reduced BAL neutrophil count [24.5 ± 5.9 versus 46.8 ± 4.4 × 103 cells.ml-1], and interleukin-6 levels [681.9 ± 190.4 versus 1365.7 ± 246.8 pg.ml-1]. Conclusion These findings demonstrate, for the first time, the potential for HTS to reduce pulmonary inflammation and enhance the resolution of oleic acid induced lung injury.

  17. Origin of salinity in produced waters from the Palm Valley gas field, Northern Territory, Australia

    International Nuclear Information System (INIS)

    Andrew, Anita S.; Whitford, David J.; Berry, Martin D.; Barclay, Stuart A.; Giblin, Angela M.

    2005-01-01

    The chemical composition and evolution of produced waters associated with gas production in the Palm Valley gas field, Northern Territory, has important implications for issues such as gas reserve calculations, reservoir management and saline water disposal. The occurrence of saline formation water in the Palm Valley field has been the subject of considerable debate. There were no occurrences of mobile water early in the development of the field and only after gas production had reduced the reservoir pressure, was saline formation water produced. Initially this was in small quantities but has increased dramatically with time, particularly after the initiation of compression in November 1996. The produced waters range from highly saline (up to 300,000 mg/L TDS), with unusual enrichments in Ca, Ba and Sr, to low salinity fluids that may represent condensate waters. The Sr isotopic compositions of the waters ( 87 Sr/ 86 Sr = 0.7041-0.7172) are also variable but do not correlate closely with major and trace element abundances. Although the extreme salinity suggests possible involvement of evaporite deposits lower in the stratigraphic sequence, the Sr isotopic composition of the high salinity waters suggests a more complex evolutionary history. The formation waters are chemically and isotopically heterogeneous and are not well mixed. The high salinity brines have Sr isotopic compositions and other geochemical characteristics more consistent with long-term residence within the reservoir rocks than with present-day derivation from a more distal pool of brines associated with evaporites. If the high salinity brines entered the reservoir during the Devonian uplift and were displaced by the reservoir gas into a stagnant pool, which has remained near the reservoir for the last 300-400 Ma, then the size of the brine pool is limited. At a minimum, it might be equivalent to the volume displaced by the reservoired gas

  18. Impact of Variable-Density Flow on the Value-of-Information from Pressure and Concentration Data for Saline Aquifer Characterization

    Science.gov (United States)

    Yoon, S.; Williams, J. R.; Juanes, R.; Kang, P. K.

    2017-12-01

    Managed aquifer recharge (MAR) is becoming an important solution for ensuring sustainable water resources and mitigating saline water intrusion in coastal aquifers. Accurate estimates of hydrogeological parameters in subsurface flow and solute transport models are critical for making predictions and managing aquifer systems. In the presence of a density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial distribution of salinity distribution, and therefore experiences transient changes. The variable-density effects can be quantified by a mixed convection ratio between two characteristic types of convection: free convection due to density contrast, and forced convection due to a hydraulic gradient. We analyze the variable-density effects on the value-of-information of pressure and concentration data for saline aquifer characterization. An ensemble Kalman filter is used to estimate permeability fields by assimilating the data, and the performance of the estimation is analyzed in terms of the accuracy and the uncertainty of estimated permeability fields and the predictability of arrival times of breakthrough curves in a realistic push-pull setting. This study demonstrates that: 1. Injecting fluids with the velocity that balances the two characteristic convections maximizes the value of data for saline aquifer characterization; 2. The variable-density effects on the value of data for the inverse estimation decrease as the permeability heterogeneity increases; 3. The advantage of joint inversion of pressure and concentration data decreases as the coupling effects between flow and transport increase.

  19. Role of spatial averaging in multicellular gradient sensing.

    Science.gov (United States)

    Smith, Tyler; Fancher, Sean; Levchenko, Andre; Nemenman, Ilya; Mugler, Andrew

    2016-05-20

    Gradient sensing underlies important biological processes including morphogenesis, polarization, and cell migration. The precision of gradient sensing increases with the length of a detector (a cell or group of cells) in the gradient direction, since a longer detector spans a larger range of concentration values. Intuition from studies of concentration sensing suggests that precision should also increase with detector length in the direction transverse to the gradient, since then spatial averaging should reduce the noise. However, here we show that, unlike for concentration sensing, the precision of gradient sensing decreases with transverse length for the simplest gradient sensing model, local excitation-global inhibition. The reason is that gradient sensing ultimately relies on a subtraction of measured concentration values. While spatial averaging indeed reduces the noise in these measurements, which increases precision, it also reduces the covariance between the measurements, which results in the net decrease in precision. We demonstrate how a recently introduced gradient sensing mechanism, regional excitation-global inhibition (REGI), overcomes this effect and recovers the benefit of transverse averaging. Using a REGI-based model, we compute the optimal two- and three-dimensional detector shapes, and argue that they are consistent with the shapes of naturally occurring gradient-sensing cell populations.

  20. Microbial Fuel Cells under Extreme Salinity

    Science.gov (United States)

    Monzon del Olmo, Oihane

    predominant electroactive and halophile specie in the anode, Marinobacter hydrocarbonoclasticus, which is known for its extraordinary biodegradation capabilities. These findings suggest the potential of the MFC technology to treat hypersaline high-strength wastewaters while producing electricity, a result which would alleviate a major economic and environmental challenge for the oil and gas industry. In addition, this research represents a promising start overall in advancing biological treatment of saline wastewaters in other contexts, which is a largely unexploited field.

  1. Effect of EM Bokashi application on control of secondary soil salinization

    Directory of Open Access Journals (Sweden)

    Shao Xiaohou

    2008-12-01

    Full Text Available In order to ameliorate saline-alkaline soil, EM Bokashi has been applied to rice production in conjunction with subdrainage in Ningxia Autonomous Region and Zhejiang Province. The preliminary results can be summarized as follows: EM Bokashi can increase soil organic matter content, improve soil porosity and permeability, and raise the soil's levels of available nutrients; and EM Bokashi combined with subdrainage treatment is more effective in controlling secondary soil salinization and raising the grain yield and quality than other treatments. The results suggest that EM Bokashi can reduce the necessary amount of chemical fertilizer application, thereby improving the agricultural environment, and that the introduction of EM Bokashi into systems of secondary soil salinization control systems has resulted in significant benefits.

  2. Salty or Sweet: Exploring the Challenges of Groundwater Salinization Within a Sustainability Framework

    Science.gov (United States)

    Basu, N. B.; Van Meter, K. J.; Tate, E.

    2012-12-01

    In semi-arid to arid landscapes under intensive irrigation, groundwater salinization can be a persistent and critical problem, leading to reduced agricultural productivity, limited access to fresh drinking water, and ultimately desertification. It is estimated that in India alone, problems of salinity are now affecting over 6 million hectares of agricultural land. In villages of the Mewat district of Haryana in Northern India, subsistence-level farming is the primary source of income, and farming families live under serious threat from increasing salinity levels, both in terms of crop production and adequate supplies of drinking water. The Institute for Rural Research and Development (IRRAD), a non-governmental organization (NGO) working in Mewat, has taken an innovative approach in this area to problems of groundwater salinization, using check dams and rainwater harvesting ponds to recharge aquifers in the freshwater zones of upstream hill areas, and to create freshwater pockets within the saline groundwater zones of down-gradient areas. Initial, pilot-scale efforts have led to apparent success in raising groundwater levels in freshwater zones and changing the dynamics of encroaching groundwater salinity, but the expansion of such efforts to larger-scale restoration is constrained by the availability of adequate resources. Under such resource constraints, which are typical of international development work, it becomes critical to utilize a decision-analysis framework to quantify both the immediate and long-term effectiveness and sustainability of interventions by NGOs such as IRRAD. In the present study, we have developed such a framework, linking the climate-hydrological dynamics of monsoon driven systems with village-scale socio-economic attributes to evaluate the sustainability of current restoration efforts and to prioritize future areas for intervention. We utilize a multi-dimensional metric that takes into account both physical factors related to water

  3. Desiccation-crack-induced salinization in deep clay sediment

    Directory of Open Access Journals (Sweden)

    S. Baram

    2013-04-01

    Full Text Available A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water content and on the chemical and isotopic composition of the sediment and pore water in it. The isotopic composition of water stable isotopes (δ18O and δ2H in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ~ 3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl− concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a desiccation-crack-induced salinization (DCIS conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.

  4. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    KAUST Repository

    Sawall, Yvonne

    2015-03-10

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  5. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    KAUST Repository

    Sawall, Yvonne; Al-Sofyani, Abdulmoshin; Hohn, Sö nke; Banguera Hinestroza, Eulalia; Voolstra, Christian R.; Wahl, Martin

    2015-01-01

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  6. Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3-D structure and transport with application to the salinity maximum

    Science.gov (United States)

    Amores, Angel; Melnichenko, Oleg; Maximenko, Nikolai

    2017-01-01

    The mean vertical structure and transport properties of mesoscale eddies are investigated in the North Atlantic subtropical gyre by combining historical records of Argo temperature/salinity profiles and satellite sea level anomaly data in the framework of the eddy tracking technique. The study area is characterized by a low eddy kinetic energy and sea surface salinity maximum. Although eddies have a relatively weak signal at surface (amplitudes around 3-7 cm), the eddy composites reveal a clear deep signal that penetrates down to at least 1200 m depth. The analysis also reveals that the vertical structure of the eddy composites is strongly affected by the background stratification. The horizontal patterns of temperature/salinity anomalies can be reconstructed by a linear combination of a monopole, related to the elevation/depression of the isopycnals in the eddy core, and a dipole, associated with the horizontal advection of the background gradient by the eddy rotation. A common feature of all the eddy composites reconstructed is the phase coherence between the eddy temperature/salinity and velocity anomalies in the upper ˜300 m layer, resulting in the transient eddy transports of heat and salt. As an application, a box model of the near-surface layer is used to estimate the role of mesoscale eddies in maintaining a quasi-steady state distribution of salinity in the North Atlantic subtropical salinity maximum. The results show that mesoscale eddies are able to provide between 4 and 21% of the salt flux out of the area required to compensate for the local excess of evaporation over precipitation.

  7. Adaptive Regularization of Neural Networks Using Conjugate Gradient

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    1998-01-01

    Andersen et al. (1997) and Larsen et al. (1996, 1997) suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique........ Numerical experiments with feedforward neural networks successfully demonstrate improved generalization ability and lower computational cost...

  8. Efficacy of nebulised L-adrenaline with 3% hypertonic saline versus normal saline in bronchiolitis

    Directory of Open Access Journals (Sweden)

    Shabnam Sharmin

    2016-08-01

    Full Text Available Background: Bronchiolitis is one of the most common respiratory diseases requiring hospitalization. Nebulized epineph­rine and salbutamol therapy has been used in different centres with varying results. Objective: The objective of the study was to compare the efficacy of nebulised adrenaline diluted with 3% hypertonic saline with nebulised adrenaline diluted with normal saline in bronchiolitis. Methods: Fifty three infants and young children with bronchiolitis, age ranging from 2 months to 2 years, presenting in the emergency department of Manikganj Sadar Hospital were enrolled in the study. After initial evaluation, patients were randomized to receive either nebulized adrenaline I .5 ml ( 1.5 mg diluted with 2 ml of3% hypertonic saline (group I ornebulised adrenaline 1.5 ml (1.5 mg diluted with 2 ml of normal saline (group II. Patients were evaluated again 30 minutes after nebulization. Results: Twenty eight patients in the group I (hypertonic saline and twenty five in groupII (normal saline were included in the study. After nebulization, mean respiratory rate decreased from 63.7 to 48.1 (p<.01, mean clinical severity score decreased from 8.5 to 3.5 (p<.01 and mean oxygen satw·ation increased 94.7% to 96.9% (p<.01 in group I. In group II, mean respiratory rate decreased from 62.4 to 47.4 (p<.01, mean clinical severity score decreased from 7.2 to 4.1 (p<.01 and mean oxygen saturation increased from 94. 7% to 96. 7% (p<.01. Mean respiratory rate decreased by 16 in group I versus 14.8 (p>.05 in group 11, mean clinical severity score decreased by 4.6 in group versus 3 (p<.05 in group, and mean oxygen saturation increased by 2.2% and 1.9% in group and group respectively. Difference in reduction in clinical severity score was statistically significant , though the changes in respiratory rate and oxygen saturation were not statistically significant. Conclusion: The study concluded that both nebulised adrenaline diluted with 3% hypertonic saline and

  9. A natural saline soil as a model for understanding to what extent the concentration of salt affects the distribution of microorganisms

    Science.gov (United States)

    Canfora, Loredana; Pinzari, Flavia; Lo Papa, Giuseppe; Vittori Antisari, Livia; Vendramin, Elisa; Salvati, Luca; Dazzi, Carmelo; Benedetti, Anna

    2017-04-01

    components in the surface of that peculiar habitat was investigated to evaluate the organization and diversity of the phototrophic and heterotrophic microorganisms. Sixteen soil samples from A horizons were collected according to a random sampling scheme. Bacterial and archaeal communities were characterized by their 16S rDNA genes with T-RFLP method. A total of 92 genera were identified from the 16S pyrosequencing analysis suggesting that cyanobacteria and communities of sulfur bacteria might directly or indirectly promote the formation of protective envelope. Some bacterial phyla appeared spread in the whole area, whatever the salinity gradient, while other groups showed a distribution linked to very compartmentalised soil properties, such as the presence of saline crusts in the soil surface. Results show that saline soils couldn't contain just one single microbial community selected to withstand extreme osmotic phenomena, but many communities that can be variously correlated to one or more environmental parameters having great importance for the maintenance of the overall homeostasis.

  10. Does increased salinity influence the competitive outcome of two producer species?

    Science.gov (United States)

    Venâncio, C; Anselmo, E; Soares, A; Lopes, I

    2017-02-01

    Within the context of global climate changes, it is expected that low-lying coastal freshwater ecosystems will face seawater intrusion with concomitant increase in salinity levels. Increased salinity may provoke disruption of competitive relationships among freshwater species. However, species may be capable of acclimating to salinity, which, in turn, may influence the resilience of ecosystems. Accordingly, this work aimed at assessing the effects of multigenerational exposure to low levels of salinity in the competitive outcome of two species of green microalgae: Raphidocelis subcapitata and Chlorella vulgaris. To attain this, three specific objectives were delineated: (1) compare the toxicity of natural seawater (SW) and NaCl (as a surrogate of SW) to the two microalgae, (2) determine the capacity of the two microalgae species to acclimate to low salinity levels, and (3) assess the influence of exposure to low salinity levels in the competitive outcome of the two microalgae. Results revealed SW to be slightly less toxic than NaCl for the two microalgae. The EC 25,72 h for growth rate was 4.63 and 10.3 mS cm -1 for R. subcapitata and 6.94 and 15.4 mS cm -1 for C. vulgaris, respectively for NaCl and SW. Both algae were capable of acclimating to low levels of salinity, but C. vulgaris seemed to acclimate faster than R. subcapitata. When exposed in competition, under control conditions, the growth rates of C. vulgaris were lower than those of R. subcapitata. However, C. vulgaris was capable of acquiring competitive advantage equaling or surpassing the growth rate of R. subcapitata with the addition of NaCl or SW, respectively. The multigenerational exposure to low levels of salinity influenced the competitive outcome of the two algae both under control and salinity exposure. These results suggest that long-term exposure to low salinity stress can cause shifts in structure of algae communities and, therefore, should not be neglected since algae are at the basis

  11. Salinity Effects on Photosynthesis, Carbon Allocation, and Nitrogen Assimilation in the Red Alga, Gelidium coulteri.

    Science.gov (United States)

    Macler, B A

    1988-11-01

    The long-term effects of altered salinities on the physiology of the intertidal red alga Gelidium coulteri Harv. were assessed. Plants were transfered from 30 grams per liter salinity to media with salinities from 0 to 50 grams per liter. Growth rate, agar, photosynthesis, respiration, and various metabolites were quantified after 5 days and 5 weeks adaptation. After 5 days, growth rates were lower for plants at all altered salinities. Growth rates recovered from these values with 5 weeks adaptation, except for salinities of 10 grams per liter and below, where tissues bleached and died. Photosynthetic O(2) evolution was lower than control values at both higher and lower salinities after 5 days and did not change over time. Carbon fixation at the altered salinities was unchanged after 5 days, but decreased below 25 grams per liter and above 40 grams per liter after 5 weeks. Respiration increased at lower salinities. Phycobili-protein and chlorophyll were lower for all altered salinities after 5 days. These decreases continued at lower salinities, then were stable after 5 weeks. Chlorophyll recovered over time at higher salinities. Decreases in protein at lower salinities were quantitatively attributable to phycobili-protein loss. Total N levels and C:N ratios were nearly constant across all salinities tested. Carbon flow into glutamate and aspartate decreased with both decreasing and increasing salinities. Glycine, serine, and glycolate levels increased with both increasing and decreasing salinity, indicating a stimulation of photorespiration. The cell wall component agar increased with decreasing salinity, although biosynthesis was inhibited at both higher and lower salinities. The storage compound floridoside increased with increasing salinity. The evidence suggests stress responses to altered salinities that directly affected photosynthesis, respiration, and nitrogen assimilation and indirectly affected photosynthate flow. At low salinities, respiration and

  12. A global algorithm for estimating Absolute Salinity

    Science.gov (United States)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  13. Infrared Thermal Signature Evaluation of a Pure and Saline Ice for Marine Operations in Cold Climate

    Directory of Open Access Journals (Sweden)

    Taimur Rashid

    2015-11-01

    Full Text Available Marine operations in cold climates are subjected to abundant ice accretion, which can lead to heavy ice loads over larger surface area. For safe and adequate operations on marine vessels over a larger area, remote ice detection and ice mitigation system can be useful. To study this remote ice detection option, lab experimentation was performed to detect the thermal gradient of ice with the infrared camera. Two different samples of ice blocks were prepared from tap water and saline water collected from the North Atlantic Ocean stream. The surfaces of ice samples were observed at room temperature. A complete thermal signature over the surface area was detected and recorded until the meltdown process was completed. Different temperature profiles for saline and pure ice samples were observed, which were kept under similar conditions. This article is focused to understand the experimentation methodology and thermal signatures of samples. However, challenges remains in terms of the validation of the detection signature and elimination of false detection.

  14. Systems biology derived source-sink mechanism of BMP gradient formation.

    Science.gov (United States)

    Zinski, Joseph; Bu, Ye; Wang, Xu; Dou, Wei; Umulis, David; Mullins, Mary C

    2017-08-09

    A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development.

  15. Effect of Salinity on Germination and Its Relationship with Vegetative growth in Bromus danthoniae Genotypes from Saline and Non-Saline Areas of Iran

    Directory of Open Access Journals (Sweden)

    M. Rezaei

    2018-02-01

    Full Text Available Bromus danthoniae Trin. is an annual grass species that is well adapted to harsh climates and could be considered as an important genetic resources for tolerance to environmental stresses such as salinity. In this study, 24 genotypes collected from Ilam, Kurdistan, Kermanshah (non-saline areas and West Azerbaijan (saline area: shores of Uremia Salt Lake provinces of Iran were investigated at the germination stage under salt treatments with concentrations of 0, 60, 120, 180, 240 and 300 mM sodium chloride. Germination percentage, germination rate index, seed vigor, root length, shoot length and seedling fresh and dry weights were measured. In addition, the relationship between the percentage of germination in 300 mM sodium chloride and the survival rate (% after four weeks in 350 mM sodium chloride at the vegetative stage was evaluated. The results of analysis of variance showed that salinity treatments caused significant reductions in all the studied traits. Genotypic variation and the interaction of genotype × salt treatments were also significant. Genotypes USLN3 and KER4 were found to be the most tolerant and sensitive genotypes to salinity stress, with 13% and 98% reduction in germination percentage at 300 mM NaCl, respectively. Cluster analysis divided the genotypes into three groups, with one group containing only tolerant genotypes from Uremia Salt Lake, another one comprising only sensitive genotypes from non-saline regions, and the third one containing genotypes from both regions. The correlation between the germination percentage and the survival rate at the vegetative stage was not significant, indicating that different mechanisms are, perhaps, responsible for salinity tolerance at the germination and vegetative stages in B. danthoniae.

  16. CO{sub 2} storage in saline aquifers; Stockage du CO{sub 2} dans les aquiferes salins

    Energy Technology Data Exchange (ETDEWEB)

    Bentham, M.; Kirby, G. [British Geological Survey (BGS), Kingsley Dunham Centre, Keyworth, Nottingham (United Kingdom)

    2005-06-01

    Saline aquifers represent a promising way for CO{sub 2} sequestration. Storage capacities of saline aquifers are very important around the world. The Sleipner site in the North Sea is currently the single case world-wide of CO{sub 2} storage in a saline aquifer. A general review is given on the specific risks for CO{sub 2} storage in saline aquifer. The regional distribution of CO{sub 2} storage potential is presented. Finally, the knowledge gaps and the future research in this field are defined. (authors)

  17. Depth perception: cuttlefish (Sepia officinalis) respond to visual texture density gradients.

    Science.gov (United States)

    Josef, Noam; Mann, Ofri; Sykes, António V; Fiorito, Graziano; Reis, João; Maccusker, Steven; Shashar, Nadav

    2014-11-01

    Studies concerning the perceptual processes of animals are not only interesting, but are fundamental to the understanding of other developments in information processing among non-humans. Carefully used visual illusions have been proven to be an informative tool for understanding visual perception. In this behavioral study, we demonstrate that cuttlefish are responsive to visual cues involving texture gradients. Specifically, 12 out of 14 animals avoided swimming over a solid surface with a gradient picture that to humans resembles an illusionary crevasse, while only 5 out of 14 avoided a non-illusionary texture. Since texture gradients are well-known cues for depth perception in vertebrates, we suggest that these cephalopods were responding to the depth illusion created by the texture density gradient. Density gradients and relative densities are key features in distance perception in vertebrates. Our results suggest that they are fundamental features of vision in general, appearing also in cephalopods.

  18. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    Science.gov (United States)

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  19. A global algorithm for estimating Absolute Salinity

    Directory of Open Access Journals (Sweden)

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  20. Therapeutic effects of compound hypertonic saline on rats with sepsis

    Directory of Open Access Journals (Sweden)

    Fang Dong

    2014-09-01

    Full Text Available Sepsis is one of the major causes of death and is the biggest obstacle preventing improvement of the success rate in curing critical illnesses. Currently, isotonic solutions are used in fluid resuscitation technique. Several studies have shown that hypertonic saline applied in hemorrhagic shock can rapidly increase the plasma osmotic pressure, facilitate the rapid return of interstitial fluid into the blood vessels, and restore the effective circulating blood volume. Here, we established a rat model of sepsis by using the cecal ligation and puncture approach. We found that intravenous injection of hypertonic saline dextran (7.5% NaCl/6% dextran after cecal ligation and puncture can improve circulatory failure at the onset of sepsis. We found that the levels of tumor necrosis factor-α, interleukin-1β, interleukin-6 and intracellular adhesion molecule 1 levels in the lung tissue of cecal ligation and puncture rats treated with hypertonic saline dextran were significantly lower than the corresponding levels in the control group. We inferred that hypertonic saline dextran has a positive immunoregulatory effect and inhibits the overexpression of the inflammatory response in the treatment of sepsis. The percentage of neutrophils, lung myeloperoxidase activity, wet to dry weight ratio of lung tissues, histopathological changes in lung tissues, and indicators of arterial blood gas analysis was significantly better in the hypertonic saline dextran-treated group than in the other groups in this study. Hypertonic saline dextran-treated rats had significantly improved survival rates at 9 and 18 h compared to the control group. Our results suggest that hypertonic saline dextran plays a protective role in acute lung injury caused after cecal ligation and puncture. In conclusion, hypertonic/hyperoncotic solutions have beneficial therapeutic effects in the treatment of an animal model of sepsis.

  1. Case study on combined CO₂ sequestration and low-salinity water production potential in a shallow saline aquifer in Qatar.

    Science.gov (United States)

    Ahmed, Tausif Khizar; Nasrabadi, Hadi

    2012-10-30

    CO₂ is one of the byproducts of natural gas production in Qatar. The high rate of natural gas production from Qatar's North Field (world's largest non-associated gas field) has led to the production of significant amounts of CO₂. The release of CO₂ into the atmosphere may be harmful from the perspective of global warming. In this work, we study the CO₂ sequestration potential in Qatar's Aruma aquifer. The Aruma aquifer is a saline aquifer in the southwest of Qatar. It occupies an area of approximately 1985 km₂ on land (16% of Qatar's total area). We have developed a compositional model for CO₂ sequestration in the Aruma aquifer on the basis of available log and flow test data. We suggest water production at some distance from the CO₂ injection wells as a possible way to control the pore pressure. This method increases the potential for safe sequestration of CO₂ in the aquifer without losing integrity of the caprock and without any CO₂ leakage. The water produced from this aquifer is considerably less saline than seawater and could be a good water source for the desalination process, which is currently the main source of water in Qatar. The outcome of the desalination process is water with higher salinity than the seawater that is currently discharged into the sea. This discharge can have negative long-term environmental effects. The water produced from the Aruma aquifer is considerably less saline than seawater and can be a partial solution to this problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. The influence of ALN-Al gradient material gradient index on ballistic performance

    International Nuclear Information System (INIS)

    Wang Youcong; Liu Qiwen; Li Yao; Shen Qiang

    2013-01-01

    Ballistic performance of the gradient material is superior to laminated material, and gradient materials have different gradient types. Using ls-dyna to simulate the ballistic performance of ALN-AL gradient target plates which contain three gradient index (b = 1, b = 0.5, b = 2). Through Hopkinson bar numerical simulation to the target plate materials, we obtained the reflection stress wave and transmission stress wave state of gradient material to get the best gradient index. The internal stress state of gradient material is simulated by amplification processing of the target plate model. When the gradient index b is equal to 1, the gradient target plate is best of all.

  3. Colony size-frequency distribution of pocilloporid juvenile corals along a natural environmental gradient in the Red Sea

    KAUST Repository

    Lozano-Cortes, Diego

    2015-10-29

    Coral colony size-frequency distributions can be used to assess population responses to local environmental conditions and disturbances. In this study, we surveyed juvenile pocilloporids, herbivorous fish densities, and algal cover in the central and southern Saudi Arabian Red Sea. We sampled nine reefs with different disturbance histories along a north–south natural gradient of physicochemical conditions (higher salinity and wider temperature fluctuations in the north, and higher turbidity and productivity in the south). Since coral populations with negatively skewed size-frequency distributions have been associated with unfavorable environmental conditions, we expected to find more negative distributions in the southern Red Sea, where corals are potentially experiencing suboptimal conditions. Although juvenile coral and parrotfish densities differed significantly between the two regions, mean colony size and size-frequency distributions did not. Results suggest that pocilloporid colony size-frequency distribution may not be an accurate indicator of differences in biological or oceanographic conditions in the Red Sea.

  4. Colony size-frequency distribution of pocilloporid juvenile corals along a natural environmental gradient in the Red Sea.

    Science.gov (United States)

    Lozano-Cortés, Diego F; Berumen, Michael L

    2016-04-30

    Coral colony size-frequency distributions can be used to assess population responses to local environmental conditions and disturbances. In this study, we surveyed juvenile pocilloporids, herbivorous fish densities, and algal cover in the central and southern Saudi Arabian Red Sea. We sampled nine reefs with different disturbance histories along a north-south natural gradient of physicochemical conditions (higher salinity and wider temperature fluctuations in the north, and higher turbidity and productivity in the south). Since coral populations with negatively skewed size-frequency distributions have been associated with unfavorable environmental conditions, we expected to find more negative distributions in the southern Red Sea, where corals are potentially experiencing suboptimal conditions. Although juvenile coral and parrotfish densities differed significantly between the two regions, mean colony size and size-frequency distributions did not. Results suggest that pocilloporid colony size-frequency distribution may not be an accurate indicator of differences in biological or oceanographic conditions in the Red Sea. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Fish assemblages in coastal lagoons in land-uplift succession: The relative importance of local and regional environmental gradients

    Science.gov (United States)

    Snickars, Martin; Sandström, Alfred; Lappalainen, Antti; Mattila, Johanna; Rosqvist, Kajsa; Urho, Lauri

    2009-01-01

    The assemblages of young-of-the-year fish were studied in coastal lagoons in an archipelago with post-glacial land-uplift, which affects environmental gradients at local and regional scale, i.e. lagoon habitat isolation and archipelago position, respectively. The categorisation of 40 undisturbed lagoons into nine habitat types based on habitat isolation and archipelago position was supported by clear relationships with spring temperature and total fish abundance. Rutilus rutilus, breams ( Abramis/Blicca sp.) and Perca fluviatilis were the most abundant and frequently occurring species. The fish assemblage differed among the nine habitat types. Rutilus rutilus, P. fluviatilis and breams were discriminating species in the majority of habitat types with low physical harshness, whereas Alburnus alburnus and Gasterosteus aculeatus increased their contributions in habitat types with high physical harshness. Rutilus rutilus and breams were thus common in lagoons with high habitat isolation situated in the inner archipelago. These lagoons were characterised by warm water and high vegetation coverage. Gasterosteus aculeatus was restricted to lagoons with low habitat isolation and exposure and low vegetation coverage, situated in the outer archipelago. Perca fluviatilis had the widest distribution of all species. The coverage of two macrophytes, Potamogeton perfoliatus and Zannichellia palustris, and salinity matched best the distance among habitat types. These habitat characteristics, as well as the fish abundances and assemblages differed most across the habitat types in the outer and mid archipelago zones and in the lowest habitat isolation. These patterns suggest that the structuring effect of habitat isolation increases along the archipelago gradient as differences between local and regional conditions increase. In the inner archipelago, overall low physical harshness induces homogeneous conditions and the habitat isolation is less important here than in the other zones

  6. Gradient dissimilation in Mongolian: Implications for diachrony

    DEFF Research Database (Denmark)

    Jatteau, Adèle; Hejná, Michaela

    2018-01-01

    This paper explores the implications of ‘gradient dissimilation’ (Jatteau & Hejná 2016) for the diachronic implementation of dissimilation. Since this sound change is usually considered as typically sporadic, lexically regular cases should result from lexical diffusion. In contrast with this ass......This paper explores the implications of ‘gradient dissimilation’ (Jatteau & Hejná 2016) for the diachronic implementation of dissimilation. Since this sound change is usually considered as typically sporadic, lexically regular cases should result from lexical diffusion. In contrast...... with this assumption, we explore the hypothesis that gradient dissimilation may represent the phonetic precursor of completed, regular dissimilatory processes. Such cases of dissimilation might then be reanalysed as Neogrammarian types of change. To assess this question, we gather and analyse new data from Halh...... Mongolian, a language reported to show gradient dissimilation (Svantesson et al. 2005), and compare it to two completed patterns of dissimilation reconstructed within the Mongolic family: Mongolian Chahar and Monguor. The results suggest that the gradient dissimilation in Halh may represent the phonetic...

  7. Improving Tolerance of Faba Bean during Early Growth Stages to Salinity through Micronutrients Foliar Spray

    Directory of Open Access Journals (Sweden)

    Mohamed M. EL FOULY

    2010-06-01

    Full Text Available Salinity, either of soil or of irrigation water, causes disturbances in plant growth and nutrient balance. Previous work indicates that applying nutrients by foliar application increases tolerance to salinity. A pot experiment with three replicates was carried out in the green house of NRC, Cairo, Egypt, to study the effect of micronutrients foliar application on salt tolerance of faba bean. Two concentrations of a micronutrient compound (0.1% and 0.15% were sprayed in two different treatments prior to or after the salinity treatments. Levels of NaCl (0.00-1000-2000-5000 ppm were supplied to irrigation water. Results indicated that 2000 and 5000 ppm NaCl inhibited growth and nutrient uptake. Spraying micronutrients could restore the negative effect of salinity on dry weight and nutrients uptake, when sprayed either before or after the salinity treatments. It is suggested that micronutrient foliar sprays could be used to improve plant tolerance to salinity.

  8. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    International Nuclear Information System (INIS)

    Gustafsson, Bo G.

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m 3 /s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say ±1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m 3 /s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the shoreline

  9. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Bo G. [Oceanus Havsundersoekningar, Goeteborg (Sweden)

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m{sup 3}/s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say {+-}1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m{sup 3}/s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the

  10. Geochemical evolution of groundwater salinity at basin scale: a case study from Datong basin, Northern China.

    Science.gov (United States)

    Wu, Ya; Wang, Yanxin

    2014-05-01

    A hydrogeochemical investigation using integrated methods of stable isotopes ((18)O, (2)H), (87)Sr/(86)Sr ratios, Cl/Br ratios, chloride-mass balance, mass balance and hydrogeochemical modeling was conducted to interpret the geochemical evolution of groundwater salinity in Datong basin, northern China. The δ(2)H, δ(18)O ratios in precipitation exhibited a local meteoric water line of δ(2)H = 6.4 δ(18)O -5 (R(2) = 0.94), while those in groundwater suggested their meteoric origin in a historically colder climatic regime with a speculated recharge rate of less than 20.5 mm overall per year, in addition to recharge from a component of deep residual ancient lake water enriched with Br. According to the Sr isotope binary mixing model, the mixing of recharges from the Shentou karst springs (24%), the western margins (11%) and the eastern margins (65%) accounts for the groundwater from the deep aquifers of the down-gradient parts in the central basin is a possible mixing mechanism. In Datong, hydrolysis of silicate minerals is the most important hydrogeochemical process responsible for groundwater chemistry, in addition to dissolution of carbonate and evaporites. In the recharge areas, silicate chemical weathering is typically at the bisiallitization stage, while that in the central basin is mostly at the monosiallitization stage with limited evidence of being in equilibrium with gibbsite. Na exchange with bound Ca, Mg prevails at basin scale, and intensifies with groundwater salinity, while Ca, Mg exchange with bound Na locally occurs in the east pluvial and alluvial plains. Although groundwater salinity increases with the progress of water-rock/sediment interactions along the flow path, as a result of carbonate solubility control and continuous evapotranspiration, Na-HCO3 and Na-Cl-SO4 types of water are usually characterized respectively in the deep and the shallow aquifers of an inland basin with a silicate terrain in an arid climatic regime.

  11. Effect of saline loading on uranium-induced acute renal failure in rats

    International Nuclear Information System (INIS)

    Hishida, A.; Yonemura, K.; Ohishi, K.; Yamada, M.; Honda, N.

    1988-01-01

    Studies were performed to examine the effect of saline loading on uranium-induced acute renal failure (ARF) in rats. Forty-eight hours after the i.v. injection of uranyl acetate (UA, 5 mg/kg), inulin clearance rate (Cin) decreased to approximately 43% of the control value in water drinking rats (P less than 0.005). Animals receiving continuous isotonic saline infusion following UA showed higher urine flow and Cin (60% of control, P less than 0.01), and lessened intratubular cast formation when compared with water-drinking ARF rats. A short-term saline infusion following UA did not attenuate the decline in Cin (43% of control). An inverse relationship was found between Cin and the number of casts (r = -0.75, P less than 0.01). Multiple regression analysis showed that standardized partial regression coefficient is statistically significant between Cin and cast formation (-0.69, P less than 0.05), but not between Cin and tubular necrosis (-0.07, P greater than 0.05). Renin depletion caused by DOCA plus saline drinking did not attenuate the decline in Cin in ARF (47% of control). No significant difference was found in urinary uranium excretion between water-drinking and saline-infused ARF rats. The findings suggest that continuous saline infusion following UA attenuates the decline in Cin in ARF rats; and that this beneficial effect of saline loading is associated with lessened cast formation rather than with suppressed renin-angiotensin activity or enhanced urinary-uranium excretion

  12. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  13. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  14. Fire Regime Characteristics along Environmental Gradients in Spain

    Directory of Open Access Journals (Sweden)

    María Vanesa Moreno

    2016-11-01

    Full Text Available Concern regarding global change has increased the need to understand the relationship between fire regime characteristics and the environment. Pyrogeographical theory suggests that fire regimes are constrained by climate, vegetation and fire ignition processes, but it is not obvious how fire regime characteristics are related to those factors. We used a three-matrix approach with a multivariate statistical methodology that combined an ordination method and fourth-corner analysis for hypothesis testing to investigate the relationship between fire regime characteristics and environmental gradients across Spain. Our results suggest that fire regime characteristics (i.e., density and seasonality of fire activity are constrained primarily by direct gradients based on climate, population, and resource gradients based on forest potential productivity. Our results can be used to establish a predictive model for how fire regimes emerge in order to support fire management, particularly as global environmental changes impact fire regime characteristics.

  15. Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise.

