WorldWideScience

Sample records for saline-enhanced radiofrequency thermal

  1. Saline-enhanced radiofrequency electrocoagulation in bovine liver

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hong Seop; Oh, Joo Hyeong; Yoon, Yup; Kim, Hyun Cheol; Ko, Young Tae; Choi, Woo Suk; Lim, Joo Won; Kim, Eui Jong [Kyunghee Univ. Hospital, Seoul (Korea, Republic of)

    1997-08-01

    To determine the effectiveness of saline-enhanced radiofrequency electrocoagulation in bovine liver tissue Saline-enhanced radiofrequency electrocoagulation (group I), hot saline injection induced by radiofrequency electrocoagulation (group II), and radiofrequency electrocoagulation (group III) were performed in ex vivo bovine liver. Radiofrequency power was 100 and 200 watts, and current was applied for 10, 20, and 30 seconds. Tissue was histopathologically examined for thermal injury. The largest diameter of thermal injury was about 41.0 mm in group I, 12.3 mm in group II and 9.3 mm in group III. The mean diameter of the injury increased with higher wattage in group I and II and with longer procedure time in group I (p<0.05). At corresponding wattage and times, group I showed a larger diameter of thermal injury and more increase in than group II or III (p<0.05). The degree of carbonization was more severe in group III than in groups I and II. Grossly, thermal injury showed a well-defined, relatively spherical configuration without extension along parenchymal interstitium. In an animal model, saline-enhanced radiofrequency electrocoagulation may effectively induce thermal injury, and may thus be another effective tool for use in the treatment of hepatic tumors. Further clinical experience is needed.

  2. Saline-enhanced radiofrequency electrocoagulation in bovine liver

    International Nuclear Information System (INIS)

    Shin, Hong Seop; Oh, Joo Hyeong; Yoon, Yup; Kim, Hyun Cheol; Ko, Young Tae; Choi, Woo Suk; Lim, Joo Won; Kim, Eui Jong

    1997-01-01

    To determine the effectiveness of saline-enhanced radiofrequency electrocoagulation in bovine liver tissue Saline-enhanced radiofrequency electrocoagulation (group I), hot saline injection induced by radiofrequency electrocoagulation (group II), and radiofrequency electrocoagulation (group III) were performed in ex vivo bovine liver. Radiofrequency power was 100 and 200 watts, and current was applied for 10, 20, and 30 seconds. Tissue was histopathologically examined for thermal injury. The largest diameter of thermal injury was about 41.0 mm in group I, 12.3 mm in group II and 9.3 mm in group III. The mean diameter of the injury increased with higher wattage in group I and II and with longer procedure time in group I (p<0.05). At corresponding wattage and times, group I showed a larger diameter of thermal injury and more increase in than group II or III (p<0.05). The degree of carbonization was more severe in group III than in groups I and II. Grossly, thermal injury showed a well-defined, relatively spherical configuration without extension along parenchymal interstitium. In an animal model, saline-enhanced radiofrequency electrocoagulation may effectively induce thermal injury, and may thus be another effective tool for use in the treatment of hepatic tumors. Further clinical experience is needed

  3. Saline-enhanced radiofrequency thermal ablation of the lung: a feasibility study in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Min; Kim, Sang Won; Li, Chun Ai; Youk, Ji Hyun; Kim, Young Kon; Jin, Zhewu; Chung, Myoung Ja [Chonbuk National University Medical School, Jeonju (Korea, Republic of); Lee, Mi Suk [Yangi Hospital, Seoul (Korea, Republic of)

    2002-12-01

    To assess the feasibility and safety of CT-guided percutaneous transthoracic radiofrequency ablation (RFA) with saline infusion of pulmonary tissue in rabbits. Twenty-eight New Zealand White rabbits were divided into two groups: an RFA group (n=10) and a saline-enhanced RFA (SRFA) group (n=18). In the RFA group, percutaneous RFA of the lung was performed under CT guidance and using a 17-gauge internally cooled electrode. In the SRFA group, 1.5 ml of 0.9% saline was infused slowly through a 21-gauge, polyteflon-coated Chiba needle prior to and during RFA. Lesion size and the healing process were studied in rabbits sacrificed at times from the day following treatment to three weeks after, and any complications were noted. In the SRFA group, the mean diameter (12.5{+-}1.6 mm) of acute RF lesions was greater than that of RFA lesions (8.5{+-}1.4 mm) (p < .05). The complications arising in 12 cases were pneumothorax (n=8), thermal injury to the chest wall (n=2), hemothorax (n=1), and lung abscess (n=1). Although procedure-related complications tended to occur more frequently in the SRFA group (55.6%) than in the RFA group (20%), the difference was not statistically significant (p .11). Saline-enhanced RFA of pulmonary tissue in rabbits produces more extensive coagulation necrosis than conventional RFA procedures, without adding substantial risk of serious complications.

  4. Saline Infusion Markedly Reduces Impedance and Improves Efficacy of Pulmonary Radiofrequency Ablation

    International Nuclear Information System (INIS)

    Gananadha, Sivakumar; Morris, David Lawson

    2004-01-01

    Radiofrequency ablation (RFA) is a relatively new technique that has been investigated for the treatment of lung tumors. We evaluated for the first time the in vivo use of saline infusion during radiofrequency ablation of sheep lung. We performed RFA on 5 sheep using open and closed chest RFA and the RITA starburst XL and Xli probes using saline infusion with the Xli probe. The impedance and volume of ablation were compared. A total of 16 ablations were produced, 5 percutaneously and 11 open. The impedance during percutaneous and open RFA without saline infusion was 110 ± 16.2 and 183.3 ± 105.8 O, respectively. With the saline infusion the impedance was 71.3 ± 22O and 103.6 ± 37.5O. The effect of this was a significantly larger volume of ablation using the saline infusion during percutaneous RFA (90.6 ± 23 cm 3 vs 10.47 ± 2.9 cm 3 , p = 0.01) and open RFA (107.8 ± 25.8 cm 3 vs 24.9 ± 19.3 cm 3 , p = 0.0002). Saline infusion during RFA is associated with lower impedance, higher power delivery and larger lesion size.

  5. Saline Infusion Markedly Reduces Impedance and Improves Efficacy of Pulmonary Radiofrequency Ablation

    International Nuclear Information System (INIS)

    Gananadha, Sivakumar; Morris, David Lawson

    2004-01-01

    Radiofrequency ablation (RFA) is a relatively new technique that has been investigated for the treatment of lung tumors. We evaluated for the first time the in vivo use of saline infusion during radiofrequency ablation of sheep lung. We performed RFA on 5 sheep using open and closed chest RFA and the RITA starburst XL and Xli probes using saline infusion with the Xli probe. The impedance and volume of ablation were compared. A total of 16 ablations were produced, 5 percutaneously and 11 open. The impedance during percutaneous and open RFA without saline infusion was 110 ± 16.2 and 183.3 ± 105.8 O, respectively. With the saline infusion the impedance was 71.3 ± 22O and 103.6 ± 37.5O. The effect of this was a significantly larger volume of ablation using the saline infusion during percutaneous RFA (90.6 ± 23 cm 3 vs 10.47 ± 2.9 cm 3 , p = 0.01) and open RFA (107.8 ± 25.8 cm 3 vs 24.9 ± 19.3 cm 3 , p = 0.0002). Saline infusion during RFA is associated with lower impedance, higher power delivery and larger lesion size

  6. The effect of ethanol infusion on the size of the ablated lesion in radiofrequency thermal ablation: A pilot study

    International Nuclear Information System (INIS)

    Kim, Young Sun; Rhim, Hyun Chul; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Kim, Yong Soo; Joo, Kyoung Bin

    2001-01-01

    To assess the effect of ethanol infusion on the size of ablated lesion during radiofrequency (RF) thermal ablation. We performed an ex vivo experimental study using a total of 15 pig livers. Three groups were designed: 1)normal control (n=10), 2) saline infusion (n=10) 3) ethanol infusion (n=10). Two radiofrequency ablations were done using a 50 watt RF generator and a 15 guage expandable elections with four prongs in each liver. During ablation for 8 minutes, continuous infusion of fluid at a rate of 0.5 ml/min through the side arm of electrode was performed. We checked the frequency of the 'impeded-out' phenomenon due to abrupt increase of impedance during ablation. Size of ablated lesion was measured according to length, width, height, and subsequently volume after the ablations. The sizes of the ablated lesions were compared between the three groups. 'Impeded-out' phenomenon during ablation was noted 4 times in control group, although that never happened in saline or ethanol infusion groups. There were significant differences in the volumes of ablated lesions between control group (10.62 ± 1.45 cm 3 ) and saline infusion group (15.33 ± 2.47 cm 3 ), and saline infusion group and ethanol infusion group (18.78 ± 3.58 cm 3 ) (p<0.05). Fluid infusion during radiofrequency thermal ablation decrease a chance of charming and increase the volume of the ablated lesion. Ethanol infusion during ablation may induce larger volume of ablated lesion than saline infusion.

  7. Saline-enhanced hepatic radiofrequency ablation using a perfused-cooled electrode: comparison of dual probe bipolar mode with monopolar and single probe bipolar modes

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Han, Joon Koo; Kim, Se Hyung; Lee, Jae Young; Kim, Dae Jin; Lee, Min Woo; Cho, Gyung Goo; Han, Chang Jin; Choi, Byung Ihn

    2004-01-01

    To determine whether saline-enhanced dual probe bipolar radiofrequency ablation (RFA) using perfused-cooled electrodes shows better in-vitro efficiency than monopolar or single probe bipolar RFA in creating larger coagulation necrosis. RF was applied to excised bovine livers in both bipolar and monopolar modes using a 200W generator (CC-3; Radionics) and the perfused-cooled electrodes for 10 mins. After placing single or double perfused-cooled electrodes in the explanted liver, 30 ablation zones were created at three different regimens: group A; saline-enhanced monopolar RFA, group B; saline-enhanced single probe bipolar RFA, and group C; saline-enhanced dual probe bipolar RFA. During RFA, we measured the tissue temperature at 15mm from the electrode. The dimensions of the ablation zones and changes in the impedance currents and liver temperature during RFA were then compared between the groups. The mean current values were higher for monopolar mode (group A) than for the bipolar modes (group B and C): 1550 ± 25 mA in group A, 764 ±189 mA in group B and 819 ± 98 mA in group C(ρ 3 in group A, 23.7 ±3.8 cm 3 in group B, and 34.2 ± 5.1 cm 3 in group C(ρ 0.05). The temperature at 15 mm from the electrode was higher in group C than in the other groups: 70 ± 18 .deg. C in group A, 59 ± 23 .deg. C in group B and 96 ± 16 .deg. C in group C (ρ < 0.05). Saline-enhanced bipolar RFA using dual perfused-cooled electrodes increases the dimension of the ablation zone more efficiently than monopolar RFA or single probe bipolar RFA

  8. Feasibility of saline infusion on the liver surface during radiofrequency ablation of subcapsuIar hepatic tumor: an experimentaI study

    International Nuclear Information System (INIS)

    Lee, Young Rang; Kim, Young Sun; Rhim, Hyun Chul; Seo, Heung Suk; Cho, On Koo; Koh, Byung Hee; Kim, Yong Soo; Kim, Sung Kyu; Paik, Seung Sam

    2004-01-01

    The purpose of the study was to evaluate the feasibility of infusion of normal saline onto the surface of the liver capsule for minimizing thermal injury of the adjacent organs during radiofrequency ablation of subcapsular hepatic tumor in an ex-vivo porcine model. We used porcine small bowel with it's serosal surface spread onto the porcine liver as an experiment model. The puncturing electrode was inserted into a 6 Fr introducer sheath, and the introducer sheath was connected to the infusion pump for creating a saline flow over the liver surface. A total of 15 ablations were divided into the control group (n=5), intermittent saline infusion group (n=5) and continuous saline infusion (n=5) group. The ablations were done during 3 minutes, and the infusion was set at 2 ml/min and stopped every 30 seconds in the intermittent saline infusion group. After the ablation, we measured the size of the ablated lesion on the surface of bowel and liver, and we also measured the depth of hepatic lesion. Ablated areas of bowel and liver surface in the control group, intermittent saline infusion group and continuous infusion group were 210.7±89.1 mm 2 , 74.6±27.2 mm 2 and 35.8±43.4 mm 2 , respectively, and 312.6±73.6 mm 2 , 228.4±110.5 mm 2 , and 80.9±55.1 mm 2 , respectively. In contrast to the broad base of the ablated area on the surface of the liver in the control group, the shapes of the lesions became narrower approaching to the liver surface in all cases of the continuous saline infusion group, and the shapes of the lesions were broad based in 3 cases and narrow based in 2 cases of the intermittent saline infusion group. Continuous infusion of normaI saline onto the surface of the liver during radiofrequency ablation of subcapsular hepatic tumor is a feasible method for minimizing thermal injury of the adjacent organs. Further exploration of the optimal parameters or techniques to maximize the hepatic ablation and simultaneously to minimize the thermal injury of

  9. A comparative experimental study of the in-vitro efficiency of hypertonic saline-enhanced hepatic bipolar and monopolar radiofrequency ablation

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Han, Joon Koo; Kim, Se Hyung; Sohn, Kyu Li; Lee, Kyoung Ho; Ah, Su Kyung; Choi, Byung Ihn

    2003-01-01

    To compare the in-vitro efficiency of a hypertonic saline (HS)- enhanced bipolar radiofrequency (RF) system with monopolar RF applications by assessing the temperature profile and dimensions of RF-created coagulation necrosis in bovine liver. A total of 27 ablations were performed in explanted bovine livers. After placement of two 16-gauge open-perfused electrodes at an interelectrode distance of 3 cm, 5% HS was instilled into tissue at a rate of 1 mL/min through the electrode. Seventeen thermal ablation zones were created in the monopolar mode (groups A, B), and ten more were created using the two open-perfused electrodes in the bipolar mode (group C). RF was applied to each electrode for 5 mins (for a total of 10 mins, group A) or 10 mins (for a total of 20 mins, group B) at 50W in the sequential monopolar mode, or to both electrodes for 10 min in the bipolar mode (group C). During RF instillation, we measured tissue temperature at the midpoint between the two electrodes. The dimensions of the thermal ablation zones and changes in impedance and wattage during RFA were compared between the groups. With open-perfusion electrodes, the mean accumulated energy output value was lower in the bipolar mode (group C: 26675±3047 Watt's) than in the monopolar mode (group A: 28778±1300 Watt's) but the difference was not statistically significant (p > 0.05). In the bipolar mode, there were impedance rises of more than 700 Ω during RF energy application, but in the monopolar modes, impedance did not changed markedly. In the bipolar mode, however, the temperature at the mid-point between the two probes was higher (85 .deg. C) than in the monopolar modes (65 .deg. C, 80 .deg. C for group A, B, respectively) (p<0.05). In addition, in HS-enhanced bipolar RFA (group C), the shortest diameter at the midpoint between the two electrodes was greater than in either of the monopolar modes: 5.4±5.6 mm (group A); 28.8±8.2 mm (group B); 31.2±7.6 mm (group C) (p<0.05) Using an open

  10. The efficacy of intraperitoneal saline infusion for percutaneous radiofrequency ablation for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Park, Soo Young; Tak, Won Young; Jeon, Seong Woo; Cho, Chang Min; Kweon, Young Oh; Kim, Sung Kook; Choi, Yong Hwan

    2010-01-01

    Objective: To evaluated the efficacy and safety of radiofrequency ablation (RFA) with intraperitoneal saline infusion. Background: Ultrasound-guided RFA is not always feasible due to the tumor location, possible adjacent tissue damage or poor sonographic identification. Patients and methods: Ultrasound-guided RFA with intraperitoneal saline infusion was performed in 116 patients between June 2001 and March 2008. Results: The overall technical feasibility of the intraperitoneal saline infusions was 90.5% (105 patients). The purposes of the intraperitoneal saline infusion were achieved in 100 patients (86.2%) by visualizing the tumor located in hepatic dome (47 patients), prevent adjacent organ damage (42 patients) and withdrawing overlying omentum (10 patients). Complete ablation of tumor was accomplished in 102 patients (87.9%). Complications associated with the treatment occurred in seven patients (6.0%). There was no case of adverse event directly related to intraperitoneal saline infusion. Conclusions: Intraperitoneal saline infusion is an effective and safe procedure that can be used to overcome the current limitations of ultrasound-guided RFA.

  11. Thermal Protection with 5% Dextrose Solution Blanket During Radiofrequency Ablation

    International Nuclear Information System (INIS)

    Chen, Enn Alexandria; Neeman, Ziv; Lee, Fred T.; Kam, Anthony; Wood, Brad

    2006-01-01

    A serious complication for any thermal radiofrequency ablation is thermal injury to adjacent structures, particularly the bowel, which can result in additional major surgery or death. Several methods using air, gas, fluid, or thermometry to protect adjacent structures from thermal injury have been reported. In the cases presented in this report, 5% dextrose water (D5W) was instilled to prevent injury to the bowel and diaphragm during radiofrequency ablation. Creating an Insulating envelope or moving organs with D5W might reduce risk for complications such as bowel perforation

  12. Ex Vivo Experiment of Saline-Enhanced Hepatic Bipolar Radiofrequency Ablation with a Perfused Needle Electrode: Comparison with Conventional Monopolar and Simultaneous Monopolar Modes

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Kim, Se Hyung; Han, Joon Koo; Sohn, Kyu Li; Choi, Byung Ihn

    2005-01-01

    The purpose of this study was to validate the saline-enhanced bipolar radiofrequency ablation (RFA) technique using a perfused electrode to increase RF-created coagulation necrosis, to compare that technique with monopolar RFAs and to find appropriate concentrations and volumes of perfused NaCl solution for the bipolar RFA. A total of 90 ablations were performed in explanted bovine livers. In the initial experiments to determine appropriate conditions for bipolar RFA, we created five thermal ablation zones in each condition, with instillations of varied concentrations (0.9-36%) or injection rates (30 mL/hr-120 mL/hr) of NaCl solution. After placement of one or two 16-gauge open-perfused electrodes into bovine livers, the NaCl solution was instilled into the tissue through the electrode. In the second part of the study, 10 ablation zones were created using one or two perfused electrodes for each of five groups under different conditions: a conventional monopolar mode with 0.9% NaCl solution (group A) or with 6% NaCl solution (group B), a simultaneous monopolar mode with 6% NaCl solution (group C) and a bipolar mode with 6% NaCl solution (groups D and E). RF was applied to each electrode for 20 min in groups A, B, C, and E, or for 10 min in group D. During RFA, we measured the tissue temperature 15 mm from the electrode. The temperature changes during the RFA and the dimensions of the ablation zones were compared among the groups. Bipolar RFA created larger short-axis diameters of coagulation necrosis with 6% NaCl solution (35.8 ± 15 mm) than with 0.9% NaCl solution (17 ± 9.7 mm) (P 0.05): 31.0 ± 5.4 mm (group A); 28.8 ± 3.8 mm (group B); 25.5 ± 6.4 mm (group C); 32.6 ± 4.2 mm (group D); 49.4 ± 5.0 mm (group E). Bipolar RFA with instillation of 6% NaCl solution through an open perfusion system demonstrates better efficacy in creating a larger ablation zone than does conventional or simultaneous monopolar modes at the various times examined. Therefore

  13. Ablation of liver metastases by radiofrequency

    International Nuclear Information System (INIS)

    Baere, T. de

    2012-01-01

    Radiofrequency is a thermal ablative technique that is most often used percuteanously under image guidance. Thermal damage is obtained through frictional heating of a high frequency current. The maximal volume of destruction obtained in one radiofrequency delivery is around 4 cm and consequently, best indication for treatment are tumours below 3 cm. When compared, radiofrequency and surgical removal for tumours below 25 mm in diameter demonstrated a rate of incomplete resection/ablation of 6% and 7.3% respectively. Median survival after the first radiofrequency of a liver metastasis of CRC is reported to be 24 to 52 months with a 5 years overall survival of 18 to 44%. The median overall survival increases from 22 to 48 months depending on the use of radiofrequency ablation as rescue treatment after failure of others, or as a first line treatment. For patients with a single tumour, less than 4 cm, the survival rates at 1, 3, and 5 years are respectively 97%, 84% and 40%, with a median survival of 50 months. Follow-up imaging requires to use contrast-enhanced CT or MRI, looking for local recurrences evidenced by local foci of enhancement at the periphery of the ablation zone. (author)

  14. Enhanced Radiofrequency Ablation With Magnetically Directed Metallic Nanoparticles.

    Science.gov (United States)

    Nguyen, Duy T; Tzou, Wendy S; Zheng, Lijun; Barham, Waseem; Schuller, Joseph L; Shillinglaw, Benjamin; Quaife, Robert A; Sauer, William H

    2016-05-01

    Remote heating of metal located near a radiofrequency ablation source has been previously demonstrated. Therefore, ablation of cardiac tissue treated with metallic nanoparticles may improve local radiofrequency heating and lead to larger ablation lesions. We sought to evaluate the effect of magnetic nanoparticles on tissue sensitivity to radiofrequency energy. Ablation was performed using an ablation catheter positioned with 10 g of force over prepared ex vivo specimens. Tissue temperatures were measured and lesion volumes were acquired. An in vivo porcine thigh model was used to study systemically delivered magnetically guided iron oxide (FeO) nanoparticles during radiofrequency application. Magnetic resonance imaging and histological staining of ablated tissue were subsequently performed as a part of ablation lesion analysis. Ablation of ex vivo myocardial tissue treated with metallic nanoparticles resulted in significantly larger lesions with greater impedance changes and evidence of increased thermal conductivity within the tissue. Magnet-guided localization of FeO nanoparticles within porcine thigh preps was demonstrated by magnetic resonance imaging and iron staining. Irrigated ablation in the regions with greater FeO, after FeO infusion and magnetic guidance, created larger lesions without a greater incidence of steam pops. Metal nanoparticle infiltration resulted in significantly larger ablation lesions with altered electric and thermal conductivity. In vivo magnetic guidance of FeO nanoparticles allowed for facilitated radiofrequency ablation without direct infiltration into the targeted tissue. Further research is needed to assess the clinical applicability of this ablation strategy using metallic nanoparticles for the treatment of cardiac arrhythmias. © 2016 American Heart Association, Inc.

  15. Radio-frequency wave enhanced runaway production rate

    International Nuclear Information System (INIS)

    Chan, V.S.; McClain, F.W.

    1983-01-01

    Enhancement of runaway electron production (over that of an Ohmic discharge) can be achieved by the addition of radio-frequency waves. This effect is studied analytically and numerically using a two-dimensional Fokker--Planck quasilinear equation

  16. Radiofrequency (thermal) ablation versus no intervention or other interventions for hepatocellular carcinoma

    DEFF Research Database (Denmark)

    Weis, Sebastian; Franke, Annegret; Mössner, Joachim

    2013-01-01

    Hepatocellular carcinoma is the fifth most common cancer worldwide. Percutaneous interventional therapies, such as radiofrequency (thermal) ablation (RFA), have been developed for early hepatocellular carcinoma. RFA competes with other interventional techniques such as percutaneous ethanol...

  17. LAPAROSCOPIC NEPHRECTOMY USING RADIOFREQUENCY THERMAL ABLATION

    Directory of Open Access Journals (Sweden)

    B. Ya. Alekseev

    2012-01-01

    Full Text Available The wide use of current diagnostic techniques, such as ultrasound study, computed tomography, and magnetic resonance imaging, has led to significantly increased detection rates for disease in its early stages. This gave rise to a change in the standards for the treatment of locally advanced renal cell carcinoma (RCC. Laparoscopic nephrectomy (LN has recently become the standard treatment of locally advanced RCC in the clinics having much experience with laparoscopic surgery. The chief drawback of LN is difficulties in maintaining intraoperative hemostasis and a need for creating renal tissue ischemia. The paper gives the intermediate results of application of the new procedure of LN using radiofrequency thermal ablation in patients with non-ischemic early-stage RCC.

  18. Radiofrequency ablation of pancreas and optimal cooling of peripancreatic tissue in an ex-vivo porcine model

    Directory of Open Access Journals (Sweden)

    Michal Crha

    2011-01-01

    Full Text Available Radiofrequency ablation is a possible palliative treatment for patients suffering from pancreatic neoplasia. However, radiofrequency-induced damage to the peripancreatic tissues during pancreatic ablation might cause fatal complications. The aim of this experimental ex vivo study on pigs was to verify ablation protocols and evaluate whether or not the cooling of peripancereatic tissues during pancreatic ablation has any benefit for their protection against thermal injury. Radiofrequency ablation was performed on 52 pancreatic specimens obtained from pigs. During each pancreatic ablation, continuous measurements of the temperature in the portal vein and duodenal lumen were performed. Peripancreatic tissues were either not cooled or were cooled by being submerged in 14 °C water, or by a perfusion of the portal vein and duodenum with 14 °C saline. The effects of variation in target temperature of the ablated area (90 °C and 100 °C, duration of ablation (5 and 10 min and the effect of peripancreatic tissues cooling were studied. We proved that optimal radiofrequency ablation of the porcine pancreas can be reached with the temperature of 90  °C for 5 min in the ablated area. The perfusion of the duodenal and portal vein by 14 °C saline was found to be the most effective cooling method for minimizing damage to the walls. Continuous measurement of temperatures in peripancreatic tissues will provide useful feedback to assist in their protection against thermal injury. This therapy could be used in the treatment of pancreatic tumours.

  19. Radiofrequency thermal ablation of malignant hepatic tumors: post-ablation syndrome

    International Nuclear Information System (INIS)

    Choi, Jung Bin; Rhim, Hyunchul; Kim, Yongsoo; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Lee, Seung Ro

    2000-01-01

    To evaluate post-ablation syndrome after radiofrequency thermal ablation of malignant hepatic tumors. Forty-two patients with primary (n=3D29) or secondary (n=3D13) hepatic tumors underwent radiofrequency thermal ablation. A total of 65 nodules ranging in size from 1.1 to 5.0 (mean, 3.1) cm were treated percutaneously using a 50W RF generator with 15G expandable needle electrodes. We retrospectively evaluated the spectrum of post-ablation syndrome including pain, fever (≥3D 38 deg C), nausea, vomiting, right shoulder pain, and chest discomfort according to frequency, intensity and duration, and the findings were correlated with tumor location and number of ablations. We also evaluated changes in pre-/post-ablation serum aminotransferase (ALT/AST) and prothrombin time, and correlated these findings with the number of ablations. Post-ablation syndrome was noted in 29 of 42 patients (69.0%), and most symptoms improved with conservative treatment. The most important of these were abdominal plan (n=3D20, 47.6%), fever (n=3D8, 19.0%), and nausea (n=3D7, 16.7%), and four of 42 (9.5%) patients complained of severe pain. The abdominal pain lasted from 3 hours to 5.5 days (mean; 20.4 hours), the fever from 6 hours to 5 days (mean; 63.0 hours). And the nausea from 1 hours to 4 days (mean; 21.0 hours). Other symptoms were right shoulder pain (n=3D6, 14.3%), chest discomfort (n=3D3, 7.1%), and headache (n=3D3, 7.1%). Seventeen of 20 patients (85%) with abdominal pain had subcapsular tumor of the liver. There was significant correlation between pain, location of the tumor, and a number of ablations. After ablation, ALT/AST was elevated more than two-fold in 52.6%/73.7% of patients, respectively but there was no significant correlation with the number of ablation. Post-ablation syndrome is a frequent and tolerable post-procedural process after radiofrequency thermal ablation. The spectrum of this syndrome provides a useful guideline for the post-ablation management. (author)

  20. Supra-thermal charged particle energies in a low pressure radio-frequency electrical discharge in air

    International Nuclear Information System (INIS)

    Littlefield, R.G.

    1976-01-01

    Velocity spectra of supra-thermal electrons escaping from a low-pressure radio-frequency discharge in air have been measured by a time-of-flight method of original design. In addition, the energy spectra of the supra-thermal electrons and positive ions escaping from the rf discharge have been measured by a retarding potential method. Various parameters affecting the energy of the supra-thermal charged particles are experimentally investigated. A model accounting for the supra-thermal charged particle energies is developed and is shown to be consistent with experimental observations

  1. Ex Vivo Liver Experiment of Hydrochloric Acid-Infused and Saline-Infused Monopolar Radiofrequency Ablation: Better Outcomes in Temperature, Energy, and Coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiong-ying; Gu, Yang-kui; Huang, Jin-hua, E-mail: huangjh@sysucc.org.cn; Gao, Fei; Zou, Ru-hai; Zhang, Tian-qi [Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China (China)

    2016-04-15

    ObjectiveTo compare temperature, energy, and coagulation between hydrochloric acid-infused radiofrequency ablation (HAIRFA) and normal saline-infused radiofrequency ablation (NSIRFA) in ex vivo porcine liver model.Materials and Methods30 fresh porcine livers were excised in 60 lesions, 30 with HAIRFA and the other 30 with NSIRFA. Both modalities used monopolar perfusion electrode connected to a RF generator set at 103 °C and 30 W. In each group, ablation time was set at 10, 20, or 30 min (10 lesions from each group at each time). We compared tissue temperatures (at 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 cm away from the electrode tip), average power, deposited energy, deposited energy per coagulation volume (DEV), coagulation diameters, coagulative volume, and spherical ratio between the two groups.ResultsTemperature–time curves showed that HAIRFA provided progressively greater heating than that of NSIRFA. At 30 min, mean average power, deposited energy, coagulation volumes (113.67 vs. 12.28 cm{sup 3}) and diameters, and increasing in tissue temperature were much greater with HAIRFA (P < 0.001 for all), except DEV was lower (456 vs. 1396 J/cm{sup 3}, P < 0.001). The spherical ratio was closer to 1 with HAIRFA (1.23 vs. 1.46). Coagulation diameters, volume, and average power of HAIRFA increased significantly with longer ablation times. While with NSIRFA, these characteristics were stable till later 20 min, except the power decreased with longer ablation times.ConclusionsHAIRFA creates much larger and more spherical lesions by increasing overall energy deposition, modulating thermal conductivity, and transferring heat during ablation.

  2. Radiofrequency ablation of liver tumors (II): clinical application and outcomes.

    Science.gov (United States)

    Vanagas, Tomas; Gulbinas, Antanas; Pundzius, Juozas; Barauskas, Giedrius

    2010-01-01

    Radiofrequency ablation is one of the alternatives in the management of liver tumors, especially in patients who are not candidates for surgery. The aim of this article is to review applicability of radiofrequency ablation achieving complete tumor destruction, utility of imaging techniques for patients' follow-up, indications for local ablative procedures, procedure-associated morbidity and mortality, and long-term results in patients with different tumors. The success of local thermal ablation consists in creating adequate volumes of tissue destruction with adequate "clear margin," depending on improved delivery of radiofrequency energy and modulated tissue biophysiology. Different volumes of coagulation necrosis are achieved applying different types of electrodes, pulsing energy sources, utilizing sophisticated ablation schemes. Some additional methods are used to increase the overall deposition of energy through alterations in tissue electrical conductivity, to improve heat retention within the tissue, and to modulate tolerance of tumor tissue to hyperthermia. Contrast-enhanced computed tomography, magnetic resonance imaging, ultrasound or positron emission tomography are applied to control the effectiveness of radiofrequency ablation. The long-term results of radiofrequency ablation are controversial.

  3. Thermal Response of In Vivo Human Skin to Fractional Radiofrequency Microneedle Device

    Directory of Open Access Journals (Sweden)

    Woraphong Manuskiatti

    2016-01-01

    Full Text Available Background. Fractional radiofrequency microneedle system (FRMS is a novel fractional skin resurfacing system. Data on thermal response to this fractional resurfacing technique is limited. Objectives. To investigate histologic response of in vivo human skin to varying energy settings and pulse stacking of a FRMS in dark-skinned subjects. Methods. Two female volunteers who were scheduled for abdominoplasty received treatment with a FRMS with varying energy settings at 6 time periods including 3 months, 1 month, 1 week, 3 days, 1 day, and the time immediately before abdominoplasty. Biopsy specimens were analyzed using hematoxylin and eosin (H&E, Verhoeff-Van Gieson (VVG, colloidal iron, and Fontana-Masson stain. Immunohistochemical study was performed by using Heat Shock Protein 70 (HSP70 antibody and collagen III monoclonal antibody. Results. The average depth of radiofrequency thermal zone (RFTZ ranged from 100 to 300 μm, correlating with energy levels. Columns of cell necrosis and collagen denaturation followed by inflammatory response were initially demonstrated, with subsequent increasing of mucin at 1 and 3 months after treatment. Immunohistochemical study showed positive stain with HSP70. Conclusion. A single treatment with a FRMS using appropriate energy setting induces neocollagenesis. This wound healing response may serve as a mean to improve the appearance of photodamaged skin and atrophic scars.

  4. Meta-analysis of bipolar radiofrequency endometrial ablation versus thermal balloon endometrial ablation for the treatment of heavy menstrual bleeding.

    Science.gov (United States)

    Zhai, Yan; Zhang, Zihan; Wang, Wei; Zheng, Tingping; Zhang, Huili

    2018-01-01

    Heavy menstrual bleeding is a common problem that can severely affect quality of life. To compare bipolar radiofrequency endometrial ablation and thermal balloon ablation for heavy menstrual bleeding in terms of efficacy and health-related quality of life (HRQoL). Online registries were systematically searched using relevant terms without language restriction from inception to November 24, 2016. Randomized control trials or cohort studies of women with heavy menstrual bleeding comparing the efficacy of two treatments were eligible. Data were extracted. Results were expressed as risk ratios (RRs) or weighted mean differences (WMDs) with 95% confidence intervals (CIs). Six studies involving 901 patients were included. Amenorrhea rate at 12 months was significantly higher after bipolar radiofrequency endometrial ablation than after thermal balloon ablation (RR 2.73, 95% CI 2.00-3.73). However, no difference at 12 months was noted for dysmenorrhea (RR 1.04, 95% CI 0.68-1.58) or treatment failure (RR 0.78, 95% CI 0.38-1.60). The only significant difference for HRQoL outcomes was for change in SAQ pleasure score (12 months: WMD -3.51, 95% CI -5.42 to -1.60). Bipolar radiofrequency endometrial ablation and thermal balloon ablation reduce menstrual loss and improve quality of life. However, bipolar radiofrequency endometrial ablation is more effective in terms of amenorrhea rate and SAQ pleasure. © 2017 International Federation of Gynecology and Obstetrics.

  5. Elementary introduction into thermal desalination of saline waters

    International Nuclear Information System (INIS)

    Froehner, K.R.

    1979-01-01

    The principle of thermal conversion of saline waters into potable water are described from an elementary point of view in an easy understandable manner, covering distillation, submerged coil evaporation, flash evaporation, multiple effect distillation, vapour compression, and solar distillation in simple solar stills. (orig.)

  6. Pulse-dose radiofrequency treatment in pain management-initial experience.

    Science.gov (United States)

    Ojango, Christine; Raguso, Mario; Fiori, Roberto; Masala, Salvatore

    2018-05-01

    Radiofrequency procedures have been used for treating various chronic pain conditions for decades. These minimally invasive percutaneous treatments employ an alternating electrical current with oscillating radiofrequency wavelengths to eliminate or alter pain signals from the targeted site. The aim of the continuous radiofrequency procedure is to increase the temperature sufficiently to create an irreversible thermal lesion on nerve fibres and thus permanently interrupt pain signals. The pulsed radiofrequency procedure utilises short pulses of radiofrequency current with intervals of longer pauses to avert a temperature increase to the level of permanent tissue damage. The goal of these pulses is to alter the processing of pain signals, but to avoid relevant structural damage to nerve fibres, as seen in the continuous radiofrequency procedure. The pulse-dose radiofrequency procedure is a technical improvement of the pulsed radiofrequency technique in which the delivery mode of the current is adapted. During the pulse-dose radiofrequency procedure thermal damage is avoided. In addition, the amplitude and width of the consecutive pulses are kept the same. The method ensures that each delivered pulse keeps the same characteristics and therefore the dose is similar between patients. The current review outlines the pulse-dose radiofrequency procedure and presents our institution's chronic pain management studies.

  7. Transluminal radio-frequency thermal ablation using a stent-type electrode: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Sun; Rhim, Hyun Chul [Hanyang University College of Medicine, Seoul (Korea, Republic of); Song, Ho Young [Asan Medical Center, Seoul (Korea, Republic of)] [and others

    2003-06-01

    To assess the feasibility of transluminal radiofrequency thermal ablation using a stent-type electrode and to determine, by means of in-vivo and in-vivo animal studies, the appropriate parameters. In-vivo: the radiofrequency electrode used was a self-expandable nitinol stent with 1cm insulated ends. A stent was placed in the portal vein of bovine liver, and ablations at target temperatures of 70, 80, 90, and 100 .deg. C were performed. Ablated sizes were measured longitudinally. In vivo: four mongrel dogs were anesthetized, and a stent was inserted in the common bile duct under fluoroscopic guidance through an ultrasound-guided gall bladder puncture site. The ablation temperature was set at 80 .deg. C, and each dog underwent proximal and distal esophageal ablations lasting 12 minutes. They were sacrificed immediately. In-vivo: ablated sizes showed significant correlation with target temperatures (r>0.04; p<0.05). Although most lesions were fusiform, dumbbell-shaped lesions with central thinning were found in two cases in the 70 .deg. C group. In all cases in the 70 .deg. C and 80 .deg. C group, the length of the insulated segment was less than 1cm. In-vivo: at microscopy, tissues at the center of the biliary stent showed more prominent pathological change than those at the periphery while those remote from the stent showed minimal or no change. In esophageal ablations, the mean highest temperature was 48.6 .deg. C. Microscopy demonstrated the destruction and shedding of mucosa, edema, and coagulation necrosis of submucosa, but in muscle layers no abnormalities were apparent. Transluminal radio-frequency thermal ablation using a stent-type electrode may be useful for elongating patency. The appropriate target temperature for biliary ablation is 80 .deg. C.

  8. Sacroiliac joint pain: Prospective, randomised, experimental and comparative study of thermal radiofrequency with sacroiliac joint block.

    Science.gov (United States)

    Cánovas Martínez, L; Orduña Valls, J; Paramés Mosquera, E; Lamelas Rodríguez, L; Rojas Gil, S; Domínguez García, M

    2016-05-01

    To compare the analgesic effects between the blockade and bipolar thermal radiofrequency in the treatment of sacroiliac joint pain. Prospective, randomised and experimental study conducted on 60 patients selected in the two hospitals over a period of nine months, who had intense sacroiliac joint pain (Visual Analogue Scale [VAS]>6) that lasted more than 3 months. Patients were randomised into three groups (n=20): Group A (two intra-articular sacroiliac injections of local anaesthetic/corticosteroid guided by ultrasound in 7 days). Group B: conventional bipolar radiofrequency "palisade". Target points were the lateral branch nerves of S1, S2, and S3, distance needles 1cm. Group C: modified bipolar radiofrequency "palisade" (needle distance >1cm). Patients were evaluated at one month, three months, and one year. Demographic data, VAS reduction, and side effects of the techniques were assessed. One month after the treatment, pain reduction was >50% in the three groups PDolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Radiofrequency thermal ablation of benign cystic lesion: an experimental pilot study in a porcine gallbladder model

    International Nuclear Information System (INIS)

    Song, Ho Taek; Rhim, Hyun Chul; Choi, Jung Bin; Oh, Jae Cheon; Cho, On Koo; Koh, Byung Hee; Kim, Yong Soo; Seo, Heung Suk; Joo, Kyung Bin

    2001-01-01

    To determine whether radiofrequency thermal ablation can be used to treat benign cystic lesions in a porcine gallbladder model. This experimental study of radiofrequency thermal ablation involved the use of 15 exvivo porcine gallbladders and 15-G expandable needle electrodes. To investigate optimal temperature parameters, three groups of five were designated according to target temperature:Group A: 70 deg C; Group B: 80 deg C; Group C: 90 deg C. After the target temperature was reached, ablation lasted for one minute. Gallbladder width, height and length were measured before and after ablation , and the estimated volume reduction ratios of the three groups were compared. Whether adjacent liver parenchyma around the gallbladder fossa was ablated by heat conducted from hot bile was also determined, and the thickness of the ablated area of the liver was measured. The volume reduction ratio in Group A, B and C was 42.7%, 41.7% and 42.9%, respectively (ρ>.05). In all 15 cases, gallbladder walls lost their transparency and elasticity at about 70 deg C. In nine of ten cases in Groups B and C, the hepatic capsule around the gallbladder fossa was retracted at about 80 deg C. The mean thickness of liver parenchymal damage adjacent to the gallbladder was 5.4 mm in Group B and 9.8 mm in Group C. In Group A livers, only one case showed minimal gradual parenchymal change. Microscopically, all three groups showed complete coagulation necrosis of the wall. On the basis of this feasibility study, radiofrequency thermal ablation is potentially suitable for the ultrasound-guided treatment of symptomatic cystic lesions including benign hepatic or renal cyst

  10. Combined radiofrequency ablation and acetic acid-hypertonic saline solution instillation: an in vivo study of rabbit liver

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Min; Han, Joon-Koo; Kim, Se-Hyung; Choi, Byung-Ihn [Seoul National University, Seoul (Korea, Republic of); Kim, Young-Kon; Kim, Sang-Won [Chonbuk National University, Chonju (Korea, Republic of)

    2004-03-15

    We wanted to determine whether combined radiofrequency ablation (RFA) and acetic acid-hypertonic saline solution (AHS) instillation can increase the extent of thermally mediated coagulation in in vivo rabbit liver tissue. We also wished to determine the optimal concentration of the solution in order to maximize its effect on extent of the RFA-induced coagulation. Forty thermal ablation zones were produced in 40 rabbits by using a 17-gauge internally cooled electrode with a 1-cm active tip under ultrasound guidance. The rabbits were assigned to one of four groups: group A: RFA alone (n=10); group B: RFA with 50% AHS instillation (n=10); group C: RFA with 25% AHS instillation (n=10); group D: RFA with 15% AHS instillation (n=10). A range of acetic acid concentrations diluted in 36% NaCl to a total volume of 2 mL were instilled into the liver before RFA. The RF energy (30W) was applied for three minutes. After RFA, in each group, the maximum diameters to the thermal ablation zones in the gross specimens were compared. Technical success and the complication that arose were evaluated by CT and on the basis of autopsy findings. All procedures are technically successful. There were six procedure-related complications (6/40; 15%); two localized perihepatic hematomas and four chemical peritonitis. The incidence of chemical peritonitis was highest for group B with the 50% AHS solution instillation (30%). With instillation of 15% AHS solution, a marked decrease of tissue impedance (24.5 {+-} 15.6 {omega}) and an increase of current (250 mA) occurred as compared to RFA alone. With instillation of the solutions before RFA (group B, C and D). this produced a greater mean diameter of coagulation necrosis than the diameters for rabbits not instilled with the solution (group A) ({rho}<0.05). However, there was no significant difference between group B, C, and D. Combined AHS instillation and RFA can increase the dimension of coagulation necrosis in the liver with a single

  11. Temperature mapping and thermal dose calculation in combined radiation therapy and 13.56 MHz radiofrequency hyperthermia for tumor treatment

    Science.gov (United States)

    Kim, Jung Kyung; Prasad, Bibin; Kim, Suzy

    2017-02-01

    To evaluate the synergistic effect of radiotherapy and radiofrequency hyperthermia therapy in the treatment of lung and liver cancers, we studied the mechanism of heat absorption and transfer in the tumor using electro-thermal simulation and high-resolution temperature mapping techniques. A realistic tumor-induced mouse anatomy, which was reconstructed and segmented from computed tomography images, was used to determine the thermal distribution in tumors during radiofrequency (RF) heating at 13.56 MHz. An RF electrode was used as a heat source, and computations were performed with the aid of the multiphysics simulation platform Sim4Life. Experiments were carried out on a tumor-mimicking agar phantom and a mouse tumor model to obtain a spatiotemporal temperature map and thermal dose distribution. A high temperature increase was achieved in the tumor from both the computation and measurement, which elucidated that there was selective high-energy absorption in tumor tissue compared to the normal surrounding tissues. The study allows for effective treatment planning for combined radiation and hyperthermia therapy based on the high-resolution temperature mapping and high-precision thermal dose calculation.

  12. Thermal Desalination using MEMS and Salinity-Gradient Solar Pond Technology

    Science.gov (United States)

    Lu, H.; Walton, J. C.; Hein, H.

    2002-08-01

    MEMS (multi-effect, multi-stage) flash desalination (distillation) driven by thermal energy derived from a salinity-gradient solar pond is investigated in this study for the purpose of improving the thermodynamic efficiency and economics of this technology. Three major tasks are performed: (1) a MEMS unit is tested under various operating conditions at the El Paso Solar Pond site; (2) the operation and maintenance procedures of the salinity-gradient solar pond coupled with the MEMS operation is studied; and (3) previous test data on a 24-stage, falling-film flash distillation unit (known as the Spinflash) is analyzed and compared with the performance of the MEMS unit. The data and information obtained from this investigation is applicable to a variety of thermal desalination processes using other solar options and/or waste heat.

  13. Ultrasound-guided radiofrequency thermal ablation of normal kidney in a rabbit model: correlation with CT and histopathology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Won; Lee, Jeong Min; Kin, Chong Soo; Lee, Sang Hun [College of Medicine, Chonbuk National Univ., Chonju (Korea, Republic of)

    2002-01-01

    To assess the feasibility and safety of using a cooled-tip electrode to perform percutaneous radiofrequency ablation of kidney tissue in rabbits, and to evaluate the ability of CT to reveal the appearance and extent of tissue necrosis during follow-up after ablation. Using ultrasound guidance, a 17-G cooled-tip electrode was inserted into the right lower portion of the kidney in 26 New Zealand White rabbits. Radiofrequency was applied for 2 mins, and biphasic helical CT scanning was used to assess tissue destruction and the presence or absence of complications immediately after the procedure and at 24 hrs, 2 and 3 days, and 1,2,3,4,5,6 and 7 weeks. The study had three phases: acute (immediately killed : N=10); subacute (killed at 24 hrs (n=3), 2 days (n=3), 3 days (n=1) : N=7); chronic (killed at 1 week (n=4), 2 weeks (n=2), 4 weeks (n=1), 7 weeks (n=1): N=8). After the animals were killed, their kidneys were histopathologically examined and the radiologic and pathologic findings of lesion size and configuration were correlated. In each instance, ultrasound-guided radiofrequency ablations of the lower pole of the kidney were technically successful. Contrast-enhanced biphasic helical CT revealed regions of hypoattenuation devoid of parenchymal enhancement, and these correlated closely with true pathologic lesion size (r=0.884; p>0.05). In subacute and chronic models, CT scanning revealed gradual spontaneous resorption of the ablated lesion and the presence of perilesional calcification. Histopathologically, in the acute phase the ablated lesion showed coagulative necrosis and infiltration of inflammatory cells, and in the chronic phase there was clear cut necrosis of glomeruli, tubules and renal interstitium, with diminishing inflammatory response and peripheral fibrotic tissue formation. Ultrasound-guided renal radiofrequency ablation is technically feasible and safe. In addition, the avascular lesion measured at contrast-enhanced helical CT closely correlated with

  14. Ultrasound-guided radiofrequency thermal ablation of normal kidney in a rabbit model: correlation with CT and histopathology

    International Nuclear Information System (INIS)

    Kim, Sang Won; Lee, Jeong Min; Kin, Chong Soo; Lee, Sang Hun

    2002-01-01

    To assess the feasibility and safety of using a cooled-tip electrode to perform percutaneous radiofrequency ablation of kidney tissue in rabbits, and to evaluate the ability of CT to reveal the appearance and extent of tissue necrosis during follow-up after ablation. Using ultrasound guidance, a 17-G cooled-tip electrode was inserted into the right lower portion of the kidney in 26 New Zealand White rabbits. Radiofrequency was applied for 2 mins, and biphasic helical CT scanning was used to assess tissue destruction and the presence or absence of complications immediately after the procedure and at 24 hrs, 2 and 3 days, and 1,2,3,4,5,6 and 7 weeks. The study had three phases: acute (immediately killed : N=10); subacute (killed at 24 hrs (n=3), 2 days (n=3), 3 days (n=1) : N=7); chronic (killed at 1 week (n=4), 2 weeks (n=2), 4 weeks (n=1), 7 weeks (n=1): N=8). After the animals were killed, their kidneys were histopathologically examined and the radiologic and pathologic findings of lesion size and configuration were correlated. In each instance, ultrasound-guided radiofrequency ablations of the lower pole of the kidney were technically successful. Contrast-enhanced biphasic helical CT revealed regions of hypoattenuation devoid of parenchymal enhancement, and these correlated closely with true pathologic lesion size (r=0.884; p>0.05). In subacute and chronic models, CT scanning revealed gradual spontaneous resorption of the ablated lesion and the presence of perilesional calcification. Histopathologically, in the acute phase the ablated lesion showed coagulative necrosis and infiltration of inflammatory cells, and in the chronic phase there was clear cut necrosis of glomeruli, tubules and renal interstitium, with diminishing inflammatory response and peripheral fibrotic tissue formation. Ultrasound-guided renal radiofrequency ablation is technically feasible and safe. In addition, the avascular lesion measured at contrast-enhanced helical CT closely correlated with

  15. An in-vitro animal experiment on metal implants’ thermal effect on radiofrequency ablation

    Science.gov (United States)

    2013-01-01

    Background To explore metal implants’ thermal effect on radiofrequency ablation (RFA) and ascertain distance-thermal relationship between the metal implants and radiofrequency (RF) electrode. Methods Metal implants models were established in seven in-vitro porcine livers using silver clips or 125I seeds. RFA were conducted centering the RF electrode axis1 cm away from them, with one side containing a metal implants model the test group and the other side the control group. The thermometric needles were used to measure multi-point temperatures in order to compare the time-distance-temperature difference between the two groups. The gross scopes of the ablation of the two groups were measured and the tissues were analyzed for microscopic histology. Results At the ablation times of 8, 12, and 15 min, the average multi-point temperatures of the test group and the control group were 48.2±18.07°C, 51.5±19.57°C, 54.6±19.75°C, and 48.6±17.69°C, 52.2±19.73°C, 54.9±19.24°C, respectively, and the differences were not statistically significant (n=126, P>0.05). At the ablation times of 12 and 15 min, the ablation scopes of the test group and the control group were (horizontal/longitudinal diameter) 1.55/3.48 cm, 1.89/3.72 cm, and 1.56/3.48 cm, 1.89/3.72 cm, respectively, and the differences were not statistically significant (n=14, P>0.05). The two groups had the same manifestations in microscopy. Conclusions Metal implants do not cause significant thermal effect on RFA. PMID:23799942

  16. Direct measurement of the lethal isotherm for radiofrequency ablation of myocardial tissue.

    Science.gov (United States)

    Wood, Mark; Goldberg, Scott; Lau, Melissa; Goel, Aneesh; Alexander, Daniel; Han, Frederick; Feinstein, Shawn

    2011-06-01

    The lethal isotherm for radiofrequency catheter ablation of cardiac myocardium is widely accepted to be 50°C, but this has not been directly measured. The purpose of this study was to directly measure the tissue temperature at the edge of radiofrequency lesions in real time using infrared thermal imaging. Fifteen radiofrequency lesions of 6 to 240 seconds in duration were applied to the left ventricular surface of isolated perfused pig hearts. At the end of radiofrequency delivery, a thermal image of the tissue surface was acquired with an infrared camera. The lesion was then stained and an optical image of the lesion was obtained. The thermal and optical images were electronically merged to allow determination of the tissue temperature at the edge of the lesion at the end of radiofrequency delivery. By adjusting the temperature overlay display to conform with the edge of the radiofrequency lesion, the lethal isotherm was measured to be 60.6°C (interquartile ranges, 59.7° to 62.4°C; range, 58.1° to 64.2°C). The areas encompassed by the lesion border in the optical image and the lethal isotherm in the thermal image were statistically similar and highly correlated (Spearman ρ=0.99, Pradiofrequency delivery or to lesion size (both P>0.64). The areas circumscribed by 50°C isotherms were significantly larger than the areas of the lesions on optical imaging (P=0.002). By direct measurement, the lethal isotherm for cardiac myocardium is near 61°C for radiofrequency energy deliveries radiofrequency ablation is important to clinical practice as well as mathematical modeling of radiofrequency lesions.

  17. Analysis of the effect of renal excretory system cooling during thermal radiofrequency ablation in an animal model

    Directory of Open Access Journals (Sweden)

    Andre Meireles

    2014-01-01

    Full Text Available Objective: Analysis of renal excretory system integrity and efficacy of radiofrequency ablation with and without irrigation with saline at 2 o C (SF2. Materials and Methods: The median third of sixteen kidneys were submitted to radiofrequency (exposition of 1 cm controlled by intra-surgical ultrasound, with eight minutes cycles and median temperature of 90 o C in eight female pigs. One excretory renal system was cooled with SF2, at a 30ml/min rate, and the other kidney was not. After 14 days of post-operatory, the biggest diameters of the lesions and the radiological aspects of the excretory system were compared by bilateral ascending pyelogram and the animals were sacrificed in order to perform histological analysis. Results: There were no significant differences between the diameters of the kidney lesions whether or not exposed to cooling of the excretory system. Median diameter of the cooled kidneys and not cooled kidneys were respectively (in mm: anteroposterior: 11.46 vs. 12.5 (p = 0.23; longitudinal: 17.94 vs. 18.84 (p = 0.62; depth: 11.38 vs. 12.25 (p = 0.47. There was no lesion of the excretory system or signs of leakage of contrast media or hydronephrosis at ascending pyelogram. Conclusion: Cooling of excretory system during radiofrequency ablation does not significantly alter generated coagulation necrosis or affect the integrity of the excretory system in the studied model.

  18. The study of thermal change by chemoport in radiofrequency hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hoon; Lee, Sun Young; Gim, Yang Soo; Kwak, Keun Tak; Yang, Myung Sik; Cha, Seok Yong [Dept. of Radiation Oncology, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2015-12-15

    This study evaluate the thermal changes caused by use of the chemoport for drug administration and blood sampling during radiofrequency hyperthermia. 20 cm size of the electrode radio frequency hyperthermia (EHY-2000, Oncotherm KFT, Hungary) was used. The materials of the chemoport in our hospital from currently being used therapy are plastics, metal-containing epoxy and titanium that were made of the diameter 20 cm, height 20 cm insertion of the self-made cylindrical Agar phantom to measure the temperature. Thermoscope(TM-100, Oncotherm Kft, Hungary) and Sim4Life (Ver2.0, Zurich, Switzerland) was compared to the actual measured temperature. Each of the electrode measurement position is the central axis and the central axis side 1.5 cm, 0 cm(surface), 0.5 cm, 1.8 cm, 2.8 cm in depth was respectively measured. The measured temperature is 24.5 - 25.5℃, humidity is 30% - 32%. In five-minute intervals to measure the output power of 100 W, 60 min. In the electrode central axis 2.8 cm depth, the maximum temperature of the case with the unused of the chemoport, plastic, epoxy and titanium were respectively 39.51℃, 39.11℃, 38.81℃, 40.64℃, simulated experimental data were 42.20 ℃, 41.50℃, 40.70℃, 42.50℃. And in the central axis electrode side 1.5 cm depth 2.8 cm, measured data were 39.37℃, 39.32℃, 39.20℃, 39.46℃, the simulated experimental data were 42.00℃, 41.80℃, 41.20℃, 42.30℃. The thermal variations were caused by radiofrequency electromagnetic field surrounding the chemoport showed lower than in the case of unused in non-conductive plastic material and epoxy material, the titanum chemoport that made of conductor materials showed a slight differences. This is due to the metal contents in the chemoport and the geometry of the chemoport. And because it uses a low radio frequency bandwidth of the used equipment. That is, although use of the chemoport in this study do not significantly affect the surrounding tissue. That is, because the

  19. The study of thermal change by chemoport in radiofrequency hyperthermia

    International Nuclear Information System (INIS)

    Lee, Seung Hoon; Lee, Sun Young; Gim, Yang Soo; Kwak, Keun Tak; Yang, Myung Sik; Cha, Seok Yong

    2015-01-01

    This study evaluate the thermal changes caused by use of the chemoport for drug administration and blood sampling during radiofrequency hyperthermia. 20 cm size of the electrode radio frequency hyperthermia (EHY-2000, Oncotherm KFT, Hungary) was used. The materials of the chemoport in our hospital from currently being used therapy are plastics, metal-containing epoxy and titanium that were made of the diameter 20 cm, height 20 cm insertion of the self-made cylindrical Agar phantom to measure the temperature. Thermoscope(TM-100, Oncotherm Kft, Hungary) and Sim4Life (Ver2.0, Zurich, Switzerland) was compared to the actual measured temperature. Each of the electrode measurement position is the central axis and the central axis side 1.5 cm, 0 cm(surface), 0.5 cm, 1.8 cm, 2.8 cm in depth was respectively measured. The measured temperature is 24.5 - 25.5℃, humidity is 30% - 32%. In five-minute intervals to measure the output power of 100 W, 60 min. In the electrode central axis 2.8 cm depth, the maximum temperature of the case with the unused of the chemoport, plastic, epoxy and titanium were respectively 39.51℃, 39.11℃, 38.81℃, 40.64℃, simulated experimental data were 42.20 ℃, 41.50℃, 40.70℃, 42.50℃. And in the central axis electrode side 1.5 cm depth 2.8 cm, measured data were 39.37℃, 39.32℃, 39.20℃, 39.46℃, the simulated experimental data were 42.00℃, 41.80℃, 41.20℃, 42.30℃. The thermal variations were caused by radiofrequency electromagnetic field surrounding the chemoport showed lower than in the case of unused in non-conductive plastic material and epoxy material, the titanum chemoport that made of conductor materials showed a slight differences. This is due to the metal contents in the chemoport and the geometry of the chemoport. And because it uses a low radio frequency bandwidth of the used equipment. That is, although use of the chemoport in this study do not significantly affect the surrounding tissue. That is, because the

  20. Cold stratification, but not stratification in salinity, enhances seedling ...

    African Journals Online (AJOL)

    Cold stratification, but not stratification in salinity, enhances seedling growth of wheat under salt treatment. L Wang, HL Wang, CH Yin, CY Tian. Abstract. Cold stratification was reported to release seed dormancy and enhance plant tolerance to salt stress. Experiments were conducted to test the hypothesis that cold ...

  1. Ocean acidification narrows the acute thermal and salinity tolerance of the Sydney rock oyster Saccostrea glomerata.

    Science.gov (United States)

    Parker, Laura M; Scanes, Elliot; O'Connor, Wayne A; Coleman, Ross A; Byrne, Maria; Pörtner, Hans-O; Ross, Pauline M

    2017-09-15

    Coastal and estuarine environments are characterised by acute changes in temperature and salinity. Organisms living within these environments are adapted to withstand such changes, yet near-future ocean acidification (OA) may challenge their physiological capacity to respond. We tested the impact of CO 2 -induced OA on the acute thermal and salinity tolerance, energy metabolism and acid-base regulation capacity of the oyster Saccostrea glomerata. Adult S. glomerata were acclimated to three CO 2 levels (ambient 380μatm, moderate 856μatm, high 1500μatm) for 5weeks (24°C, salinity 34.6) before being exposed to a series of acute temperature (15-33°C) and salinity (34.2-20) treatments. Oysters acclimated to elevated CO 2 showed a significant metabolic depression and extracellular acidosis with acute exposure to elevated temperature and reduced salinity, especially at the highest CO 2 of 1500μatm. Our results suggest that the acute thermal and salinity tolerance of S. glomerata and thus its distribution will reduce as OA continues to worsen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The efficacy of a combination non-thermal focused ultrasound and radiofrequency device for noninvasive body contouring in Asians.

    Science.gov (United States)

    Shek, Samantha Y N; Yeung, Chi K; Chan, Johnny C Y; Chan, Henry H L

    2016-02-01

    Several studies have been published on the first generation non-thermal focused ultrasound with an average improvement of 0-3.95 cm reported. We aim to investigate the efficacy of the second-generation non-thermal focused ultrasound device with a combined radiofrequency hand piece. With the addition of radiofrequency energy, the temperature of the adipose tissue is raised before focused ultrasound is applied. This facilitates the mechanical disruption of fat cells by focused ultrasound. Twenty subjects were recruited and underwent three treatments biweekly. Caliper reading, abdominal circumference, and standardized photographs were taken with the Vectra(®) system at all visits. We aim to have the subjects stand and hold the same position and the photograph taken after exhalation. Caliper and circumference measurements carry uncertainty. It is impossible to eliminate all uncertainties but can be improved by having the same trained physician assistant perform the measurement at the same site and taking an average of three readings. Pain score and satisfaction were recorded by means of the visual analogue scale. The efficacy is defined by a statistically significant improvement in circumferential improvement based on intention-to-treat analysis. Seventeen subjects completed the treatment schedule. Abdominal circumference showed statistically significant improvement at 2 weeks post-second treatment (P = 0.023) and almost all subsequent follow-ups. Caliper readings were statistically significant at 2 weeks post-second treatment (P = 0.013) and almost all follow-ups. The mean pain score reported was 2.3 on the visual analog scale and 6% were unsatisfied with the overall treatments. Six incidents of wheal formation appeared immediately after treatment all of which subsided spontaneously within several hours. The combination non-thermal focused ultrasound and radiofrequency device is effective for improving body contour in Asians. © 2015 Wiley Periodicals, Inc.

  3. Tumor lysis syndrome following endoscopic radiofrequency interstitial thermal ablation of colorectal liver metastases.

    LENUS (Irish Health Repository)

    Barry, B D

    2012-02-03

    Radiofrequency interstitial thermal ablation (RITA) provides a palliative option for patients suffering from metastatic liver disease. This procedure can be performed using a laparoscopic approach with laparoscopic ultrasound used to position the RITA probe. We describe a case of laparoscopic RITA performed for colorectal liver metastasis that was complicated by tumor lysis syndrome (TLS) following treatment. We consider RITA to be a safe procedure, as supported by the literature, but where intracorporal tumor lysis is the treatment goal we believe that the systemic release of tumor products can overwhelm the excretory capacity; therefore, TLS is an inevitable consequence in some patients.

  4. Experimental research of joint influence of salinization and petroleum pollution on thermal capacity of frozen ground

    International Nuclear Information System (INIS)

    Motenko, R.G.

    2010-01-01

    Most gas and petroleum fields are located in permafrost zones, with some being on saline territories. Oil pollution of soils can occur in different ways and at different points such as during the extraction, processing and storage, and during transportation of oil and petroleum products. Oil producing pollution and salinization of soil often happen together. In this case, the sources of salts are the formation fluid, commercial waste water, the contents of the granaries and other geochemically active substances used for the extraction and desalting of crude oil. Joint salinization and contamination can also happen during the rupture of oil pipelines in saline areas. Although there is research available on the properties of saline soils and on properties of soils polluted with petroleum, there are no studies that describe changes of ground properties with joint pollution of salt and petroleum. This paper presented a study that examined the joint influence of salinization and petroleum pollution on the thermal characteristics of thawed and frozen grounds, particularly on thermal capacity. The paper outlined the purpose of the research and described the experimental methods. It was concluded that an increase of salinization increases the heat capacity of frozen soil because the amount of unfrozen water increases with increasing salinization. 10 refs., 5 figs.

  5. Experimental research of joint influence of salinization and petroleum pollution on thermal capacity of frozen ground

    Energy Technology Data Exchange (ETDEWEB)

    Motenko, R.G. [Moscow State Univ., Moscow (Russian Federation). Dept. of Geocryology; Grechishcheva, E.S. [Fundamentproek, Moscow (Russian Federation)

    2010-07-01

    Most gas and petroleum fields are located in permafrost zones, with some being on saline territories. Oil pollution of soils can occur in different ways and at different points such as during the extraction, processing and storage, and during transportation of oil and petroleum products. Oil producing pollution and salinization of soil often happen together. In this case, the sources of salts are the formation fluid, commercial waste water, the contents of the granaries and other geochemically active substances used for the extraction and desalting of crude oil. Joint salinization and contamination can also happen during the rupture of oil pipelines in saline areas. Although there is research available on the properties of saline soils and on properties of soils polluted with petroleum, there are no studies that describe changes of ground properties with joint pollution of salt and petroleum. This paper presented a study that examined the joint influence of salinization and petroleum pollution on the thermal characteristics of thawed and frozen grounds, particularly on thermal capacity. The paper outlined the purpose of the research and described the experimental methods. It was concluded that an increase of salinization increases the heat capacity of frozen soil because the amount of unfrozen water increases with increasing salinization. 10 refs., 5 figs.

  6. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation.