    Science.gov (United States)

    Agha, Mickey; Ennen, Joshua R; Bower, Deborah S; Nowakowski, A Justin; Sweat, Sarah C; Todd, Brian D

    2018-03-25

    brackish water habitats are likely to be vulnerable to SLR because of their exclusive coastal distributions and adaptations to a narrow range of salinities. Most species, however, have not been documented in brackish water habitats but may also be highly vulnerable to projected SLR. Our analysis suggests that approximately 90% of coastal freshwater turtle species assessed in our study will be affected by a 1-m increase in global mean SLR by 2100. Most at risk are freshwater turtles found in New Guinea, Southeast Asia, Australia, and North and South America that may lose more than 10% of their present geographic range. In addition, turtle species in the families Chelidae, Emydidae, and Trionychidae may experience the greatest exposure to projected SLR in their present geographic ranges. Better understanding of survival, growth, reproductive and population-level responses to SLR will improve region-specific population viability predictions of freshwater turtles that are increasingly exposed to SLR. Integrating phylogenetic, physiological, and spatial frameworks to assess the effects of projected SLR may improve identification of vulnerable species, guilds, and geographic regions in need of conservation prioritization. We conclude that the use of brackish and marine environments by freshwater turtles provides clues about the evolutionary processes that have prolonged their existence, shaped their unique coastal distributions, and may prove useful in predicting their response to a changing world. © 2018 Cambridge Philosophical Society.

  16. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress

    KAUST Repository

    Takahashi, Fuminori

    2015-08-05

    Salinity stress has significant negative effects on plant biomass production and crop yield. Salinity tolerance is controlled by complex systems of gene expression and ion transport. The relationship between specific features of mild salinity stress adaptation and gene expression was analyzed using four commercial varieties of bread wheat (Triticum aestivum) that have different levels of salinity tolerance. The high-throughput phenotyping system in The Plant Accelerator at the Australian Plant Phenomics Facility revealed variation in shoot relative growth rate and salinity tolerance among the four cultivars. Comparative analysis of gene expression in the leaf sheaths identified genes whose functions are potentially linked to shoot biomass development and salinity tolerance. Early responses to mild salinity stress through changes in gene expression have an influence on the acquisition of stress tolerance and improvement in biomass accumulation during the early “osmotic” phase of salinity stress. In addition, results revealed transcript profiles for the wheat cultivars that were different from those of usual stress-inducible genes, but were related to those of plant growth. These findings suggest that, in the process of breeding, selection of specific traits with various salinity stress-inducible genes in commercial bread wheat has led to adaptation to mild salinity conditions.

  17. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress.

    Directory of Open Access Journals (Sweden)

    Fuminori Takahashi

    Full Text Available Salinity stress has significant negative effects on plant biomass production and crop yield. Salinity tolerance is controlled by complex systems of gene expression and ion transport. The relationship between specific features of mild salinity stress adaptation and gene expression was analyzed using four commercial varieties of bread wheat (Triticum aestivum that have different levels of salinity tolerance. The high-throughput phenotyping system in The Plant Accelerator at the Australian Plant Phenomics Facility revealed variation in shoot relative growth rate and salinity tolerance among the four cultivars. Comparative analysis of gene expression in the leaf sheaths identified genes whose functions are potentially linked to shoot biomass development and salinity tolerance. Early responses to mild salinity stress through changes in gene expression have an influence on the acquisition of stress tolerance and improvement in biomass accumulation during the early "osmotic" phase of salinity stress. In addition, results revealed transcript profiles for the wheat cultivars that were different from those of usual stress-inducible genes, but were related to those of plant growth. These findings suggest that, in the process of breeding, selection of specific traits with various salinity stress-inducible genes in commercial bread wheat has led to adaptation to mild salinity conditions.

  18. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress.

    Science.gov (United States)

    Takahashi, Fuminori; Tilbrook, Joanne; Trittermann, Christine; Berger, Bettina; Roy, Stuart J; Seki, Motoaki; Shinozaki, Kazuo; Tester, Mark

    2015-01-01

    Salinity stress has significant negative effects on plant biomass production and crop yield. Salinity tolerance is controlled by complex systems of gene expression and ion transport. The relationship between specific features of mild salinity stress adaptation and gene expression was analyzed using four commercial varieties of bread wheat (Triticum aestivum) that have different levels of salinity tolerance. The high-throughput phenotyping system in The Plant Accelerator at the Australian Plant Phenomics Facility revealed variation in shoot relative growth rate and salinity tolerance among the four cultivars. Comparative analysis of gene expression in the leaf sheaths identified genes whose functions are potentially linked to shoot biomass development and salinity tolerance. Early responses to mild salinity stress through changes in gene expression have an influence on the acquisition of stress tolerance and improvement in biomass accumulation during the early "osmotic" phase of salinity stress. In addition, results revealed transcript profiles for the wheat cultivars that were different from those of usual stress-inducible genes, but were related to those of plant growth. These findings suggest that, in the process of breeding, selection of specific traits with various salinity stress-inducible genes in commercial bread wheat has led to adaptation to mild salinity conditions.

  19. Are Low Salinity Waters the Remedy to Noctiluca scintillans Blooms in the Arabian Sea?

    Science.gov (United States)

    Gibson, J.

    2017-12-01

    Noctiluca scintillans (Noctiluca) is a mixotrophic, green dinoflagellate that for the past two decades has been producing problematic algal blooms in the Arabian Sea (AS). As a mixotroph, Noctiluca obtains energy from both consumption of phytoplankton as well as its intracellular photosynthesizing endosymbionts named, Pedinomonas noctilucae. It is this autotrophic and heterotrophic dual capability that has largely enabled Noctiluca to be a highly dominant species at the planktonic trophic layer in the AS. Exacerbated by non-point source/point-source pollution in the AS, ocean acidification, and intensified monsoons, Noctiluca currently algal blooms can be as big as three times the size of Texas. By depleting the AS of oxygen, clogging the gills of fish, and altering the AS food web, these algal blooms result in mass fish die offs. In turn this propagates financial and food insecurity issues in countless coastal communities. However, through satellite imaging over the years, it has been observed that the proliferation of Noctiluca is precluded or encounters a "wall" about mid-way along the west coast of India. It is theorized that this "wall" is due to a significant change in salinity. Snow from atop the Himalayan Mountains melts and adds fresh water to the Bay of Bengal (BB), and in winter the East Indian Coastal Current (EICC) carries this fresher water around the southern tip of India and towards the AS. It is believed that this dilution effect impedes the growth of Noctiluca further south. Ultimately, in this study the salinity gradient from the Bay of Bengal (BB) around the horn of India into the AS was replicated in six pairs of culture bottles. Noctiluca was grown in six different salinities including 26, 28, 30, 32, 34, and 38 psu. Algae grown in the 34 and 38 psu bottles, were healthier and 38 psu treated Noctiluca provided optimal conditions for its photosynthesizing endosymbionts. Noctiluca does not grow well at lower salinities, thus applications of low

  20. Enhanced Resolution for Aquarius Salinity Retrieval near Land-Water Boundaries

    Science.gov (United States)

    Utku, Cuneyt; Le Vine, David M.

    2014-01-01

    A numerical reconstruction of the brightness temperature is examined as a potential way to improve the retrieval of salinity from Aquarius measurements closer to landwater boundaries. A test case using simulated ocean-land scenes suggest promise for the technique.

  1. MR imaging of articular cartilage : comparison of magnetization transfer contrast and fat-suppression in multiplanar and 3D gradient-echo, spin-echo, turbo spin-echo techniques

    International Nuclear Information System (INIS)

    Lee, Young Joon; Joo, Eun Young; Eun, Choong Ki

    1999-01-01

    The purpose of this study was to evaluate the effects of magnetization transfer contrast(MTC) and fat-suppression(FS) in variable spin-echo and gradient-echo sequences for articular cartilage imaging and to determine the optimal pulse sequences. Using variable 7-pulse sequences, the knees of 15 pigs were imaged Axial images were obtained using proton density and T2-weighted spin-echo (PDWSE and T2WSE), turbo spin-echo (TSE), multiplanar gradient-echo (MPGR), and 3D steady-state gradient-echo (3DGRE) sequences, and the same pulse sequences were then repeated using MTC. Also T1-weighted spin-echo(T1WSE) and 3D spoiled gradient-echo(3DSPGR) images of knees were also acquired, and the procedure was repeated using FS. For each knee, a total of 14 axial images were acquired, and using a 6-band scoring system, the visibility of and the visibilities of the the articular cartilage was analyzed. The visual effect of MTC and FS was scored using a 4-band scale. For each image, the signal intensities of articular cartilage, subchondral bone, muscles, and saline were measured, and signal-to-noise ratios(SNR) and contrast-to-noise ratios(CNR) were also calculated. Visibility of the cartilage was best when 3DSPGR and T1WSE sequences were used. MTC imaging increased the negative contrast between cartilage and saline, but FS imaging provided more positive contrast. CNR between cartilage and saline was highest when using TSE with FS(-351.1±15.3), though CNR between cartilage and bone then fell to -14.7±10.8. In MTC imaging using MPGR showed the greatest increase of negative contrast between cartilage and saline(CNR change=-74.7); the next highest was when 3DGRE was used(CNR change=-34.3). CNR between cartilage and bone was highest with MPGR(161.9±17.7), but with MTC, the greatest CNR decrease(-81.8) was observed. The greatest CNR increase between cartilage and bone was noted in T1WSE with FS. In all scans, FS provided a cartilage-only positive contrast image, though the absolute

  2. Gradient waveform synthesis for magnetic propulsion using MRI gradient coils

    International Nuclear Information System (INIS)

    Han, B H; Lee, S Y; Park, S

    2008-01-01

    Navigating an untethered micro device in a living subject is of great interest for both diagnostic and therapeutic applications. Magnetic propulsion of an untethered device carrying a magnetic core in it is one of the promising methods to navigate the device. MRI gradients coils are thought to be suitable for navigating the device since they are capable of magnetic propulsion in any direction while providing magnetic resonance images. For precise navigation of the device, especially in the peripheral region of the gradient coils, the concomitant gradient fields, as well as the linear gradient fields in the main magnetic field direction, should be considered in driving the gradient coils. For simple gradient coil configurations, the Maxwell coil in the z-direction and the Golay coil in the x- and y-directions, we have calculated the magnetic force fields, which are not necessarily the same as the conventional linear gradient fields of MRI. Using the calculated magnetic force fields, we have synthesized gradient waveforms to navigate the device along a desired path

  3. Salinity Effects on Photosynthesis, Carbon Allocation, and Nitrogen Assimilation in the Red Alga, Gelidium coulteri1

    Science.gov (United States)

    Macler, Bruce A.

    1988-01-01

    The long-term effects of altered salinities on the physiology of the intertidal red alga Gelidium coulteri Harv. were assessed. Plants were transfered from 30 grams per liter salinity to media with salinities from 0 to 50 grams per liter. Growth rate, agar, photosynthesis, respiration, and various metabolites were quantified after 5 days and 5 weeks adaptation. After 5 days, growth rates were lower for plants at all altered salinities. Growth rates recovered from these values with 5 weeks adaptation, except for salinities of 10 grams per liter and below, where tissues bleached and died. Photosynthetic O2 evolution was lower than control values at both higher and lower salinities after 5 days and did not change over time. Carbon fixation at the altered salinities was unchanged after 5 days, but decreased below 25 grams per liter and above 40 grams per liter after 5 weeks. Respiration increased at lower salinities. Phycobili-protein and chlorophyll were lower for all altered salinities after 5 days. These decreases continued at lower salinities, then were stable after 5 weeks. Chlorophyll recovered over time at higher salinities. Decreases in protein at lower salinities were quantitatively attributable to phycobili-protein loss. Total N levels and C:N ratios were nearly constant across all salinities tested. Carbon flow into glutamate and aspartate decreased with both decreasing and increasing salinities. Glycine, serine, and glycolate levels increased with both increasing and decreasing salinity, indicating a stimulation of photorespiration. The cell wall component agar increased with decreasing salinity, although biosynthesis was inhibited at both higher and lower salinities. The storage compound floridoside increased with increasing salinity. The evidence suggests stress responses to altered salinities that directly affected photosynthesis, respiration, and nitrogen assimilation and indirectly affected photosynthate flow. At low salinities, respiration and

  4. Response of Chlorophyll, Carotenoid and SPAD-502 Measurement to Salinity and Nutrient Stress in Wheat (Triticum aestivum L.)

    KAUST Repository

    Shah, Syed Haleem

    2017-09-12

    .85) was determined based on a large (n = 277) dataset. We demonstrate that the SPAD-502 readings and plant photosynthetic pigment content per-leaf area are profoundly affected by salinity and nutrient stress, but that the general form of their relationship remains largely unaffected by the stress. As such, a generalized regression model can be used for Chlt and Ct estimation, even across a range of salinity and fertilizer gradients.

  5. Understanding the apparent diffusivity of Sr-85 ion for MX-80 in different salinity condition at low dry density

    International Nuclear Information System (INIS)

    Ahmad Hasnulhadi Che Kamaruddin

    2012-01-01

    The apparent diffusivity of strontium-85 in the compacted MX-80 bentonite under different salinity conditions and dry densities was conducted were studied from the viewpoint of activation energy. Through in-diffusions experiments the effect of salinity on diffusion behavior of Sr-85 ions can also can be explained. As we know, Sr-90 is by product of the fission materials of nuclear wastes and should be manage properly. Sr-85 is radioactive isotope with the same chemical properties of Sr-90. Adsorption affects only non-steady-state diffusion while at the steady state (e.g., a constant concentration gradient between a constant source and a constant sink), there is no net uptake or release by adsorption, so adsorption has no effect on diffusion (Drever, James I., 1997). The changes in the basal spacing of bentonite as a function of salinity are needed to be observed by the X-ray diffraction method to understand the microstructure changes in diffusion pathways for Sr-85 in MX-80 bentonite. As we know, there could be three potential pathways for radionuclide diffusion in solution-saturated, compacted montmorillonite, i.e., pore water, external surfaces and the internal surface (interlayer spaces) of montmorillonite aggregates (Kozaki et al., 2008). So, it is important to understand the diffusion processes in term of apparent diffusivity of Sr-85 ions in different salinity concentration at low dry density of MX-80. Several parameters are needed in explaining the process such as dry density, activation energy, temperature dependence and concentration of the salinity solutions. (author)

  6. Effect of saline stress on plasma membrane structure and function of barley roots

    International Nuclear Information System (INIS)

    Rahmani, F. H.

    2000-01-01

    Barely (Hordeum vulgare L. c v. Black Local) plants were grown hydroponic ally under different saline stresses (50, 100, 150 And 200 mm NaCI. The adverse effect of each saline stress on the structure and function of root cells plasma membrane was studied in terms of root surface ATPase activation by NaCI in the reaction mixture. Was 0, 50, 100. 150 and 200mM. ATPase activity was found to be increased gradually at certain concentrations of NaCI. For control and 50mM stressed plants, the increase in root surface ATPase activity was started at 150mM NaCI. For 100mM stressed plants it was started at 100mM NaCI. For 150 and 200mM stressed plants it was stated at 50mM NaCI Results indicated that the adverse effect of the growth medium saline stresses on the integrity of the plasma membrane was started at 100mM saline stress. Accordingly the role of plasma membrane bound ATPase in active ion transport was disturbed at 100mM saline stress and may be impaired at 150 and 200mM saline stresses. It was suggested that the lipid environment of the plasma membrane surrounding ATPase was modified by the saline stresses 100-200mM. (author). 38 refs., 2 figs., 2 tabs

  7. Evidence for Upward Flow of Saline Water from Depth into the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    Science.gov (United States)

    Larsen, D.; Paul, J.

    2017-12-01

    Groundwater salinization is occurring in the Mississippi River Valley Alluvial (MRVA) aquifer in southeastern Arkansas (SE AR). Water samples from the MRVA aquifer in Chicot and Desha counties have yielded elevated Cl-concentrations with some as high as 1,639 mg/L. Considering that the MRVA aquifer is the principle source of irrigation water for the agricultural economy of SE AR, salinization needs to be addressed to ensure the sustainability of crop, groundwater, and soil resources in the area. The origin of elevated salinity in MRVA aquifer was investigated using spatial and factor analysis of historical water quality data, and sampling and tracer analysis of groundwater from irrigation, municipal, and flowing industrial wells in SE AR. Spatial analysis of Cl- data in relation to soil type, geomorphic features and sand-blow density indicate that the Cl- anomalies are more closely related to the sand-blow density than soil data, suggesting an underlying tectonic control for the distribution of salinity. Factor analysis of historical geochemical data from the MRVA and underlying Sparta aquifer shows dilute and saline groups, with saline groups weighted positively with Cl- or Na+ and Cl-. Tracer data suggest a component of evaporatively evolved crustal water of pre-modern age has mixed with younger, fresher meteoric sources in SE AR to create the saline conditions in the MRVA aquifer. Stable hydrogen and oxygen values of waters sampled from the Tertiary Sparta and MRVA aquifers deviate from the global and local meteoric water lines along an evaporative trend (slope=4.4) and mixing line with Eocene Wilcox Group groundwaters. Ca2+ and Cl- contents vary with Br- along mixing trends between dilute MRVA water and Jurassic Smackover Formation pore fluids in southern AR. Increasing Cl- content with C-14 age in MRVA aquifer groundwater suggests that the older waters are more saline. Helium isotope ratios decrease with He gas content for more saline water, consistent with

  8. Variation of Archaeal Populations Along a Salinity Gradient in the Pearl River Estuary, China: Implications for Synergy Between Different Metabolic Processes

    Science.gov (United States)

    Zhang, C.

    2016-02-01

    Marine archaea mainly include marine group I (MGI) that function as chemolithoautotrophs growing on ammonia and marine group II (MGII) that live heterotrophically. In this study, we quantified the abundance of MGI (represented by archaeal amoA gene) and MGII (16S rRNA gene) using qPCR in the water column of different salinities (A: 0.8‰; B: 18.1‰; C: 23.9‰: D: 31‰) in the Pearl River Estuary over a 12-month period. The results showed that the abundance of MG II in site C (8.5±10.1×107 copies/L) was significantly higher than the other three sites (A: 3.5±8.8×105 copies/L; B: 2.7±4.5×107 copies/L; D: 2.2±4.4×107 copies/L) in all seasons, indicating the perennial blooming of MGII that might be due to the optimal combination of available organic carbon and salinity at this site. We also observed that the correlation between MGI and MGII became better toward the marine water and was significant at site D (R2: A, 0.06; B, 0.1; C, 0.24; D, 0.64), indicating the potential functional relationship between them with increasing salinity. This allows us to hypothesize that the growth of MGI in the coastal site is more dependent on release of ammonia from organic matter degradation by MGII and other heterotrophic organisms. The Pearl River Estuary may be an ideal environment for testing this hypothesis, which may provide insight into the mechanisms of carbon cycle performed by different archaea in continental margin systems.

  9. The Effects of High Salinity Groundwater on the Performance of Clay Barriers

    International Nuclear Information System (INIS)

    Savage, David

    2005-08-01

    Potential changes in groundwater chemistry during the operational or post-closure periods of the Swedish repository for spent fuel could affect the performance of both the bentonite buffer and repository backfill. For example, the up-coning of saline groundwater could lead to decreased swelling pressures in both the bentonite buffer and tunnel backfills, and could also induce 'piping'. SKB is considering these issues as part of its 'SR-Can' safety assessment. This report reviews evidence for the behaviour of swelling clays in groundwaters of varying salinity with special relevance to the SKB programme. Smectite clays can absorb water into clay inter-layers with the most important parameters being: the surface density of charge of the clay; the charge and solvation behaviour of the inter-layer ions; and the electrolyte concentration or activity of water. Two categories of swelling are generally observed: innercrystalline swelling caused by the hydration of the exchangeable cations in the dry clay; and osmotic swelling, resulting from concentration gradients in ion concentrations between clay surfaces and pore water. Several models exist to interpret and predict the swelling behaviour of clays. SKB currently prefer an interpretation of clay swelling pressure where clay particles are viewed as 'macro-ions' and the entire clay-water system can be considered as a 'polyelectrolyte'. SKB use the term 'Donnan exclusion' to estimate the amount of introduced ions into the clay and hence the amount of reduced swelling pressure due to contact with a saline solution. Donnan exclusion is the process whereby the migration of anions through the narrow aqueous film surrounding clay platelets is restricted due to the repulsion by the negative charge of the clay platelets. SKB's experimental work shows that: There is an exponential relation between swelling pressure and mean basal interlamellar spacing of the clay. Ions from the external electrolyte solution enter the clay volume

  10. The Effects of High Salinity Groundwater on the Performance of Clay Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David [Quintessa Ltd., Nottingham (United Kingdom)

    2005-07-01

    Potential changes in groundwater chemistry during the operational or post-closure periods of the Swedish repository for spent fuel could affect the performance of both the bentonite buffer and repository backfill. For example, the up-coning of saline groundwater could lead to decreased swelling pressures in both the bentonite buffer and tunnel backfills, and could also induce 'piping'. SKB is considering these issues as part of its 'SR-Can' safety assessment. This report reviews evidence for the behaviour of swelling clays in groundwaters of varying salinity with special relevance to the SKB programme. Smectite clays can absorb water into clay inter-layers with the most important parameters being: the surface density of charge of the clay; the charge and solvation behaviour of the inter-layer ions; and the electrolyte concentration or activity of water. Two categories of swelling are generally observed: innercrystalline swelling caused by the hydration of the exchangeable cations in the dry clay; and osmotic swelling, resulting from concentration gradients in ion concentrations between clay surfaces and pore water. Several models exist to interpret and predict the swelling behaviour of clays. SKB currently prefer an interpretation of clay swelling pressure where clay particles are viewed as 'macro-ions' and the entire clay-water system can be considered as a 'polyelectrolyte'. SKB use the term 'Donnan exclusion' to estimate the amount of introduced ions into the clay and hence the amount of reduced swelling pressure due to contact with a saline solution. Donnan exclusion is the process whereby the migration of anions through the narrow aqueous film surrounding clay platelets is restricted due to the repulsion by the negative charge of the clay platelets. SKB's experimental work shows that: There is an exponential relation between swelling pressure and mean basal interlamellar spacing of the clay. Ions from the

  11. COMPARATIVE EFFICACY OF HYPERTONIC SALINE AND NORMAL SALINE SOLUTIONS IN EXPERIMENTALLY INDUCED ENDOTOXIC SHOCK IN DOGS

    Directory of Open Access Journals (Sweden)

    M. A. ZAFAR, G. MUHAMMAD, M. H. HUSSAIN, T. AHMAD, A. YOUSAF AND I. SARFARAZ

    2009-07-01

    Full Text Available This study was contemplated to determine the comparative beneficial effects of hypertonic saline solution and sterile saline solution in induced endotoxic shock in dogs. For this purpose, 12 healthy Mongrel dogs were randomly divided into two equal groups (A and B. All the animals were induced endotoxaemia by slow intravenous administration of Escherichia coli endotoxins 0111:B4. Group A was treated with normal saline solution @ 90 ml/kg BW, while group B was given hypertonic saline solution @ 4 ml/kg BW, followed by normal saline solution @ 10 ml/kg BW. Different parameters were observed for evaluation of these fluids including clinical and haematological parameters, serum electrolytes, mean arterial pressure, and blood gases at different time intervals up to 24 hours post treatments. After infusion of respective fluids, all parameters returned to baseline values in both the groups but group B showed better results than group A except bicarbonates, which better recovered in group A. Thus, it was concluded that a small-volume of hypertonic saline solution could be effectively used in reversing the endotoxaemia. Moreover, it provides a rapid and inexpensive resuscitation from endotoxic shock.

  12. Calibration of a rotating accelerometer gravity gradiometer using centrifugal gradients

    Science.gov (United States)

    Yu, Mingbiao; Cai, Tijing

    2018-05-01

    The purpose of this study is to calibrate scale factors and equivalent zero biases of a rotating accelerometer gravity gradiometer (RAGG). We calibrate scale factors by determining the relationship between the centrifugal gradient excitation and RAGG response. Compared with calibration by changing the gravitational gradient excitation, this method does not need test masses and is easier to implement. The equivalent zero biases are superpositions of self-gradients and the intrinsic zero biases of the RAGG. A self-gradient is the gravitational gradient produced by surrounding masses, and it correlates well with the RAGG attitude angle. We propose a self-gradient model that includes self-gradients and the intrinsic zero biases of the RAGG. The self-gradient model is a function of the RAGG attitude, and it includes parameters related to surrounding masses. The calibration of equivalent zero biases determines the parameters of the self-gradient model. We provide detailed procedures and mathematical formulations for calibrating scale factors and parameters in the self-gradient model. A RAGG physical simulation system substitutes for the actual RAGG in the calibration and validation experiments. Four point masses simulate four types of surrounding masses producing self-gradients. Validation experiments show that the self-gradients predicted by the self-gradient model are consistent with those from the outputs of the RAGG physical simulation system, suggesting that the presented calibration method is valid.

  13. On fracture in finite strain gradient plasticity

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; Niordson, Christian Frithiof

    2016-01-01

    In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields are invest......In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields...... are investigated. Differences and similarities between the two approaches within continuum SGP modeling are highlighted and discussed. Local strain hardening promoted by geometrically necessary dislocations (GNDs) in the vicinity of the crack leads to much higher stresses, relative to classical plasticity...... in the multiple parameter version of the phenomenological SGP theory. Since this also dominates the mechanics of indentation testing, results suggest that length parameters characteristic of mode I fracture should be inferred from nanoindentation....

  14. Gypsum Formation during the Messinian Salinity Crisis: an Alternative Model

    Science.gov (United States)

    Grothe, A.; Krijgsman, W.; Sangiorgi, F.; Vasiliev, I.; Baak, C. V.; Wolthers, M.; Stoica, M.; Reichart, G. J.; Davies, G.

    2016-12-01

    During the Messinian Salinity Crisis (MSC; 5.97 - 5.33 Myr ago), thick packages of evaporites (gypsum and halite) were deposited in the Mediterranean Basin. Traditionally, the occurrence of these evaporites is explained by the so-called "desiccation-model", in which evaporites are considered to result from a (partly) desiccated basin. In the last decade, it was thought that changes in the Mediterranean-Atlantic connectivity could explain the formation of gypsum. Stable isotope studies, however, show that the gypsum formed under influence of large freshwater input. Here we present new strontium isotope data from two well-dated Messinian sections in the Black and Caspian Seas. Our Sr isotope records suggest a persistent Mediterranean-Black Sea connection throughout the salinity crisis, which implies a large additional freshwater source to the Mediterranean. We claim that low saline waters from the Black Sea region are a prerequisite for gypsum formation in the Mediterranean and speculate about the mechanisms explaining this apparent paradox.

  15. Modeling daily soil salinity dynamics in response to agricultural and environmental changes in coastal Bangladesh

    Science.gov (United States)

    Payo, Andrés.; Lázár, Attila N.; Clarke, Derek; Nicholls, Robert J.; Bricheno, Lucy; Mashfiqus, Salehin; Haque, Anisul

    2017-05-01

    Understanding the dynamics of salt movement in the soil is a prerequisite for devising appropriate management strategies for land productivity of coastal regions, especially low-lying delta regions, which support many millions of farmers around the world. At present, there are no numerical models able to resolve soil salinity at regional scale and at daily time steps. In this research, we develop a novel holistic approach to simulate soil salinization comprising an emulator-based soil salt and water balance calculated at daily time steps. The method is demonstrated for the agriculture areas of coastal Bangladesh (˜20,000 km2). This shows that we can reproduce the dynamics of soil salinity under multiple land uses, including rice crops, combined shrimp and rice farming, as well as non-rice crops. The model also reproduced well the observed spatial soil salinity for the year 2009. Using this approach, we have projected the soil salinity for three different climate ensembles, including relative sea-level rise for the year 2050. Projected soil salinity changes are significantly smaller than other reported projections. The results suggest that inter-season weather variability is a key driver of salinization of agriculture soils at coastal Bangladesh.

  16. Trophic structure and avian communities across a salinity gradient in evaporation ponds of the San Francisco Bay estuary

    Science.gov (United States)

    Takekawa, John Y.; Miles, A.K.; Schoellhamer, D.H.; Athearn, N.D.; Saiki, M.K.; Duffy, W.D.; Kleinschmidt, S.; Shellenbarger, G.G.; Jannusch, C.A.

    2006-01-01

    Commercial salt evaporation ponds comprise a large proportion of baylands adjacent to the San Francisco Bay, a highly urbanized estuary. In the past two centuries, more than 79% of the historic tidal wetlands in this estuary have been lost. Resource management agencies have acquired more than 10 000 ha of commercial salt ponds with plans to undertake one of the largest wetland restoration projects in North America. However, these plans have created debate about the ecological importance of salt ponds for migratory bird communities in western North America. Salt ponds are unique mesohaline (5–18 g l−1) to hyperhaline (> 40 g l−1) wetlands, but little is known of their ecological structure or value. Thus, we studied decommissioned salt ponds in the North Bay of the San Francisco Bay estuary from January 1999 through November 2001. We measured water quality parameters (salinity, DO, pH, temperature), nutrient concentrations, primary productivity, zooplankton, macroinvertebrates, fish, and birds across a range of salinities from 24 to 264 g l−1. Our studies documented how unique limnological characteristics of salt ponds were related to nutrient levels, primary productivity rates, invertebrate biomass and taxa richness, prey fish, and avian predator numbers. Salt ponds were shown to have unique trophic and physical attributes that supported large numbers of migratory birds. Therefore, managers should carefully weigh the benefits of increasing habitat for native tidal marsh species with the costs of losing these unique hypersaline systems.

  17. Gradient pattern analysis applied to galaxy morphology

    Science.gov (United States)

    Rosa, R. R.; de Carvalho, R. R.; Sautter, R. A.; Barchi, P. H.; Stalder, D. H.; Moura, T. C.; Rembold, S. B.; Morell, D. R. F.; Ferreira, N. C.

    2018-06-01

    Gradient pattern analysis (GPA) is a well-established technique for measuring gradient bilateral asymmetries of a square numerical lattice. This paper introduces an improved version of GPA designed for galaxy morphometry. We show the performance of the new method on a selected sample of 54 896 objects from the SDSS-DR7 in common with Galaxy Zoo 1 catalogue. The results suggest that the second gradient moment, G2, has the potential to dramatically improve over more conventional morphometric parameters. It separates early- from late-type galaxies better (˜ 90 per cent) than the CAS system (C˜ 79 per cent, A˜ 50 per cent, S˜ 43 per cent) and a benchmark test shows that it is applicable to hundreds of thousands of galaxies using typical processing systems.

  18. Effects of salinity and flooding on seedlings of cabbage palm (Sabal palmetto).

    Science.gov (United States)

    Perry, L; Williams, K

    1996-03-01

    water may play a role in the mortality of cabbage palm seedlings in the field. The salinity range in which plant performance plummeted in the greenhouse was consistent with the salinity difference found between our two coastal study sites, suggesting that variation in tidal water salinity along the coast plays an important role in the ability of cabbage palm seedlings to withstand tidal flooding.

  19. Identifying change in spatial accumulation of soil salinity in an inland river watershed, China.

    Science.gov (United States)

    Wang, Yugang; Deng, Caiyun; Liu, Yan; Niu, Ziru; Li, Yan

    2018-04-15

    Soil salinity accumulation is strong in arid areas and it has become a serious environmental problem. Knowledge of the process and spatial changes of accumulated salinity in soil can provide an insight into the spatial patterns of soil salinity accumulation. This is especially useful for estimating the spatial transport of soil salinity at the watershed scale. This study aimed to identify spatial patterns of salt accumulation in the top 20cm soils in a typical inland watershed, the Sangong River watershed in arid northwest China, using geostatistics, spatial analysis technology and the Lorenz curve. The results showed that: (1) soil salt content had great spatial variability (coefficient variation >1.0) in both in 1982 and 2015, and about 56% of the studied area experienced transition the degree of soil salt content from one class to another during 1982-2015. (2) Lorenz curves describing the proportions of soil salinity accumulation (SSA) identified that the boundary between soil salinity migration and accumulation regions was 24.3m lower in 2015 than in 1982, suggesting a spatio-temporal inequality in loading of the soil salinity transport region, indicating significant migration of soil salinity from the upstream to the downstream watershed. (3) Regardless of migration or accumulation region, the mean value of SSA per unit area was 0.17kg/m 2 higher in 2015 than 1982 (pwatershed during the studied period in the arid northwest of China. This study demonstrates the spatial patterns of soil salinity accumulation, which is particularly useful for estimating the spatial transport of soil salinity at the watershed scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Economic gradients in early child neurodevelopment: A multi-country study

    Science.gov (United States)

    Wehby, George L.; McCarthy, Ann Marie

    2013-01-01

    Little is known about the importance of household wealth for child neurodevelopment very early in life including during infancy. Previous studies have focused on specific developmental domains instead of more holistic multi-domain measures of neurodevelopment and on economic effects for the “average” child instead of evaluating the heterogeneity in economic gradients by different levels of developmental ability. Furthermore, not much is known about whether economic gradients in early child neurodevelopment are country-specific or generalizable between populations. We evaluate wealth gradients in child neurodevelopment, an important predictor of future health and human capital, between ages 3 and 24 months in four South American countries. We also assess the heterogeneity in these gradients at different locations of the neurodevelopment distribution using quantile regression. Employing a unique dataset of 2032 children with neurodevelopment measures obtained by physicians in 2005–2006, we find a large positive wealth gradient in neurodevelopment in Brazil. The wealth gradient is larger for children at higher neurodevelopment rankings, suggesting that wealth is associated with child development inequalities in the form of a wider gap between low and high achievers on neurodevelopment in Brazil. This result highlights the need to target poverty in Brazil as a key factor in health and human capital disparities earlier in life rather than later as early developmental deficits will be carried forward and possibly multiplied later in life. More importantly, small or insignificant wealth gradients are generally found in the other countries. These results suggest that wealth gradients in child neurodevelopment are country-specific and vary with population demographic, health, and socioeconomic characteristics. Therefore, findings from previous studies based on specific populations may not be generalizable to other countries. Furthermore, wealth gradients in child

  1. Last Glacial Maximum Salinity Reconstruction

    Science.gov (United States)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  2. Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.

    Science.gov (United States)

    Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S

    2004-01-01

    MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths. Copyright 2003 Wiley-Liss, Inc.

  3. Reduced salinity increases susceptibility of zooxanthellate jellyfish to herbicide toxicity during a simulated rainfall event

    International Nuclear Information System (INIS)

    Klein, Shannon G.; Pitt, Kylie A.; Carroll, Anthony R.

    2016-01-01

    Accurately predicting how marine biota are likely to respond to changing ocean conditions requires accurate simulation of interacting stressors, exposure regimes and recovery periods. Jellyfish populations have increased in some parts of the world and, despite few direct empirical tests, are hypothesised to be increasing because they are robust to a range of environmental stressors. Here, we investigated the effects of contaminated runoff on a zooxanthellate jellyfish by exposing juvenile Cassiopea sp. medusae to a photosystem II (PSII) herbicide, atrazine and reduced salinity conditions that occur following rainfall. Four levels of atrazine (0ngL"−"1, 10ngL"−"1, 2μgL"−"1, 20μgL"−"1) and three levels of salinity (35 ppt, 25 ppt, 17 ppt) were varied, mimicking the timeline of light, moderate and heavy rainfall events. Normal conditions were then slowly re-established over four days to mimic the recovery of the ecosystem post-rain and the experiment continued for a further 7 days to observe potential recovery of the medusae. Pulse-amplitude modulated (PAM) chlorophyll fluorescence, growth and bell contraction rates of medusae were measured. Medusae exposed to the combination of high atrazine and lowest salinity died. After 3 days of exposure, bell contraction rates were reduced by 88% and medusae were 16% smaller in the lowest salinity treatments. By Day 5 of the experiment, all medusae that survived the initial pulse event began to recover quickly. Although atrazine decreased YII under normal salinity conditions, YII was further reduced when medusae were exposed to both low salinity and atrazine simultaneously. Atrazine breakdown products were more concentrated in jellyfish tissues than atrazine at the end of the experiment, suggesting that although bioaccumulation occurred, atrazine was metabolised. Our results suggest that reduced salinity may increase the susceptibility of medusae to herbicide exposure during heavy rainfall events. - Highlights:

  4. Effect of elevated pCO2 on metabolic responses of porcelain crab (Petrolisthes cinctipes) Larvae exposed to subsequent salinity stress.