    Science.gov (United States)

    Ahmed, Muneeb; Liu, Zhengjun; Humphries, Stanley; Goldberg, S Nahum

    2008-11-01

    To use an established computer simulation model of radiofrequency (RF) ablation to characterize the combined effects of varying perfusion, and electrical and thermal conductivity on RF heating. Two-compartment computer simulation of RF heating using 2-D and 3-D finite element analysis (ETherm) was performed in three phases (n = 88 matrices, 144 data points each). In each phase, RF application was systematically modeled on a clinically relevant template of application parameters (i.e., varying tumor and surrounding tissue perfusion: 0-5 kg/m(3)-s) for internally cooled 3 cm single and 2.5 cm cluster electrodes for tumor diameters ranging from 2-5 cm, and RF application times (6-20 min). In the first phase, outer thermal conductivity was changed to reflect three common clinical scenarios: soft tissue, fat, and ascites (0.5, 0.23, and 0.7 W/m- degrees C, respectively). In the second phase, electrical conductivity was changed to reflect different tumor electrical conductivities (0.5 and 4.0 S/m, representing soft tissue and adjuvant saline injection, respectively) and background electrical conductivity representing soft tissue, lung, and kidney (0.5, 0.1, and 3.3 S/m, respectively). In the third phase, the best and worst combinations of electrical and thermal conductivity characteristics were modeled in combination. Tissue heating patterns and the time required to heat the entire tumor +/-a 5 mm margin to >50 degrees C were assessed. Increasing background tissue thermal conductivity increases the time required to achieve a 50 degrees C isotherm for all tumor sizes and electrode types, but enabled ablation of a given tumor size at higher tissue perfusions. An inner thermal conductivity equivalent to soft tissue (0.5 W/m- degrees C) surrounded by fat (0.23 W/m- degrees C) permitted the greatest degree of tumor heating in the shortest time, while soft tissue surrounded by ascites (0.7 W/m- degrees C) took longer to achieve the 50 degrees C isotherm, and complete ablation

  7. Pulsed Dose Radiofrequency Before Ablation of Medial Branch of the Lumbar Dorsal Ramus for Zygapophyseal Joint Pain Reduces Post-procedural Pain.

    Science.gov (United States)

    Arsanious, David; Gage, Emmanuel; Koning, Jonathon; Sarhan, Mazin; Chaiban, Gassan; Almualim, Mohammed; Atallah, Joseph

    2016-01-01

    One of the potential side effects with radiofrequency ablation (RFA) includes painful cutaneous dysesthesias and increased pain due to neuritis or neurogenic inflammation. This pain may require the prescription of opioids or non-opioid analgesics to control post-procedural pain and discomfort. The goal of this study is to compare post-procedural pain scores and post-procedural oral analgesic use in patients receiving continuous thermal radiofrequency ablation versus patients receiving pulsed dose radiofrequency immediately followed by continuous thermal radiofrequency ablation for zygopophaseal joint disease. This is a prospective, double-blinded, randomized, controlled trial. Patients who met all the inclusion criteria and were not subject to any of the exclusion criteria were required to have two positive diagnostic medial branch blocks prior to undergoing randomization, intervention, and analysis. University hospital. Eligible patients were randomized in a 1:1 ratio to either receive thermal radiofrequency ablation alone (standard group) or pulsed dose radiofrequency (PDRF) immediately followed by thermal radiofrequency ablation (investigational group), all of which were performed by a single Board Certified Pain Medicine physician. Post-procedural pain levels between the two groups were assessed using the numerical pain Scale (NPS), and patients were contacted by phone on post-procedural days 1 and 2 in the morning and afternoon regarding the amount of oral analgesic medications used in the first 48 hours following the procedure. Patients who received pulsed dose radiofrequency followed by continuous radiofrequency neurotomy reported statistically significantly lower post-procedural pain scores in the first 24 hours compared to patients who received thermal radiofrequency neurotomy alone. These patients also used less oral analgesic medication in the post-procedural period. These interventions were carried out by one board accredited pain physician at one

  8. Ultrasound elastographic imaging of thermal lesions and temperature profiles during radiofrequency ablation

    Science.gov (United States)

    Techavipoo, Udomchai

    Manual palpation to sense variations in tissue stiffness for disease diagnosis has been regularly performed by clinicians for centuries. However, it is generally limited to large and superficial structures and the ability of the physician performing the palpation. Imaging of tissue stiffness or elastic properties via the aid of modern imaging such as ultrasound and magnetic resonance imaging, referred to as elastography, enhances the capability for disease diagnosis. In addition, elastography could be used for monitoring tissue response to minimally invasive ablative therapies, which are performed percutaneously to destruct tumors with minimum damage to surrounding tissue. Monitoring tissue temperature during ablation is another approach to estimate tissue damage. The ultimate goal of this dissertation is to improve the image quality of elastograms and temperature profiles for visualizing thermal lesions during and after ablative therapies. Elastographic imaging of thermal lesions is evaluated by comparison of sizes, shapes, and volumes with the results obtained using gross pathology. Semiautomated segmentation of lesion boundaries on elastograms is also developed. It provides comparable results to those with manual segmentation. Elastograms imaged during radiofrequency ablation in vitro show that the impact of gas bubbles during ablation on the ability to delineate the thermal lesion is small. Two novel methods to reduce noise artifacts in elastograms, and an accurate estimation of displacement vectors are proposed. The first method applies wavelet-denoising algorithms to the displacement estimates. The second method utilizes angular compounding of the elastograms generated using ultrasound signal frames acquired from different insonification angles. These angular frames are also utilized to estimate all tissue displacement vector components in response to a deformation. These enable the generation of normal and shear strain elastograms and Poisson's ratio

  9. Enhancement of salinity tolerance in wheat through soil applied calcium carbide

    Directory of Open Access Journals (Sweden)

    Z. Ahmad

    2009-05-01

    Full Text Available Calcium carbide (CaC2 has been reported to increase growth and yield of crops under normal soil conditions. This study assessed its capacity to enhance salinity tolerance in wheat (Triticum aestivum L.; cv- 1076 under saline conditions. Three levels of salinity: 0, 7 and 12 dS m-1 were created using NaCl. Nitrogen, phosphorus and potassium were applied as ammonium sulphate and KH2PO4 at 50 and 25 mg kg-1 soil, respectively. The encapsulated calcium carbide (ECC at 45 mg kg-1 soil produced 1291.8 µmols of acetylene (C2H2 and 257.5 µmols of its product ethylene (C2H4 over a period of 80 days. The results of the pot study indicated that ECC increased the weight of spike, weight of grains per spike, length of spike, total water concentration, root/shoot ratio and relative leaf water content up to 17, 23, 22, 35, 33 and 3%, respectively, over the control. Contrary to this, salinity (at 12 dS m -1 decreased all these parameters up to 68, 60, 26, 30, 28 and 8%, respectively, compared to the control. These results indicate that ECC enhances salinity tolerance in wheat by improving uptake of nutrients through enhanced root growth, increased hydraulic conductivity and hormonal action of ethylene released by ECC. Total water concentration was positively correlated (0.73 with grains spike-1 at P ≤ 0.05

  10. Cold stratification, but not stratification in salinity, enhances seedling ...

    African Journals Online (AJOL)

    use

    2011-10-26

    Oct 26, 2011 ... Cold stratification was reported to release seed dormancy and enhance plant tolerance to salt stress. ... Key words: Cold stratification, salt stress, seedling emergence, ... methods used to cope with salinity, seed pre-sowing.

  11. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D. E-mail: lumd@21cn.com; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up.

  12. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    International Nuclear Information System (INIS)

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D.; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J.

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up

  13. Enhanced remediation of an oily sludge with saline water ...

    African Journals Online (AJOL)

    Enhanced remediation of an oily sludge with saline water. ... the remediation of an oily sludge, which was part of the waste stream from the improvement ... m3 of fresh water respectively while 'treatment' reactors C and D received ...

  14. Thermal evolutions of two kinds of melt pond with different salinity

    Science.gov (United States)

    Kim, Joo-Hong; Wilkinson, Jeremy; Moon, Woosok; Hwang, Byongjun; Granskog, Mats

    2016-04-01

    Melt ponds are water pools on sea ice. Their formation reduces ice surface albedo and alter surface energy balance, by which the ice melting and freezing processes are regulated. Thus, better understanding of their radiative characteristics has been vital to improve the simulation of melting/freezing of sea ice in numerical models. A melt pond would preserve nearly fresh water if it formed on multi-year ice and no flooding of sea water occurred, whereas a melt pond would contain more salty water if it formed on thinner and porous first-year ice, if there were an inflow of sea water by streams or cracks. One would expect that the fluid dynamic/thermodynamic properties (e.g., turbulence, stability, etc.) of pond water are influenced by the salinity, so that the response of pond water to any heat input (e.g., shortwave radiation) would be different. Therefore, better understanding of the salinity-dependent thermal evolution also has significant potential to improve the numerical simulation of the sea ice melting/freezing response to radiative thermal forcing. To observe and understand the salinity-dependent thermal evolution, two ice mass balance buoys (IMBs) were deployed in two kinds (fresh and salty) of melt pond on a same ice floe on 13 August 2015 during Araon Arctic cruise. The thermistor chain, extending from the air through the pond and ice into the sea water, was deployed through a drilled borehole inside the pond. Besides, the IMBs were also accompanied with three broadband solar radiation sensors (two (up and down) in the air over melt pond and one upward-looking under sea ice) to measure the net shortwave radiation at the pond surface and the penetrating solar radiation through ice. Also, the web camera was installed to observe any updates in the conditions of equipment and surrounding environment (e.g., weather, surface state, etc.). On the date of deployment, the fresh pond had salinity of 2.3 psu, light blue color, lots of slush ice particles which

  15. Ultrasound-guided percutaneous treatment of hepatocellular carcinoma by radiofrequency hyperthermia with a 'cooled-tip needle'. A preliminary clinical experience.

    Science.gov (United States)

    Francica, G; Marone, G

    1999-05-01

    Radiofrequency hyperthermia using the newly-developed 'cooled-tip' needle has recently been proposed as a therapeutic modality for hepatocellular carcinoma (HCC). Herein we report our preliminary results on feasibility and effectiveness of the thermal ablation of mono- or pauci-focal hepatocellular carcinoma with the cooled-tip needle. We treated 15 cirrhotic patients (mean age 68.8 years; 12 males; 14 HCV-positive; 13 in Child's Class A and 2 in Class B) with 20 hepatocellular carcinoma nodules (mean diameter 28.1 mm; range 10-43 mm; nine lesions with diameter greater than 3 cm). None of the patients had portal thrombosis and/or extrahepatic spread. We used a radiofrequency generator (100 W of power) connected to a 18 g perfusion electrode needle with an exposed tip of 2-3 cm. The circuit was closed through a dispersive electrode positioned under the patient's thighs. A peristaltic pump infused a chilled (2-5 degrees C) saline solution to guarantee the continuous cooling of the needle tip. The needle was placed into target lesions under US guidance. The interventional procedure was carried out in general anesthesia without intubation. Dynamic helical CT was carried out 15-20 days after thermal ablation to assess therapeutic efficacy. In all, 38 areas of coagulation necrosis (at 1000-1200 mA for 10-15 min) were generated in 24 sessions in the 20 hepatocellular carcinoma nodules (mean 1.9 lesions per nodule and 1.2 sessions per nodule). Complete necrosis as assessed at dynamic CT (lack of enhancement during the arteriographic phase) was achieved in 75% of cases in a single session; after a second RF session success rate was 90% (18 out of 20 nodules). A self-limited pleurisy along with a 5-fold increase in transaminases occurred in one patient; a 3-fold elevation of transaminases was encountered in three other patients. During the follow-up (median 15 months) five patients had recurrent hepatocellular carcinoma with a 1-year disease free interval of 64%. Of the

  16. Image-guided radiofrequency ablation of renal cell carcinoma

    International Nuclear Information System (INIS)

    Boss, Andreas; Clasen, Stephan; Pereira, Philippe L.; Kuczyk, Markus; Schick, Fritz

    2007-01-01

    The incidence of renal cell carcinoma is rising with the increased number of incidental detection of small tumours. During the past few years, percutaneous imaging-guided radiofrequency ablation has evolved as a minimally invasive treatment of small unresectable renal tumours offering reduced patient morbidity and overall health care costs. In radiofrequency ablation, thermal energy is deposited into a targeted tumour by means of a radiofrequency applicator. In recent studies, radiofrequency ablation was shown to be an effective and safe modality for local destruction of renal cell carcinoma. Radiofrequency applicator navigation can be performed via ultrasound, computed tomography or magnetic resonance guidance; however, ultrasound seems less favourable because of the absence of monitoring capabilities during ablation. On-line monitoring of treatment outcome can only be performed with magnetic resonance imaging giving the possibility of eventual applicator repositioning to ablate visible residual tumour tissue. Long-term follow-up is crucial to assess completeness of tumour ablation. New developments in ablation technology and radiological equipment will further increase the indication field for radiofrequency ablation of renal cell carcinoma. Altogether, radiofrequency ablation seems to be a promising new modality for the minimally invasive treatment of renal cell carcinoma, which was demonstrated to exhibit high short-term effectiveness. (orig.)

  17. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Science.gov (United States)

    Chou, Chia-Man; Lai, Chih-Chang; Chang, Chih-Wei; Wen, Kai-Shin; Hsiao, Vincent K. S.

    2017-07-01

    We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO)-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD) incorporated with radio-frequency (r.f.)-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD)-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC) structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr). High oxygen vapor pressure (150 mTorr) and low r.f. power (10 W) are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  18. Comparison of Radiofrequency Ablation with Saturated Saline Preinjection and Renal Artery Occlusion: In Vivo Study in Canine Kidneys Preinjection and Renal Artery Occlusion: In Vivo Study in Canine Kidneys

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Byung Seok; Ahn, Moon Sang [Chungnam National University Hospital, Daejeon (Korea, Republic of); Park, Mi Hyun [Dept. of Radiology, Dankook University Hospital, Cheonan (Korea, Republic of); Jeon, Gyeong Sik [Dept. of Radiology, CHA Bundang Medical Center, CHA University College of Medicine, Seongnam (Korea, Republic of); Lee, Byung Mo [Dept. of Surgery, Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of); Lee, Ki Chang [Dept. of Veterinary Radiology, Chonbuk National University College of VeterinaryMedicine, Seoul (Korea, Republic of); Kim, Ho Jun [Dept. of Radiology, Konyang University Hospital, Daejeon (Korea, Republic of); Ohm, Joon Young [Dept. of Radiology, Bucheon St. Mary Hospital, The Catholic University of Korea College of Medicine, Bucheon (Korea, Republic of)

    2012-04-15

    To compare the ablation zone after radiofrequency ablation (RFA) with saturated saline preinjection and renal artery occlusion in canine kidneys. RFA was induced in the kidneys of six mongrel dogs. A total of 24 ablation zones were induced using a 1-cm tip internally cooled needle electrode in three groups: RFA (Control group), RFA with 0.5 mL saturated saline preinjection (SS group), and RFA with renal artery occlusion by atraumatic vascular clamp (Occlusion group). Ablation zone diameters were measured along transverse and longitudinal sections of the needle axis, and volumes were calculated. Temperature, applied voltage, current, and impedance during RFA were recorded automatically. The RFA zone volume was the largest in the SS group (1.33 {+-} 0.34 cm{sup 3}), followed by the Occlusion group (1.07 {+-} 0.38 cm{sup 3}) and then the Control group (0.62 {+-} 0.09 cm{sup 3}). Volumes for the SS and Occlusion groups were significantly larger than those for the Control group (p = 0.001, p = 0.012). There was no significant difference in volumes between the SS and Occlusion groups (p = 0.178). Saturated saline preinjection is as effective as renal arterial occlusion for expanding the ablation zone. RFA with saturated saline preinjection could help to treat large renal tumors.

  19. Comparison of Radiofrequency Ablation with Saturated Saline Preinjection and Renal Artery Occlusion: In Vivo Study in Canine Kidneys Preinjection and Renal Artery Occlusion: In Vivo Study in Canine Kidneys

    International Nuclear Information System (INIS)

    Shin, Byung Seok; Ahn, Moon Sang; Park, Mi Hyun; Jeon, Gyeong Sik; Lee, Byung Mo; Lee, Ki Chang; Kim, Ho Jun; Ohm, Joon Young

    2012-01-01

    To compare the ablation zone after radiofrequency ablation (RFA) with saturated saline preinjection and renal artery occlusion in canine kidneys. RFA was induced in the kidneys of six mongrel dogs. A total of 24 ablation zones were induced using a 1-cm tip internally cooled needle electrode in three groups: RFA (Control group), RFA with 0.5 mL saturated saline preinjection (SS group), and RFA with renal artery occlusion by atraumatic vascular clamp (Occlusion group). Ablation zone diameters were measured along transverse and longitudinal sections of the needle axis, and volumes were calculated. Temperature, applied voltage, current, and impedance during RFA were recorded automatically. The RFA zone volume was the largest in the SS group (1.33 ± 0.34 cm 3 ), followed by the Occlusion group (1.07 ± 0.38 cm 3 ) and then the Control group (0.62 ± 0.09 cm 3 ). Volumes for the SS and Occlusion groups were significantly larger than those for the Control group (p = 0.001, p = 0.012). There was no significant difference in volumes between the SS and Occlusion groups (p = 0.178). Saturated saline preinjection is as effective as renal arterial occlusion for expanding the ablation zone. RFA with saturated saline preinjection could help to treat large renal tumors.

  20. Radiofrequency ablation of liver cancer: early evaluation of therapeutic response with contrast-enhanced ultrasonography

    International Nuclear Information System (INIS)

    Choi, Dong Gil; Lim, Hyo K.; Lee, Won Jae; Kim, Seung Hoon; Kim, Min Ju; Kim, Seung Kwon; Jang, Kyung Mi; Lee, Ji Yeon; Lim, Jae Hoon

    2004-01-01

    The early assessment of the therapeutic response after percutaneous radiofrequency (RF) ablation is important, in order to correctly decide whether further treatment is necessary. The residual unablated tumor is usually depicted on contrast-enhanced multiphase helical computed tomography (CT) as a focal enhancing structure during the arterial and portal venous phases. Contrast-enhanced color Doppler and power Doppler ultrasonography (US) have also been used to detect residual tumors. Contrast-enhanced gray-scale US, using a harmonic technology which has recently been introduced, allows for the detection of residual tumors after ablation, without any of the blooming or motion artifacts usually seen on contrast-enhanced color or power Doppler US. Based on our experience and reports in the literature, we consider that contrast-enhanced gray-scale harmonic US constitutes a reliable alternative to contrast-enhanced multiphase CT for the early evaluation of the therapeutic response to RF ablation for liver cancer. This technique was also useful in targeting any residual unablated tumors encountered during additional ablation

  1. Effect of different saline chaser volumes and flow rates on intravascular contrast enhancement in CT using a circulation phantom

    International Nuclear Information System (INIS)

    Behrendt, Florian F.; Bruners, Philipp; Keil, Sebastian; Plumhans, Cedric; Mahnken, Andreas H.; Das, Marco; Ackermann, Diana; Guenther, Rolf W.; Muehlenbruch, Georg

    2010-01-01

    Purpose: To evaluate the influence of different saline chaser volumes and different saline chaser flow rates on the intravascular contrast enhancement in MDCT. Materials and methods: In a physiological flow phantom contrast medium (120 ml, 300 mgI/ml, Ultravist 300) was administered at a flow rate of 6 ml/s followed by different saline chaser volumes (0, 30, 60 and 90 ml) at the same injection rate or followed by a 30-ml saline chaser at different injection rates (2, 4, 6 and 8 ml/s). Serial CT-scans at a level covering the pulmonary artery, the ascending and the descending aorta replica were obtained. Time-enhancement curves were computed and both pulmonary and aortic peak enhancement and peak time were determined. Results: Compared to contrast medium injection without a saline chaser the pushing with a saline chaser (30, 60, and 90 ml) resulted in a statistically significant increased pulmonary peak enhancement (all p = 0.008) and prolonged peak time (p = 0.032, p = 0.024 and p = 0.008, respectively). Highest aortic peak enhancement values were detected for a saline chaser volume of 30 ml. A saline chaser flow rate of 8 ml/s resulted in the highest pulmonary peak enhancement values compared to flow rates of 2, 4 and 6 ml/s (all p = 0.008). Aortic peak enhancement showed the highest values for a flow rate of 6 ml/s. Conclusion: A saline chaser volume of 30 ml and an injection rate of 6 ml/s are sufficient to best improve vascular contrast enhancement in the pulmonary artery and the aorta in MDCT.

  2. Comparative study of conventional US, contrast enhanced US and enhanced MR for the follow-up of prostatic radiofrequency ablation.

    Science.gov (United States)

    Feng, Chao; Hu, Bin; Hu, Bing; Chen, Lei; Li, Jia; Huang, Jin

    2017-06-01

    The aim of the present study was to evaluate and compare the effectiveness of different imaging methods during follow-up of prostatic radiofrequency ablation. Prostatic radiofrequency ablation (RFA) was performed in 20 healthy beagle dogs. Various imaging examinations were used to monitor the results of RFA, including conventional ultrasound (US), contrast enhanced ultrasound (CEUS) and enhanced magnetic resonance (MR). Imaging exams were performed at five phases: Immediately following RFA, one week later, one month later, three months later and six months later. The morphology for each imaging test and histological results were recorded and compared in each phase. Based on the actual results from autopsy, the accuracy of those imaging exams was evaluated. The canine prostate gland demonstrated typical coagulative necrosis immediately following RFA. The lesion would develop into stable cyst if no other complications occurred within the six-month follow-up. Regarding the RFA lesion volume measurement and the reflection of pathological changes, conventional US was not able to accurately measure the volume of RFA lesion and missed many more details concerning the RFA-treated area than CEUS and MR during the three months. The results from CEUS exhibited comparable accuracy to those from enhanced MR at each phase. However, there were no significant differences in the results from US, CEUS and MR at six months, which may contribute to the complete formation of lesion cyst. In the early phase, conventional US was not sufficient for evaluating the efficacy of RFA. Enhanced US and MR provided clear images and accurate information. However, CEUS has the advantage of being more economical, using more convenient equipment and faster scanning, thus identifying it as the more feasible choice. Furthermore, no notable advantages were observed among any image examinations in the long-term follow-up.

  3. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Directory of Open Access Journals (Sweden)

    Chia-Man Chou

    2017-07-01

    Full Text Available We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD incorporated with radio-frequency (r.f.-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr. High oxygen vapor pressure (150 mTorr and low r.f. power (10 W are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  4. Hyaluronic Acid Gel Injection to Prevent Thermal Injury of Adjacent Gastrointestinal Tract during Percutaneous Liver Radiofrequency Ablation

    International Nuclear Information System (INIS)

    Hasegawa, Takaaki; Takaki, Haruyuki; Miyagi, Hideki; Nakatsuka, Atsuhiro; Uraki, Junji; Yamanaka, Takashi; Fujimori, Masashi; Sakuma, Hajime; Yamakado, Koichiro

    2013-01-01

    This study evaluated the safety, feasibility, and clinical utility of hyaluronic acid gel injection to separate the gastrointestinal tract from the tumor during liver radiofrequency ablation (RFA). Eleven patients with liver tumors measuring 0.9–3.5 cm (mean ± standard deviation, 2.1 ± 0.8 cm) that were adjacent to the gastrointestinal tracts received RFA after the mixture of hyaluronic acid gel and contrast material (volume, 26.4 ± 14.5 mL; range, 10–60 mL) was injected between the tumor and the gastrointestinal tract under computed tomographic–fluoroscopic guidance. Each tumor was separated from the gastrointestinal tract by 1.0–1.5 cm (distance, 1.2 ± 0.2 cm) after injection of hyaluronic acid gel, and subsequent RFA was performed without any complications in all patients. Although tumor enhancement disappeared in all patients, local tumor progression was found in a patient (9.1 %, 1 of 11) during the follow-up of 5.5 ± 3.2 months (range, 0.4–9.9 months). In conclusion, hyaluronic acid gel injection is a safe and useful technique to avoid thermal injury of the adjacent gastrointestinal tract during liver RFA

  5. Hyaluronic Acid Gel Injection to Prevent Thermal Injury of Adjacent Gastrointestinal Tract during Percutaneous Liver Radiofrequency Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Takaaki, E-mail: hasegawat@clin.medic.mie-u.ac.jp; Takaki, Haruyuki; Miyagi, Hideki; Nakatsuka, Atsuhiro; Uraki, Junji; Yamanaka, Takashi; Fujimori, Masashi; Sakuma, Hajime; Yamakado, Koichiro [Mie University School of Medicine, Department of Radiology (Japan)

    2013-08-01

    This study evaluated the safety, feasibility, and clinical utility of hyaluronic acid gel injection to separate the gastrointestinal tract from the tumor during liver radiofrequency ablation (RFA). Eleven patients with liver tumors measuring 0.9-3.5 cm (mean {+-} standard deviation, 2.1 {+-} 0.8 cm) that were adjacent to the gastrointestinal tracts received RFA after the mixture of hyaluronic acid gel and contrast material (volume, 26.4 {+-} 14.5 mL; range, 10-60 mL) was injected between the tumor and the gastrointestinal tract under computed tomographic-fluoroscopic guidance. Each tumor was separated from the gastrointestinal tract by 1.0-1.5 cm (distance, 1.2 {+-} 0.2 cm) after injection of hyaluronic acid gel, and subsequent RFA was performed without any complications in all patients. Although tumor enhancement disappeared in all patients, local tumor progression was found in a patient (9.1 %, 1 of 11) during the follow-up of 5.5 {+-} 3.2 months (range, 0.4-9.9 months). In conclusion, hyaluronic acid gel injection is a safe and useful technique to avoid thermal injury of the adjacent gastrointestinal tract during liver RFA.

  6. Osteoid Osteoma: Experience with Laser- and Radiofrequency-Induced Ablation

    International Nuclear Information System (INIS)

    Gebauer, Bernhard; Tunn, Per-Ulf; Gaffke, Gunnar; Melcher, Ingo; Felix, Roland; Stroszczynski, Christian

    2006-01-01

    The purpose of this study was to analyze the clinical outcome of osteoid osteoma treated by thermal ablation after drill opening. A total of 17 patients and 20 procedures were included. All patients had typical clinical features (age, pain) and a typical radiograph showing a nidus. In 5 cases, additional histological specimens were acquired. After drill opening of the osteoid osteoma nidus, 12 thermal ablations were induced by laser interstitial thermal therapy (LITT) (9F Power-Laser-Set; Somatex, Germany) and 8 ablations by radiofrequency ablation (RFA) (RITA; StarBurst, USA). Initial clinical success with pain relief has been achieved in all patients after the first ablation. Three patients had an osteoid osteoma recurrence after 3, 9, and 10 months and were successfully re-treated by thermal ablation. No major complication and one minor complication (sensible defect) were recorded. Thermal ablation is a safe and minimally invasive therapy option for osteoid osteoma. Although the groups are too small for a comparative analysis, we determined no difference between laser- and radiofrequency-induced ablation in clinical outcome after ablation

  7. Heat Sink Effect on Tumor Ablation Characteristics as Observed in Monopolar Radiofrequency, Bipolar Radiofrequency, and Microwave, Using Ex Vivo Calf Liver Model

    Science.gov (United States)

    Pillai, Krishna; Akhter, Javid; Chua, Terence C.; Shehata, Mena; Alzahrani, Nayef; Al-Alem, Issan; Morris, David L.

    2015-01-01

    Abstract Thermal ablation of liver tumors near large blood vessels is affected by the cooling effect of blood flow, leading to incomplete ablation. Hence, we conducted a comparative investigation of heat sink effect in monopolar (MP) and bipolar (BP) radiofrequency ablation (RFA), and microwave (MW) ablation devices. With a perfused calf liver, the ablative performances (volume, mass, density, dimensions), with and without heat sink, were measured. Heat sink was present when the ablative tip of the probes were 8.0 mm close to a major hepatic vein and absent when >30 mm away. Temperatures (T1 and T2) on either side of the hepatic vein near the tip of the probes, heating probe temperature (T3), outlet perfusate temperature (T4), and ablation time were monitored. With or without heat sink, BP radiofrequency ablated a larger volume and mass, compared with MP RFA or MW ablation, with latter device producing the highest density of tissue ablated. MW ablation produced an ellipsoidal shape while radiofrequency devices produced spheres. Percentage heat sink effect in Bipolar radiofrequency : Mono-polar radiofrequency : Microwave was (Volume) 33:41:22; (mass) 23:56:34; (density) 9.0:26:18; and (relative elipscity) 5.8:12.9:1.3, indicating that BP and MW devices were less affected. Percentage heat sink effect on time (minutes) to reach maximum temperature (W) = 13.28:9.2:29.8; time at maximum temperature (X) is 87:66:16.66; temperature difference (Y) between the thermal probes (T3) and the temperature (T1 + T2)/2 on either side of the hepatic vessel was 100:87:20; and temperature difference between the (T1 + T2)/2 and temperature of outlet circulating solution (T4), Z was 20.33:30.23:37.5. MW and BP radiofrequencies were less affected by heat sink while MP RFA was the most affected. With a single ablation, BP radiofrequency ablated a larger volume and mass regardless of heat sink. PMID:25738477

  8. Percutaneous treatment of bone tumors by radiofrequency thermal ablation

    International Nuclear Information System (INIS)

    Ruiz Santiago, Fernando; Mar Castellano Garcia, Maria del; Guzman Alvarez, Luis; Martinez Montes, Jose Luis; Ruiz Garcia, Manuel; Tristan Fernandez, Juan MIguel

    2011-01-01

    We present our experience of the treatment of bone tumors with radiofrequency thermal ablation (RFTA). Over the past 4 years, we have treated 26 cases (22 benign and 4 malignant) using CT-guided RFTA. RFTA was the sole treatment in 19 cases and was combined with percutaneous cementation during the same session in the remaining seven cases. Our approach to the tumors was simplified, using a single point of entrance for both RFTA and percutaneous osteoplasty. In the benign cases, clinical success was defined as resolution of pain within 1 month of the procedure and no recurrence during the follow-up period. It was achieved in 19 out of the 21 patients in which curative treatment was attempted. The two non-resolved cases were a patient with osteoid osteoma who developed a symptomatic bone infarct after a symptom-free period of 2 months and another with femoral diaphysis osteoblastoma who suffered a pathological fracture after 8 months without symptoms. The procedure was considered clinically successful in the five cases (4 malign and 1 benign) in which palliative treatment was attempted, because there was a mean (±SD) reduction in visual analogue scale (VAS) pain score from 9.0 ± 0.4 before the procedure to <4 during the follow-up period.

  9. Percutaneous treatment of bone tumors by radiofrequency thermal ablation

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Santiago, Fernando, E-mail: ferusan@ono.com [Department of Radiology, Hospital of Traumatology (Ciudad Sanitaria Virgen de las Nieves), Carretera de Jaen SN, 18013 Granada (Spain); Mar Castellano Garcia, Maria del; Guzman Alvarez, Luis [Department of Radiology, Hospital of Traumatology (Ciudad Sanitaria Virgen de las Nieves), Carretera de Jaen SN, 18013 Granada (Spain); Martinez Montes, Jose Luis [Department of Traumatology, Hospital of Traumatology (Ciudad Sanitaria Virgen de las Nieves), Carretera de Jaen SN, 18013 Granada (Spain); Ruiz Garcia, Manuel; Tristan Fernandez, Juan MIguel [Department of Radiology, Hospital of Traumatology (Ciudad Sanitaria Virgen de las Nieves), Carretera de Jaen SN, 18013 Granada (Spain)

    2011-01-15

    We present our experience of the treatment of bone tumors with radiofrequency thermal ablation (RFTA). Over the past 4 years, we have treated 26 cases (22 benign and 4 malignant) using CT-guided RFTA. RFTA was the sole treatment in 19 cases and was combined with percutaneous cementation during the same session in the remaining seven cases. Our approach to the tumors was simplified, using a single point of entrance for both RFTA and percutaneous osteoplasty. In the benign cases, clinical success was defined as resolution of pain within 1 month of the procedure and no recurrence during the follow-up period. It was achieved in 19 out of the 21 patients in which curative treatment was attempted. The two non-resolved cases were a patient with osteoid osteoma who developed a symptomatic bone infarct after a symptom-free period of 2 months and another with femoral diaphysis osteoblastoma who suffered a pathological fracture after 8 months without symptoms. The procedure was considered clinically successful in the five cases (4 malign and 1 benign) in which palliative treatment was attempted, because there was a mean ({+-}SD) reduction in visual analogue scale (VAS) pain score from 9.0 {+-} 0.4 before the procedure to <4 during the follow-up period.

  10. Distribution of Legionella pneumophila bacteria and Naegleria and Hartmannella amoebae in thermal saline baths used in balneotherapy.

    Science.gov (United States)

    Zbikowska, Elżbieta; Walczak, Maciej; Krawiec, Arkadiusz

    2013-01-01

    The present study was aimed at investigating the coexistence and interactions between free living amoebae of Naegleria and Hartmannella genera and pathogenic Legionella pneumophila bacteria in thermal saline baths used in balneotherapy in central Poland. Water samples were collected from November 2010 to May 2011 at intervals longer than 1 month. The microorganisms were detected with the use of a very sensitive fluorescence in situ hybridisation method. In addition, the morphology of the amoebae was studied. Despite relatively high salinity level, ranging from 1.5 to 5.0 %, L. pneumophila were found in all investigated baths, although their number never exceeded 10(6) cells dm(-3). Hartmannella were not detected, while Naegleria fowleri were found in one bath. The observation that N. fowleri and L. pneumophila may coexist in thermal saline baths is the first observation emphasising potential threat from these microorganisms in balneotherapy.

  11. Radio-frequency magnetron sputtering and wet thermal oxidation of ZnO thin film

    International Nuclear Information System (INIS)

    Liu, H. F.; Chua, S. J.; Hu, G. X.; Gong, H.; Xiang, N.

    2007-01-01

    The authors studied the growth and wet thermal oxidation (WTO) of ZnO thin films using a radio-frequency magnetron sputtering technique. X-ray diffraction reveals a preferred orientation of [1010]ZnO(0002)//[1120]Al 2 O 3 (0002) coexisted with a small amount of ZnO (1011) and ZnO (1013) crystals on the Al 2 O 3 (0001) substrate. The ZnO (1011) and ZnO (1013) crystals, as well as the in-plane preferred orientation, are absent from the growth of ZnO on the GaAs(001) substrate. WTO at 550 deg. C improves the crystalline and the photoluminescence more significantly than annealing in air, N 2 and O 2 ambient; it also tends to convert the crystal from ZnO (1011) and ZnO (1013) to ZnO (0002). The evolution of the photoluminescence upon WTO and annealing reveals that the green and orange emissions, centered at 520 and 650 nm, are likely originated from oxygen vacancies and oxygen interstitials, respectively; while the 420 nm emission, which is very sensitive to the postgrowth thermal processing regardless of the substrate and the ambient gas, is likely originated from the surface-state related defects

  12. Infrared Thermal Signature Evaluation of a Pure and Saline Ice for Marine Operations in Cold Climate

    Directory of Open Access Journals (Sweden)

    Taimur Rashid

    2015-11-01

    Full Text Available Marine operations in cold climates are subjected to abundant ice accretion, which can lead to heavy ice loads over larger surface area. For safe and adequate operations on marine vessels over a larger area, remote ice detection and ice mitigation system can be useful. To study this remote ice detection option, lab experimentation was performed to detect the thermal gradient of ice with the infrared camera. Two different samples of ice blocks were prepared from tap water and saline water collected from the North Atlantic Ocean stream. The surfaces of ice samples were observed at room temperature. A complete thermal signature over the surface area was detected and recorded until the meltdown process was completed. Different temperature profiles for saline and pure ice samples were observed, which were kept under similar conditions. This article is focused to understand the experimentation methodology and thermal signatures of samples. However, challenges remains in terms of the validation of the detection signature and elimination of false detection.

  13. Cooling system for the IFMIF-EVEDA radiofrequency system

    International Nuclear Information System (INIS)

    Perez Pichel, G. D.

    2012-01-01

    The IFMIF-EVEDA project consists on an accelerator prototype that will be installed at Rokkasho (Japan). Through CIEMAT, that is responsible of the development of many systems and components. Empresarios Agrupados get the responsibility of the detailed design of the cooling system for the radiofrequency system (RF system) that must feed the accelerator. the RF water cooling systems is the water primary circuit that provides the required water flow (with a certain temperature, pressure and water quality) and also dissipates the necessary thermal power of all the radiofrequency system equipment. (Author) 4 refs.

  14. Radiofrequency Neurotomy

    Science.gov (United States)

    ... your specific symptoms. What you can expect Before radiofrequency neurotomy Let your doctor know if you take ... tobacco products the day of your procedure. During radiofrequency neurotomy Radiofrequency neurotomy is an outpatient procedure, so ...

  15. Radiofrequency ablation guided by contrast-enhanced ultrasound for hepatic malignancies: Preliminary results

    International Nuclear Information System (INIS)

    Dong, Y.; Wang, W.-P.; Gan, Y.-H.; Huang, B.-J.; Ding, H.

    2014-01-01

    Aim: To evaluate whether contrast-enhanced ultrasound (CEUS)-guided radiofrequency ablation (RFA) can be performed effectively in small hepatic malignancies that are invisible or poorly visualized at traditional grey-scale ultrasonography (US). Materials and methods: The institutional ethics committee approved the study, and all patients provided written informed consent before their enrolment. The study focused on 55 patients (43 men, 12 women, age 57.4 ± 10.9 years) with 60 hepatic lesions from May 2010 to March 2011. All lesions were treated with multipolar radiofrequency ablation (RFA). During the RFA procedure, with the injection of ultrasound contrast agent (sulphur hexafluoride; SonoVue, Bracco Imaging Spa, Milan, Italy), RFA was conducted under CEUS guidance when the optimal depiction of a lesion was obtained. Artificial pleural effusions were used in those cases obstructed by the lungs. Twenty-four hours after RFA, contrast-enhanced MRI was used as the reference standard to evaluate the primary effectiveness rate and complete tumour necrosis. The follow-up time was 12–24 months (median 15 months). Results: Among 60 hepatic malignancies, CEUS detected 57 lesions (95%), which was higher than that at US (26.6%). Artificial pleural effusions were performed in three cases, resulting in the detection of three additional lesions. The insertion of RFA electrodes was monitored by CEUS in all lesions. Immediately after RFA, complete tumour necrosis were achieved in all 60 lesions as apparent at MRI, for a primary effectiveness rate of 100%. Conclusion: CEUS-guided RFA is a promising technique for targeting and improving the efficiency of treatment of hepatic malignancies. - Highlights: • CEUS guided RFA improved the detectability of hepatic malignancies indistinctive on gray-scale ultrasound. • Pre-operation CEUS helped localization of indistinctive hepatic malignancies. • CEUS guided RFA of hepatic malignancies achieved a more complete ablation

  16. Electrode design for soil decontamination with Radio-Frequency heating

    Energy Technology Data Exchange (ETDEWEB)

    Roland, U.; Holzer, F.; Kraus, M.; Trommler, U.; Kopinke, F.D. [Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Leipzig (Germany)

    2011-10-15

    Radio-frequency heating to enhance soil decontamination requires adjusted solutions for the electrode design depending on scale and remediation technique. Parallel plate electrodes provide widely homogeneous field and temperature distributions and are, therefore, most suitable for supporting biodegradation processes. For thermally enhanced soil vapor extraction, certain temperature gradients can be accepted and, therefore, the less-demanding geometry of rod-shaped electrodes is usually applied. For electrode lengths of some meters, a design with an air gap has to be used in order to focus heating to the desired depth. Perforated rod electrodes may be simultaneously employed as extraction wells. Placing an oxidation catalyst in situ within the electrodes is an option for handling of highly loaded air flows. Coaxial antenna may be utilized to selectively heat soil compartments far from the surface of the soil. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Radiofrequency-heated enhanced confinement modes in the Alcator C-Mod tokamak

    International Nuclear Information System (INIS)

    Takase, Y.; Boivin, R.L.; Bombarda, F.; Bonoli, P.T.; Christensen, C.; Fiore, C.; Garnier, D.; Goetz, J.A.; Golovato, S.N.; Granetz, R.; Greenwald, M.; Horne, S.F.; Hubbard, A.; Hutchinson, I.H.; Irby, J.; LaBombard, B.; Lipschultz, B.; Marmar, E.; May, M.; Mazurenko, A.; McCracken, G.; OShea, P.; Porkolab, M.; Reardon, J.; Rice, J.; Rost, C.; Schachter, J.; Snipes, J.A.; Stek, P.; Terry, J.; Watterson, R.; Welch, B.; Wolfe, S.

    1997-01-01

    Enhanced confinement modes up to a toroidal field of B T =8T have been studied with up to 3.5 MW of radiofrequency (rf) heating power in the ion cyclotron range of frequencies (ICRF) at 80 MHz. H-mode is observed when the edge temperature exceeds a threshold value. The high confinement mode (H-mode) with higher confinement enhancement factors (H) and longer duration became possible after boronization by reducing the radiated power from the main plasma. A quasi-steady state with high confinement (H=2.0), high normalized beta (β N =1.5), low radiated power fraction (P rad main /P loss =0.3), and low effective charge (Z eff =1.5) has been obtained in Enhanced D α H-mode. This type of H-mode has enhanced levels of continuous D α emission and very little or no edge localized mode (ELM) activity, and reduced core particle confinement time relative to ELM-free H-mode. The pellet enhanced performance (PEP) mode is obtained by combining core fueling with pellet injection and core heating. A highly peaked pressure profile with a central value of 8 atmospheres was observed. The steep pressure gradient drives off-axis bootstrap current, resulting in a shear reversed safety factor (q) profile. Suppression of sawteeth appears to be important in maintaining the highly peaked pressure profile. Lithium pellets were found to be more effective than deuterium pellets in raising q 0 . copyright 1997 American Institute of Physics

  18. Radiofrequency thermal ablation of a metastatic lung nodule

    Energy Technology Data Exchange (ETDEWEB)

    Highland, Adrian M. [Department of Clinical Radiology, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ (United Kingdom); Mack, Paul [Diana Princess of Wales Hospital, Scartho Road, Grimsby, DN33 2BA (United Kingdom); Breen, David J. [Department of Radiology, Southampton University Hospitals, Tremona Road, Southampton, SO16 6YD (United Kingdom)

    2002-07-01

    Pulmonary metastases are a common finding in patients with colonic adenocarcinoma. We report the treatment of a metastatic lung nodule with radiofrequency (RF) ablation under CT guidance. This case illustrates the use of RF ablation in a patient in whom surgical resection was no longer possible and where chemotherapy was unlikely to produce benefit. This technique may offer a viable method of cytoreduction when other treatments have not succeeded. (orig.)

  19. Radiofrequency thermal ablation of a metastatic lung nodule

    International Nuclear Information System (INIS)

    Highland, Adrian M.; Mack, Paul; Breen, David J.

    2002-01-01

    Pulmonary metastases are a common finding in patients with colonic adenocarcinoma. We report the treatment of a metastatic lung nodule with radiofrequency (RF) ablation under CT guidance. This case illustrates the use of RF ablation in a patient in whom surgical resection was no longer possible and where chemotherapy was unlikely to produce benefit. This technique may offer a viable method of cytoreduction when other treatments have not succeeded. (orig.)

  20. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip.

    Science.gov (United States)

    Wang, Jian; Shen, Hao; Fan, Li; Wu, Rui; Niu, Ben; Varghese, Leo T; Xuan, Yi; Leaird, Daniel E; Wang, Xi; Gan, Fuwan; Weiner, Andrew M; Qi, Minghao

    2015-01-12

    Photonic methods of radio-frequency waveform generation and processing can provide performance advantages and flexibility over electronic methods due to the ultrawide bandwidth offered by the optical carriers. However, bulk optics implementations suffer from the lack of integration and slow reconfiguration speed. Here we propose an architecture of integrated photonic radio-frequency generation and processing and implement it on a silicon chip fabricated in a semiconductor manufacturing foundry. Our device can generate programmable radio-frequency bursts or continuous waveforms with only the light source, electrical drives/controls and detectors being off-chip. It modulates an individual pulse in a radio-frequency burst within 4 ns, achieving a reconfiguration speed three orders of magnitude faster than thermal tuning. The on-chip optical delay elements offer an integrated approach to accurately manipulating individual radio-frequency waveform features without constraints set by the speed and timing jitter of electronics, and should find applications ranging from high-speed wireless to defence electronics.

  1. Salinity-induced stratification and the onset of hypoxia during the Holocene Thermal Maximum and the Medieval Climate Anomaly

    Science.gov (United States)

    Papadomanolaki, Nina; Dijkstra, Nikki; van Helmond, Niels; Sangiorgi, Francesca; Hagens, Mathilde; Kotthoff, Ulrich; Slomp, Caroline

    2016-04-01

    During the past ~8000 years the Baltic Sea has experienced three distinct intervals of hypoxia, of which the last one is still ongoing. These intervals are characterized by enhanced sedimentary organic matter burial and enrichment of redox-sensitive metals, such as molybdenum and iron. The first two of these intervals occurred during the Holocene Thermal Maximum (HTM) and the Medieval Climate Anomaly (MCA), two phases with high temperatures and changed precipitation patterns. Studies focussing on the Holocene sedimentary record of the Baltic Sea aim at clarifying the causes of the initiation, evolution and termination of these hypoxic intervals, as well as their consequences. This information could help to potentially aid in finding solutions for the mitigation of present-day hypoxia in the Baltic Sea. The factors contributing to hypoxia development during the HTM and MCA are still debated. Here we present data from a core retrieved during Integrated Ocean Drilling Program (IODP) Expedition 347 in the Landsort Deep basin, the deepest basin of the Baltic Sea at 463m water depth. Sediments were analysed at a high resolution using inorganic geochemical and (mainly marine) palynological proxies. Dinoflagellate cyst (dinocyst) assemblages and total elemental compositions provide clues on the role of salinity in enhancing stratification, ultimately causing hypoxia. During the onset of the HTM changes in salinity, as indicated by the palynology, closely follow changes in sedimentary organic carbon burial and trace metal concentrations. This suggests that stratification was an important cause of hypoxia during the HTM. In contrast, the palynology suggests that reduced stratification did not contribute to re-oxygenation during the termination of the HTM. We did not observe major changes in the palynology throughout the hypoxic interval of the MCA. Our results thus suggest that changes in salinity did not cause the onset and termination of hypoxia during the MCA.

  2. Probing the fundamental limit of niobium in high radiofrequency fields by dual mode excitation in superconducting radiofrequency cavities

    International Nuclear Information System (INIS)

    Eremeev, Grigory; Geng, Rongli; Palczewski, Ari

    2011-01-01

    We have studied thermal breakdown in several multicell superconducting radiofrequency cavity by simultaneous excitation of two TM 010 passband modes. Unlike measurements done in the past, which indicated a clear thermal nature of the breakdown, our measurements present a more complex picture with interplay of both thermal and magnetic effects. JLab LG-1 that we studied was limited at 40.5 MV/m, corresponding to B peak = 173 mT, in 89 mode. Dual mode measurements on this quench indicate that this quench is not purely magnetic, and so we conclude that this field is not the fundamental limit in SRF cavities

  3. Radiofrequency radiation

    International Nuclear Information System (INIS)

    Elder, J.A.; Czerski, P.A.; Stuchly, M.A.; Mild, K.H.; Sheppard, A.R.

    1989-01-01

    High-level radiofrequency radiation is a source of thermal energy that carries all of the known implications of heating for biological systems, including burns, temporary and permanent changes in reproduction, cataracts, and death. In general, no changes in chromosomes, DNA or the reproductive potential of animals exposed to RF radiation have been reported in the absence of significant rises in temperature, though there are limited data on DNA and chromosomal changes at non-thermal levels. Human data are currently limited and do not provide adequate information about the relationship between prolonged low-level RF radiation exposure and increased mortality or morbidity, including cancer incidence. In epidemiological studies and clinical reports of RF effects in man, the problems of quantification are numerous and include uncertainties about ''dose'', health effects, latent periods, dose-response relationships, and interactions with other physical or chemical agents. 228 refs, 6 figs, 2 tabs

  4. Radiofrequency ablation with epinephrine injection: in vivo study in normal pig livers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Jung; Lee, Dong Hoo; Lim, Joo Won; Ko, Young Tae; Kim, Youn Wha; Choi, Bong Keun [Kyung Hee University Medical Center, Seoul (Korea, Republic of)

    2007-07-15

    We wanted to evaluate whether epinephrine injection prior to radiofrequency (RF) ablation can increase the extent of thermally mediated coagulation in vivo normal pig liver tissue. Eighteen RF ablation zones were created in six pigs using a 17-gauge internally cooled electrode under ultrasound guidance. Three RF ablation zones were created in each pig under three conditions: RF ablation alone, RF ablation after the injection of 3 mL of normal saline, and RF ablation after the injection of 3 mL of epinephrine (1:10,000 solution). After the RF ablation, we measured the short and long diameters of the white zones in the gross specimens. Three of the RF ablations were technically unsuccessful; therefore, measurement of white zone was finally done in 15 RF ablation zones. The mean short and long diameters of the white zone of the RF ablation after epinephrine injection (17.2 mm {+-} 1.8 and 20.8 mm {+-} 3.7, respectively) were larger than those of RF ablation only (10 mm {+-} 1.2 and 12.2 mm {+-} 1.1, respectively) and RF ablation after normal saline injection (12.8 mm {+-} 1.5 and 15.6 mm {+-} 2.5, respectively) ({rho} < .05). RF ablation with epinephrine injection can increase the diameter of the RF ablation zone in normal pig liver tissue.

  5. Synthesis of Ni-Zn ferrite nanoparticles in radiofrequency thermal plasma reactor and their use for purification of histidine-tagged proteins

    International Nuclear Information System (INIS)

    Feczko, Tivadar; Muskotal, Adel; Gal, Lorand; Szepvoelgyi, Janos; Sebestyen, Anett; Vonderviszt, Ferenc

    2008-01-01

    Superparamagnetic Ni-Zn ferrite nanoparticles were synthesized in radiofrequency thermal plasma reactor from aqueous solutions of Ni- and Zn-nitrates. The nanoparticles were studied for protein purification performance in both quantitative and qualitative terms. For comparison, experiments were also performed by Ni-charged affinity chromatography. It was proved that the Ni-Zn ferrite nanoparticles effectively purified histidine-tagged proteins with a maximum protein binding capacity of about 7% (w/w). Gel electrophoresis demonstrated better purification characteristics for magnetic nanoparticles than for affinity chromatography.

  6. Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief

    International Nuclear Information System (INIS)

    Pérez, Juan J.; Pérez-Cajaraville, Juan J.; Muñoz, Víctor; Berjano, Enrique

    2014-01-01

    Purpose: Pulsed RF (PRF) is a nonablative technique for treating neuropathic pain. Bipolar PRF application is currently aimed at creating a “strip lesion” to connect the electrode tips; however, the electrical and thermal performance during bipolar PRF is currently unknown. The objective of this paper was to study the temperature and electric field distributions during bipolar PRF. Methods: The authors developed computer models to study temperature and electric field distributions during bipolar PRF and to assess the possible ablative thermal effect caused by the accumulated temperature spikes, along with any possible electroporation effects caused by the electrical field. The authors also modeled the bipolar ablative mode, known as bipolar Continuous Radiofrequency (CRF), in order to compare both techniques. Results: There were important differences between CRF and PRF in terms of electrical and thermal performance. In bipolar CRF: (1) the initial temperature of the tissue impacts on temperature progress and hence on the thermal lesion dimension; and (2) at 37 °C, 6-min of bipolar CRF creates a strip thermal lesion between the electrodes when these are separated by a distance of up to 20 mm. In bipolar PRF: (1) an interelectrode distance shorter than 5 mm produces thermal damage (i.e., ablative effect) in the intervening tissue after 6 min of bipolar RF; and (2) the possible electroporation effect (electric fields higher than 150 kV m −1 ) would be exclusively circumscribed to a very small zone of tissue around the electrode tip. Conclusions: The results suggest that (1) the clinical parameters considered to be suitable for bipolar CRF should not necessarily be considered valid for bipolar PRF, and vice versa; and (2) the ablative effect of the CRF mode is mainly due to its much greater level of delivered energy than is the case in PRF, and therefore at same applied energy levels, CRF, and PRF are expected to result in same outcomes in terms of thermal

  7. Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Juan J. [Instituto de Investigación Interuniversitario en Bioingeniería y Tecnología Orientada al Ser Humano, Universitat Politècnica de València, Valencia 46022 (Spain); Pérez-Cajaraville, Juan J. [Pain Unit and Department of Anesthesia and Critical Care, Clínica Universidad de Navarra, University of Navarra, Pamplona 31008 (Spain); Muñoz, Víctor [Neurotherm Spain, Barcelona 08303 (Spain); Berjano, Enrique, E-mail: eberjano@eln.upv.es [Biomedical Synergy, Electronic Engineering Department, Universitat Politècnica de València 46022 (Spain)

    2014-07-15

    Purpose: Pulsed RF (PRF) is a nonablative technique for treating neuropathic pain. Bipolar PRF application is currently aimed at creating a “strip lesion” to connect the electrode tips; however, the electrical and thermal performance during bipolar PRF is currently unknown. The objective of this paper was to study the temperature and electric field distributions during bipolar PRF. Methods: The authors developed computer models to study temperature and electric field distributions during bipolar PRF and to assess the possible ablative thermal effect caused by the accumulated temperature spikes, along with any possible electroporation effects caused by the electrical field. The authors also modeled the bipolar ablative mode, known as bipolar Continuous Radiofrequency (CRF), in order to compare both techniques. Results: There were important differences between CRF and PRF in terms of electrical and thermal performance. In bipolar CRF: (1) the initial temperature of the tissue impacts on temperature progress and hence on the thermal lesion dimension; and (2) at 37 °C, 6-min of bipolar CRF creates a strip thermal lesion between the electrodes when these are separated by a distance of up to 20 mm. In bipolar PRF: (1) an interelectrode distance shorter than 5 mm produces thermal damage (i.e., ablative effect) in the intervening tissue after 6 min of bipolar RF; and (2) the possible electroporation effect (electric fields higher than 150 kV m{sup −1}) would be exclusively circumscribed to a very small zone of tissue around the electrode tip. Conclusions: The results suggest that (1) the clinical parameters considered to be suitable for bipolar CRF should not necessarily be considered valid for bipolar PRF, and vice versa; and (2) the ablative effect of the CRF mode is mainly due to its much greater level of delivered energy than is the case in PRF, and therefore at same applied energy levels, CRF, and PRF are expected to result in same outcomes in terms of

  8. Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief.

    Science.gov (United States)

    Pérez, Juan J; Pérez-Cajaraville, Juan J; Muñoz, Víctor; Berjano, Enrique

    2014-07-01

    Pulsed RF (PRF) is a nonablative technique for treating neuropathic pain. Bipolar PRF application is currently aimed at creating a "strip lesion" to connect the electrode tips; however, the electrical and thermal performance during bipolar PRF is currently unknown. The objective of this paper was to study the temperature and electric field distributions during bipolar PRF. The authors developed computer models to study temperature and electric field distributions during bipolar PRF and to assess the possible ablative thermal effect caused by the accumulated temperature spikes, along with any possible electroporation effects caused by the electrical field. The authors also modeled the bipolar ablative mode, known as bipolar Continuous Radiofrequency (CRF), in order to compare both techniques. There were important differences between CRF and PRF in terms of electrical and thermal performance. In bipolar CRF: (1) the initial temperature of the tissue impacts on temperature progress and hence on the thermal lesion dimension; and (2) at 37 °C, 6-min of bipolar CRF creates a strip thermal lesion between the electrodes when these are separated by a distance of up to 20 mm. In bipolar PRF: (1) an interelectrode distance shorter than 5 mm produces thermal damage (i.e., ablative effect) in the intervening tissue after 6 min of bipolar RF; and (2) the possible electroporation effect (electric fields higher than 150 kV m(-1)) would be exclusively circumscribed to a very small zone of tissue around the electrode tip. The results suggest that (1) the clinical parameters considered to be suitable for bipolar CRF should not necessarily be considered valid for bipolar PRF, and vice versa; and (2) the ablative effect of the CRF mode is mainly due to its much greater level of delivered energy than is the case in PRF, and therefore at same applied energy levels, CRF, and PRF are expected to result in same outcomes in terms of thermal damage zone dimension.

  9. Conserved effects of salinity acclimation on thermal tolerance and hsp70 expression in divergent populations of threespine stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    Metzger, David C H; Healy, Timothy M; Schulte, Patricia M

    2016-10-01

    In natural environments, organisms must cope with complex combinations of abiotic stressors. Here, we use threespine stickleback (Gasterosteus aculeatus) to examine how changes in salinity affect tolerance of high temperatures. Threespine stickleback inhabit a range of environments that vary in both salinity and thermal stability making this species an excellent system for investigating interacting stressors. We examined the effects of environmental salinity on maximum thermal tolerance (CTMax) and 70 kDa heat shock protein (hsp70) gene expression using divergent stickleback ecotypes from marine and freshwater habitats. In both ecotypes, the CTMax of fish acclimated to 20 ppt was significantly higher compared to fish acclimated to 2 ppt. The effect of salinity acclimation on the expression of hsp70-1 and hsp70-2 was similar in both the marine and freshwater stickleback ecotype. There were differences in the expression profiles of hsp70-1 and hsp70-2 during heat shock, with hsp70-2 being induced earlier and to a higher level compared to hsp70-1. These data suggest that the two hsp70 isoforms may have functionally different roles in the heat shock response. Lastly, acute salinity challenge coupled with heat shock revealed that the osmoregulatory demands experienced during the heat shock response have a larger effect on the hsp70 expression profile than does the acclimation salinity.

  10. The use of salinity contrast for density difference compensation to improve the thermal recovery efficiency in high-temperature aquifer thermal energy storage systems

    NARCIS (Netherlands)

    van Lopik, J.H.; Hartog, N.; Zaadnoordijk, Willem Jan

    The efficiency of heat recovery in high-temperature (>60 °C) aquifer thermal energy storage (HT-ATES) systems is limited due to the buoyancy of the injected hot water. This study investigates the potential to improve the efficiency through compensation of the density difference by increased salinity

  11. Safety of lumbar spine radiofrequency procedures in the presence of posterior pedicle screws: technical report of a cadaver study.

    Science.gov (United States)

    Gazelka, Halena M; Welch, Tasha L; Nassr, Ahmad; Lamer, Tim J

    2015-05-01

    To determine whether the thermal energy associated with lumbar spine radiofrequency neurotomy (RFN) performed near titanium and stainless steel pedicle screws is conducted to the pedicle screws or adjacent tissues, or both, thus introducing potential for thermal damage to those tissues. Cadaver study. Cadaver laboratory equipped with fluoroscopy, surgical spine implements, and radiofrequency generator. No live human subject; a fresh frozen (and thawed) cadaver torso was used for the study. Titanium and stainless steel pedicle screws were placed in the lumbar spine of a fresh frozen cadaver torso with real-time fluoroscopic guidance. Conventional RFN cannula placement was performed at the level of pedicle screws and a control (nonsurgically altered) lumbar level. Neurotomy was performed with conventional radiofrequency lesioning parameters. Temperatures were recorded at multiple sites through thermistor probes. Direct contact of the radiofrequency cannula with the pedicle screws during conventional RFN produced a substantial increase in temperature in the surrounding soft tissues. A small increase in temperature occurred at the same sites at the control level. Titanium and stainless steel pedicle screws are capable of sustaining large increases in temperature when the radiofrequency probe comes in contact with the screw. These results are suggestive that pedicle screws could serve as a possible source of tissue heating and thermal injury during RFN. Wiley Periodicals, Inc.

  12. Use of Radiofrequency Ablation in Benign Thyroid Nodules: A Literature Review and Updates

    OpenAIRE

    Wong, KP; Lang, HHB

    2013-01-01

    Successful thermal ablation using radiofrequency has been reported in various tumors including liver or kidney tumors. Nonsurgical minimally invasive ablative therapy such as radiofrequency ablation (RFA) has been reported to be a safe and efficient treatment option in managing symptomatic cold thyroid nodules or hyperfunctioning thyroid nodules. Pressure and cosmetic symptoms have been shown to be significantly improved both in the short and long terms after RFA. For hyperfunctioning thyroid...

  13. Influence of transcatheter hepatic artery embolization using iodized oil on radiofrequency ablation of hepatic neoplasms

    International Nuclear Information System (INIS)

    Du Xilin; Ma Qingjiu; Wang Yiqing; Wang Zhimin; Zhang Hongxin

    2004-01-01

    Objective: To observe the effect of iodized oil on radiofrequency thermal ablation (RFA) of hepatic neoplasms by using a cluster array of ten separate electrodes. Methods: The patients were divided into 2 groups, group A with transcatheter hepatic artery embolization, group B without transcatheter hepatic artery embolization. All patients were undergone radiofrequency ablation of hepatic neoplasms. Results: The time of RFA for group A was (9 ± 2.1) minutes, showing the diameter of necrosis of (5.3 ± 1.4) cm. The time of RFA for group B was (16 ± 4. 6) minutes demonstrating the diameter of necrosis of (3.5 ± 1.8) cm (P<0.01). Conclusions: These findings suggest that radiofrequency thermal ablation of hepatic neoplasms with transcatheter hepatic artery embolization using iodized oil might improve the safety and synergic effect

  14. Visualizing radiofrequency-skin interaction using multiphoton microscopy in vivo.

    Science.gov (United States)

    Tsai, Tsung-Hua; Lin, Sung-Jan; Lee, Woan-Ruoh; Wang, Chun-Chin; Hsu, Chih-Ting; Chu, Thomas; Dong, Chen-Yuan

    2012-02-01

    Redundant skin laxity is a major feature of aging. Recently, radiofrequency has been introduced for nonablative tissue tightening by volumetric heating of the deep dermis. Despite the wide range of application based on this therapy, the effect of this technique on tissue and the subsequent tissue remodeling have not been investigated in detail. Our objective is to evaluate the potential of non-linear optics, including multiphoton autofluorescence and second harmonic generation (SHG) microscopy, as a non-invasive imaging modality for the real-time study of radiofrequency-tissue interaction. Electro-optical synergy device (ELOS) was used as the radiofrequency source in this study. The back skin of nude mouse was irradiated with radiofrequency at different passes. We evaluated the effect on skin immediately and 1 month after treatment with multiphoton microscopy. Corresponding histology was performed for comparison. We found that SHG is negatively correlated to radiofrequency passes, which means that collagen structural disruption happens immediately after thermal damage. After 1 month of collagen remodeling, SHG signals increased above baseline, indicating that collagen regeneration has occurred. Our findings may explain mechanism of nonablative skin tightening and were supported by histological examinations. Our work showed that monitoring the dermal heating status of RF and following up the detailed process of tissue reaction can be imaged and quantified with multiphoton microscopy non-invasively in vivo. Copyright © 2011. Published by Elsevier Ireland Ltd.

  15. Radiofrequency for the treatment of skin laxity: mith or truth*

    Science.gov (United States)

    de Araújo, Angélica Rodrigues; Soares, Viviane Pinheiro Campos; da Silva, Fernanda Souza; Moreira, Tatiane da Silva

    2015-01-01

    The nonablative radiofrequency is a procedure commonly used for the treatment of skin laxity from an increase in tissue temperature. The goal is to induce thermal damage to thus stimulate neocollagenesis in deep layers of the skin and subcutaneous tissue. However, many of these devices haven't been tested and their parameters are still not accepted by the scientific community. Because of this, it is necessary to review the literature regarding the physiological effects and parameters for application of radiofrequency and methodological quality and level of evidence of studies. A literature search was performed in MEDLINE, PEDro, SciELO, PubMed, LILACS and CAPES and experimental studies in humans, which used radiofrequency devices as treatment for facial or body laxity, were selected. The results showed that the main physiological effect is to stimulate collagen synthesis. There was no homogeneity between studies in relation to most of the parameters used and the methodological quality of studies and level of evidence for using radiofrequency are low. This fact complicates the determination of effective parameters for clinical use of this device in the treatment of skin laxity. The analyzed studies suggest that radiofrequency is effective, however the physiological mechanisms and the required parameters are not clear in the literature. PMID:26560216

  16. Thermal Ablation for Benign Thyroid Nodules: Radiofrequency and Laser

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jung Hwan; Lee, Jeong Hyun [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Valcavi, Roberto [Endocrinology Division and Thyroid Disease Center, Arcispedale Santa Maria Nuova, Reggio Emilia (Italy); Pacella, Claudio M. [Diagnostic Imaging and Interventional Radiology Department, Ospedale Regina Apostolorum, Albano Laziale-Rome (IT); Rhim, Hyun Chul [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Na, Dong Kyu [Human Medical Imaging and Intervention Center, Seoul (Korea, Republic of)

    2011-10-15

    Although ethanol ablation has been successfully used to treat cystic thyroid nodules, this procedure is less effective when the thyroid nodules are solid. Radiofrequency (RF) ablation, a newer procedure used to treat malignant liver tumors, has been valuable in the treatment of benign thyroid nodules regardless of the extent of the solid component. This article reviews the basic physics, techniques, applications, results, and complications of thyroid RF ablation, in comparison to laser ablation.

  17. One-year results of the use of endovenous radiofrequency ablation utilising an optimised radiofrequency-induced thermotherapy protocol for the treatment of truncal superficial venous reflux.