    Science.gov (United States)

    Miller, Seth H; Zarate, Sonia; Smith, Edmund H; Gaylord, Brian; Hosfelt, Jessica D; Hill, Tessa M

    2014-01-01

    Future climate change is predicted to alter the physical characteristics of oceans and estuaries, including pH, temperature, oxygen, and salinity. Investigating how species react to the influence of such multiple stressors is crucial for assessing how future environmental change will alter marine ecosystems. The timing of multiple stressors can also be important, since in some cases stressors arise simultaneously, while in others they occur in rapid succession. In this study, we investigated the effects of elevated pCO2 on oxygen consumption by larvae of the intertidal porcelain crab Petrolisthes cinctipes when exposed to subsequent salinity stress. Such an exposure mimics how larvae under future acidified conditions will likely experience sudden runoff events such as those that occur seasonally along portions of the west coast of the U.S. and in other temperate systems, or how larvae encounter hypersaline waters when crossing density gradients via directed swimming. We raised larvae in the laboratory under ambient and predicted future pCO2 levels (385 and 1000 µatm) for 10 days, and then moved them to seawater at ambient pCO2 but with decreased, ambient, or elevated salinity, to monitor their respiration. While larvae raised under elevated pCO2 or exposed to stressful salinity conditions alone did not exhibit higher respiration rates than larvae held in ambient conditions, larvae exposed to elevated pCO2 followed by stressful salinity conditions consumed more oxygen. These results show that even when multiple stressors act sequentially rather than simultaneously, they can retain their capacity to detrimentally affect organisms.

  5. Holocene paleoclimate inferred from salinity histories of adjacent lakes in southwestern Sicily (Italy)

    Science.gov (United States)

    Curry, B Brandon; Henne, Paul; Mezquita-Joanes, Francesc; Marrone, Federico; Pieri, Valentina; La Mantia, Tommaso; Calo, Camilla; Tinner, Willy

    2016-01-01

    Marked uncertainties persist regarding the climatic evolution of the Mediterranean region during the Holocene. For instance, whether moisture availability gradually decreased, remained relatively constant, or increased during the last 7000 years remains a matter of debate. To assess Holocene limnology, hydrology and moisture dynamics, the coastal lakes Lago Preola and Gorgo Basso, located in southwestern Sicily, were investigated through several stratigraphic analyses of ostracodes, including multivariate analyses of assemblages, transfer functions of salinity, and biochemical analyses of valves (Sr/Ca, δ18O and δ13C). During the early Holocene, the Gorgo Basso and Lago Preola ostracode records are similar. After an initial period of moderate salinity (1690–6100 mg/l from ca. 10,000–8190 cal yr BP), syndepositional or diagenetic dissolution of ostracode valves suggests that salinity declined to Greek civilization took root in Sicily (2600 cal yr BP), and it completely dominates the record during Roman occupation (roughly 2100 to 1700 cal yr BP). These freshwater conditions at Gorgo Basso suggest high effective moisture when evergreen olive-oak forests collapsed in response to increased Greco-Roman land use and fire. Ostracode valve geochemistry (Sr/Ca, δ18O) suggests significant changes in early vs. late Holocene hydrochemistry, either as changes in salinity or in the seasonality of precipitation. Harmonizing the autecological and geochemical data from Gorgo Basso suggests the latter was more likely, with relatively more late Holocene precipitation falling during the spring, summer, and fall, than winter compared to the early Holocene. Our ostracode-inferred paleosalinity data indicate that moisture availability did not decline during the late Holocene in the central Mediterranean region. Instead, moisture availability was lowest during the early Holocene, and most abundant during the late Holocene.

  6. Spatial and seasonal distribution of carbon, nitrogen, phosphorus, and sulfur and their ecological stoichiometry in wetland soils along a water and salt gradient in the Yellow River Delta, China

    Science.gov (United States)

    Lu, Qiongqiong; Bai, Junhong; Zhang, Guangliang; Zhao, Qingqing; Wu, Jianjun

    2018-04-01

    Top soils (0-10 cm) were collected in three sampling belts during four seasons in 2014, including bare land (HN1), Calamagrostis epigeios (HN2), Typha orientalis (HN3), Phragmites australis (HN4), Tamarix chinensis (HN5) and Suaeda salsa (HN6) along a water and salinity gradient in the Yellow River Delta, China. Soil organic carbon (SOC), total nitrogen (TN), total phosphorous (TP), total sulfur (TS) and their ecological stoichiometry were measured to investigate their seasonal and horizontal distribution patterns, as well as their important influencing factors such as electric conductivity (EC) and water content (WC). Our results showed that the contents of SOC and TN exhibited similar changing tendency along the water and salinity gradient. The TP contents followed the order HN5 ≈ HN2 > HN3 ≈ HN6 > HN4 > HN1. TS levels generally increased with increasing salinity from HN1 to HN6. The higher levels of SOC and TP were mostly observed in October and August, respectively, while the seasonal variations in TN were heterogeneous under different plant covers. TS contents were lower in August compared with other sampling periods except for HN4. The mean values of the C/N, C/P and C/S ratios along a water-salinity gradient ranged from 26 to 72, 20 to 74, and 61 to 292, respectively. Generally, higher C/P ratios were observed in sampling sites with plant covers in October expect for HN1, whereas they were lower in January or August. SOC, TN and TP were significantly positively correlated with soil organic matter (SOM), silt, WC and cation exchange capacity (CEC) (p 0.05). Bulk density (BD) had a great influence on C/N ratio, C/P ratio were mainly effected by SOM, EC and silt, while C/S ratio showed a significant negative correlation with BD, EC, K+, Na+, and Mg2+ (p < 0.05).

  7. Microstrip Patch Sensor for Salinity Determination.

    Science.gov (United States)

    Lee, Kibae; Hassan, Arshad; Lee, Chong Hyun; Bae, Jinho

    2017-12-18

    In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS), and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under -20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of -35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF) tunable sensors for salinity determination.

  8. Transcriptional changes in oysters Crassostrea brasiliana exposed to phenanthrene at different salinities

    International Nuclear Information System (INIS)

    Zacchi, Flávia Lucena; Lima, Daína; Flores-Nunes, Fabrício de; Mattos, Jacó Joaquim; Lüchmann, Karim Hahn; Araújo de Miranda Gomes, Carlos Henrique; Bícego, Márcia Caruso; Taniguchi, Satie; Sasaki, Silvio Tarou; Dias Bainy, Afonso Celso

    2017-01-01

    10 compared to organisms at salinities 25 and/or 35 are possibly related to enhaced ROS production. The transcription of these genes were not affected by PHE exposure. Amino acid metabolism-related genes (GAD-like (24 h), GLYT-like, ARG-like (96 h) and TAUT-like at 24 h and 96 h) also showed different transcription levels among organisms exposed to different salinities, suggesting their important role for oyster salinity adaptation, which is not affected by exposure to these levels of PHE.

  9. Transcriptional changes in oysters Crassostrea brasiliana exposed to phenanthrene at different salinities

    Energy Technology Data Exchange (ETDEWEB)

    Zacchi, Flávia Lucena; Lima, Daína; Flores-Nunes, Fabrício de [Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry − LABCAI, Federal University Santa Catarina, Florianópolis (Brazil); Mattos, Jacó Joaquim [Aquaculture Pathology Research Center – NEPAQ, Federal University of Santa Catarina, Florianópolis (Brazil); Lüchmann, Karim Hahn [Laboratory of Biochemistry and Molecular Biology – LBBM, Fishery Engineering Department, Santa Catarina State University, Laguna (Brazil); Araújo de Miranda Gomes, Carlos Henrique [Laboratory of Marine Mollusks – LMM, Federal University of Santa Catarina, Florianópolis (Brazil); Bícego, Márcia Caruso; Taniguchi, Satie; Sasaki, Silvio Tarou [Laboratory of Marine Organic Chemistry – LABQOM, Oceanographic Institute, University of São Paulo, São Paulo (Brazil); Dias Bainy, Afonso Celso, E-mail: afonso.bainy@ufsc.br [Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry − LABCAI, Federal University Santa Catarina, Florianópolis (Brazil)

    2017-02-15

    salinity 10 compared to organisms at salinities 25 and/or 35 are possibly related to enhaced ROS production. The transcription of these genes were not affected by PHE exposure. Amino acid metabolism-related genes (GAD-like (24 h), GLYT-like, ARG-like (96 h) and TAUT-like at 24 h and 96 h) also showed different transcription levels among organisms exposed to different salinities, suggesting their important role for oyster salinity adaptation, which is not affected by exposure to these levels of PHE.

  10. Structure and composition of oligohaline marsh plant communities exposed to salinity pulses

    Science.gov (United States)

    Howard, R.J.; Mendelssohn, I.A.

    2000-01-01

    . Structural changes in community 2 consisted of reduced biomass and stem density in the community overall and in S. lancifolia; S. americanus was not affected by salinity. In this most extreme treatment, community 2 tended to change to a monospecific S. americanus stand while community 1 was reduced to a few surviving stems of secondary species. Our results suggest that vegetation recovery or establishment of new species following a temporary increase in soil water salinity will vary with exposure duration and water depth. (C) 2000 Elsevier Science B.V.

  11. The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: Satellite observations.

    Science.gov (United States)

    Guerrero, Raul A; Piola, Alberto R; Fenco, Harold; Matano, Ricardo P; Combes, Vincent; Chao, Yi; James, Corinne; Palma, Elbio D; Saraceno, Martin; Strub, P Ted

    2014-11-01

    Satellite-derived sea surface salinity (SSS) data from Aquarius and SMOS are used to study the shelf-open ocean exchanges in the western South Atlantic near 35°S. Away from the tropics, these exchanges cause the largest SSS variability throughout the South Atlantic. The data reveal a well-defined seasonal pattern of SSS during the analyzed period and of the location of the export of low-salinity shelf waters. In spring and summer, low-salinity waters over the shelf expand offshore and are transferred to the open ocean primarily southeast of the river mouth (from 36°S to 37°30'S). In contrast, in fall and winter, low-salinity waters extend along a coastal plume and the export path to the open ocean distributes along the offshore edge of the plume. The strong seasonal SSS pattern is modulated by the seasonality of the along-shelf component of the wind stress over the shelf. However, the combined analysis of SSS, satellite-derived sea surface elevation and surface velocity data suggest that the precise location of the export of shelf waters depends on offshore circulation patterns, such as the location of the Brazil Malvinas Confluence and mesoscale eddies and meanders of the Brazil Current. The satellite data indicate that in summer, mixtures of low-salinity shelf waters are swiftly driven toward the ocean interior along the axis of the Brazil/Malvinas Confluence. In winter, episodic wind reversals force the low-salinity coastal plume offshore where they mix with tropical waters within the Brazil Current and create a warmer variety of low-salinity waters in the open ocean. Satellite salinity sensors capture low-salinity detrainment events from shelves SW Atlantic low-salinity detrainments cause highest basin-scale variability In summer low-salinity detrainments cause extended low-salinity anomalies.

  12. Evaluation of Serum for Pathophysiological Effects of Prolonged Low Salinity Water Exposure in Displaced Bottlenose Dolphins (Tursiops truncatus

    Directory of Open Access Journals (Sweden)

    Ruth Y. Ewing

    2017-06-01

    Full Text Available We conducted a retrospective study of serum biochemistry and hematologic findings from displaced, out-of-habitat bottlenose dolphins (Tursiops truncatus exposed to various low salinity environments in waters along the southern United States including southeastern Atlantic and northern Gulf of Mexico. Serum sodium, chloride, and calculated osmolality were significantly lower and below reference ranges in displaced animals compared to free-ranging case control animals. This suggests clinical hyponatremia, hypochloremia, and hypo-osmolality due to an uptake of low saline water from the environment. In addition, significant differences were found in other serum chemistry variables, although none were outside of normal reference ranges for non-controlled free-ranging animals. Multiple linear regressions demonstrated the degree of salinity had a greater pathophysiologic response than the duration of fresh water exposure. The Na/Cl ratio and bicarbonate were the only variables that were significantly modulated by exposure duration. These findings suggest that the degree of salinity is a critical factor when assessing and managing care for dolphins chronically exposed to low salinity water. Results from this study indicate that changes in various biochemical parameters can be used to determine fresh water exposure and aid in determining the treatment for animals recovered from low salinity waters.

  13. Genetic basis of variation for salinity tolerance in okra (abelmoschus esculentus L.)

    International Nuclear Information System (INIS)

    Ikram-ul-Haq; Khan, A.A.; Azhar, F.M.; Ullah, E.

    2010-01-01

    The development of salt tolerant plants through selection and breeding depends on the presence of the genetic variability within the crop species in response to salt stress, which must have significant genetic component. Such information is not extensively available in vegetable crops. The present study was carried out to gain some information on the genetic basis of variation for salinity tolerance in okra. North Carolina Mating Design II (NCM II) was used for the estimation of genetic components of variation in the traits affecting salinity tolerance. The inheritance of the traits affecting salinity tolerance at the seedling stage appeared to be controlled by both additive and non-additive effects (dominance and epistasis). The narrow sense heritability estimates ranged from 40 to 65% and 7 to 70% and the estimates of broad sense heritability ranged from 65 to 99% and 20 to 99% for absolute and relative values. The additive effects were relatively more prominent and narrow sense heritability was moderate. The high additive component for absolute Na/sup +/ and K/sup +//Na/sup +/ ratio at 60 and 80 mM NaCl, relative Na+ at 80 mM NaCl suggested that improvement for salinity tolerance in okra would be possible on the basis of these characteristics through selection and breeding. The genetic variation for tolerance to NaCl salinity existed among the okra genotypes, which had considerable heritable component and, therefore, genetic improvement of okra genotypes for salinity tolerance through recurrent selection method is possible. (author)

  14. Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots

    Directory of Open Access Journals (Sweden)

    Honghong eWu

    2015-02-01

    Full Text Available Salinity stress tolerance is a physiologically complex trait that is conferred by the large array of interacting mechanisms. Among these, vacuolar Na+ sequestration has always been considered as one of the key components differentiating between sensitive and tolerant species and genotypes. However, vacuolar Na+ sequestration has been rarely considered in the context of the tissue-specific expression and regulation of appropriate transporters contributing to Na+ removal from the cytosol. In this work, six bread wheat varieties contrasting in their salinity tolerance (three tolerant and three sensitive were used to understand the essentiality of vacuolar Na+ sequestration between functionally different root tissues, and link it with the overall salinity stress tolerance in this species. Roots of 4-d old wheat seedlings were treated with 100 mM NaCl for 3 days, and then Na+ distribution between cytosol and vacuole was quantified by CoroNa Green fluorescent dye imaging. Our major observations were as follows: 1 salinity stress tolerance correlated positively with vacuolar Na+ sequestration ability in the mature root zone but not in the root apex; 2 Contrary to expectations, cytosolic Na+ levels in root meristem were significantly higher in salt tolerant than sensitive group, while vacuolar Na+ levels showed an opposite trend. These results are interpreted as meristem cells playing a role of the salt sensor; 3 No significant difference in the vacuolar Na+ sequestration ability was found between sensitive and tolerant group in either transition or elongation zones; 4 The overall Na+ accumulation was highest in the elongation zone, suggesting its role in osmotic adjustment and turgor maintenance required to drive root expansion growth. Overall, the reported results suggest high tissue-specificity of Na+ uptake, signalling, and sequestration in wheat root. The implications of these findings for plant breeding for salinity stress tolerance are discussed.

  15. Transcriptome Profiling and Molecular Pathway Analysis of Genes in Association with Salinity Adaptation in Nile Tilapia Oreochromis niloticus.

    Directory of Open Access Journals (Sweden)

    Zhixin Xu

    Full Text Available Nile tilapia Oreochromis niloticus is a freshwater fish but can tolerate a wide range of salinities. The mechanism of salinity adaptation at the molecular level was studied using RNA-Seq to explore the molecular pathways in fish exposed to 0, 8, or 16 (practical salinity unit, psu. Based on the change of gene expressions, the differential genes unions from freshwater to saline water were classified into three categories. In the constant change category (1, steroid biosynthesis, steroid hormone biosynthesis, fat digestion and absorption, complement and coagulation cascades were significantly affected by salinity indicating the pivotal roles of sterol-related pathways in response to salinity stress. In the change-then-stable category (2, ribosomes, oxidative phosphorylation, signaling pathways for peroxisome proliferator activated receptors, and fat digestion and absorption changed significantly with increasing salinity, showing sensitivity to salinity variation in the environment and a responding threshold to salinity change. In the stable-then-change category (3, protein export, protein processing in endoplasmic reticulum, tight junction, thyroid hormone synthesis, antigen processing and presentation, glycolysis/gluconeogenesis and glycosaminoglycan biosynthesis-keratan sulfate were the significantly changed pathways, suggesting that these pathways were less sensitive to salinity variation. This study reveals fundamental mechanism of the molecular response to salinity adaptation in O. niloticus, and provides a general guidance to understand saline acclimation in O. niloticus.

  16. Remote Sensing Monitoring of Changes in Soil Salinity: A Case Study in Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Jingwei Wu

    2008-11-01

    Full Text Available This study used archived remote sensing images to depict the history of changes in soil salinity in the Hetao Irrigation District in Inner Mongolia, China, with the purpose of linking these changes with land and water management practices and to draw lessons for salinity control. Most data came from LANDSAT satellite images taken in 1973, 1977, 1988, 1991, 1996, 2001, and 2006. In these years salt-affected areas were detected using a normal supervised classification method. Corresponding cropped areas were detected from NVDI (Normalized Difference Vegetation Index values using an unsupervised method. Field samples and agricultural statistics were used to estimate the accuracy of the classification. Historical data concerning irrigation/drainage and the groundwater table were used to analyze the relation between changes in soil salinity and land and water management practices. Results showed that: (1 the overall accuracy of remote sensing in detecting soil salinity was 90.2%, and in detecting cropped area, 98%; (2 the installation/innovation of the drainage system did help to control salinity; and (3 a low ratio of cropped land helped control salinity in the Hetao Irrigation District. These findings suggest that remote sensing is a useful tool to detect soil salinity and has potential in evaluating and improving land and water management practices.

  17. Remote Sensing Monitoring of Changes in Soil Salinity: A Case Study in Inner Mongolia, China.

    Science.gov (United States)

    Wu, Jingwei; Vincent, Bernard; Yang, Jinzhong; Bouarfa, Sami; Vidal, Alain

    2008-11-07

    This study used archived remote sensing images to depict the history of changes in soil salinity in the Hetao Irrigation District in Inner Mongolia, China, with the purpose of linking these changes with land and water management practices and to draw lessons for salinity control. Most data came from LANDSAT satellite images taken in 1973, 1977, 1988, 1991, 1996, 2001, and 2006. In these years salt-affected areas were detected using a normal supervised classification method. Corresponding cropped areas were detected from NVDI (Normalized Difference Vegetation Index) values using an unsupervised method. Field samples and agricultural statistics were used to estimate the accuracy of the classification. Historical data concerning irrigation/drainage and the groundwater table were used to analyze the relation between changes in soil salinity and land and water management practices. Results showed that: (1) the overall accuracy of remote sensing in detecting soil salinity was 90.2%, and in detecting cropped area, 98%; (2) the installation/innovation of the drainage system did help to control salinity; and (3) a low ratio of cropped land helped control salinity in the Hetao Irrigation District. These findings suggest that remote sensing is a useful tool to detect soil salinity and has potential in evaluating and improving land and water management practices.

  18. Estuarine turbidity, flushing, salinity, and circulation

    Science.gov (United States)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  19. Microstrip Patch Sensor for Salinity Determination

    Directory of Open Access Journals (Sweden)

    Kibae Lee

    2017-12-01

    Full Text Available In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS, and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under −20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of −35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF tunable sensors for salinity determination.

  20. The educational gradient in marriage: a comparison of 25 European countries

    NARCIS (Netherlands)

    Kalmijn, M.

    2013-01-01

    Previous research has suggested that a new marriage gradient has emerged in the United States, with marriage becoming increasingly the privilege of the better-educated. This article examines whether this is true for Europe and explores differences in the marriage gradient among 25 European

  1. Salinity tolerance of the South African endemic amphipod ...

    African Journals Online (AJOL)

    Salinities were prepared using natural seawater and synthetic sea salt. Grandidierella lignorum tolerated all salinities, but showed highest survival at salinities of 7–42. Salinity tolerance was modified by temperature, with highest survival occurring between 10 and 25 °C. These represent the range of conditions at which ...

  2. RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant.

    Science.gov (United States)

    Xiong, Hongchun; Guo, Huijun; Xie, Yongdun; Zhao, Linshu; Gu, Jiayu; Zhao, Shirong; Li, Junhui; Liu, Luxiang

    2017-06-02

    Salinity stress has become an increasing threat to food security worldwide and elucidation of the mechanism for salinity tolerance is of great significance. Induced mutation, especially spaceflight mutagenesis, is one important method for crop breeding. In this study, we show that a spaceflight-induced wheat mutant, named salinity tolerance 1 (st1), is a salinity-tolerant line. We report the characteristics of transcriptomic sequence variation induced by spaceflight, and show that mutations in genes associated with sodium ion transport may directly contribute to salinity tolerance in st1. Furthermore, GO and KEGG enrichment analysis of differentially expressed genes (DEGs) between salinity-treated st1 and wild type suggested that the homeostasis of oxidation-reduction process is important for salt tolerance in st1. Through KEGG pathway analysis, "Butanoate metabolism" was identified as a new pathway for salinity responses. Additionally, key genes for salinity tolerance, such as genes encoding arginine decarboxylase, polyamine oxidase, hormones-related, were not only salt-induced in st1 but also showed higher expression in salt-treated st1 compared with salt-treated WT, indicating that these genes may play important roles in salinity tolerance in st1. This study presents valuable genetic resources for studies on transcriptome variation caused by induced mutation and the identification of salt tolerance genes in crops.

  3. Functional trait space and the latitudinal diversity gradient

    DEFF Research Database (Denmark)

    Lamanna, Christine; Blonder, Benjamin; Violle, Cyrille

    2014-01-01

    The processes causing the latitudinal gradient in species richness remain elusive. Ecological theories for the origin of biodiversity gradients, such as competitive exclusion, neutral dynamics, and environmental filtering, make predictions for how functional diversity should vary at the alpha...... of trait combinations or that niche packing is stronger in the tropical zone. Although there are limitations in the data, our analyses suggest that multiple processes have shaped trait diversity in trees, reflecting no consistent support for any one theory....

  4. NOAA Average Annual Salinity (3-Zone)

    Data.gov (United States)

    California Natural Resource Agency — The 3-Zone Average Annual Salinity Digital Geography is a digital spatial framework developed using geographic information system (GIS) technology. These salinity...

  5. Bioprospecting saline gradient of a Wildlife Sanctuary for bacterial diversity and antimicrobial activities.

    Science.gov (United States)

    DeLuca, Mara; King, Riley; Morsy, Mustafa

    2017-08-11

    Antibiotic-resistant bacteria are becoming a global crisis, causing death of thousands of people and significant economic impact. The discovery of novel antibiotics is crucial to saving lives and reducing healthcare costs. To address the antibiotic-resistant crisis, in collaboration the Small World Initiative, which aims to crowdsource novel antibiotic discovery, this study aimed to identify antimicrobial producing bacteria and bacterial diversity in the soil of the Stimpson Wildlife Sanctuary, an inland area with a soil salt gradient. Approximately 4500 bacterial colonies were screened for antimicrobial activity and roughly 100 bacteria were identified as antimicrobial producers, which belong to Entrococcaceae (74%), Yersiniaceae (19%), and unidentified families (7%). Several bacterial isolates showed production of broad spectrum inhibitory compounds, while others were more specific to certain pathogens. The data obtained from the current study provide a resource for further characterization of the soil bacteria with antimicrobial activity, with an aim to discover novel ones. The study showed no correlation between soil salt level and the presence of bacteria with antimicrobial activities. However, most of the identified antimicrobial producing bacteria do not belong to actinomycetes, the most common phyla of antibiotic producing bacteria and this could potentially lead to the discovery of novel antibiotics.

  6. Juvenile bottlenecks and salinity shape grey mullet assemblages in Mediterranean estuaries

    Science.gov (United States)

    Cardona, Luis; Hereu, Bernat; Torras, Xavier

    2008-05-01

    Previous research has suggested that competitive bottlenecks may exist for the Mediterranean grey mullets (Osteichthyes, Mugilidae) at the fry stage with the exotic Cyprinus carpio (Osteichthyes, Cyprinidae) playing a central role. As a consequence, the structure of grey mullet assemblages at later stages is thought to reflect previous competition as well as differences in osmoregulatory skills. This paper tests that hypothesis by examining four predictions about the relative abundance of five grey mullet species in 42 Western Mediterranean estuary sites from three areas (Aiguamolls de l'Empordà, Ebro Delta and Minorca) differing in the salinity level and occurrence of C. carpio. Field data confirmed the predictions as: (1) Liza aurata and Mugil cephalus were scarce everywhere and never dominated the assemblage; (2) Liza saliens dominated the assemblage where the salinity level was higher than 13; (3) Liza ramado always dominated the assemblage where the salinity level was lower than 13 and C. carpio was present; and (4) Chelon labrosus dominated the assemblage only where the salinity level was lower than 13 and C. carpio was absent. The catch per unit effort of C. labrosus of any size was smaller in the presence of C. carpio than where it had not been introduced, which is in agreement with the juvenile competitive bottleneck hypothesis. Discriminant analysis confirmed that the assemblage structure was linked to the salinity level and the occurrence of C. carpio for both early juveniles and late juveniles as well as adults. The data reported here reveal that the structure of grey mullet assemblages inhabiting Mediterranean estuaries is determined by salinity and competitive interactions at the fry stage.

  7. Alternative Strategies in Response to Saline Stress in Two Varieties of Portulaca oleracea (Purslane).

    Science.gov (United States)

    Mulry, Kristina R; Hanson, Bryan A; Dudle, Dana A

    2015-01-01

    Purslane (Portulaca oleracea) is a globally-distributed plant with a long history of use in folk medicine and cooking. We have developed purslane as a model system for exploring plant responses to stress. We exposed two varieties of purslane to saline stress with the objective of identifying differences between the varieties in the plasticity of morphological and physiological traits. The varieties responded to saline stress with significantly different changes in the measured traits, which included inter alia biomass, flower counts, proline concentrations and betalain pigment concentrations. The alternative responses of the two varieties consisted of complex, simultaneous changes in multiple traits. In particular, we observed that while both varieties increased production of betalain pigments and proline under saline stress, one variety invested more in betalain pigments while the other invested more in proline. Proline and betalain pigments undoubtedly play multiple roles in plant tissues, but in this case their role as antioxidants deployed to ameliorate saline stress appears to be important. Taken holistically, our results suggest that the two varieties employ different strategies in allocating resources to cope with saline stress. This conclusion establishes purslane as a suitable model system for the study of saline stress and the molecular basis for differential responses.

  8. Alternative Strategies in Response to Saline Stress in Two Varieties of Portulaca oleracea (Purslane.

    Directory of Open Access Journals (Sweden)

    Kristina R Mulry

    Full Text Available Purslane (Portulaca oleracea is a globally-distributed plant with a long history of use in folk medicine and cooking. We have developed purslane as a model system for exploring plant responses to stress. We exposed two varieties of purslane to saline stress with the objective of identifying differences between the varieties in the plasticity of morphological and physiological traits. The varieties responded to saline stress with significantly different changes in the measured traits, which included inter alia biomass, flower counts, proline concentrations and betalain pigment concentrations. The alternative responses of the two varieties consisted of complex, simultaneous changes in multiple traits. In particular, we observed that while both varieties increased production of betalain pigments and proline under saline stress, one variety invested more in betalain pigments while the other invested more in proline. Proline and betalain pigments undoubtedly play multiple roles in plant tissues, but in this case their role as antioxidants deployed to ameliorate saline stress appears to be important. Taken holistically, our results suggest that the two varieties employ different strategies in allocating resources to cope with saline stress. This conclusion establishes purslane as a suitable model system for the study of saline stress and the molecular basis for differential responses.

  9. Ocean acidification narrows the acute thermal and salinity tolerance of the Sydney rock oyster Saccostrea glomerata.

    Science.gov (United States)

    Parker, Laura M; Scanes, Elliot; O'Connor, Wayne A; Coleman, Ross A; Byrne, Maria; Pörtner, Hans-O; Ross, Pauline M

    2017-09-15

    Coastal and estuarine environments are characterised by acute changes in temperature and salinity. Organisms living within these environments are adapted to withstand such changes, yet near-future ocean acidification (OA) may challenge their physiological capacity to respond. We tested the impact of CO 2 -induced OA on the acute thermal and salinity tolerance, energy metabolism and acid-base regulation capacity of the oyster Saccostrea glomerata. Adult S. glomerata were acclimated to three CO 2 levels (ambient 380μatm, moderate 856μatm, high 1500μatm) for 5weeks (24°C, salinity 34.6) before being exposed to a series of acute temperature (15-33°C) and salinity (34.2-20) treatments. Oysters acclimated to elevated CO 2 showed a significant metabolic depression and extracellular acidosis with acute exposure to elevated temperature and reduced salinity, especially at the highest CO 2 of 1500μatm. Our results suggest that the acute thermal and salinity tolerance of S. glomerata and thus its distribution will reduce as OA continues to worsen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Spectral reflectance characteristics of soils in northeastern Brazil as influenced by salinity levels.

    Science.gov (United States)

    Pessoa, Luiz Guilherme Medeiros; Freire, Maria Betânia Galvão Dos Santos; Wilcox, Bradford Paul; Green, Colleen Heather Machado; De Araújo, Rômulo José Tolêdo; De Araújo Filho, José Coelho

    2016-11-01

    In northeastern Brazil, large swaths of once-productive soils have been severely degraded by soil salinization, but the true extent of the damage has not been assessed. Emerging remote sensing technology based on hyperspectral analysis offers one possibility for large-scale assessment, but it has been unclear to what extent the spectral properties of soils are related to salinity characteristics. The purpose of this study was to characterize the spectral properties of degraded (saline) and non-degraded agricultural soils in northeastern Brazil and determine the extent to which these properties correspond to soil salinity. We took soil samples from 78 locations within a 45,000-km 2 site in Pernambuco State. We used cluster analysis to group the soil samples on the basis of similarities in salinity and sodicity levels, and then obtained spectral data for each group. The physical properties analysis indicated a predominance of the coarse sand fraction in almost all the soil groups, and total porosity was similar for all the groups. The chemical analysis revealed different levels of degradation among the groups, ranging from non-degraded to strongly degraded conditions, as defined by the degree of salinity and sodicity. The soil properties showing the highest correlation with spectral reflectance were the exchangeable sodium percentage followed by fine sand. Differences in the reflectance curves for the various soil groups were relatively small and were not significant. These results suggest that, where soil crusts are not present, significant challenges remain for using hyperspectral remote sensing to assess soil salinity in northeastern Brazil.

  11. Impact of saline-alkali stress on the accumulation of solids in tomato fruits

    International Nuclear Information System (INIS)

    Jan, N.E.; Din, J.U.; Kawabata, S

    2014-01-01

    Growing of tomato plants in saline conditions, having high rhizospheric EC, is often reported with high solid content in fruits. However, saline-alkali stress conditions, having high rhizospheric pH as well as high EC, have never been studied to evaluate its impact on the solid content of tomato fruits. In this study, we investigated the impact of saline-alkali stress (0, 30, 60, 90, and 120 mM NaHCO/sub 3/) on the accumulation of solids in tomato fruits. Addition of sodium bicarbonate (NaHCO/sub 3/) to plants highly increased pH as well as EC of the soil leachate in 90 and 120 mM NaHCO/sub 3/ treatments in comparison to control treatment. Saline-alkali stress treatments did not influence the fruit dry weight, nonetheless, the content of fruit dry matter was increased significantly from 6.5% at control to 8.5% at 90 and 120 mM treatments. The content of soluble sugar was increased to 3% in 90 mM treatment in comparison to control (2%), owing to significant accumulation of hexose as well as sucrose in ripe fruits. In addition to carbohydrates, saline-alkali stress influenced the accumulation of organic acids in fruits, as well. Citric acid, being the major acid, showed positive correlation with the salt concentration, and was significantly high at stress treatments of higher than 30 mM. These results suggested that saline-alkali stress conditions, in spite of high pH, can increase the contents of fruit solids in tomato, as is usually observed in saline stress conditions. (author)

  12. Salinity: Electrical conductivity and total dissolved solids

    Science.gov (United States)

    The measurement of soil salinity is a quantification of the total salts present in the liquid portion of the soil. Soil salinity is important in agriculture because salinity reduces crop yields by reducing the osmotic potential making it more difficult for the plant to extract water, by causing spe...

  13. Stoichiometric variation of halophytes in response to changes in soil salinity.

    Science.gov (United States)

    Sun, X; Gao, Y; Wang, D; Chen, J; Zhang, F; Zhou, J; Yan, X; Li, Y

    2017-05-01

    Variation in soil salt may change the stoichiometry of a halophyte by altering plant ecophysiology, and exert different influences on various plant organs, which has potentially important consequences for the nutrition of consumers as well as nutrient cycling in a saline ecosystem. Using a greenhouse pot experiment, we investigated the effect of salinity variability on the growth and stoichiometry of different organs of Suaeda glauca and Salicornia europaea - two dominant species of important ecological and economic value in the saline ecosystem. Our results showed that appropriate salt stimulated the growth of both species during the vigorous growth period, while high salt suppressed growth. Na significantly increased with increased salt in the culture, whereas concentrations of other measured elements and K:Na ratio for both species significantly decreased at low salt treatments, and became more gradual under higher salt conditions. Furthermore, with the change of salt in culture, variations in leaf (degenerated leaf for S. europaea, considered as young stem) stoichiometry, except N:P ratio, were large and less in stems (old stems for S. europaea) than in roots, reflecting physiological and biochemical reactions in the leaf in response to salt stress, supported by sharp changes in trends. These results suggest that appropriate saline conditions can enhance biological C fixation of halophytes; however, increasing salt could affect consumer health and decrease cycling of other nutrients in saline ecosystems. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Association of Post-Saline Load Plasma Aldosterone Levels With Left Ventricular Hypertrophy in Primary Hypertension.

    Science.gov (United States)

    Catena, Cristiana; Verheyen, Nicolas D; Url-Michitsch, Marion; Kraigher-Krainer, Elisabeth; Colussi, GianLuca; Pilz, Stefan; Tomaschitz, Andreas; Pieske, Burkert; Sechi, Leonardo A

    2016-03-01

    Left ventricular hypertrophy (LVH) is an independent risk factor for cardiovascular morbidity in hypertension. Current evidence suggests a contribution to LVH of plasma aldosterone levels that are inappropriately elevated for the salt status. The aim of this study was to investigate whether inappropriate modulation of aldosterone production by a saline load is associated with left ventricular (LV) mass in hypertensive patients. In 90 hypertensive patients free of clinically relevant cardiovascular complications in whom secondary forms of hypertension were ruled out, we performed a standard intravenous saline load (0.9% NaCl, 2 l in 4 hours) with measurement of plasma aldosterone and active renin at baseline and end of infusion. Bi-dimensional echocardiography was performed for the assessment of cardiac morphology and function. LVH was present in 19% of patients who had significantly worse renal function and higher body mass, blood pressure, and plasma aldosterone levels measured both at baseline and after the saline load than patients without LVH. LV mass was directly related to age, body mass, systolic blood pressure, duration of hypertension, baseline, and post-saline load plasma aldosterone levels and inversely to glomerular filtration. Multivariate regression analysis showed independent correlation of LV mass with body mass, systolic blood pressure, and plasma aldosterone levels measured after intravenous saline load, but not at baseline. In patients with hypertension, aldosterone levels measured after intravenous saline load are related to LV mass independent of age, body mass, and blood pressure, suggesting that limited ability of salt to modulate aldosterone production could contribute to LVH. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. SALINE WATER RESOURCES IN CLUJ-NAPOCA SURROUNDINGS

    Directory of Open Access Journals (Sweden)

    B. CZELLECZ

    2016-03-01

    Full Text Available Saline waters are usually researched in those places where it is used for balneotherapy or other industrial purposes. The aim of this study is to describe the saline water sources from less known areas, as they are an important natural mineral water resource. Twenty nine water samples were analyzed from Cojocna-Pata-Sopor region, thirteen of them can be considered saline waters. The visited locations are 21, 15 and 3 km far from Cluj-Napoca. Highly concentrated springs are to be found in the old mine area from Pata village and in the slough from Cojocna. Beside the well known saline lakes from Cojocna, five other saline lakes were identified; most of them are having artificial origin.

  16. Full magnetic gradient tensor from triaxial aeromagnetic gradient measurements: Calculation and application

    Science.gov (United States)

    Luo, Yao; Wu, Mei-Ping; Wang, Ping; Duan, Shu-Ling; Liu, Hao-Jun; Wang, Jin-Long; An, Zhan-Feng

    2015-09-01

    The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.

  17. [Distribution characteristics of heavy metals along an elevation gradient of montane forest].

    Science.gov (United States)

    Wan, Jia-rong; Nie, Ming; Zou, Qin; Hu, Shao-chang; Chen, Jia-kuan

    2011-12-01

    In the present paper, the concentrations of fourteen heavy metals (Fe, Al, Ti, Cu, Cr, Mn, V, Zn, Ni, Co, Pb, Se, Cd and As) were determined by ICP-AES and atomic absorption spectroscopy along an elevation gradient of montane forest. The results show that the elevation gradient had significant effects on the concentrations of Fe, Al, Ti, V, Pb and As. And the concentrations of Cu, Cr, Mn, Zn, Ni, Co, Se and Cd were not significantly affected by the elevation gradient. Because the studying area is red soil, the elevation gradient had significant effects on the concentrations of Fe, Al and Ti which are characteristic heavy metals of red soil, suggesting that the red soil at different elevations has different intensities of weathering desilication and bioaccumulation. Other heavy metals have different relationships with the elevation gradient, such as the concentrations of Cr, Zn and Cd were high at relatively high elevation and Pb and As were high at relatively low elevation. These results suggest that the different elevations of montane forest soils were polluted by differently types of heavy metals.

  18. Dispersion of acoustic surface waves by velocity gradients

    Science.gov (United States)

    Kwon, S. D.; Kim, H. C.

    1987-10-01

    The perturbation theory of Auld [Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol. II, p. 294], which describes the effect of a subsurface gradient on the velocity dispersion of surface waves, has been modified to a simpler form by an approximation using a newly defined velocity gradient for the case of isotropic materials. The modified theory is applied to nitrogen implantation in AISI 4140 steel with a velocity gradient of Gaussian profile, and compared with dispersion data obtained by the ultrasonic right-angle technique in the frequency range from 2.4 to 14.8 MHz. The good agreement between experiments and our theory suggests that the compound layer in the subsurface region plays a dominant role in causing the dispersion of acoustic surface waves.

  19. Determining the Threshold Value of Basil Yield Reduction and Evaluation of Water Uptake Models under Salinity Stress Condition

    Directory of Open Access Journals (Sweden)

    M. Sarai Tabrizi

    2016-10-01

    by calculating statistical indices such as maximum error (ME, normalized root mean square error (nRMSE, modeling efficiency (EF, and coefficient of residual mass (CRM. At the end of the experiment, dry matter yield at the different treatments was measured and relative yield was calculated by dividing dry matter yield of treatments on dry matter yield at no stress treatment (control treatment. Leaching requirement in experimental treatments was calculated by Ayarset al., (2012 equation. Results and Discussion: The results indicated that Basil threshold value based on soil salinity was 2.25 dSm-1 with the yield reduction of 7.2% per dSm-1. The mathematical model of van Genuchten and Hoffman (1984 had a higher precision than other models in simulating Basil yield reduction function based on saturated soil extract salinity. The overall observations revealed that van Genuchten and Hoffman (1984, Steppuhnet al., (2005 and Homaeeet al., (2002 models were accurate for simulating Basil root water uptake and yield response to saturated soil extract salinity. Considering the presented results, it seems that among math-empirical models for salinity stress conditions, model of van Genuchten and Hoffman (1984 is more accurate than Maas and Hoffman (1977, Dirksen and Augustijn (1988 and Homaeeet al., (2002a models. The works of Green et al., (2006 and Skaggs et al., (2006 came to the same conclusion. Our work indicated that mostly statistical models have lower precision than math-empirical models. Steppuhn et al., (2005a reported that statistical models had the higher accuracy than math-empirical model of Maas and Hoffman (1977 and among statistical models, the modified Weibull model had the best fit on measured data which is in good agreement with the results of this study. Conclusion: The goals of this research were to evaluate Basil response to saturated soil extract salinity, to estimate threshold value of Basil crop coefficients, to obtain yield reduction gradient, and also to

  20. Color gradients in elliptical galaxies

    International Nuclear Information System (INIS)

    Franx, M.; Illingworth, G.

    1990-01-01

    The relationship of the color gradients within ellipticals and the color differences between them are studied. It is found that the local color appears to be strongly related to the escape velocity. This suggests that the local escape velocity is the primary factor that determines the metallicity of the stellar population. Models with and without dark halos give comparable results. 27 refs

  1. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab.

    Science.gov (United States)

    Kawamoto, Tatsuhiko; Yoshikawa, Masako; Kumagai, Yoshitaka; Mirabueno, Ma Hannah T; Okuno, Mitsuru; Kobayashi, Tetsuo

    2013-06-11

    Slab-derived fluids play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using phase equilibria and modeling of fluid flow. Nevertheless, direct observations of the fluid chemistry and pressure-temperature conditions of fluids are few. This report describes CO2-bearing saline fluid inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The fluid inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests hydration of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline fluids. Dehydration and decarbonation take place, and seawater-like saline fluids migrate from the subducting slab to the mantle wedge. The presence of saline fluids is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge.

  2. Effect of salinity on survival, growth and biochemical parameters in juvenile Lebranch mullet Mugil liza (Perciformes: Mugilidae

    Directory of Open Access Journals (Sweden)

    Viviana Lisboa

    Full Text Available Teleost fish growth may be improved under isosmotic condition. Growth and metabolic performance of juvenile Mugil liza (isosmotic point: 12‰ were evaluated after 40 days in different salinities (0, 6, 12 and 24‰. Tests were performed in quadruplicate (30 fish/tank; 0.48 ± 0.1 g body weight; 3.27 ± 0.1 cm total length under controlled water temperature (28.2 ± 0.1ºC and oxygen content (>90% saturation. Fish were fed on artificial diet (50% crude protein four times a day until apparent satiation. Results showed that salinity influenced juvenile mullet growth. Fish reared at salinity 24‰ grew better than those maintained in freshwater (salinity 0‰. Gill Na+,K+-ATPase activity and whole body oxygen consumption showed an U-shape-type response over the range of salinities tested, with the lower values being observed at the intermediate salinities. Although no significant difference was observed in liver glycogen content at different salinities, it tended to augment with increasing salinity. These findings indicate that energy demand for osmorregulation in juvenile M. liza can be minimized under isosmotic condition. However, the amount of energy spared is not enough to improve fish growth. Results also suggest that M. liza is able to alternate between different energy-rich substrates during acclimation to environmental salinity.

  3. Biochar mitigates salinity stress in potato

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Andersen, M.N.; Liu, Fulai

    2015-01-01

    capability of biochar. Results indicated that biochar was capable to ameliorate salinity stress by adsorbing Na+. Increasing salinity level resulted in significant reductions of shoot biomass, root length and volume, tuber yield, photosynthetic rate (An), stomatal conductance (gs), midday leaf water......A pot experiment was conducted in a climate-controlled greenhouse to investigate the growth, physiology and yield of potato in response to salinity stress under biochar amendment. It was hypothesized that addition of biochar may improve plant growth and yield by mitigating the negative effect...... potential, but increased abscisic acid (ABA) concentration in both leaf and xylem sap. At each salinity level, incorporation of biochar increased shoot biomass, root length and volume, tuber yield, An, gs, midday leaf water potential, and decreased ABA concentration in the leaf and xylem sap as compared...

  4. Investigation of Soil Salinity to Distinguish Boundary Line between ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Investigation of Soil Salinity to Distinguish Boundary Line between Saline and ... Setting 4 dSm-1 as the limit between saline and non-saline soils in kriging algorithms resulted in a .... number of sample points within the search window,.

  5. Hypertonic Saline Resuscitation Modulates Neutrophil Adhesion Molecule Expression of Post-Traumatic Hemorrhagic Shock Patients

    National Research Council Canada - National Science Library

    Rizoli, Sandro B; Rhind, Shawn G; Shek, Pang N; Inaba, Kenji; Filips, Dennis; Tien, Homer; Brenneman, Fred; Rotstein, Ori D

    2004-01-01

    .... Experimental data suggests that hypertonic saline/dextran (HSD, 7.5% NaCl in 6% dextran-70) exerts antiinflammatory and immunomodulatory effects, reduces multiorgan dysfunction and improves outcome...

  6. Virus purification by CsCl density gradient using general centrifugation.

    Science.gov (United States)

    Nasukawa, Tadahiro; Uchiyama, Jumpei; Taharaguchi, Satoshi; Ota, Sumire; Ujihara, Takako; Matsuzaki, Shigenobu; Murakami, Hironobu; Mizukami, Keijirou; Sakaguchi, Masahiro

    2017-11-01

    Virus purification by cesium chloride (CsCl) density gradient, which generally requires an expensive ultracentrifuge, is an essential technique in virology. Here, we optimized virus purification by CsCl density gradient using general centrifugation (40,000 × g, 2 h, 4 °C), which showed almost the same purification ability as conventional CsCl density gradient ultracentrifugation (100,000 × g, 1 h, 4 °C) using phages S13' and φEF24C. Moreover, adenovirus strain JM1/1 was also successfully purified by this method. We suggest that general centrifugation can become a less costly alternative to ultracentrifugation for virus purification by CsCl densiy gradient and will thus encourage research in virology.

  7. Gradient effects in a new class of electro-elastic bodies

    Science.gov (United States)

    Arvanitakis, Antonios

    2018-06-01

    Continuum theories for electro-elastic solids suggest the development of electric field or polarization-based models. Advanced versions of these models are the so-called gradient models, i.e., polarization gradient and electric field gradient models, which prove to be more than capable of explaining the behavior of a continuum in a wider range of length scales. In this work, implicit constitutive relations for electro-elastic bodies are considered with the introduction of polarization and electric field gradient effects. In this sense, the new class of electro-elastic bodies extends even further to account for nonlocality in constitutive equations, besides strain-limiting behavior and polarization saturation for large values of stresses and electric field, respectively. Nonlocality in constitutive equations is essential in modeling various phenomena.

  8. The Impacts of Soil Fertility and Salinity on Soil Nitrogen Dynamics Mediated by the Soil Microbial Community Beneath the Halophytic Shrub Tamarisk.

    Science.gov (United States)

    Iwaoka, Chikae; Imada, Shogo; Taniguchi, Takeshi; Du, Sheng; Yamanaka, Norikazu; Tateno, Ryunosuke

    2018-05-01

    Nitrogen (N) is one of the most common limiting nutrients for primary production in terrestrial ecosystems. Soil microbes transform organic N into inorganic N, which is available to plants, but soil microbe activity in drylands is sometimes critically suppressed by environmental factors, such as low soil substrate availability or high salinity. Tamarisk (Tamarix spp.) is a halophytic shrub species that is widely distributed in the drylands of China; it produces litter enriched in nutrients and salts that are thought to increase soil fertility and salinity under its crown. To elucidate the effects of tamarisks on the soil microbial community, and thus N dynamics, by creating "islands of fertility" and "islands of salinity," we collected soil samples from under tamarisk crowns and adjacent barren areas at three habitats in the summer and fall. We analyzed soil physicochemical properties, inorganic N dynamics, and prokaryotic community abundance and composition. In soils sampled beneath tamarisks, the N mineralization rate was significantly higher, and the prokaryotic community structure was significantly different, from soils sampled in barren areas, irrespective of site and season. Tamarisks provided suitable nutrient conditions for one of the important decomposers in the area, Verrucomicrobia, by creating "islands of fertility," but provided unsuitable salinity conditions for other important decomposers, Flavobacteria, Gammaproteobacteria, and Deltaproteobacteria, by mitigating salt accumulation. However, the quantity of these decomposers tended to be higher beneath tamarisks, because they were relatively unaffected by the small salinity gradient created by the tamarisks, which may explain the higher N mineralization rate beneath tamarisks.

  9. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrã o, Só nia; Schmö ckel, S. M.; Tester, Mark A.

    2016-01-01

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making

  10. Drought-induced recharge promotes long-term storage of porewater salinity beneath a prairie wetland

    Science.gov (United States)

    Levy, Zeno F.; Rosenberry, Donald O.; Moucha, Robert; Mushet, David M.; Goldhaber, Martin B.; LaBaugh, James W.; Fiorentino, Anthony J.; Siegel, Donald I.

    2018-02-01

    Subsurface storage of sulfate salts allows closed-basin wetlands in the semiarid Prairie Pothole Region (PPR) of North America to maintain moderate surface water salinity (total dissolved solids [TDS] from 1 to 10 g L-1), which provides critical habitat for communities of aquatic biota. However, it is unclear how the salinity of wetland ponds will respond to a recent shift in mid-continental climate to wetter conditions. To understand better the mechanisms that control surface-subsurface salinity exchanges during regional dry-wet climate cycles, we made a detailed geoelectrical study of a closed-basin prairie wetland (P1 in the Cottonwood Lake Study Area, North Dakota) that is currently experiencing record wet conditions. We found saline lenses of sulfate-rich porewater (TDS > 10 g L-1) contained in fine-grained wetland sediments 2-4 m beneath the bathymetric low of the wetland and within the currently ponded area along the shoreline of a prior pond stand (c. 1983). During the most recent drought (1988-1993), the wetland switched from a groundwater discharge to recharge function, allowing salts dissolved in surface runoff to move into wetland sediments beneath the bathymetric low of the basin. However, groundwater levels during this time did not decline to the elevation of the saline lenses, suggesting these features formed during more extended paleo-droughts and are stable in the subsurface on at least centennial timescales. We hypothesize a "drought-induced recharge" mechanism that allows wetland ponds to maintain moderate salinity under semiarid climate. Discharge of drought-derived saline groundwater has the potential to increase the salinity of wetland ponds during wet climate.

  11. Rank gradient and p-gradient of amalgamated free products and HNN extensions

    OpenAIRE

    Pappas, Nathaniel

    2013-01-01

    We calculate the rank gradient and p-gradient of free products, free products with amalgamation over an amenable subgroup, and HNN extensions with an amenable associated subgroup. The notion of cost is used to compute the rank gradient of amalgamated free products and HNN extensions. For the p-gradient the Kurosh subgroup theorems for amalgamated free products and HNN extensions will be used.

  12. Influence of salinity and water content on soil microorganisms

    Directory of Open Access Journals (Sweden)

    Nan Yan

    2015-12-01

    Full Text Available Salinization is one of the most serious land degradation problems facing world. Salinity results in poor plant growth and low soil microbial activity due to osmotic stress and toxic ions. Soil microorganisms play a pivotal role in soils through mineralization of organic matter into plant available nutrients. Therefore it is important to maintain high microbial activity in soils. Salinity tolerant soil microbes counteract osmotic stress by synthesizing osmolytes which allows them to maintain their cell turgor and metabolism. Osmotic potential is a function of the salt concentration in the soil solution and therefore affected by both salinity (measured as electrical conductivity at a certain water content and soil water content. Soil salinity and water content vary in time and space. Understanding the effect of changes in salinity and water content on soil microorganisms is important for crop production, sustainable land use and rehabilitation of saline soils. In this review, the effects of soil salinity and water content on microbes are discussed to guide future research into management of saline soils.

  13. Colloid transport in porous media: impact of hyper-saline solutions.

    Science.gov (United States)

    Magal, Einat; Weisbrod, Noam; Yechieli, Yoseph; Walker, Sharon L; Yakirevich, Alexander

    2011-05-01

    The transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to that of Dead Sea brines (10(0.9) M) was explored. Migration of microspheres through saturated sand columns of different sizes was studied in laboratory experiments and simulated with mathematical models. Colloid transport was found to be related to the solution salinity as expected. The relative concentration of colloids at the columns outlet decreased (after 2-3 pore volumes) as the solution ionic strength increased until a critical value was reached (ionic strength > 10(-1.8) M) and then remained constant above this level of salinity. The colloids were found to be mobile even in the extremely saline brines of the Dead Sea. At such high ionic strength no energetic barrier to colloid attachment was presumed to exist and colloid deposition was expected to be a favorable process. However, even at these salinity levels, colloid attachment was not complete and the transport of ∼ 30% of the colloids through the 30-cm long columns was detected. To further explore the deposition of colloids on sand surfaces in Dead Sea brines, transport was studied using 7-cm long columns through which hundreds of pore volumes were introduced. The resulting breakthrough curves exhibited a bimodal shape whereby the relative concentration (C/C(0)) of colloids at the outlet rose to a value of 0.8, and it remained relatively constant (for the ∼ 18 pore volumes during which the colloid suspension was flushed through the column) and then the relative concentration increased to a value of one. The bimodal nature of the breakthrough suggests different rates of colloid attachment. Colloid transport processes were successfully modeled using the limited entrapment model, which assumes that the colloid attachment rate is dependent on the concentration of the attached colloids. Application of this model provided confirmation of the colloid aggregation and their accelerated attachment during

  14. Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi

    Directory of Open Access Journals (Sweden)

    G. M. Weiss

    2017-12-01

    Full Text Available Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.

  15. Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi

    Science.gov (United States)

    Weiss, Gabriella M.; Pfannerstill, Eva Y.; Schouten, Stefan; Sinninghe Damsté, Jaap S.; van der Meer, Marcel T. J.

    2017-12-01

    Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.

  16. ( Phaseolus vulgaris L. ) seedlings to salinity stress

    African Journals Online (AJOL)

    The effect of salinity stress on five cultivars of common bean: Bassbeer, Beladi, Giza 3, HRS 516 and RO21 were evaluated on a sand/peat medium with different salinity levels (0, 50 and 100 mM NaCl) applied 3 weeks after germination for duration of 10 days. Salinity had adverse effects not only on the biomass yield and ...

  17. Influence of salinity on bacterioplankton communities from the Brazilian rain forest to the coastal Atlantic Ocean.

    Science.gov (United States)

    Silveira, Cynthia B; Vieira, Ricardo P; Cardoso, Alexander M; Paranhos, Rodolfo; Albano, Rodolpho M; Martins, Orlando B

    2011-03-09

    Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore) and three freshwater (water spring, river, and mangrove) environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs) grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%), whereas Cyanobacteria (30.5%), Alphaproteobacteria (25.5%), and Gammaproteobacteria (26.3%) dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical parameters. Furthermore, this paper reveals for the first time the pristine

  18. Influence of salinity on bacterioplankton communities from the Brazilian rain forest to the coastal Atlantic Ocean.

    Directory of Open Access Journals (Sweden)

    Cynthia B Silveira

    Full Text Available BACKGROUND: Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore and three freshwater (water spring, river, and mangrove environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%, whereas Cyanobacteria (30.5%, Alphaproteobacteria (25.5%, and Gammaproteobacteria (26.3% dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. CONCLUSIONS/SIGNIFICANCE: Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical

  19. Influence of Salinity on Bacterioplankton Communities from the Brazilian Rain Forest to the Coastal Atlantic Ocean

    Science.gov (United States)

    Silveira, Cynthia B.; Vieira, Ricardo P.; Cardoso, Alexander M.; Paranhos, Rodolfo; Albano, Rodolpho M.; Martins, Orlando B.

    2011-01-01

    Background Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. Methodology/Principal Findings We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore) and three freshwater (water spring, river, and mangrove) environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs) grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%), whereas Cyanobacteria (30.5%), Alphaproteobacteria (25.5%), and Gammaproteobacteria (26.3%) dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. Conclusions/Significance Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical parameters

  20. Salinity management in southern Italy irrigation areas

    Directory of Open Access Journals (Sweden)

    Massimo Monteleone

    Full Text Available After a synthetic review of the most worrisome pressures applied over soils and waters, general criterions and normative principles that have to lead the technical intervention on soil and water protection are accounted, both with respect to farm activity and land planning. The salinity problem is faced, then, through the analysis of the nature and origin of saline soil and of the complex quantitative relationships able to interpret the accumulation and leaching of soil salts. Having specified the theoretical bases of salinity, the related technical features are then considered in order to define a proper management of soil and waters. Particular relevance is assigned to the irrigation and leaching techniques as well as, more briefly, to other agronomic interventions in order to guarantee the most effective salinity control. Another relevant technical facet of salinity control, although quite often neglected or retained of secondary importance in comparison to irrigation, is the drainage and disposal of leached water. The increased sensibility on the environmental impacts that the disposal of these waters can produce has raised today the level of attention on these procedures that are disciplined by norms of law and, therefore, require appropriate techniques of intervention. Finally, after the different scale orders involved in the management of salinity are defined (from the field and farm level up to the land and basin, the fundamental elements in order to work out a risk analysis and an action program are illustrated; some indications about the most up to date salinity monitoring and mapping methods are also provided, considering their great importance to continuously check the possible broadening of salinization and to carefully maintain its control.

  1. Organic matter and salinity modify cadmium soil (phyto)availability.

    Science.gov (United States)

    Filipović, Lana; Romić, Marija; Romić, Davor; Filipović, Vilim; Ondrašek, Gabrijel

    2018-01-01

    Although Cd availability depends on its total concentration in soil, it is ultimately defined by the processes which control its mobility, transformations and soil solution speciation. Cd mobility between different soil fractions can be significantly affected by certain pedovariables such as soil organic matter (SOM; over formation of metal-organic complexes) and/or soil salinity (over formation of metal-inorganic complexes). Phytoavailable Cd fraction may be described as the proportion of the available Cd in soil which is actually accessible by roots and available for plant uptake. Therefore, in a greenhouse pot experiment Cd availability was observed in the rhizosphere of faba bean exposed to different levels of SOM, NaCl salinity (50 and 100mM) and Cd contamination (5 and 10mgkg -1 ). Cd availability in soil does not linearly follow its total concentration. Still, increasing soil Cd concentration may lead to increased Cd phytoavailability if the proportion of Cd 2+ pool in soil solution is enhanced. Reduced Cd (phyto)availability by raised SOM was found, along with increased proportion of Cd-DOC complexes in soil solution. Data suggest decreased Cd soil (phyto)availability with the application of salts. NaCl salinity affected Cd speciation in soil solution by promoting the formation of CdCl n 2-n complexes. Results possibly suggest that increased Cd mobility in soil does not result in its increased availability if soil adsorption capacity for Cd has not been exceeded. Accordingly, chloro-complex possibly operated just as a Cd carrier between different soil fractions and resulted only in transfer between solid phases and not in increased (phyto)availability. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. PDH45 overexpressing transgenic tobacco and rice plants provide salinity stress tolerance via less sodium accumulation.

    Science.gov (United States)

    Nath, Manoj; Garg, Bharti; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2015-01-01

    Salinity stress negatively affects the crop productivity worldwide, including that of rice. Coping with these losses is a major concern for all countries. The pea DNA helicase, PDH45 is a unique member of helicase family involved in the salinity stress tolerance. However, the exact mechanism of the PDH45 in salinity stress tolerance is yet to be established. Therefore, the present study was conducted to investigate the mechanism of PDH45-mediated salinity stress tolerance in transgenic tobacco and rice lines along with wild type (WT) plants using CoroNa Green dye based sodium localization in root and shoot sections. The results showed that under salinity stress root and shoot of PDH45 overexpressing transgenic tobacco and rice accumulated less sodium (Na(+)) as compared to their respective WT. The present study also reports salinity tolerant (FL478) and salinity susceptible (Pusa-44) varieties of rice accumulated lowest and highest Na(+) level, respectively. All the varieties and transgenic lines of rice accumulate differential Na(+) ions in root and shoot. However, roots accumulate high Na(+) as compared to the shoots in both tobacco and rice transgenic lines suggesting that the Na(+) transport in shoot is somehow inhibited. It is proposed that the PDH45 is probably involved in the deposition of apoplastic hydrophobic barriers and consequently inhibit Na(+) transport to shoot and therefore confers salinity stress tolerance to PDH45 overexpressing transgenic lines. This study concludes that tobacco (dicot) and rice (monocot) transgenic plants probably share common salinity tolerance mechanism mediated by PDH45 gene.

  3. Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities

    International Nuclear Information System (INIS)

    Allen, D.E.; Strazisar, B.R.; Soong, Y.; Hedges, S.W.

    2005-01-01

    The ultimate capacity of saline formations to sequester carbon dioxide by solubility and mineral trapping must be determined by simulating sequestration with geochemical models. These models, however, are only as reliable as the data and reaction scheme on which they are based. Several models have been used to make estimates of carbon dioxide solubility and mineral formation as a function of pressure and fluid composition. Intercomparison of modeling results indicates that failure to adjust all equilibrium constants to account for elevated carbon dioxide pressures results in significant errors in both solubility and mineral formation estimates. Absence of experimental data at high carbon dioxide pressures and high salinities make verification of model results difficult. Results indicate standalone solubility models that do not take mineral reactions into account will underestimate the total capacity of aquifers to sequester carbon dioxide in the long term through enhanced solubility and mineral trapping mechanisms. Overall, it is difficult to confidently predict the ultimate sequestration capacity of deep saline aquifers using geochemical models. (author)

  4. Evaluation of salinity stress on morphophysiological traits of four salin tolarant wheat cultivars

    Directory of Open Access Journals (Sweden)

    leila yadelerloo

    2009-06-01

    Full Text Available For assessment the effects of salinity on morphophysiological traits of wheat an experiment with four caltivars (Karchia, Sorkh tokhm, Sholeh and Roshan and one line (1-66-22 in four salt concentrations(0, 60, 120, and 180 mM NaCl, were conducted by factorial analysis in a completely randomized design with three replications. The rate of leaf area were measured in four stages. In booting stage, relative chlorophyll content (SPAD meter, and in pollination phase the rate of Na+ and K+ iones in four leaves(up to down were assessed and finally stem length and total dry matter were measured. Results showed that salinity reduced leaf area, total dry matter stem length of plants and relative chlorophyll content. With increasing of salinity the rate of Na+ were increased but the rate of K+ iones were decreased. Also the salt exclusion was observed at nodes of stem that of 1-66-22 was spot form.

  5. Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface

    International Nuclear Information System (INIS)

    You Chun; Jia Chengxia; Pan Gang

    2010-01-01

    This study investigated the influence of solution salinity, pH and the sediment characteristics on the sorption and desorption of perfluorooctane sulfonate (PFOS). The results showed that the sorption of PFOS onto sediment increased by a factor of 3 as the CaCl 2 concentration increased from 0.005 to 0.5 mol L -1 at pH 7.0, and nearly 6 at pH 8.0. Desorption hysteresis occurred over all salinity. The thermodynamic index of irreversibility (TII) values increased with increasing concentration of CaCl 2 . Maximum irreversibility was found in the sorption systems with CaCl 2 in the concentration of 0.5 mol L -1 . The results suggested that PFOS can be largely removed from the water with increasing salinity, and get trapped onto sediments irreversibly. These phenomena could be explained by salting-out effect and Ca-bridging effect. Studies also suggested that the content of total organic carbon is the dominant psychochemical properties of sediment controlling the sorption of PFOS. - Salinity is an important environmental parameter affecting the transport and fate of PFOS in aquatic environment.

  6. Salinity tolerance of Picochlorum atomus and the use of salinity for contamination control by the freshwater cyanobacterium Pseudanabaena limnetica.

    Directory of Open Access Journals (Sweden)

    Nicolas von Alvensleben

    Full Text Available Microalgae are ideal candidates for waste-gas and -water remediation. However, salinity often varies between different sites. A cosmopolitan microalga with large salinity tolerance and consistent biochemical profiles would be ideal for standardised cultivation across various remediation sites. The aims of this study were to determine the effects of salinity on Picochlorum atomus growth, biomass productivity, nutrient uptake and biochemical profiles. To determine if target end-products could be manipulated, the effects of 4-day nutrient limitation were also determined. Culture salinity had no effect on growth, biomass productivity, phosphate, nitrate and total nitrogen uptake at 2, 8, 18, 28 and 36 ppt. 11 ppt, however, initiated a significantly higher total nitrogen uptake. While salinity had only minor effects on biochemical composition, nutrient depletion was a major driver for changes in biomass quality, leading to significant increases in total lipid, fatty acid and carbohydrate quantities. Fatty acid composition was also significantly affected by nutrient depletion, with an increased proportion of saturated and mono-unsaturated fatty acids. Having established that P. atomus is a euryhaline microalga, the effects of culture salinity on the development of the freshwater cyanobacterial contaminant Pseudanabaena limnetica were determined. Salinity at 28 and 36 ppt significantly inhibited establishment of P. limnetica in P. atomus cultures. In conclusion, P. atomus can be deployed for bioremediation at sites with highly variable salinities without effects on end-product potential. Nutrient status critically affected biochemical profiles--an important consideration for end-product development by microalgal industries. 28 and 36 ppt slow the establishment of the freshwater cyanobacterium P. limnetica, allowing for harvest of low contaminant containing biomass.

  7. Genome interrogation for novel salinity tolerant Arabidopsis mutants.

    Science.gov (United States)

    van Tol, Niels; Pinas, Johan; Schat, Henk; Hooykaas, Paul J J; van der Zaal, Bert J

    2016-12-01

    Soil salinity is becoming an increasingly large problem in agriculture. In this study, we have investigated whether a capacity to withstand salinity can be induced in the salinity sensitive plant species Arabidopsis thaliana, and whether it can be maintained in subsequent generations. To this end, we have used zinc finger artificial transcription factor (ZF-ATFs) mediated genome interrogation. Already within a relatively small collection Arabidopsis lines expressing ZF-ATFs, we found 41 lines that were tolerant to 100 mM NaCl. Furthermore, ZF-ATF encoding gene constructs rescued from the most strongly salinity tolerant lines were indeed found to act as dominant and heritable agents for salinity tolerance. Altogether, our data provide evidence that a silent capacity to withstand normally lethal levels of salinity exists in Arabidopsis and can be evoked relatively easily by in trans acting transcription factors like ZF-ATFs. © 2016 John Wiley & Sons Ltd.

  8. Estimates of matter yield and N-uptake in sorghum grown on saline and non-saline soils manured with dhaincha (sesbania aculeata) plant residues utilizing 15N tracer techniques

    International Nuclear Information System (INIS)

    Kurdali, F.

    2002-11-01

    Pot experiments were conducted to study the effect of manuring with three types of plant residues (roots, shoots or roots plus shoots) of Dhaincha (Sesbania aculeata Pers.) on the yield and N-uptake of Sorghum bicolor grown in saline and non-saline soils. For measuring various sources of N-uptake, two isotopic dilution techniques were utilized by adding to these soils either 15 N-labelled inorganic N-fertilizer (indirect method) or 15 N-labelled sesbania leaves (direct method). For the indirect method, both soils manured with each type of sesbania residue, received four split applications of 15 N-labelled ammonium sulphate. Results indicated that each type of sesbania residue, applied as a green manure, resulted in significant increases in both dry matter yield and N-uptake of sorghum as compared with the un manured control. Moreover, sesbania residues decreased the harmful effect of salinity on plant growth. Percentages of N derived from residues (%Ndfr) in sorghum grown in non saline soil ranged between 3.9 and 33%; whereas, in saline soil, the observed values ranged between 4.9 and 19.8%. N recoveries in sorghum grown in non saline soil were 61, 45 and 37% of the total amount contained in the sesbania root, shoot and root plus shoot; whereas, values in sorghum grown in saline soils were 48, 14,8 and 15.7%, respectively. The beneficial effects of sesbania residues have been attributed not only to the additional N availability to the plants, but also to its effects on the enhancement of soil N uptake. Percentages and amounts of Ndfr calculated using the indirect method were not significantly different from those obtained by the direct method indicating that the indirect method used herein is feasible and simple for measuring N release from organic residues. It is suggested that the use of Sesbania aculeata residues, particularly the shoots, as a green manure, can provide a substantial portion of total N in sorghum. Moreover, the use of sesbania green manure in

  9. Use of microwave remote sensing in salinity estimation

    International Nuclear Information System (INIS)

    Singh, R.P.; Kumar, V.; Srivastav, S.K.

    1990-01-01

    Soil-moisture interaction and the consequent liberation of ions causes the salinity of waters. The salinity of river, lake, ocean and ground water changes due to seepage and surface runoff. We have studied the feasibility of using microwave remote sensing for the estimation of salinity by carrying out numerical calculations to study the microwave remote sensing responses of various models representative of river, lake and ocean water. The results show the dependence of microwave remote sensing responses on the salinity and surface temperature of water. The results presented in this paper will be useful in the selection of microwave sensor parameters and in the accurate estimation of salinity from microwave remote sensing data

  10. The Physics of Compressive Sensing and the Gradient-Based Recovery Algorithms

    OpenAIRE

    Dai, Qi; Sha, Wei

    2009-01-01

    The physics of compressive sensing (CS) and the gradient-based recovery algorithms are presented. First, the different forms for CS are summarized. Second, the physical meanings of coherence and measurement are given. Third, the gradient-based recovery algorithms and their geometry explanations are provided. Finally, we conclude the report and give some suggestion for future work.

  11. Paleoenvironmental and paleohydrochemical conditions of dolomite formation within a saline wetland in arid northwest Australia

    Science.gov (United States)

    Mather, Caroline C.; Skrzypek, Grzegorz; Dogramaci, Shawan; Grierson, Pauline F.

    2018-04-01

    Groundwater dolocrete occurring within the Fortescue Marsh, a large inland wetland in the Pilbara region of northwest Australia, has been investigated to provide paleoenvironmental and paleohydrological records and further the understanding of low temperature dolomite formation in terrestrial settings over the Quaternary Period. Two major phases of groundwater dolocrete formation are apparent from the presence of two distinct units of dolocrete, based on differences in depth, δ18O values and mineral composition. Group 1 (G1) occurs at depth 20-65 m b.g.l. (below ground level) and contains stoichiometric dolomite with δ18O values of -4.02-0.71‰. Group 2 (G2) is shallower (0-23 m b.g.l.), occurring close to the current groundwater level, and contains Ca-rich dolomite ± secondary calcite with a comparatively lower range of δ18O values (-7.74 and -6.03‰). Modelled δ18O values of paleogroundwater from which older G1 dolomite precipitated indicated highly saline source water, which had similar stable oxygen isotope compositions to relatively old brine groundwater within the Marsh, developed under a different hydroclimatic regime. The higher δ18O values suggest highly evaporitic conditions occurred at the Marsh, which may have been a playa lake to saline mud flat environment. In contrast, G2 dolomite precipitated from comparatively fresher water, and modelled δ18O values suggested formation from mixing between inflowing fresher groundwater with saline-brine groundwater within the Marsh. The δ18O values of the calcite indicates formation from brackish to saline groundwater, which suggests this process may be associated with coeval gypsum dissolution. In contrast to the modern hydrology of the Marsh, which is surface water dependent and driven by a flood and drought regime, past conditions conducive to dolomite precipitation suggest a groundwater dependent system, where shallow groundwaters were influenced by intensive evaporation.

  12. Changes in plasma osmolality, cortisol and amino acid levels of tongue sole ( Cynoglossus semilaevis) at different salinities

    Science.gov (United States)

    Wang, Guodong; Xu, Kefeng; Tian, Xiangli; Dong, Shuanglin; Fang, Ziheng

    2015-10-01

    A serial of salinity transferring treatments were performed to investigate the osmoregulation of tongue sole ( Cynoglossus semilaevis). Juvenile tongue sole were directly transferred from a salinity of 30 to 0, 10, 20, 30, 40 and 50. Blood sampling was performed for each treatment after 0, 1, 6 and 12 h, as well as after 1, 2, 4, 8, 16 and 32 d. The plasma osmolality, cortisol and free amino acids were assessed. Under the experimental conditions, no fish died after acute salinity transfer. The plasma cortisol level increased 1 h after the abrupt transfer from a salinity of 30 to that of 0, 40 and 50, and decreased from 6 h to 8 d after transfer. Similar trends were observed in the changes of plasma osmolality. The plasma free amino acids concentration showed a `U-shaped' relationship with salinity after being transferred to different salinities for 4 days. More obvious changes of plasma free amino acid concentration occurred under hyper-osmotic conditions than under hypo-osmotic conditions. The concentrations of valine, isoleucine, lysine, glutamic acid, glycine, proline and taurine increased with rising salinity. The plasma levels of threonine, leucine, arginine, serine, and alanine showed a `U-shaped' relationship with salinity. The results of this study suggested that free amino acids might have important effects on osmotic acclimation in tongue sole.

  13. Exploring the Effect of Media, Salinity and Clay on the Thermoelectric Coupling Coefficient in Self-Potential Data

    Science.gov (United States)

    Meyer, C. D.; Revil, A.