    Science.gov (United States)

    Badham, George E; Dos Santos, Scott J; Lloyd, Lucinda Ba; Holdstock, Judy M; Whiteley, Mark S

    2018-06-01

    Background In previous in vitro and ex vivo studies, we have shown increased thermal spread can be achieved with radiofrequency-induced thermotherapy when using a low power and slower, discontinuous pullback. We aimed to determine the clinical success rate of radiofrequency-induced thermotherapy using this optimised protocol for the treatment of superficial venous reflux in truncal veins. Methods Sixty-three patients were treated with radiofrequency-induced thermotherapy using the optimised protocol and were followed up after one year (mean 16.3 months). Thirty-five patients returned for audit, giving a response rate of 56%. Duplex ultrasonography was employed to check for truncal reflux and compared to initial scans. Results In the 35 patients studied, there were 48 legs, with 64 truncal veins treated by radiofrequency-induced thermotherapy (34 great saphenous, 15 small saphenous and 15 anterior accessory saphenous veins). One year post-treatment, complete closure of all previously refluxing truncal veins was demonstrated on ultrasound, giving a success rate of 100%. Conclusions Using a previously reported optimised, low power/slow pullback radiofrequency-induced thermotherapy protocol, we have shown it is possible to achieve a 100% ablation at one year. This compares favourably with results reported at one year post-procedure using the high power/fast pullback protocols that are currently recommended for this device.

  18. Assessment of ablative margin after radiofrequency ablation for hepatocellular carcinoma; comparison between magnetic resonance imaging with ferucarbotran and enhanced CT with iodized oil deposition

    International Nuclear Information System (INIS)

    Koda, Masahiko; Tokunaga, Shiho; Fujise, Yuki; Kato, Jun; Matono, Tomomitsu; Sugihara, Takaaki; Nagahara, Takakazu; Ueki, Masaru; Murawaki, Yoshikazu; Kakite, Suguru; Yamashita, Eijiro

    2012-01-01

    Background and purpose: Our aim was to investigate whether magnetic resonance imaging (MRI) with ferucarbotran administered prior to radiofrequency ablation could accurately assess ablative margin when compared with enhanced computed tomography (CT) with iodized oil marking. Materials and methods: We enrolled 27 patients with 32 hepatocellular carcinomas in which iodized oil deposits were visible throughout the nodule after transcatheter arterial chemoembolization. For these nodules, radiofrequency ablation was performed after ferucarbotran administration. We then performed T2-weighted MRI after 1 week and enhanced CT after 1 month. T2-weighted MRI demonstrated the ablative margin as a low-intensity rim. We classified the margin into three grades; margin (+): high-intensity area with a continuous low-intensity rim; margin zero: high-intensity area with a discontinuous low-intensity rim; and margin (−): high-intensity area extending beyond the low-intensity rim. Results: In 28 (86%) of 32 nodules, there was agreement between MRI and CT. The overall agreement between for the two modalities in the assessment of ablative margin was good (κ = 0.759, 95% confidence interval: 0.480–1.000, p < 0.001). In four nodules, ablative margins on MRI were underestimated by one grade compared with CT. Conclusion: MRI using ferucarbotran is less invasive and allows earlier assessment than CT. The MRI technique performed similarly to enhanced CT with iodized oil marking in evaluating the ablative margin after radiofrequency ablation.

  19. Bloodless laparoscopic liver resection using radiofrequency thermal energy in the porcine model.

    Science.gov (United States)

    Tsalis, Konstantinos; Blouhos, Konstantinos; Vasiliadis, Konstantinos; Kalfadis, Stavros; Tsachalis, Theodoros; Savvas, Ioannis; Betsis, Dimitrios

    2007-02-01

    The aim of this study was to assess the feasibility and safety of laparoscopic hepatectomy using radiofrequency (RF) thermal energy in a porcine model. Fifteen female domestic pigs weighing 29.3 kg (range 25 to 35 kg) were used. Five transversal abdominal incisions (3 of 1 cm and 2 of 0.5 cm) were made for the introduction of the video camera and the other laparoscopic instruments. With the porta hepatis not clamped, the liver was inspected and the preferred lobe each time was divided using RF (cool-tip electrode 3 cm) with minimum bleeding. Serum liver enzymes and blood counts were drawn pre and postoperatively. All animals were killed after 1 week. The mean time of the procedures was 119 minutes (range 100 to 155 min). There were no intraoperative complications. Mean blood loss was 27 mL (range 5 to 60 mL), and the mass of the resected specimen was 132.5 g (range 65 to 305 g). There were no postoperative complications or deaths. Bloodless laparoscopic hepatectomy was technically feasible and safe in the porcine model using cool-tip electrode and 500-kHz RF Generator.

  20. Experimental and clinical studies with radiofrequency-induced thermal endometrial ablation for functional menorrhagia

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, J.H.; Lewis, B.V.; Prior, M.V.; Roberts, T. (Watford General Hospital, Herts (England))

    1990-11-01

    A method of ablating the endometrium has been introduced into clinical practice that uses radiofrequency electromagnetic energy to heat the endometrium, using a probe inserted through the cervix. Preliminary studies suggest that over 80% of patients treated will develop either amenorrhea or a significant reduction in flow. The advantages of radiofrequency endometrial ablation over laser ablation or resection are the avoidance of intravascular fluid absorption, simplicity (no special operative hysteroscopic skills are required), speed of operation, and reduced cost compared with the Nd:YAG laser. In this paper, we describe the experimental studies performed during development of this new technique.

  1. Comparison of wet radiofrequency ablation with dry radiofrequency ablation and radiofrequency ablation using hypertonic saline preinjection: ex vivo bovine liver

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Han, Joon Koo; Kim, Se Hyung; Lee, Jae Young; Park, Hee Sun; Hur, Hurn; Choi, Byung Ihn; Shin, Kyung Sook

    2004-01-01

    We wished to compare the in-vitro efficiency of wet radiofrequency (RF) ablation with the efficiency of dry RF ablation and RF ablation with preinjection of NaCl solutions using excised bovine liver. Radiofrequency was applied to excised bovine livers in a monopolar mode for 10 minutes using a 200 W generator and a perfused-cooled electrode with or without injection or slow infusion of NaCl solutions. After placing the perfused-cooled electrode in the explanted liver, 50 ablation zones were created with five different regimens: group A; standard dry RF ablation, group B; RF ablation with 11 mL of 5% NaCl solution preinjection, group C; RF ablation with infusion of 11 mL of 5% NaCl solution at a rate of 1 mL/min, group D; RFA with 6 mL of 36% NaCl solution preinjection, group E; RF ablation with infusion of 6 mL of 36% NaCl solution at a rate of 0.5 mL/min. In groups C and E, infusion of the NaCl solutions was started 1 min before RF ablation and then maintained during RF ablation (wet RF ablation). During RF ablation, we measured the tissue temperature at 15 mm from the electrode. The dimensions of the ablation zones and changes in impedance, current and liver temperature during RF ablation were then compared between the groups. With injection or infusion of NaCl solutions, the mean initial tissue impedance prior to RF ablation was significantly less in groups B, C, D, and E (43-75 Ω) than for group A (80 Ω) (ρ 3 in group A; 12.4 ± 3.8 cm 3 in group B; 80.9 ± 9.9 cm 3 in group C; 45.3 ± 11.3 cm 3 in group D and 81.6 ± 8.6 cm 3 in group E. The tissue temperature measured at 15 mm from the electrode was higher in groups C, D and E than other groups (ρ < 0.05): 53 ± 12 .deg. C in group A, 42 ± 2 .deg. C in group B, 93 ± 8 .deg. C in group C; 79 ± 12 .deg. C in group D and 83 ± 8 .deg.C in group E. Wet RF ablation with 5% or 36% NaCl solutions shows better efficiency in creating a large ablation zone than does dry RF ablation or RF ablation with

  2. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes

    Directory of Open Access Journals (Sweden)

    Sheikh Hasna Habib

    2016-01-01

    Full Text Available Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR containing 1-aminocyclopropane-1-carboxylate (ACC deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress.

  3. Does exposure to a radiofrequency electromagnetic field modify thermal preference in juvenile rats?

    Science.gov (United States)

    Pelletier, Amandine; Delanaud, Stéphane; de Seze, René; Bach, Véronique; Libert, Jean-Pierre; Loos, Nathalie

    2014-01-01

    Some studies have shown that people living near a mobile phone base station may report sleep disturbances and discomfort. Using a rat model, we have previously shown that chronic exposure to a low-intensity radiofrequency electromagnetic field (RF-EMF) was associated with paradoxical sleep (PS) fragmentation and greater vasomotor tone in the tail. Here, we sought to establish whether sleep disturbances might result from the disturbance of thermoregulatory processes by a RF-EMF. We recorded thermal preference and sleep stage distribution in 18 young male Wistar rats. Nine animals were exposed to a low-intensity RF-EMF (900 MHz, 1 V x m(-1)) for five weeks and nine served as non-exposed controls. Thermal preference was assessed in an experimental chamber comprising three interconnected compartments, in which the air temperatures (Ta) were set to 24°C, 28°C and 31°C. Sleep and tail skin temperature were also recorded. Our results indicated that relative to control group, exposure to RF-EMF at 31°C was associated with a significantly lower tail skin temperature (-1.6°C) which confirmed previous data. During the light period, the exposed group preferred to sleep at Ta = 31°C and the controls preferred Ta = 28°C. The mean sleep duration in exposed group was significantly greater (by 15.5%) than in control group (due in turn to a significantly greater amount of slow wave sleep (SWS, +14.6%). Similarly, frequency of SWS was greater in exposed group (by 4.9 episodes.h-1). The PS did not differ significantly between the two groups. During the dark period, there were no significant intergroup differences. We conclude that RF-EMF exposure induced a shift in thermal preference towards higher temperatures. The shift in preferred temperature might result from a cold thermal sensation. The change in sleep stage distribution may involve signals from thermoreceptors in the skin. Modulation of SWS may be a protective adaptation in response to RF-EMF exposure.

  4. Does exposure to a radiofrequency electromagnetic field modify thermal preference in juvenile rats?

    Directory of Open Access Journals (Sweden)

    Amandine Pelletier

    Full Text Available Some studies have shown that people living near a mobile phone base station may report sleep disturbances and discomfort. Using a rat model, we have previously shown that chronic exposure to a low-intensity radiofrequency electromagnetic field (RF-EMF was associated with paradoxical sleep (PS fragmentation and greater vasomotor tone in the tail. Here, we sought to establish whether sleep disturbances might result from the disturbance of thermoregulatory processes by a RF-EMF. We recorded thermal preference and sleep stage distribution in 18 young male Wistar rats. Nine animals were exposed to a low-intensity RF-EMF (900 MHz, 1 V x m(-1 for five weeks and nine served as non-exposed controls. Thermal preference was assessed in an experimental chamber comprising three interconnected compartments, in which the air temperatures (Ta were set to 24°C, 28°C and 31°C. Sleep and tail skin temperature were also recorded. Our results indicated that relative to control group, exposure to RF-EMF at 31°C was associated with a significantly lower tail skin temperature (-1.6°C which confirmed previous data. During the light period, the exposed group preferred to sleep at Ta = 31°C and the controls preferred Ta = 28°C. The mean sleep duration in exposed group was significantly greater (by 15.5% than in control group (due in turn to a significantly greater amount of slow wave sleep (SWS, +14.6%. Similarly, frequency of SWS was greater in exposed group (by 4.9 episodes.h-1. The PS did not differ significantly between the two groups. During the dark period, there were no significant intergroup differences. We conclude that RF-EMF exposure induced a shift in thermal preference towards higher temperatures. The shift in preferred temperature might result from a cold thermal sensation. The change in sleep stage distribution may involve signals from thermoreceptors in the skin. Modulation of SWS may be a protective adaptation in response to RF-EMF exposure.

  5. An experimental study on hepatic ablation using an expandable radio-frequency needle electrode

    International Nuclear Information System (INIS)

    Choi, Dong Il; Lim, Hyo Keun; Park, Jong Min; Kang, Bo Kyung; Woo, Ji Young; Jang, Hyun Jung; Kim, Seung Hoon; Lee, Won Jae; Park, Cheol Keun; Heo, Jin Seok

    1999-01-01

    The purpose of this study was to determine the factors influencing on the size of thermal lesions after ablation using an expendable radio-frequency needle electrode in porcine liver. Ablation procedures involved the use of a monopolar radio-frequency generator and 15-G needle electrodes with four and seven retractable hooks (RITA Medical System, Mountain View, Cal., U.S.A.). The ablation protocol in fresh porcine liver comprised of combinations of varying hook deployment, highest set temperature, and ablation time. Following ablation, the maximum diameter of all thermal lesions was measured on a longitudinal section of the specimen. Ten representive lesions were examined by an experienced pathologist. At 3-cm hook deployment of the needle electrode with four lateral hooks, the size of spherical thermal lesions increased substantially with increases in the highest set temperature and ablation time until 11 minutes. After 11 minutes lesion size remained similar, with a maximum diameter of 3.3 cm. At 2-cm hook deployment, sizes decreased to about 2/3 of those at 3 cm , and at 1-cm hook deployment lesions were oblong. At 3-cm hook deployment of a needle electrode with seven hooks, the size of thermal lesions increased with increasing ablation time until 14 minutes, and the maximum diameter was 4.1 cm. Microscopic examination showed a wide zone of degeneration and focal coagulation necrosis. The size of thermal lesions produced by the use of an expandable radio-frequency needle electrode were predictable, varying according to degree of hook deployment, highest set temperature, and ablation time

  6. Fiber-optic combined FPI/FBG sensors for monitoring of radiofrequency thermal ablation of liver tumors: ex vivo experiments.

    Science.gov (United States)

    Tosi, Daniele; Macchi, Edoardo Gino; Braschi, Giovanni; Cigada, Alfredo; Gallati, Mario; Rossi, Sandro; Poeggel, Sven; Leen, Gabriel; Lewis, Elfed

    2014-04-01

    We present a biocompatible, all-glass, 0.2 mm diameter, fiber-optic probe that combines an extrinsic Fabry-Perot interferometry and a proximal fiber Bragg grating sensor; the probe enables dual pressure and temperature measurement on an active 4 mm length, with 40 Pa and 0.2°C nominal accuracy. The sensing system has been applied to monitor online the radiofrequency thermal ablation of tumors in liver tissue. Preliminary experiments have been performed in a reference chamber with uniform heating; further experiments have been carried out on ex vivo porcine liver, which allowed the measurement of a steep temperature gradient and monitoring of the local pressure increase during the ablation procedure.

  7. Power generation enhancement in a salinity-gradient solar pond power plant using thermoelectric generator

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Saadat, Mohammad; Palideh, Vahid; Afzal, Sadegh

    2017-01-01

    Highlights: • Thermoelectric generator was used and simulated within a salinity-gradient solar pond power plant. • Results showed that the thermoelectric generator can be able to enhance the power plant efficiency. • Results showed that the presented models can be able to produce generation even in the cold months. • The optimum size of area of solar pond based on its effect on efficiency is 50,000 m 2 . - Abstract: Salinity-gradient solar pond (SGSP) has been a reliable supply of heat source for power generation when it has been integrated with low temperature thermodynamics cycles like organic Rankine cycle (ORC). Also, thermoelectric generator (TEG) plays a critical role in the production of electricity from renewable energy sources. This paper investigates the potential of thermoelectric generator as a power generation system using heat from SGSP. In this work, thermoelectric generator was used instead of condenser of ORC with the purpose of improving the performance of system. Two new models of SGSP have been presented as: (1) SGSP using TEG in condenser of ORC without heat exchanger and (2) SGSP using TEG in condenser of ORC with heat exchanger. These proposed systems was evaluated through computer simulations. The ambient conditions were collected from beach of Urmia lake in IRAN. Simulation results indicated that, for identical conditions, the model 1 has higher performance than other model 2. For models 1 and 2 in T LCZ = 90 °C, the overall thermal efficiency of the solar pond power plant, were obtained 0.21% and 0.2% more than ORC without TEG, respectively.

  8. The biological effects of quadripolar radiofrequency sequential application: a human experimental study.

    Science.gov (United States)

    Nicoletti, Giovanni; Cornaglia, Antonia Icaro; Faga, Angela; Scevola, Silvia

    2014-10-01

    An experimental study was conducted to assess the effectiveness and safety of an innovative quadripolar variable electrode configuration radiofrequency device with objective measurements in an ex vivo and in vivo human experimental model. Nonablative radiofrequency applications are well-established anti-ageing procedures for cosmetic skin tightening. The study was performed in two steps: ex vivo and in vivo assessments. In the ex vivo assessments the radiofrequency applications were performed on human full-thickness skin and subcutaneous tissue specimens harvested during surgery for body contouring. In the in vivo assessments the applications were performed on two volunteer patients scheduled for body contouring surgery at the end of the study. The assessment methods were: clinical examination and medical photography, temperature measurement with thermal imaging scan, and light microscopy histological examination. The ex vivo assessments allowed for identification of the effective safety range for human application. The in vivo assessments allowed for demonstration of the biological effects of sequential radiofrequency applications. After a course of radiofrequency applications, the collagen fibers underwent an immediate heat-induced rearrangement and were partially denaturated and progressively metabolized by the macrophages. An overall thickening and spatial rearrangement was appreciated both in the collagen and elastic fibers, the latter displaying a juvenile reticular pattern. A late onset in the macrophage activation after sequential radiofrequency applications was appreciated. Our data confirm the effectiveness of sequential radiofrequency applications in obtaining attenuation of the skin wrinkles by an overall skin tightening.

  9. Contrast-enhanced magnetic resonance angiography: first-pass arterial enhancement as a function of gadolinium-chelate concentration, and the saline chaser volume and injection rate.

    Science.gov (United States)

    Husarik, Daniela B; Bashir, Mustafa R; Weber, Paul W; Nichols, Eli B; Howle, Laurens E; Merkle, Elmar M; Nelson, Rendon C

    2012-02-01

    To evaluate the effect of the contrast medium (CM) concentration and the saline chaser volume and injection rate on first-pass aortic enhancement characteristics in contrast-enhanced magnetic resonance angiography using a physiologic flow phantom. Imaging was performed on a 3.0-T magnetic resonance system (MAGNETOM Trio, Siemens Healthcare Solutions, Inc, Erlangen, Germany) using a 2-dimensional fast low angle shot T1-weighted sequence (repetition time, 500 milliseconds; echo time, 1.23 milliseconds; flip angle, 8 degrees; 1 frame/s × 60 seconds). The following CM concentrations injected at 2 mL/s were used with 3 different contrast agents (gadolinium [Gd]-BOPTA, Gd-HP-DO3A, Gd-DTPA): 20 mL of undiluted CM (100%) and 80%, 40%, 20%, 10%, 5%, and 2.5% of the full amount, all diluted in saline to a volume of 20 mL to ensure equal bolus volume. The CM was followed by saline chasers of 20 to 60 mL injected at 2 mL/s and 6 mL/s. Aortic signal intensity (SI) was measured, and normalized SI versus time (SI/Tn) curves were generated. The maximal SI (SI(max)), bolus length, and areas under the SI/Tn curve were calculated. Decreasing the CM concentration from 100% to 40% resulted in a decrease of SI(max) to 86.1% (mean). Further decreasing the CM concentration to 2.5% decreased SI(max) to 5.1% (mean). Altering the saline chaser volume had no significant effect on SI(max). Increasing the saline chaser injection rate had little effect (mean increase, 2.2%) on SI(max) when using ≥40% of CM. There was a larger effect (mean increase, 19.6%) when ≤20% of CM were used. Bolus time length was significantly shorter (P < 0.001), and area under the SI/T(n) curve was significantly smaller (P < 0.01) for the CM protocols followed by a saline chaser injected at 6 mL/s compared with a saline chaser injected at 2 mL/s. With 40% of CM and a fast saline chaser, SImax close to that with undiluted CM can be achieved. An increased saline chaser injection rate has a more pronounced effect on

  10. Ultrasound-guided radiofrequency ablation of thyroid gland: a preliminary study in dogs

    International Nuclear Information System (INIS)

    Choi, Ji Won; Yoo, Seung Min; Kwak, Seo Hyun

    2005-01-01

    The purpose of this study was to evaluate the possibility of using radiofrequency ablation as the treatment modality for the benign or malignant thyroid nodules in humans. Therefore, we examined the results of using radiofrequency ablation on the thyroid glands in dogs, in respect of the extent of the ablated tissue and the complications. Five dogs (10 lobes of the thyroid glands) were included in this study. US-guided radiofrequency ablation was undertaken with a 10 mm, uncovered 17 gauge cool-tip needle. The power and duration was 20 wattage and 1 minute in five thyroid lobes (group 1) and 20 wattage and 2 minutes in another 5 thyroid lobes (group 2). The ultrasound scans and the pre-and post-enhancement CT scans were undertaken before and immediately after the procedures, and at 24 hours, 72 hours and 1 week later. The US and CT findings of the ablated tissue and complications were evaluated. Blood sampling was done at the pre-procedure time and 1 week later for evaluating the functional status of the thyroid gland. Laryngoscopy was done at the pre-procedure and post-procedure times, and at 24 hours, 72 hours and 1 week later for the evaluation of any recurrent laryngeal nerve palsy. The echo pattern of the ablated thyroid gland at immediately after the radiofrequency ablation appeared as poorly marginated and hyperechoic. On the US obtained 24 hours after radiofrequency ablation, the echo pattern of the ablated thyroid gland was hypoechoic. The maximum diameters after RFA were 9.4 ρ 0.5 mm in group I and 11.4 ρ 0.5 mm in group II. The pre-enhanced CT scan taken at immediately after the radiofrequency ablation showed ill defined hypodense areas in the ablated thyroid gland. Differentiation between the normal and abnormal portions of the thyroid gland was difficult on the contrast enhanced CT scan. Complications induced by radiofrequency ablation were one recurrent laryngeal nerve palsy, two perforations of esophagus and five thickenings of the esophageal wall

  11. Ultrasound-guided radiofrequency ablation of thyroid gland: a preliminary study in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji Won; Yoo, Seung Min [College of Medicine, Chungang University, Seoul, (Korea, Republic of); Kwak, Seo Hyun [Seoul Veterans Hospital, Seoul (Korea, Republic of)

    2005-07-15

    The purpose of this study was to evaluate the possibility of using radiofrequency ablation as the treatment modality for the benign or malignant thyroid nodules in humans. Therefore, we examined the results of using radiofrequency ablation on the thyroid glands in dogs, in respect of the extent of the ablated tissue and the complications. Five dogs (10 lobes of the thyroid glands) were included in this study. US-guided radiofrequency ablation was undertaken with a 10 mm, uncovered 17 gauge cool-tip needle. The power and duration was 20 wattage and 1 minute in five thyroid lobes (group 1) and 20 wattage and 2 minutes in another 5 thyroid lobes (group 2). The ultrasound scans and the pre-and post-enhancement CT scans were undertaken before and immediately after the procedures, and at 24 hours, 72 hours and 1 week later. The US and CT findings of the ablated tissue and complications were evaluated. Blood sampling was done at the pre-procedure time and 1 week later for evaluating the functional status of the thyroid gland. Laryngoscopy was done at the pre-procedure and post-procedure times, and at 24 hours, 72 hours and 1 week later for the evaluation of any recurrent laryngeal nerve palsy. The echo pattern of the ablated thyroid gland at immediately after the radiofrequency ablation appeared as poorly marginated and hyperechoic. On the US obtained 24 hours after radiofrequency ablation, the echo pattern of the ablated thyroid gland was hypoechoic. The maximum diameters after RFA were 9.4 {rho} 0.5 mm in group I and 11.4 {rho} 0.5 mm in group II. The pre-enhanced CT scan taken at immediately after the radiofrequency ablation showed ill defined hypodense areas in the ablated thyroid gland. Differentiation between the normal and abnormal portions of the thyroid gland was difficult on the contrast enhanced CT scan. Complications induced by radiofrequency ablation were one recurrent laryngeal nerve palsy, two perforations of esophagus and five thickenings of the esophageal

  12. A new apatinib microcrystal formulation enhances the effect of radiofrequency ablation treatment on hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Xie H

    2018-05-01

    Full Text Available Hui Xie,1,2 Shengtao Tian,2 Haipeng Yu,1 Xueling Yang,1 Jia Liu,3 Huaming Wang,2 Fan Feng,2 Zhi Guo1 1Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China; 2Department of Interventional Therapy, 302nd Hospital of People’s Liberation Army, Beijing, People’s Republic of China; 3Department of Blood Transfusion, 302nd Hospital of People’s Liberation Army, Beijing, People’s Republic of China Introduction: Radiofrequency ablation (RFA is the foremost treatment option for advanced hepatocellular carcinoma (HCC, however, rapid and aggressive recurrence of HCC often occurs after RFA due to epithelial–mesenchymal transition process. Although combination of RFA with sorafenib, a molecular targeted agent, could attenuate the recurrence of HCC, application of this molecular targeted agent poses a heavy medical burden and oral administration of sorafenib also brings severe side effects. Materials and methods: In this study, we prepared an apatinib microcrystal formulation (Apa-MS that sustainably releases apatinib, a novel molecular targeted agent, for advanced HCC treatment. We injected apatinib solution or Apa-MS into subcutaneous HCC tumors. Results: It was found that Apa-MS exhibited slow apatinib release in vivo and in turn inhibited the epithelial–mesenchymal transition of HCC cells for extended time. Moreover, in rodent HCC model, Apa-MS enhanced the antitumor effect of RFA treatment. Conclusion: Based on these results, we conclude that Apa-MS, a slow releasing system of apatinib, allows apatinib to remain effective in tumor tissues for a long time and could enhance the antitumor effect of RFA on HCC. Keywords: apatinib microcrystals, radiofrequency ablation, sustained releasing behavior, long-acting efficiency

  13. Enhancement of Salinity Tolerance during Rice Seed Germination by Presoaking with Hemoglobin

    Directory of Open Access Journals (Sweden)

    Sheng Xu

    2011-04-01

    Full Text Available Salinity stress is an important environmental constraint limiting the productivity of many crops worldwide. In this report, experiments were conducted to investigate the effects of seed presoaking by bovine hemoglobin, an inducer of heme oxygenase-1 (HO-1, on salinity tolerance in rice (Oryza sativa plants. The results showed that different concentrations of the hemoglobin (0.01, 0.05, 0.2, 1.0, and 5.0 g/L differentially alleviated the inhibition of rice seed germination and thereafter seedling shoot growth caused by 100 mM NaCl stress, and the responses of 1.0 g/L hemoglobin was the most obvious. Further analyses showed that application of hemoglobin not only increased the HO-1 gene expression, but also differentially induced catalase (CAT, ascorbate peroxidase (APX, and superoxide dismutase (SOD activities or transcripts, thus decreasing the lipid peroxidation in germinating rice seeds subjected to salt stress. Compared with non-hemoglobin treatment, hemoglobin presoaking also increased the potassium (K to sodium (Na ratio both in the root and shoot parts after salinity stress. The effect is specific for HO-1 since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX blocked the positive actions of hemoglobin on seed germination and seedling shoot growth. Overall, these results suggested that hemoglobin performs an advantageous role in enhancement of salinity tolerance during rice seed germination.

  14. 64-section multidetector CT of the upper abdomen: optimization of a saline chaser injection protocol for improved vascular and parenchymal contrast enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Daniele [Duke University Medical Center, Department of Radiology, Durham, NC (United States); University of Rome Sapienza, Department of Radiological Sciences, Rome (Italy); Nelson, Rendon C. [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Guerrisi, Antonino; Passariello, Roberto; Catalano, Carlo [University of Rome Sapienza, Department of Radiological Sciences, Rome (Italy); Barnhart, Huiman [Duke University Medical Center, Department of Biostatistics and Bioinformatics, Durham, NC (United States); Schindera, Sebastian T. [University Hospital of Bern, Institute for Diagnostic, Interventional and Pediatric Radiology, Bern (Switzerland)

    2011-09-15

    To prospectively investigate the effect of varying the injection flow rates of a saline chaser on vascular and parenchymal contrast enhancement during abdominal MDCT. 100 consecutive patients were randomly assigned to four injection protocols. A fixed dose of contrast medium was administered followed by no saline (Protocol A) or 50 mL of saline at 2, 4, or 8 mL/s (Protocols B, C, and D). Peak, time-to-peak, and duration of 90% peak enhancement were determined for aorta, pancreas, and liver. Aortic peak enhancement was significantly higher for Protocol D (369.5 HU) compared with Protocols A and B (332.9 HU and 326.0 HU, respectively; P < 0.05). Pancreatic peak enhancement was significantly higher for Protocols C and D (110.6 HU and 110.9 HU, respectively) compared to Protocol A (92.5 HU; P < 0.05). Aortic and pancreatic time-to-peak enhancement occurred significantly later for Protocol D compared with Protocol A (42.8 s vs. 36.1 s [P < 0.001] and 49.7 s vs. 45.3 s [P = 0.003]). Injecting a saline chaser at high flow rates yields significantly higher peak aortic and pancreatic enhancement, with a slight longer time-to-peak enhancement. (orig.)

  15. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yuxiang, E-mail: yuxiangqin@126.com [Department of Biotechnology, University of Jinan, Jinan 250022 (China); Tian, Yanchen [The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100 (China); Han, Lu; Yang, Xinchao [Department of Biotechnology, University of Jinan, Jinan 250022 (China)

    2013-11-15

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway.

  16. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Qin, Yuxiang; Tian, Yanchen; Han, Lu; Yang, Xinchao

    2013-01-01

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway

  17. Process for selected gas oxide removal by radiofrequency catalysts

    Science.gov (United States)

    Cha, Chang Y.

    1993-01-01

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

  18. WORKSHOPS: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991

  19. WORKSHOPS: Radiofrequency superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-01-15

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991.

  20. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077.

    Science.gov (United States)

    Pancha, Imran; Chokshi, Kaumeel; Maurya, Rahulkumar; Trivedi, Khanjan; Patidar, Shailesh Kumar; Ghosh, Arup; Mishra, Sandhya

    2015-01-01

    Microalgal biomass is considered as potential feedstock for biofuel production. Enhancement of biomass, lipid and carbohydrate contents in microalgae is important for the commercialization of microalgal biofuels. In the present study, salinity stress induced physiological and biochemical changes in microalgae Scenedesmus sp. CCNM 1077 were studied. During single stage cultivation, 33.13% lipid and 35.91% carbohydrate content was found in 400 mM NaCl grown culture. During two stage cultivation, salinity stress of 400 mM for 3 days resulted in 24.77% lipid (containing 74.87% neutral lipid) along with higher biomass compared to single stage, making it an efficient strategy to enhance biofuel production potential of Scenedesmus sp. CCNM 1077. Apart from biochemical content, stress biomarkers like hydrogen peroxide, lipid peroxidation, ascorbate peroxidase, proline and mineral contents were also studied to understand the role of reactive oxygen species (ROS) mediated lipid accumulation in microalgae Scenedesmus sp. CCNM 1077. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Radiofrequency Ablation of Lung Tumors

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Radiofrequency Ablation (RFA) / Microwave Ablation (MWA) of Lung Tumors ... and Microwave Ablation of Lung Tumors? What are Radiofrequency and Microwave Ablation of Lung Tumors? Radiofrequency ablation, ...

  2. Hypertonic saline reduces inflammation and enhances the resolution of oleic acid induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-07-01

    Full Text Available Abstract Background Hypertonic saline (HTS reduces the severity of lung injury in ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. However, the potential for HTS to modulate the resolution of lung injury is not known. We investigated the potential for hypertonic saline to modulate the evolution and resolution of oleic acid induced lung injury. Methods Adult male Sprague Dawley rats were used in all experiments. Series 1 examined the potential for HTS to reduce the severity of evolving oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 12 or hypertonic saline (HTS, n = 12, and the extent of lung injury assessed after 6 hours. Series 2 examined the potential for HTS to enhance the resolution of oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 6 or hypertonic saline (HTS, n = 6, and the extent of lung injury assessed after 6 hours. Results In Series I, HTS significantly reduced bronchoalveolar lavage (BAL neutrophil count compared to Control [61.5 ± 9.08 versus 102.6 ± 11.89 × 103 cells.ml-1]. However, there were no between group differences with regard to: A-a O2 gradient [11.9 ± 0.5 vs. 12.0 ± 0.5 KPa]; arterial PO2; static lung compliance, or histologic injury. In contrast, in Series 2, hypertonic saline significantly reduced histologic injury and reduced BAL neutrophil count [24.5 ± 5.9 versus 46.8 ± 4.4 × 103 cells.ml-1], and interleukin-6 levels [681.9 ± 190.4 versus 1365.7 ± 246.8 pg.ml-1]. Conclusion These findings demonstrate, for the first time, the potential for HTS to reduce pulmonary inflammation and enhance the resolution of oleic acid induced lung injury.

  3. Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures

    Science.gov (United States)

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-01-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  4. Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion

    International Nuclear Information System (INIS)

    Soto, Rodrigo; Vergara, Julio

    2014-01-01

    In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location. -- Highlights: • An Ocean Thermal Energy Conversion hybrid plant was designed. • The waste heat of a power plant was delivered as an OTEC heat source. • The effect of size and operating conditions on plant efficiency were studied. • The OTEC implementation in a Chilean thermal power plant was evaluated. • The net efficiency of the thermal power plant was increased by 1.3%

  5. Radiofrequency ablation of osteoid osteoma

    NARCIS (Netherlands)

    Vanderschueren, Geert Maria Joris Michael

    2009-01-01

    The main purpose of this thesis was to evaluate the effectiveness and safety of CT-guided radiofrequency ablation for the treatment of spinal and non-spinal osteoid osteomas. Furthermore, the technical requirements needed for safe radiofrequency ablation and the clinical outcome after radiofrequency

  6. Composite materials for thermal energy storage: enhancing performance through microstructures.

    Science.gov (United States)

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-05-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Non‐diluted seawater enhances nasal ciliary beat frequency and wound repair speed compared to diluted seawater and normal saline

    Science.gov (United States)

    Bonnomet, Arnaud; Luczka, Emilie; Coraux, Christelle

    2016-01-01

    Background The regulation of mucociliary clearance is a key part of the defense mechanisms developed by the airway epithelium. If a high aggregate quality of evidence shows the clinical effectiveness of nasal irrigation, there is a lack of studies showing the intrinsic role of the different irrigation solutions allowing such results. This study investigated the impact of solutions with different pH and ionic compositions, eg, normal saline, non‐diluted seawater and diluted seawater, on nasal mucosa functional parameters. Methods For this randomized, controlled, blinded, in vitro study, we used airway epithelial cells obtained from 13 nasal polyps explants to measure ciliary beat frequency (CBF) and epithelial wound repair speed (WRS) in response to 3 isotonic nasal irrigation solutions: (1) normal saline 0.9%; (2) non‐diluted seawater (Physiomer®); and (3) 30% diluted seawater (Stérimar). The results were compared to control (cell culture medium). Results Non‐diluted seawater enhanced the CBF and the WRS when compared to diluted seawater and to normal saline. When compared to the control, it significantly enhanced CBF and slightly, though nonsignificantly, improved the WRS. Interestingly, normal saline markedly reduced the number of epithelial cells and ciliated cells when compared to the control condition. Conclusion Our results suggest that the physicochemical features of the nasal wash solution is important because it determines the optimal conditions to enhance CBF and epithelial WRS thus preserving the respiratory mucosa in pathological conditions. Non‐diluted seawater obtains the best results on CBF and WRS vs normal saline showing a deleterious effect on epithelial cell function. PMID:27101776

  8. Identification of thermohaline structure of a tropical estuary and its sensitivity to meteorological disturbance through temperature, salinity, and surface meteorological measurements

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Mehra, P.; Desai, R.G.P.; Sivadas, T.K.; Balachandran, K.K.; Vijaykumar, K.; Revichandran, C.; Agarvadekar, Y.; Francis, R.; Martin, G.D.

    -neap variability in which thermal and haline variability bear an inverse relationship, with cooling and enhanced salinity during spring tide and vice versa during neap tide. The diurnal variability in temperature is controlled by day/night cyclicity rather than...

  9. Thermal performance enhancement in nanofluids containing diamond nanoparticles

    International Nuclear Information System (INIS)

    Xie Huaqing; Yu Wei; Li Yang

    2009-01-01

    Nanofluids, nanoparticle suspensions prepared by dispersing nanoscale particles in a base fluid, have been gaining interest lately due to their potential to greatly outperform traditional thermal transport liquids. Diamond has the highest thermal transport capacity in nature and diamond particles are often used as filler in mixtures for upgrading the performance of a matrix. It is reasonable to expect that the addition of diamond nanoparticles (DNPs) would lead to thermal performance enhancement in a base fluid. In this study, homogeneous and stable nanofluids composed of DNPs as the inclusions and a mixture of ethylene glycol (EG) and water as base fluid have been prepared. Acid mixtures of perchloric acid, nitric acid and hydrochloric acid were employed to purify and tailor the DNPs to eliminate impurities and to enhance their dispersibilty. Ultrasound and the alkalinity of solution are beneficial to the deaggregation of the soft DNP aggregations. The thermal conductivity enhancement of the DNP nanofluids increases with DNP loading and the thermal conductivity enhancement is more than 18.0% for a nanofluid at a DNP volume fraction of 0.02. Viscosity measurements show that the DNP nanofluids demonstrate Newtonian behaviour, and the viscosity significantly decreases with temperature. With increasing volume fraction of DNPs, the convective heat transfer coefficient increases first, and then decreases with a further increase in the volume fraction of DNPs. The nanofluid with a volume fraction of 0.005 has optimal overall thermal performance.

  10. Gas storage carbon with enhanced thermal conductivity

    Science.gov (United States)

    Burchell, Timothy D.; Rogers, Michael Ray; Judkins, Roddie R.

    2000-01-01

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  11. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops

    Directory of Open Access Journals (Sweden)

    Hassan Etesami

    2018-02-01

    Full Text Available Salinity stress is one of the major abiotic stresses limiting crop production in arid and semi-arid regions. Interest is increasing in the application of PGPRs (plant growth promoting rhizobacteria to ameliorate stresses such as salinity stress in crop production. The identification of salt-tolerant, or halophilic, PGPRs has the potential to promote saline soil-based agriculture. Halophytes are a useful reservoir of halotolerant bacteria with plant growth-promoting capabilities. Here, we review recent studies on the use of halophilic PGPRs to stimulate plant growth and increase the tolerance of non-halophytic crops to salinity. These studies illustrate that halophilic PGPRs from the rhizosphere of halophytic species can be effective bio-inoculants for promoting the production of non-halophytic species in saline soils. These studies support the viability of bioinoculation with halophilic PGPRs as a strategy for the sustainable enhancement of non-halophytic crop growth. The potential of this strategy is discussed within the context of ensuring sustainable food production for a world with an increasing population and continuing climate change. We also explore future research needs for using halotolerant PGPRs under salinity stress.

  12. Neuronavigator-guided percutaneous radiofrequency thermocoagulation in the treatment of trigeminal neuralgia.

    Science.gov (United States)

    Zhang, W C; Zhong, W X; Li, S T; Zheng, X S; Yang, M; Shi, J

    2012-03-01

    Although radiofrequency thermocoagulation is considered as a primary treatment for most patients with trigeminal neuralgia, neuronavigator-guided percutaneous radiofrequency thermocoagulation has been rarely reported. The object of this study was to assess the clinical value of neuronavigator-guided percutaneous radiofrequency thermocoagulation in the treatment of trigeminal neuralgia. The radiofrequency thermocoagulation was performed in 100 cases of trigeminal neuralgia. The patients were positioned supine or sitting, under Hartel's technique (reported by Sweet and Wepsic J Neurosurg 40:143-156, 1974), by anterior lateral facial approaches. The Gasserian ganglions were acupunctured, assisted by intraoperative CT scanning (3-digital reconstruction) and electrophysiology in order to accurately locate target. The needles located in oval foramen at the first puncture, the direction and position could be defined according to the electrophysiology examination. The pain alleviated immediately after operation. There occurred no serious complication and other nerve injury in all patients despite face numbness only. 3D-CT and electrophysiology Gasser's ganglion locations can raise the success rate of puncture, enhance the safety and reduce the incidence of complication, showing high academic value and its promising future.

  13. Enhancing radiative energy transfer through thermal extraction

    Science.gov (United States)

    Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu

    2016-06-01

    Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal

  14. Discussion on the thermal conductivity enhancement of nanofluids

    Science.gov (United States)

    2011-01-01

    Increasing interests have been paid to nanofluids because of the intriguing heat transfer enhancement performances presented by this kind of promising heat transfer media. We produced a series of nanofluids and measured their thermal conductivities. In this article, we discussed the measurements and the enhancements of the thermal conductivity of a variety of nanofluids. The base fluids used included those that are most employed heat transfer fluids, such as deionized water (DW), ethylene glycol (EG), glycerol, silicone oil, and the binary mixture of DW and EG. Various nanoparticles (NPs) involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives. Our findings demonstrated that the thermal conductivity enhancements of nanofluids could be influenced by multi-faceted factors including the volume fraction of the dispersed NPs, the tested temperature, the thermal conductivity of the base fluid, the size of the dispersed NPs, the pretreatment process, and the additives of the fluids. The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed. PMID:21711638

  15. Non-diluted seawater enhances nasal ciliary beat frequency and wound repair speed compared to diluted seawater and normal saline.

    Science.gov (United States)

    Bonnomet, Arnaud; Luczka, Emilie; Coraux, Christelle; de Gabory, Ludovic

    2016-10-01

    The regulation of mucociliary clearance is a key part of the defense mechanisms developed by the airway epithelium. If a high aggregate quality of evidence shows the clinical effectiveness of nasal irrigation, there is a lack of studies showing the intrinsic role of the different irrigation solutions allowing such results. This study investigated the impact of solutions with different pH and ionic compositions, eg, normal saline, non-diluted seawater and diluted seawater, on nasal mucosa functional parameters. For this randomized, controlled, blinded, in vitro study, we used airway epithelial cells obtained from 13 nasal polyps explants to measure ciliary beat frequency (CBF) and epithelial wound repair speed (WRS) in response to 3 isotonic nasal irrigation solutions: (1) normal saline 0.9%; (2) non-diluted seawater (Physiomer®); and (3) 30% diluted seawater (Stérimar). The results were compared to control (cell culture medium). Non-diluted seawater enhanced the CBF and the WRS when compared to diluted seawater and to normal saline. When compared to the control, it significantly enhanced CBF and slightly, though nonsignificantly, improved the WRS. Interestingly, normal saline markedly reduced the number of epithelial cells and ciliated cells when compared to the control condition. Our results suggest that the physicochemical features of the nasal wash solution is important because it determines the optimal conditions to enhance CBF and epithelial WRS thus preserving the respiratory mucosa in pathological conditions. Non-diluted seawater obtains the best results on CBF and WRS vs normal saline showing a deleterious effect on epithelial cell function. © 2016 The Authors International Forum of Allergy & Rhinology, published by ARSAAOA, LLC.

  16. Non-invasive ultrasound-based temperature imaging for monitoring radiofrequency heating-phantom results

    International Nuclear Information System (INIS)

    Daniels, M J; Varghese, T; Madsen, E L; Zagzebski, J A

    2007-01-01

    Minimally invasive therapies (such as radiofrequency ablation) are becoming more commonly used in the United States for the treatment of hepatocellular carcinomas and liver metastases. Unfortunately, these procedures suffer from high recurrence rates of hepatocellular carcinoma (∼34-55%) or metastases following ablation therapy. The ability to perform real-time temperature imaging while a patient is undergoing radiofrequency ablation could provide a significant reduction in these recurrence rates. In this paper, we demonstrate the feasibility of ultrasound-based temperature imaging on a tissue-mimicking phantom undergoing radiofrequency heating. Ultrasound echo signals undergo time shifts with increasing temperature, which are tracked using 2D correlation-based speckle tracking methods. Time shifts or displacements in the echo signal are accumulated, and the gradient of these time shifts are related to changes in the temperature of the tissue-mimicking phantom material using a calibration curve generated from experimental data. A tissue-mimicking phantom was developed that can undergo repeated radiofrequency heating procedures. Both sound speed and thermal expansion changes of the tissue-mimicking material were measured experimentally and utilized to generate the calibration curve relating temperature to the displacement gradient. Temperature maps were obtained, and specific regions-of-interest on the temperature maps were compared to invasive temperatures obtained using fiber-optic temperature probes at the same location. Temperature elevation during a radiofrequency ablation procedure on the phantom was successfully tracked to within ±0.5 0 C

  17. Cooling the APS storage ring radio-frequency accelerating cavities: Thermal/stress/fatigue analysis and cavity cooling configuration

    International Nuclear Information System (INIS)

    Primdahl, K.; Kustom, R.

    1995-01-01

    The 7-GeV Advanced Photon Source positron storage ring requires sixteen separate 352-MHz radio-frequency (rf) accelerating cavities. Cavities are installed as groups of four, in straight sections used elsewhere for insertion devices. They occupy the first such straight section after injection, along with the last three just before injection. Cooling is provided by a subsystem of the sitewide deionized water system. Pumping equipment is located in a building directly adjacent to the accelerator enclosure. A prototype cavity was fabricated and tested where cooling was via twelve 19-mm-diameter [3/4 in] brazed-on tubes in a series-parallel flow configuration. Unfortunately, the thermal contact to some tubes was poor due to inadequate braze filler. Here, heat transfer studies, including finite-element analysis and test results, of the Advanced Photon Source (APS) storage ring 352-MHz rf accelerating cavities are described. Stress and fatigue life of the copper are discussed. Configuration of water cooling is presented

  18. Cutaneous remodeling and photorejuvenation using radiofrequency devices

    Directory of Open Access Journals (Sweden)

    Elsaie Mohamed

    2009-01-01

    Full Text Available Radio frequency (RF is electromagnetic radiation in the frequency range of 3-300GHz. The primary effects of RF energy on living tissue are considered to be thermal. The goal of the new devices based on these frequency ranges is to heat specific layers of the skin. The directed use of RF can induce dermal heating and cause collagen degeneration. Wound healing mechanisms promote the remodeling of collagen and wound contraction, which ultimately clinically enhances the appearance of mild to moderate skin laxity. Preliminary studies have reported efficacy in the treatment of laxity that involves the periorbital area and jowls. Because RF energy is not dependent on specific chromophore interaction, epidermal melanin is not at risk of destruction and treatment of all skin types is possible. As such, radiofrequency-based systems have been used successfully for nonablative skin rejuvenation, atrophic scar revision and treatment of unwanted hair, vascular lesions and inflammatory acne. The use of RF is becoming more popular, although a misunderstanding exists regarding the mechanisms and limitations of its actions. This concise review serves as an introduction and guide to many aspects of RF in the non ablative rejuvenation of skin.

  19. Significantly enhanced thermal conductivity of indium arsenide nanowires via sulfur passivation.

    Science.gov (United States)

    Xiong, Yucheng; Tang, Hao; Wang, Xiaomeng; Zhao, Yang; Fu, Qiang; Yang, Juekuan; Xu, Dongyan

    2017-10-16

    In this work, we experimentally investigated the effect of sulfur passivation on thermal transport in indium arsenide (InAs) nanowires. Our measurement results show that thermal conductivity can be enhanced by a ratio up to 159% by sulfur passivation. Current-voltage (I-V) measurements were performed on both unpassivated and S-passivated InAs nanowires to understand the mechanism of thermal conductivity enhancement. We observed a remarkable improvement in electrical conductivity upon sulfur passivation and a significant contribution of electrons to thermal conductivity, which account for the enhanced thermal conductivity of the S-passivated InAs nanowires.

  20. Aqueous Hybrids of Silica Nanoparticles and Hydrophobically Associating Hydrolyzed Polyacrylamide Used for EOR in High-Temperature and High-Salinity Reservoirs

    Directory of Open Access Journals (Sweden)

    Dingwei Zhu

    2014-06-01

    Full Text Available Water-soluble polymers are known to be used in chemically enhanced oil recovery (EOR processes, but their applications are limited in high-temperature and high-salinity oil reservoirs because of their inherent poor salt tolerance and weak thermal stability. Hydrophobic association of partially hydrolyzed polyacryamide (HAHPAM complexed with silica nanoparticles to prepare nano-hybrids is reported in this work. The rheological and enhanced oil recovery (EOR properties of such hybrids were studied in comparison with HAHPAM under simulated high-temperature and high-salinity oil reservoir conditions (T: 85 °C; total dissolved solids: 32,868 mg∙L−1; [Ca2+] + [Mg2+]: 873 mg∙L−1. It was found that the apparent viscosity and elastic modulus of HAHPAM solutions increased with addition of silica nanoparticles, and HAHPAM/silica hybrids exhibit better shear resistance and long-term thermal stability than HAHPAM in synthetic brine. Moreover, core flooding tests show that HAHPAM/silica hybrid has a higher oil recovery factor than HAHPAM solution.

  1. 21 CFR 882.4725 - Radiofrequency lesion probe.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiofrequency lesion probe. 882.4725 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4725 Radiofrequency lesion probe. (a) Identification. A radiofrequency lesion probe is a device connected to a radiofrequency (RF...

  2. Bipolar and monopolar radiofrequency treatment of osteoarthritic knee articular cartilage: acute and temporal effects on cartilage compressive stiffness, permeability, cell synthesis, and extracellular matrix composition.

    Science.gov (United States)

    Cook, James L; Kuroki, Keiichi; Kenter, Keith; Marberry, Kevin; Brawner, Travis; Geiger, Timothy; Jayabalan, Prakash; Bal, B Sonny

    2004-04-01

    The cellular, biochemical, biomechanical, and histologic effects of radiofrequency-generated heat on osteoarthritic cartilage were assessed. Articular cartilage explants (n=240) from 26 patients undergoing total knee arthroplasty were divided based on Outerbridge grade (I or II/III) and randomly assigned to receive no treatment (controls) or monopolar or bipolar radiofrequency at 15 or 30 W. Both potentially beneficial and harmful effects of radiofrequency treatment of articular cartilage were noted. It will be vital to correlate data from in vitro and in vivo study of radiofrequency thermal chondroplasty to determine the clinical usefulness of this technique.

  3. Effect of cell-phone radiofrequency on angiogenesis and cell invasion in human head and neck cancer cells.

    Science.gov (United States)

    Alahmad, Yaman M; Aljaber, Mohammed; Saleh, Alaaeldin I; Yalcin, Huseyin C; Aboulkassim, Tahar; Yasmeen, Amber; Batist, Gerald; Moustafa, Ala-Eddin Al

    2018-05-13

    Today, the cell phone is the most widespread technology globally. However, the outcome of cell-phone radiofrequency on head and neck cancer progression has not yet been explored. The chorioallantoic membrane (CAM) and human head and neck cancer cell lines, FaDu and SCC25, were used to explore the outcome of cell-phone radiofrequency on angiogenesis, cell invasion, and colony formation of head and neck cancer cells, respectively. Western blot analysis was used to investigate the impact of the cell phone on the regulation of E-cadherin and Erk1/Erk2 genes. Our data revealed that cell-phone radiofrequency promotes angiogenesis of the CAM. In addition, the cell phone enhances cell invasion and colony formation of human head and neck cancer cells; this is accompanied by a downregulation of E-cadherin expression. More significantly, we found that the cell phone can activate Erk1/Erk2 in our experimental models. Our investigation reveals that cell-phone radiofrequency could enhance head and neck cancer by stimulating angiogenesis and cell invasion via Erk1/Erk2 activation. © 2018 Wiley Periodicals, Inc.

  4. Coblation in otolaryngology

    Science.gov (United States)

    Woloszko, Jean; Kwende, Martin; Stalder, Kenneth R.

    2003-06-01

    Coblation is a unique method of delivering radiofrequency energy to soft tissue for applications in Otolaryngology (ENT). Using radiofrequency in a bipolar mode with a conductive solution, such as saline. Coblation energizes the ions in the saline to form a localized plasma near the target tissue. The plasma has enough energy to dissociate water molecules from the saline, as well as ionizing the saline salt species, thus forming chemical conditions leading to the breaking of the tissue's molecular bonds. Energetic electrons in the plasma also possess enough energy to directly dissociate tissue chemical bonds. The overall effect results in tissue ablation and localized removal or reduction of tissue volume. The heat dissipated in the process, aided by continual cooling from the surrounding saline solution, produces tissue temperature raises of approximately 45 - 85°C, significantly lower than traditional radio-frequency techniques. Coblation has been used for Otolaryngological applications such as Uvulopalatopharyngoplasty (UPPP), tonsillectomy, turbinate reduction, palate reduction, base of tongue reduction and various Head and Neck cancer procedures. The decreased thermal effect of Coblation has led to less pain and faster recovery for cases where tissue is excised. Several clinical studies have shown the benefits of using Coblation for both extra and intra-capsular tonsillectomy.

  5. Electromagnetic and Thermal Aspects of Radiofrequency Field Propagation in Ultra-High Field MRI

    NARCIS (Netherlands)

    van Lier, A.L.H.M.W.

    2012-01-01

    In MRI, a radiofrequency (RF) pulse is used to generate a signal from the spins that are polarized by a strong magnetic field. For higher magnetic field strengths, a higher frequency of the RF pulse is required in order to match the Larmor frequency. A higher frequency, in turn, leads to a shorter

  6. Synergistic retention strategy of RGD active targeting and radiofrequency-enhanced permeability for intensified RF & chemotherapy synergistic tumor treatment.

    Science.gov (United States)

    Zhang, Kun; Li, Pei; He, Yaping; Bo, Xiaowan; Li, Xiaolong; Li, Dandan; Chen, Hangrong; Xu, Huixiong

    2016-08-01

    Despite gaining increasing attention, chelation of multiple active targeting ligands greatly increase the formation probability of protein corona, disabling active targeting. To overcome it, a synergistic retention strategy of RGD-mediated active targeting and radiofrequency (RF) electromagnetic field-enhanced permeability has been proposed here. It is validated that such a special synergistic retention strategy can promote more poly lactic-co-glycolic acid (PLGA)-based capsules encapsulating camptothecin (CPT) and solid DL-menthol (DLM) to enter and retain in tumor in vitro and in vivo upon exposure to RF irradiation, receiving an above 8 fold enhancement in HeLa retention. Moreover, the PLGA-based capsules can respond RF field to trigger the entrapped DLM to generate solid-liquid-gas (SLG) tri-phase transformation for enhancing RF ablation and CPT release. Therefore, depending on the enhanced RF ablation and released CPT and the validated synergistic retention effect, the inhibitory outcome for tumor growth has gained an over 10-fold improvement, realizing RF ablation & chemotherapy synergistic treatment against HeLa solid tumor, which indicates a significant promise in clinical RF ablation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. 47 CFR 2.801 - Radiofrequency device defined.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Radiofrequency device defined. 2.801 Section 2... MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.801 Radiofrequency device defined. As used in this part, a radiofrequency device is any device which in its operation is capable of...

  8. Heating of polymer substrate by discharge plasma in radiofrequency magnetron sputtering deposition

    International Nuclear Information System (INIS)

    Sirghi, Lucel; Popa, Gheorghe; Hatanaka, Yoshinori

    2006-01-01

    The substrate used for the thin film deposition in a radiofrequency magnetron sputtering deposition system is heated by the deposition plasma. This may change drastically the surface properties of the polymer substrates. Deposition of titanium dioxide thin films on polymethyl methacrylate and polycarbonate substrates resulted in buckling of the substrate surfaces. This effect was evaluated by analysis of atomic force microscopy topography images of the deposited films. The amount of energy received by the substrate surface during the film deposition was determined by a thermal probe. Then, the results of the thermal probe measurements were used to compute the surface temperature of the polymer substrate. The computation revealed that the substrate surface temperature depends on the substrate thickness, discharge power and substrate holder temperature. For the case of the TiO 2 film depositions in the radiofrequency magnetron plasma, the computation indicated substrate surface temperature values under the polymer melting temperature. Therefore, the buckling of polymer substrate surface in the deposition plasma may not be regarded as a temperature driven surface instability, but more as an effect of argon ion bombardment

  9. Radiofrequency sensory ablation as a treatment for symptomatic unilateral lumbosacral junction pseudarticulation (Bertolotti's syndrome): a case report.

    Science.gov (United States)

    Burnham, Robert

    2010-06-01

    Describe the clinical presentation, diagnostic evaluation, and successful treatment of a case of symptomatic unilateral lumbosacral junction pseudarticulation using a novel radiofrequency nerve ablation technique. A 56-year-old female patient who had suffered with low back and right upper buttock pain for 16 years experienced incomplete relief with L4/5 facet joint radiofrequency ablation. She was found to have an elongated right L5 transverse process that articulated with the sacral ala (Bertolotti's syndrome). Fluoroscopically guided local anesthetic/corticosteroid injection into the pseudarthrosis eliminated her residual right buttock pain for the duration of the local anesthetic only. Complete pain relief was achieved by injecting local anesthetic circumferentially around the posterior pseudarthrosis articular margin. Accordingly, bipolar radiofrequency strip thermal lesions were created at the same locations. Complete pain relief and full restoration of function was achieved for 16 months postprocedure. This case report describes a novel radiofrequency technique for treating symptomatic lumbosacral junction pseudarticulation that warrants further evaluation.

  10. Minor Actinide Burn in Thermal Spectrum with Enhanced Moderation

    International Nuclear Information System (INIS)

    Petrovic, B.; Huang, L. M.

    2010-01-01

    Resolving the issue of spent nuclear fuel and nuclear waste management is the necessary condition for long-term sustainability of nuclear power, and requires addressing plutonium, minor actinides (MA) and fission products. Various strategies from once-through homogeneous burn to partitioning and transmutation, and from thermal to fast systems, are being considered. The optimum system-level performance will likely require advanced critical or subcritical systems with a range of neutron spectra. Thermal systems, while not optimum, may be deployed sooner, and may provide mid-term amelioration of the issue. This paper examines burn of MA in thermal systems. One specific concern in this case is deterioration of safety parameters due to a high thermal absorption cross section of MA. Enhanced moderation has potential to at least partly remedy this concern. Therefore, we have evaluated adopting the IRIS neutronic design to MA burn. The IRIS reactor design offers enhanced safety margin, due to its fully passive safety systems and safety-by-design approach. Also, in addition to the standard UO 2 fuel (reference IRIS design), an alternative core with enhanced moderation fuel was considered. These two features (safety margin, enhanced moderation) provide a good starting point for MA burn in a thermal system. Further modifications to accommodate MA-bearing rods will be discussed. The paper will examine the benefit of the enhanced moderation in comparison to homogeneous MA burn in a typical PWR reactor.(author).

  11. The use of salinity contrast for density difference compensation to improve the thermal recovery efficiency in high-temperature aquifer thermal energy storage systems

    Science.gov (United States)

    van Lopik, Jan H.; Hartog, Niels; Zaadnoordijk, Willem Jan

    2016-08-01

    The efficiency of heat recovery in high-temperature (>60 °C) aquifer thermal energy storage (HT-ATES) systems is limited due to the buoyancy of the injected hot water. This study investigates the potential to improve the efficiency through compensation of the density difference by increased salinity of the injected hot water for a single injection-recovery well scheme. The proposed method was tested through numerical modeling with SEAWATv4, considering seasonal HT-ATES with four consecutive injection-storage-recovery cycles. Recovery efficiencies for the consecutive cycles were investigated for six cases with three simulated scenarios: (a) regular HT-ATES, (b) HT-ATES with density difference compensation using saline water, and (c) theoretical regular HT-ATES without free thermal convection. For the reference case, in which 80 °C water was injected into a high-permeability aquifer, regular HT-ATES had an efficiency of 0.40 after four consecutive recovery cycles. The density difference compensation method resulted in an efficiency of 0.69, approximating the theoretical case (0.76). Sensitivity analysis showed that the net efficiency increase by using the density difference compensation method instead of regular HT-ATES is greater for higher aquifer hydraulic conductivity, larger temperature difference between injection water and ambient groundwater, smaller injection volume, and larger aquifer thickness. This means that density difference compensation allows the application of HT-ATES in thicker, more permeable aquifers and with larger temperatures than would be considered for regular HT-ATES systems.

  12. Radio-Frequency Applications for Food Processing and Safety.

    Science.gov (United States)

    Jiao, Yang; Tang, Juming; Wang, Yifen; Koral, Tony L

    2018-03-25

    Radio-frequency (RF) heating, as a thermal-processing technology, has been extending its applications in the food industry. Although RF has shown some unique advantages over conventional methods in industrial drying and frozen food thawing, more research is needed to make it applicable for food safety applications because of its complex heating mechanism. This review provides comprehensive information regarding RF-heating history, mechanism, fundamentals, and applications that have already been fully developed or are still under research. The application of mathematical modeling as a useful tool in RF food processing is also reviewed in detail. At the end of the review, we summarize the active research groups in the RF food thermal-processing field, and address the current problems that still need to be overcome.

  13. Enhanced remediation of an oily sludge with saline water

    African Journals Online (AJOL)

    UFUOMA

    biodegradation of oily sludge by hydrocarbon utilizing bacteria (Bacillus subtilis) at salinity (NaCl ... petroleum waste. In recent times, several literatures have shown that bioremediation has high potentials for restoring polluted media with least negative impact on the ..... salinity, bacterial consortium is highly stable in immo-.

  14. Radiofrequency-induced thermal therapy: results of a European multicentre study of resistive ablation of incompetent truncal varicose veins.

    Science.gov (United States)

    Braithwaite, B; Hnatek, L; Zierau, U; Camci, M; Akkersdijk, Gjm; Nio, D; Sarlija, M; Ajduk, M; Santoro, P; Roche, E

    2013-02-01

    To investigate the effectiveness of bipolar radiofrequency-induced thermal therapy (RFITT) in a multicentre non-randomized study. Some 672 incompetent saphenous veins (85% great saphenous varicose vein, 15% short saphenous vein) in 462 patients (56.5% CEAP [clinical, aetiological, anatomical and pathological elements] class 3 or worse) were treated in eight European centres. Patients were assessed between 180 and 360 days postoperatively. Occlusion rates were determined by duplex ultrasound and compared with the power used for treatment, pull back rate and experience of the operating surgeon. Complete occlusion rates of 98.4% were achieved when treatments were performed by an experienced operator (more than 20 cases), when the maximum power setting on the RFITT generator was between 18 and 20 W and the applicator was withdrawn at a rate slower than 1.5 second/cm RFITT is efficacious, well tolerated by patients and has a low incidence of procedure-related post-operative complications.

  15. Computational modelling of internally cooled wet (ICW) electrodes for radiofrequency ablation: impact of rehydration, thermal convection and electrical conductivity.

    Science.gov (United States)

    Trujillo, Macarena; Bon, Jose; Berjano, Enrique

    2017-09-01

    (1) To analyse rehydration, thermal convection and increased electrical conductivity as the three phenomena which distinguish the performance of internally cooled electrodes (IC) and internally cooled wet (ICW) electrodes during radiofrequency ablation (RFA), (2) Implement a RFA computer model with an ICW which includes these phenomena and (3) Assess their relative influence on the thermal and electrical tissue response and on the coagulation zone size. A 12-min RFA in liver was modelled using an ICW electrode (17 G, 3 cm tip) by an impedance-control pulsing protocol with a constant current of 1.5 A. A model of an IC electrode was used to compare the ICW electrode performance and the computational results with the experimental results. Rehydration and increased electrical conductivity were responsible for an increase in coagulation zone size and a delay (or absence) in the occurrence of abrupt increases in electrical impedance (roll-off). While the increased electrical conductivity had a remarkable effect on enlarging the coagulation zone (an increase of 0.74 cm for differences in electrical conductivity of 0.31 S/m), rehydration considerably affected the delay in roll-off, which, in fact, was absent with a sufficiently high rehydration level. In contrast, thermal convection had an insignificant effect for the flow rates considered (0.05 and 1 mL/min). Computer results suggest that rehydration and increased electrical conductivity were mainly responsible for the absence of roll-off and increased size of the coagulation zone, respectively, and in combination allow the thermal and electrical performance of ICW electrodes to be modelled during RFA.

  16. Influence of the radio-frequency power on the physical and optical properties of plasma polymerized cyclohexane thin films

    Energy Technology Data Exchange (ETDEWEB)

    Manaa, C., E-mail: chadlia.el.manaa@gmail.com [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, UFR des Sciences d' Amiens, 33 rue Saint Leu, 80039 Amiens CEDEX 2 (France); Laboratoire des Matériaux Avancés et Phénomènes Quantiques, Université de Tunis El-Manar, Faculté des Sciences de Tunis, Campus universitaire El-Manar, 1068 Tunis (Tunisia); Lejeune, M. [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, UFR des Sciences d' Amiens, 33 rue Saint Leu, 80039 Amiens CEDEX 2 (France); Kouki, F. [Laboratoire des Matériaux Avancés et Phénomènes Quantiques, Université de Tunis El-Manar, Faculté des Sciences de Tunis, Campus universitaire El-Manar, 1068 Tunis (Tunisia); Durand-Drouhin, O. [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, UFR des Sciences d' Amiens, 33 rue Saint Leu, 80039 Amiens CEDEX 2 (France); Bouchriha, H. [Laboratoire des Matériaux Avancés et Phénomènes Quantiques, Université de Tunis El-Manar, Faculté des Sciences de Tunis, Campus universitaire El-Manar, 1068 Tunis (Tunisia); and others

    2014-06-02

    We investigate in the present study the effects of the radio-frequency plasma power on the opto-electronical properties of the polymeric amorphous hydrogenated carbon thin films deposited at room temperature and different radio-frequency powers by plasma-enhanced chemical vapor deposition method using cyclohexane as precursor. A combination of U.V.–Visible and infrared transmission measurements is applied to characterize the bonding and electronic properties of these films. Some film properties namely surface roughness, contact angle, surface energy, and optical properties are found to be significantly influenced by the radio-frequency power. The changes in these properties are analyzed within the microstructural modifications occurring during growth. - Highlights: • Effects of the radio-frequency power on the optoelectronic properties of thin films • Elaboration of plasma polymerized thin films using cyclohexane as precursor gas • The use of U.V.–Visible-infrared transmission, and optical gap • Study of the surface topography of the films by using Atomic Force microscopy • The use of a capacitively coupled plasma enhanced chemical vapor deposition method.

  17. Influence of the radio-frequency power on the physical and optical properties of plasma polymerized cyclohexane thin films

    International Nuclear Information System (INIS)

    Manaa, C.; Lejeune, M.; Kouki, F.; Durand-Drouhin, O.; Bouchriha, H.

    2014-01-01

    We investigate in the present study the effects of the radio-frequency plasma power on the opto-electronical properties of the polymeric amorphous hydrogenated carbon thin films deposited at room temperature and different radio-frequency powers by plasma-enhanced chemical vapor deposition method using cyclohexane as precursor. A combination of U.V.–Visible and infrared transmission measurements is applied to characterize the bonding and electronic properties of these films. Some film properties namely surface roughness, contact angle, surface energy, and optical properties are found to be significantly influenced by the radio-frequency power. The changes in these properties are analyzed within the microstructural modifications occurring during growth. - Highlights: • Effects of the radio-frequency power on the optoelectronic properties of thin films • Elaboration of plasma polymerized thin films using cyclohexane as precursor gas • The use of U.V.–Visible-infrared transmission, and optical gap • Study of the surface topography of the films by using Atomic Force microscopy • The use of a capacitively coupled plasma enhanced chemical vapor deposition method

  18. Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management

    International Nuclear Information System (INIS)

    Wu, Weixiong; Zhang, Guoqing; Ke, Xiufang; Yang, Xiaoqing; Wang, Ziyuan; Liu, Chenzhen

    2015-01-01

    Highlights: • A kind of composite phase change material board (PCMB) is prepared and tested. • PCMB presents a large thermal storage capacity and enhanced thermal conductivity. • PCMB displays much better cooling effect in comparison to natural air cooling. • PCMB presents different cooling characteristics in comparison to ribbed radiator. - Abstract: A kind of phase change material board (PCMB) was prepared for use in the thermal management of electronics, with paraffin and expanded graphite as the phase change material and matrix, respectively. The as-prepared PCMB presented a large thermal storage capacity of 141.74 J/g and enhanced thermal conductivity of 7.654 W/(m K). As a result, PCMB displayed much better cooling effect in comparison to natural air cooling, i.e., much lower heating rate and better uniformity of temperature distribution. On the other hand, compared with ribbed radiator technology, PCMB also presented different cooling characteristics, demonstrating that they were suitable for different practical application

  19. Predicting nurses' acceptance of radiofrequency identification technology.

    Science.gov (United States)

    Norten, Adam

    2012-10-01

    The technology of radiofrequency identification allows for the scanning of radiofrequency identification-tagged objects and individuals without line-of-sight requirements. Healthcare organizations use radiofrequency identification to ensure the health and safety of patients and medical personnel and to uncover inefficiencies. Although the successful implementation of a system incorporating radiofrequency identification technologies requires acceptance and use of the technology, some nurses using radiofrequency identification in hospitals feel like "Big Brother" is watching them. This predictive study used a theoretical model assessing the effect of five independent variables: privacy concerns, attitudes, subjective norms, controllability, and self-efficacy, on a dependent variable, nurses' behavioral intention to use radiofrequency identification. A Web-based questionnaire containing previously validated questions was answered by 106 US RNs. Multiple linear regression showed that all constructs together accounted for 60% of the variance in nurses' intention to use radiofrequency identification. Of the predictors in the model, attitudes provided the largest unique contribution when the other predictors in the model were held constant; subjective norms also provided a unique contribution. Privacy concerns, controllability, and self-efficacy did not provide a significant contribution to nurses' behavioral intention to use radiofrequency identification.

  20. The ablated volume and the thermal field distribution in swine vertebral body created by multi-polar radiofrequency ablation: an experiment in vitro

    International Nuclear Information System (INIS)

    Peng Zhaohong; Zhao Wei; Shen Jin; Hu Jihong; Li Zhaopeng; Wang Tao

    2009-01-01

    Objective: To observe the extent of bone coagulation and the thermal field distribution created in ablating the swine vertebral bodies in vitro with multi-polar radiofrequency and to discuss the correlation between the electrode position in the vertebral body and the safety of the spinal cord as well as the soft tissue injury around the vertebral body. Methods: Thirty fresh adult porcine vertebrae were randomly and equally divided into two groups. The depth of the electrode needle was 10 mm or 20 mm.When the ablation process reached to a stable state, the temperature at the scheduled spots was estimated. Twenty minutes after ablation, the vertebral body was cut along the electrode needle plane and also along the plane perpendicular to the electrode needle to observe the extent of bone coagulation. Results: The temperature at the scheduled spots reached to a stable state in 3.5 minutes. The more close to the electrode the spot was, the more quickly the temperature rose. No soft tissue injury around the vertebral body was observed in both groups and no spinal cord injury occurred when the electrode needle was 10 mm or 20 mm deep in the vertebral body. Conclusion: In treating vertebral metastases, the radiofrequency ablation is safe and reliable if the posterior wall of the vertebral body remains intact. (authors)

  1. Conventional Radiofrequency Thermocoagulation vs Pulsed Radiofrequency Neuromodulation of Ganglion Impar in Chronic Perineal Pain of Nononcological Origin.

    Science.gov (United States)

    Usmani, Hammad; Dureja, G P; Andleeb, Roshan; Tauheed, Nazia; Asif, Naiyer

    2018-01-10

    Chronic nononcological perineal pain has been effectively managed by ganglion Impar block. Chemical neurolysis, cryoablation, and radiofrequency ablation have been the accepted methods of blockade. Recently, pulsed radiofrequency, a novel variant of conventional radiofrequency, has been used for this purpose. This was a prospective, randomized, double-blind study. Two different interventional pain management centers in India. To compare the efficacy of conventional radiofrequency and pulsed radiofrequency for gangliom Impar block. The patients were randomly allocated to one of two groups. In the conventional radiofrequency (CRF) group (N = 34), conventional radiofrequency ablation was done, and in the PRF pulsed radiofrequency (PRF) group (N = 31), pulsed radiofrequency ablation was done. After informed and written consent, fluoroscopy-guided ganglion Impar block was performed through the first intracoccygeal approach. The extent of pain relief was assessed by visual analog scale (VAS) at 24 hours, and at the first, third, and sixth weeks following the intervention. A questionnaire to evaluate subjective patient satisfaction was also used at each follow-up visit. In the CRF group, the mean VAS score decreased significantly from the baseline value at each follow-up visit. But in the PRF group, this decrease was insignificant except at 24-hour follow-up. Intergroup comparison also showed significantly better pain relief in the CRF group as compared with the PRF group. At the end of follow-up, 28 patients (82%) in the CRF group and four patients (13%) in the PRF group had excellent results, as assessed by the subjective patient satisfaction questionnaire. There was no complication in any patient of either study group, except for short-lived infection at the site of skin puncture in a few. Ganglion Impar block by conventional radiofrequency provided a significantly better quality of pain relief with no major side effects in patients with chronic

  2. Radiofrequency ablation in dermatology

    Directory of Open Access Journals (Sweden)

    Sachdeva Silonie

    2007-01-01

    Full Text Available Radiofreqeuency ablation is a versatile dermatosurgical procedure used for surgical management of skin lesions by using various forms of alternating current at an ultra high frequency. The major modalities in radiofrequency are electrosection, electrocoagulation, electrodessication and fulguration. The use of radiofrequency ablation in dermatosurgical practice has gained importance in recent years as it can be used to treat most of the skin lesions with ease in less time with clean surgical field due to adequate hemostasis and with minimal side effects and complications. This article focuses on the major tissue effects and factors influencing radiofrequency ablation and its application for various dermatological conditions.

  3. Solid matrix priming with chitosan enhances seed germination and seedling invigoration in mung bean under salinity stress

    Directory of Open Access Journals (Sweden)

    Sujoy SEN

    2016-09-01

    Full Text Available The objective of present study was to evaluate the response of the mung bean seeds of ‘Sonali B1’ variety primed with chitosan in four different concentrations (0, 0.1%, 0.2% and 0.5% under salinity stress of five different concentrations (i.e., 0, 4, 6, 8 and 12 dS*mm-1 and halotolerance pattern by applying Celite as matrix at three different moisture levels (5%, 10% and 20%. Improved germination percentage, germination index, mean germination time, coefficient of velocity of germination along with root and shoot length was observed comparing with control. Germination stress tolerance index (GSI, plant height stress tolerance index (PHSI and root length stress tolerance index (RLSI were used to evaluate the tolerance of the mung bean seeds against salinity stress induced by chitosan. Results of GSI, PHSI, RLSI showing noteworthy inhibitory effect of salinity stress in control set was significantly less pronounced in chitosan treated seedlings. Chitosan can remarkably alleviate the detrimental effect of salinity up to the level of 6 dS*m-1, beyond which no improvement was noticed. In conclusion present investigation revealed that chitosan is an ideal elicitor for enhancing the speed of germination and seedling invigoration that synchronize with emergence of radicle and salinity stress tolerance.

  4. Hybrid laparoscopic and robotic ultrasound-guided radiofrequency ablation-assisted clampless partial nephrectomy.

    Science.gov (United States)

    Nadler, Robert B; Perry, Kent T; Smith, Norm D

    2009-07-01

    To describe a clampless approach made possible by creating an avascular plane of tissue with radiofrequency ablation. Laparoscopic partial nephrectomy is slowly gaining acceptance as a method to treat small (generator. Typically, we used a power setting of 50 W but have found settings as low as 25 W necessary to provide hemostasis for larger vessels. The tumor was then sharply excised with a negative margin using robotic scissors and electrocautery to facilitate tissue cutting. Retrograde injection of methylthioninium chloride and saline through an externalized ureteral catheter allowed for precise sutured closure of the collecting system. FloSeal and BioGlue were then applied, making surgical bolsters or parenchymal sutures unnecessary. Intraoperative histologic evaluation of the surgical margin and repeat resection of the tumor bed was possible because the renal hilum was not clamped, and no warm ischemia was used. This technique, which combines the improving technologies of robotic surgery, intraoperative laparoscopic ultrasonography, and radiofrequency ablation, might make more surgeons comfortable with the intricacies of laparoscopic suturing and eliminate prolonged warm ischemia times. Overall, this method should result in more patients being able to undergo minimally invasive laparoscopic partial nephrectomy.

  5. CT-guided radiofrequency tumor ablation in children

    International Nuclear Information System (INIS)

    Botsa, Evanthia; Poulou, Loukia S.; Koundouraki, Antonia; Thanos, Loukas; Koutsogiannis, Ioannis; Ziakas, Panayiotis D.; Alexopoulou, Efthimia

    2014-01-01

    Image-guided radiofrequency ablation is a well-accepted technique of interventional oncology in adults. To evaluate the efficacy and safety of CT-guided radiofrequency ablation as a minimally invasive treatment for metastatic neoplasms in children. A total of 15 radiofrequency ablation sessions were performed in 12 children and young adults (median age 9.5; range 5-18 years) with metastatic malignancies. Seven children and young adults had secondary hepatic lesions, three had pulmonary and two had bone lesions. Radiofrequency ablation was performed under conscious sedation. The median lesion size was 1.7 cm (range 1.3-2.8 cm). The median time for ablation was 8 min (range 7-10 min). Radiofrequency procedures were technically successful in all tumors. Postablation imaging immediately after, and 1 month and 3 months after radiofrequency ablation showed total necrosis in all patients. At 6-month follow-up, three patients (all with lesion size >2 cm) had local recurrence and underwent a second radiofrequency ablation session. At 2-year follow-up no patient had recurrence of the treated tumor. Post-ablation syndrome occurred in four children. No major complication occurred. CT-guided radiofrequency tumor ablation was safe and efficient for palliative treatment in our cohort of patients. (orig.)

  6. CT-guided radiofrequency tumor ablation in children

    Energy Technology Data Exchange (ETDEWEB)

    Botsa, Evanthia [National and Kapodistrian University of Athens, First Pediatric Clinic, Agia Sofia Children' s Hospital, Athens (Greece); Poulou, Loukia S.; Koundouraki, Antonia; Thanos, Loukas [Sotiria General Hospital for Chest Diseases, Department of Medical Imaging and Interventional Radiology, Athens (Greece); Koutsogiannis, Ioannis [General Military Hospital NIMTS, Department of Medical Imaging, Athens (Greece); Ziakas, Panayiotis D. [Warren Alpert Medical School of Brown University Rhode Island Hospital, Division of Infectious Diseases, Providence, RI (United States); Alexopoulou, Efthimia [Attikon University Hospital, Second Department of Radiology, Athens University School of Medicine, Athens (Greece)

    2014-11-15

    Image-guided radiofrequency ablation is a well-accepted technique of interventional oncology in adults. To evaluate the efficacy and safety of CT-guided radiofrequency ablation as a minimally invasive treatment for metastatic neoplasms in children. A total of 15 radiofrequency ablation sessions were performed in 12 children and young adults (median age 9.5; range 5-18 years) with metastatic malignancies. Seven children and young adults had secondary hepatic lesions, three had pulmonary and two had bone lesions. Radiofrequency ablation was performed under conscious sedation. The median lesion size was 1.7 cm (range 1.3-2.8 cm). The median time for ablation was 8 min (range 7-10 min). Radiofrequency procedures were technically successful in all tumors. Postablation imaging immediately after, and 1 month and 3 months after radiofrequency ablation showed total necrosis in all patients. At 6-month follow-up, three patients (all with lesion size >2 cm) had local recurrence and underwent a second radiofrequency ablation session. At 2-year follow-up no patient had recurrence of the treated tumor. Post-ablation syndrome occurred in four children. No major complication occurred. CT-guided radiofrequency tumor ablation was safe and efficient for palliative treatment in our cohort of patients. (orig.)

  7. Radiofrequency Thermal Ablation Heat Energy Transfer in an Ex-Vivo Model.

    Science.gov (United States)

    Thakur, Shivani; Lavito, Sandi; Grobner, Elizabeth; Grobner, Mark

    2017-12-01

    Little work has been done to consider the temperature changes and energy transfer that occur in the tissue outside the vein with ultrasound-guided vein ablation therapy. In this experiment, a Ex-Vivo model of the human calf was used to analyze heat transfer and energy degradation in tissue surrounding the vein during endovascular radiofrequency ablation (RFA). A clinical vein ablation protocol was used to determine the tissue temperature distribution in 10 per cent agar gel. Heat energy from the radiofrequency catheter was measured for 140 seconds at fixed points by four thermometer probes placed equidistant radially at 0.0025, 0.005, and 0.01 m away from the RFA catheter. The temperature rose 1.5°C at 0.0025 m, 0.6°C at 0.005 m, and 0.0°C at 0.01 m from the RFA catheter. There was a clinically insignificant heat transfer at the distances evaluated, 1.4 ± 0.2 J/s at 0.0025 m, 0.7 ± 0.3 J/s at 0.0050 m, and 0.3 ± 0.0 J/s at 0.01 m. Heat degradation occurred rapidly: 4.5 ± 0.5 J (at 0.0025 m), 4.0 ± 1.6 J (at 0.0050 m), and 3.9 ± 3.6 J (at 0.01 m). Tumescent anesthesia injected one centimeter around the vein would act as a heat sink to absorb the energy transferred outside the vein to minimize tissue and nerve damage and will help phlebologists strategize options for minimizing damage.

  8. Contrast-enhanced ultrasound-guided radiofrequency ablation in inconspicuous hepatocellular carcinoma on B-mode ultrasound.

    Science.gov (United States)

    Kim, Eui Joo; Kim, Yun Soo; Shin, Seung Kak; Kwon, Oh Sang; Choi, Duck Joo; Kim, Ju Hyun

    2017-11-01

    B-mode ultrasound (US) has difficulty targeting small hepatocellular carcinomas (HCCs) with poor conspicuity during radiofrequency ablation (RFA). Contrast-enhanced ultrasound (CEUS) can improve visualization of small or inconspicuous HCCs. This study was conducted to evaluate the effectiveness of CEUS-guided RFA electrode insertion during the arterial phase in inconspicuous HCCs. Ninety-three treatment-naïve HCCs from 80 patients treated with RFA from August 2012 to December 2014 were retrospectively reviewed. Seventy-five HCCs from 65 patients underwent B-mode US-guided RFA, and 15 HCCs from 14 patients that were inconspicuous on B-mode US underwent CEUS-guided RFA during the arterial phase after injection of sulfur hexafluoride microbubbles (SonoVue®). Technical success was assessed by contrast-enhanced computed tomography within 1 week and 3 months after the procedure. The mean size of HCCs treated with CEUS-guided RFA was smaller than that of HCCs treated with B-mode US-guided RFA (1.17±0.36 vs. 1.63±0.55 cm, p=0.003). Technical success rates of CEUS-guided RFA within 1 week and 3 months were 100% (15/15) and 93.3% (14/15), respectively. Technical success rates of B-mode US-guided RFA were 97.3% (73/75) and 94.5% (69/73), respectively. CEUS-guided RFA is highly efficacious for ablation of very small and inconspicuous HCCs.

  9. Analysis of Thermal Properties on Backward Feed Multi effect Distillation Dealing with High-Salinity Wastewater

    International Nuclear Information System (INIS)

    Xue, J.; Ming, J.; Li, L.; Cui, Q.; Bai, Y.

    2015-01-01

    Theoretical investigations on thermal properties of multi effect distillation (MED) are presented to approach lower capital costs and more distillated products. A mathematical model, based on the energy and mass balance, is developed to (i) evaluate the influences of variations in key parameters (effect numbers, evaporation temperature in last effect, and feed salinity) on steam consumption, gained output ratio (GOR), and total heat transfer areas of MED and (II) compare two operation modes (backward feed (BF) and forward feed (FF) systems). The result in the first part indicated that GOR and total heat transfer areas increased with the effect numbers. Also, higher effect numbers result in the fact that the evaporation temperature in last effect has slight influence on GOR, while it influences the total heat transfer areas remarkably. In addition, an increase of feed salinity promotes the total heat transfer areas but reduces GOR. The analyses in the second part indicate that GOR and total heat transfer areas of BF system are higher than those in FF system. One thing to be aware of is that the changes of steam consumption can be omitted, considering that it shows an opposite trend to GOR.

  10. RADIOFREQUENCY SUPERCONDUCTIVITY: Workshop

    International Nuclear Information System (INIS)

    Lengeler, Herbert

    1989-01-01

    Superconducting radiofrequency is already playing an important role in the beam acceleration system for the TRISTAN electron-positron collider at the Japanese KEK Laboratory and new such systems are being prepared for other major machines. Thus the fourth Workshop on Radiofrequency Superconductivity, organized by KEK under the chairmanship of local specialist Yuzo Kojima and held just before the International Conference on High Energy Accelerators, had much progress to review and even more to look forward to

  11. Benign thyroid nodule unresponsive to radiofrequency ablation treated with laser ablation: a case report.

    Science.gov (United States)

    Oddo, Silvia; Balestra, Margherita; Vera, Lara; Giusti, Massimo

    2018-05-11

    Radiofrequency ablation and laser ablation are safe and effective techniques for reducing thyroid nodule volume, neck symptoms, and cosmetic complaints. Therapeutic success is defined as a nodule reduction > 50% between 6 and 12 months after the procedure, but a percentage of nodules inexplicably do not respond to thermal ablation. We describe the case of a young Caucasian woman with a solid benign thyroid nodule who refused surgery and who had undergone radiofrequency ablation in 2013. The nodule did not respond in terms of either volume reduction or improvement in neck symptoms. After 2 years, given the patient's continued refusal of thyroidectomy, we proposed laser ablation. The nodule displayed a significant volume reduction (- 50% from radiofrequency ablation baseline volume, - 57% from laser ablation baseline), and the patient reported a significant improvement in neck symptoms (from 6/10 to 1/10 on a visual analogue scale). We conjecture that some benign thyroid nodules may be intrinsically resistant to necrosis when one specific ablation technique is used, but may respond to another technique. To the best of our knowledge, this is the first description of the effect of performing a different percutaneous ablation technique in a nodule that does not respond to radiofrequency ablation.

  12. Chemotherapy and Radiofrequency-Induced Mild Hyperthermia Combined Treatment of Orthotopic Pancreatic Ductal Adenocarcinoma Xenografts.

    Science.gov (United States)

    Krzykawska-Serda, Martyna; Agha, Mahdi S; Ho, Jason Chak-Shing; Ware, Matthew J; Law, Justin J; Newton, Jared M; Nguyen, Lam; Curley, Steven A; Corr, Stuart J

    2018-04-02

    Patients with pancreatic ductal adenocarcinomas (PDAC) have one of the poorest survival rates of all cancers. The main reason for this is related to the unique tumor stroma and poor vascularization of PDAC. As a consequence, chemotherapeutic drugs, such as nab-paclitaxel and gemcitabine, cannot efficiently penetrate into the tumor tissue. Non-invasive radiofrequency (RF) mild hyperthermia treatment was proposed as a synergistic therapy to enhance drug uptake into the tumor by increasing tumor vascular inflow and perfusion, thus, increasing the effect of chemotherapy. RF-induced hyperthermia is a safer and non-invasive technique of tumor heating compared to conventional contact heating procedures. In this study, we investigated the short- and long-term effects (~20 days and 65 days, respectively) of combination chemotherapy and RF hyperthermia in an orthotopic PDAC model in mice. The benefit of nab-paclitaxel and gemcitabine treatment was confirmed in mice; however, the effect of treatment was statistically insignificant in comparison to saline treated mice during long-term observation. The benefit of RF was minimal in the short-term and completely insignificant during long-term observation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Cooling system for the IFMIF-EVEDA radiofrequency system; Sistema de refrigeracion del sistema de radiofrecuencia del IFMIF-EVEDA

    Energy Technology Data Exchange (ETDEWEB)

    Perez Pichel, G. D.

    2012-07-01

    The IFMIF-EVEDA project consists on an accelerator prototype that will be installed at Rokkasho (Japan). Through CIEMAT, that is responsible of the development of many systems and components. Empresarios Agrupados get the responsibility of the detailed design of the cooling system for the radiofrequency system (RF system) that must feed the accelerator. the RF water cooling systems is the water primary circuit that provides the required water flow (with a certain temperature, pressure and water quality) and also dissipates the necessary thermal power of all the radiofrequency system equipment. (Author) 4 refs.

  14. A Retrospective Evaluation of Subsurface Monopolar Radiofrequency for Lifting of the Face, Neck, and Jawline.

    Science.gov (United States)

    Dendle, Julia; Wu, Douglas C; Fabi, Sabrina G; Melo, Diana; Goldman, Mitchel P

    2016-11-01

    Subsurface monopolar radiofrequency (SMRF) has emerged as a new method for reducing skin laxity via the controlled delivery of thermal energy below the skin using a radiofrequency probe. To evaluate the overall efficacy of the treatment and satisfaction ratings of subjects who underwent a single SMRF treatment to the face, neck, or jawline (or some combination). A retrospective, single-center study was conducted in which data were obtained via subject follow-ups at 90 and 180 days posttreatment. A total of 35 subjects, 6 men and 29 women, underwent a single SMRF treatment. Overall, 77% of subjects reported improvement, and 64% reported satisfaction with the treatment site at Day 180 posttreatment. Subsurface monopolar radiofrequency represents an effective modality to achieve skin tightening of the face, neck, and jawline. The data suggest that there is an energy delivery threshold, above which a higher percentage of subjects report satisfaction. Analysis of treatments parameters suggests an optimal treatment time and tissue temperature that should be achieved to maximize results.

  15. 21 CFR 882.4400 - Radiofrequency lesion generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiofrequency lesion generator. 882.4400 Section... (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4400 Radiofrequency lesion generator. (a) Identification. A radiofrequency lesion generator is a device used to produce...

  16. Salinity changes and anoxia resulting from enhanced run-off during the late Permian global warming and mass extinction event

    Directory of Open Access Journals (Sweden)

    E. E. van Soelen

    2018-04-01

    Full Text Available The late Permian biotic crisis had a major impact on marine and terrestrial environments. Rising CO2 levels following Siberian Trap volcanic activity were likely responsible for expanding marine anoxia and elevated water temperatures. This study focuses on one of the stratigraphically most expanded Permian–Triassic records known, from Jameson Land, East Greenland. High-resolution sampling allows for a detailed reconstruction of the changing environmental conditions during the extinction event and the development of anoxic water conditions. Since very little is known about how salinity was affected during the extinction event, we especially focus on the aquatic palynomorphs and infer changes in salinity from changes in the assemblage and morphology. The start of the extinction event, here defined by a peak in spore : pollen, indicating disturbance and vegetation destruction in the terrestrial environment, postdates a negative excursion in the total organic carbon, but predates the development of anoxia in the basin. Based on the newest estimations for sedimentation rates, the marine and terrestrial ecosystem collapse took between 1.6 and 8 kyr, a much shorter interval than previously estimated. The palynofacies and palynomorph records show that the environmental changes can be explained by enhanced run-off and increased primary productivity and water column stratification. A lowering in salinity is supported by changes in the acritarch morphology. The length of the processes of the acritarchs becomes shorter during the extinction event and we propose that these changes are evidence for a reduction in salinity in the shallow marine setting of the study site. This inference is supported by changes in acritarch distribution, which suggest a change in palaeoenvironment from open marine conditions before the start of the extinction event to more nearshore conditions during and after the crisis. In a period of sea-level rise, such a reduction

  17. Salinity changes and anoxia resulting from enhanced run-off during the late Permian global warming and mass extinction event

    Science.gov (United States)

    van Soelen, Elsbeth E.; Twitchett, Richard J.; Kürschner, Wolfram M.

    2018-04-01

    The late Permian biotic crisis had a major impact on marine and terrestrial environments. Rising CO2 levels following Siberian Trap volcanic activity were likely responsible for expanding marine anoxia and elevated water temperatures. This study focuses on one of the stratigraphically most expanded Permian-Triassic records known, from Jameson Land, East Greenland. High-resolution sampling allows for a detailed reconstruction of the changing environmental conditions during the extinction event and the development of anoxic water conditions. Since very little is known about how salinity was affected during the extinction event, we especially focus on the aquatic palynomorphs and infer changes in salinity from changes in the assemblage and morphology. The start of the extinction event, here defined by a peak in spore : pollen, indicating disturbance and vegetation destruction in the terrestrial environment, postdates a negative excursion in the total organic carbon, but predates the development of anoxia in the basin. Based on the newest estimations for sedimentation rates, the marine and terrestrial ecosystem collapse took between 1.6 and 8 kyr, a much shorter interval than previously estimated. The palynofacies and palynomorph records show that the environmental changes can be explained by enhanced run-off and increased primary productivity and water column stratification. A lowering in salinity is supported by changes in the acritarch morphology. The length of the processes of the acritarchs becomes shorter during the extinction event and we propose that these changes are evidence for a reduction in salinity in the shallow marine setting of the study site. This inference is supported by changes in acritarch distribution, which suggest a change in palaeoenvironment from open marine conditions before the start of the extinction event to more nearshore conditions during and after the crisis. In a period of sea-level rise, such a reduction in salinity can only be

  18. Radiofrequency Energy and Electrode Proximity Influences Stereoelectroencephalography-Guided Radiofrequency Thermocoagulation Lesion Size: An In Vitro Study with Clinical Correlation.

    Science.gov (United States)

    Staudt, Michael D; Maturu, Sarita; Miller, Jonathan P

    2018-02-16

    Radiofrequency thermocoagulation of epileptogenic foci via stereoelectroencephalography (SEEG) electrodes has been suggested as a treatment for medically intractable epilepsy, but reported outcomes have been suboptimal, possibly because lesions generated using conventional high-energy radiofrequency parameters are relatively small. To describe a technique of delivering low energy across separate SEEG electrodes in order to create large confluent radiofrequency lesions. The size and configuration of radiofrequency lesions using different radiofrequency intensity and interelectrode distance was assessed in egg whites. Magnetic resonance images (MRI) from 3 patients who had undergone radiofrequency lesion creation were evaluated to determine the contribution of lesion intensity and electrode separation on lesion size. Electroencephalography, MRI, and clinical data were assessed before and after lesion creation. Both in Vitro and in Vivo analysis revealed that less energy paradoxically produced larger lesions, with the largest possible lesions produced when radiofrequency power was applied for long duration at less than 3 W. Linear separation of electrodes also contributed to lesion size, with largest lesions produced when electrodes were separated by a linear distance of between 5 and 12 mm. Clinical lesions produced using these parameters were large and resulted in improvement in interictal and ictal activity. Radiofrequency lesions produced using low-energy delivery between SEEG electrodes in close proximity can produce a large lesion. These findings might have advantages for treatment of focal epilepsy.

  19. Radiofrequency ablation of hepatocellular carcinoma: Mono or multipolar?

    Science.gov (United States)

    Cartier, Victoire; Boursier, Jérôme; Lebigot, Jérôme; Oberti, Frédéric; Fouchard-Hubert, Isabelle; Aubé, Christophe

    2016-03-01

    Thermo-ablation by radiofrequency is recognized as a curative treatment for early-stage hepatocellular carcinoma. However, local recurrence may occur because of incomplete peripheral tumor destruction. Multipolar radiofrequency has been developed to increase the size of the maximal ablation zone. We aimed to compare the efficacy of monopolar and multipolar radiofrequency for the treatment of hepatocellular carcinoma and determine factors predicting failure. A total of 171 consecutive patients with 214 hepatocellular carcinomas were retrospectively included. One hundred fifty-eight tumors were treated with an expandable monopolar electrode and 56 with a multipolar technique using several linear bipolar electrodes. Imaging studies at 6 weeks after treatment, then every 3 months, assessed local effectiveness. Radiofrequency failure was defined as persistent residual tumor after two sessions (primary radiofrequency failure) or local tumor recurrence during follow-up. This study received institutional review board approval (number 2014/77). Imaging showed complete tumor ablation in 207 of 214 lesions after the first session of radiofrequency. After a second session, only two cases of residual viable tumor were observed. During follow-up, there were 46 local tumor recurrences. Thus, radiofrequency failure occurred in 48/214 (22.4%) cases. By multivariate analysis, technique (P radiofrequency failure. Failure rate was lower with the multipolar technique for tumors radiofrequency, multipolar radiofrequency improves tumor ablation with a subsequent lower rate of local tumor recurrence. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  20. Using Nanoparticles for Enhance Thermal Conductivity of Latent Heat Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Baydaa Jaber Nabhan

    2015-06-01

    Full Text Available Phase change materials (PCMs such as paraffin wax can be used to store or release large amount of energy at certain temperature at which their solid-liquid phase changes occurs. Paraffin wax that used in latent heat thermal energy storage (LHTES has low thermal conductivity. In this study, the thermal conductivity of paraffin wax has been enhanced by adding different mass concentration (1wt.%, 3wt.%, 5wt.% of (TiO2 nano-particles with about (10nm diameter. It is found that the phase change temperature varies with adding (TiO2 nanoparticles in to the paraffin wax. The thermal conductivity of the composites is found to decrease with increasing temperature. The increase in thermal conductivity has been found to increase by about (10% at nanoparticles loading (5wt.% and 15oC.

  1. Ectopic expression of phloem motor protein pea forisome PsSEO-F1 enhances salinity stress tolerance in tobacco.

    Science.gov (United States)

    Srivastava, Vineet Kumar; Raikwar, Shailendra; Tuteja, Renu; Tuteja, Narendra

    2016-05-01

    PsSEOF-1 binds to calcium and its expression is upregulated by salinity treatment. PsSEOF - 1 -overexpressing transgenic tobacco showed enhanced salinity stress tolerance by maintaining cellular ion homeostasis and modulating ROS-scavenging pathway. Calcium (Ca(2+)) plays important role in growth, development and stress tolerance in plants. Cellular Ca(2+) homeostasis is achieved by the collective action of channels, pumps, antiporters and by Ca(2+) chelators present in the cell like calcium-binding proteins. Forisomes are ATP-independent mechanically active motor proteins known to function in wound sealing of injured sieve elements of phloem tissue. The Ca(2+)-binding activity of forisome and its role in abiotic stress signaling were largely unknown. Here we report the Ca(2+)-binding activity of pea forisome (PsSEO-F1) and its novel function in promoting salinity tolerance in transgenic tobacco. Native PsSEO-F1 promoter positively responded in salinity stress as confirmed using GUS reporter. Overexpression of PsSEO-F1 tobacco plants confers salinity tolerance by alleviating ionic toxicity and increased ROS scavenging activity which probably results in reduced membrane damage and improved yield under salinity stress. Evaluation of several physiological indices shows an increase in relative water content, electrolyte leakage, proline accumulation and chlorophyll content in transgenic lines as compared with null-segregant control. Expression of several genes involved in cellular homeostasis is perturbed by PsSEO-F1 overexpression. These findings suggest that PsSEO-F1 provides salinity tolerance through cellular Ca(2+) homeostasis which in turn modulates ROS machinery providing indirect link between Ca(2+) and ROS signaling under salinity-induced perturbation. PsSEO-F1 most likely functions in salinity stress tolerance by improving antioxidant machinery and mitigating ion toxicity in transgenic lines. This finding should make an important contribution in our better

  2. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean

    KAUST Repository

    Mahmood, Sajid

    2016-06-17

    The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha−1), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m−1). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha−1 resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry.

  3. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean

    KAUST Repository

    Mahmood, Sajid; Daur, Ihsanullah; Al-Solaimani, Samir G.; Ahmad, Shakeel; Madkour, Mohamed H.; Yasir, Muhammad; Hirt, Heribert; Ali, Shawkat; Ali, Zahir

    2016-01-01

    The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha−1), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m−1). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha−1 resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry.

  4. Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections

    International Nuclear Information System (INIS)

    Deli, Martin; Fritz, Jan; Mateiescu, Serban; Busch, Martin; Carrino, John A.; Becker, Jan; Garmer, Marietta; Grönemeyer, Dietrich

    2013-01-01

    Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 with gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 ± 9 min in the gadolinium-enhanced saline solution group and 22 ± 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.

  5. Microplasma radiofrequency technology combined with triamcinolone improved the therapeutic effect on Chinese patients with hypertrophic scar and reduced the risk of tissue atrophy.

    Science.gov (United States)

    Yu, Shui; Li, Hengjin

    2016-01-01

    The current study aimed to assess the value of microplasma radiofrequency technology combined with triamcinolone for the therapy of Chinese patients with hypertrophic scar. A total of 120 participants with hypertrophic scars were enrolled in the current study. Participants were divided into two groups based on sex, and then randomly and evenly divided into four groups (Groups A, B, C, and D). Participants in Group A received microplasma radiofrequency technology combined with triamcinolone. Participants in Group B received microplasma radiofrequency technology combined with normal saline. Participants in Groups C and D received triamcinolone (40 and 10 mg/mL) injected directly into scar. Experienced physicians evaluated the condition of scars according to the Vancouver Scar Scale 1 month before and after the therapy. There was no difference in age, sex, area, height and location of scars, and Vancouver Scar Scale scores before the therapy between any groups (P>0.05 for all). Vancouver Scar Scale scores after the therapy were significantly lower than those before the therapy in all groups (P0.05 for all). Incidences of tissue atrophy after the therapy were significantly lower in Groups A and B than in Group C (P0.05 for all). Microplasma radiofrequency technology combined with triamcinolone improved the therapeutic effect on Chinese patients with hypertrophic scar and reduced the risk of tissue atrophy compared with the use of either microplasma radiofrequency technology or triamcinolone injection alone.

  6. A survey on monopolar radiofrequency treatment.

    Science.gov (United States)

    Suh, Dong Hye; Hong, Eun Sun; Kim, Hyun Joo; Lee, Sang Jun; Kim, Hei Sung

    2017-09-01

    This questionnaire-based study was aimed to measure the level of appreciation, awareness of the special tips, and practice patterns of monopolar radiofrequency among Korean dermatologists practicing a specific monopolar radiofrequency device (Thermage® Inc., Hayward, CA). A total of 82 surveys were analyzed to show that the majority of participants (78.8%) were highly satisfied with the outcomes of monopolar radiofrequency treatment. All respondents were aware of the Eye Tip 0.25 cm 2 , and the majority knew the difference between the Face tip (blue) and the Total tip (orange). Most (86.3%) agreed to the statement that 900 shots were appropriate for facial tightening in those between the ages of 35 and 65 years. 66.2% of participants reported to have perform monopolar radiofrequency to extra-facial sites within the past year. As for the tips, the Total tip was most popular for all body sties and the Big tip was favored for the abdomen, thighs and buttock. We hope our data allow dermatologists to better utilize monopolar radiofrequency. © 2017 Wiley Periodicals, Inc.

  7. Percutaneous thermal ablation of renal neoplasms

    International Nuclear Information System (INIS)

    Tacke, J.; Mahnken, A.H.; Guenther, R.W.

    2005-01-01

    Due to modern examination techniques such as multidetector computed tomography and high-field magnetic resonance imaging, the detection rate of renal neoplasms is continually increasing. Even though tumors exceeding 4 cm in diameter rarely metastasize, all renal lesions that are possible neoplasms should be treated. Traditional treatment techniques include radical nephrectomy or nephron-sparing resection, which are increasingly performed laparoscopically. Modern thermal ablation techniques such as hyperthermal techniques like radiofrequency ablation RFA, laser induced thermal ablation LITT, focused ultrasound FUS and microwave therapy MW, as well as hypothermal techniques (cryotherapy) may be a useful treatment option for patients who are unfit for or refuse surgical resection. Cryotherapy is the oldest and best known thermal ablation technique and can be performed laparoscopically or percutaneously. Since subzero temperatures have no antistyptic effect, additional maneuvers must be performed to control bleeding. Percutaneous cryotherapy of renal tumors is a new and interesting method, but experience with it is still limited. Radiofrequency ablation is the most frequently used method. Modern probe design allows volumes between 2 and 5 cm in diameter to be ablated. Due to hyperthermal tract ablation, the procedure is deemed to be safe and has a low complication rate. Although there are no randomized comparative studies to open resection, the preliminary results for renal RFA are promising and show RFA to be superior to other thermal ablation techniques. Clinical success rates are over 90% for both, cryo- and radiofrequency ablation. Whereas laser induced thermal therapy is established in hepatic ablation, experience is minimal with respect to renal application. For lesions of more than 2 cm in diameter, additional cooling catheters are required. MR thermometry offers temperature control during ablation. Microwave ablation is characterized by small ablation volumes

  8. Radiofrequency attenuator and method

    Science.gov (United States)

    Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM; Agrawal, Anoop [Tucson, AZ; Hall, Simon B [Palmerston North, NZ

    2009-01-20

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  9. 21 CFR 886.4100 - Radiofrequency electrosurgical cautery apparatus.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiofrequency electrosurgical cautery apparatus... SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4100 Radiofrequency electrosurgical cautery apparatus. (a) Identification. A radiofrequency electrosurgical cautery apparatus is an AC...

  10. Effect of parallel radiofrequency transmission on arterial input function selection in dynamic contrast-enhanced 3 Tesla pelvic MRI.

    Science.gov (United States)

    Chafi, Hatim; Elias, Saba N; Nguyen, Huyen T; Friel, Harry T; Knopp, Michael V; Guo, BeiBei; Heymsfield, Steven B; Jia, Guang

    2016-01-01

    To evaluate whether parallel radiofrequency transmission (mTX) can improve the symmetry of the left and right femoral arteries in dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of prostate and bladder cancer. Eighteen prostate and 24 bladder cancer patients underwent 3.0 Tesla DCE-MRI scan with a single transmission channel coil. Subsequently, 21 prostate and 21 bladder cancer patients were scanned using the dual channel mTX upgrade. The precontrast signal ( S0) and the maximum enhancement ratio (MER) were measured in both the left and the right femoral arteries. Within the patient cohort, the ratio of S0 and MER in the left artery to that in the right artery ( S0_LR, MER_LR) was calculated with and without the use of mTX. Left to right asymmetry indices for S0 ( S0_LRasym) and MER ( MER_LRasym) were defined as the absolute values of the difference between S0_LR and 1, and the difference between MER_LR and 1, respectively. S0_LRasym, and MER_LRasym were 0.21 and 0.19 for prostate cancer patients with mTX, and 0.43 and 0.45 for the ones imaged without it (P enhancement. © 2015 Wiley Periodicals, Inc.

  11. Method for enhancing the thermal stability of ionic compounds

    DEFF Research Database (Denmark)

    2013-01-01

    This invention relates to a method for enhancing the thermal stability of ionic compounds including ionic liquids, by immobilization on porous solid support materials having a pore diameter of between about 20-200 AA, wherein the solid support does not have a pore size of 90 AA.......This invention relates to a method for enhancing the thermal stability of ionic compounds including ionic liquids, by immobilization on porous solid support materials having a pore diameter of between about 20-200 AA, wherein the solid support does not have a pore size of 90 AA....

  12. Therapeutic response assessment of percutaneous radiofrequency ablation for hepatocellular carcinoma: Utility of contrast-enhanced agent detection imaging

    International Nuclear Information System (INIS)

    Kim, Chan Kyo; Choi, Dongil; Lim, Hyo K.; Kim, Seung Hoon; Lee, Won Jae; Kim, Min Ju; Lee, Ji Yeon; Jeon, Yong Hwan; Lee, Jongmee; Lee, Soon Jin; Lim, Jae Hoon

    2005-01-01

    Purpose: To assess the utility of contrast-enhanced agent detection imaging (ADI) in the assessment of the therapeutic response to percutaneous radiofrequency (RF) ablation in patients with hepatocellular carcinoma (HCC). Materials and methods: Ninety patients with a total of 97 nodular HCCs (mean, 2.1 ± 1.3 cm; range, 1.0-5.0 cm) treated with percutaneous RF ablation under the ultrasound guidance were evaluated with contrast-enhanced ADI after receiving an intravenous bolus injection of a microbubble contrast agent (SH U 508A). We obtained serial contrast-enhanced ADI images during the time period from 15 to 90 s after the initiation of the bolus contrast injection. All of the patients underwent a follow-up four-phase helical CT at 1 month after RF ablation, which was then repeated at 2-4 month intervals during a period of at least 12 months. The results of the contrast-enhanced ADI were compared with those of the follow-up CT in terms of the presence or absence of residual unablated tumor and local tumor progression in the treated lesions. Results: On contrast-enhanced ADI, technical success was obtained in 94 (97%) of the 97 HCCs, while residual unablated tumors were found in three HCCs (3%). Two of the three tumors that were suspicious (was not proven) for incomplete ablation were subjected to additional RF ablation. The remaining one enhancing lesion that was suspicious of a residual tumor on contrast-enhanced ADI was revealed to be reactive hyperemia at the 1-month follow-up CT. Therefore; the diagnostic concordance between the contrast-enhanced ADI and 1-month follow-up CT was 99%. Of the 94 ablated HCCs without residual tumors on both the contrast-enhanced ADI and 1-month follow-up CT after the initial RF ablation, five (5%) had CT findings of local tumor progression at a subsequent follow-up CT. Conclusion: Despite its limitations in predicting local tumor progression in the treated tumors, contrast-enhanced ADI is potentially useful for evaluating the

  13. Investigation on two abnormal phenomena about thermal conductivity enhancement of BN/EG nanofluids.

    Science.gov (United States)

    Li, Yanjiao; Zhou, Jing'en; Luo, Zhifeng; Tung, Simon; Schneider, Eric; Wu, Jiangtao; Li, Xiaojing

    2011-07-09

    The thermal conductivity of boron nitride/ethylene glycol (BN/EG) nanofluids was investigated by transient hot-wire method and two abnormal phenomena was reported. One is the abnormal higher thermal conductivity enhancement for BN/EG nanofluids at very low-volume fraction of particles, and the other is the thermal conductivity enhancement of BN/EG nanofluids synthesized with large BN nanoparticles (140 nm) which is higher than that synthesized with small BN nanoparticles (70 nm). The chain-like loose aggregation of nanoparticles is responsible for the abnormal increment of thermal conductivity enhancement for the BN/EG nanofluids at very low particles volume fraction. And the difference in specific surface area and aspect ratio of BN nanoparticles may be the main reasons for the abnormal difference between thermal conductivity enhancements for BN/EG nanofluids prepared with 140- and 70-nm BN nanoparticles, respectively.

  14. Enhanced Thermal Conductivity of Copper Nanofluids: The Effect of Filler Geometry.

    Science.gov (United States)

    Bhanushali, Sushrut; Jason, Naveen Noah; Ghosh, Prakash; Ganesh, Anuradda; Simon, George P; Cheng, Wenlong

    2017-06-07

    Nanofluids are colloidal dispersions that exhibit enhanced thermal conductivity at low filler loadings and thus have been proposed for heat transfer applications. Here, we systematically investigate how particle shape determines the thermal conductivity of low-cost copper nanofluids using a range of distinct filler particle shapes: nanospheres, nanocubes, short nanowires, and long nanowires. To exclude the potential effects of surface capping ligands, all the filler particles are kept with uniform surface chemistry. We find that copper nanowires enhanced the thermal conductivity up to 40% at 0.25 vol % loadings; while the thermal conductivity was only 9.3% and 4.2% for the nanosphere- and nanocube-based nanofluids, respectively, at the same filler loading. This is consistent with a percolation mechanism in which a higher aspect ratio is beneficial for thermal conductivity enhancement. To overcome the surface oxidation of the copper nanomaterials and maintain the dispersion stability, we employed polyvinylpyrrolidone (PVP) as a dispersant and ascorbic acid as an antioxidant in the nanofluid formulations. The thermal performance of the optimized fluid formulations could be sustained for multiple heating-cooling cycles while retaining stability over 1000 h.

  15. Temperature-controlled irrigated tip radiofrequency catheter ablation

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, Adrian

    1998-01-01

    INTRODUCTION: In patients with ventricular tachycardias due to structural heart disease, catheter ablation cures radiofrequency ablation. Irrigated tip radiofrequency ablation using power control and high infusion rates enlarges lesion......: We conclude that temperature-controlled radiofrequency ablation with irrigated tip catheters using low target temperature and low infusion rate enlarges lesion size without increasing the incidence of cratering and reduces coagulum formation of the tip....

  16. Radiofrequency Ablation of Hepatic Cysts : Case Report

    International Nuclear Information System (INIS)

    Lee, Ye Ri; Kim, Pyo Nyun

    2005-01-01

    Radiofrequency ablation has been frequently performed on intra-hepatic solid tumor, namely, hepatocellular carcinoma, metastatic tumor and cholangio carcinoma, for take the cure. But, the reports of radiofrequency ablation for intrahepatic simple cysts are few. In vitro experiment of animal and in vivo treatment for intrahepatic cysts of human had been reported in rare cases. We report 4 cases of radiofrequency ablation for symptomatic intrahepatic cysts

  17. Biliary peritonitis after radiofrequency ablation diagnosed by gadoxetic acid-enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Akihiro; Isoda, Hiroyoshi; Togashi, Kaori [Dept. of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto (Japan); Koyama, Takashi; Todo, Giro; Osaki, Yukio [Osaka Red Cross Hospital, Osaka (Japan)

    2013-12-15

    This study describes the first case of biliary peritonitis after radiofrequency ablation diagnosed by magnetic resonance (MR) imaging with gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA), a hepatocyte-specific MR imaging contrast agent. The image acquired 300 minutes after the administration of Gd-EOB-DTPA was useful to make a definite diagnosis and to identify the pathway of bile leakage. It is important to decide on the acquisition timing with consideration of the predicted location of bile duct injury.

  18. 47 CFR 1.1310 - Radiofrequency radiation exposure limits.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Radiofrequency radiation exposure limits. 1... Procedures Implementing the National Environmental Policy Act of 1969 § 1.1310 Radiofrequency radiation... exposure to radiofrequency (RF) radiation as specified in § 1.1307(b), except in the case of portable...

  19. Fabrication and analysis of small-scale thermal energy storage with conductivity enhancement

    International Nuclear Information System (INIS)

    Thapa, Suvhashis; Chukwu, Sam; Khaliq, Abdul; Weiss, Leland

    2014-01-01

    Highlights: • Useful thermal conductivity envelope established for small scale TES. • Paraffin conductivity enhanced from .5 to 3.8 W/m K via low-cost copper insert. • Conductivity increase beyond 5 W/m K shows diminished returns. • Storage with increased conductivity lengthened thermoelectric output up to 247 s. - Abstract: The operation and useful operating parameters of a small-scale Thermal Energy Storage (TES) device that collects and stores heat in a Phase Change Material (PCM) is explored. The PCM utilized is an icosane wax. A physical device is constructed on the millimeter scale to examine specific effects of low-cost thermal conductivity enhancements that include copper foams and other metallic inserts. Numerical methods are utilized to establish useful operating range of small-scale TES devices in general, and the limits of thermal conductivity enhancement on thermoelectric operation specifically. Specific attention is paid to the manufacturability of the various constructs as well as the resulting thermal conductivity enhancement. A maximum thermal conductivity of 3.8 W/m K is achieved in experimental testing via copper foam enhancement. A simplified copper matrix achieves conductivity of 3.7 W/m K and allows significantly reduced fabrication effort. These results compare favorably to baseline wax conductivity of .5 W/m K. Power absorption is recorded of about 900 W/m 2 . Modeling reveals diminishing returns beyond 4–6 W/m K for devices on this scale. Results show the system capable of extending thermoelectric operation several minutes through the use of thermal energy storage techniques within the effective conductivity ranges

  20. Use of radiofrequency ablation in benign thyroid nodules: a literature review and updates.

    Science.gov (United States)

    Wong, Kai-Pun; Lang, Brian Hung-Hin

    2013-01-01

    Successful thermal ablation using radiofrequency has been reported in various tumors including liver or kidney tumors. Nonsurgical minimally invasive ablative therapy such as radiofrequency ablation (RFA) has been reported to be a safe and efficient treatment option in managing symptomatic cold thyroid nodules or hyperfunctioning thyroid nodules. Pressure and cosmetic symptoms have been shown to be significantly improved both in the short and long terms after RFA. For hyperfunctioning thyroid nodules, RFA is indicated for whom surgery or radioiodine are not indicated or ineffective or for those who refuse surgery or radio-iodine. Improvement of thyroid function with decreased need for antithyroid medications has been reported. Complication rate is relatively low. By reviewing the current literature, we reported its efficacy and complications and compared the efficacy of RFA relative to other ablative options such as ethanol ablation and laser ablation.

  1. Use of Radiofrequency Ablation in Benign Thyroid Nodules: A Literature Review and Updates

    Directory of Open Access Journals (Sweden)

    Kai-Pun Wong

    2013-01-01

    Full Text Available Successful thermal ablation using radiofrequency has been reported in various tumors including liver or kidney tumors. Nonsurgical minimally invasive ablative therapy such as radiofrequency ablation (RFA has been reported to be a safe and efficient treatment option in managing symptomatic cold thyroid nodules or hyperfunctioning thyroid nodules. Pressure and cosmetic symptoms have been shown to be significantly improved both in the short and long terms after RFA. For hyperfunctioning thyroid nodules, RFA is indicated for whom surgery or radioiodine are not indicated or ineffective or for those who refuse surgery or radio-iodine. Improvement of thyroid function with decreased need for antithyroid medications has been reported. Complication rate is relatively low. By reviewing the current literature, we reported its efficacy and complications and compared the efficacy of RFA relative to other ablative options such as ethanol ablation and laser ablation.

  2. New equations for density, entropy, heat capacity, and potential temperature of a saline thermal fluid

    Science.gov (United States)

    Sun, Hongbing; Feistel, Rainer; Koch, Manfred; Markoe, Andrew

    2008-10-01

    A set of fitted polynomial equations for calculating the physical variables density, entropy, heat capacity and potential temperature of a thermal saline fluid for a temperature range of 0-374 °C, pressure range of 0.1-100 MPa and absolute salinity range of 0-40 g/kg is established. The freshwater components of the equations are extracted from the recently released tabulated data of freshwater properties of Wagner and Pruß [2002. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data 31, 387-535]. The salt water component of the equation is based on the near-linear relationship between density, salinity and specific heat capacity and is extracted from the data sets of Feistel [2003. A new extended Gibbs thermodynamic potential of seawater. Progress in Oceanography 58, 43-114], Bromley et al. [1970. Heat capacities and enthalpies of sea salt solutions to 200 °C. Journal of Chemical and Engineering Data 15, 246-253] and Grunberg [1970. Properties of sea water concentrates. In: Third International Symposium on Fresh Water from the Sea, vol. 1, pp. 31-39] in a temperature range 0-200 °C, practical salinity range 0-40, and varying pressure and is also calibrated by the data set of Millero et al. [1981. Summary of data treatment for the international high pressure equation of state for seawater. UNESCO Technical Papers in Marine Science 38, 99-192]. The freshwater and salt water components are combined to establish a workable multi-polynomial equation, whose coefficients were computed through standard linear regression analysis. The results obtained in this way for density, entropy and potential temperature are comparable with those of existing models, except that our new equations cover a wider temperature—(0-374 °C) than the traditional (0-40 °C) temperature range. One can apply these newly established equations to the calculation of in-situ or

  3. Investigation on two abnormal phenomena about thermal conductivity enhancement of BN/EG nanofluids

    Directory of Open Access Journals (Sweden)

    Wu Jiangtao

    2011-01-01

    Full Text Available Abstract The thermal conductivity of boron nitride/ethylene glycol (BN/EG nanofluids was investigated by transient hot-wire method and two abnormal phenomena was reported. One is the abnormal higher thermal conductivity enhancement for BN/EG nanofluids at very low-volume fraction of particles, and the other is the thermal conductivity enhancement of BN/EG nanofluids synthesized with large BN nanoparticles (140 nm which is higher than that synthesized with small BN nanoparticles (70 nm. The chain-like loose aggregation of nanoparticles is responsible for the abnormal increment of thermal conductivity enhancement for the BN/EG nanofluids at very low particles volume fraction. And the difference in specific surface area and aspect ratio of BN nanoparticles may be the main reasons for the abnormal difference between thermal conductivity enhancements for BN/EG nanofluids prepared with 140- and 70-nm BN nanoparticles, respectively.

  4. Simplified method for esophagus protection during radiofrequency catheter ablation of atrial fibrillation - prospective study of 704 cases

    Science.gov (United States)

    Mateos, José Carlos Pachón; Mateos, Enrique I Pachón; Peña, Tomas G Santillana; Lobo, Tasso Julio; Mateos, Juán Carlos Pachón; Vargas, Remy Nelson A; Pachón, Carlos Thiene C; Acosta, Juán Carlos Zerpa

    2015-01-01

    Introduction Although rare, the atrioesophageal fistula is one of the most feared complications in radiofrequency catheter ablation of atrial fibrillation due to the high risk of mortality. Objective This is a prospective controlled study, performed during regular radiofrequency catheter ablation of atrial fibrillation, to test whether esophageal displacement by handling the transesophageal echocardiography transducer could be used for esophageal protection. Methods Seven hundred and four patients (158 F/546M [22.4%/77.6%]; 52.8±14 [17-84] years old), with mean EF of 0.66±0.8 and drug-refractory atrial fibrillation were submitted to hybrid radiofrequency catheter ablation (conventional pulmonary vein isolation plus AF-Nests and background tachycardia ablation) with displacement of the esophagus as far as possible from the radiofrequency target by transesophageal echocardiography transducer handling. The esophageal luminal temperature was monitored without and with displacement in 25 patients. Results The mean esophageal displacement was 4 to 9.1cm (5.9±0.8 cm). In 680 of the 704 patients (96.6%), it was enough to allow complete and safe radiofrequency delivery (30W/40ºC/irrigated catheter or 50W/60ºC/8 mm catheter) without esophagus overlapping. The mean esophageal luminal temperature changes with versus without esophageal displacement were 0.11±0.13ºC versus 1.1±0.4ºC respectively, P<0.01. The radiofrequency had to be halted in 68% of the patients without esophageal displacement because of esophageal luminal temperature increase. There was no incidence of atrioesophageal fistula suspected or confirmed. Only two superficial bleeding caused by transesophageal echocardiography transducer insertion were observed. Conclusion Mechanical esophageal displacement by transesophageal echocardiography transducer during radiofrequency catheter ablation was able to prevent a rise in esophageal luminal temperature, helping to avoid esophageal thermal lesion. In most

  5. Multislice CT of the liver. Effects of contrast material pushed with saline solution on hepatic enhancement

    International Nuclear Information System (INIS)

    Sekiguchi, Ryuzo; Hayashi, Takayuki; Tsukamoto, Tatsuaki; Kuroki, Yoshinori; Nasu, Katsuhiro; Murakami, Koji; Nawano, Shigeru

    2004-01-01

    The purpose of this study was to evaluate the usefulness of a method of power injection of contrast material pushed with saline solution for hepatic multislice CT using a dual-head power injector. One hundred twenty-one patients who underwent multislice CT to detect liver metastases were divided into two groups, depending on the protocol of contrast material administration: 100 mL of non-ionic contrast material (370 mgI/mL) or 100 mL of the same contrast material pushed with 30 mL of saline solution. Both contrast material and saline solution were administered at a rate of 2.5 mL/sec using a dual-head power injector. Attenuation values for the two protocols were obtained from the liver, portal vein, and descending aorta. Hepatic enhancement above 50 Hounsfield unit (HU), which is needed for the diagnosis of liver metastases, was achieved in 76.5% of patients given 100 mL of contrast material and 92.5% of those given 100 mL of contrast material pushed with a 30 mL saline solution. In contingency-table analysis, the CT attenuation value of liver categorized as less than 50 HU or more than 50 HU, showed a good relation between the categorized group and the protocol (p=0.0437). In patients with a body weight of 50 kg or more, 100 mL of contrast material pushed with saline solution provided significantly better CT attenuation values in the liver (p=0.0113), portal vein (p=0.0094), and descending aorta (p=0.0394) than those provided by the injection of 100 mL of contrast material alone. When contrast material pushed with saline solution was used, CT attenuation values in the liver were significantly increased, especially in patients with a body weight of 50 kg or more. This technique will provide a decrease in the volume of contrast material administered and a potential decrease in the side effects of contrast material. (author)

  6. Combination of aquifer thermal energy storage and enhanced bioremediation

    NARCIS (Netherlands)

    Ni, Zhuobiao; Gaans, van Pauline; Rijnaarts, Huub; Grotenhuis, Tim

    2018-01-01

    Interest in the combination concept of aquifer thermal energy storage (ATES) and enhanced bioremediation has recently risen due to the demand for both renewable energy technology and sustainable groundwater management in urban areas. However, the impact of enhanced bioremediation on ATES is not

  7. Thermal Shrinkage for Shoulder Instability

    OpenAIRE

    Toth, Alison P.; Warren, Russell F.; Petrigliano, Frank A.; Doward, David A.; Cordasco, Frank A.; Altchek, David W.; O’Brien, Stephen J.

    2010-01-01

    Thermal capsular shrinkage was popular for the treatment of shoulder instability, despite a paucity of outcomes data in the literature defining the indications for this procedure or supporting its long-term efficacy. The purpose of this study was to perform a clinical evaluation of radiofrequency thermal capsular shrinkage for the treatment of shoulder instability, with a minimum 2-year follow-up. From 1999 to 2001, 101 consecutive patients with mild to moderate shoulder instability underwent...

  8. The Multifarious PGPR Serratia marcescens CDP-13 Augments Induced Systemic Resistance and Enhanced Salinity Tolerance of Wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Rajnish Prakash Singh

    Full Text Available The present study demonstrates the plant growth promoting (PGP potential of a bacterial isolate CDP-13 isolated from 'Capparis decidua' plant, and its ability to protect plants from the deleterious effect of biotic and abiotic stressors. Based on 16S rRNA gene sequence analysis, the isolate was identified as Serratia marcescens. Among the PGP traits, the isolate was found to be positive for ACC deaminase activity, phosphate solubilization, production of siderophore, indole acetic acid production, nitrogen fixation, and ammonia production. CDP-13 showed growth at an increased salt (NaCl concentration of up to 6%, indicating its potential to survive and associate with plants growing in saline soil. The inoculation of S. marcescens enhanced the growth of wheat plant under salinity stress (150-200 mM. It significantly reduced inhibition of plant growth (15 to 85% caused by salt stressors. Application of CDP-13 also modulated concentration (20 to 75% of different osmoprotectants (proline, malondialdehyde, total soluble sugar, total protein content, and indole acetic acid in plants suggesting its role in enabling plants to tolerate salt stressors. In addition, bacterial inoculation also reduced the disease severity caused by fungal infection, which illustrated its ability to confer induced systemic resistance (ISR in host plants. Treatment of wheat plants with the test organism caused alteration in anti-oxidative enzymes activities (Superoxide dismutase, Catalase, and Peroxidase under various salinity levels, and therefore minimizes the salinity-induced oxidative damages to the plants. Colonization efficiency of strain CDP-13 was confirmed by CFU count, epi-fluorescence microscopy, and ERIC-PCR-based DNA fingerprinting approach. Hence, the study indicates that bacterium CDP-13 enhances plant growth, and has potential for the amelioration of salinity stress in wheat plants. Likewise, the results also provide insights into biotechnological approaches to

  9. Solar Thermal Enhanced Oil Recovery, (STEOR) Volume 1: Executive summary

    Science.gov (United States)

    Elzinga, E.; Arnold, C.; Allen, D.; Garman, R.; Joy, P.; Mitchell, P.; Shaw, H.

    1980-11-01

    Thermal enhanced oil recovery is widely used in California to aid in the production of heavy oils. Steam injection either to stimulate individual wells or to drive oil to the producing wells, is by far the major thermal process today and has been in use for over 20 years. Since steam generation at the necessary pressures (generally below 4000 kPa (580 psia)) is within the capabilities of present day solar technology, it is logical to consider the possibilities of solar thermal enhanced oil recovery (STEOR). The present project consisted of an evaluation of STEOR. Program objectives, system selection, trade-off studies, preliminary design, cost estimate, development plan, and market and economic analysis are summarized.

  10. The salinity effect in a mixed layer ocean model

    Science.gov (United States)

    Miller, J. R.

    1976-01-01

    A model of the thermally mixed layer in the upper ocean as developed by Kraus and Turner and extended by Denman is further extended to investigate the effects of salinity. In the tropical and subtropical Atlantic Ocean rapid increases in salinity occur at the bottom of a uniformly mixed surface layer. The most significant effects produced by the inclusion of salinity are the reduction of the deepening rate and the corresponding change in the heating characteristics of the mixed layer. If the net surface heating is positive, but small, salinity effects must be included to determine whether the mixed layer temperature will increase or decrease. Precipitation over tropical oceans leads to the development of a shallow stable layer accompanied by a decrease in the temperature and salinity at the sea surface.

  11. Salinization and Saline Environments

    Science.gov (United States)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  12. Synthesis of High Crystalline Al-Doped ZnO Nanopowders from Al2O3 and ZnO by Radio-Frequency Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Min-Kyeong Song

    2015-01-01

    Full Text Available High crystalline Al-doped ZnO (AZO nanopowders were prepared by in-flight treatment of ZnO and Al2O3 in Radio-Frequency (RF thermal plasma. Micron-sized (~1 μm ZnO and Al2O3 powders were mixed at Al/Zn ratios of 3.3 and 6.7 at.% and then injected into the RF thermal plasma torch along the centerline at a feeding rate of 6.6 g/min. The RF thermal plasma torch system was operated at the plate power level of ~140 kVA to evaporate the mixture oxides and the resultant vapor species were condensed into solid particles by the high flow rate of quenching gas (~7000 slpm. The FE-SEM images of the as-treated powders showed that the multipod shaped and the whisker type nanoparticles were mainly synthesized. In addition, these nanocrystalline structures were confirmed as the single phase AZO nanopowders with the hexagonal wurtzite ZnO structure by the XRD patterns and FE-TEM results with the SAED image. However, the composition changes of 0.3 and 1.0 at.% were checked for the as-synthesized AZO nanopowders at Al/Zn ratios of 3.3 and 6.7 at.%, respectively, by the XRF data, which can require the adjustment of Al/Zn in the mixture precursors for the applications of high Al doping concentrations.

  13. Cost studies of thermally enhanced in situ soil remediation technologies

    International Nuclear Information System (INIS)

    Bremser, J.; Booth, S.R.