    2014-12-01

    Self-potential is a non-invasive, passive geophysical technique with applications ranging from imaging oil and gas reservoirs to identifying preferential flow paths in earthen embankments. Several cross-coupled flow phenomena contribute to self-potential data, and there is a need to further quantify these various sources to enable better resolution and quantification of self-potential models. Very little research has been done to constrain thermoelectric source mechanisms that contribute to self-potential signals. A laboratory experiment has been designed to investigate the thermoelectric coupling coefficient (CTE) that relates the voltage change per degree centigrade (V/°C) in porous media. This study focuses on a sand tank experiment using a saturated silica sand. To isolate the temperature gradient dependence of self-potential measurements, no hydraulic gradient is applied to the tank, eliminating the streaming potential component of source current. Self-potential and temperature data are recorded while reservoirs of hot and cold water are established on opposite ends of the tank in order to generate thermoelectric source currents. Various thermal gradients ranging from 0 °C to 80 °C over 20 cm are examined for various salinities (10-3M- 1M NaCl), sand grain sizes and clay content to investigate influences on CTE. A short-duration contact of non-polarizing (Pb/PbCl) electrodes is implemented to minimize temperature drift of electrodes during the experiment. Surface self-potential and temperature measurements are made in 30 minute intervals. Initial measurements have revealed non-linear effects, including a decreased CTE as temperature gradient bounds approach 0 °C.

  14. A Two-Dimensional Numerical Study of Hydrodynamic, Heat and Mass Transfer and Stability in a Salt Gradient Solar Pond

    Directory of Open Access Journals (Sweden)

    Ali Ben Moussa

    2012-10-01

    Full Text Available In this work, the problem of hydrodynamic, heat and mass transfer and stability in a salt gradient solar pond has been numerically studied by means of computational fluid dynamics in transient regime. The body of the simulated pond is an enclosure of height H and length L wherein an artificial salinity gradient is created in order to suppress convective motions induced by solar radiation absorption and to stabilize the solar pond during the period of operation. Here we show the distribution of velocity, temperature and salt concentration fields during energy collection and storage in a solar pond filled with water and constituted by three different salinity zones. The bottom of the pond is blackened and the free-surface is subjected to heat losses by convection, evaporation and radiation while the vertical walls are adiabatic and impermeable. The governing equations of continuity, momentum, thermal energy and mass transfer are discretized by finite–volume method in transient regime. Velocity vector fields show the presence of thin convective cells in the upper convective zone (UCZ and large convective cells in the lower convective zone (LCZ. This study shows the importance of buoyancy ratio in the decrease of temperature in the UCZ and in the preservation of high temperature in the LCZ. It shows also the importance of the thickness of Non-Convective Zone (NCZ in the reduction of the upwards heat losses.

  15. Geomorphic controls on elevational gradients of species richness.

    Science.gov (United States)

    Bertuzzo, Enrico; Carrara, Francesco; Mari, Lorenzo; Altermatt, Florian; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2016-02-16

    Elevational gradients of biodiversity have been widely investigated, and yet a clear interpretation of the biotic and abiotic factors that determine how species richness varies with elevation is still elusive. In mountainous landscapes, habitats at different elevations are characterized by different areal extent and connectivity properties, key drivers of biodiversity, as predicted by metacommunity theory. However, most previous studies directly correlated species richness to elevational gradients of potential drivers, thus neglecting the interplay between such gradients and the environmental matrix. Here, we investigate the role of geomorphology in shaping patterns of species richness. We develop a spatially explicit zero-sum metacommunity model where species have an elevation-dependent fitness and otherwise neutral traits. Results show that ecological dynamics over complex terrains lead to the null expectation of a hump-shaped elevational gradient of species richness, a pattern widely observed empirically. Local species richness is found to be related to the landscape elevational connectivity, as quantified by a newly proposed metric that applies tools of complex network theory to measure the closeness of a site to others with similar habitat. Our theoretical results suggest clear geomorphic controls on elevational gradients of species richness and support the use of the landscape elevational connectivity as a null model for the analysis of the distribution of biodiversity.

  16. Submarine groundwater discharge to a small estuary estimated from radon and salinity measurements and a box model

    Directory of Open Access Journals (Sweden)

    J. Crusius

    2005-01-01

    Full Text Available Submarine groundwater discharge was quantified by a variety of methods for a 4-day period during the early summer of 2004, in Salt Pond, adjacent to Nauset Marsh, on Cape Cod, USA. Discharge estimates based on radon and salinity took advantage of the presence of the narrow channel connecting Salt Pond to Nauset Marsh, which allowed constructing whole-pond mass balances as water flowed in and out due to tidal fluctuations. The data suggest that less than one quarter of the discharge in the vicinity of Salt Pond happened within the pond itself, while three quarters or more of the discharge occurred immediately seaward of the pond, either in the channel or in adjacent regions of Nauset Marsh. Much of this discharge, which maintains high radon activities and low salinity, is carried into the pond during each incoming tide. A box model was used as an aid to understand both the rates and the locations of discharge in the vicinity of Salt Pond. The model achieves a reasonable fit to both the salinity and radon data assuming submarine groundwater discharge is fresh and that most of it occurs either in the channel or in adjacent regions of Nauset Marsh. Salinity and radon data, together with seepage meter results, do not rule out discharge of saline groundwater, but suggest either that the saline discharge is at most comparable in volume to the fresh discharge or that it is depleted in radon. The estimated rate of fresh groundwater discharge in the vicinity of Salt Pond is 3000-7000 m3 d-1. This groundwater flux estimated from the radon and salinity data is comparable to a value of 3200-4500 m3 d-1 predicted by a recent hydrologic model (Masterson, 2004; Colman and Masterson, 2004, although the model predicts this rate of discharge to the pond whereas our data suggest most of the groundwater bypasses the pond prior to discharge. Additional work is needed to determine if the measured rate of discharge is representative of the long-term average, and to

  17. Dai-Kou type conjugate gradient methods with a line search only using gradient.

    Science.gov (United States)

    Huang, Yuanyuan; Liu, Changhe

    2017-01-01

    In this paper, the Dai-Kou type conjugate gradient methods are developed to solve the optimality condition of an unconstrained optimization, they only utilize gradient information and have broader application scope. Under suitable conditions, the developed methods are globally convergent. Numerical tests and comparisons with the PRP+ conjugate gradient method only using gradient show that the methods are efficient.

  18. PRODUCTION OF TOMATO SEEDLINGS UNDER SALINE IRRIGATION

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Brasiliano Campos

    2007-01-01

    Full Text Available Processing tomato is the most important vegetable crop of the Brazilian agribusiness and few researches have been conducted to evaluate the tolerance of this crop to saline stress. In this study, the effects of five levels of salinity of the irrigation water (1, 2, 3, 4 and 5 dS m-1 and three equivalent proportions of Na:Ca:Mg (1:1:0.5, 4:1:0.5 and 7:1:0.5 were tested on the emergence and vigor of processing tomato, cultivar IPA 6. Seeds were sowed in expanded polystyrene tray (128 cells and each tray received 1 L of water after sowing. The trays were piled and, four days after sowing, they were placed on suspended supports in a greenhouse. Irrigation was accomplished daily from the fifth day after sowing. Only dry weight of shoot and root was affected by sodium proportions, while linear reductions of the speed of emergence, stem length and the dry weight of shoot and root were observed with increasing salinity. Root was more affected than shoot by salinity and relative growth ratioincreased with salinity levels on the 14-21 days after sowing period, indicating that the crop showed a certain increase of salinity tolerance with the time of exposure to salts.

  19. Synthesis and pH- and salinity-controlled self-assembly of novel amphiphilic block-gradient copolymers of styrene and acrylic acid

    Czech Academy of Sciences Publication Activity Database

    Borisova, O.; Billon, L.; Zaremski, M.; Grassl, B.; Bakaeva, Zulfiya; Lapp, A.; Štěpánek, Petr; Borisov, O.

    2012-01-01

    Roč. 8, č. 29 (2012), s. 7649-7659 ISSN 1744-683X R&D Projects: GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505 Keywords : block-gradient copolymers * light scattering * small-angle neutron scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.909, year: 2012

  20. MODIFIED ARMIJO RULE ON GRADIENT DESCENT AND CONJUGATE GRADIENT

    Directory of Open Access Journals (Sweden)

    ZURAIDAH FITRIAH

    2017-10-01

    Full Text Available Armijo rule is an inexact line search method to determine step size in some descent method to solve unconstrained local optimization. Modified Armijo was introduced to increase the numerical performance of several descent algorithms that applying this method. The basic difference of Armijo and its modified are in existence of a parameter and estimating the parameter that is updated in every iteration. This article is comparing numerical solution and time of computation of gradient descent and conjugate gradient hybrid Gilbert-Nocedal (CGHGN that applying modified Armijo rule. From program implementation in Matlab 6, it's known that gradient descent was applying modified Armijo more effectively than CGHGN from one side: iteration needed to reach some norm of the gradient  (input by the user. The amount of iteration was representing how long the step size of each algorithm in each iteration. In another side, time of computation has the same conclusion.

  1. Dose gradient curve: A new tool for evaluating dose gradient.

    Science.gov (United States)

    Sung, KiHoon; Choi, Young Eun

    2018-01-01

    Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice.

  2. Oxytocin and prolactin release after hypertonic saline administration in melatonin-treated male Syrian hamsters

    International Nuclear Information System (INIS)

    Juszczak, M.; Steger, R.W.; Fadden, C.; Bartke, A.

    1996-01-01

    The aim of the present investigations was to examine the effects of melatonin (Mel) on oxytocin (OT) release under conditions of osmotic stimulation, brought about by hypertonic saline administration, as well as to determine whether osmotically stimulated OT release in Mel-treated Syrian hamster is associated with alterations in the release of prolactin (PRL) and in norepinephrine (NE) and dopamine (DA) content in the hypothalamus. In both Mel- and vehicle-treated hamsters, injection of hypertonic saline was followed by a significant decrease in OT content in the pituitary neurointermediate lobe (NIL) and elevation of plasma OT and PRL levels. Melatonin injections had no significant affect on NIL OT content in either isotonic- or hypertonic-saline treated animals. Pretreatment with Mel did not alter plasma OT or PRL levels in isotonic saline-injected animals. However, Mel facilitated the release of OT, but prevented the release of PRL after hypertonic saline administration. Melatonin treatment reduced hypothalamic NE content (but not that of DA) in isotonic-saline treated animals. After osmotic stimulation, hypothalamic content of NE and DA was significantly lower in Mel-treated than in vehicle-treated animals. Data from the present study suggest that the osmotically-stimulated release of OT and PRL seems to be related to the activation of noradrenergic rather than dopaminergic transmission. Both dopaminergic and noradrenergic transmission may be, however, involved in mediating the effects of Mel on the osmotically-activated OT and PRL release. (author). 48 refs, 3 figs

  3. Oxytocin and prolactin release after hypertonic saline administration in melatonin-treated male Syrian hamsters

    Energy Technology Data Exchange (ETDEWEB)

    Juszczak, M.; Steger, R.W.; Fadden, C.; Bartke, A. [Southern Illinois Univ., Carbondale, IL (United States)

    1996-12-31

    The aim of the present investigations was to examine the effects of melatonin (Mel) on oxytocin (OT) release under conditions of osmotic stimulation, brought about by hypertonic saline administration, as well as to determine whether osmotically stimulated OT release in Mel-treated Syrian hamster is associated with alterations in the release of prolactin (PRL) and in norepinephrine (NE) and dopamine (DA) content in the hypothalamus. In both Mel- and vehicle-treated hamsters, injection of hypertonic saline was followed by a significant decrease in OT content in the pituitary neurointermediate lobe (NIL) and elevation of plasma OT and PRL levels. Melatonin injections had no significant affect on NIL OT content in either isotonic- or hypertonic-saline treated animals. Pretreatment with Mel did not alter plasma OT or PRL levels in isotonic saline-injected animals. However, Mel facilitated the release of OT, but prevented the release of PRL after hypertonic saline administration. Melatonin treatment reduced hypothalamic NE content (but not that of DA) in isotonic-saline treated animals. After osmotic stimulation, hypothalamic content of NE and DA was significantly lower in Mel-treated than in vehicle-treated animals. Data from the present study suggest that the osmotically-stimulated release of OT and PRL seems to be related to the activation of noradrenergic rather than dopaminergic transmission. Both dopaminergic and noradrenergic transmission may be, however, involved in mediating the effects of Mel on the osmotically-activated OT and PRL release. (author). 48 refs, 3 figs.

  4. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  5. The Metallicity Gradient of the Old Galactic Bulge Population

    Science.gov (United States)

    Sans Fuentes, Sara Alejandra; De Ridder, Joris

    Understanding the structure, formation and evolution of the Galactic Bulge requires the proper determination of spatial metallicity gradients in both the radial and vertical directions. RR Lyrae pulsators, known to be excellent distance indicators, may hold the key to determining these gradients. Jurcsik and Kovacs (A&A 312:111, 1996) has shown that RR Lyrae light curves and the phase difference of their Fourier decomposition, ϕ 31, can be used to estimate photometric metallicities. The existence of galactic bulge metallicity gradients is a currently debated topic that would help pinpoint the Galaxy's formation and evolution. A recent study of the OGLE-III Galactic Bulge RR Lyrae Population by Pietrukowicz et al. (ApJ 750:169, 2012) suggests that the spatial distribution is uniform. We investigate how small a gradient would be detectable within the current S/N levels of the present data set, given the random and systematic errors associated with the derivation of a photometric metallicity versus spatial position relationship.

  6. Response of CO and H2 uptake to extremes of water stress in saline and non-saline soils

    Science.gov (United States)

    King, G.

    2017-12-01

    Neither carbon monoxide (CO) nor hydrogen (H2) have direct impacts on radiative forcing, but both play important roles in tropospheric chemistry. Soils affect both the fate and significance of atmospheric CO and H2 by acting as strong global gas sinks ( 15% and >75 %, respectively), but much remains unknown about the microbiology of these gases, including responses to key environmental drivers. The role of water availability, measured as water potential, has been addressed to a limited extent by earlier studies with results suggesting that CO and H2 uptake are strongly limited by water stress. However recent results indicate a much greater tolerance of water stress than previously suspected. Ex situ assays have shown that non-saline playa soils from the Alvord Basin (Oregon, USA) consumed atmospheric and exogenous hydrogen and CO under conditions of severe water stress. CO uptake occurred at water potentials values considered optimal for terrestrial bacterial growth. Surface soils that had been exposed to water potentials as low as -300 MPa also oxidized CO and H2 after brief equilibration at higher potentials (less water stress), indicating remarkable tolerance of desiccating conditions. Tolerance to water stress for CO and H2 uptake was also observed for soils from a montane rainforest (Hawai`i, USA). However, unlike playa soils rainforest soils seldom experience extended drought that would select for desiccation tolerance. While CO uptake by forest soils was more sensitive to water stress (limits -10MPa) than in playa soils, H2 uptake was observed at -90 MPa to -100 MPa. Tolerance at these levels might be due to the formation of intracellular water that limits the local effects of stress. Comparisons of water stress responses between saline and non-saline soils further suggested that communities of CO- and H2-oxidizing were generally robust with respect to stresses resulting from solute and matric effects. Collectively the results indicate that models of global

  7. Hypertonic Saline Suppresses NADPH Oxidase-Dependent Neutrophil Extracellular Trap Formation and Promotes Apoptosis

    Directory of Open Access Journals (Sweden)

    Ajantha Nadesalingam

    2018-03-01

    Full Text Available Tonicity of saline (NaCl is important in regulating cellular functions and homeostasis. Hypertonic saline is administered to treat many inflammatory diseases, including cystic fibrosis. Excess neutrophil extracellular trap (NET formation, or NETosis, is associated with many pathological conditions including chronic inflammation. Despite the known therapeutic benefits of hypertonic saline, its underlying mechanisms are not clearly understood. Therefore, we aimed to elucidate the effects of hypertonic saline in modulating NETosis. For this purpose, we purified human neutrophils and induced NETosis using agonists such as diacylglycerol mimetic phorbol myristate acetate (PMA, Gram-negative bacterial cell wall component lipopolysaccharide (LPS, calcium ionophores (A23187 and ionomycin from Streptomyces conglobatus, and bacteria (Pseudomonas aeruginosa and Staphylococcus aureus. We then analyzed neutrophils and NETs using Sytox green assay, immunostaining of NET components and apoptosis markers, confocal microscopy, and pH sensing reagents. This study found that hypertonic NaCl suppresses nicotinamide adenine dinucleotide phosphate oxidase (NADPH2 or NOX2-dependent NETosis induced by agonists PMA, Escherichia coli LPS (0111:B4 and O128:B12, and P. aeruginosa. Hypertonic saline also suppresses LPS- and PMA- induced reactive oxygen species production. It was determined that supplementing H2O2 reverses the suppressive effect of hypertonic saline on NOX2-dependent NETosis. Many of the aforementioned suppressive effects were observed in the presence of equimolar concentrations of choline chloride and osmolytes (d-mannitol and d-sorbitol. This suggests that the mechanism by which hypertonic saline suppresses NOX2-dependent NETosis is via neutrophil dehydration. Hypertonic NaCl does not significantly alter the intracellular pH of neutrophils. We found that hypertonic NaCl induces apoptosis while suppressing NOX2-dependent NETosis. In contrast, hypertonic

  8. Ternary gradient metal-organic frameworks.

    Science.gov (United States)

    Liu, Chong; Rosi, Nathaniel L

    2017-09-08

    Gradient MOFs contain directional gradients of either structure or functionality. We have successfully prepared two ternary gradient MOFs based on bMOF-100 analogues, namely bMOF-100/102/106 and bMOF-110/100/102, via cascade ligand exchange reactions. The cubic unit cell parameter discrepancy within an individual ternary gradient MOF crystal is as large as ∼1 nm, demonstrating the impressive compatibility and flexibility of the component MOF materials. Because of the presence of a continuum of unit cells, the pore diameters within individual crystals also change in a gradient fashion from ∼2.5 nm to ∼3.0 nm for bMOF-100/102/106, and from ∼2.2 nm to ∼2.7 nm for bMOF-110/100/102, indicating significant porosity gradients. Like previously reported binary gradient MOFs, the composition of the ternary gradient MOFs can be easily controlled by adjusting the reaction conditions. Finally, X-ray diffraction and microspectrophotometry were used to analyse fractured gradient MOF crystals by comparing unit cell parameters and absorbance spectra at different locations, thus revealing the profile of heterogeneity (i.e. gradient distribution of properties) and further confirming the formation of ternary gradient MOFs.

  9. Minimal groundwater leakage restricts salinity in a hydrologically terminal basin of northwest Australia

    Science.gov (United States)

    Skrzypek, Grzegorz; Dogramaci, Shawan; Rouillard, Alexandra; Grierson, Pauline

    2016-04-01

    The Fortescue Marsh (FM) is one of the largest wetlands of arid northwest Australia (~1200 km2) and is thought to act as a terminal basin for the Upper Fortescue River catchment. Unlike the playa lake systems that predominate in most arid regions, where salinity is driven by inflow and evaporation of groundwater, the hydrological regime of the FM is driven by inundation from irregular cyclonic events [1]. Surface water of the FM is fresh to brackish and the salinity of the deepest groundwater (80 m b.g.l.) does not exceed 160 g/L; salt efflorescences are rarely present on the surface [2]. In this study, we tested the hypothesis that persistent but low rates of groundwater outflow have restricted the accumulation of salt in the FM over time. Using hydrological, hydrochemical data and dimensionless time evaporation modelling along with the water and salt budget, we calculated the time and the annual groundwater discharge volume that would be required to achieve and maintain the range of salinity levels observed in the Marsh. Groundwater outflow from alluvial and colluvial aquifers to the Lower Fortescue catchment is limited by an extremely low hydraulic gradient of 0.001 and is restricted to a relatively small 'alluvial window' of 0.35 km2 because of the elevation of the basement bedrock at the Marsh outflow. We show that if the Marsh was 100% "leakage free" i.e., a true terminal basin for the Upper Fortescue Catchment, the basin water would have achieved salt saturation after ~45 ka. This is not the case and only a very small outflow of saline groundwater of water volume) is needed to maintain the current salinity conditions. The minimum time required to develop the current hydrochemical composition of the water in the Marsh and the steady-state conditions for salt concentration is between 58 and 164 ka. This is a minimum age of the Marsh but it can be much older as nearly steady-state conditions could be maintained infinitely. Our approach using a combined water

  10. Adaptive responses to salinity stress across multiple life stages in anuran amphibians.

    Science.gov (United States)

    Albecker, Molly A; McCoy, Michael W

    2017-01-01

    In many regions, freshwater wetlands are increasing in salinity at rates exceeding historic levels. Some freshwater organisms, like amphibians, may be able to adapt and persist in salt-contaminated wetlands by developing salt tolerance. Yet adaptive responses may be more challenging for organisms with complex life histories, because the same environmental stressor can require responses across different ontogenetic stages. Here we investigated responses to salinity in anuran amphibians: a common, freshwater taxon with a complex life cycle. We conducted a meta-analysis to define how the lethality of saltwater exposure changes across multiple life stages, surveyed wetlands in a coastal region experiencing progressive salinization for the presence of anurans, and used common garden experiments to investigate whether chronic salt exposure alters responses in three sequential life stages (reproductive, egg, and tadpole life stages) in Hyla cinerea , a species repeatedly observed in saline wetlands. Meta-analysis revealed differential vulnerability to salt stress across life stages with the egg stage as the most salt-sensitive. Field surveys revealed that 25% of the species known to occur in the focal region were detected in salt-intruded habitats. Remarkably, Hyla cinerea was found in large abundances in multiple wetlands with salinity concentrations 450% higher than the tadpole-stage LC 50 . Common garden experiments showed that coastal (chronically salt exposed) populations of H. cinerea lay more eggs, have higher hatching success, and greater tadpole survival in higher salinities compared to inland (salt naïve) populations. Collectively, our data suggest that some species of anuran amphibians have divergent and adaptive responses to salt exposure across populations and across different life stages. We propose that anuran amphibians may be a novel and amenable natural model system for empirical explorations of adaptive responses to environmental change.

  11. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels.

    Science.gov (United States)

    Hariadi, Yuda; Marandon, Karl; Tian, Yu; Jacobsen, Sven-Erik; Shabala, Sergey

    2011-01-01

    Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) were studied by exposing plants to six salinity levels (0-500 mM NaCl range) for 70 d. Salt stress was administered either by pre-mixing of the calculated amount of NaCl with the potting mix before seeds were planted or by the gradual increase of NaCl levels in the irrigation water. For both methods, the optimal plant growth and biomass was achieved between 100 mM and 200 mM NaCl, suggesting that quinoa possess a very efficient system to adjust osmotically for abrupt increases in NaCl stress. Up to 95% of osmotic adjustment in old leaves and between 80% and 85% of osmotic adjustment in young leaves was achieved by means of accumulation of inorganic ions (Na(+), K(+), and Cl(-)) at these NaCl levels, whilst the contribution of organic osmolytes was very limited. Consistently higher K(+) and lower Na(+) levels were found in young, as compared with old leaves, for all salinity treatments. The shoot sap K(+) progressively increased with increased salinity in old leaves; this is interpreted as evidence for the important role of free K(+) in leaf osmotic adjustment under saline conditions. A 5-fold increase in salinity level (from 100 mM to 500 mM) resulted in only a 50% increase in the sap Na(+) content, suggesting either a very strict control of xylem Na(+) loading or an efficient Na(+) removal from leaves. A very strong correlation between NaCl-induced K(+) and H(+) fluxes was observed in quinoa root, suggesting that a rapid NaCl-induced activation of H(+)-ATPase is needed to restore otherwise depolarized membrane potential and prevent further K(+) leak from the cytosol. Taken together, this work emphasizes the role of inorganic ions for osmotic adjustment in halophytes and calls for more in-depth studies of the mechanisms of vacuolar Na(+) sequestration, control of Na(+) and K(+) xylem loading, and their transport to the shoot.

  12. Biological and physical modification of carbonate system parameters along the salinity gradient in shallow hypersaline solar salterns in Trapani, Italy

    Science.gov (United States)

    Isaji, Yuta; Kawahata, Hodaka; Kuroda, Junichiro; Yoshimura, Toshihiro; Ogawa, Nanako O.; Suzuki, Atsushi; Shibuya, Takazo; Jiménez-Espejo, Francisco J.; Lugli, Stefano; Santulli, Andrea; Manzi, Vinicio; Roveri, Marco; Ohkouchi, Naohiko

    2017-07-01

    We investigated changes in the chemical characteristics of evaporating seawater under the influence of microbial activity by conducting geochemical analyses of the brines and evaporite sediments collected from solar salterns in Trapani, Italy. The microbial activity had a substantial effect on the carbonate system parameters. Dissolved inorganic carbon (DIC) was substantially removed from the brine during the course of evaporation from the seawater to the point where calcium carbonate precipitates, with an accompanying decrease in its carbon isotopic composition (δ13CDIC) to as low as -10.6‰. Although the removal of DIC was due to calcium carbonate precipitation, photosynthesis, and the degassing of CO2(aq) induced by evaporation, the presence of 13C-depleted δ13CDIC in ponds where calcium carbonate precipitates can be attributed to the dissolution of atmospheric CO2 because of intensive CO2(aq) uptake by photosynthesis, and/or mineralization of organic matter by sulfate reduction. In contrast, δ13CDIC increased up to 7.2‰ in the salinity range where halite precipitates, which can be ascribed to the domination of the effect of degassing of CO2(aq) under conditions with reduced microbial activity. A gradual decrease in microbial activity was also reflected in compound-specific δ13C of photosynthetic pigments; isotopic fractionation associated with DIC assimilation increased linearly as the evaporation proceeded, indicating DIC-limited conditions within the microbial mats and gypsum crusts because of restricted DIC diffusion from the overlying brine and/or suppression of primary production at higher salinity.

  13. $L_{0}$ Gradient Projection.

    Science.gov (United States)

    Ono, Shunsuke

    2017-04-01

    Minimizing L 0 gradient, the number of the non-zero gradients of an image, together with a quadratic data-fidelity to an input image has been recognized as a powerful edge-preserving filtering method. However, the L 0 gradient minimization has an inherent difficulty: a user-given parameter controlling the degree of flatness does not have a physical meaning since the parameter just balances the relative importance of the L 0 gradient term to the quadratic data-fidelity term. As a result, the setting of the parameter is a troublesome work in the L 0 gradient minimization. To circumvent the difficulty, we propose a new edge-preserving filtering method with a novel use of the L 0 gradient. Our method is formulated as the minimization of the quadratic data-fidelity subject to the hard constraint that the L 0 gradient is less than a user-given parameter α . This strategy is much more intuitive than the L 0 gradient minimization because the parameter α has a clear meaning: the L 0 gradient value of the output image itself, so that one can directly impose a desired degree of flatness by α . We also provide an efficient algorithm based on the so-called alternating direction method of multipliers for computing an approximate solution of the nonconvex problem, where we decompose it into two subproblems and derive closed-form solutions to them. The advantages of our method are demonstrated through extensive experiments.

  14. Gradient pre-emphasis to counteract first-order concomitant fields on asymmetric MRI gradient systems.

    Science.gov (United States)

    Tao, Shengzhen; Weavers, Paul T; Trzasko, Joshua D; Shu, Yunhong; Huston, John; Lee, Seung-Kyun; Frigo, Louis M; Bernstein, Matt A

    2017-06-01

    To develop a gradient pre-emphasis scheme that prospectively counteracts the effects of the first-order concomitant fields for any arbitrary gradient waveform played on asymmetric gradient systems, and to demonstrate the effectiveness of this approach using a real-time implementation on a compact gradient system. After reviewing the first-order concomitant fields that are present on asymmetric gradients, we developed a generalized gradient pre-emphasis model assuming arbitrary gradient waveforms to counteract their effects. A numerically straightforward, easily implemented approximate solution to this pre-emphasis problem was derived that was compatible with the current hardware infrastructure of conventional MRI scanners for eddy current compensation. The proposed method was implemented on the gradient driver subsystem, and its real-time use was tested using a series of phantom and in vivo data acquired from two-dimensional Cartesian phase-difference, echo-planar imaging, and spiral acquisitions. The phantom and in vivo results demonstrated that unless accounted for, first-order concomitant fields introduce considerable phase estimation error into the measured data and result in images with spatially dependent blurring/distortion. The resulting artifacts were effectively prevented using the proposed gradient pre-emphasis. We have developed an efficient and effective gradient pre-emphasis framework to counteract the effects of first-order concomitant fields of asymmetric gradient systems. Magn Reson Med 77:2250-2262, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Functional diversity of benthic ciliate communities in response to environmental gradients in a wetland of Yangtze Estuary, China.

    Science.gov (United States)

    Xu, Yuan; Fan, Xinpeng; Warren, Alan; Zhang, Liquan; Xu, Henglong

    2018-02-01

    Researches on the functional diversity of benthic ecosystems have mainly focused on macrofauna, and studies on functional structure of ciliate communities have been based only on trophic- or size-groups. Current research was carried out on the changing patterns of classical and functional diversity of benthic ciliates in response to environmental gradients at three sites in a wetland in Yangtze Estuary. The results showed that changes of environmental factors (e.g. salinity, sediment grain size and hydrodynamic conditions) in the Yangtze Estuary induce variability in species composition and functional trait distribution. Furthermore, increased species richness and diversity did not lead to significant changes in functional diversity due to functional redundancy. However, salt water intrusion of Yangtze Estuary during the dry season could cause reduced functional diversity of ciliate communities. Current study provides the first insight into the functional diversity of ciliate communities in response to environmental gradients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The educational gradient in marriage: a comparison of 25 European countries.

    Science.gov (United States)

    Kalmijn, Matthijs

    2013-08-01

    Previous research has suggested that a new marriage gradient has emerged in the United States, with marriage becoming increasingly the privilege of the better-educated. This article examines whether this is true for Europe and explores differences in the marriage gradient among 25 European countries, using multilevel models. The focus is on the chances of living in a marital (or cohabiting) union during midlife (ages 40-49). Multilevel analyses show that the direction and strength of the gradient depend on the societal context. In countries where gender roles are traditional, better-educated women are less likely to be married than less-educated women; in gender-egalitarian countries, better-educated women are more likely to be married. For men, the educational effect on marriage is absent in traditional countries but becomes positive as gender roles become more equal. Inequality in a society also modifies the gradient: if the degree of economic inequality between educational groups in a society is strong, better-educated men are more likely to be married than less-educated men. In general, the results suggest that there may be an accumulation of social and economic disadvantages for the less well educated in more-developed countries.

  17. Evaluating management-induced soil salinization in golf courses in semi-arid landscapes

    Science.gov (United States)

    Young, J.; Udeigwe, T. K.; Weindorf, D. C.; Kandakji, T.; Gautam, P.; Mahmoud, M. A.

    2015-04-01

    Site-specific information on land management practices are often desired to make better assessments of their environmental impacts. A study was conducted in Lubbock, Texas, in the Southern High Plains of the United States, an area characterized by semi-arid climatic conditions, to (1) examine the potential management-induced alterations in soil salinity indicators in golf course facilities and (2) develop predictive relationships for a more rapid soil salinity examination within these urban landscape soils using findings from a portable X-ray fluorescence (PXRF) spectrometer. Soil samples were collected from managed (well irrigated) and non-managed (non-irrigated) areas of seven golf course facilities at 0-10, 10-20, and 20-30 cm depths and analyzed for a suite of chemical properties. Among the extractable cations, sodium (Na) was significantly (p golf facilities. Soil electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR), parameters often used in characterizing soil salinity and sodicity, were for the most part significantly (p < 0.05) higher in the managed areas. Water quality reports collected over a 22-year period (1991-2013, all years not available) indicated a gradual increase in pH, EC, SAR, total alkalinity, and extractable ions, thus supporting the former findings. Findings from the PXRF suggested possible differences in chemical species and sources that contribute to salinity between the managed and non-managed zones. PXRF-quantified Cl and S, and to a lesser extent Ca, individually and collectively explained 23-85% of the variability associated with soil salinity at these facilities.

  18. Investigations in Marine Chemistry: Salinity II.

    Science.gov (United States)

    Schlenker, Richard M.

    Presented is a science activity in which the student investigates methods of calibration of a simple conductivity meter via a hands-on inquiry technique. Conductivity is mathematically compared to salinity using a point slope formula and graphical techniques. Sample solutions of unknown salinity are provided so that the students can sharpen their…

  19. Gradient waveform pre-emphasis based on the gradient system transfer function.

    Science.gov (United States)

    Stich, Manuel; Wech, Tobias; Slawig, Anne; Ringler, Ralf; Dewdney, Andrew; Greiser, Andreas; Ruyters, Gudrun; Bley, Thorsten A; Köstler, Herbert

    2018-02-25

    The gradient system transfer function (GSTF) has been used to describe the distorted k-space trajectory for image reconstruction. The purpose of this work was to use the GSTF to determine the pre-emphasis for an undistorted gradient output and intended k-space trajectory. The GSTF of the MR system was determined using only standard MR hardware without special equipment such as field probes or a field camera. The GSTF was used for trajectory prediction in image reconstruction and for a gradient waveform pre-emphasis. As test sequences, a gradient-echo sequence with phase-encoding gradient modulation and a gradient-echo sequence with a spiral read-out trajectory were implemented and subsequently applied on a structural phantom and in vivo head measurements. Image artifacts were successfully suppressed by applying the GSTF-based pre-emphasis. Equivalent results are achieved with images acquired using GSTF-based post-correction of the trajectory as a part of image reconstruction. In contrast, the pre-emphasis approach allows reconstruction using the initially intended trajectory. The artifact suppression shown for two sequences demonstrates that the GSTF can serve for a novel pre-emphasis. A pre-emphasis based on the GSTF information can be applied to any arbitrary sequence type. © 2018 International Society for Magnetic Resonance in Medicine.

  20. Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium

    Science.gov (United States)

    Sacchi, Romina; Li, Johnathon; Villarreal, Fernando; Gardell, Alison M.; Kültz, Dietmar

    2013-01-01

    SUMMARY The myo-inositol biosynthesis (MIB) pathway converts glucose-6-phosphate to the compatible osmolyte myo-inositol that protects cells from osmotic stress. Using proteomics, the enzymes that constitute the MIB pathway, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1), are identified in tilapia (Oreochromis mossambicus) gill epithelium. Targeted, quantitative, label-free proteomics reveals that they are both upregulated during salinity stress. Upregulation is stronger when fish are exposed to severe (34 ppt acute and 90 ppt gradual) relative to moderate (70 ppt gradual) salinity stress. IMPA1 always responds more strongly than MIPS, suggesting that MIPS is more stable during salinity stress. MIPS is N-terminally acetylated and the corresponding peptide increases proportionally to MIPS protein, while non-acetylated N-terminal peptide is not detectable, indicating that MIPS acetylation is constitutive and may serve to stabilize the protein. Hyperosmotic induction of MIPS and IMPA1 is confirmed using western blot and real-time qPCR and is much higher at the mRNA than at the protein level. Two distinct MIPS mRNA variants are expressed in the gill, but one is more strongly regulated by salinity than the other. A single MIPS gene is encoded in the tilapia genome whereas the zebrafish genome lacks MIPS entirely. The genome of euryhaline tilapia contains four IMPA genes, two of which are expressed, but only one is salinity regulated in gill epithelium. The genome of stenohaline zebrafish contains a single IMPA gene. We conclude that the MIB pathway represents a major salinity stress coping mechanism that is regulated at multiple levels in euryhaline fish but absent in stenohaline zebrafish. PMID:24072791

  1. Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface

    Energy Technology Data Exchange (ETDEWEB)

    You Chun; Jia Chengxia [State Key Lab of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Pan Gang, E-mail: gpan@rcees.ac.c [State Key Lab of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2010-05-15

    This study investigated the influence of solution salinity, pH and the sediment characteristics on the sorption and desorption of perfluorooctane sulfonate (PFOS). The results showed that the sorption of PFOS onto sediment increased by a factor of 3 as the CaCl{sub 2} concentration increased from 0.005 to 0.5 mol L{sup -1} at pH 7.0, and nearly 6 at pH 8.0. Desorption hysteresis occurred over all salinity. The thermodynamic index of irreversibility (TII) values increased with increasing concentration of CaCl{sub 2}. Maximum irreversibility was found in the sorption systems with CaCl{sub 2} in the concentration of 0.5 mol L{sup -1}. The results suggested that PFOS can be largely removed from the water with increasing salinity, and get trapped onto sediments irreversibly. These phenomena could be explained by salting-out effect and Ca-bridging effect. Studies also suggested that the content of total organic carbon is the dominant psychochemical properties of sediment controlling the sorption of PFOS. - Salinity is an important environmental parameter affecting the transport and fate of PFOS in aquatic environment.