    1996-05-01

    This report describes five thermally enhanced technologies that may be used to remediate contaminated soil and water resources. The standard methods of treating these contaminated areas are Soil Vapor Extraction (SVE), Excavate ampersand Treat (E ampersand T), and Pump ampersand Treat (P ampersand T). Depending on the conditions at a given site, one or more of these conventional alternatives may be employed; however, several new thermally enhanced technologies for soil decontamination are emerging. These technologies are still in demonstration programs which generally are showing great success at achieving the expected remediation results. The cost savings reported in this work assume that the technologies will ultimately perform as anticipated by their developers in a normal environmental restoration work environment. The five technologies analyzed in this report are Low Frequency Heating (LF or Ohmic, both 3 and 6 phase AC), Dynamic Underground Stripping (DUS), Radio Frequency Heating (RF), Radio Frequency Heating using Dipole Antennae (RFD), and Thermally Enhanced Vapor Extraction System (TEVES). In all of these technologies the introduction of heat to the formation raises vapor pressures accelerating contaminant evaporation rates and increases soil permeability raising diffusion rates of contaminants. The physical process enhancements resulting from temperature elevations permit a greater percentage of volatile organic compound (VOC) or semi- volatile organic compound (SVOC) contaminants to be driven out of the soils for treatment or capture in a much shorter time period. This report presents the results of cost-comparative studies between these new thermally enhanced technologies and the conventional technologies, as applied to five specific scenarios

  14. New-generation radiofrequency technology.

    Science.gov (United States)

    Krueger, Nils; Sadick, Neil S

    2013-01-01

    Radiofrequency (RF) technology has become a standard treatment in aesthetic medicine with many indications due to its versatility, efficacy, and safety. It is used worldwide for cellulite reduction; acne scar revision; and treatment of hypertrophic scars and keloids, rosacea, and inflammatory acne in all skin types. However, the most common indication for RF technology is the nonablative tightening of tissue to improve skin laxity and reduce wrinkles. Radiofrequency devices are classified as unipolar, bipolar, or multipolar depending on the number of electrodes used. Additional modalities include fractional RF; sublative RF; phase-controlled RF; and combination RF therapies that apply light, massage, or pulsed electromagnetic fields (PEMFs). This article reviews studies and case series on these devices. Radiofrequency technology for aesthetic medicine has seen rapid advancements since it was used for skin tightening in 2003. Future developments will continue to keep RF technology at the forefront of the dermatologist's armamentarium for skin tightening and rejuvenation.

  15. Radiofrequency denervation of the hip joint for pain management: case report and literature review.

    Science.gov (United States)

    Gupta, Gaurav; Radhakrishna, Mohan; Etheridge, Paul; Besemann, Markus; Finlayson, Robert J

    2014-01-01

    A 55-year-old male presented with severe pain and functional limitations as a result of left hip osteoarthritis. He had failed multiple treatments while waiting for a hip arthroplasty, including physical therapy, medications, and various intra-articular injections. Thermal radiofrequency lesioning of the obturator and femoral articular branches to the hip joint was offered in the interim. To our knowledge, this is the first report to describe an inferior-lateral approach for lesioning the obturator branch, the clinical application of successive lesions to increase denervation area, and outcomes in a patient receiving a second treatment with previously good results. To discuss relevant and technical factors for this specific case, we reviewed previous literature on hip joint radiofrequency and critically evaluated previous anatomic studies in the context of radiofrequency. The first treatment provided significant benefit for a period of 6 months. A second treatment was employed providing only mild to moderate benefit until his joint replacement surgery 4 months later. Literature review revealed studies of low quality secondary to small sample sizes, patient selection methodology, inclusion of patients with heterogenous etiologies for pain, variable needle placement techniques, and lack of measurement of functional outcomes. Case report and low quality studies in existing literature. Hip joint radiofrequency denervation is a promising avenue for adjunctive treatment of hip pain. Further cadaveric studies are required to clarify a multitude of technical parameters. Once these are well defined, future clinical studies should consider pain, functional, and economic outcomes in their design.

  16. Enhancing composite durability : using thermal treatments

    Science.gov (United States)

    Jerrold E. Winandy; W. Ramsay Smith

    2007-01-01

    The use of thermal treatments to enhance the moisture resistance and aboveground durability of solid wood materials has been studied for years. Much work was done at the Forest Products Laboratory in the last 15 years on the fundamental process of both short-and long-term exposure to heat on wood materials and its interaction with various treatment chemicals. This work...

  17. Estimating Leaching Requirements for Barley Growth under Saline Irrigation

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Busaidi

    2012-01-01

    Full Text Available The utilization of marginal water resources for agriculture is receiving considerable attention. The lands irrigated with saline water are required to reduce salt accumulations through leaching and/or drainage practices. A field experiment was carried out to investigate the effect of saline irrigation and leaching fraction on barley (Hordeum vulgare L. growth. For this purpose highly saline water was diluted to the salinity levels of 3, 6 and 9 dS m-1 and applied by drip irrigation at 0.0, 0.15, 0.20 and 0.25 leaching fractions (LF. The results of the experiment showed that both quantity and quality of water regulated salts distribution within the soil in the following manner: a the salts were found higher near or immediate below the soil surface; b an enhanced LF carried more salts down the soil horizon but there was no significant difference in plant yield between different treatments of leaching fractions. Salinity of water significantly impaired barley growth. The good drainage of sandy soil enhanced the leaching process and minimized the differences between leaching fractions. The increment in saline treatments (3, 6 and 9 dS m-1 added more salts and stressed plant growth. However, the conjunctive use of marginal water at proportional LF could be effective in enhancing the yield potential of crops in water-scarce areas.

  18. Prospective Internally Controlled Blind Reviewed Clinical Evaluation of Cryolipolysis Combined With Multipolar Radiofrequency andVaripulseTechnology for Enhanced Subject Results in Circumferential Fat Reduction and Skin Laxity of the Flanks.

    Science.gov (United States)

    Few, Julius; Gold, Michael; Sadick, Neil

    2016-11-01

    Increasing demand for non-invasive skin tightening and body contouring procedures has led to several technological in- novations in energy-based devices such as ultrasound, radiofrequency and cryolipolysis. An emerging trend in the eld is to evaluate whether combination therapies for skin laxity/body contouring using energy-based devices can deliver superior clinical results and patient satisfaction. As such, the objective of this prospective, internal-controlled, blind clinical study was to assess the safety and efficacy of cryolipolysis followed by multipolar radiofrequency with pulsed electromagnetic elds (PEMF) and adjustable pulsed suction for the treatment of skin laxity in the flanks. Ten subjects with focal adiposities in the anks were enrolled in the study. All subjects received one session of cryolipolysis treatment and after randomization received two sessions of radiofrequency with PEMF (spaced two weeks apart), followed by another two sessions of radiofrequency with PEMF and adjustable pulsed suction (spaced two weeks apart). Clinical photography was used to monitor the subject's results at baseline, one week, three, and six months post treatment. Blinded reviewers and the treating inves- tigator assessed the clinical outcomes using the Global Aesthetic Improvement (GAI) scale. Side effects were recorded at every visit and patient satisfaction was noted at the one week, three and six-month follow-up using a 5-scale subject satisfaction assessment questionnaire. Analysis of the blinded investigator ratings demonstrated statistical significant enhanced skin laxity mean improvement of 1 grade on the GAI scale in subject treated with the combination treatment (cryolipolysis+RF/PEMF/suction) compared with the cryolipolysis treatment alone. The unblinded investigator GAI ratings also showed enhanced (20%) mean improvement of laxity in the combination treated subjects versus those receiving cryolipolysis alone. Over half of the participants reported

  19. Electrohydrodynamic fibrillation governed enhanced thermal transport in dielectric colloids under a field stimulus.

    Science.gov (United States)

    Dhar, Purbarun; Maganti, Lakshmi Sirisha; Harikrishnan, A R

    2018-05-30

    Electrorheological (ER) fluids are known to exhibit enhanced viscous effects under an electric field stimulus. The present article reports the hitherto unreported phenomenon of greatly enhanced thermal conductivity in such electro-active colloidal dispersions in the presence of an externally applied electric field. Typical ER fluids are synthesized employing dielectric fluids and nanoparticles and experiments are performed employing an in-house designed setup. Greatly augmented thermal conductivity under a field's influence was observed. Enhanced thermal conduction along the fibril structures under the field effect is theorized as the crux of the mechanism. The formation of fibril structures has also been experimentally verified employing microscopy. Based on classical models for ER fluids, a mathematical formalism has been developed to predict the propensity of chain formation and statistically feasible chain dynamics at given Mason numbers. Further, a thermal resistance network model is employed to computationally predict the enhanced thermal conduction across the fibrillary colloid microstructure. Good agreement between the mathematical model and the experimental observations is achieved. The domineering role of thermal conductivity over relative permittivity has been shown by proposing a modified Hashin-Shtrikman (HS) formalism. The findings have implications towards better physical understanding and design of ER fluids from both 'smart' viscoelastic as well as thermally active materials points of view.

  20. Radiofrequency Ablation Treatment for Renal Cell Carcinoma: Early Clinical Experience

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Hoon; Yoon, Seong Kuk; Cho, Jin Han; Oh, Jong Young; Nam, Kyung Jin; Kwon, Hee Jin; Kim, Su Yeon; Kang, Myong Jin; Choi, Sun Seob; Sung, Gyung Tak [Dong-A University College of Medicine, Busan (Korea, Republic of)

    2008-08-15

    To evaluate the early clinical experience associated with radiofrequency (RF) ablation in patients with renal cell carcinoma (RCC). The RF ablation treatment was performed on 17 tumors from 16 patients (mean age, 60.5 years; range, 43 73 years) with RCC. The treatment indications were localized, solid renal mass, comorbidities, high operation risk, and refusal to perform surgery. All tumors were treated by a percutaneous CT (n = 10), followed by an US-guided (n = 2), laparoscopy-assisted US (n = 2), and an open (n = 2) RF ablation. Furthermore, patients underwent a follow- up CT at one day, one week, one month, three and six months, and then every six months from the onset of treatment. We evaluated the technical success, technical effectiveness, ablation zone, benign periablation enhancement, irregular peripheral enhancement, and complications. All 17 exophytic tumors (mean size, 2.2 cm; range, 1.1 5.0 cm) were completely ablated. Technical success and effectiveness was achieved in all cases and the mean follow-up period was 23.8 months (range, 17 33 months). A local recurrence was not detected in any of the cases; however, five patients developed complications as a result of treatment, including hematuria (n = 2), mild thermal injury of the psoas muscle (n = 1), mild hydronephrosis (n = 1), and fistula formation (n = 1). The RF ablation is an alternative treatment for exophytic RCCs and represents a promising treatment for some patients with small RCCs.

  1. Radiofrequency Ablation Treatment for Renal Cell Carcinoma: Early Clinical Experience

    International Nuclear Information System (INIS)

    Park, Seong Hoon; Yoon, Seong Kuk; Cho, Jin Han; Oh, Jong Young; Nam, Kyung Jin; Kwon, Hee Jin; Kim, Su Yeon; Kang, Myong Jin; Choi, Sun Seob; Sung, Gyung Tak

    2008-01-01

    To evaluate the early clinical experience associated with radiofrequency (RF) ablation in patients with renal cell carcinoma (RCC). The RF ablation treatment was performed on 17 tumors from 16 patients (mean age, 60.5 years; range, 43 73 years) with RCC. The treatment indications were localized, solid renal mass, comorbidities, high operation risk, and refusal to perform surgery. All tumors were treated by a percutaneous CT (n = 10), followed by an US-guided (n = 2), laparoscopy-assisted US (n = 2), and an open (n = 2) RF ablation. Furthermore, patients underwent a follow- up CT at one day, one week, one month, three and six months, and then every six months from the onset of treatment. We evaluated the technical success, technical effectiveness, ablation zone, benign periablation enhancement, irregular peripheral enhancement, and complications. All 17 exophytic tumors (mean size, 2.2 cm; range, 1.1 5.0 cm) were completely ablated. Technical success and effectiveness was achieved in all cases and the mean follow-up period was 23.8 months (range, 17 33 months). A local recurrence was not detected in any of the cases; however, five patients developed complications as a result of treatment, including hematuria (n = 2), mild thermal injury of the psoas muscle (n = 1), mild hydronephrosis (n = 1), and fistula formation (n = 1). The RF ablation is an alternative treatment for exophytic RCCs and represents a promising treatment for some patients with small RCCs

  2. When to fill a tube with thermal enhancers and when to leave it empty

    International Nuclear Information System (INIS)

    Gosselin, Louis; Silva, Alexandre K. da

    2007-01-01

    The present paper answers the fundamental question of when to use thermal enhancers in a heat transfer system such as an externally heated pipe and when to leave it empty. The objective is to maximize the heat transfer rate from the pipe to the cold fluid drawn into the pipe by a fixed pressure drop. Three types of thermal enhancers are considered: (i) porous medium fillings, (ii) internal fins and (iii) insertion of high conductivity solid particles (i.e. solid-liquid mixture). The performance of each thermal enhancer technique is compared with the performance of the empty pipe subject to the same pumping power. The results show that the use of thermal enhancers is not always profitable in terms of increasing the heat transfer rate. The analysis leads to novel limits in which the use of thermal enhancers are recommended so that the heat transfer rate increases for all three types of fillings. It is shown that these limits are related to the properties of the solid enhancer and also to the pressure drop availability. In the case of porous filling, for example, the profitability in terms of heat transfer gain is strongly related to the thermal conductivity of the filling and its permeability

  3. Synergistic enhancement of ethylene production and germination with kinetin and 1-aminocyclopropane-1-carboxylic Acid in lettuce seeds exposed to salinity stress.

    Science.gov (United States)

    Khan, A A; Huang, X L

    1988-08-01

    Relief of salt (0.1 molar NaCl) stress on germination of lettuce (Lactuca sativa L., cv Mesa 659) seeds occurred with applications of 0.05 millimolar kinetin (KIN) and 1 to 10 millimolar 1-aminocyclopropane 1-carboxylic acid (ACC). Treatment with KIN enhanced the pregermination ethylene production under saline condition. A synergistic or an additive enhancement of pregermination ethylene production and germination occurred under saline condition in the presence of KIN and a saturating dose (10 millimolar) of ACC. No KIN-ACC synergism was noted in ethylene production or germination under nonsaline condition. Addition of 1 millimolar aminoethoxyvinylglycine (AVG) inhibited the KIN-enhanced pregermination ethylene production (85 to 89%) and germination (58%) under saline condition but not the synergistic effect of KIN + ACC on ethylene production. Under nonsaline condition, AVG had no effect on germination even though ethylene production was strongly inhibited. Alleviation of salt stress by KIN was inhibited in a competitive manner by 2,5-norbornadiene (NBD) (0.02-0.2 milliliter per liter), and the addition of ACC and/or ethylene reduced this inhibition. An increase in the pregermination ethylene production and germination occurred also by cotylenin E (CN) under saline condition. However, neither AVG (1 millimolar) nor NBD (0.02 to 0.2 milliliter per liter) prevented the relief of salt stress by CN. Thus, KIN may alleviate salt stress on germination by promoting both ACC production and its conversion to ethylene. Rapid utilization of ACC may be the basis for the synergistic or the additive effect of KIN plus ACC. The need for ethylene production and action for the relief of salt stress is circumvented by a treatment with CN.

  4. Thermometric determination of cartilage matrix temperatures during thermal chondroplasty: comparison of bipolar and monopolar radiofrequency devices.

    Science.gov (United States)

    Edwards, Ryland B; Lu, Yan; Rodriguez, Edwin; Markel, Mark D

    2002-04-01

    To compare cartilage matrix temperatures between monopolar radiofrequency energy (mRFE) and bipolar RFE (bRFE) at 3 depths under the articular surface during thermal chondroplasty. We hypothesized that cartilage temperatures would be higher at all cartilage depths for the bRFE device than for the mRFE device. Randomized trial using bovine cartilage. Sixty osteochondral sections from the femoropatellar joint of 15 adult cattle were used for this study. Using a custom jig, fluoroptic thermometry probes were placed at one of the following depths under the articular surface: 200 microm, 500 microm, or 2,000 microm. RF treatment was performed either with fluid flow (F) (120 mL/min) or without fluid flow (NF) (n = 5/depth/RFE device/flow; total specimens, 60). Irrigation fluid temperature was room temperature (22 degrees C). Thermometry data were acquired at 4 Hz for 5 seconds with the RF probe off, for 20 seconds with the RF probe on, and then for 15 seconds with the RF probe off. During RF treatment, a 0.79-cm2 area (1.0-cm diameter) of the articular surface centered over the thermometry probe was treated in a paintbrush manner in noncontact (bRFE) or light contact (mRFE). Thermal chondroplasty with bRFE resulted in higher cartilage matrix temperatures compared with mRFE for all depths and regardless of fluid flow. Bipolar RFE resulted in temperatures of 95 degrees C to 100 degrees C at 200 microm and 500 microm under the surface, with temperatures of 75 degrees C to 78 degrees C at 2,000 microm. Fluid flow during bRFE application had no effect at 200 microm. Monopolar RFE resulted in temperatures of 61 degrees C to 68 degrees C at 200 microm, 54 degrees C to 70 degrees C at 500 microm under the surface, and 28 degrees C to 30 degrees C at 2,000 microm below the surface. A significant effect of fluid flow during mRFE application occurred at 200 microm (NF, 61 degrees C; F, 63 degrees C) and 500 microm (NF, 53 degrees C; F, 68 degrees C). In this study, we found

  5. Radiofrequency Ablation of Large Renal Angiomyolipoma: Median-Term Follow-Up

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, S. M., E-mail: drstephengregory@gmail.com; Anderson, C. J.; Patel, U. [St. George' s Hospital and Medical School, Department of Radiology (United Kingdom)

    2013-06-15

    Purpose. To study the feasibility of percutaneous radiofrequency ablation (RFA) of large angiomyolipomas (AMLs) using saline-cooled electrodes. Materials and Methods. Institutional Review Board approval for the study was received. Four patients (all female, age range 33-67 years) with large AMLs (maximal axis 6.1-32.4 cm) not suitable for embolotherapy or surgery consented to a trial of RFA. Procedures were performed under computerized tomographic guidance using 14G saline-infused electrodes. Two ablations (diameter 4-7 cm) were undertaken in each patient. Variables studied were technical success, treatment safety, alteration of tumor consistency, tumor size, effect on renal function, and medium-term freedom from haemorrhage. Results. All four patients underwent successful RFA without any intraprocedural complications. There has been no haemorrhage, or new renal specific symptom, during a minimum 48-month period, and normal renal function has been normal. On follow-up radiological imaging, the tumors have become fattier with involution of the soft-tissue elements (soft tissue-to-total tumor ratio decreased mean [range] of 0.26 [0.14-0.48] to 0.17 [0.04-0.34] U; p = 0.04 [paired Student t test]). Further evidence of treatment effect was the development of a capsule around the ablation zone, but there was no change in overall tumor volume (mean [range] 1,120 [118-2,845] to 1150 [90-3,013] ml; p = 1 [paired Student t test]). Conclusion. RFA of large AMLs is technically feasible using saline-infused electrodes. The soft-tissue elements decreased in volume; the tumors become fattier; and there has been no renal haemorrhage during a 48-month period.

  6. Radiofrequency Ablation of Large Renal Angiomyolipoma: Median-Term Follow-Up

    International Nuclear Information System (INIS)

    Gregory, S. M.; Anderson, C. J.; Patel, U.

    2013-01-01

    Purpose. To study the feasibility of percutaneous radiofrequency ablation (RFA) of large angiomyolipomas (AMLs) using saline-cooled electrodes. Materials and Methods. Institutional Review Board approval for the study was received. Four patients (all female, age range 33–67 years) with large AMLs (maximal axis 6.1–32.4 cm) not suitable for embolotherapy or surgery consented to a trial of RFA. Procedures were performed under computerized tomographic guidance using 14G saline-infused electrodes. Two ablations (diameter 4–7 cm) were undertaken in each patient. Variables studied were technical success, treatment safety, alteration of tumor consistency, tumor size, effect on renal function, and medium-term freedom from haemorrhage. Results. All four patients underwent successful RFA without any intraprocedural complications. There has been no haemorrhage, or new renal specific symptom, during a minimum 48-month period, and normal renal function has been normal. On follow-up radiological imaging, the tumors have become fattier with involution of the soft-tissue elements (soft tissue–to–total tumor ratio decreased mean [range] of 0.26 [0.14–0.48] to 0.17 [0.04–0.34] U; p = 0.04 [paired Student t test]). Further evidence of treatment effect was the development of a capsule around the ablation zone, but there was no change in overall tumor volume (mean [range] 1,120 [118–2,845] to 1150 [90–3,013] ml; p = 1 [paired Student t test]). Conclusion. RFA of large AMLs is technically feasible using saline-infused electrodes. The soft-tissue elements decreased in volume; the tumors become fattier; and there has been no renal haemorrhage during a 48-month period.

  7. ICRF enhanced potentials

    International Nuclear Information System (INIS)

    Nelson, B.A.

    1987-01-01

    Ion-confining potentials in the Phaedrus tandem mirror are shown to be enhanced over Boltzmann-relations predicted values by radio-frequency (rf) waves in the ion cyclotron range of frequencies (ICRF). The ICRF enhanced potential is larger in the end cell with a lower passing density. Peak potential values decrease with increasing ion endloss current (or central cell density) for a constant rf capacitor bank voltage, and increase with increasing rf-capacitor bank voltage, for a constant ion endloss value (or central cell density). In fully axisymmetric operation, a potential peak is produced in an end cell by the central-cell rf, (with-out end-cell rf) and is found only in the end cell nearer the central-cell antenna. ICRF enhanced potentials are explained as an equilibrium between the electron-collisional filling-in rate and the electron pumping out rate provided by axial time-varying electric fields. Thermal barrier-like potential structures were found in the transition regions between the central cell and end cells, in the fully axisymmetric Phaedrus. Central-cell ICRF trapping effects combined with end-cell μΔ B forces create and pump the barrier potential wells

  8. Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2003-10-07

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  9. Apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2005-12-13

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  10. Enhancing radiative energy transfer through thermal extraction

    Directory of Open Access Journals (Sweden)

    Tan Yixuan

    2016-06-01

    Full Text Available Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a. In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics.

  11. Renal Cell Carcinoma Perfusion before and after Radiofrequency Ablation Measured with Dynamic Contrast Enhanced MRI: A Pilot Study.

    Science.gov (United States)

    Wah, Tze Min; Sourbron, Steven; Wilson, Daniel Jonathan; Magee, Derek; Gregory, Walter Martin; Selby, Peter John; Buckley, David L

    2018-01-08

    To investigate if the early treatment effects of radiofrequency ablation (RFA) on renal cell carcinoma (RCC) can be detected with dynamic contrast enhanced (DCE)-MRI and to correlate RCC perfusion with RFA treatment time. 20 patients undergoing RFA of their 21 RCCs were evaluated with DCE-MRI before and at one month after RFA treatment. Perfusion was estimated using the maximum slope technique at two independent sittings. Total RCC blood flow was correlated with total RFA treatment time, tumour location, size and histology. DCE-MRI examinations were successfully evaluated for 21 RCCs (size from 1.3 to 4 cm). Perfusion of the RCCs decreased significantly ( p measuring RCC perfusion before and after RFA. Perfusion significantly decreases in the zone of ablation, suggesting that it may be useful for the assessment of treatment efficacy. Pre-RFA RCC blood flow may be used to predict RFA treatment time.

  12. Radiofrequency ablation of neuroendocrine liver metastases: the Middlesex experience.

    Science.gov (United States)

    Gillams, A; Cassoni, A; Conway, G; Lees, W

    2005-01-01

    Current treatment options for neuroendocrine liver metastases are not widely applicable or not that effective. Image-guided thermal ablation offers the possibility of a minimally invasive, albeit palliative, treatment that decreases tumor volume, preserves most of the normal liver, and can be repeated several times. We report our experience with image-guided thermal ablation in 25 patients with unresectable liver metastases. Since 1990 we have treated 189 tumors at 66 treatment sessions in 25 patients (12 female, 13 male; median age, 56 years; age range, 26--78 years). Thirty treatments were performed with a solid-state laser, and 36 treatments were performed with radiofrequency ablation. All but one treatment was performed percutaneously under image guidance. Sixteen patients had metastases from carcinoid primaries, three from gastrinoma, two from insulinoma, and four from miscellaneous causes. Fourteen of 25 had symptoms from hormone secretion. Imaging follow-up was available in 19 patients at a median of 21 months (range, 4--75 months). There was a complete response in six patients, a partial response in seven, and stable disease in one; hence, tumor load was controlled in 14 of 19 patients (74%). Relief of hormone-related symptoms was achieved in nine of 14 patients (69%). The median survival period from the diagnosis of liver metastases was 53 months. One patient with end-stage cardiac disease died after a carcinoid crisis. There were eight (12%) complications: five local and three distant, four major and four minor. As a minimally invasive, readily repeatable procedure that can be used to ablate small tumors, preferably before patients become severely symptomatic, radiofrequency ablation can provide effective control of liver tumor volume in most patients over many years.

  13. Cervical radiofrequency neurotomy reduces central hyperexcitability and improves neck movement in individuals with chronic whiplash.

    Science.gov (United States)

    Smith, Ashley Dean; Jull, Gwendolen; Schneider, Geoff; Frizzell, Bevan; Hooper, Robert Allen; Sterling, Michele

    2014-01-01

    This study aims to determine if cervical medial branch radiofrequency neurotomy reduces psychophysical indicators of augmented central pain processing and improves motor function in individuals with chronic whiplash symptoms. Prospective observational study of consecutive patients with healthy control comparison. Tertiary spinal intervention centre in Calgary, Alberta, Canada. Fifty-three individuals with chronic whiplash associated disorder symptoms (Grade 2); 30 healthy controls. Measures were made at four time points: two prior to radiofrequency neurotomy, and 1- and 3-months post-radiofrequency neurotomy. Measures included: comprehensive quantitative sensory testing (including brachial plexus provocation test), nociceptive flexion reflex, and motor function (cervical range of movement, superficial neck flexor activity during the craniocervical flexion test). Self-report pain and disability measures were also collected. One-way repeated measures analysis of variance and Friedman's tests were performed to investigate the effect of time on the earlier measures. Differences between the whiplash and healthy control groups were investigated with two-tailed independent samples t-test or Mann-Whitney tests. Following cervical radiofrequency neurotomy, there were significant early (within 1 month) and sustained (3 months) improvements in pain, disability, local and widespread hyperalgesia to pressure and thermal stimuli, nociceptive flexor reflex threshold, and brachial plexus provocation test responses as well as increased neck range of motion (all P  0.13) was measured. Attenuation of psychophysical measures of augmented central pain processing and improved cervical movement imply that these processes are maintained by peripheral nociceptive input. Wiley Periodicals, Inc.

  14. Enhanced thermal conductance of polymer composites through embeddingaligned carbon nanofibers

    Directory of Open Access Journals (Sweden)

    Dale K. Hensley

    2016-07-01

    Full Text Available The focus of this work is to find a more efficient method of enhancing the thermal conductance of polymer thin films. This work compares polymer thin films embedded with randomly oriented carbon nanotubes to those with vertically aligned carbon nanofibers. Thin films embedded with carbon nanofibers demonstrated a similar thermal conductance between 40–60 μm and a higher thermal conductance between 25–40 μm than films embedded with carbon nanotubes with similar volume fractions even though carbon nanotubes have a higher thermal conductivity than carbon nanofibers.

  15. 78 FR 25916 - Authorization of Radiofrequency Equipment

    Science.gov (United States)

    2013-05-03

    ...] Authorization of Radiofrequency Equipment AGENCY: Federal Communications Commission. ACTION: Proposed rule... bodies, and measurement procedures used to determine RF equipment compliance. The Commission believes... Commission is responsible for an equipment authorization program for radiofrequency (RF) devices under part 2...

  16. Radiofrequency initiation and radiofrequency sustainment of laser initiated seeded high pressure plasma

    International Nuclear Information System (INIS)

    Paller, Eric S.; Scharer, John E.; Akhtar, Kamran; Kelly, Kurt; Ding, Guowen

    2001-01-01

    We examine radiofrequency initiation of high pressure(1-70 Torr) inductive plasma discharges in argon, nitrogen, air and organic seed gas mixtures. Millimeter wave interferometry, optical emission and antenna wave impedance measurements for double half-turn helix and helical inductive antennas are used to interpret the rf/plasma coupling, measure the densities in the range of 10 12 cm -3 and analyze the ionization and excited states of the gas mixtures. We have also carried out 193 nm excimer laser initiation of an organic gas seed plasma which is sustained at higher pressures(150 Torr) by radiofrequency coupling at 2.8 kW power levels

  17. Enhanced biogas production from penicillin bacterial residue by thermal-alkaline pretreatment

    International Nuclear Information System (INIS)

    Zhong, Weizhang; Li, Guixia; Gao, Yan; Li, Zaixing; Geng, Xiaoling; Li, Yubing; Yang, Jingliang; Zhou, Chonghui

    2015-01-01

    In this study, the orthogonal experimental design was used to determine the optimum conditions for the effect of thermal alkaline; pretreatment on the anaerobic digestion of penicillin bacterial residue. The biodegradability of the penicillin; bacterial residue was evaluated by biochemical methane potential tests in laboratory. The optimum values of temperature,; alkali concentration, pretreatment time and moisture content for the thermal-alkaline pretreatment were determined as; 70 °C, 6% (w/v), 30 min, and 85%, respectively. Thermal-alkaline pretreatment could significantly enhance the soluble; chemical oxygen demand solubilization, the suspended solid solubilization and the biodegradability. Biogas production; was enhanced by the thermal-alkaline pretreatment, probably as a result of the breakdown of cell walls and membranes of; micro-organisms, which may facilitate the contact between organic molecules and anaerobic microorganisms.; Keywords: penicillin bacterial residue; anaerobic digestion; biochemical methane potential tests; pretreatment

  18. Curative effects of microneedle fractional radiofrequency system on skin laxity in Asian patients: A prospective, double-blind, randomized, controlled face-split study.

    Science.gov (United States)

    Lu, Wenli; Wu, Pinru; Zhang, Zhen; Chen, Jinan; Chen, Xiangdong; Ewelina, Biskup

    2017-04-01

    To date, no studies compared curative effects of thermal lesions in deep and superficial dermal layers in the same patient (face-split study). To evaluate skin laxity effects of microneedle fractional radiofrequency induced thermal lesions in different dermal layers. 13 patients underwent three sessions of a randomized face-split microneedle fractional radiofrequency system (MFRS) treatment of deep dermal and superficial dermal layer. Skin laxity changes were evaluated objectively (digital images, 2 independent experts) and subjectively (patients' satisfaction numerical rating). 12 of 13 subjects completed a course of 3 treatments and a 1-year follow-up. Improvement of nasolabial folds in deep dermal approach was significantly better than that in superficial approach at three months (P=.0002) and 12 months (P=.0057) follow-up. Effects on infraorbital rhytides were only slightly better (P=.3531). MFRS is an effective method to improve skin laxity. Thermal lesion approach seems to provide better outcomes when applied to deep dermal layers. It is necessary to consider the skin thickness of different facial regions when choosing the treatment depth.

  19. Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut

    Directory of Open Access Journals (Sweden)

    Sandeep Sharma

    2016-10-01

    Full Text Available Use of Plant growth promoting rhizobacteria (PGPR is a promising strategy to improve the crop production under optimal or sub-optimal conditions. In the present study, five diazotrophic salt tolerant bacteria were isolated from the roots of a halophyte, Arthrocnemum indicum. The isolates were partially characterized in vitro for plant growth promoting traits and evaluated for their potential to promote growth and enhanced salt tolerance in peanut. The 16S rRNA gene sequence homology indicated that these bacterial isolates belong to the genera, Klebisiella, Pseudomonas, Agrobacterium and Ochrobactrum. All isolates were nifH positive and able to produce indole -3-acetic acid (ranging from 11.5 to 19.1 µg ml-1. The isolates showed phosphate solubilisation activity (ranging from 1.4 to 55.6 µg phosphate /mg dry weight, 1-aminocyclopropane-1-carboxylate deaminase activity (0.1 to 0.31 µmol α-kB/µg protein/h and were capable of reducing acetylene in acetylene reduction assay (ranging from 0.95 to 1.8 µmol C2H4 mg protein/h. These isolates successfully colonized the peanut roots and were capable of promoting the growth under non-stress condition. A significant increase in total nitrogen (N content (up to 76% was observed over the non-inoculated control. All isolates showed tolerance to NaCl ranging from 4-8% in nutrient broth medium. Under salt stress, inoculated peanut seedlings maintained ion homeostasis, accumulated less reactive oxygen species (ROS and showed enhanced growth compared to non-inoculated seedlings. Overall, the present study has characterized several potential bacterial strains that showed an enhanced growth promotion effect on peanut under control as well as saline conditions. The results show the possibility to reduce chemical fertilizer inputs and may promote the use of bio-inoculants.

  20. Salinity anomaly as a trigger for ENSO events.

    Science.gov (United States)

    Zhu, Jieshun; Huang, Bohua; Zhang, Rong-Hua; Hu, Zeng-Zhen; Kumar, Arun; Balmaseda, Magdalena A; Marx, Lawrence; Kinter, James L

    2014-10-29

    According to the classical theories of ENSO, subsurface anomalies in ocean thermal structure are precursors for ENSO events and their initial specification is essential for skillful ENSO forecast. Although ocean salinity in the tropical Pacific (particularly in the western Pacific warm pool) can vary in response to El Niño events, its effect on ENSO evolution and forecasts of ENSO has been less explored. Here we present evidence that, in addition to the passive response, salinity variability may also play an active role in ENSO evolution, and thus important in forecasting El Niño events. By comparing two forecast experiments in which the interannually variability of salinity in the ocean initial states is either included or excluded, the salinity variability is shown to be essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate salinity observations with large-scale spatial coverage.

  1. Hyperkalaemia after radiofrequency ablation of hepatocellular carcinoma

    NARCIS (Netherlands)

    Verhoevena, BH; Haagsma, EB; Appeltans, BMG; Slooff, MJH; de Jong, KP

    Radiofrequency ablation of liver tumours is a useful therapy for otherwise unresectable tumours. The complication rate is said to be low. In this case report we describe hyperkalaemia after radiofrequency ablation of a hepatocellular carcinoma in a patient with end-stage renal insufficiency. (C)

  2. Thermal conductivity engineering in width-modulated silicon nanowires and thermoelectric efficiency enhancement

    Science.gov (United States)

    Zianni, Xanthippi

    2018-03-01

    Width-modulated nanowires have been proposed as efficient thermoelectric materials. Here, the electron and phonon transport properties and the thermoelectric efficiency are discussed for dimensions above the quantum confinement regime. The thermal conductivity decreases dramatically in the presence of thin constrictions due to their ballistic thermal resistance. It shows a scaling behavior upon the width-modulation rate that allows for thermal conductivity engineering. The electron conductivity also decreases due to enhanced boundary scattering by the constrictions. The effect of boundary scattering is weaker for electrons than for phonons and the overall thermoelectric efficiency is enhanced. A ZT enhancement by a factor of 20-30 is predicted for width-modulated nanowires compared to bulk silicon. Our findings indicate that width-modulated nanostructures are promising for developing silicon nanostructures with high thermoelectric efficiency.

  3. Radio-frequency integrated-circuit engineering

    CERN Document Server

    Nguyen, Cam

    2015-01-01

    Radio-Frequency Integrated-Circuit Engineering addresses the theory, analysis and design of passive and active RFIC's using Si-based CMOS and Bi-CMOS technologies, and other non-silicon based technologies. The materials covered are self-contained and presented in such detail that allows readers with only undergraduate electrical engineering knowledge in EM, RF, and circuits to understand and design RFICs. Organized into sixteen chapters, blending analog and microwave engineering, Radio-Frequency Integrated-Circuit Engineering emphasizes the microwave engineering approach for RFICs. Provide

  4. Quantitative measurement of radiofrequency volumetric tissue reduction by multidetector CT in patients with inferior turbinate hypertrophy.

    Science.gov (United States)

    Bahadir, Osman; Kosucu, Polat

    2012-12-01

    To objectively assess the efficacy of radiofrequency thermal ablation of inferior turbinate hypertrophy. Thirty-five patients with nasal obstruction secondary to inferior turbinate hypertrophy were prospectively enrolled. Radiofrequency energy was delivered to four sites in each inferior turbinate. Patients were evaluated before and 8 weeks after intervention. Subjective evaluation of nasal obstruction was performed using a visual analogue scale (VAS), and objective evaluation of the turbinate volume reduction was calculated using multidetector CT. Volumetric measurements of the preoperative inferior turbinate were compared with postoperative values on both sides. The great majority of patients (91.4%) exhibited subjective postoperative improvement. Mean obstruction (VAS) improved significantly from 7.45±1.48 to 3.54±1.96. Significant turbinate volume reduction was achieved by the surgery on both right and left sides [(preoperative vs. postoperative, right: 6.55±1.62cm(3) vs. 5.10±1.47cm(3), (PRadiofrequency is a safe and effective surgical procedure in reducing turbinate volume in patients with inferior turbinate hypertrophy. Multidetector CT is an objective method of assessment in detecting radiofrequency turbinate volume reduction. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Fiber-Optic Temperature and Pressure Sensors Applied to Radiofrequency Thermal Ablation in Liver Phantom: Methodology and Experimental Measurements

    Directory of Open Access Journals (Sweden)

    Daniele Tosi

    2015-01-01

    Full Text Available Radiofrequency thermal ablation (RFA is a procedure aimed at interventional cancer care and is applied to the treatment of small- and midsize tumors in lung, kidney, liver, and other tissues. RFA generates a selective high-temperature field in the tissue; temperature values and their persistency are directly related to the mortality rate of tumor cells. Temperature measurement in up to 3–5 points, using electrical thermocouples, belongs to the present clinical practice of RFA and is the foundation of a physical model of the ablation process. Fiber-optic sensors allow extending the detection of biophysical parameters to a vast plurality of sensing points, using miniature and noninvasive technologies that do not alter the RFA pattern. This work addresses the methodology for optical measurement of temperature distribution and pressure using four different fiber-optic technologies: fiber Bragg gratings (FBGs, linearly chirped FBGs (LCFBGs, Rayleigh scattering-based distributed temperature system (DTS, and extrinsic Fabry-Perot interferometry (EFPI. For each instrument, methodology for ex vivo sensing, as well as experimental results, is reported, leading to the application of fiber-optic technologies in vivo. The possibility of using a fiber-optic sensor network, in conjunction with a suitable ablation device, can enable smart ablation procedure whereas ablation parameters are dynamically changed.

  6. Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity

    Science.gov (United States)

    Xu, Yonggang; Yang, Chi; Li, Jun; Zhang, Hailong; Hu, Song; Wang, Shiwei

    2017-01-01

    AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity. PMID:29258277

  7. Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity.

    Science.gov (United States)

    Xu, Yonggang; Yang, Chi; Li, Jun; Mao, Xiaojian; Zhang, Hailong; Hu, Song; Wang, Shiwei

    2017-12-18

    AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity.

  8. Radiofrequency catheter oblation in atrial flutter

    International Nuclear Information System (INIS)

    Yan Ji; Wang Heping; Xu Jian; Liu Fuyuan; Fan Xizhen; An Chunsheng; Han Xiaoping; Ding Xiaomei; Wang Jiasheng; Gu Tongyuan

    2002-01-01

    Objective: To evaluate the radiofrequency catheter ablation for type I atrial flutter through application of Holo catheter labelling with anatomic imaging localization to ablate the isthmus of IVCTA during complete double-way block. Methods: Eleven cases with type I atrial flutter undergone Holo catheter labelling technique and consecution with conduction time change of coronary venous sinus orifice with-right atrial lower lateral wall pace excitation, were performed with radiofrequency catheter ablation for the isthmus outcoming with complete double-way conduction block. Results: All together 11 cases with 4 of atrial flutter and 7 of sinus rhythm were undergone radiofrequency catheter ablation resulting with double-way conduction block of the isthmus accompanied by prolongation of right atrial conduction time 56.0 ± 2.3 ms and 53.0 ± 4.6 ms respectively. The right atrial excitation appeared to be in clockwise and counter-clockwise of single direction. No recurrence occurred during 3-34 months follow up with only one showing atrial fibrillation. Conclusions: The application of Holo catheter labelling technique with anatomic imaging localization to achieve the double-way conduction block by radiofrequency catheter ablation of TVC-TA isthmus, is a reliable method for treating atrial flutter

  9. Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L

    Energy Technology Data Exchange (ETDEWEB)

    Tkalec, Mirta [Department of Botany, Division of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb (Croatia)], E-mail: mtkalec@zg.biol.pmf.hr; Malaric, Kresimir [Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb (Croatia); Pevalek-Kozlina, Branka [Department of Botany, Division of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb (Croatia)

    2007-12-15

    23 V m{sup -1}. At both frequencies no differences in isoenzyme patterns of antioxidative enzymes or HSP70 level were found between control and exposed plants. Our results showed that non-thermal exposure to investigated radiofrequency fields induced oxidative stress in duckweed as well as unspecific stress responses, especially of antioxidative enzymes. However, the observed effects markedly depended on the field frequencies applied as well as on other exposure parameters (strength, modulation and exposure time). Enhanced lipid peroxidation and H{sub 2}O{sub 2} content accompanied by diminished antioxidative enzymes activity caused by exposure to investigated EMFs, especially at 900 MHz, indicate that oxidative stress could partly be due to changed activities of antioxidative enzymes.

  10. Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L

    International Nuclear Information System (INIS)

    Tkalec, Mirta; Malaric, Kresimir; Pevalek-Kozlina, Branka

    2007-01-01

    patterns of antioxidative enzymes or HSP70 level were found between control and exposed plants. Our results showed that non-thermal exposure to investigated radiofrequency fields induced oxidative stress in duckweed as well as unspecific stress responses, especially of antioxidative enzymes. However, the observed effects markedly depended on the field frequencies applied as well as on other exposure parameters (strength, modulation and exposure time). Enhanced lipid peroxidation and H 2 O 2 content accompanied by diminished antioxidative enzymes activity caused by exposure to investigated EMFs, especially at 900 MHz, indicate that oxidative stress could partly be due to changed activities of antioxidative enzymes

  11. Thermal shrinkage for shoulder instability.

    Science.gov (United States)

    Toth, Alison P; Warren, Russell F; Petrigliano, Frank A; Doward, David A; Cordasco, Frank A; Altchek, David W; O'Brien, Stephen J

    2011-07-01

    Thermal capsular shrinkage was popular for the treatment of shoulder instability, despite a paucity of outcomes data in the literature defining the indications for this procedure or supporting its long-term efficacy. The purpose of this study was to perform a clinical evaluation of radiofrequency thermal capsular shrinkage for the treatment of shoulder instability, with a minimum 2-year follow-up. From 1999 to 2001, 101 consecutive patients with mild to moderate shoulder instability underwent shoulder stabilization surgery with thermal capsular shrinkage using a monopolar radiofrequency device. Follow-up included a subjective outcome questionnaire, discussion of pain, instability, and activity level. Mean follow-up was 3.3 years (range 2.0-4.7 years). The thermal capsular shrinkage procedure failed due to instability and/or pain in 31% of shoulders at a mean time of 39 months. In patients with unidirectional anterior instability and those with concomitant labral repair, the procedure proved effective. Patients with multidirectional instability had moderate success. In contrast, four of five patients with isolated posterior instability failed. Thermal capsular shrinkage has been advocated for the treatment of shoulder instability, particularly mild to moderate capsular laxity. The ease of the procedure makes it attractive. However, our retrospective review revealed an overall failure rate of 31% in 80 patients with 2-year minimum follow-up. This mid- to long-term cohort study adds to the literature lacking support for thermal capsulorrhaphy in general, particularly posterior instability. The online version of this article (doi:10.1007/s11420-010-9187-7) contains supplementary material, which is available to authorized users.

  12. Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment

    KAUST Repository

    Cottrill, Anton L.; Wang, Song; Liu, Albert Tianxiang; Wang, Wen-Jun; Strano, Michael S.

    2018-01-01

    Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane-impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH-O) and a poly(N-isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials.

  13. Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment

    KAUST Repository

    Cottrill, Anton L.

    2018-01-15

    Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane-impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH-O) and a poly(N-isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials.

  14. Non-surgical radiofrequency facelift.

    Science.gov (United States)

    Narins, David J; Narins, Rhoda S

    2003-10-01

    There has been considerable interest in using non-ablative methods to rejuvenate the skin. The ThermaCool TC (Thermage Inc.) is a radiofrequency (RF) device that has been introduced to induce tightening of the address the problem of skin via a uniform volumetric heating into the deep dermis tightening, resulting in a 'non-surgical facelift'. Radiofrequency produces a uniform volumetric heating into the deep dermis. Twenty treatment areas in 17 patients were treated to evaluate the efficacy and safety of RF treatment to the brow and jowls. The technique was found to produce gradual tightening in most patients, and there were no adverse effects.

  15. Percutaneous ultrasound-guided radiofrequency ablation for kidney tumors in patients with surgical risk

    International Nuclear Information System (INIS)

    Salagierski, Marek; Salagierski, Maciej; Sosnowski, Marek; Salagierska-Barwinska, Anna

    2006-01-01

    The aim of this study was to describe our experience with percutaneous ultrasound-guided radiofrequency ablation of kidney tumors. From July 2002 to August 2005, 45 radiofrequency ablations (RFA) in 42 selected patients with kidney tumor were performed. The patients had either contraindications to surgery procedures or had a solitary kidney. The average tumor size was 37.5 mm (range, 18-59 mm) with the mean age of 68 years (range, 28-83 years). RFA were performed based on radiographic findings. Needle biopsy was made only twice. Monopolar Cool-tip Tyco or bipolar Celon Olympus radiofrequency devices were used. The procedure was performed under conscious sedation with local anesthesia. Treatment efficacy was assessed by computed tomography and by Doppler ultrasound. The absence of contrast enhancement on computed tomography was considered to be a successful treatment. The average follow up was 14 months (range, 3-36 months). In 42 tumors (93%), total absence of contrast enhancement was obtained after the initial RFA and in three tumors (7%) after the second ablation session. There were no complications following 41 procedures, including all ablations in small (<35 mm) renal masses. In four procedures, minor complications were observed. All patients are alive. There has been no need for chronic hemodialysis and, until now, we have not observed any local recurrences with the exception of one metastasis to an ipsilateral adrenal gland. RFA of kidney tumors is a promising alternative treatment which could be considered for patients who are not suitable for surgery. (author)

  16. 21 CFR 870.2910 - Radiofrequency physiological signal transmitter and receiver.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiofrequency physiological signal transmitter... Devices § 870.2910 Radiofrequency physiological signal transmitter and receiver. (a) Identification. A radiofrequency physiological signal transmitter and receiver is a device used to condition a physiological signal...

  17. Actual role of radiofrequency ablation of liver metastases

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Philippe L. [Eberhard-Karls-University of Tuebingen, Department of Diagnostic Radiology, Tuebingen (Germany)

    2007-08-15

    The liver is, second only to lymph nodes, the most common site for metastatic disease irrespective of the primary tumour. More than 50% of all patients with malignant diseases will develop liver metastases with a significant morbidity and mortality. Although the surgical resection leads to an improved survival in patients with colorectal metastases, only approximately 20% of patients are eligible for surgery. Thermal ablation and especially radiofrequency ablation emerge as an important additional therapy modality for the treatment of liver metastases. RF ablation shows a benefit in life expectancy and may lead in a selected patient group to cure. Percutaneous RF ablation appears safer (versus cryotherapy), easier (versus laser), and more effective (versus ethanol instillation and transarterial chemoembolisation) compared with other minimally invasive procedures. RF ablation can be performed by a percutaneous, laparoscopical or laparotomic approach, and may be potentially combined with chemotherapy and surgery. At present ideal candidates have tumours with a maximum diameter less than 3.5 cm. An untreatable primary tumour or a systemic disease represents contraindications for performing local therapies. Permanent technical improvements of thermal ablation devices and a better integration of thermal ablation in the overall patient care may lead to prognosis improvement in patients with liver metastases. (orig.)

  18. Actual role of radiofrequency ablation of liver metastases

    International Nuclear Information System (INIS)

    Pereira, Philippe L.

    2007-01-01

    The liver is, second only to lymph nodes, the most common site for metastatic disease irrespective of the primary tumour. More than 50% of all patients with malignant diseases will develop liver metastases with a significant morbidity and mortality. Although the surgical resection leads to an improved survival in patients with colorectal metastases, only approximately 20% of patients are eligible for surgery. Thermal ablation and especially radiofrequency ablation emerge as an important additional therapy modality for the treatment of liver metastases. RF ablation shows a benefit in life expectancy and may lead in a selected patient group to cure. Percutaneous RF ablation appears safer (versus cryotherapy), easier (versus laser), and more effective (versus ethanol instillation and transarterial chemoembolisation) compared with other minimally invasive procedures. RF ablation can be performed by a percutaneous, laparoscopical or laparotomic approach, and may be potentially combined with chemotherapy and surgery. At present ideal candidates have tumours with a maximum diameter less than 3.5 cm. An untreatable primary tumour or a systemic disease represents contraindications for performing local therapies. Permanent technical improvements of thermal ablation devices and a better integration of thermal ablation in the overall patient care may lead to prognosis improvement in patients with liver metastases. (orig.)

  19. Factors Limiting Complete Tumor Ablation by Radiofrequency Ablation

    International Nuclear Information System (INIS)

    Paulet, Erwan; Aube, Christophe; Pessaux, Patrick; Lebigot, Jerome; Lhermitte, Emilie; Oberti, Frederic; Ponthieux, Anne; Cales, Paul; Ridereau-Zins, Catherine; Pereira, Philippe L.

    2008-01-01

    The purpose of this study was to determine radiological or physical factors to predict the risk of residual mass or local recurrence of primary and secondary hepatic tumors treated by radiofrequency ablation (RFA). Eighty-two patients, with 146 lesions (80 hepatocellular carcinomas, 66 metastases), were treated by RFA. Morphological parameters of the lesions included size, location, number, ultrasound echogenicity, computed tomography density, and magnetic resonance signal intensity were obtained before and after treatment. Parameters of the generator were recorded during radiofrequency application. The recurrence-free group was statistically compared to the recurrence and residual mass groups on all these parameters. Twenty residual masses were detected. Twenty-nine lesions recurred after a mean follow-up of 18 months. Size was a predictive parameter. Patients' sex and age and the echogenicity and density of lesions were significantly different for the recurrence and residual mass groups compared to the recurrence-free group (p < 0.05). The presence of an enhanced ring on the magnetic resonance control was more frequent in the recurrence and residual mass groups. In the group of patients with residual lesions, analysis of physical parameters showed a significant increase (p < 0.05) in the time necessary for the temperature to rise. In conclusion, this study confirms risk factors of recurrence such as the size of the tumor and emphasizes other factors such as a posttreatment enhanced ring and an increase in the time necessary for the rise in temperature. These factors should be taken into consideration when performing RFA and during follow-up

  20. Hypertonic saline enhances host response to bacterial challenge by augmenting receptor-independent neutrophil intracellular superoxide formation.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    OBJECTIVE: This study sought to determine whether hypertonic saline (HTS) infusion modulates the host response to bacterial challenge. METHODS: Sepsis was induced in 30 Balb-C mice by intraperitoneal injection of Escherichia coli (5 x 107 organisms per animal). In 10 mice, resuscitation was performed at 0 and 24 hours with a 4 mL\\/kg bolus of HTS (7.5% NaCl), 10 animals received 4 mL\\/kg of normal saline (0.9% NaCl), and the remaining animals received 30 mL\\/kg of normal saline. Samples of blood, spleen, and lung were cultured at 8 and 36 hours. Polymorphonucleocytes were incubated in isotonic or hypertonic medium before culture with E. coli. Phagocytosis was assessed by flow cytometry, whereas intracellular bacterial killing was measured after inhibition of phagocytosis with cytochalasin B. Intracellular formation of free radicals was assessed by the molecular probe CM-H(2)DCFDA. Mitogen-activated protein (MAP) kinase p38 and ERK-1 phosphorylation, and nuclear factor kappa B (NFkappaB) activation were determined. Data are represented as means (SEM), and an analysis of variance test was performed to gauge statistical significance. RESULTS: Significantly reduced bacterial culture was observed in the animals resuscitated with HTS when compared with their NS counterparts, in blood (51.8 +\\/- 4.3 vs. 82.0 +\\/- 3.3 and 78.4 +\\/- 4.8, P = 0.005), lung (40.0 +\\/- 4.1 vs. 93.2 +\\/- 2.1 and 80.9 +\\/- 4.7, P = 0.002), and spleen (56.4 +\\/- 3.8 vs. 85.4 +\\/- 4.2 and 90.1 +\\/- 5.9, P = 0.05). Intracellular killing of bacteria increased markedly (P = 0.026) and superoxide generation was enhanced upon exposure to HTS (775.78 +\\/- 23.6 vs. 696.57 +\\/- 42.2, P = 0.017) despite inhibition of MAP kinase and NFkappaB activation. CONCLUSIONS: HTS significantly enhances intracellular killing of bacteria while attenuating receptor-mediated activation of proinflammatory cascades.

  1. Radiofrequency Heating Pathways for Gold Nanoparticles

    Science.gov (United States)

    Collins, C. B.; McCoy, R. S.; Ackerson, B. J.; Collins, G. J.

    2015-01-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry and physics, including the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell may all strongly influence to what extent a nanoparticle heats in an RF field. Aspects of RF include: power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields, and also influence the extent to which a gold nanoparticle heats in RF. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620

  2. Review: Weak radiofrequency radiation exposure from mobile phone radiation on plants.

    Science.gov (United States)

    Halgamuge, Malka N

    2017-01-01

    The aim of this article was to explore the hypothesis that non-thermal, weak, radiofrequency electromagnetic fields (RF-EMF) have an effect on living plants. In this study, we performed an analysis of the data extracted from the 45 peer-reviewed scientific publications (1996-2016) describing 169 experimental observations to detect the physiological and morphological changes in plants due to the non-thermal RF-EMF effects from mobile phone radiation. Twenty-nine different species of plants were considered in this work. Our analysis demonstrates that the data from a substantial amount of the studies on RF-EMFs from mobile phones show physiological and/or morphological effects (89.9%, p radiofrequency radiation influence on plants. Hence, this study provides new evidence supporting our hypothesis. Nonetheless, this endorses the need for more experiments to observe the effects of RF-EMFs, especially for the longer exposure durations, using the whole organisms. The above observation agrees with our earlier study, in that it supported that it is not a well-grounded method to characterize biological effects without considering the exposure duration. Nevertheless, none of these findings can be directly associated with human; however, on the other hand, this cannot be excluded, as it can impact the human welfare and health, either directly or indirectly, due to their complexity and varied effects (calcium metabolism, stress proteins, etc.). This study should be useful as a reference for researchers conducting epidemiological studies and the long-term experiments, using whole organisms, to observe the effects of RF-EMFs.

  3. Salinity modulates thermotolerance, energy metabolism and stress response in amphipods Gammarus lacustris

    Directory of Open Access Journals (Sweden)

    Kseniya P. Vereshchagina

    2016-11-01

    Full Text Available Temperature and salinity are important abiotic factors for aquatic invertebrates. We investigated the influence of different salinity regimes on thermotolerance, energy metabolism and cellular stress defense mechanisms in amphipods Gammarus lacustris Sars from two populations. We exposed amphipods to different thermal scenarios and determined their survival as well as activity of major antioxidant enzymes (peroxidase, catalase, glutathione S-transferase and parameters of energy metabolism (content of glucose, glycogen, ATP, ADP, AMP and lactate. Amphipods from a freshwater population were more sensitive to the thermal challenge, showing higher mortality during acute and gradual temperature change compared to their counterparts from a saline lake. A more thermotolerant population from a saline lake had high activity of antioxidant enzymes. The energy limitations of the freshwater population (indicated by low baseline glucose levels, downward shift of the critical temperature of aerobic metabolism and inability to maintain steady-state ATP levels during warming was observed, possibly reflecting a trade-off between the energy demands for osmoregulation under the hypo-osmotic condition of a freshwater environment and protection against temperature stress.

  4. Seasonal variations of the upper ocean salinity stratification in the Tropics

    Science.gov (United States)

    Maes, Christophe; O'Kane, Terence J.

    2014-03-01

    In comparison to the deep ocean, the upper mixed layer is a region typically characterized by substantial vertical gradients in water properties. Within the Tropics, the rich variability in the vertical shapes and forms that these structures can assume through variation in the atmospheric forcing results in a differential effect in terms of the temperature and salinity stratification. Rather than focusing on the strong halocline above the thermocline, commonly referred to as the salinity barrier layer, the present study takes into account the respective thermal and saline dependencies in the Brunt-Väisälä frequency (N2) in order to isolate the specific role of the salinity stratification in the layers above the main pycnocline. We examine daily vertical profiles of temperature and salinity from an ocean reanalysis over the period 2001-2007. We find significant seasonal variations in the Brunt-Väisälä frequency profiles are limited to the upper 300 m depth. Based on this, we determine the ocean salinity stratification (OSS) to be defined as the stabilizing effect (positive values) due to the haline part of N2 averaged over the upper 300 m. In many regions of the tropics, the OSS contributes 40-50% to N2 as compared to the thermal stratification and, in some specific regions, exceeds it for a few months of the seasonal cycle. Away from the tropics, for example, near the centers of action of the subtropical gyres, there are regions characterized by the permanent absence of OSS. In other regions previously characterized with salinity barrier layers, the OSS obviously shares some common variations; however, we show that where temperature and salinity are mixed over the same depth, the salinity stratification can be significant. In addition, relationships between the OSS and the sea surface salinity are shown to be well defined and quasilinear in the tropics, providing some indication that in the future, analyses that consider both satellite surface salinity

  5. Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube

    Science.gov (United States)

    Zhang, Zhiqiang [Lexington, KY; Lockwood, Frances E [Georgetown, KY

    2008-03-25

    A fluid media such as oil or water, and a selected effective amount of carbon nanomaterials necessary to enhance the thermal conductivity of the fluid. One of the preferred carbon nanomaterials is a high thermal conductivity graphite, exceeding that of the neat fluid to be dispersed therein in thermal conductivity, and ground, milled, or naturally prepared with mean particle size less than 500 nm, and preferably less than 200 nm, and most preferably less than 100 nm. The graphite is dispersed in the fluid by one or more of various methods, including ultrasonication, milling, and chemical dispersion. Carbon nanotubes with graphitic structure is another preferred source of carbon nanomaterial, although other carbon nanomaterials are acceptable. To confer long term stability, the use of one or more chemical dispersants is preferred. The thermal conductivity enhancement, compared to the fluid without carbon nanomaterial, is proportional to the amount of carbon nanomaterials (carbon nanotubes and/or graphite) added.

  6. Enhancement of hydrophobicity and tensile strength of muga silk fiber by radiofrequency Ar plasma discharge

    International Nuclear Information System (INIS)

    Gogoi, D.; Choudhury, A.J.; Chutia, J.; Pal, A.R.; Dass, N.N.; Devi, D.; Patil, D.S.

    2011-01-01

    The hydrophobicity and tensile strength of muga silk fiber are investigated using radiofrequency (RF) Ar plasma treatment at various RF powers (10-30 W) and treatment times (5-20 min). The Ar plasma is characterized using self-compensated Langmuir and emissive probe. The ion energy is observed to play an important role in determining the tensile strength and hydrophobicity of the plasma treated fibers. The chemical compositions of the fibers are observed to be affected by the increase in RF power rather than treatment time. XPS study reveals that the ions that are impinging on the substrates are mainly responsible for the cleavage of peptide bond and side chain of amino acid groups at the surface of the fibers. The observed properties (tensile strength and hydrophobicity) of the treated fibers are found to be dependent on their variation in atomic concentration and functional composition at the surfaces. All the treated muga fibers exhibit almost similar thermal behavior as compared to the virgin one. At RF power of 10 W and treatment time range of 5-20 min, the treated fibers exhibit properties similar to that of the virgin one. Higher RF power (30 W) and the increase in treatment time deteriorate the properties of the fibers due to incorporation of more surface roughness caused by sufficiently high energetic ion bombardment. The properties of the plasma treated fibers are attempted to correlate with the XPS analysis and their surface morphologies.

  7. Tumor Seeding Following Lung Radiofrequency Ablation: A Case Report

    International Nuclear Information System (INIS)

    Yamakado, Koichiro; Akeboshi, Masao; Nakatsuka, Atsuhiro; Takaki, Haruyuki; Takao, Motoshi; Kobayashi, Hiroyasu; Taguchi, Osamu; Takeda, Kan

    2005-01-01

    Lung radiofrequency (RF) ablation was performed for the treatment of a primary lung cancer measuring 2.5 cm in maximum diameter in a 78-year-old man. A contrast-enhanced computed tomography (CT) study performed 3 months after RF ablation showed incomplete ablation of the lung tumor and the appearance of a chest wall tumor 4.0 cm in maximum diameter that was considered to be the result of needle-tract seeding. RF ablation was performed for the treatment of both the lung and the chest wall tumors. Although tumor enhancement was eradicated in both of the treated tumors, follow-up CT studies revealed diffuse intra-pulmonary metastases in both lungs 2 months after the second RF session. He is currently receiving systemic chemotherapy

  8. Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities

    International Nuclear Information System (INIS)

    Allen, D.E.; Strazisar, B.R.; Soong, Y.; Hedges, S.W.

    2005-01-01

    The ultimate capacity of saline formations to sequester carbon dioxide by solubility and mineral trapping must be determined by simulating sequestration with geochemical models. These models, however, are only as reliable as the data and reaction scheme on which they are based. Several models have been used to make estimates of carbon dioxide solubility and mineral formation as a function of pressure and fluid composition. Intercomparison of modeling results indicates that failure to adjust all equilibrium constants to account for elevated carbon dioxide pressures results in significant errors in both solubility and mineral formation estimates. Absence of experimental data at high carbon dioxide pressures and high salinities make verification of model results difficult. Results indicate standalone solubility models that do not take mineral reactions into account will underestimate the total capacity of aquifers to sequester carbon dioxide in the long term through enhanced solubility and mineral trapping mechanisms. Overall, it is difficult to confidently predict the ultimate sequestration capacity of deep saline aquifers using geochemical models. (author)

  9. Robotic-assisted thermal ablation of liver tumours

    International Nuclear Information System (INIS)

    Abdullah, Basri Johan Jeet; Yeong, Chai Hong; Goh, Khean Lee; Yoong, Boon Koon; Ho, Gwo Fuang; Yim, Carolyn Chue Wai; Kulkarni, Anjali

    2015-01-01

    This study aimed to assess the technical success, radiation dose, safety and performance level of liver thermal ablation using a computed tomography (CT)-guided robotic positioning system. Radiofrequency and microwave ablation of liver tumours were performed on 20 patients (40 lesions) with the assistance of a CT-guided robotic positioning system. The accuracy of probe placement, number of readjustments and total radiation dose to each patient were recorded. The performance level was evaluated on a five-point scale (5-1: excellent-poor). The radiation doses were compared against 30 patients with 48 lesions (control) treated without robotic assistance. Thermal ablation was successfully completed in 20 patients with 40 lesions and confirmed on multiphasic contrast-enhanced CT. No procedure related complications were noted in this study. The average number of needle readjustment was 0.8 ± 0.8. The total CT dose (DLP) for the entire robotic assisted thermal ablation was 1382 ± 536 mGy.cm, while the CT fluoroscopic dose (DLP) per lesion was 352 ± 228 mGy.cm. There was no statistically significant (p > 0.05) dose reduction found between the robotic-assisted versus the conventional method. This study revealed that robotic-assisted planning and needle placement appears to be safe, with high accuracy and a comparable radiation dose to patients. (orig.)

  10. Robotic-assisted thermal ablation of liver tumours

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Basri Johan Jeet; Yeong, Chai Hong [University of Malaya, Department of Biomedical Imaging and University of Malaya Research Imaging Centre, Faculty of Medicine, Kuala Lumpur (Malaysia); University of Malaya, Department of Internal Medicine, Faculty of Medicine, Kuala Lumpur (Malaysia); Goh, Khean Lee [University of Malaya, Department of Internal Medicine, Faculty of Medicine, Kuala Lumpur (Malaysia); Yoong, Boon Koon [University of Malaya, Department of Surgery, Faculty of Medicine, Kuala Lumpur (Malaysia); Ho, Gwo Fuang [University of Malaya, Department of Oncology, Faculty of Medicine, Kuala Lumpur (Malaysia); Yim, Carolyn Chue Wai [University of Malaya, Department of Anesthesia, Faculty of Medicine, Kuala Lumpur (Malaysia); Kulkarni, Anjali [Perfint Healthcare Corporation, Florence, OR (United States)

    2015-01-15

    This study aimed to assess the technical success, radiation dose, safety and performance level of liver thermal ablation using a computed tomography (CT)-guided robotic positioning system. Radiofrequency and microwave ablation of liver tumours were performed on 20 patients (40 lesions) with the assistance of a CT-guided robotic positioning system. The accuracy of probe placement, number of readjustments and total radiation dose to each patient were recorded. The performance level was evaluated on a five-point scale (5-1: excellent-poor). The radiation doses were compared against 30 patients with 48 lesions (control) treated without robotic assistance. Thermal ablation was successfully completed in 20 patients with 40 lesions and confirmed on multiphasic contrast-enhanced CT. No procedure related complications were noted in this study. The average number of needle readjustment was 0.8 ± 0.8. The total CT dose (DLP) for the entire robotic assisted thermal ablation was 1382 ± 536 mGy.cm, while the CT fluoroscopic dose (DLP) per lesion was 352 ± 228 mGy.cm. There was no statistically significant (p > 0.05) dose reduction found between the robotic-assisted versus the conventional method. This study revealed that robotic-assisted planning and needle placement appears to be safe, with high accuracy and a comparable radiation dose to patients. (orig.)

  11. Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage

    KAUST Repository

    Rahman, Kazi Afzalur; Loh, Wai Soong; Chakraborty, Anutosh; Saha, Bidyut Baran; Chun, Won Gee; Ng, Kim Choon

    2011-01-01

    The usage of adsorbed natural gas (ANG) storage is hindered by the thermal management during the adsorption and desorption processes. An effective thermal enhancement is thus essential for the development of the ANG technology and the motivation

  12. The critical particle size for enhancing thermal conductivity in metal nanoparticle-polymer composites

    Science.gov (United States)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2018-02-01

    Polymers used as thermal interface materials are often filled with high-thermal conductivity particles to enhance the thermal performance. Here, we have combined molecular dynamics and the two-temperature model in 1D to investigate the impact of the metal filler size on the overall thermal conductivity. A critical particle size has been identified above which thermal conductivity enhancement can be achieved, caused by the interplay between high particle thermal conductivity and the added electron-phonon and phonon-phonon thermal boundary resistance brought by the particle fillers. Calculations on the SAM/Au/SAM (self-assembly-monolayer) system show a critical thickness Lc of around 10.8 nm. Based on the results, we define an effective thermal conductivity and propose a new thermal circuit analysis approach for the sandwiched metal layer that can intuitively explain simulation and experimental data. The results show that when the metal layer thickness decreases to be much smaller than the electron-phonon cooling length (or as the "thin limit"), the effective thermal conductivity is just the phonon portion, and electrons do not participate in thermal transport. As the thickness increases to the "thick limit," the effective thermal conductivity recovers the metal bulk value. Several factors that could affect Lc are discussed, and it is discovered that the thermal conductivity, thermal boundary resistance, and the electron-phonon coupling factor are all important in controlling Lc.

  13. Radiofrequency-thermoablation in malignant liver disease

    International Nuclear Information System (INIS)

    Pichler, L.; Anzboeck, W.; Paertan, G.; Hruby, W.

    2002-01-01

    The clinical application of radiofrequency tumor ablation in primary liver tumors and metastatic liver disease is rapidly growing because this technique has proven to be simple, safe, and effective in first clinical studies. Most of the patients with malignant liver disease are not candidates for surgical resection due localisation or comorbidity, so radiofrequency therapy offers a good alternative for inoperable patients. With this method, high frequency alternating current is delivered to tissue via a needle electrode, the produced heat leads to coagulation necrosis. The largest focus of necrosis that can be induced with the currently available systems is approximately 4-5 cm with a single application. The radiofrequency needle is usually placed with US or CT guidance. For follow up examinations CT and MRI can be used, they proved to be equally accurate in the assessment of treatment response. (orig.) [de

  14. Fractionated bipolar radiofrequency and bipolar radiofrequency potentiated by infrared light for treating striae: A prospective randomized, comparative trial with objective evaluation.

    Science.gov (United States)

    Harmelin, Yona; Boineau, Dominique; Cardot-Leccia, Nathalie; Fontas, Eric; Bahadoran, Philippe; Becker, Anne-Lise; Montaudié, Henri; Castela, Emeline; Perrin, Christophe; Lacour, Jean-Philippe; Passeron, Thierry

    2016-03-01

    Very few treatments for striae are based on prospective randomized trials. The objective of this study was to assess the efficacy of bipolar fractional radiofrequency and bipolar radiofrequency potentiated with infrared light, alone or combined, for treating abdominal stretch marks. Bicentric prospective interventional randomized controlled trial in the department of Dermatology of University Hospital of Nice and Aesthetics Laser Center of Bordeaux, France. Men and women of age 18 years or above, who presented for the treatment of mature or immature abdominal striae were included. The patients' abdomens were divided into four equal quadrants. Bipolar radiofrequency potentiated with infrared light and fractional bipolar radiofrequency were applied, alone or combined, and compared to the remaining untreated quadrant. The main criterion of evaluation was the measurement of depth of striae, using 3D photography at 6 months follow-up. A global assessment was also rated by the physician performing the treatment and by the patients. Histological analysis and confocal laser microscopy were additionally performed. A total of 22 patients were enrolled, and 384 striae were measured. In per protocol analysis mean striae depth was decreased by 21.64%, observed at 6 months follow-up with the combined approach, compared to an increase of 1.73% in the control group (P radiofrequency, combined with bipolar radiofrequency potentiated by infrared light, is an effective treatment of both immature and mature striae of the abdomen. © 2016 Wiley Periodicals, Inc.

  15. Temperature-controlled radiofrequency ablation of cardiac tissue

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, Adrian

    1999-01-01

    BACKGROUND: A variety of basic factors such as electrode tip pressure, flow around the electrode and electrode orientation influence lesion size during radiofrequency ablation, but importantly is dependent on the chosen mode of ablation. However, only little information is available for the frequ......BACKGROUND: A variety of basic factors such as electrode tip pressure, flow around the electrode and electrode orientation influence lesion size during radiofrequency ablation, but importantly is dependent on the chosen mode of ablation. However, only little information is available...... for the frequently used temperature-controlled mode. The purpose of the present experimental study was to evaluate the impact during temperature-controlled radiofrequency ablation of three basic factors regarding electrode-tissue contact and convective cooling on lesion size. METHODS AND RESULTS: In vitro strips......-controlled radiofrequency ablation increased external cooling of the electrode tip due to either flow of the surrounding liquid or poor electrode tissue contact, as exemplified by perpendicular versus parallel electrode orientation, increases lesion size significantly. This is in contrast to the impact of these factors...

  16. Pulsed Radiofrequency Ablation for Treating Sural Neuralgia.

    Science.gov (United States)

    Abd-Elsayed, Alaa; Jackson, Markus; Plovanich, Elizabeth

    2018-01-01

    Sural neuralgia is persistent pain in the distribution of the sural nerve that provides sensation to the lateral posterior corner of the leg, lateral foot, and fifth toe. Sural neuralgia is a rare condition but can be challenging to treat and can cause significant limitation. We present 2 cases of sural neuralgia resistant to conservative management that were effectively treated by pulsed radiofrequency ablation. A 65-year-old female developed sural neuralgia after a foot surgery and failed conservative management. She had successful sural nerve blocks, and pulsed radiofrequency ablation led to an 80% improvement in her pain. A 33-year-old female presented with sural neuralgia secondary to two falls. The patient had tried several conservative modalities with no success. We performed diagnostic blocks and pulsed radiofrequency ablation, and the patient reported 80% improvement in her pain. Pulsed radiofrequency ablation may be a safe and effective treatment for patients with sural neuralgia that does not respond to conservative therapy. However, studies are needed to elucidate its effectiveness and safety profile.

  17. Treatment response assessment of radiofrequency ablation for hepatocellular carcinoma: Usefulness of virtual CT sonography with magnetic navigation

    International Nuclear Information System (INIS)

    Minami, Yasunori; Kitai, Satoshi; Kudo, Masatoshi

    2012-01-01

    Purpose: Virtual CT sonography using magnetic navigation provides cross sectional images of CT volume data corresponding to the angle of the transducer in the magnetic field in real-time. The purpose of this study was to clarify the value of this virtual CT sonography for treatment response of radiofrequency ablation for hepatocellular carcinoma. Patients and methods: Sixty-one patients with 88 HCCs measuring 0.5–1.3 cm (mean ± SD, 1.0 ± 0.3 cm) were treated by radiofrequency ablation. For early treatment response, dynamic CT was performed 1–5 days (median, 2 days). We compared early treatment response between axial CT images and multi-angle CT images using virtual CT sonography. Results: Residual tumor stains on axial CT images and multi-angle CT images were detected in 11.4% (10/88) and 13.6% (12/88) after the first session of RFA, respectively (P = 0.65). Two patients were diagnosed as showing hyperemia enhancement after the initial radiofrequency ablation on axial CT images and showed local tumor progression shortly because of unnoticed residual tumors. Only virtual CT sonography with magnetic navigation retrospectively showed the residual tumor as circular enhancement. In safety margin analysis, 10 patients were excluded because of residual tumors. The safety margin more than 5 mm by virtual CT sonographic images and transverse CT images were determined in 71.8% (56/78) and 82.1% (64/78), respectively (P = 0.13). The safety margin should be overestimated on axial CT images in 8 nodules. Conclusion: Virtual CT sonography with magnetic navigation was useful in evaluating the treatment response of radiofrequency ablation therapy for hepatocellular carcinoma.

  18. T-Stimulator effect on cotton protein composition and synthesis in salinization stress

    International Nuclear Information System (INIS)

    Ibragimova, E.A.; Nazirova, E.R.; Samarkhodjaeva, N.R.; Nalbandyan, A.A.; Babaev, T.A.

    2004-01-01

    Full text: T-stimulator was established to possess a wide spectrum of physiological effects, to enhance plant adaptation to thermal stress and to increase plant resistance to pathogens. Plant adaptation to unfavorable conditions manifests in changes in many links of metabolism, that of proteins included. We studied effect of cottonseed treatment with T-stimulator on composition and synthesis of plasma membrane proteins upon chloride salinization by means of the radioisotope method. Electrophoretic fractionation of cottonseed plasma membrane proteins showed absence of more than 40 polypeptides with molecular mass from 10 to more than 100 kDa in the cotton root membranes. Major fractions-polypeptides with molecular mass of 61, 53, 46, 25, 21, 20 and 18 kDa constitute about 50% of the total polypeptide composition. The salinization significantly affects the total membrane protein output, proportion of some polypeptides and their synthesis rate. Analysis of phoreogram radioautographs showed that 2-hour exposition of cotton roots to 35 S methionine suppresses synthesis of major polypeptides with molecular mass of 63, 61 and 53 kDa, that of low molecular polypeptides (46, 20, 18 kDa) increasing. Changes in the proportion of major polypeptides in cotton plasma membranes, reduction in rate of biosynthesis of high molecular fractions with the general suppression of label inclusion in the membrane fraction are the evidence for a disturbance in biosynthesis of some membrane proteins in cotton tissue cells upon salinization. The inhibiting effect of salinization on the protein-synthesizing system was observed in plants treated with T-stimulator, but the rate of synthesis in plasma membranes of the treated plants was found significantly higher. The activation of some plasma membrane proteins under T-stimulator effect suggests an association with the increase in adaptation of the treated plants to the disturbing effect of salinization

  19. Percutaneous thermal ablation of renal neoplasms; Perkutane Thermoablation von Nierentumoren

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, J. [Inst. fuer Diagnostische und Interventionelle Radiologie/Neuroradiologie, Klinikum Passau (Germany); Mahnken, A.H.; Guenther, R.W. [Klinik fuer Radiologische Diagnostik, Universitaetsklinikum Aachen (Germany)

    2005-12-15

    Due to modern examination techniques such as multidetector computed tomography and high-field magnetic resonance imaging, the detection rate of renal neoplasms is continually increasing. Even though tumors exceeding 4 cm in diameter rarely metastasize, all renal lesions that are possible neoplasms should be treated. Traditional treatment techniques include radical nephrectomy or nephron-sparing resection, which are increasingly performed laparoscopically. Modern thermal ablation techniques such as hyperthermal techniques like radiofrequency ablation RFA, laser induced thermal ablation LITT, focused ultrasound FUS and microwave therapy MW, as well as hypothermal techniques (cryotherapy) may be a useful treatment option for patients who are unfit for or refuse surgical resection. Cryotherapy is the oldest and best known thermal ablation technique and can be performed laparoscopically or percutaneously. Since subzero temperatures have no antistyptic effect, additional maneuvers must be performed to control bleeding. Percutaneous cryotherapy of renal tumors is a new and interesting method, but experience with it is still limited. Radiofrequency ablation is the most frequently used method. Modern probe design allows volumes between 2 and 5 cm in diameter to be ablated. Due to hyperthermal tract ablation, the procedure is deemed to be safe and has a low complication rate. Although there are no randomized comparative studies to open resection, the preliminary results for renal RFA are promising and show RFA to be superior to other thermal ablation techniques. Clinical success rates are over 90% for both, cryo- and radiofrequency ablation. Whereas laser induced thermal therapy is established in hepatic ablation, experience is minimal with respect to renal application. For lesions of more than 2 cm in diameter, additional cooling catheters are required. MR thermometry offers temperature control during ablation. Microwave ablation is characterized by small ablation volumes

  20. The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement

    Science.gov (United States)

    2012-01-01

    This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200 Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60 W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system. PMID:22716909

  1. Response, thermal regulatory threshold and thermal breakdown threshold of restrained RF-exposed mice at 905 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, S [Swiss Federal Institute of Technology (ETH), Zurich, 8092 Zurich (Switzerland); Eom, S J [Swiss Federal Institute of Technology (ETH), Zurich, 8092 Zurich (Switzerland); Schuderer, J [Foundation for Research on Information Technologies in Society (IT' IS), Zeughausstrasse 43, 8004 Zurich (Switzerland); Apostel, U [Fraunhofer Institute for Toxicology and Experimental Medicine, Nicolai-Fuchs-Strasse 1, 30625 Hannover (Germany); Tillmann, T [Fraunhofer Institute for Toxicology and Experimental Medicine, Nicolai-Fuchs-Strasse 1, 30625 Hannover (Germany); Dasenbrock, C [Fraunhofer Institute for Toxicology and Experimental Medicine, Nicolai-Fuchs-Strasse 1, 30625 Hannover (Germany); Kuster, N [Swiss Federal Institute of Technology (ETH), Zurich, 8092 Zurich (Switzerland)

    2005-11-07

    The objective of this study was the determination of the thermal regulatory and the thermal breakdown thresholds for in-tube restrained B6C3F1 and NMRI mice exposed to radiofrequency electromagnetic fields at 905 MHz. Different levels of the whole-body averaged specific absorption rate (SAR 0, 2, 5, 7.2, 10, 12.6 and 20 W kg{sup -1}) have been applied to the mice inside the 'Ferris Wheel' exposure setup at 22 {+-} 2 {sup 0}C and 30-70% humidity. The thermal responses were assessed by measurement of the rectal temperature prior, during and after the 2 h exposure session. For B6C3F1 mice, the thermal response was examined for three different weight groups (20 g, 24 g, 29 g), both genders and for pregnant mice. Additionally, NMRI mice with a weight of 36 g were investigated for an interstrain comparison. The thermal regulatory threshold of in-tube restrained mice was found at SAR levels between 2 W kg{sup -1} and 5 W kg{sup -1}, whereas the breakdown of regulation was determined at 10.1 {+-} 4.0 W kg{sup -1}(K = 2) for B6C3F1 mice and 7.7 {+-} 1.6 W kg{sup -1}(K = 2) for NMRI mice. Based on a simplified power balance equation, the thresholds show a clear dependence upon the metabolic rate and weight. NMRI mice were more sensitive to thermal stress and respond at lower SAR values with regulation and breakdown. The presented data suggest that the thermal breakdown for in-tube restrained mice, whole-body exposed to radiofrequency fields, may occur at SAR levels of 6 W kg{sup -1}(K = 2) at laboratory conditions.

  2. Superselective Particle Embolization Enhances Efficacy of Radiofrequency Ablation: Effects of Particle Size and Sequence of Action

    International Nuclear Information System (INIS)

    Tanaka, Toshihiro; Isfort, Peter; Braunschweig, Till; Westphal, Saskia; Woitok, Anna; Penzkofer, Tobias; Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas; Mahnken, Andreas H.

    2013-01-01

    Purpose. To evaluate the effects of particle size and course of action of superselective bland transcatheter arterial embolization (TAE) on the efficacy of radiofrequency ablation (RFA). Methods. Twenty pigs were divided into five groups: group 1a, 40-μm bland TAE before RFA; group 1b, 40-μm bland TAE after RFA; group 2a, 250-μm bland TAE before RFA; group 2b, 250-μm bland TAE after RFA and group 3, RFA alone. A total of 40 treatments were performed with a combined CT and angiography system. The sizes of the treated zones were measured from contrast-enhanced CTs on days 1 and 28. Animals were humanely killed, and the treated zones were examined pathologically. Results. There were no complications during procedures and follow-up. The short-axis diameter of the ablation zone in group 1a (mean ± standard deviation, 3.19 ± 0.39 cm) was significantly larger than in group 1b (2.44 ± 0.52 cm; P = 0.021), group 2a (2.51 ± 0.32 cm; P = 0.048), group 2b (2.19 ± 0.44 cm; P = 0.02), and group 3 (1.91 ± 0.55 cm; P 3 ). At histology, 40-μm microspheres were observed to occlude smaller and more distal arteries than 250-μm microspheres. Conclusion. Bland TAE is more effective before RFA than postablation embolization. The use of very small 40-μm microspheres enhances the efficacy of RFA more than the use of larger particles.

  3. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Use of radiofrequency in cosmetic dermatology: focus on nonablative treatment of acne scars

    Directory of Open Access Journals (Sweden)

    Simmons BJ

    2014-12-01

    Full Text Available Brian J Simmons, Robert D Griffith, Leyre A Falto-Aizpurua, Keyvan Nouri Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, University of Miami, Miami, FL, USA Abstract: Acne is a common affliction among many teens and some adults that usually resolves over time. However, the severe sequela of acne scarring can lead to long-term psychological and psychiatric problems. There exists a multitude of modalities to treat acne scars such as more invasive surgical techniques, subcision, chemical peels, ablative lasers, fractional lasers, etc. A more recent technique for the treatment of acne scars is nonablative radiofrequency (RF that works by passing a current through the dermis at a preset depth to produce small thermal wounds in the dermis which, in turn, stimulates dermal remodeling to produce new collagen and soften scar defects. This review article demonstrates that out of all RF modalities, microneedle bipolar RF and fractional bipolar RF treatments offers the best results for acne scarring. An improvement of 25%–75% can be expected after three to four treatment sessions using one to two passes per session. Treatment results are optimal approximately 3 months after final treatment. Common side effects can include transient pain, erythema, and scabbing. Further studies are needed to determine what RF treatment modalities work best for specific scar subtypes, so that further optimization of RF treatments for acne scars can be determined. Keywords: acne scarring, radiofrequency treatments, nonablative radiofrequency treatments, scars

  5. Recent Patents on Nano-Enhanced Materials for Use in Thermal Energy Storage (TES).

    Science.gov (United States)

    Ferrer, Gerard; Barreneche, Camila; Solé, Aran; Juliá, José Enrique; Cabeza, Luisa F

    2017-07-10

    Thermal energy storage (TES) systems using phase change materials (PCM) have been lately studied and are presented as one of the key solutions for the implementation of renewable energies. These systems take advantage of the latent heat of phase change of PCM during their melting/ solidification processes to store or release heat depending on the needs and availability. Low thermal conductivity and latent heat are the main disadvantages of organic PCM, while corrosion, subcooling and thermal stability are the prime problems that inorganic PCM present. Nanotechnology can be used to overcome these drawbacks. Nano-enhanced PCM are obtained by the dispersion of nanoparticles in the base material and thermal properties such as thermal conductivity, viscosity and specific heat capacity, within others, can be enhanced. This paper presents a review of the patents regarding the obtaining of nano-enhanced materials for thermal energy storage (TES) in order to realize the development nanotechnologies have gained in the TES field. Patents regarding the synthesis methods to obtain nano-enhanced phase materials (NEPCM) and TES systems using NEPCM have been found and are presented in the paper. The few existing number of patents found is a clear indicator of the recent and thus low development nanotechnology has in the TES field so far. Nevertheless, the results obtained with the reviewed inventions already show the big potential that nanotechnology has in TES and denote a more than probable expansion of its use in the next years. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. The radiofrequency frontier: a review of radiofrequency and combined radiofrequency pulsed-light technology in aesthetic medicine.

    Science.gov (United States)

    Sadick, Neil; Sorhaindo, Lian

    2005-05-01

    Radiofrequency (RF) and combined RF light source technologies have established themselves as safe and effective treatment modalities for several dermatologic procedures, including skin tightening, hair and leg vein removal, acne scarring, skin rejuvenation, and wrinkle reduction. This article reviews the technology, clinical applications, and recent advances of RF and combined RF light/laser source technologies in aesthetic medicine.

  7. Adiabatic radio-frequency potentials for the coherent manipulation of matter waves

    DEFF Research Database (Denmark)

    Lesanovsky, Igor; Schumm, Thorsten; Hofferberth, S.

    2006-01-01

    Adiabatic dressed state potentials are created when magnetic substates of trapped atoms are coupled by a radio-frequency field. We discuss their theoretical foundations and point out fundamental advantages over potentials purely based on static fields. The enhanced flexibility enables one...... to implement numerous configurations, including double wells, Mach-Zehnder, and Sagnac interferometers which even allows for internal state-dependent atom manipulation. These can be realized using simple and highly integrated wire geometries on atom chips....

  8. Self-Sensing Thermal Management System Using Multifunctional Nano-Enhanced Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop a thermal management system with self-sensing capabilities using new multifunctional nano-enhanced structures. Currently,...

  9. Radiofrequency Thermal Ablation versus Bipolar Electrocautery for the Treatment of Inferior Turbinate Hypertrophy: Comparison of Efficacy and Postoperative Morbidity

    Directory of Open Access Journals (Sweden)

    Uluyol, Sinan

    2015-04-01

    Full Text Available Introduction Numerous surgical methods are used to treat nasal obstruction due to inferior turbinate hypertrophy. The primary goal of the therapy is to maximize the nasal airway for as extended a period of time as possible while minimizing therapeutic complications. Objectives The aim of this study was to assess the effects of radiofrequency thermal ablation (RFTA and bipolar electrocautery (BEC on the removal of nasal obstruction in patients with inferior turbinate hypertrophy and on nasal mucociliary clearance (MCC. Patients in both groups were also evaluated in terms of postoperative morbidity. Methods We compared the outcomes of two groups of patients: those treated with RFTA (n = 23 and those who underwent BEC (n = 20. Nasal obstruction was graded using a visual analog scale (VAS and MCC was measured using a saccharin clearance test. Both measurements were performed before and 2 months after treatment. Results Pre- and postoperative VAS scores showed significant improvement for both groups. However, MCC results did not significantly differ between two groups. Neither edema nor crust formation persisted for more than 1 week in any patients. Conclusion Submucosal cauterization with preservation of the nasal mucosa and periosteum is as effective and safe as RFTA and should be considered when planning inferior turbinate interventions.

  10. Enhancement in thermal and mechanical properties of bricks

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2013-01-01

    Full Text Available A new type of porous brick is proposed. Sawdust is initially well mixed with wet clay in order to create voids inside the brick during the firing process. The voids will enhance the total performance of the brick due to the reduction of its density and thermal conductivity and a minor reduction of its compressive stress. All these properties have been measured experimentally and good performance has been obtained. Although a minor reduction in compressive stress has been observed with increased porosity, this property has still been larger than that of the common used hollow brick. Data obtained by this work lead to a new type of effective brick having a good performance with no possibility that mortar enters inside the holes which is the case with the common used hollow bricks. The mortar has a determent effect on thermal properties of the wall since it has some higher thermal conductivity and density than that of brick which increases the wall overall density and thermal conductivity of the wall.

  11. Treatment of acne vulgaris with fractional radiofrequency microneedling.

    Science.gov (United States)

    Kim, Sang Tae; Lee, Kang Hoon; Sim, Hyung Jun; Suh, Kee Suck; Jang, Min Soo

    2014-07-01

    Fractional radiofrequency microneedling is a novel radiofrequency technique that uses insulated microneedles to deliver energy to the deep dermis at the point of penetration without destruction of the epidermis. It has been used for the treatment of various dermatological conditions including wrinkles, atrophic scars and hypertrophic scars. There have been few studies evaluating the efficacy of fractional radiofrequency microneedling in the treatment of acne, and none measuring objective parameters like the number of inflammatory and non-inflammatory acne lesions or sebum excretion levels. The safety and efficacy of fractional radiofrequency microneedling in the treatment of acne vulgaris was investigated. In a prospective clinical trial, 25 patients with moderate to severe acne were treated with fractional radiofrequency microneedling. The procedure was carried out three times at 1-month intervals. Acne lesion count, subjective satisfaction score, sebum excretion level and adverse effects were assessed at baseline and at 4, 8 and 12 weeks after the first treatment as well as 4, 8 and 12 weeks after the last treatment. Number of acne lesions (inflammatory and non-inflammatory) decreased. Sebum excretion and subjective satisfaction were more favorable at every time point compared with the baseline values (P acne vulgaris. © 2014 Japanese Dermatological Association.

  12. Hydrogen enhanced thermal fatigue of y-titanium aluminide

    NARCIS (Netherlands)

    Dunfee, William; Gao, Ming; Wei, Robert P.; Wei, W.

    1995-01-01

    A study of hydrogen enhanced thermal fatigue cracking was carried out for a gamma-based Ti-48Al-2Cr alloy by cycling between room temperature and 750 or 900 °C. The results showed that hydrogen can severely attack the gamma alloy, with resulting lifetimes as low as three cycles, while no failures

  13. US-guided percutaneous radiofrequency thermal ablation for the treatment of solid benign hyperfunctioning or compressive thyroid nodules.

    Science.gov (United States)

    Deandrea, Maurilio; Limone, Paolo; Basso, Edoardo; Mormile, Alberto; Ragazzoni, Federico; Gamarra, Elena; Spiezia, Stefano; Faggiano, Antongiulio; Colao, Annamaria; Molinari, Filippo; Garberoglio, Roberto

    2008-05-01

    The aim of the study was to define the effectiveness and safety of ultrasound-guided percutaneous radiofrequency (RF) thermal ablation in the treatment of compressive solid benign thyroid nodules. Thirty-one patients not eligible for surgery or radioiodine (131I) treatment underwent RF ablation for benign nodules; a total of 33 nodules were treated (2 patients had 2 nodules treated in the same session): 10 cold nodules and 23 hyperfunctioning. Fourteen patients complained of compressive symptoms. Nodule volume, thyroid function and compressive symptoms were evaluated before treatment and at 1, 3 and 6 mo. Ultrasound-guided RF ablation was performed using a Starbust RITA needle, with nine expandable prongs; total exposure time was 6 to 10 min at 95 degrees C in one area or more of the nodule. Baseline volume (measured at the time of RF ablation) was 27.7 +/- 21.5 mL (mean +/- SD), but significantly decreased during follow-up: 19.2 +/- 16.2 at 1 mo (-32.7%; p nodules remained euthyroid: five patients with hot nodules normalized thyroid function, and the remaining sixteen showed a partial remission of hyperthyroidism. Besides a sensation of heat and mild swelling of the neck, no major complications were observed. Improvement in compressive symptoms was reported by 13 patients, with a reduction on severity scale from 6.1 +/- 1.4 to 2.2 +/- 1.9 (p nodules. Hyperfunction was fully controlled in 24% of patients and partially reduced in the others.

  14. Thermal-Responsive Polymers for Enhancing Safety of Electrochemical Storage Devices.

    Science.gov (United States)

    Yang, Hui; Leow, Wan Ru; Chen, Xiaodong

    2018-03-01

    Thermal runway constitutes the most pressing safety issue in lithium-ion batteries and supercapacitors of large-scale and high-power density due to risks of fire or explosion. However, traditional strategies for averting thermal runaway do not enable the charging-discharging rate to change according to temperature or the original performance to resume when the device is cooled to room temperature. To efficiently control thermal runaway, thermal-responsive polymers provide a feasible and reversible strategy due to their ability to sense and subsequently act according to a predetermined sequence when triggered by heat. Herein, recent research progress on the use of thermal-responsive polymers to enhance the thermal safety of electrochemical storage devices is reviewed. First, a brief discussion is provided on the methods of preventing thermal runaway in electrochemical storage devices. Subsequently, a short review is provided on the different types of thermal-responsive polymers that can efficiently avoid thermal runaway, such as phase change polymers, polymers with sol-gel transitions, and polymers with positive temperature coefficients. The results represent the important development of thermal-responsive polymers toward the prevention of thermal runaway in next-generation smart electrochemical storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Submesoscale-selective compensation of fronts in a salinity-stratified ocean.

    Science.gov (United States)

    Spiro Jaeger, Gualtiero; Mahadevan, Amala

    2018-02-01

    Salinity, rather than temperature, is the leading influence on density in some regions of the world's upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity.

  16. Radiofrequency amplifier based on a DC superconducting quantum interference device

    International Nuclear Information System (INIS)

    Martinis, J.M.; Hilbert, C.; Clarke, J.

    1986-01-01

    A method is described of amplifying a radiofrequency signal consisting of: disposing a single symmetrically biased dc SQUID and an input coil within a superconducting shield, the dc SQUID having a superconducting ring interrupted by two shunted Josephson junctions, and the input coil being inductively coupled solely to the ring of the single SQUID, establishing a constant magnetic flux threading the SQUID ring, applying the radiofrequency signal to the input coil from outside of the superconducting shield, obtaining an amplified radiofrequency signal solely from across the ring of the single SQUID, transmitting the amplified radiofrequency signal from across the SQUID ring to the outside of the superconducting shield

  17. Value of radiofrequency ablation in the treatment of hepatocellular carcinoma

    Science.gov (United States)

    Feng, Kai; Ma, Kuan-Sheng

    2014-01-01

    Hepatocellular carcinoma (HCC) is a malignant disease that substantially affects public health worldwide. It is especially prevalent in east Asia and sub-Saharan Africa, where the main etiology is the endemic status of chronic hepatitis B. Effective treatments with curative intent for early HCC include liver transplantation, liver resection (LR), and radiofrequency ablation (RFA). RFA has become the most widely used local thermal ablation method in recent years because of its technical ease, safety, satisfactory local tumor control, and minimally invasive nature. This technique has also emerged as an important treatment strategy for HCC in recent years. RFA, liver transplantation, and hepatectomy can be complementary to one another in the treatment of HCC, and the outcome benefits have been demonstrated by numerous clinical studies. As a pretransplantation bridge therapy, RFA extends the average waiting time without increasing the risk of dropout or death. In contrast to LR, RFA causes almost no intra-abdominal adhesion, thus producing favorable conditions for subsequent liver transplantation. Many studies have demonstrated mutual interactions between RFA and hepatectomy, effectively expanding the operative indications for patients with HCC and enhancing the efficacy of these approaches. However, treated tumor tissue remains within the body after RFA, and residual tumors or satellite nodules can limit the effectiveness of this treatment. Therefore, future research should focus on this issue. PMID:24876721

  18. New resonant circuits for the ISOLTRAP radiofrequency quadrupole trap

    CERN Document Server

    SENECAL, Pierre

    2015-01-01

    This report describes my work during my Summer Student Program. My main project was building and testing a resonance-circuit box for a radio-frequency power supply used with the radio-frequency cooler and buncher.

  19. Preparation and characterization of molten salt based nanothermic fluids with enhanced thermal properties for solar thermal applications

    International Nuclear Information System (INIS)

    Madathil, Pramod Kandoth; Balagi, Nagaraj; Saha, Priyanka; Bharali, Jitalaxmi; Rao, Peddy V.C.; Choudary, Nettem V.; Ramesh, Kanaparthi

    2016-01-01

    Highlights: • Prepared and characterized inorganic ternary molten salt based nanothermic fluids. • MoS_2 and CuO nanoparticles incorporated ternary molten salts have been prepared. • Thermal properties enhanced by the addition of MoS_2 and CuO nanoparticles. • The amount of nanoparticles has been optimized. - Abstract: In the current energy scenario, solar energy is attracting considerable attention as a renewable energy source with ample research and commercial opportunities. The novel and efficient technologies in the solar energy are directed to develop methods for solar energy capture, storage and utilization. High temperature thermal energy storage systems can deal with a wide range of temperatures and therefore they are highly recommended for concentrated solar power (CSP) applications. In the present study, a systematic investigation has been carried out to identify the suitable inorganic nanoparticles and their addition in the molten salt has been optimized. In order to enhance the thermo-physical properties such as thermal conductivity and specific heat capacity of molten salt based HTFs, we report the utilization of MoS_2 and CuO nanoparticles. The enhancement in the above mentioned thermo-physical properties has been demonstrated for optimized compositions and the morphologies of nanoparticle-incorporated molten salts have been studied by scanning electron microscopy (SEM). Nanoparticle addition to molten salts is an efficient method to prepare thermally stable molten salt based heat transfer fluids which can be used in CSP plants. It is also observed that the sedimentation of nanoparticles in molten salt is negligible compared to that in organic heat transfer fluids.

  20. Effect of Radio-Frequency and Low-Frequency Bias Voltage on the Formation of Amorphous Carbon Films Deposited by Plasma Enhanced Chemical Vapor Deposition

    International Nuclear Information System (INIS)

    Manis-Levy, Hadar; Mintz, Moshe H.; Livneh, Tsachi; Zukerman Ido; Raveh, Avi

    2014-01-01

    The effect of radio-frequency (RF) or low-frequency (LF) bias voltage on the formation of amorphous hydrogenated carbon (a-C:H) films was studied on silicon substrates with a low methane (CH 4 ) concentration (2–10 vol.%) in CH 4 +Ar mixtures. The bias substrate was applied either by RF (13.56 MHz) or by LF (150 kHz) power supply. The highest hardness values (∼18–22 GPa) with lower hydrogen content in the films (∼20 at.%) deposited at 10 vol.% CH 4 , was achieved by using the RF bias. However, the films deposited using the LF bias, under similar RF plasma generation power and CH 4 concentration (50 W and 10 vol.%, respectively), displayed lower hardness (∼6–12 GPa) with high hydrogen content (∼40 at.%). The structures analyzed by Fourier Transform Infrared (FTIR) and Raman scattering measurements provide an indication of trans-polyacetylene structure formation. However, its excessive formation in the films deposited by the LF bias method is consistent with its higher bonded hydrogen concentration and low level of hardness, as compared to the film prepared by the RF bias method. It was found that the effect of RF bias on the film structure and properties is stronger than the effect of the low-frequency (LF) bias under identical radio-frequency (RF) powered electrode and identical PECVD (plasma enhanced chemical vapor deposition) system configuration. (plasma technology)

  1. Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials

    International Nuclear Information System (INIS)

    Sarı, Ahmet

    2016-01-01

    Graphical abstract: In this work, novel bentonite-based and form-stable composite phase change materials (Bb-FSPCMs) were produced for LHTES in buildings by impregnation of CA, PEG600, DD and HD with bentonite clay. The microstructures of the compatibility of the Bb-FSPCMs were by using SEM and FT-IR techniques. The DSC results indicated that the produced Bb-FSPCMs composites had suitable phase change temperature of 4–30 °C and good latent heat capacity between 38 and 74 J/g. The TG results demonstrated that all of the fabricated Bb-FSPCMs had good thermal resistance. The Bb-FSPCMs maintained their LHTES properties even after 1000 heating–cooling cycling. The total heating times of the prepared Bb-FSPCMs were reduced noticeably due to their enhanced thermal conductivity after EG (5 wt%) addition. - Highlights: • Bb-FSPCMs were produced by impregnation of CA, PEG600, DD and HD with bentonite. • DSC analysis indicated that Bb-FSPCMs had melting temperature in range of 4–30 °C. • DSC analysis also showed that Bb-FSPCMs had latent heat between 38 and 74 J/g. • The TG analysis demonstrated that Bb-FSPCMs had good thermal resistance. • Thermal conductivity of Bb-FSPCMs were enhanced noticeably with EG (5 wt%) addition. - Abstract: In this work, for latent heat thermal energy storage (LHTES) applications in buildings, bentonite-based form-stable composite phase change materials (Bb-FSPCMs) were produced by impregnation of capric acid (CA), polyethylene glycol (PEG600), dodecanol (DD) and heptadecane (HD) into bentonite clay. The morphological characterization results obtained by scanning electron microscopy (SEM) showed that the bentonite acted as good structural barrier for the organic PCMs homogenously dispersed onto its surface and interlayers. The chemical investigations made by using fourier transform infrared (FT-IR) technique revealed that the attractions between the components of the composites was physical in nature and thus the PCMs were hold

  2. Enhanced thermal expansion control rod drive lines for improving passive safety of fast reactors

    International Nuclear Information System (INIS)

    Edelmann, M.; Baumann, W.; Kuechle, M.; Kussmaul, G.; Vaeth, W.; Bertram, A.

    1992-01-01

    The paper presents a device for increasing the thermal expansion effect of control rod drive lines on negative reactivity feedback in fast reactors. The enhanced thermal expansion of this device can be utilized for both passive rod drop and forced insertion of absorbers in unprotected transients, e.g. ULOF. In this way the reactor is automatically brought into a permanently subcritical state and temperatures are kept well below the boiling point of the coolant. A prototype of such a device called ATHENa (German: Shut-down by THermal Expansion of Na) is presently under construction and will be tested. The paper presents the principle, design features and thermal properties of ATHENs as well as results of reactor dynamics calculations of ULOF's for EFR with enhanced thermal expansion control rod drive lines. (author)

  3. Radiofrequency for the Treatment of Lumbar Radicular Pain: Impact on Surgical Indications.

    Science.gov (United States)

    Trinidad, José Manuel; Carnota, Ana Isabel; Failde, Inmaculada; Torres, Luis Miguel

    2015-01-01

    Study Design. Quasiexperimental study. Objective. To investigate whether radiofrequency treatment can preclude the need for spinal surgery in both the short term and long term. Background. Radiofrequency is commonly used to treat lumbosacral radicular pain. Only few studies have evaluated its effects on surgical indications. Methods. We conducted a quasiexperimental study of 43 patients who had been scheduled for spinal surgery. Radiofrequency was indicated for 25 patients. The primary endpoint was the decision of the patient to reject spinal surgery 1 month and 1 year after treatment (pulsed radiofrequency of dorsal root ganglion, 76%; conventional radiofrequency of the medial branch, 12%; combined technique, 12%). The primary endpoint was the decision of the patient to reject spinal surgery 1 month and 1 year after treatment. In addition, we also evaluated adverse effects, ODI, NRS. Results. We observed after treatment with radiofrequency 80% of patients rejected spinal surgery in the short term and 76% in the long term. We conclude that radiofrequency is a useful treatment strategy that can achieve very similar outcomes to spinal surgery. Patients also reported a very high level of satisfaction (84% satisfied/very satisfied). We also found that optimization of the electrical parameters of the radiofrequency improved the outcome of this technique.

  4. Radiofrequency for the Treatment of Lumbar Radicular Pain: Impact on Surgical Indications

    Directory of Open Access Journals (Sweden)

    José Manuel Trinidad

    2015-01-01

    Full Text Available Study Design. Quasiexperimental study. Objective. To investigate whether radiofrequency treatment can preclude the need for spinal surgery in both the short term and long term. Background. Radiofrequency is commonly used to treat lumbosacral radicular pain. Only few studies have evaluated its effects on surgical indications. Methods. We conducted a quasiexperimental study of 43 patients who had been scheduled for spinal surgery. Radiofrequency was indicated for 25 patients. The primary endpoint was the decision of the patient to reject spinal surgery 1 month and 1 year after treatment (pulsed radiofrequency of dorsal root ganglion, 76%; conventional radiofrequency of the medial branch, 12%; combined technique, 12%. The primary endpoint was the decision of the patient to reject spinal surgery 1 month and 1 year after treatment. In addition, we also evaluated adverse effects, ODI, NRS. Results. We observed after treatment with radiofrequency 80% of patients rejected spinal surgery in the short term and 76% in the long term. We conclude that radiofrequency is a useful treatment strategy that can achieve very similar outcomes to spinal surgery. Patients also reported a very high level of satisfaction (84% satisfied/very satisfied. We also found that optimization of the electrical parameters of the radiofrequency improved the outcome of this technique.

  5. Symplicity multi-electrode radiofrequency renal denervation system feasibility study.

    Science.gov (United States)

    Whitbourn, Robert; Harding, Scott A; Walton, Antony

    2015-05-01

    The aim of this study was to test the safety and performance of the Symplicity™ multi-electrode radio-frequency renal denervation system which was designed to reduce procedure time during renal denervation. The multi-electrode radiofrequency renal denervation system feasibility study is a prospective, non-randomised, open label, feasibility study that enrolled 50 subjects with hypertension. The study utilises a new renal denervation catheter which contains an array of four electrodes mounted in a helical configuration at 90 degrees from each other to deliver radiofrequency energy simultaneously to all four renal artery quadrants for 60 seconds. The protocol specified one renal denervation treatment towards the distal end of each main renal artery with radiofrequency energy delivered for 60 seconds per treatment. Total treatment time for both renal arteries was two minutes. The 12-month change in office systolic blood pressure (SBP) and 24-hour SBP was -19.2±25.2 mmHg, prenal artery stenosis or hypertensive emergencies occurred. The Symplicity multi-electrode radiofrequency renal denervation system was associated with a significant reduction in SBP at 12 months and minimal complications whilst it also reduced procedure time. NCT01699529.

  6. Modeling the response of Northwest Greenland to enhanced ocean thermal forcing and subglacial discharge

    Science.gov (United States)

    Morlighem, M.; Wood, M.; Seroussi, H. L.; Bondzio, J. H.; Rignot, E. J.

    2017-12-01

    Glacier-front dynamics is an important control on Greenland's ice mass balance. Warm and salty Atlantic water, which is typically found at a depth below 200-300 m, has the potential to trigger ice-front retreats of marine-terminating glaciers, and the corresponding loss in resistive stress leads to glacier acceleration and thinning. It remains unclear, however, which glaciers are currently stable but may retreat in the future, and how far inland and how fast they will retreat. Here, we quantify the sensitivity and vulnerability of marine-terminating glaciers along the Northwest coast of Greenland (from 72.5° to 76°N) to ocean forcing using the Ice Sheet System Model (ISSM), and its new ice front migration capability. We rely on the ice melt parameterization from Rignot et al. 2016, and use ocean temperature and salinity from high-resolution ECCO2 simulations on the continental shelf to constrain the thermal forcing. The ice flow model includes a calving law based on a Von Mises criterion. We investigate the sensitivity of Northwest Greenland to enhanced ocean thermal forcing and subglacial discharge. We find that some glaciers, such as Dietrichson Gletscher or Alison Gletscher, are sensitive to small increases in ocean thermal forcing, while others, such as Illullip Sermia or Qeqertarsuup Sermia, are very difficult to destabilize, even with a quadrupling of the melt. Under the most intense melt experiment, we find that Hayes Gletscher retreats by more than 50 km inland into a deep trough and its velocity increases by a factor of 10 over only 15 years. The model confirms that ice-ocean interactions are the triggering mechanism of glacier retreat, but the bed controls its magnitude. This work was performed at the University of California Irvine under a contract with the National Aeronautics and Space Administration, Cryospheric Sciences Program (#NNX15AD55G), and the National Science Foundation's ARCSS program (#1504230).

  7. Effects of GSM modulated radio-frequency electromagnetic radiation on permeability of blood-brain barrier in male & female rats.

    Science.gov (United States)

    Sırav, Bahriye; Seyhan, Nesrin

    2016-09-01

    With the increased use of mobile phones, their biological and health effects have become more important. Usage of mobile phones near the head increases the possibility of effects on brain tissue. This study was designed to investigate the possible effects of pulse modulated 900MHz and 1800MHz radio-frequency radiation on the permeability of blood-brain barrier of rats. Study was performed with 6 groups of young adult male and female wistar albino rats. The permeability of blood-brain barrier to intravenously injected evans blue dye was quantitatively examined for both control and radio-frequency radiarion exposed groups. For male groups; Evans blue content in the whole brain was found to be 0.08±0.01mg% in the control, 0.13±0.03mg% in 900MHz exposed and 0.26±0.05mg% in 1800MHz exposed animals. In both male radio-frequency radiation exposed groups, the permeability of blood-brain barrier found to be increased with respect to the controls (pradiation exposure was found more effective on the male animals (p0.01). However 900MHz pulse modulated radio-frequency exposure was found effective on the permeability of blood-brain barrier of female animals. Results have shown that 20min pulse modulated radio-frequency radiation exposure of 900MHz and 1800MHz induces an effect and increases the permeability of blood-brain barrier of male rats. For females, 900MHz was found effective and it could be concluded that this result may due to the physiological differences between female and male animals. The results of this study suggest that mobile phone radation could lead to increase the permeability of blood-brain barrier under non-thermal exposure levels. More studies are needed to demonstrate the mechanisms of that breakdown. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Treatment of Benign Thyroid Nodules: Comparison of Surgery with Radiofrequency Ablation.

    Science.gov (United States)

    Che, Y; Jin, S; Shi, C; Wang, L; Zhang, X; Li, Y; Baek, J H

    2015-07-01

    Nodular goiter is one of the most common benign lesions in thyroid nodule. The main treatment of the disease is still the traditional surgical resection, however there are many problems such as general anesthesia, surgical scar, postoperative thyroid or parathyroid function abnormalities, and high nodules recurrence rate in residual gland. The purpose of this study was to compare the efficacy, safety, and cost-effectiveness of 2 treatment methods, surgery and radiofrequency ablation, for the treatment of benign thyroid nodules. From May 2012 to September 2013, 200 patients with nodular goiters who underwent surgery (group A) and 200 patients treated by radiofrequency ablation (group B) were enrolled in this study. Inclusion criteria were the following: 1) cosmetic problem, 2) nodule-related symptoms, 3) hyperfunctioning nodules related to thyrotoxicosis, and 4) refusal of surgery (for group B). An internally cooled radiofrequency ablation system and an 18-ga internally cooled electrode were used. We compared the 2 groups in terms of efficacy, safety, and cost-effectiveness during a 1-year follow-up. After radiofrequency ablation, the nodule volume decreased significantly from 5.4 to 0.4 mL (P = .002) at the 12-month follow-up. The incidence of complications was significantly higher from surgery than from radiofrequency ablation (6.0% versus 1.0%, P = .002). Hypothyroidism was detected in 71.5% of patients after surgery but in none following radiofrequency ablation. The rate of residual nodules (11.9% versus 2.9%, P = .004) and hospitalization days was significantly greater after surgery (6.6 versus 2.1 days, P radiofrequency ablation are both effective treatments of nodular goiter. Compared with surgery, the advantages of radiofrequency ablation include fewer complications, preservation of thyroid function, and fewer hospitalization days. Therefore, radiofrequency ablation should be considered a first-line treatment for benign thyroid nodules. © 2015 by American

  9. An experimental study of simultaneous ablation with dual probes in radiofrequency thermal ablation

    International Nuclear Information System (INIS)

    Jang, Il Soo; Rhim, Hyun Chul; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Kim, Yong Soo; Kim, Young Sun; Heo, Jeong Nam

    2003-01-01

    To determine the differences between sequential ablation with a single probe and simultaneous ablation with dual probes. Using two 14-gauge expandable probes (nine internal prongs with 4-cm deployment), radiofrequency was applied sequentially (n=8) or simultaneously (n=8) to ten ex-vivo cow livers. Before starting ablation, two RF probes with an inter-probe space of 2 cm (n=8) or 3 cm (n=8) were inserted. In the sequential group, switching the connecting cable to an RF generator permitted ablation with the second probe just after ablation with the first probe had finished. In the simultaneous group, single ablation was performed only after connecting the shafts of both RF probes using a connection device. Each ablation lasted 7 minutes at a target temperature of 105-110 .deg. C. The size and shape of the ablated area, and total ablation time were then compared between the two groups. With 2-cm spacing, the group, mean length and overlapping width of ablated lesions were, respectively, 5.20 and 5.05 cm in the sequential group (n=4), and 5.81 and 5.65 cm in the simultaneous group (n=4). With 3-cm spacing, the corresponding figures were 4.99 and 5.60 cm in the sequential group (n=4), and 6.04 and 6.78 cm in the simultaneous group (n=4). With 2-cm spacing, the mean depth of the proximal waist was 0.58 cm in the sequential (group and 0.28 cm in the simultaneous group, while with 3-cm spacing, the corresponding figures were 1.65 and 1.48 cm. In neither group was there a distal waist. Mean total ablation time was 23.4 minutes in the sequential group and 14 minutes in the simultaneous group. In terms of ablation size and ablation time, simultaneous radiofrequency ablation with dual probes is superior to sequential ablation with a single probe. A simultaneous approach will enable an operator to overcome difficulty in probe repositioning during overlapping ablation, resulting in complete ablation with a successful safety margin

  10. Sub-tropical coastal lagoon salinization associated to shrimp ponds effluents

    Science.gov (United States)

    Cardoso-Mohedano, José-Gilberto; Lima-Rego, Joao; Sanchez-Cabeza, Joan-Albert; Ruiz-Fernández, Ana-Carolina; Canales-Delgadillo, Julio; Sánchez-Flores, Eric-Ivan; Páez-Osuna, Federico

    2018-04-01

    Anthropogenic salinization impacts the health of aquatic and terrestrial ecosystems worldwide. In tropical and subtropical areas, shrimp farm aquaculture uses water from adjacent ecosystems to fill the culture ponds, where enhanced evaporation cause salinization of discharged water. In this study, we studied water salinity before and after shrimp farm harvest and implemented a three-dimensional hydrodynamic model to assess the impact on a subtropical coastal lagoon that receives water releases from shrimp ponds. The shrimp pond discharge significantly increased the salinity of receiving waters, at least 3 psu over the local variation. In the worst-case salinization scenario, when harvest occurs after a long dry season, salinity could increase by up to 6 psu. The induced salinization due to shrimp pond effluents remained up to 2 tidal cycles after harvest, and could affect biota. The methodology and results of this study can be used to assess the impacts of shrimp aquaculture worldwide.

  11. Huge thermal conductivity enhancement in boron nitride – ethylene glycol nanofluids

    International Nuclear Information System (INIS)

    Żyła, Gaweł; Fal, Jacek; Traciak, Julian; Gizowska, Magdalena; Perkowski, Krzysztof

    2016-01-01

    Paper presents the results of experimental studies on thermophysical properties of boron nitride (BN) plate-like shaped particles in ethylene glycol (EG). Essentially, the studies were focused on the thermal conductivity of suspensions of these particles. Nanofluids were obtained with two-step method (by dispersing BN particles in ethylene glycol) and its’ thermal conductivity was analyzed at various mass concentrations, up to 20 wt. %. Thermal conductivity was measured in temperature range from 293.15 K to 338.15 K with 15 K step. The measurements of thermal conductivity of nanofluids were performed in the system based on a device using the transient line heat source method. Studies have shown that nanofluids’ thermal conductivity increases with increasing fraction of nanoparticles. The results of studies also presented that the thermal conductivity of nanofluids changes very slightly with the increase of temperature. - Highlights: • Huge thermal conductivity enhancement in BN-EG nanofluid was reported. • Thermal conductivity increase very slightly with increasing of the temperature. • Thermal conductivity increase linearly with volume concentration of particles.

  12. Huge thermal conductivity enhancement in boron nitride – ethylene glycol nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Żyła, Gaweł, E-mail: gzyla@prz.edu.pl [Department of Physics and Medical Engineering, Rzeszow University of Technology, Rzeszow, 35-905 (Poland); Fal, Jacek; Traciak, Julian [Department of Physics and Medical Engineering, Rzeszow University of Technology, Rzeszow, 35-905 (Poland); Gizowska, Magdalena; Perkowski, Krzysztof [Department of Nanotechnology, Institute of Ceramics and Building Materials, Warsaw, 02-676 (Poland)

    2016-09-01

    Paper presents the results of experimental studies on thermophysical properties of boron nitride (BN) plate-like shaped particles in ethylene glycol (EG). Essentially, the studies were focused on the thermal conductivity of suspensions of these particles. Nanofluids were obtained with two-step method (by dispersing BN particles in ethylene glycol) and its’ thermal conductivity was analyzed at various mass concentrations, up to 20 wt. %. Thermal conductivity was measured in temperature range from 293.15 K to 338.15 K with 15 K step. The measurements of thermal conductivity of nanofluids were performed in the system based on a device using the transient line heat source method. Studies have shown that nanofluids’ thermal conductivity increases with increasing fraction of nanoparticles. The results of studies also presented that the thermal conductivity of nanofluids changes very slightly with the increase of temperature. - Highlights: • Huge thermal conductivity enhancement in BN-EG nanofluid was reported. • Thermal conductivity increase very slightly with increasing of the temperature. • Thermal conductivity increase linearly with volume concentration of particles.

  13. Thermal ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism.

    Science.gov (United States)

    Duan, Ya-Qi; Liang, Ping

    2013-05-01

    Many studies have been conducted on splenic thermal ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism. In this article, we review the evolution and current status of radiofrequency and microwave ablation in the treatment of spleen diseases. All publications from 1990 to 2011 on radiofrequency and microwave ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism were retrieved by searching PubMed. Thermal ablation in the spleen for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism can preserve part of the spleen and maintain splenic immunologic function. Thermal ablation for assisting hemostasis in partial splenectomy minimizes blood loss during operation. Thermal ablation for spleen trauma reduces the number of splenectomy and the amount of blood transfusion. Thermal ablation for splenic metastasis is minimally invasive and can be done under the guidance of an ultrasound, which helps shorten the recovery time. Thermal ablation for hypersplenism increases platelet (PLT) and white blood cell (WBC) counts and improves liver function. It also helps to maintain splenic immunologic function and even improves splenic immunologic function in the short-term. In conclusion, thermal ablative approaches are promising for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism. In order to improve therapeutic effects, directions for future studies may include standardized therapeutic indications, prolonged observation periods and enlarged sample sizes.

  14. Improvement of Salinity Stress Tolerance in Rice: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Thi My Linh Hoang

    2016-10-01

    Full Text Available Rice (Oryza sativa L. is an important staple crop that feeds more than one half of the world’s population and is the model system for monocotyledonous plants. However, rice is very sensitive to salinity and is the most salt sensitive cereal crop with a threshold of 3 dSm−1 for most cultivated varieties. Despite many attempts using different strategies to improve salinity tolerance in rice, the achievements so far are quite modest. This review aims to discuss challenges that hinder the improvement of salinity stress tolerance in rice as well as potential opportunities for enhancing salinity stress tolerance in this important crop.

  15. Enhancement of natural ventilation in buildings using a thermal chimney

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Ho [University of California at Berkeley, Berkeley, CA (United States); Strand, Richard K. [University of Illinois at Urbana-Champaign, Champaign, IL (United States)

    2009-06-15

    A new module was developed for and implemented in the EnergyPlus program for the simulation and determination of the energy impact of thermal chimneys. This paper describes the basic concepts, assumptions, and algorithms implemented into the EnergyPlus program to predict the performance of a thermal chimney. Using the new module, the effects of the chimney height, solar absorptance of the absorber wall, solar transmittance of the glass cover and the air gap width are investigated under various conditions. Chimney height, solar absorptance and solar transmittance turned out to have more influence on the ventilation enhancement than the air gap width. The potential energy impacts of a thermal chimney under three different climate conditions are also investigated. It turned out that significant building cooling energy saving can be achieved by properly employing thermal chimneys and that they have more potential for cooling than for heating. In addition, the performance of a thermal chimney was heavily dependent on the climate of the location. (author)

  16. Occupational exposure to radiofrequency fields in antenna towers

    International Nuclear Information System (INIS)

    Alanko, T.; Hietanen, M.

    2007-01-01

    Exposure of workers to radiofrequency fields was assessed in two medium-sized antenna towers. Towers had transmitting antennas from different networks, e.g. mobile phone networks, radio and digital TV sub-stations and amateur radio. The levels of radiofrequency fields were measured close to the ladders of the towers. All measured values were below ICNIRP occupational reference levels. (authors)

  17. Radiofrequency thermal ablation for pain control in patients with single painful bone metastasis from hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Carrafiello, Gianpaolo [Department of Radiology, Vascular and Interventional Radiology, University of Insubria, 21100 Varese (Italy)], E-mail: gcarraf@tin.it; Lagana, Domenico [Department of Radiology, Vascular and Interventional Radiology, University of Insubria, 21100 Varese (Italy)], E-mail: donlaga@gmail.com; Ianniello, Andrea [Department of Radiology, Vascular and Interventional Radiology, University of Insubria, 21100 Varese (Italy)], E-mail: ianand@libero.it; Nicotera, Paolo [Department of Radiology, Vascular and Interventional Radiology, University of Insubria, 21100 Varese (Italy)], E-mail: paolonicotera@virgilio.it; Fontana, Federico [Department of Radiology, Vascular and Interventional Radiology, University of Insubria, 21100 Varese (Italy)], E-mail: fede.fontana@libero.it; Dizonno, Massimiliano [Department of Radiology, Vascular and Interventional Radiology, University of Insubria, 21100 Varese (Italy)], E-mail: massimilianodizonno@libero.it; Cuffari, Salvatore [Service of Anaesthesiology and Palliative Care, University of Insubria, 21100 Varese (Italy)], E-mail: salvatore.cuffari@libero.it; Fugazzola, Carlo [Department of Radiology, Vascular and Interventional Radiology, University of Insubria, 21100 Varese (Italy)], E-mail: carlo.fugazzola@ospedale.varese.it

    2009-08-15

    Objective: The aim of this study was to assess the safety and the efficacy of radiofrequency thermal ablation (RFA) for pain relief and analgesics use reduction in two patients with painful bone metastases from hepatocellular carcinoma (HCC). Materials and methods: Two patients with lytic metastases from HCC located at the left superior ileo-pubic branch and at the middle arch of VII rib, performed RFA displacing a LeVeen Needle (3.5 and 4.0 cm diameter) under US (ultrasonography) and fluoroscopic guidance. Two methods were used to determine the response of both patients: the first method was to measure patient's worst pain with a Brief Pain Inventory (BPI) 1 day after the procedure, every week for 1 month, and thereafter at week 8 and 12 (total follow-up 3 months); Second method was to evaluate patient's analgesics use recorded at week 1, 4, 8 and 12. Analgesic medication use was translated into a morphine-equivalent dose. Results: The RFA were well tolerated by the patients who did not develop any complication. Both patients obtained substantial reduction of pain, which decreased from a mean score of 8 to approximately 2 in 4 weeks. In both patients we observed a reduction in the use of morphine dose-equivalent after a peak at week 1. CT (computed tomography) imaging, performed at 1 month after RFA, demonstrated that both procedures were technically successful and safe because consistent necrosis and no evidence for complications were observed. Conclusion: RFA provides a potential alternative method for palliation of painful osteolytic metastases from HCC; the procedure is safe, and the pain relief is substantial.

  18. Radiofrequency thermal ablation for pain control in patients with single painful bone metastasis from hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Carrafiello, Gianpaolo; Lagana, Domenico; Ianniello, Andrea; Nicotera, Paolo; Fontana, Federico; Dizonno, Massimiliano; Cuffari, Salvatore; Fugazzola, Carlo

    2009-01-01

    Objective: The aim of this study was to assess the safety and the efficacy of radiofrequency thermal ablation (RFA) for pain relief and analgesics use reduction in two patients with painful bone metastases from hepatocellular carcinoma (HCC). Materials and methods: Two patients with lytic metastases from HCC located at the left superior ileo-pubic branch and at the middle arch of VII rib, performed RFA displacing a LeVeen Needle (3.5 and 4.0 cm diameter) under US (ultrasonography) and fluoroscopic guidance. Two methods were used to determine the response of both patients: the first method was to measure patient's worst pain with a Brief Pain Inventory (BPI) 1 day after the procedure, every week for 1 month, and thereafter at week 8 and 12 (total follow-up 3 months); Second method was to evaluate patient's analgesics use recorded at week 1, 4, 8 and 12. Analgesic medication use was translated into a morphine-equivalent dose. Results: The RFA were well tolerated by the patients who did not develop any complication. Both patients obtained substantial reduction of pain, which decreased from a mean score of 8 to approximately 2 in 4 weeks. In both patients we observed a reduction in the use of morphine dose-equivalent after a peak at week 1. CT (computed tomography) imaging, performed at 1 month after RFA, demonstrated that both procedures were technically successful and safe because consistent necrosis and no evidence for complications were observed. Conclusion: RFA provides a potential alternative method for palliation of painful osteolytic metastases from HCC; the procedure is safe, and the pain relief is substantial.

  19. Enhancement of thermal stability of silver(I) acetylacetonate by platinum(II) acetylacetonate

    Czech Academy of Sciences Publication Activity Database

    Křenek, T.; Kovářík, T.; Pola, M.; Jakubec, Ivo; Bezdička, Petr; Bastl, Zdeněk; Pokorná, Dana; Urbanová, Markéta; Galíková, Anna; Pola, Josef

    2013-01-01

    Roč. 554, FEB (2013), s. 1-7 ISSN 0040-6031 Institutional support: RVO:61388980 ; RVO:61388955 ; RVO:67985858 Keywords : thermal gravimetric analysis * differential scanning calorimetry * silver(I) acetylacetonate * platinum(II) acetylacetonate * enhancement of thermal stability Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 2.105, year: 2013

  20. The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula.

    Science.gov (United States)

    Friesen, Maren L; von Wettberg, Eric J B; Badri, Mounawer; Moriuchi, Ken S; Barhoumi, Fathi; Chang, Peter L; Cuellar-Ortiz, Sonia; Cordeiro, Matilde A; Vu, Wendy T; Arraouadi, Soumaya; Djébali, Naceur; Zribi, Kais; Badri, Yazid; Porter, Stephanie S; Aouani, Mohammed Elarbi; Cook, Douglas R; Strauss, Sharon Y; Nuzhdin, Sergey V

    2014-12-22

    As our world becomes warmer, agriculture is increasingly impacted by rising soil salinity and understanding plant adaptation to salt stress can help enable effective crop breeding. Salt tolerance is a complex plant phenotype and we know little about the pathways utilized by naturally tolerant plants. Legumes are important species in agricultural and natural ecosystems, since they engage in symbiotic nitrogen-fixation, but are especially vulnerable to salinity stress. Our studies of the model legume Medicago truncatula in field and greenhouse settings demonstrate that Tunisian populations are locally adapted to saline soils at the metapopulation level and that saline origin genotypes are less impacted by salt than non-saline origin genotypes; these populations thus likely contain adaptively diverged alleles. Whole genome resequencing of 39 wild accessions reveals ongoing migration and candidate genomic regions that assort non-randomly with soil salinity. Consistent with natural selection acting at these sites, saline alleles are typically rare in the range-wide species' gene pool and are also typically derived relative to the sister species M. littoralis. Candidate regions for adaptation contain genes that regulate physiological acclimation to salt stress, such as abscisic acid and jasmonic acid signaling, including a novel salt-tolerance candidate orthologous to the uncharacterized gene AtCIPK21. Unexpectedly, these regions also contain biotic stress genes and flowering time pathway genes. We show that flowering time is differentiated between saline and non-saline populations and may allow salt stress escape. This work nominates multiple potential pathways of adaptation to naturally stressful environments in a model legume. These candidates point to the importance of both tolerance and avoidance in natural legume populations. We have uncovered several promising targets that could be used to breed for enhanced salt tolerance in crop legumes to enhance food security

  1. Enhanced oil recovery by nitrogen and carbon dioxide injection followed by low salinity water flooding for tight carbonate reservoir: experimental approach

    Science.gov (United States)

    Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.

    2018-03-01

    Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.

  2. Dielectric-filled radiofrequency linacs

    Energy Technology Data Exchange (ETDEWEB)

    Faehl, R J; Keinigs, R K; Pogue, E W [Los Alamos National Lab., NM (United States)

    1997-12-31

    High current, high brightness electron beam accelerators promise to open up dramatic new applications. Linear induction accelerators are currently viewed as the appropriate technology for these applications. A concept by Humphries and Hwang may permit radiofrequency accelerators to fulfill the same functions with greater simplicity and enhanced flexibility. This concept involves the replacement of vacuum rf cavities with dielectric filled ones. Simple analysis indicates that the resonant frequencies are reduced by a factor of ({epsilon}{sub 0}/{epsilon}){sup 1/2} while the stored energy is increased by {epsilon}/{epsilon}{sub 0}. For a high dielectric constant like water, this factor can approach 80. A series of numerical calculations of simple pill-box cavities was performed. Eigenfunctions and resonant frequencies for a full system configuration, including dielectric material, vacuum beamline, and a ceramic window separating the two have been computed. These calculations are compared with the results of a small experimental cavity which have been constructed and operated. Low power tests show excellent agreement. (author). 4 figs., 8 refs.

  3. Organic-Silica Interactions in Saline: Elucidating the Structural Influence of Calcium in Low-Salinity Enhanced Oil Recovery.