  2. Regularized image denoising based on spectral gradient optimization

    International Nuclear Information System (INIS)

    Lukić, Tibor; Lindblad, Joakim; Sladoje, Nataša

    2011-01-01

    Image restoration methods, such as denoising, deblurring, inpainting, etc, are often based on the minimization of an appropriately defined energy function. We consider energy functions for image denoising which combine a quadratic data-fidelity term and a regularization term, where the properties of the latter are determined by a used potential function. Many potential functions are suggested for different purposes in the literature. We compare the denoising performance achieved by ten different potential functions. Several methods for efficient minimization of regularized energy functions exist. Most are only applicable to particular choices of potential functions, however. To enable a comparison of all the observed potential functions, we propose to minimize the objective function using a spectral gradient approach; spectral gradient methods put very weak restrictions on the used potential function. We present and evaluate the performance of one spectral conjugate gradient and one cyclic spectral gradient algorithm, and conclude from experiments that both are well suited for the task. We compare the performance with three total variation-based state-of-the-art methods for image denoising. From the empirical evaluation, we conclude that denoising using the Huber potential (for images degraded by higher levels of noise; signal-to-noise ratio below 10 dB) and the Geman and McClure potential (for less noisy images), in combination with the spectral conjugate gradient minimization algorithm, shows the overall best performance

  3. Influence of salinity and cadmium on the survival and ...

    African Journals Online (AJOL)

    osmoregulated at salinities between 5 and 25 and osmoconformed at salinities greater than 25. Chiromantes eulimene followed a hyper-hypo-osmoregulatory strategy; it hyper-regulated in salinities from 0 up to isosmotic conditions at about 28 (c.

  4. Effect of temperature gradient on liquid-liquid phase separation in a polyolefin blend.

    Science.gov (United States)

    Jiang, Hua; Dou, Nannan; Fan, Guoqiang; Yang, Zhaohui; Zhang, Xiaohua

    2013-09-28

    We have investigated experimentally the structure formation processes during phase separation via spinodal decomposition above and below the spinodal line in a binary polymer blend system exposed to in-plane stationary thermal gradients using phase contrast optical microscopy and temperature gradient hot stage. Below the spinodal line there is a coupling of concentration fluctuations and thermal gradient imposed by the temperature gradient hot stage. Also under the thermal gradient annealing phase-separated domains grow faster compared with the system under homogeneous temperature annealing on a zero-gradient or a conventional hot stage. We suggest that the in-plane thermal gradient accelerates phase separation through the enhancement in concentration fluctuations in the early and intermediate stages of spinodal decomposition. In a thermal gradient field, the strength of concentration fluctuation close to the critical point (above the spinodal line) is strong enough to induce phase separation even in one-phase regime of the phase diagram. In the presence of a temperature gradient the equilibrium phase diagrams are no longer valid, and the systems with an upper critical solution temperature can be quenched into phase separation by applying the stationary temperature gradient. The in-plane temperature gradient drives enhanced concentration fluctuations in a binary polymer blend system above and below the spinodal line.

  5. On Scalable Deep Learning and Parallelizing Gradient Descent

    CERN Document Server

    AUTHOR|(CDS)2129036; Möckel, Rico; Baranowski, Zbigniew; Canali, Luca

    Speeding up gradient based methods has been a subject of interest over the past years with many practical applications, especially with respect to Deep Learning. Despite the fact that many optimizations have been done on a hardware level, the convergence rate of very large models remains problematic. Therefore, data parallel methods next to mini-batch parallelism have been suggested to further decrease the training time of parameterized models using gradient based methods. Nevertheless, asynchronous optimization was considered too unstable for practical purposes due to a lacking understanding of the underlying mechanisms. Recently, a theoretical contribution has been made which defines asynchronous optimization in terms of (implicit) momentum due to the presence of a queuing model of gradients based on past parameterizations. This thesis mainly builds upon this work to construct a better understanding why asynchronous optimization shows proportionally more divergent behavior when the number of parallel worker...

  6. Salinity information in coral δ18O records

    Science.gov (United States)

    Conroy, J. L.; Thompson, D. M.; Dassié, E. P.; Stevenson, S.; Konecky, B. L.; DeLong, K. L.; Sayani, H. R.; Emile-Geay, J.; Partin, J. W.; Abram, N. J.; Martrat, B.

    2017-12-01

    Coral oxygen isotopic ratios (δ18O) are typically utilized to reconstruct sea surface temperature (SST), or SST-based El Niño-Southern Oscillation metrics (e.g., NIÑO3.4), despite the influence of both SST and the oxygen isotopic composition of seawater (δ18Osw) on coral δ18O. The ideal way to isolate past δ18Osw variations is to develop independent and univariate SST and δ18Osw responders, for instance, via paired coral δ18O and Sr/Ca analyses. Nonetheless, many coral δ18O records without paired Sr/Ca records already exist in the paleoclimatic literature, and these may be able to provide some insight into past δ18Osw and salinity changes due to the nature of the significant positive relationship between instrumental salinity and δ18Osw. Here we use coral δ18O records from the new PAGES Iso2k database to assess the regions in which coral δ18O has the greatest potential to provide salinity information based on the strength of the relationship between instrumental salinity and coral δ18O values. We find from annual pseudocoral similations that corals in the western tropical Pacific share a substantial fraction of their variance with δ18Osw rather than SST. In contrast, in the Indian Ocean and eastern tropical Pacific it is SST that predominantly explains coral δ18O variance. In agreement with this variance decomposition, we find that coral δ18O time series from the western tropical Pacific are significantly correlated with mid to late 20th century salinity. However, variations in the strength of the δ18Osw-salinity relationship across the western tropical Pacific will likely have a significant influence on coral δ18O-based salinity reconstructions. Additionally, in some cases a strong, negative correlation between SST and δ18Osw might not allow their influences to be adequately separated in coral δ18O records without the use of coupled Sr/Ca estimates of the temperature contribution. Overall, we find a range of modern salinity and SST

  7. Advances in measuring ocean salinity with an optical sensor

    International Nuclear Information System (INIS)

    Menn, M Le; De Bougrenet de la Tocnaye, J L; Grosso, P; Delauney, L; Podeur, C; Brault, P; Guillerme, O

    2011-01-01

    Absolute salinity measurement of seawater has become a key issue in thermodynamic models of the oceans. One of the most direct ways is to measure the seawater refractive index which is related to density and can therefore be related to the absolute salinity. Recent advances in high resolution position sensitive devices enable us to take advantage of small beam deviation measurements using refractometers. This paper assesses the advantages of such technology with respect to the current state-of-the-art technology. In particular, we present the resolution dependence on refractive index variations and derive the limits of such a solution for designing seawater sensors well suited for coastal and deep-sea applications. Particular attention has been paid to investigate the impact of environmental parameters, such as temperature and pressure, on an optical sensor, and ways to mitigate or compensate them have been suggested here. The sensor has been successfully tested in a pressure tank and in open oceans 2000 m deep

  8. Salinization and arsenic contamination of surface water in southwest Bangladesh.

    Science.gov (United States)

    Ayers, John C; George, Gregory; Fry, David; Benneyworth, Laura; Wilson, Carol; Auerbach, Leslie; Roy, Kushal; Karim, Md Rezaul; Akter, Farjana; Goodbred, Steven

    2017-09-11

    To identify the causes of salinization and arsenic contamination of surface water on an embanked island (i.e., polder) in the tidal delta plain of SW Bangladesh we collected and analyzed water samples in the dry (May) and wet (October) seasons in 2012-2013. Samples were collected from rice paddies (wet season), saltwater ponds used for brine shrimp aquaculture (dry season), freshwater ponds and tidal channels (both wet and dry season), and rainwater collectors. Continuous measurements of salinity from March 2012 to February 2013 show that tidal channel water increases from ~0.15 ppt in the wet season up to ~20 ppt in the dry season. On the polder, surface water exceeds the World Health Organization drinking water guideline of 10 μg As/L in 78% of shrimp ponds and 27% of rice paddies, raising concerns that produced shrimp and rice could have unsafe levels of As. Drinking water sources also often have unsafe As levels, with 83% of tubewell and 43% of freshwater pond samples having >10 μg As/L. Water compositions and field observations are consistent with shrimp pond water being sourced from tidal channels during the dry season, rather than the locally saline groundwater from tubewells. Irrigation water for rice paddies is also obtained from the tidal channels, but during the wet season when surface waters are fresh. Salts become concentrated in irrigation water through evaporation, with average salinity increasing from 0.43 ppt in the tidal channel source to 0.91 ppt in the rice paddies. Our observations suggest that the practice of seasonally alternating rice and shrimp farming in a field has a negligible effect on rice paddy water salinity. Also, shrimp ponds do not significantly affect the salinity of adjacent surface water bodies or subjacent groundwater because impermeable shallow surface deposits of silt and clay mostly isolate surface water bodies from each other and from the shallow groundwater aquifer. Bivariate plots of conservative element

  9. Abacus to determine soils salinity in presence of saline groundwater in arid zones case of the region of Ouargla

    Science.gov (United States)

    Fergougui, Myriam Marie El; Benyamina, Hind; Boutoutaou, Djamel

    2018-05-01

    In order to remedy the limit of salt intake to the soil surface, it is necessary to study the causes of the soil salinity and find the origin of these salts. The arid areas in the region of Ouargla lie on excessively mineralized groundwater whose level is near the soil surface (0 - 1.5 m). The topography and absence of a reliable drainage system led to the rise of the groundwater beside the arid climatic conditions contributed to the salinization and hydromorphy of the soils. The progress and stabilization of cultures yields in these areas can only occur if the groundwater is maintained (drained) to a depth of 1.6 m. The results of works done to the determination of soil salinity depend mainly on the groundwater's salinity, its depth and the climate.

  10. Improving tolerance of sunflower and safflower during growth stages to salinity through foliar spray of nutrient solutions

    International Nuclear Information System (INIS)

    Jabeen, N.; Ahmad, R.

    2012-01-01

    The effect of salinity and foliar application of nutrient solutions on sunflower and safflower in vegetative and reproductive phases of the growth were investigated in Bio saline Research Field, University of Karachi, Pakistan. The seeds were sown in pots under non saline condition and saline water irrigation was started at three leaf stage after germination. Different concentration of saline water were made by dissolving 3g and 6g sea salt per litre of tap water, equivalent to an EC of 4.8 and 8.6 dS/m respectively. Nutrient solution (KNO/sub 3 /, H/sub 3/ BO/sub 3/, Fe-EDTA or its mixture) was sprayed thrice, i.e., 45, 75 and 95 days after planting. KNO/sub 3/ was given at the rate 250 ppm and other H/sub 3/ BO/sub 3/ and Fe-EDTA was given at the rate 5 ppm. Salinity caused a significant reduction in nutrient uptake, height, biomass and yield of both sunflower and safflower. Foliar application of macro and micro nutrients (i.e. KNO/sub 3/, H/sub 3/BO/sub 3/, Fe-EDTA and mixture of KNO/sub 3/ + H/sub 3/BO/sub 3/ + Fe-EDTA) partially minimized the salt induced deficiency and showed significant increase in height, fresh and dry biomass, number and weight of seeds, and amount of oil per sunflower and safflower plant irrespective to their growth under non saline or saline conditions. Among the nutrient solutions, mixture of KNO/sub 3/+ H/sub 3/BO/sub 3/ + Fe-EDTA seemed to be the most effective followed by H/sub 3/ BO/sub 3/ and Fe-EDTA. These results suggested that foliar application of nutrients could be used to improve plant tolerance to salinity by alleviating the adverse effects of salinity on growth and reproductive yield. (author)

  11. Magnetoelectric Transverse Gradient Sensor with High Detection Sensitivity and Low Gradient Noise.

    Science.gov (United States)

    Zhang, Mingji; Or, Siu Wing

    2017-10-25

    We report, theoretically and experimentally, the realization of a high detection performance in a novel magnetoelectric (ME) transverse gradient sensor based on the large ME effect and the magnetic field gradient (MFG) technique in a pair of magnetically-biased, electrically-shielded, and mechanically-enclosed ME composites having a transverse orientation and an axial separation. The output voltage of the gradient sensor is directly obtained from the transverse MFG-induced difference in ME voltage between the two ME composites and is calibrated against transverse MFGs to give a high detection sensitivity of 0.4-30.6 V/(T/m), a strong common-mode magnetic field noise rejection rate of gradient noise of 0.16-620 nT/m/ Hz in a broad frequency range of 1 Hz-170 kHz under a small baseline of 35 mm. An analysis of experimental gradient noise spectra obtained in a magnetically-unshielded laboratory environment reveals the domination of the pink (1/ f ) noise, dielectric loss noise, and power-frequency noise below 3 kHz, in addition to the circuit noise above 3 kHz, in the gradient sensor. The high detection performance, together with the added merit of passive and direct ME conversion by the large ME effect in the ME composites, makes the gradient sensor suitable for the passive, direct, and broadband detection of transverse MFGs.

  12. Conspecific plasticity and invasion: invasive populations of Chinese tallow (Triadica sebifera) have performance advantage over native populations only in low soil salinity.

    Science.gov (United States)

    Chen, Leiyi; Tiu, Candice J; Peng, Shaolin; Siemann, Evan

    2013-01-01

    Global climate change may increase biological invasions in part because invasive species may have greater phenotypic plasticity than native species. This may be especially important for abiotic stresses such as salt inundation related to increased hurricane activity or sea level rise. If invasive species indeed have greater plasticity, this may reflect genetic differences between populations in the native and introduced ranges. Here, we examined plasticity of functional and fitness-related traits of Chinese tallow (Triadica sebifera) populations from the introduced and native ranges that were grown along a gradient of soil salinity (control: 0 ppt; Low: 5 ppt; Medium: 10 ppt; High: 15 ppt) in a greenhouse. We used both norm reaction and plasticity index (PIv) to estimate the conspecific phenotypic plasticity variation between invasive and native populations. Overall, invasive populations had higher phenotypic plasticity of height growth rate (HGR), aboveground biomass, stem biomass and specific leaf area (SLA). The plasticity Index (PIv) of height growth rate (HGR) and SLA each were higher for plants from invasive populations. Absolute performance was always comparable or greater for plants from invasive populations versus native populations with the greatest differences at low stress levels. Our results were consistent with the "Master-of-some" pattern for invasive plants in which the fitness of introduced populations was greater in more benign conditions. This suggests that the greater conspecific phenotypic plasticity of invasive populations compared to native populations may increase invasion success in benign conditions but would not provide a potential interspecific competitive advantage in higher salinity soils that may occur with global climate change in coastal areas.

  13. Decline of the world's saline lakes

    Science.gov (United States)

    Wayne A. Wurtsbaugh; Craig Miller; Sarah E. Null; R. Justin DeRose; Peter Wilcock; Maura Hahnenberger; Frank Howe; Johnnie Moore

    2017-01-01

    Many of the world’s saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and...

  14. Competitive outcome of Daphnia-Simocephalus experimental microcosms: salinity versus priority effects.

    Directory of Open Access Journals (Sweden)

    Cláudia Loureiro

    Full Text Available Competition is a major driving force in freshwaters, especially given the cyclic nature and dynamics of pelagic food webs. Competition is especially important in the initial species assortment during colonization and re-colonization events, which depends strongly on the environmental context. Subtle changes, such as saline intrusion, may disrupt competitive relationships and, thus, influence community composition. Bearing this in mind, our objective was to assess whether low salinity levels (using NaCl as a proxy alter the competitive outcome (measured as the rate of population biomass increase of Daphnia-Simocephalus experimental microcosms, taking into account interactions with priority effects (sequential species arrival order. With this approach, we aimed to experimentally demonstrate a putative mechanism of differential species sorting in brackish environments or in freshwaters facing secondary salinization. Experiments considered three salinity levels, regarding NaCl added (0.00, 0.75 and 1.50 g L(-1, crossed with three competition scenarios (no priority, priority of Daphnia over Simocephalus, and vice-versa. At lower NaCl concentrations (0.00 and 0.75 g L(-1, Daphnia was a significantly superior competitor, irrespective of the species inoculation order, suggesting negligible priority effects. However, the strong decrease in Daphnia population growth at 1.50 g L(-1 alleviated the competitive pressure on Simocephalus, causing an inversion of the competitive outcome in favour of Simocephalus. The intensity of this inversion depended on the competition scenario. This salinity-mediated disruption of the competitive outcome demonstrates that subtle environmental changes produce indirect effects in key ecological mechanisms, thus altering community composition, which may lead to serious implications in terms of ecosystem functioning (e.g. lake regime shifts due to reduced grazing and biodiversity.

  15. Salinity of the Archaean oceans from analysis of fluid inclusions in quartz

    Science.gov (United States)

    Marty, Bernard; Avice, Guillaume; Bekaert, David V.; Broadley, Michael W.

    2018-05-01

    Fluids trapped in inclusions in well-characterized Archaean hydrothermal quartz crystals were analyzed by the extended argon-argon method, which permits the simultaneous measurement of chlorine and potassium concentrations. Argon and nitrogen isotopic compositions of the trapped fluids were also determined by static mass spectrometry. Fluids were extracted by stepwise crushing of quartz samples from North Pole (NW Australia) and Barberton (South Africa) 3.5-3.0-Ga-old greenstone belts. The data indicate that fluids are a mixture of a low salinity end-member, regarded as the Archaean oceanic water, and several hydrothermal end-members rich in Cl, K, N, and radiogenic parentless 40Ar. The low Cl-K end-member suggests that the salinity of the Archaean oceans was comparable to the modern one, and that the potassium content of the Archaean oceans was lower than at present by about 40%. A constant salinity of the oceans through time has important implications for the stabilization of the continental crust and for the habitability of the ancient Earth.

  16. Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils

    International Nuclear Information System (INIS)

    Manousaki, Eleni; Kadukova, Jana; Papadantonakis, Nikolaos; Kalogerakis, Nicolas

    2008-01-01

    Phytoremediation and more specifically phytoextraction, is an alternative restoration strategy for the clean up of heavy metal contaminated soils. Phytoextraction can only be successful if suitable plant species colonize the contaminated area, extract the toxic substances and accumulate them in their above ground tissues. In this study, the salt cedar Tamarix smyrnensis that is a widespread salt-tolerant plant in the Mediterranean region has been investigated. A pot experiment is conducted with T. smyrnensis grown in polluted soil with 16 ppm of cadmium and at three different salt concentrations (0.0, 0.5, 3.0% NaCl) for a 10-week period. It took place in an open-air area with natural light, at ambient temperature and humidity in an effort to keep the plants under conditions as similar as possible to those in the field. However, care was taken not to let them be rained on. Temperature ranged from 19 to 50 deg. C with 33 and 21 deg. C being the average day and night temperature, respectively. Humidity ranged from 28% to 87% with a 13-14 h photoperiod. The specific aims of this work are to investigate the accumulation of cadmium via root uptake at different saline conditions and cadmium excretion through salt glands on the surface of the leaves as a probable detoxification mechanism of the plant. Furthermore, measurements of chlorophyll content, biomass, and shoot length are used to evaluate the potential of the plant for the removal of cadmium from contaminated saline and non-saline soils. The experimental data suggest that increased soil salinity results in an increase of the cadmium uptake by T. smyrnensis. Analysis of white salt crystals taken from glandular tissue confirmed the fact that this plant excretes cadmium through its salt glands on the surface of the leaves as a possible detoxification mechanism in order to resist metal toxicity. Excreted cadmium is again released into the environment and it is redeposited on the top soil. Furthermore, increased

  17. Salinity controls on plant transpiration and soil water balance

    Science.gov (United States)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  18. Simultaneous Expression of PDH45 with EPSPS Gene Improves Salinity and Herbicide Tolerance in Transgenic Tobacco Plants.

    Science.gov (United States)

    Garg, Bharti; Gill, Sarvajeet S; Biswas, Dipul K; Sahoo, Ranjan K; Kunchge, Nandkumar S; Tuteja, Renu; Tuteja, Narendra

    2017-01-01

    To cope with the problem of salinity- and weed-induced crop losses, a multi-stress tolerant trait is need of the hour but a combinatorial view of such traits is not yet explored. The overexpression of PDH45 (pea DNA helicase 45) and EPSPS (5-enoylpruvyl shikimate-3-phosphate synthase) genes have been reported to impart salinity and herbicide tolerance. Further, the understanding of mechanism and pathways utilized by PDH45 and EPSPS for salinity and herbicide tolerance will help to improve the crops of economical importance. In the present study, we have performed a comparative analysis of salinity and herbicide tolerance to check the biochemical parameters and antioxidant status of tobacco transgenic plants. Collectively, the results showed that PDH45 overexpressing transgenic lines display efficient tolerance to salinity stress, while PDH45+EPSPS transgenics showed tolerance to both the salinity and herbicide as compared to the control [wild type (WT) and vector control (VC)] plants. The activities of the components of enzymatic antioxidant machinery were observed to be higher in the transgenic plants indicating the presence of an efficient antioxidant defense system which helps to cope with the stress-induced oxidative-damages. Photosynthetic parameters also showed significant increase in PDH45 and PDH45+EPSPS overexpressing transgenic plants in comparison to WT, VC and EPSPS transgenic plants under salinity stress. Furthermore, PDH45 and PDH45+EPSPS synergistically modulate the jasmonic acid and salicylic acid mediated signaling pathways for combating salinity stress. The findings of our study suggest that pyramiding of the PDH45 gene with EPSPS gene renders host plants tolerant to salinity and herbicide by enhancing the antioxidant machinery thus photosynthesis.

  19. Enhancement of Salinity Tolerance during Rice Seed Germination by Presoaking with Hemoglobin

    Directory of Open Access Journals (Sweden)

    Sheng Xu

    2011-04-01

    Full Text Available Salinity stress is an important environmental constraint limiting the productivity of many crops worldwide. In this report, experiments were conducted to investigate the effects of seed presoaking by bovine hemoglobin, an inducer of heme oxygenase-1 (HO-1, on salinity tolerance in rice (Oryza sativa plants. The results showed that different concentrations of the hemoglobin (0.01, 0.05, 0.2, 1.0, and 5.0 g/L differentially alleviated the inhibition of rice seed germination and thereafter seedling shoot growth caused by 100 mM NaCl stress, and the responses of 1.0 g/L hemoglobin was the most obvious. Further analyses showed that application of hemoglobin not only increased the HO-1 gene expression, but also differentially induced catalase (CAT, ascorbate peroxidase (APX, and superoxide dismutase (SOD activities or transcripts, thus decreasing the lipid peroxidation in germinating rice seeds subjected to salt stress. Compared with non-hemoglobin treatment, hemoglobin presoaking also increased the potassium (K to sodium (Na ratio both in the root and shoot parts after salinity stress. The effect is specific for HO-1 since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX blocked the positive actions of hemoglobin on seed germination and seedling shoot growth. Overall, these results suggested that hemoglobin performs an advantageous role in enhancement of salinity tolerance during rice seed germination.

  20. Time-dependence of salinity in monsoonal estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    Vijith, V.; Sundar, D.; Shetye, S.R.

    processes (diffusion, gravity current formation, impact of tidal asymmetries, etc.) is balanced by salinity-egress induced by runoff. Here we point out that the salinity field of the estuaries that are located on the coasts of the Indian subcontinent...

  1. High-gradient operators in the psl(2|2 Gross–Neveu model

    Directory of Open Access Journals (Sweden)

    Alessandra Cagnazzo

    2015-03-01

    Full Text Available It has been observed more than 25 years ago that sigma model perturbation theory suffers from strongly RG-relevant high-gradient operators. The phenomenon was first seen in 1-loop calculations for the O(N vector model and it is known to persist at least to two loops. More recently, Ryu et al. suggested that a certain deformation of the psl(N|N WZNW-model at level k=1, or equivalently the psl(N|N  Gross–Neveu model, could be free of RG-relevant high-gradient operators and they tested their suggestion to leading order in perturbation theory. In this note we establish the absence of strongly RG-relevant high-gradient operators in the psl(2|2 Gross–Neveu model to all loops. In addition, we determine the spectrum for a large subsector of the model at infinite coupling and observe that all scaling weights become half-integer. Evidence for a conjectured relation with the CP1|2 sigma model is not found.

  2. Wetting of flat gradient surfaces.

    Science.gov (United States)

    Bormashenko, Edward

    2018-04-01

    Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. High salinity conveys thermotolerance in the coral model Aiptasia

    KAUST Repository

    Gegner, Hagen M.

    2017-12-15

    The endosymbiosis between dinoflagellate algae of the genus Symbiodinium and stony corals provides the foundation of coral reef ecosystems. Coral bleaching, the expulsion of endosymbionts from the coral host tissue as a consequence of heat or light stress, poses a threat to reef ecosystem functioning on a global scale. Hence, a better understanding of the factors contributing to heat stress susceptibility and tolerance is needed. In this regard, some of the most thermotolerant corals also live in particularly saline habitats, but possible effects of high salinity on thermotolerance in corals are anecdotal. Here we test the hypothesis that high salinity may lead to increased thermotolerance. We conducted a heat stress experiment at low, intermediate, and high salinities using a set of host-endosymbiont combinations of the coral model Aiptasia. As expected, all host-endosymbiont combinations showed reduced photosynthetic efficiency and endosymbiont loss during heat stress, but the severity of bleaching was significantly reduced with increasing salinities for one of the host-endosymbiont combinations. Our results show that higher salinities can convey increased thermotolerance in Aiptasia, although this effect seems to be dependent on the particular host strain and/or associated symbiont type. This finding may help explain the extraordinarily high thermotolerance of corals in high salinity environments such as the Red Sea and the Persian/Arabian Gulf and provides novel insight regarding factors that contribute to thermotolerance. Since our results are based on a salinity effect in symbiotic sea anemones, it remains to be determined whether this salinity effect can also be observed in stony corals.

  4. High salinity conveys thermotolerance in the coral model Aiptasia

    KAUST Repository

    Gegner, Hagen M.; Ziegler, Maren; Radecker, Nils; Buitrago Lopez, Carol; Aranda, Manuel; Voolstra, Christian R.

    2017-01-01

    The endosymbiosis between dinoflagellate algae of the genus Symbiodinium and stony corals provides the foundation of coral reef ecosystems. Coral bleaching, the expulsion of endosymbionts from the coral host tissue as a consequence of heat or light stress, poses a threat to reef ecosystem functioning on a global scale. Hence, a better understanding of the factors contributing to heat stress susceptibility and tolerance is needed. In this regard, some of the most thermotolerant corals also live in particularly saline habitats, but possible effects of high salinity on thermotolerance in corals are anecdotal. Here we test the hypothesis that high salinity may lead to increased thermotolerance. We conducted a heat stress experiment at low, intermediate, and high salinities using a set of host-endosymbiont combinations of the coral model Aiptasia. As expected, all host-endosymbiont combinations showed reduced photosynthetic efficiency and endosymbiont loss during heat stress, but the severity of bleaching was significantly reduced with increasing salinities for one of the host-endosymbiont combinations. Our results show that higher salinities can convey increased thermotolerance in Aiptasia, although this effect seems to be dependent on the particular host strain and/or associated symbiont type. This finding may help explain the extraordinarily high thermotolerance of corals in high salinity environments such as the Red Sea and the Persian/Arabian Gulf and provides novel insight regarding factors that contribute to thermotolerance. Since our results are based on a salinity effect in symbiotic sea anemones, it remains to be determined whether this salinity effect can also be observed in stony corals.

  5. Shallow rainwater lenses in deltaic areas with saline seepage

    NARCIS (Netherlands)

    Louw, de P.G.B.; Eeman, S.; Siemon, B.; `Voortman, B.R.; Gunnink, J.; Baaren, E.S.; Oude Essink, G.H.P.

    2011-01-01

    In deltaic areas with saline seepage, freshwater availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence and

  6. Shallow rainwater lenses in deltaic areas with saline seepage

    NARCIS (Netherlands)

    De Louw, Perry G.B.; Eeman, Sara; Siemon, Bernhard; Voortman, Bernard R.; Gunnink, Jan; Van Baaren, Esther S.; Oude Essink, Gualbert

    2011-01-01

    In deltaic areas with saline seepage, fresh water availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence

  7. Apparent digestible protein, energy, and amino acid availability of three plant proteins in Florida pompano Trachinotus carolinus L. in seawater and low-salinity

    Science.gov (United States)

    There is interest in rearing the marine euryhaline Florida pompano in low-salinity. However, insufficient nutrient availability data to formulate well-balanced low-cost diets presents an obstacle to large-scale commercial production. Evidence also suggests salinity affects nutrient availability in ...

  8. Comparison of white spot syndrome virus infection resistance between Exopalaemon carinicauda and Litopenaeus vannamei under different salinity stresses

    Science.gov (United States)

    Ge, Qianqian; Yu, Ge; Sun, Ming; Li, Jitao; Li, Jian

    2017-12-01

    Exopalaemon carinicauda is one of the important economic shrimp species in China, and can tolerate a wide range of salinities. However, its disease resistance remains to be unclear in comparison with other shrimp species under salinity stress. In this study, the resistance to white spot syndrome virus (WSSV) of E. carinicauda and Litopenaeus vannamei was determined by comparing their hemocyanin (Hc) and phenoloxidase (PO) activities under different salinity stresses. In E. carinicauda, the PO activity and Hc gene transcript abundance showed a coherent pattern of increase and decrease while Hc content showed a slightly decrease with Vibrio anguillarum and WSSV infections. For both E. carinicauda and L. vannamei under salinity stress, the PO activity showed a positive correlation with the salinity while the Hc content and expression level of its gene increased significantly in salinities of 5, 15 and 25 g L-1. The survival rate of E. carinicauda with WSSV infection was higher than that of L. vannamei in the first 24 h under different salinity stresses. Drastic mortality of E.carinicauda and L. vannamei appeared at 48 h and 3 h post-injection, respectively. Furthermore, compared with L. vannamei, E. carinicauda displayed higher PO activity, Hc content and abundance of Hc gene mRNA. The results collectively indicated that Hc and PO have obviously functional connection in resisting pathogens and tolerating salinity stress, and PO activity and Hc gene mRNA abundance may reflect the resistance of shrimp to disease. E. carinicauda has higher level of immune potential than L. vannamei, suggesting its greater capacity in resisting pathogens under salinity stresses.

  9. OPTICAL-NEAR-INFRARED COLOR GRADIENTS AND MERGING HISTORY OF ELLIPTICAL GALAXIES

    International Nuclear Information System (INIS)

    Kim, Duho; Im, Myungshin

    2013-01-01

    It has been suggested that merging plays an important role in the formation and the evolution of elliptical galaxies. While gas dissipation by star formation is believed to steepen metallicity and color gradients of the merger products, mixing of stars through dissipation-less merging (dry merging) is believed to flatten them. In order to understand the past merging history of elliptical galaxies, we studied the optical-near-infrared (NIR) color gradients of 204 elliptical galaxies. These galaxies are selected from the overlap region of the Sloan Digital Sky Survey (SDSS) Stripe 82 and the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). The use of optical and NIR data (g, r, and K) provides large wavelength baselines, and breaks the age-metallicity degeneracy, allowing us to derive age and metallicity gradients. The use of the deep SDSS Stripe 82 images makes it possible for us to examine how the color/age/metallicity gradients are related to merging features. We find that the optical-NIR color and the age/metallicity gradients of elliptical galaxies with tidal features are consistent with those of relaxed ellipticals, suggesting that the two populations underwent a similar merging history on average and that mixing of stars was more or less completed before the tidal features disappeared. Elliptical galaxies with dust features have steeper color gradients than the other two types, even after masking out dust features during the analysis, which can be due to a process involving wet merging. More importantly, we find that the scatter in the color/age/metallicity gradients of the relaxed and merging feature types decreases as their luminosities (or masses) increase at M > 10 11.4 M ☉ but stays large at lower luminosities. Mean metallicity gradients appear nearly constant over the explored mass range, but a possible flattening is observed at the massive end. According to our toy model that predicts how the distribution of metallicity gradients

  10. Responses of neotropical mangrove seedlings grown in monoculture and mixed culture under treatments of hydroperiod and salinity

    Science.gov (United States)

    Cardona-Olarte, P.; Twilley, R.R.; Krauss, K.W.; Rivera-Monroy, V.

    2006-01-01

    We investigated the combined effects of salinity and hydroperiod on seedlings of Rhizophora mangle and Laguncularia racemosa grown under experimental conditions of monoculture and mixed culture by using a simulated tidal system. The objective was to test hypotheses relative to species interactions to either tidal or permanent flooding at salinities of 10 or 40 g/l. Four-month-old seedlings were experimentally manipulated under these environmental conditions in two types of species interactions: (1) seedlings of the same species were grown separately in containers from September 2000 to August 2001 to evaluate intraspecific response and (2) seedlings of each species were mixed in containers to evaluate interspecific, competitive responses from August 2002 to April 2003. Overall, L. racemosa was strongly sensitive to treatment combinations while R. mangle showed little effect. Most plant responses of L. racemosa were affected by both salinity and hydroperiod, with hydroperiod inducing more effects than salinity. Compared to R. mangle, L. racemosa in all treatment combinations had higher relative growth rate, leaf area ratio, specific leaf area, stem elongation, total length of branches, net primary production, and stem height. Rhizophora mangle had higher biomass allocation to roots. Species growth differentiation was more pronounced at low salinity, with few species differences at high salinity under permanent flooding. These results suggest that under low to mild stress by hydroperiod and salinity, L. racemosa exhibits responses that favor its competitive dominance over R. mangle. This advantage, however, is strongly reduced as stress from salinity and hydroperiod increase. ?? Springer 2006.

  11. The effect of water uptake gradient in membrane electrode assembly on fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H., E-mail: hajime.phy@gmail.co [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan); Shiraki, F.; Oshima, Y.; Tatsumi, T.; Yoshikawa, T.; Sasaki, T. [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan); Oshima, A. [Institute for Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Washio, M. [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan)

    2011-02-15

    Novel proton exchange membranes (PEMs) with functionally gradient ionic sites were fabricated utilizing low energy electron beam (EB) irradiations. The low energy electron beam irradiation to polymer membranes possessed the property of gradient energy deposition in the membrane thickness direction. In the process of EB grafting of styrene onto base films, selective ranges of the gradient energy deposition were used. Micro FT-IR spectra showed that the simulated energy deposition of EB irradiation to base polymer membranes in the thickness direction corresponded to the amount of styrene grafted onto EB-irradiated films. After sulfonation, a functionally gradient ionic site PEM (gradient-PEM) was prepared, corresponding to EB depth-dose profile. The functionally gradients of ionic sites in the gradient-PEM and flat-PEM were evaluated with XPS and SEM-EDX. The results of XPS and SEM-EDX suggest that the prepared gradient-PEM had a gradient sulfonated acid groups. In addition, the polarization performance of MEA based on gradient-PEM was improved in high current density. It was thought that water uptake gradient could have a function to prevent flooding in the MEA during FC operation. Thus, the functionally gradient-PEMs could be a promising solution to manage the water behavior in MEA.

  12. Salinity and resource management in the Hunter Valley

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Cooke, R.; Simons, M. [RA Creelman & Associates (Australia)

    1995-08-01

    If excess water salinity is to be managed in the Hunter Valley, its causes and behaviour must be understood. Although Hunter Valley hydrology, hydrogeology and hydrogeochemistry require further study, there is now enough information available to begin the development of both temporal and spatial models as valley management tools. Currently the Department of Water Resources is developing a model known as Integrated Water Quality and Quantity Model (IQQM). IQQM which includes a salinity module is essentially a surface water simulation model. It wll enable testing of alternate management and operation policies such as the salinity property rights trading scheme recently introduced by the EPA to manage salt release from coal mines and power stations. An overview is presented of the progress made to date on the salinity module for IQQM, and an outline is given of the geological and hydrogeochemical concepts that have been assembled to support the salinity module of IQQM. 17 refs., 3 figs., 1 tab.

  13. Sobolev gradients and differential equations

    CERN Document Server

    Neuberger, J W

    2010-01-01

    A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair p...

  14. Salinity-dependent limitation of photosynthesis and oxygen exchange in microbial mats

    DEFF Research Database (Denmark)

    Garcia-Pichel, F.; Kühl, Michael; Nübel, U.

    1999-01-01

    was specific for each community and in accordance with optimal performance at the respective salinity of origin. This pattern was lost after long-term exposure to varying salinities when responses to salinity were found to approach a general pattern of decreasing photosynthesis and oxygen exchange capacity...... with increasing salinity. Exhaustive measurements of oxygen export in the light, oxygen consumption in the dark and gross photosynthesis indicated that a salinity-dependent limitation of all three parameters occurred. Maximal values for all three parameters decreased exponentially with increasing salinity...