    Science.gov (United States)

    Desmond, J L; Juhl, K; Hassenkam, T; Stipp, S L S; Walsh, T R; Rodger, P M

    2017-09-08

    Enhanced oil recovery using low-salinity solutions to sweep sandstone reservoirs is a widely-practiced strategy. The mechanisms governing this remain unresolved. Here, we elucidate the role of Ca 2+ by combining chemical force microscopy (CFM) and molecular dynamics (MD) simulations. We probe the influence of electrolyte composition and concentration on the adsorption of a representative molecule, positively-charged alkylammonium, at the aqueous electrolyte/silica interface, for four electrolytes: NaCl, KCl, MgCl 2 , and CaCl 2 . CFM reveals stronger adhesion on silica in CaCl 2 compared with the other electrolytes, and shows a concentration-dependent adhesion not observed for the other electrolytes. Using MD simulations, we model the electrolytes at a negatively-charged amorphous silica substrate and predict the adsorption of methylammonium. Our simulations reveal four classes of surface adsorption site, where the prevalence of these sites depends only on CaCl 2 concentration. The sites relevant to strong adhesion feature the O - silica site and Ca 2+ in the presence of associated Cl - , which gain prevalence at higher CaCl 2 concentration. Our simulations also predict the adhesion force profile to be distinct for CaCl 2 compared with the other electrolytes. Together, these analyses explain our experimental data. Our findings indicate in general how silica wettability may be manipulated by electrolyte concentration.

  4. 77 FR 43535 - Grantee Codes for Certified Radiofrequency Equipment

    Science.gov (United States)

    2012-07-25

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 2 [FCC 12-60] Grantee Codes for Certified Radiofrequency Equipment AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY: This document... authorization program for radiofrequency (RF) devices under part 2 of its rules. This program is one of the...

  5. 3.0 T MR diffusion weighted imaging in the evaluation of radio-frequency ablation of the liver VX2 tumors

    International Nuclear Information System (INIS)

    Liu Yubao; Liang Changhong; Wang Qiushi; Xie Shufei; Yu Yuanxin; Liu Zaiyi; Zhang Zhonglin

    2010-01-01

    exhibited intense enhancement on contrast-enhanced images. Areas of low to intermediate signal intensity within the lesion on T 2 WI corresponded to coagulation necrosis. The tumor tissue appeared as areas of peripheral nodularity, with intermediate to high signal intensity on T 2 -weighted images and DWI. The tumor specimen was gray, among the tumor tissue, there were hyperplastic vessels, and granulation tissue. When b value was 600 s/mm 2 , the ADC value of viable tumor (9 cases), necrosis (18 cases), granulation tissue (18 cases), normal liver tissue (18 cases) were (1.227±0.140) × 10 -3 , (0.702±0.050) × 10 -3 , (1.918±0.124) × 10 -3 , (1.739±0.044) × 10 -3 mm 2 /s, respectively, which were statistically significant (P 2 , the differences of ADC values among viable tumor, granulation tissue, necrosis, normal liver tissue were also statistically significant (P<0.01). Conclusion: The rabbit liver VX2 tumor models and 3.0 T MR DWI are important tools in the basic and clinical researches of radiofrequency ablation. (authors)

  6. Particle size effects in the thermal conductivity enhancement of copper-based nanofluids

    Directory of Open Access Journals (Sweden)

    Sahin Huseyin

    2011-01-01

    Full Text Available Abstract We present an analysis of the dispersion characteristics and thermal conductivity performance of copper-based nanofluids. The copper nanoparticles were prepared using a chemical reduction methodology in the presence of a stabilizing surfactant, oleic acid or cetyl trimethylammonium bromide (CTAB. Nanofluids were prepared using water as the base fluid with copper nanoparticle concentrations of 0.55 and 1.0 vol.%. A dispersing agent, sodium dodecylbenzene sulfonate (SDBS, and subsequent ultrasonication was used to ensure homogenous dispersion of the copper nanopowders in water. Particle size distribution of the copper nanoparticles in the base fluid was determined by dynamic light scattering. We found that the 0.55 vol.% Cu nanofluids exhibited excellent dispersion in the presence of SDBS. In addition, a dynamic thermal conductivity setup was developed and used to measure the thermal conductivity performance of the nanofluids. The 0.55 vol.% Cu nanofluids exhibited a thermal conductivity enhancement of approximately 22%. In the case of the nanofluids prepared from the powders synthesized in the presence of CTAB, the enhancement was approximately 48% over the base fluid for the 1.0 vol.% Cu nanofluids, which is higher than the enhancement values found in the literature. These results can be directly related to the particle/agglomerate size of the copper nanoparticles in water, as determined from dynamic light scattering.

  7. Clinical application and developmental trend of radiofrequency ablation technology

    International Nuclear Information System (INIS)

    Chen Dongfeng

    2009-01-01

    For recent two decades, radiofrequency ablation technology has made great progress in the field of the treatment for neoplasm. At the very beginning, radiofrequency ablation was adopted in treating the hepatic carcinoma, and since then it has been gradually practiced in treating malignancies of lung, bone, kidney, breast, prostate and other solid tumors. Statistical report of the year 2008 has indicated that in the aspect of similar therapeutic measures radiofrequency ablation therapy for tumors holds a 9% market share. Moreover, in the coming years the clinical use of this kind of therapy for tumors will be steadily increasing by 13% every year. (authors)

  8. Percutaneous radiofrequency thermal ablation of lung VX2 tumors in a rabbit model: evaluation with helical CT findings for the complete and partal ablation

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Gong Yong; Han, Young Min; Lim, Yeong Su; Jang, Kyu Yun; Lee, Sang Yong; Chung, Gyung Ho [School of Medicine, Chonbuk National Univ., Chonju (Korea, Republic of)

    2004-05-01

    To evaluate the radiologic findings for complete and partial ablation after percutaneous CT-guided transthoracic radiofrequency ablation (RFA) of lung VX2 tumor implanted in rabbits. Thirteen rabbits with successfully implanted lung VX2 were used. Three rabbits as controls did not receive RFA while the other ten rabbits underwent RFA; 5 complete and 5 partial. RFA was performed using an internally cooled, 17-gauge electrode (Radionics, Burlington, MA) with a 1-cm active tip under CT guidance. Postprocedural CT was performed within 3 days, and we analyzed the ablated size, enhancement pattern, shape, margin, and complications of the complete and partial ablation groups. Rabbits were sacrificed after postprocedural CT with an overdose of ketamine, and pathologic findings of the ablated groups were compared with those of the control group. The size of the ablated lesions and the enhancement pattern differed between the completely and partially ablated groups on chest CT. The size of the ablated lesions was increased by 47.1% in the completely ablated group and by 2.1% in the partially ablated group. In the completely ablated group, VX2 tumor showed absolutely no enhancement, whereas only ablated pulmonary parenchyma outside VX2 showed mild enhancement on enhanced CT. In the partial ablated group, a part of VX2 became strongly enhanced on enhanced CT. On microscopic examination, the completely ablated group demonstrated that a viable tumor cell was not visible. In the partially ablated group, however, a viable tumor cell within the surrounding fibrous capsule on the peripheral area of the VX2 was observed. The important CT findings for evaluation of complete and partial RFA are the ablated size and enhancement pattern of the ablated lesion.

  9. Radiofrequency ablation of stellate ganglion in a patient with complex regional pain syndrome

    Directory of Open Access Journals (Sweden)

    Chinmoy Roy

    2014-01-01

    Full Text Available Complex regional pain syndrome (CRPS is characterized by a combination of sensory, motor, vasomotor, pseudomotor dysfunctions and trophic signs. We describe the use of radiofrequency (RF ablation of Stellate ganglion (SG under fluoroscopy, for long-term suppression of sympathetic nervous system, in a patient having CRPS-not otherwise specified. Although the effects of thermal RF neurolysis may be partial or temporary, they may promote better conditions toward rehabilitation. The beneficial effect obtained by the RF neurolysis of SG in this particular patient strongly advocates the use of this mode of therapy in patients with CRPS.

  10. Enhanced Resolution for Aquarius Salinity Retrieval near Land-Water Boundaries

    Science.gov (United States)

    Utku, Cuneyt; Le Vine, David M.

    2014-01-01

    A numerical reconstruction of the brightness temperature is examined as a potential way to improve the retrieval of salinity from Aquarius measurements closer to landwater boundaries. A test case using simulated ocean-land scenes suggest promise for the technique.

  11. Level of Radiofrequency (RF) Radiations from GSM Base Stations ...

    African Journals Online (AJOL)

    Levels of radiofrequency radiations around two global systems for mobile communication (GSM) base stations located in the vicinity of a residential quarter and workplace complex were measured. The effects of the radiofrequency radiations on albino mice placed in exposure cages and located around the base stations ...

  12. Renal Tumors: Technical Success and Early Clinical Experience with Radiofrequency Ablation of 18 Tumors

    International Nuclear Information System (INIS)

    Sabharwal, Rohan; Vladica, Philip

    2006-01-01

    Purpose. To evaluate the feasibility, safety, and technical efficacy of image-guided radiofrequency ablation (RFA) for the treatment of small peripheral renal tumors and to report our early results with this treatment modality. Methods. Twenty-two RFA sessions for 18 tumors were performed in 11 patients with renal tumors. Indications included coexistent morbidity, high surgical or anesthetic risk, solitary kidney, and hereditary predisposition to renal cell carcinoma. Ten patients had CT-guided percutaneous RFA performed on an outpatient basis. One patient had open intraoperative ultrasound-guided RFA. Technical success was defined as elimination of areas that enhanced at imaging within the entire tumor. With the exception of one patient with renal insufficiency who required gadolinium-enhanced MRI, the remaining patients underwent contrast-enhanced CT for post-treatment follow-up assessment. Follow-up was performed after 2-4 weeks and then at 3, 6, 12 months, and every 12 months thereafter. Results. Fourteen (78%) of 18 tumors were successfully ablated with one session. Three of the remaining four tumors required two sessions for successful ablation. One tumor will require a third session for areas of persistent enhancement. Mean patient age was 72.82 ± 10.43 years. Mean tumor size was 1.95 ± 0.79 cm. Mean follow-up time was 10.91 months. All procedures were performed without any major complications. Conclusions. Our early experience with percutaneous image-guided radiofrequency ablation demonstrates it to be a feasible, safe, noninvasive, and effective treatment of small peripheral renal tumors

  13. Enhanced Thermal Management System for Spent Nuclear Fuel Dry Storage Canister with Hybrid Heat Pipes

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Dry storage uses the gas or air as coolant within sealed canister with neutron shielding materials. Dry storage system for spent fuel is regarded as relatively safe and emits little radioactive waste for the storage, but it showed that the storage capacity and overall safety of dry cask needs to be enhanced for the dry storage cask for LWR in Korea. For safety enhancement of dry cask, previous studies of our group firstly suggested the passive cooling system with heat pipes for LWR spent fuel dry storage metal cask. As an extension, enhanced thermal management systems for the spent fuel dry storage cask for LWR was suggested with hybrid heat pipe concept, and their performances were analyzed in thermal-hydraulic viewpoint in this paper. In this paper, hybrid heat pipe concept for dry storage cask is suggested for thermal management to enhance safety margin. Although current design of dry cask satisfies the design criteria, it cannot be assured to have long term storage period and designed lifetime. Introducing hybrid heat pipe concept to dry storage cask designed without disrupting structural integrity, it can enhance the overall safety characteristics with adequate thermal management to reduce overall temperature as well as criticality control. To evaluate thermal performance of hybrid heat pipe according to its design, CFD simulation was conducted and previous and revised design of hybrid heat pipe was compared in terms of temperature inside canister

  14. Radiofrequency ablation of osteoid osteomas: five years experience.

    Science.gov (United States)

    Papathanassiou, Zafiria G; Petsas, Theodore; Papachristou, Dionysios; Megas, Panagiotis

    2011-12-01

    The purpose of this study is to retrospectively evaluate the efficacy of radiofrequency ablation as a curative treatment method for benign bone tumours. Twenty-nine osteoid osteomas were treated with radiofrequency ablation. Primary success rate was 89.6% and total secondary success rate was 93.1%. Mean clinical follow-up period was 26.7 months (range: 6-63 months). Statistical analysis of 25 cases of osteoid osteomas with CT follow-up revealed that post-treatment re-ossification does not correlate with clinical outcome (p = 0.14) but is strongly correlated with long-term (> or = 12 months) CT follow-up (p = 0.014). Percutaneous radiofrequency ablation was found to be an effective and safe treatment for osteoid osteomas. CT findings cannot solely differentiate between treatment successes and failures.

  15. Interactions between radiofrequency signals and living organisms

    International Nuclear Information System (INIS)

    Boudin, F.; Hours, M.; Lacronique, J.F.; Conil, E.; Hadjem, A.; El Habachi, A.; Wiart, K.; Mann, S.; Kundi, M.; Marc-Vergnes, J.P.; Roosli, M.; Mohler, E.; Frei, P.; Davis, Ch.C.; Balzano, Q.; Ait-Aissa, S.; Billaudel, B.; Poulletier De Gannes, F.; Hurtier, A.; Haro, E.; Taxile, M.; Veyret, B.; Lagroye, I.; Ait-Aissa, S.; Poulletier De Gannes, F.; Athane, A.; Veyret, B.; Lagroye, I.; Yardin, C.; Perrin, A.; Freire, M.; Bachelet, Ch.; Collin, A.; Pla, S.; Debouzy, J.C.; Leveque, Ph.; Van Nierop, L.E.; Huss, A.; Roosli, M.; Egger, M.; Calvez, M.; Salomon, D.

    2010-01-01

    This dossier is composed of 13 articles dealing with the interactions between radio-frequencies and living organisms. It is an overview of various scientific approaches to the field and is of interest for all citizens as the use of mobile phones is widely spread. In the first article it is shown how a model has been built to assess the distribution of the whole body exposure of the population. The second article reviews the state of the art in personal exposure measurements at radio-frequencies. The third article shows that the knowledge of the mechanism of action by which exposure increases the risk of health hazards is necessary. The fourth article shows that individual neuro-psychic factors take a prominent but maybe not unique, part in electromagnetic hypersensitivity. The fifth article shows that no evidence was found to link health disturbances of electromagnetic hypersensitive individuals with radiofrequency exposure. The sixth article shows that the wireless phone is not an athermal hazard to the brain. The seventh article shows that the in utero and post-natal exposure to Wi-Fi does not damage the brains of young rats. The eighth article concludes that recent studies provide no convincing proof of deleterious effects of radiofrequency exposure on the integrity of the blood-brain barrier for specific absorption rates up to 6 W/kg. The ninth article shows that no co-genotoxic effect of radiofrequency was found at levels of exposure that did not induce heating. The tenth article confirms that industry-sponsored studies were least likely to report results suggesting effects. The last article shows that general practitioners are increasingly questioned by their patients about the issue of electromagnetic waves. (A.C.)

  16. Enhanced bulk heterojunction devices prepared by thermal and solvent vapor annealing processes

    Science.gov (United States)

    Forrest, Stephen R.; Thompson, Mark E.; Wei, Guodan; Wang, Siyi

    2017-09-19

    A method of preparing a bulk heterojunction organic photovoltaic cell through combinations of thermal and solvent vapor annealing are described. Bulk heterojunction films may prepared by known methods such as spin coating, and then exposed to one or more vaporized solvents and thermally annealed in an effort to enhance the crystalline nature of the photoactive materials.

  17. Thermal energy effects on articular cartilage: a multidisciplinary evaluation

    Science.gov (United States)

    Kaplan, Lee D.; Ernsthausen, John; Ionescu, Dan S.; Studer, Rebecca K.; Bradley, James P.; Chu, Constance R.; Fu, Freddie H.; Farkas, Daniel L.

    2002-05-01

    Partial thickness articular cartilage lesions are commonly encountered in orthopedic surgery. These lesions do not have the ability to heal by themselves, due to lack of vascular supply. Several types of treatment have addressed this problem, including mechanical debridement and thermal chondroplasty. The goal of these treatments is to provide a smooth cartilage surface and prevent propagation of the lesions. Early thermal chondroplasty was performed using lasers, and yielded very mixed results, including severe damage to the cartilage, due to poor control of the induced thermal effects. This led to the development (including commercial) of probes using radiofrequency to generate the thermal effects desired for chondroplasty. Similar concerns over the quantitative aspects and control ability of the induced thermal effects in these treatments led us to test the whole range of complex issues and parameters involved. Our investigations are designed to simultaneously evaluate clinical conditions, instrument variables for existing radiofrequency probes (pressure, speed, distance, dose) as well as the associated basic science issues such as damage temperature and controllability (down to the subcellular level), damage geometry, and effects of surrounding conditions (medium, temperature, flow, pressure). The overall goals of this work are (1) to establish whether thermal chondroplasty can be used in a safe and efficacious manner, and (2) provide a prescription for multi-variable optimization of the way treatments are delivered, based on quantitative analysis. The methods used form an interdisciplinary set, to include precise mechanical actuation, high accuracy temperature and temperature gradient control and measurement, advanced imaging approaches and mathematical modeling.

  18. Radiofrequency catheter ablation in the treatment of cardiac arrhythmias (first of two parts)

    International Nuclear Information System (INIS)

    Kou, W.H; Morady, F.

    1997-01-01

    The intravenous radiofrequency catheter inside cardiac s chambers, for inspect signals intracardiac s and to encourage, has been developed as diagnostic tool with the purpose to search arrhythmias physiology and physiopathology.Many energy sources has been used: direct energy, radiofrequency 11-15, laser 6,17, and microwave 18,19. A comparison between radiofrequency and electric energy shock has been described in cardiac arrhythmias treatment, in the present article. It has been tested the radiation biological effects and risk in Wolff Parkinson White patients as well as doctors who handling the fluoroscopy for image during the radiofrequency ablation. Has been described the following techniques: Catheter ablation radiofrequency slow way and fast way

  19. Thermal conductivity enhancement of paraffin by adding boron nitride nanostructures: A molecular dynamics study

    International Nuclear Information System (INIS)

    Lin, Changpeng; Rao, Zhonghao

    2017-01-01

    Highlights: • Different contributions to thermal conductivity are obtained. • Thermal conductivity of paraffin could be improved by boron nitride. • Crystallization effect from boron nitride was the key factor. • Paraffin nanocomposite is the desirable candidate for thermal energy storage. - Abstract: While paraffin is widely used in thermal energy storage today, its low thermal conductivity has become a bottleneck for the further applications. Here, we construct two kinds of paraffin-based phase change material nanocomposites through introducing boron nitride (BN) nanostructures into n-eicosane to enhance the thermal conductivity. Molecular dynamics (MD) simulation was adopted to estimate their thermal conductivities and related thermal properties. The results indicate that, after adding BN nanostructures, the latent heat of composites is reduced compared with the pure paraffin and they both show a glass-like thermal conductivity which increases as the temperature rises. This happens because the increasing temperature leads to gradually smaller inconsistency in vibrational density of state along three directions and increasingly significant overlaps among them. Furthermore, by decomposing the thermal conductivity, it is found that the major contribution to the overall thermal conductivity comes from BN nanostructures, while the contribution of n-eicosane is insignificant. Though the thermal conductivity from n-eicosane term is small, it has been improved greatly compared with amorphous state of n-eicosane, mainly due to the crystallization effects from BN nanostructures. This work will provide microscopic views and insights into the thermal mechanism of paraffin and offer effective guidances to enhance the thermal conductivity.

  20. Fast beam radiofrequency spectroscopy

    International Nuclear Information System (INIS)

    Pipkin, F.M.

    1983-01-01

    The combination of a fast atom or ion beam derived from a small accelerator with radiofrequency spectroscopy methods provides a powerful method for measuring the fine structure of atomic and molecular systems. The fast beam makes possible measurements in which two separated oscillatory fields are used to obtain resonance lines whose widths are less than the natural line width due to the lifetimes of the states. The separated oscillatory field lines have, in addition, a number of features which make possible measurements with greater precision and less sensitivity to systematic errors. The fast beam also makes accessible multiple photon radiofrequency transitions whose line width is intrinsically narrower than that of the single photon transitions and which offer great potential for high precision measurements. This report focuses on the techniques and their promise. Recent measurements of the fine structure of H and He + are used as illustrations

  1. Enhancement of thermal photon production in event-by-event hydrodynamics

    International Nuclear Information System (INIS)

    Chatterjee, Rupa; Holopainen, Hannu; Renk, Thorsten; Eskola, Kari J.

    2011-01-01

    Thermal photon emission is widely believed to reflect properties of the earliest, hottest evolution stage of the medium created in ultrarelativistic heavy-ion collisions. Previous computations of photon emission have been carried out using a hydrodynamical medium description with smooth, averaged initial conditions. Recently, more sophisticated hydrodynamical models that calculate observables by averaging over many evolutions with event-by-event fluctuating initial conditions (ICs) have been developed. Given their direct connection to the early time dynamics, thermal photon emission appears to be an ideal observable to probe fluctuations in the medium initial state. In this work, we demonstrate that including fluctuations in the ICs may lead to an enhancement of the thermal photon yield of about a factor of 2 in the region 2 T <4 GeV/c (where thermal photon production dominates the direct photon yield) compared to a scenario using smooth, averaged ICs. Consequently, a much better agreement with PHENIX data is found. This can be understood in terms of the strong temperature dependence of thermal photon production, translating into a sensitivity to the presence of hotspots in an event and thus establishing thermal photons as a suitable probe to characterize IC fluctuations.

  2. Percutaneous radiofrequency treatment for refractory anteromedial pain of osteoarthritic knees.

    Science.gov (United States)

    Ikeuchi, Masahiko; Ushida, Takahiro; Izumi, Masashi; Tani, Toshikazu

    2011-04-01

    Although severe knee osteoarthritis with refractory pain is commonly treated surgically, this is often not an option for patients with poor health status or unwillingness to undergo major surgery. We examined the efficacy of radiofrequency application to sensory nerves as a novel alternative treatment for refractory knee pain. This study was an open-label, nonrandomized, and controlled study. Patients complaining of refractory anteromedial knee pain associated with radiological osteoarthritis (moderate or severe) were included. They were assigned to one of two groups: those receiving radiofrequency thermocoagulation (N = 18) or those receiving nerve block (N = 17), depending on the time period that they were referred to the clinic. Radiofrequency current or local anesthetics was applied to the medial retinacular nerve and the infrapatellar branch of the saphenous nerve. Western Ontario McMaster Universities osteoarthritis index score, pain visual analog scale (VAS), and patient's global assessment were assessed with a minimum follow-up of 6 months.   Radiofrequency treatment significantly decreased knee pain as measured by VAS for 12 weeks compared with the control group. In terms of responders, more patients in the RF group responded to the treatment than in the control group. The differences were statistically significant at 4 weeks, 8 weeks, and 12 weeks in pain VAS. Eight patients (44%) treated with radiofrequency rated excellent or good but only three (18%) in the control group rated good, although the difference was not statistically significant. Some patients were able to benefit substantially from radiofrequency treatment. Even if its effective period is limited, radiofrequency application is a promising treatment to alleviate refractory anteromedial knee pain with osteoarthritis. Further experience and technical improvements are needed to establish its role in the management of knee osteoarthritis. Wiley Periodicals, Inc.

  3. Treatment of Refractory Idiopathic Supraorbital Neuralgia Using Percutaneous Pulsed Radiofrequency.

    Science.gov (United States)

    Luo, Fang; Lu, Jingjing; Ji, Nan

    2018-02-26

    No ideal therapeutic method currently exists for refractory idiopathic supraorbital neuralgia patients who do not respond to conservative therapy, including medications and nerve blocks. Pulsed radiofrequency is a neuromodulation technique that does not produce sequelae of nerve damage after treatment. However, the efficacy of percutaneous pulsed radiofrequency for the treatment of refractory idiopathic supraorbital neuralgia is still not clear. The purpose of our study was to evaluate the efficacy and safety of pulsed radiofrequency treatment of the supraorbital nerve for refractory supraorbital neuralgia patients. We prospectively investigated the long-term effects of ultrasound-guided percutaneous pulsed radiofrequency in the treatment of 22 refractory idiopathic supraorbital neuralgia patients. A reduction in the verbal pain numeric rating scale score of more than 50% was used as the standard of effectiveness. The effectiveness rates at different time points within 2 years were calculated. After a single pulsed radiofrequency treatment, the effectiveness rate at 1 and 3 months was 77%, and the rates at 6 months, 1 year, and 2 years were 73%, 64%, and 50%, respectively. Except for a small portion of patients (23%) who experienced mild upper eyelid ecchymosis that gradually disappeared after approximately 2 weeks, no obvious complications were observed. In conclusion, the results of our study demonstrate that for patients with refractory idiopathic supraorbital neuralgia, percutaneous pulsed radiofrequency may be an effective and safe treatment choice. © 2018 World Institute of Pain.

  4. Percutaneous radiofrequency treatment of osteoid osteoma using cool-tip electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Martel, Jose [Departamento de Diagnostico por Imagen, Fundacion Hospital Alcorcon, Avda. de Budapest s/n, 28922 Alcorcon, Madrid (Spain)]. E-mail: jmartel@fhalcorcon.es; Bueno, Angel [Departamento de Diagnostico por Imagen, Fundacion Hospital Alcorcon, Avda. de Budapest s/n, 28922 Alcorcon, Madrid (Spain); Ortiz, Eduardo [Departamento de Cirugia ortopedica, Fundacion Hospital Alcorcon, Madrid (Spain)

    2005-12-15

    Objectives: To report our experience with percutaneous cool-tip radiofrequency ablation of osteoid osteomas and to evaluate clinical outcome. Methods and material: Forty-one patients with clinically and radiologically suspected osteoid osteoma were seen over a 48-month period (27 males and 14 females with a mean age of 18.7 years; range 5-43 years). Thirty-eight patients were treated by computed tomography (CT)-guided percutaneous radiofrequency ablation. The procedure was performed under regional or general anaesthesia. After location of the nidus, a 14G-bone biopsy needle is introduced into the nidus. Sampling is performed with a 17G-bone biopsy needle using a coaxial technique. The radiofrequency needle with a 10 mm active tip (cool-tip) is inserted through the biopsy needle and is connected to the radiofrequency generator for 6-8 min. Results: Primary success was obtained in 37 patients (97%) with a 100% secondary success rate. All patients are currently pain-free. No major complications occurred. Patients could resume unrestricted normal activity within 24 h. Conclusions: Percutaneous radiofrequency ablation of osteoid osteomas is an efficient and safe method that can be considered the procedure of choice for most cases.

  5. Detailed investigation of optoelectronic and microstructural properties of plasma polymerized cyclohexane thin films: Dependence on the radiofrequency power

    International Nuclear Information System (INIS)

    Manaa, C.; Bouaziz, L.; Lejeune, M.; Zellama, K.; Benlahsen, M.; Kouki, F.; Mejatty, M.; Bouchriha, H.

    2015-01-01

    Optical properties of polymerized cyclohexane films deposited by radiofrequency plasma enhanced chemical vapor deposition technique at different radiofrequency powers onto glass and silicon substrates, are studied and correlated with the microstructure of the films, using a combination of atomic force microscopy, Raman and Fourier Transformer Infrared spectroscopy and optical measurements. The optical constants such as refractive index n, dielectric permittivity ε and extinction k and absorption α coefficients, are extracted from transmission and reflection spectra through the commercial software CODE. These constants lead, by using common theoretical models as Cauchy, Lorentz, Tauc and single effective oscillator, to the determination of the static refractive index n s and permittivity ε s , the plasma frequency ω p , the carrier density to effective mass ratio N/m e * , the optical conductivity σ oc , the optical band gap E g and the oscillation and dispersion energies E 0 and E d , respectively. We find that n, ε s , ω p , N/m e * , E d , increase with radiofrequency power, while E g and E 0 decrease in the same range of power. These results are well correlated with those obtained from atomic force microscopy, Raman and infrared measurements. They also indicate that the increase of the radiofrequency power promotes the fragmentation of the precursor and increases the carbon C-sp 2 hybridization proportion, which results in an improvement of the optoelectronic properties of the films

  6. From photoluminescence to thermal emission: Thermally-enhanced PL (TEPL) for efficient PV (Conference Presentation)

    Science.gov (United States)

    Manor, Assaf; Kruger, Nimrod; Martin, Leopoldo L.; Rotschild, Carmel

    2016-09-01

    The Shockley-Queisser efficiency limit of 40% for single-junction photovoltaic (PV) cells is mainly caused by the heat dissipation accompanying the process of electro-chemical potential generation. Concepts such as solar thermo-photovoltaics (STPV) aim to harvest this heat loss by the use of a primary absorber which acts as a mediator between the sun and the PV, spectrally shaping the light impinging on the cell. However, this approach is challenging to realize due to the high operating temperatures of above 2000K required in order to generate high thermal emission fluxes. After over thirty years of STPV research, the record conversion efficiency for STPV device stands at 3.2% for 1285K operating temperature. In contrast, we recently demonstrated how thermally-enhanced photoluminescence (TEPL) is an optical heat-pump, in which photoluminescence is thermally blue-shifted upon heating while the number of emitted photons is conserved. This process generates energetic photon-rates which are comparable to thermal emission in significantly reduced temperatures, opening the way for a TEPL based energy converter. In such a device, a photoluminescent low bandgap absorber replaces the STPV thermal absorber. The thermalization heat induces a temperature rise and a blue-shifted emission, which is efficiently harvested by a higher bandgap PV. We show that such an approach can yield ideal efficiencies of 70% at 1140K, and realistic efficiencies of almost 50% at moderate concentration levels. As an experimental proof-of-concept, we demonstrate 1.4% efficient TEPL energy conversion of an Nd3+ system coupled to a GaAs cell, at 600K.

  7. Conceptual design of a sapphire loaded coupler for superconducting radio-frequency 1.3 GHz cavities

    Science.gov (United States)

    Xu, Chen; Tantawi, Sami

    2016-02-01

    This paper explores a hybrid mode rf structure that served as a superconducting radio-frequency coupler. This application achieves a reflection S(1 ,1 ) varying from 0 to -30 db and delivers cw power at 7 KW. The coupler has good thermal isolation between the 2 and 300 K sections due to vacuum separation. Only one single hybrid mode can propagate through each section, and no higher order mode is coupled. The analytical and numerical analysis for this coupler is given and the design is optimized. The coupling mechanism to the cavity is also discussed.

  8. Effect of radiofrequency on capacitance of low density plasma sheath

    International Nuclear Information System (INIS)

    Carneiro, L.T.; Cunha Rapozo, C. da

    1988-01-01

    It is shown that the influence of induced radiofrequency potential (V RF ) modifies the Bohm theory on ion saturation current, measured with Langmuir probes. The effect of radiofrequency potential on diode type plasma sheath resonance is also investigated. (M.C.K.)

  9. A cooled intraesophageal balloon to prevent thermal injury during endocardial surgical radiofrequency ablation of the left atrium: a finite element study

    Energy Technology Data Exchange (ETDEWEB)

    Berjano, Enrique J [Center for Research and Innovation on Bioengineering, Valencia Polytechnic University, Camino de Vera s/n, 46022 Valencia (Spain); Hornero, Fernando [Cardiac Surgery Department, Valencia University General Hospital, Avd Tres Cruces s/n, 46014, Valencia (Spain)

    2005-10-21

    Recent clinical studies on intraoperative monopolar radiofrequency ablation of atrial fibrillation have reported some cases of injury to the esophagus. The aim of this study was to perform computer simulations using three-dimensional finite element models in order to investigate the feasibility of a cooled intraesophageal balloon appropriately placed to prevent injury. The models included atrial tissue and a fragment of esophagus and lung linked by connective tissue. The lesion depth in the esophagus was assessed using a 50 deg. C isotherm and expressed as a percentage of thickness of the esophageal wall. The results are as follows: (1) chilling the esophagus by means of a cooled balloon placed in the lumen minimizes the lesion in the esophageal wall compared to the cases in which no balloon is used (a collapsed esophagus) and with a non-cooled balloon; (2) the temperature of the cooling fluid has a more significant effect on the minimization of the lesion than the rate of cooling (the thermal transfer coefficient for forced convection); and (3) pre-cooling periods previous to RF ablation do not represent a significant improvement. Finally, the results also suggest that the use of a cooled balloon could affect the transmurality of the atrial lesion, especially in the cases where the atrium is of considerable thickness. (note)

  10. Eye examinations of laser and radiofrequency radiation workers

    International Nuclear Information System (INIS)

    Hocking, B.

    1988-01-01

    There are a growing number of uses of lasers and radiofrequency radiation in industry. Because these radiations may lead to various ocular effects, examinations of the eye are required for laser and radiofrequency workers as part of safe working practices. Various issues concerning these examinations are raised for discussion including: handling personal data, placement criteria, data collection, quality control, control data, the load on service providers, and costs

  11. Bray–Liebhafsky oscillatory reaction in the radiofrequency electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Stanisavljev, Dragomir R., E-mail: dragisa@ffh.bg.ac.rs [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 473, 11001 Belgrade (Serbia); Velikić, Zoran [Institute of Physics, University of Belgrade, Pregrevica 118, Zemun (Serbia); Veselinović, Dragan S.; Jacić, Nevena V.; Milenković, Maja C. [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 473, 11001 Belgrade (Serbia)

    2014-09-30

    Highlights: • Oscillatory Bray–Liebhafsky reaction is coupled with the radiofrequency radiation. • The effects of radiofrequency field on oscillatory parameters are investigated. • Radiofrequency power of up to the 0.2 W did not produced observable changes. • The explanation related with dissipative and capacitive effects is given. • Open the possibility of investigations of reactive effects on biological systems. - Abstract: Oscillatory Bray–Liebhafsky (BL) reaction is capacitively coupled with the electromagnetic radiation in the frequency range 60–110 MHz. Because of the specific reaction dynamics characterized by several characteristic parameters (induction period, period between chemical oscillations and their amplitude) it served as a good model system for the investigation of the effects of radiofrequent (RF) radiation. RF power of up to 0.2 W did not produce observable changes of the BL reaction parameters in the limit of the experiment reproductivity. Results indicate that, under the given experimental conditions, both dissipative and reactive properties of the solution are not considerably coupled with the RF electrical field.

  12. Calorimeters for Precision Power Dissipation Measurements on Controlled-Temperature Superconducting Radiofrequency Samples

    International Nuclear Information System (INIS)

    Xiao, Binping P.; Kelley, Michael J.; Reece, Charles E.; Phillips, H. L.

    2012-01-01

    Two calorimeters, with stainless steel and Cu as the thermal path material for high precision and high power versions, respectively, have been designed and commissioned for the surface impedance characterization (SIC) system at Jefferson Lab to provide low temperature control and measurement for CW power up to 22 W on a 5 cm dia. disk sample which is thermally isolated from the RF portion of the system. A power compensation method has been developed to measure the RF induced power on the sample. Simulation and experimental results show that with these two calorimeters, the whole thermal range of interest for superconducting radiofrequency (SRF) materials has been covered. The power measurement error in the interested power range is within 1.2% and 2.7% for the high precision and high power versions, respectively. Temperature distributions on the sample surface for both versions have been simulated and the accuracy of sample temperature measurements have been analysed. Both versions have the ability to accept bulk superconductors and thin film superconducting samples with a variety of substrate materials such as Al, Al 2 O 3 , Cu, MgO, Nb and Si

  13. Effect of Saline Pushing after Contrast Material Injection in Abdominal Multidetector Computed Tomography with the Use of Different Iodine Concentrations

    International Nuclear Information System (INIS)

    Tatsugami, F.; Matsuki, M.; Kani, H.; Tanikake, M.; Miyao, M.; Yoshikawa, S.; Narabayashi, I.

    2006-01-01

    Purpose: To investigate whether saline pushing after contrast material improves hepatic vascular and parenchymal enhancement, and to determine whether this technique permits decreased contrast material concentration. Material and Methods: 120 patients who underwent hepatic multidetector computed tomography were divided randomly into four groups (Groups A-D): receiving 100 ml of contrast material (300 mgI/ml) only (A) or with 50 ml of saline solution (B); or 100 ml of contrast material (350 mgI/ml) only (C) or with 50 ml of saline solution (D). Computed tomography (CT) values of the aorta in the arterial phase, the portal vein in the portal venous inflow phase, and the liver in the hepatic phase were measured. Visualization of the hepatic artery and the portal vein by 3D CT angiography was evaluated as well. Results: Although the enhancement values of the aorta were not improved significantly with saline pushing, they continued at a high level to the latter slices with saline pushing. The enhancement value of the portal vein increased significantly and CT portography was improved with saline pushing. The enhancement value of the liver was not improved significantly using saline pushing. In a comparison between groups B and C, the enhancement values of the aorta and portal vein and the visualization of CT arteriography and portography were not statistically different. Conclusion: The saline pushing technique can contribute to a decrease in contrast material concentration for 3D CT arteriography and portography

  14. Thermal Effect on Fracture Integrity in Enhanced Geothermal Systems

    Science.gov (United States)

    Zeng, C.; Deng, W.; Wu, C.; Insall, M.

    2017-12-01

    In enhanced geothermal systems (EGS), cold fluid is injected to be heated up for electricity generation purpose, and pre-existing fractures are the major conduits for fluid transport. Due to the relative cold fluid injection, the rock-fluid temperature difference will induce thermal stress along the fracture wall. Such large thermal stress could cause the failure of self-propping asperities and therefore change the fracture integrity, which could affect the heat recovery efficiency and fluid recycling. To study the thermal effect on fracture integrity, two mechanisms pertinent to thermal stress are proposed to cause asperity contact failure: (1) the crushing between two pairing asperities leads to the failure at contact area, and (2) the thermal spalling expedites this process. Finite element modeling is utilized to investigate both failure mechanisms by idealizing the asperities as hemispheres. In the numerical analysis, we have implemented meso-scale damage model to investigate coupled failure mechanism induced by thermomechanical stress field and original overburden pressure at the vicinity of contact point. Our results have shown that both the overburden pressure and a critical temperature determine the threshold of asperity failure. Since the overburden pressure implies the depth of fractures in EGS and the critical temperature implies the distance of fractures to the injection well, our ultimate goal is to locate a region of EGS where the fracture integrity is vulnerable to such thermal effect and estimate the influences.

  15. Radiofrequency ablation of rabbit liver. Correlation between dual CT findings and pathological findings

    International Nuclear Information System (INIS)

    Tsuda, Masashi; Rikimaru, Yuya; Saito, Haruo; Ishibashi, Tadashi; Takahashi, Shyoki; Miyachi, Hideo; Yamada, Syogo

    2002-01-01

    The purpose of this study was to present the time-related imaging findings and correlative pathologic findings of radiofrequency pulse-irradiated regions of the liver. Radiofrequency (RF) ablation was performed in 22 rabbit livers with 15-gauge RF probes inserted percutaneously. Regions were imaged with dual-phase CT at 3 days (n=6), 2 weeks (n=6), 4 weeks (n=6), and 12 weeks (n=4) after RF ablation. At 3 days, the regions showed a two-zone structure on plain CT and peripheral enhancement. The regions presented a three-zone structure on pathological study. Hepatocytes appeared as acidophilic bodies, and nuclei were pyknotic at the inner necrotic zone. The middle whitish zone showed enlarged sinusoids. The marginal zone was a regenerative band. At 2 weeks, the two-zone structure was obscured on unenhanced CT. The region showed a two-zone structure on pathological study. At the inner zone, acidophilic degeneration had progressed, however, cell structure remained. The marginal zone showed fibrous tissue bundles. At 12 weeks, the region was obscured on plain CT. Nuclei and cell structures had disappeared almost completely at the inner zone. Collagen fiber had replaced the marginal zone. Zone structural CT findings reflect the pathological findings and time-related changes after RF ablation. Peripheral enhancement in the arterial phase reflects the granulation tissue layer, and its time-related decrease reflects replacement by fibrous tissue. (author)

  16. Percutaneous radiofrequency ablation for benign nodules of the thyroid gland

    International Nuclear Information System (INIS)

    Baek, Jung Hwan; Jeong, Hyun Jo; Kim, Yoon Suk; Kwak, Min Sook; Chang, Sun Hee; Rhim, Hyun Chul

    2005-01-01

    We wanted to evaluate the efficacy and safety of using ultrasound guided percutaneous radiofrequency ablation for the benign nodules of the thyroid gland. We studied 148 patients with benign thyroid nodules (200 total nodules) that were confirmed histopathologically, and we performed ultrasound guided radiofrequency ablation. The radiofrequency ablation was done 1 to 5 times per one nodule, and follow-up ultrasonography was performed one to nineteen months after the ablation procedures. The physical changes and the decrease of volume of the nodules were evaluated, and the complications related to radiofrequency ablation were observed. The mean initial nodule volume was 0.01-95.61 ml (mean; 6.83 ± SD of 10.63 ml) and the nodule volume after radiofrequency ablation was decreased to 0.00-46.56 ml (mean; 1.83 ± SD of 4.69 ml). The mean volume reduction rate was 73.2%. Reduction of more than 50% was noted in 90% of all cases. For 180 nodules (90%), the decrease was 50% or more, in 20 nodules (10%), the decrease was 49% or less. On gray-scale ultrasonogram obtained after ablation, the echogenicity of the nodules changed to darker, and on the doppler-sonogram, the vascular flow within the nodules disappeared in all cases. Most patients complained pain during or right after the procedure, but the pain was transient and subsided after medication. Two patients developed hoarseness that was improved in 1 week and 2 months, respectively. Sonoguided percutaneous radiofrequency ablation can be one of the treatments for benign nodules of the thyroid gland

  17. Correction: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review

    Directory of Open Access Journals (Sweden)

    Kleinstreuer Clement

    2011-01-01

    Full Text Available Abstract Correction to Kleinstreuer C, Feng Y: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Research Letters 2011, 6:229.

  18. The Design and Development of Enhanced Thermal Desorption Products

    Directory of Open Access Journals (Sweden)

    R. Humble

    2005-01-01

    Full Text Available This research study is based on a knowledge-transfer collaboration between The National Centre for Product Design and Development Research (PDR and Markes International Ltd. The aim of the two-year collaboration has been to implement design tools and techniques for the development of enhanced thermal desorption products. Thermal desorption is a highly-specialised technique for the analysis of trace-level volatile organic compounds. This technique allows minute quantities of these compounds to be measured; however, there is an increasing demand from customers for greater sensitivity over a wider range of applications, which means new design methodologies need to be evaluated. The thermal desorption process combines a number of disparate chemical, thermal and mechanical disciplines, and the major design constraints arise from the need to cycle the sample through extremes in temperature. Following the implementation of a comprehensive product design specification, detailed design solutions have been developed using the latest 3D CAD techniques. The impact of the advanced design techniques is assessed in terms of improved product performance and reduced development times, and the wider implications of new product development within small companies are highlighted.  

  19. Percutaneous radiofrequency ablation of spleen for the treatment of hypersplenism

    International Nuclear Information System (INIS)

    Wu Yuxuan; Zhang Yanfang; Zheng Xuefen; Zhang Yuanhua; Kong Jian; Shen Xinying; Dou Yongchong

    2009-01-01

    Objective: To summarize the clinical effect and experience of CT-guided radiofrequency ablation (RFA) of spleen by using cool-tip electrodes in the treatment of hypersplenism in patients with liver cirrhosis and portal hypertension. Methods: CT-guided RFA of spleen by using cool-tip electrodes was performed in 15 patients with hypersplenism associated with liver cirrhosis and portal hypertension. The routine blood count was studied both before and after the procedure. Enhanced CT or MR scanning was reexamined after the treatment to determine the ablated volume of the spleen. The results were statistically analyzed. Results: The ablated volume of the spleen accounted for (31.0 ± 4.6)% of the whole spleen. Before the treatment the platelet count was (62 ± 9.8) x 10 9 /L. One month after the treatment, the platelet count was increased to (96 ± 11) x 10 9 /L, which was significantly higher than that before the treatment (P<0.05). One patient developed portal thrombosis four months after RFA, and no other serious complications occurred. Conclusion: CT-guided radiofrequency ablation of spleen by using cool-tip electrodes is an effective and safe treatment for hypersplenism in patients with liver cirrhosis and portal hypertension. (authors)

  20. Knee cooled radiofrequency vs continuous radiofrequency for genicular neurotomy: preliminary experience - Crio-radiofrequenza vs radiofrequenza continua per neurotomia dei nervi genicolati: esperienza preliminare

    Directory of Open Access Journals (Sweden)

    Alfonso Papa

    2016-09-01

    Full Text Available Radiofrequency neurotomy of genicular nerves has been often used as an efficacious treatment option in all patients suffering from chronic osteoarthritis pain to provide long-term pain relief. After providing informed written consent, 80 patients with severe knee chronic osteoarthritis pain had been enrolled; patients had been divided into two groups (Group C, crioneurolysis, vs Group R, traditional radiofrequency, 40 patients for each group. Pain relief in C group was poorer and with shorter time in duration (median NRS reducing from 8 to 5. Radiofrequency can be considered as an effective, minimally invasive treat­ment for these kinds of conditions, and offers the benefit of being a fast procedure with long-term pain relief.

  1. Mechanisms for enlarging lesion size during irrigated tip radiofrequency ablation

    DEFF Research Database (Denmark)

    Petersen, Helen Høgh; Roman-Gonzalez, Javier; Johnson, Susan B

    2004-01-01

    INTRODUCTION: Irrigated tip radiofrequency ablation of cardiac arrhythmias was developed to increase the size of the radiofrequency-induced lesion, since cooling of the electrode tip allows use of higher power settings. The purpose of this study was to determine if the increased lesion size during...

  2. Paying attention to radiofrequency ablation therapy for neoplasms

    International Nuclear Information System (INIS)

    Wang Zhongming; Li Linsun

    2010-01-01

    Radiofrequency ablation is an effective treatment for malignant tumors. With the development of imaging technique, it has been widely used in treating different kinds of malignant tumors, such as liver cancer, lung cancer, kidney carcinoma, etc. Radiofrequency ablation has a lot of advantages. As a minimally-invasive, safe and effective treatment with less sufferings and fewer complications, this technique has attracted more and more attention of the experts both at home and abroad. (authors)

  3. Enhancement of thermal conductive pathway of boron nitride coated polymethylsilsesquioxane composite.

    Science.gov (United States)

    Kim, Gyungbok; Ryu, Seung Han; Lee, Jun-Tae; Seong, Ki-Hun; Lee, Jae Eun; Yoon, Phil-Joong; Kim, Bum-Sung; Hussain, Manwar; Choa, Yong-Ho

    2013-11-01

    We report here in the fabrication of enhanced thermal conductive pathway nanocomposites of boron nitride (BN)-coated polymethylsilsesquioxane (PMSQ) composite beads using isopropyl alcohol (IPA) as a mixing medium. Exfoliated and size-reduced boron nitride particles were successfully coated on the PMSQ beads and explained by surface charge differences. A homogeneous dispersion and coating of BN on the PMSQ beads using IPA medium was confirmed by SEM. Each condition of the composite powder was carried into the stainless still mould and then hot pressed in an electrically heated hot press machine. Three-dimensional percolation networks and conductive pathways created by exfoliated BN were precisely formed in the nanocomposites. The thermal conductivity of nanocomposites was measured by multiplying specific gravity, specific heat, and thermal diffusivity, based upon the laser flash method. Densification of the composite resulted in better thermal properties. For an epoxy reinforced composite with 30 vol% BN and PMSQ, a thermal conductivity of nine times higher than that of pristine PMSQ was observed.

  4. Enhanced fodder yield of maize genotypes under saline irrigation is ...

    African Journals Online (AJOL)

    Poor quality irrigation water adversely affects the growth and yield of crops. This study was designed to evaluate the growth, fodder yield and ionic concentration of three promising maize (Zea mays L.) genotypes under the influence of varying quality irrigation water, with different salinity levels. The genotypes, such as ...

  5. Aqueous preparation of polyethylene glycol/sulfonated graphene phase change composite with enhanced thermal performance

    International Nuclear Information System (INIS)

    Li, Hairong; Jiang, Ming; Li, Qi; Li, Denian; Chen, Zongyi; Hu, Waping; Huang, Jing; Xu, Xizhe; Dong, Lijie; Xie, Haian; Xiong, Chuanxi

    2013-01-01

    Highlights: • We report an aqueous preparation technique of PEG/graphene phase change composite. • Hydrophilic sulfonated graphene (SG) nanosheets were synthesized. • Large increase in thermal conductivity is attained at low SG loading. • High latent heat is retained due to the low filler loading. • Affinity between SG and PEG contributes to the enhanced thermal performance. - Abstract: A polyethylene glycol (PEG)/sulfonated graphene (SG) phase change composite with enhanced thermal performance was prepared by solution processing in aqueous medium. It is remarkable that the addition of only 4 wt.% of SG to PEG could lead to a four times higher increase in thermal conductivity and a slight decrease in the phase change enthalpy, which is attributed to the formation of efficient thermal conductive network within the PEG matrix relevant to the excellent thermal property and unique 2-dimensional morphology of graphene as well as strong interface affinity between PEG matrix and SG nanosheets. The aqueous preparation technique is expected to pioneer a new way to prepare environment friendly organic phase change materials, and the production of PEG/SG composites is potentially scalable due to the facile fabricating process

  6. Real-time optical monitoring of permanent lesion progression in radiofrequency ablated cardiac tissue (Conference Presentation)

    Science.gov (United States)

    Singh-Moon, Rajinder P.; Hendon, Christine P.

    2016-02-01

    Despite considerable advances in guidance of radiofrequency ablation (RFA) therapies for atrial fibrillation, success rates have been hampered by an inability to intraoperatively characterize the extent of permanent injury. Insufficient lesions can elusively create transient conduction blockages that eventually reconduct. Prior studies suggest significantly greater met-myoglobin (Mmb) concentrations in the lesion core than those in the healthy myocardium and may serve as a marker for irreversible tissue damage. In this work, we present real-time monitoring of permanent injury through spectroscopic assessment of Mmb concentrations at the catheter tip. Atrial wedges (n=6) were excised from four fresh swine hearts and submerged under pulsatile flow of warm (37oC) phosphate buffered saline. A commercial RFA catheter inserted into a fiber optic sheath allowed for simultaneous measurement of tissue diffuse reflectance (DR) spectra (500-650nm) during application of RF energy. Optical measurements were continuously acquired before, during, and post-ablation, in addition to healthy neighboring tissue. Met-myoglobin, oxy-myoglobin, and deoxy-myoglobin concentrations were extracted from each spectrum using an inverse Monte Carlo method. Tissue injury was validated with Masson's trichrome and hematoxylin and eosin staining. Time courses revealed a rapid increase in tissue Mmb concentrations at the onset of RFA treatment and a gradual plateauing thereafter. Extracted Mmb concentrations were significantly greater post-ablation (p<0.0001) as compared to healthy tissue and correlated well with histological assessment of severe thermal tissue destruction. On going studies are aimed at integrating these findings with prior work on near infrared spectroscopic lesion depth assessment. These results support the use of spectroscopy-facilitated guidance of RFA therapies for real-time permanent injury estimation.

  7. Environmental Evaluation of Soil Salinity with Various Watering Technologies Assessment.

    Science.gov (United States)

    Seitkaziev, Adeubay; Shilibek, Kenzhegali; Fakhrudenova, Idiya; Salybayev, Satybaldy; Zhaparova, Sayagul; Duisenbayeva, Saule; Bayazitova, Zulfia; Aliya, Maimakova; Seitkazieva, Karlygash; Aubakirov, Hamit

    2018-01-01

      The purpose of this study is to develop mathematical tools for evaluating the level of environmental safety of various watering technologies. A set of indicators, was developed with regard to the natural factors, the nature of the man-induced load, degradation type, and characteristics of the disruption of humification conditions. Thermal and physical characteristics of the soil, the state of its surface, and meteorological factors, including air temperature, relative humidity, precipitation, wind speed, solar radiation, etc. were studied with a view to determining the heat and air exchange in the soil. An environmental evaluation of the methods for saline land development was conducted with regard to the heat and moisture supply. This tool can be used to determine the level of environmental safety of soil salinization during the environmental evaluation of the investigation of soil salinity with various watering technologies.

  8. Comparison of renal artery, soft tissue, and nerve damage after irrigated versus nonirrigated radiofrequency ablation.

    Science.gov (United States)

    Sakakura, Kenichi; Ladich, Elena; Fuimaono, Kristine; Grunewald, Debby; O'Fallon, Patrick; Spognardi, Anna-Maria; Markham, Peter; Otsuka, Fumiyuki; Yahagi, Kazuyuki; Shen, Kai; Kolodgie, Frank D; Joner, Michael; Virmani, Renu

    2015-01-01

    The long-term efficacy of radiofrequency ablation of renal autonomic nerves has been proven in nonrandomized studies. However, long-term safety of the renal artery (RA) is of concern. The aim of our study was to determine if cooling during radiofrequency ablation preserved the RA while allowing equivalent nerve damage. A total of 9 swine (18 RAs) were included, and allocated to irrigated radiofrequency (n=6 RAs, temperature setting: 50°C), conventional radiofrequency (n=6 RAs, nonirrigated, temperature setting: 65°C), and high-temperature radiofrequency (n=6 RAs, nonirrigated, temperature setting: 90°C) groups. RAs were harvested at 10 days, serially sectioned from proximal to distal including perirenal tissues and examined after paraffin embedding, and staining with hematoxylin-eosin and Movat pentachrome. RAs and periarterial tissue including nerves were semiquantitatively assessed and scored. A total of 660 histological sections from 18 RAs were histologically examined by light microscopy. Arterial medial injury was significantly less in the irrigated radiofrequency group (depth of medial injury, circumferential involvement, and thinning) than that in the conventional radiofrequency group (Pradiofrequency group (Pradiofrequency group and conventional radiofrequency group (P=0.36), there was a trend toward less nerve damage in the irrigated compared with conventional. Compared to conventional radiofrequency, circumferential medial damage in highest-temperature nonirrigated radiofrequency group was significantly greater (Pradiofrequency ablation, and there is a trend toward less nerve damage. © 2014 American Heart Association, Inc.

  9. Electromagnetic field sources in radiofrequency

    International Nuclear Information System (INIS)

    Oliveira, C.; Sebastiao, D.; Ladeira, D.; Antunes, M.; Correia, L.M.

    2010-01-01

    In the scope of the monIT Project, several measurements were made of electromagnetic fields in Portugal. This paper presents an analysis of the sources operating in the radiofrequency range, resulting from 2429 measurements in 466 locations.

  10. Effect of severely thermal shocked MWCNT enhanced glass fiber reinforced polymer composite: An emphasis on tensile and thermal responses

    Science.gov (United States)

    Mahato, K. K.; Fulmali, A. O.; Kattaguri, R.; Dutta, K.; Prusty, R. K.; Ray, B. C.

    2018-03-01

    Fiber reinforced polymeric (FRP) composite materials are exposed to diverse changing environmental temperatures during their in-service period. Current investigation is aimed to investigate the influence of thermal-shock exposure on the mechanical behavior of multiwalled carbon nanotube (MWCNT) enhanced glass fiber reinforced polymeric (GFRP) composites. The samples were exposed to +70°C for 36 hrs followed by further exposure to ‑ 60°C for the similar interval of time. Tensile tests were conducted in order to evaluate the results of thermal-shock on the mechanical behavior of the neat and conditioned samples at 1 mm/min loading rate. The polymer phase i.e. epoxy was modified with various MWCNT content. The ultimate tensile strength (UTS) was raised by 15.11 % with increase in the 0.1 % MWCNT content GFRP as related to the thermal-shocked neat GFRP conditioned samples. The possible reason may be attributed to the variation in the coefficients of thermal expansion at the time of conditioning. Also, upto some extent the pre-existing residual stresses allows uniform distribution of stress and hence the reason in enhanced mechanical properties of GFRP and MWCNT filled composites. In order to access the modifications in the glass transition temperature (Tg) due to the addition of MWCNT in GFRP composite and also due to the thermal shock temperature modulated differential scanning calorimeter (TMDSC) measurements are carried out. Scanning electron microscopy(SEM) was carried out to identify different modes of failures and strengthening morphology in the composites.

  11. Thermal sensitivity and thermally enhanced radiosensitivity of murine bone marrow granulocyte-macrophage colony-forming units (CFU-GM)

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi

    1994-01-01

    This study was to evaluate thermal response of granulocyte-macrophage colony-forming unit (CFU-GM) in vitro and to investigate the difference of thermally enhanced radiosensitivity on cell survivals of CFU-GM between in vitro and in vivo. In in vitro heating exposure, bone marrow suspensions, obtained from mouse femora or tibiae, were incubated; and in vivo heating exposure, the lower half-body of mice were immersed in a circulating hot water bath. For irradiation schedules, cell suspensions were irradiated in vitro or in vivo (whole-body irradiation). Thermal sensitivity curve, obtained by in vivo heating exposure, showed a shoulder region at short exposures followed by an exponential decline during longer heating exposures. The Arrhenius curve showed a break at 42.3deg C and inactivation enthalpy was 1836 kJ/mol (438 kcal/mole) below the break point and 704 kJ/mole (168 kcal/mole) above the point. When bone marrow suspensions, obtained after either in vitro or in vivo irradiation, were heated in vitro at 42deg C for 60 min, supura-additive effect on cell survivals was observed by in vivo irradiation, but not observed by in vitro irradiation. Thermal enhancement ratio (TER), defined as D 0 of combined in vivo irradiation and in vitro heating divided by D 0 of the sole in vivo irradiation, was 1.12. In vivo heating following in vivo irradiation also showed supra-additive effect, giving TER of 1.66. These findings indicated that murine marrow CFU-GM is sensitive to hyperthermia and that thermal radiosensitization is never negligible when hyperthermia is employed with preceding X-irradiation. Thus, combined use of radiotherapy and hyperthermia may decrease bone marrow function. (N.K.)

  12. The importance of the electron mean free path for superconducting radio-frequency cavities

    Science.gov (United States)

    Maniscalco, J. T.; Gonnella, D.; Liepe, M.

    2017-01-01

    Impurity-doping of niobium is an exciting new technology in the field of superconducting radio-frequency accelerators, producing cavities with record-high quality factor Q0 and Bardeen-Cooper-Schrieffer surface resistance that decreases with increasing radio-frequency field. Recent theoretical work has offered a promising explanation for this so-called "anti-Q-slope," but the link between the decreasing surface resistance and the shortened electron mean free path of doped cavities has remained elusive. In this work, we investigate this link, finding that the magnitude of this decrease varies directly with the mean free path: shorter mean free paths correspond to stronger anti-Q-slopes. We draw a theoretical connection between the mean free path and the overheating of the quasiparticles, which leads to the reduction of the anti-Q-slope towards the normal Q-slope of long-mean-free-path cavities. We also investigate the sensitivity of the residual resistance to trapped magnetic flux, a property that is greatly enhanced for doped cavities, and calculate an optimal doping regime for a given amount of trapped flux.

  13. Flexible small size radiofrequency plasma torch for Tokamak wall cleaning

    International Nuclear Information System (INIS)

    Eusebiu-Rosini Ionita; Luciu, I.; Dinescu, G.; Grisolia, Ch.

    2006-01-01

    Tritium accumulation in walls is a limiting factor in efficient long term operation of fusion machines. A number of detritiation techniques are under study, like laser, discharge, flash lamp based cleaning. One of the encountered difficulties is the limited access of the detritiation tool in narrow spaces, as in divertor region, inter-tiles or inside castellated gaps, where in fact an enhanced co-deposition and tritium trapping were observed. This contribution addresses the problem of elaboration of plasma torch as a tool appropriate for stimulating detritiation and removal of co-deposited layers in such spaces. The requirements imposed to the plasma torch source were related to the compatibility with inside torus operation: small diameter in order to permit access in narrow spaces, reasonable power, large range of working pressures from vacuum to atmosphere, closed loop cooling, flexibility in order to allow scanning and mounting on a robotic arm. The approached design is based on a radiofrequency discharge constricted to burn in a closed space between an active radiofrequency electrode and a grounded nozzle, from where plasma expands outside as a directional beam. The found solutions have led to a flexible hand held source working stable up to 300 W injected power and consisting of a cylindrical body of 20 mm diameter including the external water jacket embracing the discharge and an inside cooling circuit. The electrical characterization of the radiofrequency discharge sustaining the expanded plasma was performed and the domain of stable source operation in terms of power, current, pressure, argon mass flow rate is presented and discussed. The plasma beam size presents a strong dependence on pressure: the plasma length decreases from 200 mm to 20 mm, when pressure increases from vacuum to atmospheric, depending on power and mass flow rate. The ionized gas temperature, as indicated by a thermocouple head inserted in expansion in the nozzle proximity fall in the

  14. Low power radiofrequency electromagnetic radiation for the treatment of pain due to osteoarthritis of the knee

    Directory of Open Access Journals (Sweden)

    U. Santosuosso

    2011-09-01

    Full Text Available Different techniques have been used in some rheumatic diseases to induce a therapeutic effect by heating deep tissues. These techniques are commonly known as ‘thermotherapy’ (1-4. It should be observed that adequate heating of deep tissues cannot be obtained by conduction or convection of heat because the skin and subcutaneous fat are good thermal insulators and because heating is reduced by blood flow in superficial vessels. Heating of deep tissues can instead be obtained by conversion of other forms of energy into heat. Conversion heat is generated by different types of radiations absorbed by deep tissues: when radiation interacts with tissues, some energy is converted into heat. High power radiofrequency electromagnetic radiation (RF, which produces strong thermal energy, has been widely applied in medicine for ablative procedures (5-7.

  15. Thermal Pyrolytic Graphite Enhanced Components

    Science.gov (United States)

    Hardesty, Robert E. (Inventor)

    2015-01-01

    A thermally conductive composite material, a thermal transfer device made of the material, and a method for making the material are disclosed. Apertures or depressions are formed in aluminum or aluminum alloy. Plugs are formed of thermal pyrolytic graphite. An amount of silicon sufficient for liquid interface diffusion bonding is applied, for example by vapor deposition or use of aluminum silicon alloy foil. The plugs are inserted in the apertures or depressions. Bonding energy is applied, for example by applying pressure and heat using a hot isostatic press. The thermal pyrolytic graphite, aluminum or aluminum alloy and silicon form a eutectic alloy. As a result, the plugs are bonded into the apertures or depressions. The composite material can be machined to produce finished devices such as the thermal transfer device. Thermally conductive planes of the thermal pyrolytic graphite plugs may be aligned in parallel to present a thermal conduction path.

  16. [Catheter ablation in patients with refractory cardiac arrhythmias with radiofrequency techniques].

    Science.gov (United States)

    de Paola, A A; Balbão, C E; Silva Netto, O; Mendonça, A; Villacorta, H; Vattimo, A C; Souza, I A; Guiguer Júnior, N; Portugal, O P; Martinez Filho, E E

    1993-02-01

    evaluate the efficacy of radiofrequency catheter ablation in patients with refractory cardiac arrhythmias. twenty patients with refractory cardiac arrhythmias were undertaken to electrophysiologic studies for diagnosis and radiofrequency catheter ablation of their reentrant arrhythmias. Ten patients were men and 10 women with ages varying from 13 to 76 years (mean = 42.4 years). Nineteen patients had supraventricular tachyarrhythmias: One patient had atrial tachycardia and 1 atrial fibrillation with rapid ventricular rate, 5 patients had reentrant nodal tachycardia, 12 patients had reentrant atrioventricular tachycardia and 1 patient had right ventricular outflow tract tachycardia. the mean time of the procedure was 4.1 hours. The radiofrequency current energy applied was 40-50 V for 30-40 seconds. Ablation was successful in 18/20 (90%) patients; in 15/18 (83%) of successfully treated patients the same study was done for diagnosis and radiofrequency ablation. One patient had femoral arterial occlusion and was treated with no significant sequelae. During a mean follow-up of 4 months no preexcitation or reentrant tachycardia occurred. the results of our experience with radiofrequency catheter ablation of cardiac arrhythmias suggest that this technique can benefit an important number of patients with cardiac arrhythmias.

  17. Radiofrequency ablation of hepatic metastasis: Results of treatment in forty patients

    Directory of Open Access Journals (Sweden)

    Rath G

    2008-01-01

    Full Text Available Aim: To evaluate the local control of hepatic metastasis with radiofrequency ablation treatment. Materials and Methods: We did a retrospective analysis in 40 patients treated with radiofrequency ablation for hepatic metastasis. The tumors ablated included up to two metastatic liver lesions, with primaries in breast, gastrointestinal tract, cervix, etc. Radiofrequency ablation was performed under general anesthesia in all cases, using ultrasound guidance. Radionics Cool-Tip RF System was used to deliver the treatment. Results: The median age of patients treated was 49 years. There were 13 female and 27 male patients. The median tumor size ablated was 1.5 cm (0.75-4.0 cm. A total of 52 radiofrequency ablation cycles were delivered. Successful ablation was achieved in all patients with hepatic metastasis less than 3 cm in size. Pain was the most common complication seen (75%. One patients developed skin burns. At 2-year follow-up 7.5% of patients had locally recurrent disease. Conclusions: Radiofrequency ablation is a minimally invasive treatment modality. It can be useful in a select group of patients with solitary liver metastasis of less than 3 cm size.

  18. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Radiofrequency radiation for the heating of food... PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies. Radiofrequency radiation, including...