  15. SALINITY TOLERANCE OF SEVERAL RICE GENOTYPES AT SEEDLING STAGE

    Directory of Open Access Journals (Sweden)

    Heni Safitri

    2018-01-01

    Full Text Available Salinity is one of the most serious problems in rice cultivation. Salinity drastically reduced plant growth and yield, especially at seedling stage. Several rice genotypes have been produced, but their tolerance to salinity has not yet been evaluated. The study aimed to evaluate salinity tolerance of rice genotypes at seedling stage. The glasshouse experiment was conducted at Cimanggu Experimental Station, Bogor, from April to May 2013. Thirteen rice genotypes and two check varieties, namely Pokkali (salt tolerant and IR29 (salt sensitive were tested at seedling stage. The experiment was arranged in a randomized complete block design with three replications and two factors, namely the levels of NaCl (0 and 120 mM and 13 genotypes of rice. Rice seedlings were grown in the nutrient culture (hydroponic supplemented with NaCl at different levels. The growth and salinity injury levels of the genotypes were recorded periodically. The results showed that salinity level of 120 mM NaCl reduced seedling growth of all rice genotypes, but the tolerant ones were survived after 14 days or until the sensitive check variety died. Based on the visual injury symptoms on the leaves, five genotypes, i.e. Dendang, Inpara 5, Inpari 29, IR77674-3B-8-2-2-14-4-AJY2, and IR81493-BBB-6-B- 2-1-2 were tolerant to 120 mM salinity level, while Inpara 4 was comparable to salt sensitive IR29. Hence, Inpara 4 could be used as a salinity sensitive genotype for future research of testing tolerant variety. Further evaluation is needed to confirm their salinity tolerance under field conditions. 

  16. Hydrogen-rich saline inhibits tobacco smoke-induced chronic obstructive pulmonary disease by alleviating airway inflammation and mucus hypersecretion in rats.

    Science.gov (United States)

    Liu, Zibing; Geng, Wenye; Jiang, Chuanwei; Zhao, Shujun; Liu, Yong; Zhang, Ying; Qin, Shucun; Li, Chenxu; Zhang, Xinfang; Si, Yanhong

    2017-09-01

    Chronic obstructive pulmonary disease induced by tobacco smoke has been regarded as a great health problem worldwide. The purpose of this study is to evaluate the protective effect of hydrogen-rich saline, a novel antioxidant, on chronic obstructive pulmonary disease and explore the underlying mechanism. Sprague-Dawley rats were made chronic obstructive pulmonary disease models via tobacco smoke exposure for 12 weeks and the rats were treated with 10 ml/kg hydrogen-rich saline intraperitoneally during the last 4 weeks. Lung function testing indicated hydrogen-rich saline decreased lung airway resistance and increased lung compliance and the ratio of forced expiratory volume in 0.1 s/forced vital capacity in chronic obstructive pulmonary disease rats. Histological analysis revealed that hydrogen-rich saline alleviated morphological impairments of lung in tobacco smoke-induced chronic obstructive pulmonary disease rats. ELISA assay showed hydrogen-rich saline lowered the levels of pro-inflammatory cytokines (IL-8 and IL-6) and anti-inflammatory cytokine IL-10 in bronchoalveolar lavage fluid and serum of chronic obstructive pulmonary disease rats. The content of malondialdehyde in lung tissue and serum was also determined and the data indicated hydrogen-rich saline suppressed oxidative stress reaction. The protein expressions of mucin MUC5C and aquaporin 5 involved in mucus hypersecretion were analyzed by Western blot and ELISA and the data revealed that hydrogen-rich saline down-regulated MUC5AC level in bronchoalveolar lavage fluid and lung tissue and up-regulated aquaporin 5 level in lung tissue of chronic obstructive pulmonary disease rats. In conclusion, these results suggest that administration of hydrogen-rich saline exhibits significant protective effect on chronic obstructive pulmonary disease through alleviating inflammation, reducing oxidative stress and lessening mucus hypersecretion in tobacco smoke-induced chronic obstructive pulmonary disease rats

  17. Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method

    Science.gov (United States)

    Sun, Yong; Meng, Zhaohai; Li, Fengting

    2018-03-01

    Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.

  18. Mathematical modelling of digit specification by a sonic hedgehog gradient

    KAUST Repository

    Woolley, Thomas E.

    2013-11-26

    Background: The three chick wing digits represent a classical example of a pattern specified by a morphogen gradient. Here we have investigated whether a mathematical model of a Shh gradient can describe the specification of the identities of the three chick wing digits and if it can be applied to limbs with more digits. Results: We have produced a mathematical model for specification of chick wing digit identities by a Shh gradient that can be extended to the four digits of the chick leg with Shh-producing cells forming a digit. This model cannot be extended to specify the five digits of the mouse limb. Conclusions: Our data suggest that the parameters of a classical-type morphogen gradient are sufficient to specify the identities of three different digits. However, to specify more digit identities, this core mechanism has to be coupled to alternative processes, one being that in the chick leg and mouse limb, Shh-producing cells give rise to digits; another that in the mouse limb, the cellular response to the Shh gradient adapts over time so that digit specification does not depend simply on Shh concentration. Developmental Dynamics 243:290-298, 2014. © 2013 Wiley Periodicals, Inc.

  19. Variability study of Si nanowire FETs with different junction gradients

    Directory of Open Access Journals (Sweden)

    Jun-Sik Yoon

    2016-01-01

    Full Text Available Random dopant fluctuation effects of gate-all-around Si nanowire field-effect transistors (FETs are investigated in terms of different diameters and junction gradients. The nanowire FETs with smaller diameters or shorter junction gradients increase relative variations of the drain currents and the mismatch of the drain currents between source-drain and drain-source bias change in the saturation regime. Smaller diameters decreased current drivability critically compared to standard deviations of the drain currents, thus inducing greater relative variations of the drain currents. Shorter junction gradients form high potential barriers in the source-side lightly-doped extension regions at on-state, which determines the magnitude of the drain currents and fluctuates the drain currents greatly under thermionic-emission mechanism. On the other hand, longer junction gradients affect lateral field to fluctuate the drain currents greatly. These physical phenomena coincide with correlations of the variations between drain currents and electrical parameters such as threshold voltages and parasitic resistances. The nanowire FETs with relatively-larger diameters and longer junction gradients without degrading short channel characteristics are suggested to minimize the relative variations and the mismatch of the drain currents.

  20. Mathematical modelling of digit specification by a sonic hedgehog gradient

    KAUST Repository

    Woolley, Thomas E.; Baker, Ruth E.; Tickle, Cheryll; Maini, Philip K.; Towers, Matthew

    2013-01-01

    Background: The three chick wing digits represent a classical example of a pattern specified by a morphogen gradient. Here we have investigated whether a mathematical model of a Shh gradient can describe the specification of the identities of the three chick wing digits and if it can be applied to limbs with more digits. Results: We have produced a mathematical model for specification of chick wing digit identities by a Shh gradient that can be extended to the four digits of the chick leg with Shh-producing cells forming a digit. This model cannot be extended to specify the five digits of the mouse limb. Conclusions: Our data suggest that the parameters of a classical-type morphogen gradient are sufficient to specify the identities of three different digits. However, to specify more digit identities, this core mechanism has to be coupled to alternative processes, one being that in the chick leg and mouse limb, Shh-producing cells give rise to digits; another that in the mouse limb, the cellular response to the Shh gradient adapts over time so that digit specification does not depend simply on Shh concentration. Developmental Dynamics 243:290-298, 2014. © 2013 Wiley Periodicals, Inc.

  1. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yuxiang, E-mail: yuxiangqin@126.com [Department of Biotechnology, University of Jinan, Jinan 250022 (China); Tian, Yanchen [The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100 (China); Han, Lu; Yang, Xinchao [Department of Biotechnology, University of Jinan, Jinan 250022 (China)

    2013-11-15

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway.

  2. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Qin, Yuxiang; Tian, Yanchen; Han, Lu; Yang, Xinchao

    2013-01-01

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway

  3. Sodium kinetics in hypertonic saline abortion

    International Nuclear Information System (INIS)

    Telfer, N.; Ballard, C.S.; McKee, D.R.

    1975-01-01

    The sodium kinetics of hypertonic saline abortions have been followed by measuring the radioactivity and the sodium concentrations in amniotic fluid, maternal plasma, urine, the foetus and placenta after intrauterine installation of 20% hypertonic saline labelled with 22 Na in order to determine the reason for abortion of a dead foetus in 24 to 48 hours, and reasons for sodium reactions. There is dilution of the 300 ml of amniotic fluid to a maximum of 1.5 to 2.0 litres in an exponential fashion, by the influx of mainly maternal water, slowing after 8 hours. There is an exponential type of increase in plasma radioactivity, also slowing after 8 hours. However, equilibration is never reached, the specific activity of the amniotic fluid remaining 10 times that of the plasma, and the sodium concentration 3 times that of the plasma. The urine equilibrates with the plasma, and about 3% of the administered dose is lost in 22 hours. The largest foetus and placenta picked up the least radioactivity. Thus, a more mature foetus may be protected to some degree against the hypertonic saline action; this has been observed clinically. Hyperkaliaemia was found in all four subjects, and hypoglycaemia occurred sporadically. These were not accompanied by any symptoms. Factors associated with expulsion of the dead foetus are dehydration and decreased circulation associated with fibrinoid necrosis of the placenta, which may also account for cessation of equilibration between maternal plasma and amniotic fluid. Although no saline reactions occurred, the role of extrauterine deposition of hypertonic saline, as shown in one subject, might be considered. (author)

  4. The diversity and abundance of bacteria and oxygenic phototrophs in saline biological desert crusts in Xinjiang, northwest China.

    Science.gov (United States)

    Li, Ke; Liu, Ruyin; Zhang, Hongxun; Yun, Juanli

    2013-07-01

    Although microorganisms, particularly oxygenic phototrophs, are known as the major players in the biogeochemical cycles of elements in desert soil ecosystems and have received extensive attention, still little is known about the effects of salinity on the composition and abundances of microbial community in desert soils. In this study, the diversity and abundance of bacteria and oxygenic phototrophs in biological desert crusts from Xinjiang province, which were under different salinity conditions, were investigated by using clone library and quantitative PCR (qPCR). The 16S rRNA gene phylogenetic analysis showed that cyanobacteria, mainly Microcoleus vagnitus of the order Oscillatoriales, were predominant in the low saline crusts, while other phototrophs, such as diatom, were the main microorganism group responsible for the oxygenic photosynthesis in the high saline crusts. Furthermore, the higher salt content in crusts may stimulate the growth of other bacteria, including Deinococcus-Thermus, Bacteroidetes, and some subdivisions of Proteobacteria (β-, γ-, and δ-Proteobacteria). The cpcBA-IGS gene analysis revealed the existence of novel M. vagnitus strains in this area. The qPCR results showed that the abundance of oxygenic phototrophs was significantly higher under lower saline condition than that in the higher saline crusts, suggesting that the higher salinity in desert crusts could suppress the numbers of total bacteria and phototrophic bacteria but did highly improve the diversity of salt-tolerant bacteria.

  5. Sub-tropical coastal lagoon salinization associated to shrimp ponds effluents

    Science.gov (United States)

    Cardoso-Mohedano, José-Gilberto; Lima-Rego, Joao; Sanchez-Cabeza, Joan-Albert; Ruiz-Fernández, Ana-Carolina; Canales-Delgadillo, Julio; Sánchez-Flores, Eric-Ivan; Páez-Osuna, Federico

    2018-04-01

    Anthropogenic salinization impacts the health of aquatic and terrestrial ecosystems worldwide. In tropical and subtropical areas, shrimp farm aquaculture uses water from adjacent ecosystems to fill the culture ponds, where enhanced evaporation cause salinization of discharged water. In this study, we studied water salinity before and after shrimp farm harvest and implemented a three-dimensional hydrodynamic model to assess the impact on a subtropical coastal lagoon that receives water releases from shrimp ponds. The shrimp pond discharge significantly increased the salinity of receiving waters, at least 3 psu over the local variation. In the worst-case salinization scenario, when harvest occurs after a long dry season, salinity could increase by up to 6 psu. The induced salinization due to shrimp pond effluents remained up to 2 tidal cycles after harvest, and could affect biota. The methodology and results of this study can be used to assess the impacts of shrimp aquaculture worldwide.

  6. Quantifying dynamic changes in plantar pressure gradient in diabetics with peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Chi-Wen Lung

    2016-07-01

    Full Text Available Diabetic foot ulcers remain one of the most serious complications of diabetes. Peak plantar pressure (PPP and peak pressure gradient (PPG during walking have been shown to be associated with the development of diabetic foot ulcers. To gain further insight into the mechanical etiology of diabetic foot ulcers, examination of the pressure gradient angle (PGA has been recently proposed. The PGA quantifies directional variation or orientation of the pressure gradient during walking, and provides a measure of whether pressure gradient patterns are concentrated or dispersed along the plantar surface. We hypothesized that diabetics at risk of foot ulceration would have smaller PGA in key plantar regions, suggesting less movement of the pressure gradient over time. A total of 27 participants were studied, including 19 diabetics with peripheral neuropathy and 8 non-diabetic control subjects. A foot pressure measurement system was used to measure plantar pressures during walking. PPP, PPG and PGA were calculated for four foot regions - 1st toe (T1, 1st metatarsal head (M1, 2nd metatarsal head (M2, and heel (HL. Consistent with prior studies, PPP and PPG were significantly larger in the diabetic group compared to non-diabetic controls in the T1 and M1 regions, but not M2 or HL. For example, PPP was 165% (P=0.02 and PPG was 214% (P<0.001 larger in T1. PGA was found to be significantly smaller in the diabetic group in T1 (46%, P=0.04, suggesting a more concentrated pressure gradient pattern under the toe. The proposed PGA may improve our understanding of the role of pressure gradient on the risk of diabetic foot ulcers.

  7. Thermographic visualization of the superficial vein and extravasation using the temperature gradient produced by the injected materials

    Science.gov (United States)

    Nakamura, Katsumasa; Sasaki, Tomonari; Ohga, Saiji; Yoshitake, Tadamasa; Terashima, Kotaro; Asai, Kaori; Matsumoto, Keiji; Shinoto, Makoto; Shioyama, Yoshiyuki; Nishie, Akihoro; Honda, Hiroshi

    2014-11-01

    There are few effective methods to detect or prevent the extravasation of injected materials such as chemotherapeutic agents and radiographic contrast materials. To investigate whether a thermographic camera could visualize the superficial vein and extravasation using the temperature gradient produced by the injected materials, an infrared thermographic camera with a high resolution of 0.04 °C was used. At the room temperature of 26 °C, thermal images and the time course of the temperature changes of a paraffin phantom embedded with rubber tubes (diameter 3.2 mm, wall thickness 0.8 mm) were evaluated after the tubes were filled with water at 15 °C or 25 °C. The rubber tubes were embedded at depths of 0 mm, 1.5 mm, and 3.0 mm from the surface of the phantom. Temperature changes were visualized in the areas of the phantom where the tubes were embedded. In general, changes were more clearly detected when greater temperature differences between the phantom and the water and shallower tube locations were employed. The temperature changes of the surface of a volunteer's arm were also examined after a bolus injection of physiological saline into the dorsal hand vein or the subcutaneous space. The injection of 5 ml room-temperature (26 °C) saline into the dorsal hand vein enabled the visualization of the vein. When 3 ml of room-temperature saline was injected through the vein into the subcutaneous space, extravasation was detected without any visualization of the vein. The subtraction image before and after the injection clearly showed the temperature changes induced by the saline. Thermography may thus be useful as a monitoring system to detect extravasation of the injected materials.

  8. Magnetoelectric Transverse Gradient Sensor with High Detection Sensitivity and Low Gradient Noise

    OpenAIRE

    Zhang, Mingji; Or, Siu Wing

    2017-01-01

    We report, theoretically and experimentally, the realization of a high detection performance in a novel magnetoelectric (ME) transverse gradient sensor based on the large ME effect and the magnetic field gradient (MFG) technique in a pair of magnetically-biased, electrically-shielded, and mechanically-enclosed ME composites having a transverse orientation and an axial separation. The output voltage of the gradient sensor is directly obtained from the transverse MFG-induced difference in ME vo...

  9. Physiological and Proteomic Analysis in Chloroplasts of Solanum lycopersicum L. under Silicon Efficiency and Salinity Stress

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-11-01

    Full Text Available Tomato plants often grow in saline environments in Mediterranean countries where salt accumulation in the soil is a major abiotic stress that limits its productivity. However, silicon (Si supplementation has been reported to improve tolerance against several forms of abiotic stress. The primary aim of our study was to investigate, using comparative physiological and proteomic approaches, salinity stress in chloroplasts of tomato under silicon supplementation. Tomato seedlings (Solanum lycopersicum L. were grown in nutrient media in the presence or absence of NaCl and supplemented with silicon for 5 days. Salinity stress caused oxidative damage, followed by a decrease in silicon concentrations in the leaves of the tomato plants. However, supplementation with silicon had an overall protective effect against this stress. The major physiological parameters measured in our studies including total chlorophyll and carotenoid content were largely decreased under salinity stress, but were recovered in the presence of silicon. Insufficient levels of net-photosynthesis, transpiration and stomatal conductance were also largely improved by silicon supplementation. Proteomics analysis of chloroplasts analyzed by 2D-BN-PAGE (second-dimensional blue native polyacrylamide-gel electrophoresis revealed a high sensitivity of multiprotein complex proteins (MCPs such as photosystems I (PSI and II (PSII to the presence of saline. A significant reduction in cytochrome b6/f and the ATP-synthase complex was also alleviated by silicon during salinity stress, while the complex forms of light harvesting complex trimers and monomers (LHCs were rapidly up-regulated. Our results suggest that silicon plays an important role in moderating damage to chloroplasts and their metabolism in saline environments. We therefore hypothesize that tomato plants have a greater capacity for tolerating saline stress through the improvement of photosynthetic metabolism and chloroplast proteome

  10. Salinity Adaptation and the Contribution of Parental Environmental Effects in Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Ken S Moriuchi

    Full Text Available High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within

  11. The salinity effect in a mixed layer ocean model

    Science.gov (United States)

    Miller, J. R.

    1976-01-01

    A model of the thermally mixed layer in the upper ocean as developed by Kraus and Turner and extended by Denman is further extended to investigate the effects of salinity. In the tropical and subtropical Atlantic Ocean rapid increases in salinity occur at the bottom of a uniformly mixed surface layer. The most significant effects produced by the inclusion of salinity are the reduction of the deepening rate and the corresponding change in the heating characteristics of the mixed layer. If the net surface heating is positive, but small, salinity effects must be included to determine whether the mixed layer temperature will increase or decrease. Precipitation over tropical oceans leads to the development of a shallow stable layer accompanied by a decrease in the temperature and salinity at the sea surface.

  12. Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient.

    Science.gov (United States)

    Kim, Ji Hyeon; Sim, Jiyeon; Kim, Hyun-Jung

    2018-04-11

    Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro , we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.

  13. Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance.

    Science.gov (United States)

    Tak, Himanshu; Negi, Sanjana; Ganapathi, T R

    2017-03-01

    Banana is an important fruit crop and its yield is hampered by multiple abiotic stress conditions encountered during its growth. The NAC (NAM, ATAF, and CUC) transcription factors are involved in plant response to biotic and abiotic stresses. In the present study, we studied the induction of banana NAC042 transcription factor in drought and high salinity conditions and its overexpression in transgenic banana to improve drought and salinity tolerance. MusaNAC042 expression was positively associated with stress conditions like salinity and drought and it encoded a nuclear localized protein. Transgenic lines of banana cultivar Rasthali overexpressing MusaNAC042 were generated by Agrobacterium-mediated transformation of banana embryogenic cells and T-DNA insertion was confirmed by PCR and Southern blot analysis. Our results using leaf disc assay indicated that transgenic banana lines were able to tolerate drought and high salinity stress better than the control plants and retained higher level of total chlorophyll and lower level of MDA content (malondialdehyde). Transgenic lines analyzed for salinity (250 mM NaCl) and drought (Soil gravimetric water content 0.15) tolerance showed higher proline content, better Fv/Fm ratio, and lower levels of MDA content than control suggesting that MusaNAC042 may be involved in responses to higher salinity and drought stresses in banana. Expression of several abiotic stress-related genes like those coding for CBF/DREB, LEA, and WRKY factors was altered in transgenic lines indicating that MusaNAC042 is an efficient modulator of abiotic stress response in banana.

  14. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    International Nuclear Information System (INIS)

    Hassanli, M.; Ebrahimian, H.

    2016-01-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  15. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    Energy Technology Data Exchange (ETDEWEB)

    Hassanli, M.; Ebrahimian, H.

    2016-07-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  16. Updates on Water Use of Pistachio Orchards Grown in the San Joaquin Valley of California on Saline Soils

    Science.gov (United States)

    Zaccaria, Daniele; Marino, Giulia; Whiting, Michael; Sanden, Blake; Ferguson, Louise; Lampinen, Bruce; Kent, Eric; Snyder, Richard; Grattan, Stephen; Little, Cayle

    2017-04-01

    Pistachio acreage is rapidly expanding in California thanks to its economic profitability and capacity to grow and produce in salt-affected soils. Our team at University of California is updating information on actual water use (ET) of mature pistachio orchards grown on saline soils under micro-irrigation methods. Actual Evapotranspiration (ETa) and Crop Coefficients (Ka) were determined for the 2015 and 2016 crop seasons on four pistachio orchards grown in the San Joaquin Valley (SJV) on grounds with increasing levels of soil-water salinity, using the residual of energy balance method with a combination of eddy covariance and surface renewal equipment. Tree canopy cover, light interception, and plant water status across the orchards were also measured and evaluated. Our preliminary results show that salinity strongly affects the tree water use, resulting in 10-30% less ET for medium to high salt-affected soils. Salinity also showed a strong effect on tree water status and light interception, as suggested by values of the Midday Stem Water Potential (ΨSWP) around 10 to 15-bar lower in salt-affected than in the control orchard, and by the intercepted Photosynthetic Active Radiation (PAR) decreasing from 75% in the control orchard to 25% in the severely salt affected grounds. The crop coefficient values we observed in this study are lower than those commonly used for irrigation scheduling in the SJV, suggesting that pistachio growers could better tailor irrigation management to the actual site-specific orchard conditions (e.g. canopy features and soil-water salinity) if they are provided updated information. Improved irrigation practices could likely lead to significant water savings and thus improve the resource-efficiency and competitiveness of pistachio production in the SJV. Keywords: Pistacia vera L., salinity, stem water potential, surface renewal, canopy cover.

  17. Can Tomato Inoculation with Trichoderma Compensate Yield and Soil Health Deficiency due to Soil Salinity?

    Science.gov (United States)

    Wagner, Karl; Apostolakis, Antonios; Daliakopoulos, Ioannis; Tsanis, Ioannis

    2016-04-01

    Soil salinity is a major soil degradation threat, especially for arid coastal environments where it hinders agricultural production and soil health. Protected horticultural crops in the Mediterranean region, typically under deficit irrigation and intensive cultivation practices, have to cope with increasing irrigation water and soil salinization. This study quantifies the beneficial effects of the Trichoderma harzianum (TH) on the sustainable production of Solanum lycopersicum (tomato), a major greenhouse crop of the RECARE project Case Study in Greece, the semi-arid coastal Timpaki basin in south-central Crete. 20 vigorous 20-day-old Solanum lycopersicum L. cv Elpida seedlings are treated with TH fungi (T) or without (N) and transplanted into 35 L pots under greenhouse conditions. Use of local planting soil with initial Electrical Conductivity (ECe) 1.8 dS m-1 and local cultivation practices aim to simulate the prevailing conditions at the Case Study. In order to simulate seawater intrusion affected irrigation, plants are drip irrigated with two NaCl treatments: slightly (S) saline (ECw = 1.1 dS m-1) and moderately (M) saline water (ECw = 3.5 dS m-1), resulting to very high and excessively high ECe, respectively. Preliminary analysis of below and aboveground biomass, soil quality, salinity, and biodiversity indicators, suggest that TH pre-inoculation of tomato plants at both S and M treatments improve yield, soil biodiversity and overall soil health.

  18. Freshwater salinization syndrome on a continental scale.

    Science.gov (United States)

    Kaushal, Sujay S; Likens, Gene E; Pace, Michael L; Utz, Ryan M; Haq, Shahan; Gorman, Julia; Grese, Melissa

    2018-01-23

    Salt pollution and human-accelerated weathering are shifting the chemical composition of major ions in fresh water and increasing salinization and alkalinization across North America. We propose a concept, the freshwater salinization syndrome, which links salinization and alkalinization processes. This syndrome manifests as concurrent trends in specific conductance, pH, alkalinity, and base cations. Although individual trends can vary in strength, changes in salinization and alkalinization have affected 37% and 90%, respectively, of the drainage area of the contiguous United States over the past century. Across 232 United States Geological Survey (USGS) monitoring sites, 66% of stream and river sites showed a statistical increase in pH, which often began decades before acid rain regulations. The syndrome is most prominent in the densely populated eastern and midwestern United States, where salinity and alkalinity have increased most rapidly. The syndrome is caused by salt pollution (e.g., road deicers, irrigation runoff, sewage, potash), accelerated weathering and soil cation exchange, mining and resource extraction, and the presence of easily weathered minerals used in agriculture (lime) and urbanization (concrete). Increasing salts with strong bases and carbonates elevate acid neutralizing capacity and pH, and increasing sodium from salt pollution eventually displaces base cations on soil exchange sites, which further increases pH and alkalinization. Symptoms of the syndrome can include: infrastructure corrosion, contaminant mobilization, and variations in coastal ocean acidification caused by increasingly alkaline river inputs. Unless regulated and managed, the freshwater salinization syndrome can have significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity. Copyright © 2018 the Author(s). Published by PNAS.

  19. Estuarine fish communities respond to climate variability over both river and ocean basins.

    Science.gov (United States)

    Feyrer, Frederick; Cloern, James E; Brown, Larry R; Fish, Maxfield A; Hieb, Kathryn A; Baxter, Randall D

    2015-10-01

    Estuaries are dynamic environments at the land-sea interface that are strongly affected by interannual climate variability. Ocean-atmosphere processes propagate into estuaries from the sea, and atmospheric processes over land propagate into estuaries from watersheds. We examined the effects of these two separate climate-driven processes on pelagic and demersal fish community structure along the salinity gradient in the San Francisco Estuary, California, USA. A 33-year data set (1980-2012) on pelagic and demersal fishes spanning the freshwater to marine regions of the estuary suggested the existence of five estuarine salinity fish guilds: limnetic (salinity = 0-1), oligohaline (salinity = 1-12), mesohaline (salinity = 6-19), polyhaline (salinity = 19-28), and euhaline (salinity = 29-32). Climatic effects propagating from the adjacent Pacific Ocean, indexed by the North Pacific Gyre Oscillation (NPGO), affected demersal and pelagic fish community structure in the euhaline and polyhaline guilds. Climatic effects propagating over land, indexed as freshwater outflow from the watershed (OUT), affected demersal and pelagic fish community structure in the oligohaline, mesohaline, polyhaline, and euhaline guilds. The effects of OUT propagated further down the estuary salinity gradient than the effects of NPGO that propagated up the estuary salinity gradient, exemplifying the role of variable freshwater outflow as an important driver of biotic communities in river-dominated estuaries. These results illustrate how unique sources of climate variability interact to drive biotic communities and, therefore, that climate change is likely to be an important driver in shaping the future trajectory of biotic communities in estuaries and other transitional habitats. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  20. Density Gradient Stabilization of Electron Temperature Gradient Driven Turbulence in a Spherical Tokamak

    International Nuclear Information System (INIS)

    Ren, Y.; Kaye, S.M.; Mazzucato, E.; Guttenfelder, W.; Bell, R.E.; Domier, C.W.; LeBlanc, B.P.; Lee, K.C.; Luhmann, N.C. Jr.; Smith, D.R.; Yuh, H.

    2011-01-01

    In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k (perpendicular) ρ s ∼< 10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.

  1. The effect of salinity on some endocommensalic ciliates from shipworms

    Digital Repository Service at National Institute of Oceanography (India)

    Santhakumari, V.

    . Seasonal incidence and relative abundance of these ciliates showed that they were more abundant during the low saline than the high saline periods. Eventhough these ciliates can endure higher salinities through gradual acclimatization of their habitat...

  2. Development of a coastal drought index using salinity data

    Science.gov (United States)

    Conrads, Paul; Darby, Lisa S.

    2017-01-01

    A critical aspect of the uniqueness of coastal drought is the effects on the salinity dynamics of creeks, rivers, and estuaries. The location of the freshwater–saltwater interface along the coast is an important factor in the ecological and socioeconomic dynamics of coastal communities. Salinity is a critical response variable that integrates hydrologic and coastal dynamics including sea level, tides, winds, precipitation, streamflow, and tropical storms. The position of the interface determines the composition of freshwater and saltwater aquatic communities as well as the freshwater availability for water intakes. Many definitions of drought have been proposed, with most describing a decline in precipitation having negative impacts on the water supply. Indices have been developed incorporating data such as rainfall, streamflow, soil moisture, and groundwater levels. These water-availability drought indices were developed for upland areas and may not be ideal for characterizing coastal drought. The availability of real-time and historical salinity datasets provides an opportunity for the development of a salinity-based coastal drought index. An approach similar to the standardized precipitation index (SPI) was modified and applied to salinity data obtained from sites in South Carolina and Georgia. Using the SPI approach, the index becomes a coastal salinity index (CSI) that characterizes coastal salinity conditions with respect to drought periods of higher-saline conditions and wet periods of higher-freshwater conditions. Evaluation of the CSI indicates that it provides additional coastal response information as compared to the SPI and the Palmer hydrologic drought index, and the CSI can be used for different estuary types and for comparison of conditions along coastlines.

  3. Jerusalem artichoke decreased salt content and increased diversity of bacterial communities in the rhizosphere soil in the coastal saline zone

    Science.gov (United States)

    Shao, Tianyun; Li, Niu; Cheng, Yongwen; Long, Xiaohua; Shao, Hongbo; Zed, Rengel

    2017-04-01

    Soil salinity is one of the main environmental constraints that restrict plant growth and agricultural productivity; however, utilization of salt-affected land can bring substantial benefits. This study used an in-situ remediation method by planting Jerusalem artichoke in naturally occurring saline alkali soils with different salinity (high salinity (H, >4.0 g•salt kg-1 soil), moderate salinity (M, 2.0-4.0 g•salt kg-1 soil) and low salinity (L, 1.0-2.0 g•salt kg-1 soil) in the coastal saline zone in southeast China in comparison with the respective controls without Jerusalem artichoke planting (undisturbed soil). Soil pH and salinity increased sequentially from the rhizosphere to the bulk soil and the unplanted controls. The activity of neutral phosphatase and invertase decreased in the order L > M > H, whereas that of catalase was reverse. The minimum content of calcite, muscovite and quartz, and maximum content of chlorite and albite, were found in the control soils. Planting of Jerusalem artichoke enhanced bacterial microflora in saline alkali soil. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. The number of Operational Taxonomic Units (OTU) in the rhizosphere soil was, respectively, 1.27, 1.02 and 1.25 times higher compared with the bulk soil, suggesting that Jerusalem artichoke played a significant role in increasing abundance and diversity of soil microbial populations. The study showed that Jerusalem artichoke could be used to improve saline alkali soil by enriching bacterial communities, enhancing the activity of phosphatase and invertase, and decreasing soil salinity.

  4. Salinity impacts on water solubility and n-octanol/water partition coefficients of selected pesticides and oil constituents.

    Science.gov (United States)

    Saranjampour, Parichehr; Vebrosky, Emily N; Armbrust, Kevin L

    2017-09-01

    Salinity has been reported to influence the water solubility of organic chemicals entering marine ecosystems. However, limited data are available on salinity impacts for chemicals potentially entering seawater. Impacts on water solubility would correspondingly impact chemical sorption as well as overall bioavailability and exposure estimates used in the regulatory assessment. The pesticides atrazine, fipronil, bifenthrin, and cypermethrin, as well as the crude oil constituent dibenzothiophene together with 3 of its alkyl derivatives, all have different polarities and were selected as model compounds to demonstrate the impact of salinity on their solubility and partitioning behavior. The n-octanol/water partition coefficient (K OW ) was measured in both distilled-deionized water and artificial seawater (3.2%). All compounds had diminished solubility and increased K OW values in artificial seawater compared with distilled-deionized water. A linear correlation curve estimated salinity may increase the log K OW value by 2.6%/1 log unit increase in distilled water (R 2  = 0.97). Salinity appears to generally decrease the water solubility and increase the partitioning potential. Environmental fate estimates based on these parameters indicate elevated chemical sorption to sediment, overall bioavailability, and toxicity in artificial seawater. These dramatic differences suggest that salinity should be taken into account when exposure estimates are made for marine organisms. Environ Toxicol Chem 2017;36:2274-2280. © 2017 SETAC. © 2017 SETAC.

  5. The Origins of UV-optical Color Gradients in Star-forming Galaxies at z ˜ 2: Predominant Dust Gradients but Negligible sSFR Gradients

    Science.gov (United States)

    Liu, F. S.; Jiang, Dongfei; Faber, S. M.; Koo, David C.; Yesuf, Hassen M.; Tacchella, Sandro; Mao, Shude; Wang, Weichen; Guo, Yicheng; Fang, Jerome J.; Barro, Guillermo; Zheng, Xianzhong; Jia, Meng; Tong, Wei; Liu, Lu; Meng, Xianmin

    2017-07-01

    The rest-frame UV-optical (I.e., NUV - B) color is sensitive to both low-level recent star formation (specific star formation rate—sSFR) and dust. In this Letter, we extend our previous work on the origins of NUV - B color gradients in star-forming galaxies (SFGs) at z˜ 1 to those at z˜ 2. We use a sample of 1335 large (semimajor axis radius {R}{SMA}> 0\\buildrel{\\prime\\prime}\\over{.} 18) SFGs with extended UV emission out to 2{R}{SMA} in the mass range {M}* ={10}9{--}{10}11 {M}⊙ at 1.5negative NUV - B color gradients (redder centers), and their color gradients strongly increase with galaxy mass. We also show that the global rest-frame FUV - NUV color is approximately linear with {A}{{V}}, which is derived by modeling the observed integrated FUV to NIR spectral energy distributions of the galaxies. Applying this integrated calibration to our spatially resolved data, we find a negative dust gradient (more dust extinguished in the centers), which steadily becomes steeper with galaxy mass. We further find that the NUV - B color gradients become nearly zero after correcting for dust gradients regardless of galaxy mass. This indicates that the sSFR gradients are negligible and dust reddening is likely the principal cause of negative UV-optical color gradients in these SFGs. Our findings support that the buildup of the stellar mass in SFGs at Cosmic Noon is self-similar inside 2{R}{SMA}.

  6. High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: an in situ photophysiology experiment

    KAUST Repository

    Van Der Merwe, Riaan

    2014-11-10

    Seawater reverse osmosis desalination concentrate may have chronic and/or acute impacts on the marine ecosystems in the near-field area of the discharge. Environmental impact of the desalination plant discharge is supposedly site- and volumetric- specific, and also depends on the salinity tolerance of the organisms inhabiting the water column in and around a discharge environment. Scientific studies that aim to understand possible impacts of elevated salinity levels are important to assess detrimental effects to organisms, especially for species with no mechanism of osmoregulation, e.g., presumably corals. Previous studies on corals indicate sensitivity toward hypo- and hyper-saline environments with small changes in salinity already affecting coral physiology. In order to evaluate sensitivity of Red Sea corals to increased salinity levels, we conducted a long-term (29 days) in situ salinity tolerance transect study at an offshore seawater reverse osmosis (SWRO) discharge on the coral Fungia granulosa. While we measured a pronounced increase in salinity and temperature at the direct outlet of the discharge structure, effects were indistinguishable from the surrounding environment at a distance of 5 m. Interestingly, corals were not affected by varying salinity levels as indicated by measurements of the photosynthetic efficiency. Similarly, cultured coral symbionts of the genus Symbiodinium displayed remarkable tolerance levels in regard to hypo- and hypersaline treatments. Our data suggest that increased salinity and temperature levels from discharge outlets wear off quickly in the surrounding environment. Furthermore, F. granulosa seem to tolerate levels of salinity that are distinctively higher than reported for other corals previously. It remains to be determined whether Red Sea corals in general display increased salinity tolerance, and whether this is related to prevailing levels of high(er) salinity in the Red Sea in comparison to other oceans.

  7. Management of saline soils in Israel

    International Nuclear Information System (INIS)

    Rawitz, E.

    1983-01-01

    The main soil salinity problem in Israel is the danger of gradual salinization as a result of excessively efficient water management. Aquifer management is aimed at preventing flow of groundwater into the ocean, causing a creeping salinization at a rate of about 2 ppm per year. Successful efforts to improve irrigation efficiency brought with them the danger of salt accumulation in the soil. A ten-year monitoring programme carried out by the Irrigation Extension Service at 250 sampling sites showed that appreciable salt accumulation indeed occurred during the rainless irrigation season. However, where annual rainfall is more than about 350 mm this salt accumulation is adequately leached out of the root zone by the winter rains. Soil salinity in the autumn is typically two to three times that in the spring, a level which does not affect yields adversely. In the drier regions of the country long-term increasing soil salinity has been observed, and leaching is required. This is generally accomplished during the pre-irrigation given in the spring, whose size is determined by the rainfall amount of the preceding winter. The increasing need to utilize brackish groundwater and recycled sewage effluent requires special measures, which have so far been successful. In particular, drip irrigation with its high average soil-water potential regime and partial wetting of the soil volume has achieved high yields under adverse conditions. However, the long-term trend of water-quality deterioration is unavoidable under present conditions, and will eventually necessitate either major changes in agricultural patterns or the provision of desalinated water for dilution of the irrigation water. (author)

  8. Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs)

    KAUST Repository

    Wang, Xi

    2011-10-01

    Several alternative cathode catalysts have been proposed for microbial fuel cells (MFCs), but effects of salinity (sodium chloride) on catalyst performance, separate from those of conductivity on internal resistance, have not been previously examined. Three different types of cathode materials were tested here with increasingly saline solutions using single-chamber, air-cathode MFCs. The best MFC performance was obtained using a Co catalyst (cobalt tetramethoxyphenyl porphyrin; CoTMPP), with power increasing by 24 ± 1% to 1062 ± 9 mW/m2 (normalized to the projected cathode surface area) when 250 mM NaCl (final conductivity of 31.3 mS/cm) was added (initial conductivity of 7.5 mS/cm). This power density was 25 ± 1% higher than that achieved with Pt on carbon cloth, and 27 ± 1% more than that produced using an activated carbon/nickel mesh (AC) cathode in the highest salinity solution. Linear sweep voltammetry (LSV) was used to separate changes in performance due to solution conductivity from those produced by reductions in ohmic resistance with the higher conductivity solutions. The potential of the cathode with CoTMPP increased by 17-20 mV in LSVs when the NaCl addition was increased from 0 to 250 mM independent of solution conductivity changes. Increases in current were observed with salinity increases in LSVs for AC, but not for Pt cathodes. Cathodes with CoTMPP had increased catalytic activity at higher salt concentrations in cyclic voltammograms compared to Pt and AC. These results suggest that special consideration should be given to the type of catalyst used with more saline wastewaters. While Pt oxygen reduction activity is reduced, CoTMPP cathode performance will be improved at higher salt concentrations expected for wastewaters containing seawater. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  9. T-Stimulator effect on cotton protein composition and synthesis in salinization stress

    International Nuclear Information System (INIS)

    Ibragimova, E.A.; Nazirova, E.R.; Samarkhodjaeva, N.R.; Nalbandyan, A.A.; Babaev, T.A.

    2004-01-01

    Full text: T-stimulator was established to possess a wide spectrum of physiological effects, to enhance plant adaptation to thermal stress and to increase plant resistance to pathogens. Plant adaptation to unfavorable conditions manifests in changes in many links of metabolism, that of proteins included. We studied effect of cottonseed treatment with T-stimulator on composition and synthesis of plasma membrane proteins upon chloride salinization by means of the radioisotope method. Electrophoretic fractionation of cottonseed plasma membrane proteins showed absence of more than 40 polypeptides with molecular mass from 10 to more than 100 kDa in the cotton root membranes. Major fractions-polypeptides with molecular mass of 61, 53, 46, 25, 21, 20 and 18 kDa constitute about 50% of the total polypeptide composition. The salinization significantly affects the total membrane protein output, proportion of some polypeptides and their synthesis rate. Analysis of phoreogram radioautographs showed that 2-hour exposition of cotton roots to 35 S methionine suppresses synthesis of major polypeptides with molecular mass of 63, 61 and 53 kDa, that of low molecular polypeptides (46, 20, 18 kDa) increasing. Changes in the proportion of major polypeptides in cotton plasma membranes, reduction in rate of biosynthesis of high molecular fractions with the general suppression of label inclusion in the membrane fraction are the evidence for a disturbance in biosynthesis of some membrane proteins in cotton tissue cells upon salinization. The inhibiting effect of salinization on the protein-synthesizing system was observed in plants treated with T-stimulator, but the rate of synthesis in plasma membranes of the treated plants was found significantly higher. The activation of some plasma membrane proteins under T-stimulator effect suggests an association with the increase in adaptation of the treated plants to the disturbing effect of salinization

  10. Types, harms and improvement of saline soil in Songnen Plain

    Science.gov (United States)

    Wang, Zhengjun; Zhuang, Jingjing; Zhao, Anping; Li, Xinxin

    2018-03-01

    Saline soil is an extremely difficult and modified soil, widely distributed around the world. According to UN-UNESCO and FAO, the world’s saline soil area is about 9.54×108hm2, and there is a growing trend, every year in 1.0×106-1.5×106hm2 speed growth, the effective utilization of land resources to the world is the most serious threat. The total area of saline-alkali land in China is about 9.91×107hm2, including the Songnen Plain, which is called one of the three major saline soil concentrations in the world. The Songnen plain is an important grain producing area in China, and the saline soil occupies most of the Songnen plain, so it is of great significance to study the saline soil and improvement in Songnen plain.

  11. Effects of tides on the cross-isobath movement of the low-salinity plume in the western Yellow and East China Seas in winter

    Science.gov (United States)

    Wang, Bin; Hirose, Naoki; Yuan, Dongliang; Moon, Jae-Hong; Pan, Xishan

    2017-07-01

    Offshore extension of the fresh Subei coast water is identified in winter based on in site salinity observation data in this and previous studies. A high-resolution regional ocean circulation model is used to investigate the cross-isobath movement of low salinity-water over the Yellow and East China Seas, and it has reproduced the salinity distribution observed in the winter of 2014-2015 successfully. The model suggests that the low-salinity water is basically degenerated back to the eastern coast of China in winter because of strong northeasterly wind. However, a part of the low-salinity water extends offshore in the southeast direction across the 20-50 m isobaths over the Yangtze Bank, which cannot be explained by either the northerly winter monsoon or the Changjiang discharge. Numerical experiments suggest that the cross-isobath transport of the soluble substances is highly attributed to the tidal residual current, flowing southeastward across 20-50 m isobaths over the whole Yangtze Bank. The results of controlled experiments also indicate that the bottom shear of the tidal current, rather than the tidal mixing, plays a significant role in the cross-isobath current during winter.

  12. Decline of the world's saline lakes

    Science.gov (United States)

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  13. Light Ray Displacements due to Air Temperature Gradient

    CERN Document Server

    Teymurazyan, A; CERN. Geneva

    2000-01-01

    Abstract In the optical monitoring systems suggested to control the geometry of tracking spectrometers, light beams serve as reference frames for the measurement of the tracking chamber displacements and deformations. It is shown that air temperature gradients can induce systematic errors which considerably exceed the intrinsic resolution of the monitoring system.

  14. Rapid Gradient-Echo Imaging

    Science.gov (United States)

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  15. The impact of climate change and aquatic salinization on mangrove species in the Bangladesh Sundarbans.

    Science.gov (United States)

    Dasgupta, Susmita; Sobhan, Istiak; Wheeler, David

    2017-10-01

    This paper investigates the possible impacts of climate change on aquatic salinity and mangrove species in the Bangladesh Sundarbans. The impact analysis combines the salinity tolerance ranges of predominant mangrove species with aquatic salinity measures in 27 scenarios of climate change by 2050. The estimates indicate significant overall losses for Heritiera fomes; substantial gains for Excoecaria agallocha; modest changes for Avicennia alba, A. marina, A. officinalis, Ceriops decandra, and Sonneratia apetala; and mixed results for species combinations. Changes in mangrove stocks are likely to change the prospects for forest-based livelihoods. The implications for neighboring communities are assessed by computing changes in high-value mangrove species for the five sub-districts in the Sundarbans. The results of the impact analysis indicate highly varied patterns of gain and loss across the five sub-districts. Overall, however, the results suggest that salinity-induced mangrove migration will have a strongly regressive impact on the value of timber stocks because of the loss of highest value timber species, Heritiera fomes. In addition, the augmented potential for honey production will likely increase conflicts between humans and wildlife in the region.

  16. Scottish saline lagoons: Impacts and challenges of climate change

    Science.gov (United States)

    Angus, Stewart

    2017-11-01

    The majority of Scotland's saline lagoons are located on the low-lying coastlines of the Western Isles and the northern archipelagos of Orkney and Shetland, where recorded annual relative sea level rise rates are among the highest in Scotland. The sediment-impounded lagoons of Orkney and Shetland will either lose their impoundment and become incorporated in marine coastal waters, or become increasingly saline, as relative sea levels rise. The rock-basin lagoons of the Western Isles will retain their restricted exchange with the sea but will also become more saline with rising sea level. Specialist lagoonal organisms tend to have wide salinity tolerances but may succumb to competition from marine counterparts. In all areas, there are sufficient fresh-water inland water bodies with potential to be captured as lagoons to compensate for loss of extent and number, but the specialist lagoon biota tend to have limited dispersal powers. It is thus possible that they will be unable to transfer to their analogue sites before existing lagoons become fully marine, giving conservation managers the problem of deciding on management options: leave natural processes to operate without interference, manage the saline inflow to maintain the current salinity regime, or translocate lagoon organisms perceived as threatened by rising salinities. Timing of conversion and capture is unpredictable due to local topography and complications caused by variable stratification.

  17. Role of proline to induce salinity tolerance in Sunflower (helianthus annusl.)

    International Nuclear Information System (INIS)

    Iqbal, A.; Iftikhar, I.I.; Nawaz, H.; Nawaz, M.

    2014-01-01

    The potted experiment was conducted to determine the exogenous role of proline to induce salinity tolerance in sunflower (Helianthus annus L.). Salinity levels (0, 60 and 120 mmol) were created according to the saturation percentage of soil. Different levels (0, 30, 60 mmol) of proline were applied as a foliar spray on sunflower under saline and non saline conditions. Application of proline as a foliar spray ameliorated the toxic effects of salinity on growth, physiological and biochemical attributes of sunflower. Among different levels of proline, 60 mmol was found to be the most effective in ameliorating the toxic effects of salinity on sunflower. (author)

  18. Saline water irrigation of quinoa and chickpea

    DEFF Research Database (Denmark)

    Hirich, A.; Jelloul, A.; Choukr-Allah, R.

    2014-01-01

    A pot experiment was conducted in the south of Morocco to evaluate the response of chickpea and quinoa to different irrigation water salinity treatments (1, 4, 7 and 10 dS m-1 for chickpea and 1, 10, 20 and 30 dS m-1 for quinoa). Increasing salinity affected significantly (P

  19. Determination of the Optimum Concentration and Time of Salicylic Acid Foliar Application for Improving Barley Growth under Non-Saline and Saline Conditions

    Directory of Open Access Journals (Sweden)

    GH. Ranjbar

    2017-02-01

    Full Text Available In a 2yrs field study the effect of concentration and time of salicylic acid (SA foliar application on growth of barley under non-saline and saline (2 and 12 dS m-1 of NaCl, respectively conditions was evaluated in National Salinity Research Center of Iran, Yazd, central Iran during 2012-2014 growing seasons. The treatments of SA (11 treatments included without SA and SA foliar application at 0.0, 0.35, 0.70, 1.05, 1.40 and 1.75 mM applied at tillering + stem elongation + ear emergence or stem elongation + ear emergence. Salt stress led to significant decreases in seed yield and yield components; however, grain yield of barley plants were considerably increased when subjected to SA. This positive impact of SA was due probably to its effect on grain number. Average of grain yield in 0.0, 0.35, 0.70, 1.05, 1.40 and 1.75 mM SA concentrations were 496.1, 539.7, 538.5, 553.8, 517.4 and 501.3 g m-2 under non-saline and 189.2, 212.5, 219.1, 206.9, 200.3 and 182.3 g m-2 under saline conditions, respectively. Considering the negative correlation between sodium concentration in shoot and grain yield, modulating role of exogenous SA on adverse effect of salinity might be related to a SA-induced lowered Na+ concentration in such organs. The appropriate treatment seems to be SA foliar application at 1.05 mM for non-saline and 0.70 mM for saline conditions applied at stem elongation + ear emergence, as they increased grain yield by 16.6% and 18.6%, respectively. The result of this study revealed that higher concentration or frequency of SA application could be associated with negative impacts on barley.

  20. Graded/Gradient Porous Biomaterials

    Directory of Open Access Journals (Sweden)

    Xigeng Miao

    2009-12-01

    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  1. Hypertonic saline for cystic fibrosis: worth its salt?

    Science.gov (United States)

    Goralski, Jennifer L; Donaldson, Scott H

    2014-06-01

    Airway dehydration in cystic fibrosis (CF) leads to chronic inflammation, ongoing infection and progressive lung disease. Restoration of airway hydration by inhalation of an osmotic agent (hypertonic saline) has been shown to be safe, effective and well-tolerated in adults with CF. Although the safety of hypertonic saline in infants and young children with CF has also been established, recent studies have reported inconclusive evidence about its efficacy. In this editorial, we discuss the evidence behind hypertonic saline use for adults, children and infants with CF.

  2. Effect of water regime and salinity on artichoke yield

    Directory of Open Access Journals (Sweden)

    Francesca Boari

    2012-03-01

    Full Text Available This work focuses on the effects of different salinity and water inputs on the yield of artichoke Violetto di Provenza. Two years of experimental works had been carried out in a site in Southern Italy characterized by semi-arid climate and deep loam soil. Three salinity levels of irrigation water (S0, S1 and S2 with electrical conductivity (ECw of 0.5, 5 and 10 dS m-1, respectively, were combined with three water regimes (W1, W2 and W3 corresponding in that order to 20 40 and 60% of available water depletion. The overall results of the salinity tolerance are in agreement with those from the literature. However, an higher tolerance to salinity was demonstrated when crop was watered more frequently (at 20% of available water depletion and a lower one when crop watering was performed less frequently (at 60% of available water depletion. The increase of salinity level reduced marketable yield (from 12.9 to 8.8 Mg ha-1, total heads (from 125,100 to 94,700 n ha-1 and heads mean weight (from 99.9 to 94.6 g, while increased heads dry matter (from 161.8 to 193.6 g kg-1 f.w. and reduced edible parte percentage of heads (from 35.2 to 33.2 %. Watering regimes, as average of the salinity levels, affected total heads marketable yield (115,350 n ha-1 and 11.4 Mg ha-1 for W1 and W2, 105,900 n ha-1 and 10 Mg ha-1 for W3. In addition, different watering regimes affected the secondary heads yield for which it was reduced by 3% of mean weight. The effect of different watering regimes changed with various salinity levels. In condition of moderate salinity (S1, maximum water depletion fraction to preserve heads number and weight yield was 40 and 20% of total soil available water, respectively. However, with high salinity (S2, maximum water depletion fraction to keep unchanged heads number and weight yield was 20% for both. The level of soil salinity at beginning of the crop cycle favoured the incidence of head atrophy in the main heads produced in the second year.

  3. Loess ecosystems of northern Alaska: Regional gradient and toposequence at Prudhoe Bay

    International Nuclear Information System (INIS)

    Walker, D.A.; Everett, K.R.

    1991-01-01

    Loess-dominated ecosystems cover ∼ 14% (11,000 km 2 ) of the Arctic Coastal Plain and much of the northern portion of the Arctic Foothills. Knowledge of this poorly known ecosystem is important for sound land-use planning of the expanding developments in the region and for understanding the paleoecological dynamics of eolian systems that once dominated much of northern Alaska. A conceptual alkaline-tundra toposequence includes eight common vegetation types and associated soils and vegetation downwind of the Sagavanirktok River. Properties of loess tundra important for land-use planning include: (1) its high ice content, which contributes to its susceptibility to thermokarst; (2) high salinities, which hamper revegetation efforts; and (3) presence of certain plant species such as Dryas intergrifolia, which are particularly sensitive to disturbance. The loess gradient provides a natural analogue for road dust, and extensive disturbance associated with oil-field development

  4. Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora.

    Science.gov (United States)

    Mateos-Naranjo, Enrique; Andrades-Moreno, Luis; Davy, Anthony J

    2013-02-01

    The non-essential element silicon is known to improve plant fitness by alleviating the effects of biotic and abiotic stresses, particularly in crops. However, its possible role in the exceptional tolerance of halophytes to salinity has not been investigated. This study reports the effect of Si supply on the salinity tolerance of the halophytic grass Spartina densiflora; plants were treated with NaCl (0-680 mM), with or without silicon addition of 500 μM, in a glasshouse experiment. Plant responses were examined using growth analysis, combined with measurements of gas exchange, chlorophyll fluorescence and photosynthetic pigment concentrations. In addition, tissue concentrations of aluminium, calcium, copper, iron, potassium, magnesium, sodium, phosphorus and silicon were determined. Although high salinity decreased growth, this effect was alleviated by treatment with Si. Improved growth was associated with higher net photosynthetic rate (A), and greater water-use efficiency (WUE). Enhanced A at high salinity could be explained by beneficial effects of Si on the photochemical apparatus, and on chlorophyll concentrations. Ameliorative effects of Si were correlated with reduced sodium uptake, which was unrelated to a reduction in the transpiration rate, since Si-supplemented plants had higher stomatal conductances (G(s)). These plants also had higher tissue concentrations of essential nutrients, suggesting that Si had a positive effect on the mineral nutrient balance in salt-stressed plants. Si appears to play a significant role in salinity tolerance even in a halophyte, which has other, specific salt-tolerance mechanisms, through diverse protective effects on the photosynthetic apparatus, water-use efficiency and mineral nutrient balance. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  5. Nonlinear dynamics and synchronization of saline oscillator’s model

    International Nuclear Information System (INIS)

    Fokou Kenfack, W.; Siewe Siewe, M.; Kofane, T.C.

    2016-01-01

    Highlights: • A model of saline oscillator is derived and tested through numerical simulations. • Interaction between globally coupled saline oscillators is modeled. • Dependence of coupling coefficients on physical parameters is brought out. • Synchronization behaviors are studied using the model equations. - Abstract: The Okamura model equation of saline oscillator is refined into a non-autonomous ordinary differential equation whose coefficients are related to physical parameters of the system. The dependence of the oscillatory period and amplitude on remarkable physical parameters are computed and compared to experimental results in order to test the model. We also model globally coupled saline oscillators and bring out the dependence of coupling coefficients on physical parameters of the system. We then study the synchronization behaviors of coupled saline oscillators by the mean of numerical simulations carried out on the model equations. These simulations agree with previously reported experimental results.

  6. Metallicity gradient of the thick disc progenitor at high redshift

    Science.gov (United States)

    Kawata, Daisuke; Allende Prieto, Carlos; Brook, Chris B.; Casagrande, Luca; Ciucă, Ioana; Gibson, Brad K.; Grand, Robert J. J.; Hayden, Michael R.; Hunt, Jason A. S.

    2018-01-01

    We have developed a novel Markov Chain Monte Carlo chemical 'painting' technique to explore possible radial and vertical metallicity gradients for the thick disc progenitor. In our analysis, we match an N-body simulation to the data from the Apache Point Observatory Galactic Evolution Experiment survey. We assume that the thick disc has a constant scaleheight and has completed its formation at an early epoch, after which time radial mixing of its stars has taken place. Under these assumptions, we find that the initial radial metallicity gradient of the thick disc progenitor should not be negative, but either flat or even positive, to explain the current negative vertical metallicity gradient of the thick disc. Our study suggests that the thick disc was built-up in an inside-out and upside-down fashion, and older, smaller and thicker populations are more metal poor. In this case, star-forming discs at different epochs of the thick disc formation are allowed to have different radial metallicity gradients, including a negative one, which helps to explain a variety of slopes observed in high-redshift disc galaxies. This scenario helps to explain the positive slope of the metallicity-rotation velocity relation observed for the Galactic thick disc. On the other hand, radial mixing flattens the slope of an existing gradient.

  7. Implications of salinity pollution hotspots on agricultural production

    Science.gov (United States)

    Floerke, Martina; Fink, Julia; Malsy, Marcus; Voelker, Jeanette; Alcamo, Joseph

    2016-04-01

    Salinity pollution can have many negative impacts on water resources used for drinking, irrigation, and industrial purposes. Elevated concentrations of salinity in irrigation water can lead to decreased crop production or crop death and, thus, causing an economic problem. Overall, salinity pollution is a global problem but tends to be more severe in arid and semi-arid regions where the dilution capacity of rivers and lakes is lower and the use of irrigation higher. Particularly in these regions agricultural production is exposed to high salinity of irrigation water as insufficient water quality further reduces the available freshwater resources. According to the FAO, irrigated agriculture contributes about 40 percent of the total food production globally, and therefore, high salinity pollution poses a major concern for food production and food security. We use the WaterGAP3 modeling framework to simulate hydrological, water use, and water quality conditions on a global scale for the time period 1990 to 2010. The modeling framework is applied to simulate total dissolved solids (TDS) loadings and in-stream concentrations from different point and diffuse sources to get an insight on potential environmental impacts as well as risks to agricultural food production. The model was tested and calibrated against observed data from GEMStat and literature sources. Although global in scope, the focus of this study is on developing countries, i.e., in Africa, Asia, and Latin America, as these are most threatened by salinity pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use are examined, indicating limitations to crop production. Our results show that elevated salinity concentrations in surface waters mainly occur in peak irrigation regions as irrigated agriculture is not only the most relevant water use sector contributing to water abstractions, but also the dominant source of salinity pollution. Additionally

  8. Influence of temperature and salinity on hydrodynamic forces

    Directory of Open Access Journals (Sweden)

    A. Escobar

    2016-12-01

    Full Text Available The purpose of this study is to introduce an innovative approach to offshore engineering so as to take variations in sea temperature and salinity into account in the calculation of hydrodynamic forces. With this in mind, a thorough critical analysis of the influence of sea temperature and salinity on hydrodynamic forces on piles like those used nowadays in offshore wind farms will be carried out. This influence on hydrodynamic forces occurs through a change in water density and viscosity due to temperature and salinity variation. Therefore, the aim here is to observe whether models currently used to estimate wave forces on piles are valid for different ranges of sea temperature and salinity apart from observing the limit when diffraction or nonlinear effects arise combining both effects with the magnitude of the pile diameter. Hence, specific software has been developed to simulate equations in fluid mechanics taking into account nonlinear and diffraction effects. This software enables wave produced forces on a cylinder supported on the sea bed to be calculated. The study includes observations on the calculation model's sensitivity as to a variation in the cylinder's diameter, on the one hand and, on the other, as to temperature and salinity variation. This software will enable an iterative calculation to be made for finding out the shape the pressure wave caused when a wave passes over will have for different pile diameters and water with different temperature and salinity.

  9. Conspecific plasticity and invasion: invasive populations of Chinese tallow (Triadica sebifera have performance advantage over native populations only in low soil salinity.

    Directory of Open Access Journals (Sweden)

    Leiyi Chen

    Full Text Available Global climate change may increase biological invasions in part because invasive species may have greater phenotypic plasticity than native species. This may be especially important for abiotic stresses such as salt inundation related to increased hurricane activity or sea level rise. If invasive species indeed have greater plasticity, this may reflect genetic differences between populations in the native and introduced ranges. Here, we examined plasticity of functional and fitness-related traits of Chinese tallow (Triadica sebifera populations from the introduced and native ranges that were grown along a gradient of soil salinity (control: 0 ppt; Low: 5 ppt; Medium: 10 ppt; High: 15 ppt in a greenhouse. We used both norm reaction and plasticity index (PIv to estimate the conspecific phenotypic plasticity variation between invasive and native populations. Overall, invasive populations had higher phenotypic plasticity of height growth rate (HGR, aboveground biomass, stem biomass and specific leaf area (SLA. The plasticity Index (PIv of height growth rate (HGR and SLA each were higher for plants from invasive populations. Absolute performance was always comparable or greater for plants from invasive populations versus native populations with the greatest differences at low stress levels. Our results were consistent with the "Master-of-some" pattern for invasive plants in which the fitness of introduced populations was greater in more benign conditions. This suggests that the greater conspecific phenotypic plasticity of invasive populations compared to native populations may increase invasion success in benign conditions but would not provide a potential interspecific competitive advantage in higher salinity soils that may occur with global climate change in coastal areas.

  10. Survival and growth of invasive Indo-Pacific lionfish at low salinities

    Science.gov (United States)

    Schofield, Pamela J.; Huge, Dane H.; Rezek, Troy C.; Slone, Daniel H.; Morris, James A.

    2015-01-01

    Invasive Indo-Pacific lionfish [Pterois volitans (Linnaeus, 1758) and P. miles (Bennett, 1828)] are now established throughout the Western North Atlantic. Several studies have documented negative effects of lionfish on marine fauna including significant changes to reef fish community composition. Established populations of lionfish have been documented in several estuaries, and there is concern that the species may invade other low-salinity environments where they could potentially affect native fauna. To gain a better understanding of their low-salinity tolerance, we exposed lionfish to four salinities [5, 10, 20 and 34 (control)]. No lionfish mortality was observed at salinities of 34, 20 or 10, but all fish died at salinity = 5 within 12 days. Lionfish survived for at least a month at a salinity of 10 and an average of about a week at 5. Fish started the experiment at an average mass of 127.9 g, which increased at a rate of 0.55 g per day while they were alive, regardless of salinity treatment. Our research indicated lionfish can survive salinities down to 5 for short periods and thus may penetrate and persist in a variety of estuarine habitats. Further study is needed on effects of salinity levels on early life stages (eggs, larvae).

  11. Testing the limits of gradient sensing.

    Directory of Open Access Journals (Sweden)

    Vinal Lakhani

    2017-02-01

    Full Text Available The ability to detect a chemical gradient is fundamental to many cellular processes. In multicellular organisms gradient sensing plays an important role in many physiological processes such as wound healing and development. Unicellular organisms use gradient sensing to move (chemotaxis or grow (chemotropism towards a favorable environment. Some cells are capable of detecting extremely shallow gradients, even in the presence of significant molecular-level noise. For example, yeast have been reported to detect pheromone gradients as shallow as 0.1 nM/μm. Noise reduction mechanisms, such as time-averaging and the internalization of pheromone molecules, have been proposed to explain how yeast cells filter fluctuations and detect shallow gradients. Here, we use a Particle-Based Reaction-Diffusion model of ligand-receptor dynamics to test the effectiveness of these mechanisms and to determine the limits of gradient sensing. In particular, we develop novel simulation methods for establishing chemical gradients that not only allow us to study gradient sensing under steady-state conditions, but also take into account transient effects as the gradient forms. Based on reported measurements of reaction rates, our results indicate neither time-averaging nor receptor endocytosis significantly improves the cell's accuracy in detecting gradients over time scales associated with the initiation of polarized growth. Additionally, our results demonstrate the physical barrier of the cell membrane sharpens chemical gradients across the cell. While our studies are motivated by the mating response of yeast, we believe our results and simulation methods will find applications in many different contexts.

  12. Salinity stress and some physiological relationships in Kochia (Kochia scoparia

    Directory of Open Access Journals (Sweden)

    Jafar Nabati

    2018-06-01

    Full Text Available Introduction Soil salinity is one of the major abiotic stresses affecting plant growth and production. It is estimated that approximately half of the irrigated lands of Iran are affected by salinity and much of the agricultural lands of Iran especially in the central regions are susceptible to salinity. According to the development of saline soils and water resources, utilization of halophytes as alternatives for cultivation in saline conditions could be a suitable strategy to crop production. In addition to understanding the physiological salinity tolerance pathways, studying such crops could help to plant breeding and transferring these useful traits to crop species and also domestication of these plants. Materials and methods This experiment was conducted in 2009-2010 in Salinity Research Station of faculty of agriculture, Ferdowsi University of Mashhad as split-plot based on Complete Randomized Block Design with three replications. Salinity as the main plot had two levels of 5.2 and 16.5 dSm-1 and five kochia ecotypes including Birjand, Urmia, Borujerd, Esfahan and Sabzevar were allocated as sub-plot. Seedlings were irrigated with saline water having electrical conductivity (EC of 5.2 dSm-1 until the full establishment and thereafter salinity stress was imposed with saline water having EC=16.5 dSm-1. Physiological and biochemical traits were measured in the youngest fully expanded leaf at the beginning of the anthesis and shoot biomass at the end of the growth season. Data analysis was performed using Minitab 16 and means were compared by LSD test at a significance level of 0.05. Results and Discussion Results indicated that biomass was increased in Birjand, Isfahan and Urmia ecotypes as salinity level increased while it was decreased in Sabzevar and Boroujerd ecotypes. A reduction of 34, 31, 11 and 29 percentage and an increase of 4 percentage in seed yield was seen in Sabzevar, Birjand, Boroujerd, Urmia and Isfahan, respectively. Harvest

  13. Response of stream invertebrates to short-term salinization: A mesocosm approach

    International Nuclear Information System (INIS)

    Cañedo-Argüelles, Miguel; Grantham, Theodore E.; Perrée, Isabelle; Rieradevall, Maria; Céspedes-Sánchez, Raquel; Prat, Narcís

    2012-01-01

    Salinization is a major and growing threat to freshwater ecosystems, yet its effects on aquatic invertebrates have been poorly described at a community-level. Here we use a controlled experimental setting to evaluate short-term stream community responses to salinization, under conditions designed to replicate the duration (72 h) and intensity (up to 5 mS cm −1 ) of salinity pulses common to Mediterranean rivers subjected to mining pollution during runoff events. There was a significant overall effect, but differences between individual treatments and the control were only significant for the highest salinity treatment. The community response to salinization was characterized by a decline in total invertebrate density, taxon richness and diversity, an increase in invertebrate drift and loss of the most sensitive taxa. The findings indicate that short-term salinity increases have a significant impact on the stream invertebrate community, but concentrations of 5 mS cm −1 are needed to produce a significant ecological response. - Highlights: ► Short-term salinization has a significant impact on the aquatic invertebrates. ► A significant short-term ecological response is registered at 5 mS cm −1 . ► Salinization causes a decline in invertebrate density, richness and diversity. ► Biotic quality indices decline with increasing salinity and exposure time. - Short-term salinization in a stream mesocosm caused a significant response in the aquatic invertebrate community and led to declines in biological quality indices.

  14. Radar observations of density gradients, electric fields, and plasma irregularities near polar cap patches in the context of the gradient-drift instability

    Science.gov (United States)

    Lamarche, Leslie J.; Makarevich, Roman A.

    2017-03-01

    We present observations of plasma density gradients, electric fields, and small-scale plasma irregularities near a polar cap patch made by the Super Dual Auroral Radar Network radar at Rankin Inlet (RKN) and the northern face of Resolute Bay Incoherent Scatter Radar (RISR-N). RKN echo power and occurrence are analyzed in the context of gradient-drift instability (GDI) theory, with a particular focus on the previously uninvestigated 2-D dependencies on wave propagation, electric field, and gradient vectors, with the latter two quantities evaluated directly from RISR-N measurements. It is shown that higher gradient and electric field components along the wave vector generally lead to the higher observed echo occurrence, which is consistent with the expected higher GDI growth rate, but the relationship with echo power is far less straightforward. The RKN echo power increases monotonically as the predicted linear growth rate approaches zero from negative values but does not continue this trend into positive growth rate values, in contrast with GDI predictions. The observed greater consistency of echo occurrence with GDI predictions suggests that GDI operating in the linear regime can control basic plasma structuring, but measured echo strength may be affected by other processes and factors, such as multistep or nonlinear processes or a shear-driven instability.

  15. Denitrifying sulfide removal process on high-salinity wastewaters.

    Science.gov (United States)

    Liu, Chunshuang; Zhao, Chaocheng; Wang, Aijie; Guo, Yadong; Lee, Duu-Jong

    2015-08-01

    Denitrifying sulfide removal (DSR) process comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide, and acetate into nitrogen gas, elemental sulfur (S(0)), and carbon dioxide, respectively. Sulfide- and nitrate-laden wastewaters at 2-35 g/L NaCl were treated by DSR process. A C/N ratio of 3:1 was proposed to maintain high S(0) conversion rate. The granular sludge with a compact structure and smooth outer surface was formed. The microbial communities of DSR consortium via high-throughput sequencing method suggested that salinity shifts the predominating heterotrophic denitrifiers at 10 g/L NaCl.

  16. Constructed wetlands for saline wastewater treatment: A review

    Science.gov (United States)

    Saline wastewater originating from sources such as agriculture, aquaculture, and many industrial sectors usually contains high levels of salts and other contaminants, which can adversely affect both aquatic and terrestrial ecosystems. Therefore, the treatment of saline wastewater (removal of both sa...

  17. Mammalian cortical astrocytes align themselves in a physiological voltage gradient.

    Science.gov (United States)

    Borgens, R B; Shi, R; Mohr, T J; Jaeger, C B

    1994-07-01

    Astrocytes obtained from primary cultures of newborn rat cerebral cortex show a marked structural rearrangement to weak (50-500 mV/mm) applied voltage gradients. Astrocytes reorient their processes so that the cells are aligned perpendicular to the voltage gradient. At field strengths of 100 mV/mm or greater, this realignment occurs in over 90% of the cell population. Furthermore, these magnitudes of electric fields completely eliminate any parallel alignments originally observed prior to application of the voltage. Realignment usually occurs by a withdrawal, followed by an extension, of cell processes. These responses occur at voltage gradients within the physiological range that naturally exist across the neural tube during early development. We suggest the possibility that architectural arrangements of developing glia and, subsequently, neurons may be regulated by endogenous transepithelial potentials that exist across embryonic neuroepithelium.

  18. Physiological performance of the soybean crosses in salinity stress

    Science.gov (United States)

    Wibowo, F.; Armaniar

    2018-02-01

    Plants grown in saline soils will experience salinity stress. Salinity stresses, one of which causes oxidative stress, that cause an imbalance in the production ROS compounds (Reactive Oxygen Species), antioxidants and chlorophyll. Where the reaction of this compound can affect plant growth and plant production. This study aims to inform performance and action gene to soybean physiological character that potential to tolerant from salinity soil that characterized by the presence of SOD and POD antioxidant compounds and chlorophyll. This research used a destructive analysis from crossbred (AxN) and (GxN). A = Anjasmoro varieties and G = Grobogan varieties as female elders and N = Grobogan varieties as male elders (N1, N2, N3, N4, N5) that have been through the stage of saline soil selection. Research result can be concluded that GxN cross is more potential for Inheritance of the offspring. This can be seen from the observed skewness of character SOD, POD compounds, Chlorophyll a and chlorophyll b.

  19. Differential toxicity and influence of salinity on acute toxicity of ...

    African Journals Online (AJOL)

    Differential toxicity and influence of salinity on acute toxicity of copper sulphate and lead nitrate against Oreochromis niloticus. KA Bawa-Allah, F Osuala, J Effiong. Abstract. This study investigated the salinity-tolerance of Oreochromis niloticus and the influence of salinity changes on the acute toxicities of copper sulphate ...

  20. Differential Responses of Two Broccoli (Brassica oleracea L. var Italica Cultivars to Salinity and Nutritional Quality Improvement

    Directory of Open Access Journals (Sweden)

    Chokri Zaghdoud

    2012-01-01

    Full Text Available The comparative responses of two broccoli cultivars (Brassica oleracea var. Italica, cv. Parthenon and cv. Naxos to a 15 d exposure to different NaCl levels were investigated. Salinity led to increased concentrations of Na+ and Cl− ions in both cultivars, a disruption of the endogenous minerals levels in the shoots and roots—that varied with the cultivar and salt concentration—and decreases in the osmotic potential (Ψπ, root hydraulic conductance (L0, and stomatal conductance (Gs. The reduced biomass of Naxos at moderate NaCl indicates greater sensitivity to salinity, compared with Parthenon. Parthenon accumulated more soluble sugars, for osmotic adjustment, whereas Naxos accumulated proline, which gave the two cultivars differing nutritional characteristics. The total glucosinolates (GSLs content was not affected by salinity in Parthenon while it decreased significantly in Naxos as a consequence of the decrease in the indole GSL. However, Naxos accumulated more aliphatic GSLs under salt stress than Parthenon, which confers on this cultivar a greater nutritional value when cultivated under salinity.These results suggest that, at distinct salinity levels, each broccoli cultivar adopts a specific strategy, indicating the crucial role of the genetic background on the organoleptic and nutritional properties that each cultivar acquires.