  19. Development and evaluation of a ceiling ventilation system enhanced by solar photovoltaic thermal collectors and phase change materials

    International Nuclear Information System (INIS)

    Lin, Wenye; Ma, Zhenjun; Sohel, M. Imroz; Cooper, Paul

    2014-01-01

    Highlights: • A novel ceiling ventilation system enhanced by PVT and PCMs was proposed. • PCM was used to increase the local thermal mass and to serve as a storage unit. • The proposed system can enhance indoor thermal comfort in winter and summer. - Abstract: This paper presents the development and performance evaluation of a novel ceiling ventilation system integrated with solar photovoltaic thermal (PVT) collectors and phase change materials (PCMs). The PVT collectors are used to generate electricity and provide low grade heating and cooling energy for buildings by using winter daytime solar radiation and summer night-time sky radiative cooling, respectively. The PCM is integrated into the building ceiling as a part of the ceiling insulation and at the same time, as a centralized thermal energy storage to temporally store low grade energy collected from the PVT collectors. The performance of the proposed system was numerically evaluated based on a Solar Decathlon house using TRNSYS. The results showed that, in winter conditions, the proposed PVT–PCM integrated ventilation system can significantly improve the indoor thermal comfort of passive buildings without using air-conditioning systems with a maximum air temperature rise of 23.1 °C from the PVT collectors. Compared with the system using PCM but without using PVT collectors, the coefficient of thermal comfort enhancement in the kitchen, dining room and living room of the case building studied using the proposed system improved from almost zero to 0.9823 while the coefficient of thermal comfort enhancement in the study room improved from 0.0060 to 0.9921. In summer conditions, the proposed system can also enhance indoor thermal comfort through night-time sky radiative cooling

  20. Stochasticity and superadiabaticity in radiofrequency plasma heating

    International Nuclear Information System (INIS)

    Stix, T.H.

    1979-04-01

    In a plasma subject to radiofrequency fields, it is only the resonant particles - comprising just a minor portion of the total velocity distribution - which are strongly affected. Under near-fusion conditions, thermalization by Coulomb collisions is slow, and noncollisional stochasticity can play an important role in reshaping f(v). It is found that the common rf interactions, including Landau, cyclotron and transit-time damping, can be fitted in a unified manner by a simple two-step one-parameter (epsilon) mapping which can display collision-free stochastic or adiabatic (also called superadiabatic) behavior, depending on the choice of epsilon. The effect on the evolution of the space averaged f (x,v,t) is reasonably well described by a pseudo-stochastic diffusion function, D/sub PS/(v,epsilon) which is the quasilinear diffusion coefficient but with appropriate widening of the delta-function spikes. Coulomb collisions, leading to D/sub Coul/(v) which may be added and directly compared to D/sub PS/(v,epsilon), are introduced by Langevin terms in the mapping equations

  1. Radiofrequency ablation of renal tumours: diagnostic accuracy of contrast-enhanced ultrasound for early detection of residual tumour

    International Nuclear Information System (INIS)

    Hoeffel, Christine; Pousset, Maud; Elie, Caroline; Timsit, Marc-Olivier; Mejean, Arnaud; Merran, Samuel; Tranquart, Francois; Khairoune, Ahmed; Helenon, Olivier; Correas, Jean-Michel; Joly, Dominique; Richard, Stephane

    2010-01-01

    To evaluate the diagnostic accuracy of contrast-enhanced ultrasound (CEUS) in the early detection of residual tumour after radiofrequency ablation (RFA) of renal tumours. Patients referred to our institution for RFA of renal tumours prospectively underwent CEUS and computed tomography (CT) or magnetic resonance imaging (MRI) before, within 1 day and 6 weeks after treatment. Identification of residual tumour was assessed by three blinded radiologists. Reference standard was CT/MRI performed at least 1 year after RFA. A total of 66 renal tumours in 43 patients (median age 62 years; range 44-71.5) were studied. Inter-reader agreement (κ value) was 0.84 for CEUS. Prevalence of residual disease was 19%. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV), respectively, were as follows: 64% [confidence interval (CI) 39-84], 98% [CI 91-100], 82% [CI 52-95] and 92% [CI 83-97] on 24-h CEUS; 79% [CI 52-92], 100% [CI 94-100], 100% [CI 74-100] and 95% [CI 87-100] on 6-week CEUS; 79% [CI 52-92], 95% [CI 86-98], 79% [CI 52-92] and 95% [CI 86-98] on 24-h CT/MRI; and 100% [CI 72-100], 98% [CI 90-100], 91% [CI 62-98] and 100% [CI 93-100] on 6-week CT/MRI. CEUS has high specificity for the early diagnosis of residual tumour after renal RFA. (orig.)

  2. Thermal performance enhancement of erythritol/carbon foam composites via surface modification of carbon foam

    Science.gov (United States)

    Li, Junfeng; Lu, Wu; Luo, Zhengping; Zeng, Yibing

    2017-03-01

    The thermal performance of the erythritol/carbon foam composites, including thermal diffusivity, thermal capacity, thermal conductivity and latent heat, were investigated via surface modification of carbon foam using hydrogen peroxide as oxider. It was found that the surface modification enhanced the wetting ability of carbon foam surface to the liquid erythritol of the carbon foam surface and promoted the increase of erythritol content in the erythritol/carbon foam composites. The dense interfaces were formed between erythritol and carbon foam, which is due to that the formation of oxygen functional groups C=O and C-OH on the carbon surface increased the surface polarity and reduced the interface resistance of carbon foam surface to the liquid erythritol. The latent heat of the erythritol/carbon foam composites increased from 202.0 to 217.2 J/g through surface modification of carbon foam. The thermal conductivity of the erythritol/carbon foam composite before and after surface modification further increased from 40.35 to 51.05 W/(m·K). The supercooling degree of erythritol also had a large decrease from 97 to 54 °C. Additionally, the simple and effective surface modification method of carbon foam provided an extendable way to enhance the thermal performances of the composites composed of carbon foams and PCMs.

  3. The safety and efficacy of a combined diode laser and bipolar radiofrequency compared with combined infrared light and bipolar radiofrequency for skin rejuvenation

    Directory of Open Access Journals (Sweden)

    Yeon Jin Choi

    2012-01-01

    Full Text Available Background: As the demand for noninvasive procedures for skin rejuvenation is increasing, combined diode laser and radiofrequency and combined infrared and radiofrequency devices have recently emerged. Aim: To compare Polaris WRA TM , a combination device of diode light and RF, and ReFirme ST TM , a combination device of infrared and bipolar RF, in terms of safety and efficacy on skin rejuvenation. Methods: Fourteen Korean volunteers of skin type II-IV, with facial laxity and periorbital rhytids, received three treatments at 3-week intervals with combined diode laser and bipolar radiofrequency (laser fluence 30 J/cm 2 , RF fluence 90 J/cm 3 on the right half of their faces and combined infrared light and bipolar radiofrequency (RF fluence 120 J/cm 3 on the left half of their faces. Clinical photos of front and bilateral sides of the subjects′ faces were taken at baseline and at 6, 9, 12 weeks after the treatment initiation. The investigators′ and the subjects′ global assessments were performed. Results: There is no statistically significant difference in the overall outcome between Polaris WRA TM and Refirme ST TM based on pre- and post-treatment objective measurements. Polaris WRA TM was more effective than Refirme ST TM at reducing wrinkles when therapeutic results of the two appliances were compared based on the patient satisfaction measurements. After the treatment with both instruments, histological increase in the production and rearrangement of collagen fibers at the dermal layer was observed. The density of the collagen fibers was more increased with the Polaris WRA TM -treated facial area than that of Refirme ST TM . Treatment was generally well tolerated, and there was no serious complication. Conclusion: In this study, both the lasers appeared to be safe, and effective methods for treating skin laxity and facial wrinkles. Combined diode laser and radiofrequency was more effective than combined infrared and radiofrequency at

  4. The safety and efficacy of a combined diode laser and bipolar radiofrequency compared with combined infrared light and bipolar radiofrequency for skin rejuvenation.

    Science.gov (United States)

    Choi, Yeon Jin; Lee, Jung Yeon; Ahn, Ji Young; Kim, Myeung Nam; Park, Mi Youn

    2012-01-01

    As the demand for noninvasive procedures for skin rejuvenation is increasing, combined diode laser and radiofrequency and combined infrared and radiofrequency devices have recently emerged. To compare Polaris WRA(TM), a combination device of diode light and RF, and ReFirme ST(TM), a combination device of infrared and bipolar RF, in terms of safety and efficacy on skin rejuvenation. Fourteen Korean volunteers of skin type II-IV, with facial laxity and periorbital rhytids, received three treatments at 3-week intervals with combined diode laser and bipolar radiofrequency (laser fluence 30 J/cm2, RF fluence 90 J/cm3) on the right half of their faces and combined infrared light and bipolar radiofrequency (RF fluence 120 J/cm3) on the left half of their faces. Clinical photos of front and bilateral sides of the subjects' faces were taken at baseline and at 6, 9, 12 weeks after the treatment initiation. The investigators' and the subjects' global assessments were performed. There is no statistically significant difference in the overall outcome between Polaris WRA(TM) and Refirme ST(TM) based on pre- and post-treatment objective measurements. Polaris WRA(TM) was more effective than Refirme ST(TM) at reducing wrinkles when therapeutic results of the two appliances were compared based on the patient satisfaction measurements. After the treatment with both instruments, histological increase in the production and rearrangement of collagen fibers at the dermal layer was observed. The density of the collagen fibers was more increased with the Polaris WRA(TM)-treated facial area than that of Refirme ST(TM). Treatment was generally well tolerated, and there was no serious complication. In this study, both the lasers appeared to be safe, and effective methods for treating skin laxity and facial wrinkles. Combined diode laser and radiofrequency was more effective than combined infrared and radiofrequency at reducing wrinkles and pores when the therapeutic results of both the

  5. Radiofrequency radiation-induced calcium-ion-efflux enhancement from human and other neuroblastoma cells in culture: [Final technical report

    International Nuclear Information System (INIS)

    Dutta, S.K.; Ghosh, B.; Blackman, C.F.

    1988-01-01

    In order to test the generality of radiofrequency-radiation-induced change in alternation of 45 Ca/sup 2/plus// efflux from avian and feline brain tissues, human neuroblastoma cells were exposed to electromagnetic radiation at 147 MHz, amplitude modulated (AM) at 16 Hz, at specific absorption rates (SAR) of 0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005 Wkg. Significant 45 Ca/sup 2/plus// efflux was obtained at SAR values of 0.05 and 0.005 Wkg. Enchanced efflux at 0.05 Wkg peaked at the 13-to-16 Hz and at the 57.5-to-60 Hz modulation ranges. A Chinese hamster-mouse hybrid neuroblastoma was also shown to exhibit enchanced radiation-induced 45 Ca/sup 2/plus// efflux at an SAR of 0.05 Wkg, using 147 MHz, AM at 16 hz. These results confirm that amplitude-modulated radiofrequency radiation can induce response in cells of nervous tissue origin from widely different animal species including humans. The results are also consistent with reports of similar findings in avian and feline brain tissue reported by others and indicate the general nature of the phenomenon. 9 refs., 3 tabs

  6. 12-month efficacy of a single radiofrequency ablation on autonomously functioning thyroid nodules.

    Science.gov (United States)

    Bernardi, Stella; Stacul, Fulvio; Michelli, Andrea; Giudici, Fabiola; Zuolo, Giulia; de Manzini, Nicolò; Dobrinja, Chiara; Zanconati, Fabrizio; Fabris, Bruno

    2017-09-01

    Radiofrequency ablation has been advocated as an alternative to radioiodine and/or surgery for the treatment of autonomously functioning benign thyroid nodules. However, only a few studies have measured radiofrequency ablation efficacy on autonomously functioning benign thyroid nodules. The aim of this work was to evaluate the 12-month efficacy of a single session of radiofrequency ablation (performed with the moving shot technique) on solitary autonomously functioning benign thyroid nodules. Thirty patients with a single, benign autonomously functioning benign thyroid nodules, who were either unwilling or ineligible to undergo surgery and radioiodine, were treated with radiofrequency ablation between April 2012 and May 2015. All the patients underwent a single radiofrequency ablation, performed with the 18-gauge needle and the moving shot technique. Clinical, laboratory, and ultrasound evaluations were scheduled at baseline, and after 1, 3, 6, and 12 months from the procedure. A single radiofrequency ablation reduced thyroid nodule volume by 51, 63, 69, and 75 % after 1, 3, 6, and 12 months, respectively. This was associated with a significant improvement of local cervical discomfort and cosmetic score. As for thyroid function, 33 % of the patients went into remission after 3 months, 43 % after 6 months, and 50 % after 12 months from the procedure. This study demonstrates that a single radiofrequency ablation allowed us to withdraw anti-thyroid medication in 50 % of the patients, who remained euthyroid afterwards. This study shows that a single radiofrequency ablation was effective in 50 % of patients with autonomously functioning benign thyroid nodules. Patients responded gradually to the treatment. It is possible that longer follow-up studies might show greater response rates.

  7. WORKSHOP: Radiofrequency superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-10-15

    The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators.

  8. WORKSHOP: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators

  9. The Use of gamma-Irradiation in Counteracting the Effect of Salinity for Cultivation of Barley and Pea Plants

    International Nuclear Information System (INIS)

    Aly, M.A.S.; Afifi, L.M.; Kamel, H.A.; Mostafa, I.Y.; Kord, M.A.

    2000-01-01

    The biochemical changes induced by salinity in two economic plants (Barley and Pea) and the probable counteraction of gamma irradiation for enhancement of growth were studied. The data obtained revealed that the reduction in pigments content due to salinity treatment was more pronounced in pea plants than barley. However, gamma irradiation caused a significant increase in pigment content of both plants. The interaction effect of salinity and radiation varied from an increase in case of barley to a reduction in peas. In both plants, soluble sugars content increased due to salinity and /or gamma-radiation. Moreover, total carbohydrates increased due to the combined treatment. A matched increase in free proline content was recorded with increase of salinity. While, gamma-irradiation showed a different trend. Protein and nucleic acids contents were proportionally decreased with increase of salinity levels, whereas gamma radiation induced an increase in both protein and nucleic acids content. A progressive reduction in the yield by increasing salinity was observed, while gamma-irradiation increased the yield of both plants. 14 CO 2 fixation was reduced by salinity treatment while gamma-radiation increased it. Contrary to 14 CO 2 fixation, salinity enhanced respiration, while radiation retarded it

  10. Desiccation-crack-induced salinization in deep clay sediment

    Directory of Open Access Journals (Sweden)

    S. Baram

    2013-04-01

    Full Text Available A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water content and on the chemical and isotopic composition of the sediment and pore water in it. The isotopic composition of water stable isotopes (δ18O and δ2H in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ~ 3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl− concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a desiccation-crack-induced salinization (DCIS conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.

  11. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    International Nuclear Information System (INIS)

    Mathe, Vikas L.; Varma, Vijay; Raut, Suyog; Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K.; Bhoraskar, Sudha V.; Das, Asoka K.

    2016-01-01

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  12. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    Energy Technology Data Exchange (ETDEWEB)

    Mathe, Vikas L., E-mail: vlmathe@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Varma, Vijay; Raut, Suyog [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K. [High Energy Materials Research Lab, Sutarwadi, Pune 411021, Maharashtra (India); Bhoraskar, Sudha V. [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Das, Asoka K. [Utkal University, VaniVihar, Bhubaneswar, Odisha 751004 (India)

    2016-04-15

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  13. Radiofrequency contact currents: sensory responses and dosimetry

    International Nuclear Information System (INIS)

    Kavet, Robert; Tell, R.A.; Olsen, R.G.

    2014-01-01

    The process of setting science-based exposure standards (or guidelines) for radiofrequency (RF) contact current exposure has been disadvantaged by a lack of relevant data. The authors first review the essential features and results of the available studies and illustrate the apparent discrepancies among them. Then, they examine the manner in which current was administered in these studies and suggest as to how the physical relationship of a contacting finger to the current electrode may play a role in affecting sensory thresholds specific to those configurations. A major factor in this analysis relates to whether current density is uniformly distributed across the contact area or whether an electrode's 'edge effects' enhance currents with a net effect of decreasing apparent thresholds, when expressed as the bulk current entering a subject. For an exposure with a clear hazard potential, thresholds of human sensory response to RF currents require further investigation. (authors)

  14. Molecular Fin Effect from Heterogeneous Self-Assembled Monolayer Enhances Thermal Conductance across Hard-Soft Interfaces.

    Science.gov (United States)

    Wei, Xingfei; Zhang, Teng; Luo, Tengfei

    2017-10-04

    Thermal transport across hard-soft interfaces is critical to many modern applications, such as composite materials, thermal management in microelectronics, solar-thermal phase transition, and nanoparticle-assisted hyperthermia therapeutics. In this study, we use equilibrium molecular dynamics (EMD) simulations combined with the Green-Kubo method to study how molecularly heterogeneous structures of the self-assembled monolayer (SAM) affect the thermal transport across the interfaces between the SAM-functionalized gold and organic liquids (hexylamine, propylamine and hexane). We focus on a practically synthesizable heterogeneous SAM featuring alternating short and long molecular chains. Such a structure is found to improve the thermal conductance across the hard-soft interface by 46-68% compared to a homogeneous nonpolar SAM. Through a series of further simulations and analyses, it is found that the root reason for this enhancement is the penetration of the liquid molecules into the spaces between the long SAM molecule chains, which increase the effective contact area. Such an effect is similar to the fins used in macroscopic heat exchanger. This "molecular fin" structure from the heterogeneous SAM studied in this work provides a new general route for enhancing thermal transport across hard-soft material interfaces.

  15. Habib EndoHPB: a novel endobiliary radiofrequency ablation device. An experimental study.

    Science.gov (United States)

    Zacharoulis, Dimitris; Lazoura, Olga; Sioka, Eleni; Potamianos, Spyros; Tzovaras, George; Nicholls, Joanna; Koukoulis, George; Habib, Nagy

    2013-02-01

    The Habib EndoHPB is a bipolar radiofrequency (RF) catheter developed to be introduced across malignant strictures of the bile ducts, so that RF energy can locally ablate the tumor prior to stent placement. This experiment aims to assess the ability of the catheter to coagulate the wall of the common bile duct (CBD) in a porcine model, to establish power requirement and time parameters and correlate them to the depth of thermal injury, and to assess the ease of operation of the device. The CBD was catheterized using the device in 20 pigs. RF energy was applied to the CBD wall with various generator settings. The pigs were sacrificed 24 hr after the application and the CBD was excised for histological analysis. The device was easy to handle. Statistically significant correlations between the power, the time of RF application, and the thermal injury depth were found. The Habib EndoHPB catheter can effectively deliver RF energy intraluminally in the porcine CBD. Clinical studies are warranted in order to define proper settings for safe and efficient use in malignant biliary obstruction.

  16. Bipolar Radiofrequency Facet Ablation of the Lumbar Facet Capsule: An Adjunct to Conventional Radiofrequency Ablation for Pain Management.

    Science.gov (United States)

    Jacobson, Robert E; Palea, Ovidiu; Granville, Michelle

    2017-09-01

    Radiofrequency facet ablation (RFA) has been performed using the same technique for over 50 years. Except for variations in electrode size, tip shape, and change in radiofrequency (RF) stimulation parameters, using standard, pulsed, and cooled RF wavelengths, the target points have remained absolutely unchanged from the original work describing RFA for lumbar pain control. Degenerative changes in the facet joint and capsule are the primary location for the majority of lumbar segmental pathology and pain. Multiple studies show that the degenerated facet joint is richly innervated as a result of the inflammatory overgrowth of the synovium. The primary provocative clinical test to justify an RFA is to perform an injection with local anesthetic into the facet joint and the posterior capsule and confirm pain relief. However, after a positive response, the radiofrequency lesion is made not to the facet joint but to the more proximal fine nerve branches that innervate the joint. The accepted target points for the recurrent sensory branch ignore the characteristic rich innervation of the pathologic lumbar facet capsule and assume that lesioning of these recurrent branches is sufficient to denervate the painful pathologic facet joint. This report describes the additional targets and technical steps for further coagulation points along the posterior capsule of the lumbar facet joint and the physiologic studies of the advantage of the bipolar radiofrequency current in this location. Bipolar RF to the facet capsule is a simple, extra step that easily creates a large thermo-coagulated lesion in this capsule region of the pathologic facet joint. Early studies demonstrate bipolar RF to the facet capsule can provide long-term pain relief when used alone for specific localized facet joint pain, to coagulate lumbar facet cysts to prevent recurrence, and to get more extensive pain control by combining it with traditional lumbar RFA, especially when RFA is repeated.

  17. Induced thermal ablation with a radiofrequency field in breast cancer cells using gold nanoparticles conjugated to the peptide cycle[RGDfK(C)

    International Nuclear Information System (INIS)

    Sanchez H, L.

    2014-01-01

    The conjugation of peptides to gold nanoparticles (AuNP) produces biocompatible and stable multimeric systems with target-specific molecular recognition. Peptides based on the cyclic Arg-Gly-Asp (RGD) sequence have been reported as high-affinity agents for the α(v)β(3) and α(v)β(v) integrin s over expressed in breast cancer cells. AuNP have also been proposed as localized heat sources for cancer treatment using laser irradiation or radiofrequency (RF). The objective of this research was to evaluate the thermo ablative effect of the AuNP-c [RGDfK(C)] system on MCF7 breast cancer cell viability after exposure to a radiofrequency field and to compare it with that produced by the laser irradiation. The effect of the 13.56 MHz RF (using a power from 0 to 200 W at intervals of 50 W) over the temperature increase in AuNP-colloidal system of 5 and 20 nm at two different concentrations was evaluated. The absorption cross sections (C abs ) of the AuNP-c [RGDfK(C)] nano system when it interacts with low frequency electromagnetic waves (13.56 MHz, λ = 22 m) and optical frequency waves (laser at λ = 532 nm) was analyzed based on the Mi e theory. The effect on the MCF7 cell viability was assessed using two thermal conversion sources (Laser and RF) on AuNP-c [RGDfK(C)] located inside the cytoplasm of the cells. MCF7 cells were treated with AuNP-c [RGDfK(C)] or water after exposure to the RF field (200 W, 100 V/cm) or laser irradiation (Irradiance 0.65 W/cm 2 ). In both cases (RF and laser) the presence of nanoparticles internalized inside the cells caused a significant increase in the temperature of the medium (RF: ΔT = 29.9 ± 1.7 grades C for AuNP compared toΔT = 13.0 ± 1.4 grades C for water; laser: ΔT = 13.5 ± 0.7 grades C for AuNP compared to 3.3 ± 0.5 grades C for water). Although RF induced a higher increase in the temperature of the medium with nanoparticles, the largest effect on the cell viability was produced by laser when nanoparticles were located inside

  18. A New Radiofrequency Ablation Procedure to Treat Sacroiliac Joint Pain.

    Science.gov (United States)

    Cheng, Jianguo; Chen, See Loong; Zimmerman, Nicole; Dalton, Jarrod E; LaSalle, Garret; Rosenquist, Richard

    2016-01-01

    Low back pain may arise from disorders of the sacroiliac joint in up to 30% of patients. Radiofrequency ablation (RFA) of the nerves innervating the sacroiliac joint has been shown to be a safe and efficacious strategy. We aimed to develop a new RFA technique to relieve low back pain secondary to sacroiliac joint disorders. Methodology development with validation through prospective observational non-randomized trial (PONRT). Academic multidisciplinary health care system, Ohio, USA. We devised a guide-block to facilitate accurate placement of multiple electrodes to simultaneously ablate the L5 dorsal ramus and lateral branches of the S1, S2, and S3 dorsal rami. This was achieved by bipolar radiofrequency ablation (b-RFA) to create a strip lesion from the lateral border of the base of the sacral superior articular process (L5-S1 facet joint) to the lateral border of the S3 sacral foramen. We applied this technique in 31 consecutive patients and compared the operating time, x-ray exposure time and dose, and clinical outcomes with patients (n = 62) who have been treated with the cooled radiofrequency technique. Patients' level of pain relief was reported as 80% pain relief at one, 3, 6, and 12 months after the procedure. The relationship between RFA technique and duration of pain relief was evaluated using interval-censored multivariable Cox regression. The new technique allowed reduction of operating time by more than 50%, x-ray exposure time and dose by more than 80%, and cost by more than $1,000 per case. The percent of patients who achieved > 50% pain reduction was significantly higher in the b-RFA group at 3, 6, and 12 months follow-up, compared to the cooled radiofrequency group. No complications were observed in either group. Although the major confounding factors were taken into account in the analysis, use of historical controls does not balance observed and unobserved potential confounding variables between groups so that the reported results are potentially

  19. Growth and root development of four mangrove seedlings under varying salinity

    Science.gov (United States)

    Basyuni, M.; Keliat, D. A.; Lubis, M. U.; Manalu, N. B.; Syuhada, A.; Wati, R.; Yunasfi

    2018-03-01

    This present study describes four mangrove seedlings namely Bruguiera cylindrica, B. sexangula, Ceriops tagal, and Rhizophora apiculata in response to salinity with particular emphasis to root development. The seedlings of four mangroves were grown for 5 months in 0%, 0.5%, 1.5%, 2.0% and 3.0% salt concentration. Salinity significantly decreased the growth (diameter and plant height) of all mangrove seedlings. Root developments were observed from the tap and lateral root. The number, length and diameter of both roots-typed of B. cylindrica, B. sexangula and C. tagal seedlings significantly decreased with increasing salt concentration with optimum development at 0.5% salinity. By contrast, the number, length, and diameter of tap root of R. apiculata seedlings were significantly enhanced by salt with maximal stimulation at 0.5%, and this increase was attenuated by increasing salinity. On the other hand, lateral root development of R. apiculata significantly thrived up to 1.5% salinity then decreasing with the increasing salinity. The different response of root development suggested valuable information for mangrove rehabilitation in North Sumatra and their adaption to withstand salt stress.

  20. Optimizing silicon application to improve salinity tolerance in wheat

    Directory of Open Access Journals (Sweden)

    A. Ali

    2009-05-01

    Full Text Available Salinity often suppresses the wheat performance. As wheat is designated as silicon (Si accumulator, hence Si application may alleviate the salinity induced damages. With the objective to combat the salinity stress in wheat by Si application (0, 50, 100, 150 and 200 mg L-1 using calcium silicate, an experiment was conducted on two contrasting wheat genotypes (salt sensitive; Auqab-2000 and salt tolerant; SARC-5 in salinized (10 dS m-1 and non-salinized (2 dS m-1 solutions. Plants were harvested 32 days after transplanting and evaluation was done on the basis of different morphological and analytical characters. Silicon supplementation into the solution culture improved wheat growth and K+/Na+ with reduced Na+ and enhanced K+ uptake. Concomitant improvement in shoot growth was observed; nonetheless the root growth remained unaffected by Si application. Better results were obtained with 150 and 200 mg L-1 of Si which were found almost equally effective. It was concluded that SARC-5 is better than Auqab-2000 against salt stress and Si inclusion into the solution medium is beneficial for wheat and can improve the crop growth both under optimal and salt stressful conditions.

  1. Metallized compliant 3D microstructures for dry contact thermal conductance enhancement

    Science.gov (United States)

    Cui, Jin; Wang, Jicheng; Zhong, Yang; Pan, Liang; Weibel, Justin A.

    2018-05-01

    Microstructured three-dimensional (3D) materials can be engineered to enable new capabilities for various engineering applications; however, microfabrication of large 3D structures is typically expensive due to the conventional top-down fabrication scheme. Herein we demonstrated the use of projection micro-stereolithography and electrodeposition as cost-effective and high-throughput methods to fabricate compliant 3D microstructures as a thermal interface material (TIM). This novel TIM structure consists of an array of metallized micro-springs designed to enhance the dry contact thermal conductance between nonflat surfaces under low interface pressures (10s-100s kPa). Mechanical compliance and thermal resistance measurements confirm that this dry contact TIM can achieve conformal contact between mating surfaces with a nonflatness of approximately 5 µm under low interface pressures.

  2. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    Energy Technology Data Exchange (ETDEWEB)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-06-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC{sub 50} values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC{sub 50} obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC{sub 50}). This LC{sub 50} value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC{sub 50}. For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC{sub 50} and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC{sub 50} of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC{sub 50} values. In contrast, LC{sub 50} determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature.

  3. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    International Nuclear Information System (INIS)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-01-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC 50 values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC 50 obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC 50 ). This LC 50 value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC 50 . For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC 50 and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC 50 of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC 50 values. In contrast, LC 50 determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature

  4. Thermal skin damage and mobile phone use

    OpenAIRE

    Elabbassi , Elmountacer-Billah; De Seze , René

    2005-01-01

    International audience; Mobile phone "cell phone" use has dramatically increased over th last decade, but doubts remain over its safety. Epidemiological investigation of mobile phone (MP) users reported symptoms of discomfort feeling, warmth behind/around or on the ear and heat sensation of the cheek. These symptoms may be due to thermal insulation, conduction of the heat produced in the phone by the battery currents and running of the radiofrequency (RF) electronic circuits, and electromagne...

  5. Foundations of High-Pressure Thermal Plasmas

    Science.gov (United States)

    Murphy, Anthony B.; Uhrlandt, Dirk

    2018-06-01

    An introduction to the main methods used to produce, model and measure thermal plasmas is provided, with emphasis on the differences between thermal plasmas and other types of processing plasmas. The critical properties of thermal plasmas are explained in physical terms and their importance in different applications is considered. The characteristics, and advantages and disadvantages, of the different main types of thermal plasmas (transferred and non-transferred arcs, radio-frequency inductively-coupled plasmas and microwave plasmas) are discussed. The methods by which flow is stabilized in arc plasmas are considered. The important concept of local thermodynamic equilibrium (LTE) is explained, leading into a discussion of the importance of thermophysical properties, and their calculation in LTE and two-temperature plasmas. The standard equations for modelling thermal plasmas are presented and contrasted with those used for non-equilibrium plasmas. Treatments of mixed-gas and non-LTE plasmas are considered, as well as the sheath regions adjacent to electrodes. Finally, the main methods used for electrical, optical, spectroscopic and laser diagnostics of thermal plasmas are briefly introduced, with an emphasis on the required assumptions for their reliable implementation, and the specific requirements of thermal plasmas.

  6. Methods for enhancing mapping of thermal fronts in oil recovery

    Science.gov (United States)

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1984-03-30

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  7. Fraxelated radiofrequency device for acne scars

    Science.gov (United States)

    Rao, Babar K.; Khokher, Sairah

    2012-09-01

    Acne scars can be improved with various treatments such as topical creams, chemical peels, dermal fillers, microdermabrasion, laser, and radiofrequency devices. Some of these treatments especially lasers and deep chemical peels can have significant side effects such as post inflammatory hyperpigmentation in darker skin types. Fraxelated RF Laser devices have been reported to have lower incidence of side effects in all skin phototypes. Nine patients between ages 18 and 35 of various skin phototypes were selected from a private practice and treated with a RF fraxelated device (E-matrix) for acne scars. Outcomes were measured by physician observation, subjective feedback received by patients, and comparison of before and after photographs. In this small group of patients with various skin phototypes, fraxelated radiofrequency device improved acne scars with minimal side effects and downtime.

  8. Arthroscopic surgery using radio-frequency electrocautery

    International Nuclear Information System (INIS)

    Takatsuka, Shigeyuki; Yoshida, Kan; Nakagawa, Kiyomasa; Yamamoto, Etsuhide; Kubota, Yoshiyuki; Narinobou, Masayoshi; Terai, Koichi; Hasegawa, Hiroshi

    2008-01-01

    Arthroscopic surgery using radio-frequency electrocautery was carried out on 23 temporomandibular joints (TMJs) in 13 patients. Because these patients did not respond to conservative therapy, surgery was indicated. Preoperative MRI showed anterior disc displacement without reduction in all patients. Disturbed translation was also recognized in all of the discs and mandibular condyles. Intraoperative arthroscopic examination showed severe fibrous adhesion in the upper joint compartment and disc displacement. Four joints showed perforation between the disc and retrodiscal tissue. Postoperative findings included an increased range of vertical maximal mouth opening and decreased pain on mandibular movement. Analyses of postoperative MRI indicated recovery of disc and condylar translation. These results suggested that the introduction of arthroscopic surgery using radiofrequency electrocautery would significantly reduce the number of patients with osteoarthritic TMJ disorders. (author)

  9. Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films

    Science.gov (United States)

    Thurn, Jeremy; Cook, Robert F.

    2002-02-01

    The mechanical response of plasma-enhanced chemical vapor deposited SiO2 to thermal cycling is examined by substrate curvature measurement and depth-sensing indentation. Film properties of deposition stress and stress hysteresis that accompanied thermal cycling are elucidated, as well as modulus, hardness, and coefficient of thermal expansion. Thermal cycling is shown to result in major plastic deformation of the film and a switch from a compressive to a tensile state of stress; both athermal and thermal components of the net stress alter in different ways during cycling. A mechanism of hydrogen incorporation and release from as-deposited silanol groups is proposed that accounts for the change in film properties and state of stress.

  10. Phosphorus and humic acid application alleviate salinity stress of ...

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... improve plant growth and enhance stress tolerance (Piccolo et al., 1992). ..... shoot of pepper seedling, but the reverse was the case with Na, Fe and Zn of .... salinity, and extreme temperatures: towards genetic engineering for.

  11. Transurethral radiofrequency collagen denaturation for the treatment of women with urinary incontinence.

    Science.gov (United States)

    Kang, Diana; Han, Julia; Neuberger, Molly M; Moy, M Louis; Wallace, Sheila A; Alonso-Coello, Pablo; Dahm, Philipp

    2015-03-18

    Transurethral radiofrequency collagen denaturation is a relatively novel, minimally invasive device-based intervention used to treat individuals with urinary incontinence (UI). No systematic review of the evidence supporting its use has been published to date. To evaluate the efficacy of transurethral radiofrequency collagen denaturation, compared with other interventions, in the treatment of women with UI.Review authors sought to compare the following.• Transurethral radiofrequency collagen denaturation versus no treatment/sham treatment.• Transurethral radiofrequency collagen denaturation versus conservative physical treatment.• Transurethral radiofrequency collagen denaturation versus mechanical devices (pessaries for UI).• Transurethral radiofrequency collagen denaturation versus drug treatment.• Transurethral radiofrequency collagen denaturation versus injectable treatment for UI.• Transurethral radiofrequency collagen denaturation versus other surgery for UI. We conducted a systematic search of the Cochrane Incontinence Group Specialised Register (searched 19 December 2014), EMBASE and EMBASE Classic (January 1947 to 2014 Week 50), Google Scholar and three trials registries in December 2014, along with reference checking. We sought to identify unpublished studies by handsearching abstracts of major gynaecology and urology meetings, and by contacting experts in the field and the device manufacturer. Randomised and quasi-randomised trials of transurethral radiofrequency collagen denaturation versus no treatment/sham treatment, conservative physical treatment, mechanical devices, drug treatment, injectable treatment for UI or other surgery for UI in women were eligible. We screened search results and selected eligible studies for inclusion. We assessed risk of bias and analysed dichotomous variables as risk ratios (RRs) with 95% confidence intervals (CIs) and continuous variables as mean differences (MDs) with 95% CIs. We rated the quality of

  12. Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment.

    Science.gov (United States)

    Carrère, Hélène; Bougrier, Claire; Castets, Delphine; Delgenès, Jean Philippe

    2008-11-01

    Thermal treatments with temperature ranging from 60 to 210 degrees C were applied to 6 waste-activated sludge samples originating from high or medium load, extended aeration wastewater treatment processes that treated different wastewaters (urban, urban and industrial or slaughterhouse). COD sludge solubilisation was linearly correlated with the treatment temperature on the whole temperature range and independently of the sludge samples. Sludge batch mesophilic biodegradability increased with treatment temperature up to 190 degrees C. In this temperature range, biodegradability enhancement or methane production increase by thermal hydrolysis was shown to be a function of sludge COD solubilisation but also of sludge initial biodegradability. The lower the initial biodegradability means the higher efficiency of thermal treatment.

  13. Dendrimer-assisted controlled growth of carbon nanotubes for enhanced thermal interface conductance

    International Nuclear Information System (INIS)

    Amama, Placidus B; Cola, Baratunde A; Sands, Timothy D; Xu, Xianfan; Fisher, Timothy S

    2007-01-01

    Multi-walled carbon nanotubes (MWCNTs) with systematically varied diameter distributions and defect densities were reproducibly grown from a modified catalyst structure templated in an amine-terminated fourth-generation poly(amidoamine) (PAMAM) dendrimer by microwave plasma-enhanced chemical vapor deposition. Thermal interface resistances of the vertically oriented MWCNT arrays as determined by a photoacoustic technique reveal a strong correlation with the quality as assessed by Raman spectroscopy. This study contributes not only to the development of an active catalyst via a wet chemical route for structure-controlled MWCNT growth, but also to the development of efficient and low-cost MWCNT-based thermal interface materials with thermal interface resistances ≤10 mm 2 K W -1

  14. Conceptual design of a sapphire loaded coupler for superconducting radio-frequency 1.3 GHz cavities

    Directory of Open Access Journals (Sweden)

    Chen Xu

    2016-02-01

    Full Text Available This paper explores a hybrid mode rf structure that served as a superconducting radio-frequency coupler. This application achieves a reflection S_{(1,1} varying from 0 to −30  db and delivers cw power at 7 KW. The coupler has good thermal isolation between the 2 and 300 K sections due to vacuum separation. Only one single hybrid mode can propagate through each section, and no higher order mode is coupled. The analytical and numerical analysis for this coupler is given and the design is optimized. The coupling mechanism to the cavity is also discussed.

  15. Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage

    KAUST Repository

    Rahman, Kazi Afzalur

    2011-07-01

    The usage of adsorbed natural gas (ANG) storage is hindered by the thermal management during the adsorption and desorption processes. An effective thermal enhancement is thus essential for the development of the ANG technology and the motivation for this study is the investigation of a gas storage system with internal thermal control. We employed a fin-tube type heat exchanger that is placed in a pressurized cylinder. A distributed-parameter model is used for the theoretical modeling and simulations are conducted at assorted charging and discharging conditions. These studies included the transient thermal behaviours of the elements within the ANG-charged cylinder and parameters such as pressure and temperature profiles of adsorbent have been obtained during charge and discharge cycles, and results are compared with a conventional compressed methane vessel. © 2011 Elsevier Ltd. All rights reserved.

  16. Ion collection from laser-induced plasma by applying radio-frequency voltage

    International Nuclear Information System (INIS)

    Shibata, Takemasa; Ogura, Koichi

    1995-01-01

    Ions were collected on the electrodes from a laser resonance photoionized plasma by applying 1.8MHz radio-frequency voltage to the electrode. It was demonstrated that the ions are collected in a shorter time at the same kinetic energy of the collected ions compared with ion collection by applying DC voltage to the electrode. A simple one-dimensional model was extended for prediction of ion collection times in the cases of applications of not only the DC voltage but also the radio-frequency voltage. The ion collection times estimated using the simple one-dimensional model agreed with experimental values in both cases of DC and radio-frequency voltages. (author)

  17. Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage.

    Science.gov (United States)

    Li, Chuanchang; Fu, Liangjie; Ouyang, Jing; Yang, Huaming

    2013-01-01

    A novel mineral-based composite phase change materials (PCMs) was prepared via vacuum impregnation method assisted with microwave-acid treatment of the graphite (G) and bentonite (B) mixture. Graphite and microwave-acid treated bentonite mixture (GBm) had more loading capacity and higher crystallinity of stearic acid (SA) in the SA/GBm composite. The SA/GBm composite showed an enhanced thermal storage capacity, latent heats for melting and freezing (84.64 and 84.14 J/g) was higher than those of SA/B sample (48.43 and 47.13 J/g, respectively). Addition of graphite was beneficial to the enhancement in thermal conductivity of the SA/GBm composite, which could reach 0.77 W/m K, 31% higher than SA/B and 196% than pure SA. Furthermore, atomic-level interfaces between SA and support surfaces were depicted, and the mechanism of enhanced thermal storage properties was in detail investigated.

  18. Effect of Radiofrequency Endometrial Ablation on Dysmenorrhea.

    Science.gov (United States)

    Wyatt, Sabrina N; Banahan, Taylor; Tang, Ying; Nadendla, Kavita; Szychowski, Jeff M; Jenkins, Todd R

    To examine rates of dysmenorrhea after radiofrequency endometrial ablation in patients with and without known dysmenorrhea symptoms prior to the procedure in a diverse population. Retrospective cohort study (Canadian Task Force classification II-2). Academic gynecology practice. A total of 307 women underwent endometrial ablation between 2007 and 2013 at our institution. Patients who had preoperative and postoperative pain symptom assessments as well as a description of pain timing recorded were included in our analysis. Exclusion criteria were age dysmenorrhea was evaluated. Demographic information and other outcome variables were used to evaluate factors associated with resolution of dysmenorrhea. A total of 307 patients who underwent radiofrequency endometrial ablation were identified. After exclusions, 296 charts were examined, and 144 patients met our enrollment criteria. The mean age of the study cohort was 45.4 ± 6.2 years; 57 patients (40%) were African American, 16 (11%) had a body mass index (BMI) > 40, and 41 (29%) were of normal weight. Preoperative dysmenorrhea was reported by 100 patients (69%); 48 of these patients (48%) experienced resolution of symptoms postoperatively. Only 3 of the 44 patients (7%) without preoperative dysmenorrhea reported new-onset dysmenorrhea postoperatively. Significantly fewer patients had dysmenorrhea after compared to before radiofrequency ablation (55 of 144 [38%] vs 100 of 144 [69%]; p dysmenorrhea after ablation was associated with reduction in bleeding volume (p = .048) but not with a reduction in frequency of bleeding (p = .12). Approximately one-half of women who undergo radiofrequency endometrial ablation to treat heavy menstrual bleeding who also have preoperative dysmenorrhea exhibit documented pain resolution after the procedure. Resolution of dysmenorrhea is more likely if menstrual flow volume is decreased postprocedure. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.

  19. Growth and characterization of stoichiometric BCN films on highly oriented pyrolytic graphite by radiofrequency plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mannan, Md. Abdul, E-mail: amannan75@yahoo.co [Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, 1 Honjo, Saga 840-8502 (Japan); Synchrotron Radiation Research Unit, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Noguchi, Hideyuki; Kida, Tetsuya; Nagano, Masamitsu [Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, 1 Honjo, Saga 840-8502 (Japan); Hirao, Norie; Baba, Yuji [Synchrotron Radiation Research Unit, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2010-05-31

    Hexagonal boron carbonitride (h-BCN) hybrid films have been synthesized on highly oriented pyrolytic graphite by radiofrequency plasma enhanced chemical vapor deposition using tris-(dimethylamino)borane as a single-source molecular precursor. The films were characterized by X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS) and Raman spectroscopic measurements. XPS measurement showed that the B atoms were bonded to C and N atoms to form the sp{sup 2}-B-C-N atomic hybrid chemical environment. The atomic composition estimated from the XPS of the typical sample was found to be almost B{sub 1}C{sub 1}N{sub 1}. NEXAFS spectra of the B K-edge and the N K-edge had the peaks due to the {pi}* and {sigma}* resonances of sp{sup 2} hybrid orbitals implying the existence of the sp{sup 2} hybrid configurations of h-BCN around the B atoms. The G band at 1592 and D band at 1352 cm{sup -1} in the Raman spectra also suggested the presence of the graphite-like sp{sup 2}-B-C-N atomic hybrid bonds. The films consisted of micrometer scale crystalline structure of around 10 {mu}m thick has been confirmed by the field emission scanning electron microscopy.

  20. Numerical characterization of micro-cell UO{sub 2}−Mo pellet for enhanced thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heung Soo [School of Mechanical Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Kim, Dong-Joo [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon, 305-353 (Korea, Republic of); Kim, Sun Woo [School of Mechanical Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Yang, Jae Ho; Koo, Yang-Hyun [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon, 305-353 (Korea, Republic of); Kim, Dong Rip, E-mail: dongrip@hanyang.ac.kr [School of Mechanical Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-08-15

    Metallic micro-cell UO{sub 2} pellet with high thermal conductivity has received attention as a promising accident-tolerant fuel. Although experimental demonstrations have been successful, studies on the potency of current metallic micro-cell UO{sub 2} fuels for further enhancement of thermal performance are lacking. Here, we numerically investigated the thermal conductivities of micro-cell UO{sub 2}−Mo pellets in terms of the amount of Mo content, the unit cell size, and the aspect ratio of the micro-cells. The results showed good agreement with experimental measurements, and more importantly, indicated the importance of optimizing the unit cell geometries of the micro-cell pellets for greater increases in thermal conductivity. Consequently, the micro-cell UO{sub 2}−Mo pellets (5 vol% Mo) with modified geometries increased the thermal conductivity of the current UO{sub 2} pellets by about 2.5 times, and lowered the temperature gradient within the pellets by 62.9% under a linear heat generation rate of 200 W/cm. - Highlights: • Thermal conductivities of micro-cell UO{sub 2}−Mo pellets were numerically studied in terms of their unit cell geometries. • Numerical calculations qualitatively well agreed with experimental measurements. • Optimizing the unit cell geometries of the micro-cell pellets could greatly enhance their thermal conductivities.

  1. The potentiality of Trichoderma harzianum in alleviation the adverse effects of salinity in faba bean plants.

    Science.gov (United States)

    Abd El-Baki, G K; Mostafa, Doaa

    2014-12-01

    The interaction between sodium chloride and Trichoderma harzianum (T24) on growth parameters, ion contents, MDA content, proline, soluble proteins as well as SDS page protein profile were studied in Vicia faba Giza 429. A sharp reduction was found in fresh and dry mass of shoots and roots with increasing salinity. Trichoderma treatments promoted the growth criteria as compared with corresponding salinized plants. The water content and leaf area exhibited a marked decrease with increasing salinity. Trichoderma treatments induced a progressive increase in both parameters. Both proline and MDA contents were increased progressively as the salinity rose in the soil. Trichoderma treatments considerably retarded the accumulation of both parameters in shoots and roots. Both Na+ and K+ concentration increased in both organs by enhancing salinity levels. The treatment with Trichoderma harzianum enhanced the accumulation of both ions. Exposure of plants to different concentrations of salinity, or others treated with Trichoderma harzianum produced marked changes in their protein pattern. Three types of alterations were observed: the synthesis of certain proteins declined significantly, specific synthesis of certain other proteins were markedly observed and synthesis of a set specific protein was induced de novo in plant treated with Trichoderma harzianum.

  2. Evaluation of hepatocellular carcinoma tumor vascularity using contrast-enhanced ultrasonography as a predictor for local recurrence following radiofrequency ablation

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Tomohiro [Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024 (Japan); Numata, Kazushi, E-mail: kz-numa@urahp.yokohama-cu.ac.jp [Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024 (Japan); Hao, Yoshiteru; Doba, Nobutaka; Hara, Koji [Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024 (Japan); Kondo, Masaaki [Division of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 (Japan); Tanaka, Katsuaki [Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024 (Japan); Maeda, Shin [Division of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 (Japan)

    2017-04-15

    Purpose: The purpose of this study was to evaluate whether the hypervascularity of hepatocellular carcinomas (HCCs) on contrast-enhanced ultrasonography (CEUS) prior to radiofrequency ablation (RFA) is a significant risk factor for local recurrence after RFA. Materials and methods: Institutional review board approval and informed consent were obtained. Overall, 208 patients (mean age, 71.7 years; range, 50–87 years; 137 men, 71 women) with 282 HCCs treated with RFA were analyzed retrospectively. The mean maximum tumor diameter was 15.7 mm. We compared the abilities of CEUS and contrast-enhanced computed tomography (CECT) to detect hypervascularity in HCCs. We then classified the HCCs into two groups according to the arterial-phase CEUS findings: a “hypervascular group” with whole or partial hypervascular areas within the lesions compared with the surrounding liver parenchyma, and a “non-hypervascular group” with isovascular or hypovascular areas within the lesions. We assessed the cumulative rate of local recurrence after RFA, and we also evaluated the risk factors for local recurrence using a univariate analysis. Results: The detection rate for hypervascular HCCs was significantly higher using CEUS (78%, 221/282) than that using CECT (66%, 186/282) (P < 0.001). Using the CEUS findings, the cumulative rate of local recurrence was significantly higher in the hypervascular group (41.2%, 56/221) than in the non-hypervascular group (18.4%, 6/61) (P = 0.007). A univariate analysis revealed that hypervascularity on CEUS was an independent risk factor for local recurrence (P = 0.010). Conclusion: Hypervascularity in HCCs as observed using CEUS is a significant risk factor for local recurrence after RFA.

  3. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Rashad; Nizami, Abdul-Sattar; Murphy, Jerry D.; Kiely, Gerard [Department of Civil and Environmental Engineering, University College Cork (Ireland); Poulsen, Tjalfe Gorm [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University (Denmark); Asam, Zaki-ul-Zaman [Department of Civil Engineering, National University of Ireland Galway (Ireland)

    2010-12-15

    The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre-treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 C-150 C). Results showed that thermo-chemical pretreatment has high effect on biogas and methane potential in the temperature range (25-100 C). Maximum enhancement is observed at 70 C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 C), with maximum enhancement at 100 C having 28% biogas and 25% methane increase. (author)

  4. Efeitos da termotolerância celular nas lesões por radiofrequência no miocárdio de ratos

    OpenAIRE

    Santos, Luis Felipe Neves dos [UNIFESP

    2012-01-01

    The delayed effects of radiofrequency (RF) seem to be related to the extent of the lesion. We evaluated the effects of thermotolerance on the dimensions and remodeling of RF lesions in the rat myocardium and whether RF promotes apoptosis in the region surrounding acute ablation lesions in a rat model. Methods: Two groups were evaluated: treated (TG, n=22), subjected to thermal shock (a bath at 42oC for 10 min.), and control (CG, n=22, bath at a 37ºC for 10 min.). After 48 hours, an RF lesion ...

  5. Asian EUS Cup-05: Successful management of peripancreatic tumors by endoscopic ultrasound-guided radiofrequency ablation

    OpenAIRE

    Oh, Dongwook; Seo, Dong Wan

    2017-01-01

    Background: Endoscopic ultrasound-guided radiofrequency ablation (EUS-RFA) could be used as an effective alternative treatment for peripancreatic tumor. Herein, we reported a case of adrenal adenoma which was treated by EUS-RFA. Case Report: A 38-year-old woman presented with ?moon face,? ?buffalo hump,? and weight gain of 9 kg in 12 months. Initial contrast-enhanced abdominal computed tomography showed a 2.8 cm left adrenal mass, and the patient was diagnosed with Cushing?s syndrome due to l...

  6. High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52

    Science.gov (United States)

    Qiu, Xuan; Wang, Hongmei; Yao, Yanchen; Duan, Yong

    2017-08-01

    Although most modern dolomites occur in hypersaline environments, the effects of elevated salinity on the microbial mediation of dolomite precipitation have not been fully evaluated. Here we report results of dolomite precipitation in association with a batch culture of Haloferax volcanii DS52, a halophilic archaeon, under various salinities (from 120‰ to 360‰) and the impact of salinity on microbe-mediated dolomite formation. The mineral phases, morphology and atomic arrangement of the precipitates were analyzed by XRD, SEM and TEM, respectively. The amount of amino acids on the archaeal cell surface was quantified by HPLC/MS. The XRD analysis indicated that disordered dolomite formed successfully with the facilitation of cells harvested from cultures with relatively high salinities (200‰ and 280‰) but was not observed in association with cells harvested from cultures with lower salinity (120‰) or the lysates of cells harvested from extremely high salinity (360‰). The TEM analysis demonstrated that the crystals from cultures with a salinity of 200‰ closely matched that of dolomite. Importantly, we found that more carboxyl groups were presented on the cell surface under high salinity conditions to resist the high osmotic pressure, which may result in the subsequent promotion of dolomite formation. Our finding suggests a link between variations in the hydro-chemical conditions and the formation of dolomite via microbial metabolic activity and enhances our understanding about the mechanism of microbially mediated dolomite formation under high salinity conditions.

  7. Enhancement of thermal neutron attenuation of nano-B4C, -BN dispersed neutron shielding polymer nanocomposites

    International Nuclear Information System (INIS)

    Kim, Jaewoo; Lee, Byung-Chul; Uhm, Young Rang; Miller, William H.

    2014-01-01

    Highlights: • Preparation of B 4 C and BN nanopowders using a simple ball milling process. • Homogeneous dispersion and strong adhesion of nano-B 4 C and -BN with polymer matrix. • Enhancement of mechanical properties of the nanocomposites compared to their micro counterparts. • Enhancement of thermal neutron attenuation of the nanocomposites. - Abstract: Nano-sized boron carbide (B 4 C) and boron nitride (BN) powder were prepared using ball milling. Micro- and milled nano-powders were melt blended with high density polyethylene (HDPE) using a polymer mixer followed by hot pressing to fabricate sheet composites. The tensile and flexural strengths of HDPE nanocomposites were ∼20% higher than their micro counterparts, while those for latter decreased compared to neat HDPE. Thermal neutrons attenuation of the prepared HDPE nanocomposites was evaluated using a monochromatic ∼0.025 eV neutron beam. Thermal neutron attenuation of the HDPE nanocomposites was greatly enhanced compared to their micro counterparts at the same B-10 areal densities. Monte Carlo n-Particles (MCNP) simulations based on the lattice structure modeling also shows the similar filler size dependent thermal neutron absorption

  8. Renal sympathetic denervation using an externally irrigated radiofrequency ablation catheter for treatment of resistant hypertension - Acute safety and short term efficacy.

    Science.gov (United States)

    Yalagudri, Sachin; Raju, Narayana; Das, Bharati; Daware, Ashwin; Maiya, Shreesha; Jothiraj, Kannan; Ravikishore, A G

    2015-01-01

    This study was conducted to assess the acute safety and short term efficacy of renal sympathetic denervation (RSDN) using solid tip radiofrequency ablation (RFA) catheter and saline irrigation through the renal guiding catheter to achieve effective denervation. RSDN using a specialized solid-tip RFA catheter has recently been demonstrated to safely reduce systemic blood pressure in patients with refractory hypertension, the limitation being inadequate power delivery in renal arteries. So, we used solid-tip RFA catheter along with saline irrigation for RSDN. Nine patients with resistant hypertension underwent CT and conventional renal angiography, followed by bilateral or unilateral RSDN using 5F RFA catheter with saline irrigation through renal guiding catheter. Repeat renal angiography was performed at the end of the procedure. In all patients, pre- and post-procedure serum creatinine was measured. Over 1-month period: 1) the systolic/diastolic blood pressure decreased by -57 ± 20/-25 ± 7.5 mm Hg; 2) all patients experienced a decrease in systolic blood pressure of at least -36 mm Hg (range 36-98 mm Hg); 3) there was no evidence of renal artery injury immediate post-procedure. There was no significant change in serum creatinine level. This data shows the acute procedural safety and short term efficacy of RSDN using modified externally irrigated solid tip RFA catheter. Copyright © 2015 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  9. Decadal trends in deep ocean salinity and regional effects on steric sea level

    Science.gov (United States)

    Purkey, S. G.; Llovel, W.

    2017-12-01

    We present deep (below 2000 m) and abyssal (below 4000 m) global ocean salinity trends from the 1990s through the 2010s and assess the role of deep salinity in local and global sea level budgets. Deep salinity trends are assessed using all deep basins with available full-depth, high-quality hydrographic section data that have been occupied two or more times since the 1980s through either the World Ocean Circulation Experiment (WOCE) Hydrographic Program or the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). All salinity data is calibrated to standard seawater and any intercruise offsets applied. While the global mean deep halosteric contribution to sea level rise is close to zero (-0.017 +/- 0.023 mm/yr below 4000 m), there is a large regional variability with the southern deep basins becoming fresher and northern deep basins becoming more saline. This meridional gradient in the deep salinity trend reflects different mechanisms driving the deep salinity variability. The deep Southern Ocean is freshening owing to a recent increased flux of freshwater to the deep ocean. Outside of the Southern Ocean, the deep salinity and temperature changes are tied to isopycnal heave associated with a falling of deep isopycnals in recent decades. Therefore, regions of the ocean with a deep salinity minimum are experiencing both a halosteric contraction with a thermosteric expansion. While the thermosteric expansion is larger in most cases, in some regions the halosteric compensates for as much as 50% of the deep thermal expansion, making a significant contribution to local sea level rise budgets.

  10. Deep pulse fractional CO2 laser combined with a radiofrequency system: results of a case series.

    Science.gov (United States)

    Cannarozzo, Giovanni; Sannino, Mario; Tamburi, Federica; Chiricozzi, Andrea; Saraceno, Rosita; Morini, Cristiano; Nisticò, Steven

    2014-07-01

    The purpose of this study was evaluation of the safety and efficacy of this new combined technology that adds deep ablation to thermal stimulation. Minimally ablative or subablative lasers, such as fractional CO2 lasers, have been developed in an attempt to achieve the same clinical results observed with traditional ablative lasers, but with fewer side effects. Despite being an ablative laser, the system used in this study is able to produce a fractional supply of the beam of light. Fractional ablation of skin is performed through the development of microscopic vertical columns surrounded by spared areas of epidermis and dermis, ensuring rapid wound healing and minimum down time. Simultaneous synchronized delivery of a radiofrequency (RF) current to the deeper layers of the skin completes the therapeutic scenario, ensuring an effective skin tightening effect over the entire treated area. Nine adult patients were treated for wrinkles and acne scars using this new laser technology. An independent observer evaluated the improvement using a five point scale. All patients had good results in terms of improvement of skin texture, with mild and transitory side effects. This novel combined system produced improvement in wrinkles and acne scars, with progressive enhancement of skin tone and elasticity.

  11. Radiofrequency Ablation Effectively Treated Focal Recurrence of Mesothelioma.

    Science.gov (United States)

    Nakamura, Akifumi; Takuwa, Teruhisa; Hashimoto, Masaki; Kondo, Nobuyuki; Takaki, Haruyuki; Fujiwara, Masayuki; Yamakado, Koichiro; Hasegawa, Seiki

    2018-02-01

    A 55-year-old man with malignant pleural mesothelioma underwent multimodality treatment comprising induction chemotherapy followed by extrapleural pneumonectomy and radiation therapy. After 2.5 years, focal recurrence occurred, with computed tomography revealing a tumor in the left cardiophrenic angle. Surgery was considered a problem for the patient because of the previous extrapleural pneumonectomy and difficult tumor location. Radiofrequency ablation was thus performed; the course was uneventful, and there was no recurrence. Radiofrequency ablation should be considered an option to treat recurrence of malignant pleural mesothelioma. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  12. Endoscopic ultrasound-guided radiofrequency ablation of the pancreas

    DEFF Research Database (Denmark)

    Silviu, Ungureanu Bogdan; Daniel, Pirici; Claudiu, Mărgăritescu

    2015-01-01

    ultrasound (EUS)-guided radiofrequency ablation (RFA) probe through a 19G needle in order to achieve a desirable necrosis area in the pancreas. Radiofrequency ablation of the head of the pancreas was performed on 10 Yorkshire pigs with a weight between 25 kg and 35 kg and a length of 40-70 cm. Using an EUS...... analysis revealed increased values of amylase, alkaline phosphatase, and gamma-glutamyl transpeptidase on the 3rd day but a decrease on the 5th day. After necropsy and isolation of the pancreas, the ablated area was easily found, describing a solid necrosis. The pathological examination revealed...

  13. Salinity controls on plant transpiration and soil water balance

    Science.gov (United States)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  14. Microwave thermal remediation of crude oil contaminated soil enhanced by carbon fiber.

    Science.gov (United States)

    Li, Dawei; Zhang, Yaobin; Quan, Xie; Zhao, Yazhi

    2009-01-01

    Thermal remediation of the soil contaminated with crude oil using microwave heating enhanced by carbon fiber (CF) was explored. The contaminated soil was treated with 2.45 GHz microwave, and CF was added to improve the conversion of microwave energy into thermal energy to heat the soil. During microwave heating, the oil contaminant was removed from the soil matrix and recovered by a condensation system of ice-salt bath. The experimental results indicated that CF could efficiently enhance the microwave heating of soil even with relatively low-dose. With 0.1 wt.% CF, the soil could be heated to approximately 700 degrees C within 4 min using 800 W of microwave irradiation. Correspondingly, the contaminated soil could be highly cleaned up in a short time. Investigation of oil recovery showed that, during the remediation process, oil contaminant in the soil could be efficiently recovered without causing significant secondary pollution.

  15. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Science.gov (United States)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2011-01-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  16. Absolute Salinity, "Density Salinity" and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Science.gov (United States)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2010-08-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. The Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  17. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    Science.gov (United States)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  18. Thermally enhanced photoluminescence for energy harvesting: from fundamentals to engineering optimization

    Science.gov (United States)

    Kruger, N.; Kurtulik, M.; Revivo, N.; Manor, A.; Sabapathy, T.; Rotschild, C.

    2018-05-01

    The radiance of thermal emission, as described by Planck’s law, depends only on the emissivity and temperature of a body, and increases monotonically with the temperature rise at any emitted wavelength. Non-thermal radiation, such as photoluminescence (PL), is a fundamental light–matter interaction that conventionally involves the absorption of an energetic photon, thermalization, and the emission of a redshifted photon. Such a quantum process is governed by rate conservation, which is contingent on the quantum efficiency. In the past, the role of rate conservation for significant thermal excitation had not been studied. Recently, we presented the theory and an experimental demonstration that showed, in contrast to thermal emission, that the PL rate is conserved when the temperature increases while each photon is blueshifted. A further rise in temperature leads to an abrupt transition to thermal emission where the photon rate increases sharply. We also demonstrated how such thermally enhanced PL (TEPL) generates orders of magnitude more energetic photons than thermal emission at similar temperatures. These findings show that TEPL is an ideal optical heat pump that can harvest thermal losses in photovoltaics with a maximal theoretical efficiency of 70%, and practical concepts potentially reaching 45% efficiency. Here we move the TEPL concept onto the engineering level and present Cr:Nd:YAG as device grade PL material, absorbing solar radiation up to 1 μm wavelength and heated by thermalization of energetic photons. Its blueshifted emission, which can match GaAs cells, is 20% of the absorbed power. Based on a detailed balance simulation, such a material coupled with proper photonic management can reach 34% power conversion efficiency. These results raise confidence in the potential of TEPL becoming a disruptive technology in photovoltaics.

  19. Vane coupling rings: a simple technique for stabilizing a four-vane radiofrequency quadrupole structure

    International Nuclear Information System (INIS)

    Howard, D.; Lancaster, H.

    1982-11-01

    The benefits of stabilized accelerating structures, with regard to the manufacture and operation, have been well documented. The four-vane radiofrequency quadrupoles (RFQ) presently being designed and constructed in many laboratories are not stabilized because of the weak electromagnetic coupling between the quadrant resonators. This paper presents a simple technique developed at the Lawrence Berkeley Laboratory using vane coupling rings (VCR's) which azimuthally stabilize the RFQ structure and greatly enhance its use as a practical accelerator. In particular, the VCR's: completely eliminate the dipole modes in the frequency range of interest; provide adequate quadrant balance with an initial precision mechanical alignment of the vanes; and enhance axial balance and simplify end tuners. Experimental verification tests on a scale model are discussed

  20. Vane coupling rings: a simple technique for stabilizing a four-vane radiofrequency quadrupole structure

    International Nuclear Information System (INIS)

    Howard, D.; Lancaster, H.

    1983-01-01

    The benefits of stabilized accelerating structures, with regard to the manufacture and operation, have been well documented. The four-vane radiofrequency quadrupoles (RFQ) presently being designed and constructed in many laboratories are not stabilized because of the weak electromagnetic coupling between the quadrant resonators. This paper presents a simple technique developed at the Lawrence Berkeley Laboratory using vane coupling rings (VCR's) which azimuthally stabilize the RFQ structure and greatly enhance its use as a practical accelerator. In particular, the VCR's: Completely eliminate the dipole modes in the frequency range of interest; Provide adequate quadrant balance with an initial precision mechanical alignment of the vanes; Enhance axial balance and simplify end tuners. Experimental verification tests on a scale model will be discussed

  1. The structural modification of cassava starch using a saline water pretreatment

    Directory of Open Access Journals (Sweden)

    Hanny Frans SANGIAN

    2018-04-01

    Full Text Available Abstract The cassava has been modified successfully by using the saline water, which was abundantly available on the planet. The biomass was submerged in saline waters that salt concentrations were altered at 0, 3.5 percent (seawater and 10 percent (w/w and were kept 5 days. After recovery by washing steps, the treated solids were characterized by using XRD (X-ray diffraction , FTIR (Fourier transform infra-red, and SEM (Scanning electron microscopic. The results showed that the XRD pattern of saline water pretreatment decreased significantly. The biggest decrease of X-ray intensity occurred at around 18o. Meanwhile, the fingerprint of FTIR revealed the transmittance intensity of infra-red ray of saline water treated solid inclined for all wave constant numbers, suggesting that many hydrogen bonds were disconnected. Those findings also were enhanced by SEM pictures that showed the change of surface morphology of treated biomass. It was indicative that cassava structure was modified becoming more textured after employing saline water pretreatment. This work is an innovative finding to gradually substitute commercial ionic liquids that are very expensive with saline water for biomass pretreatment.

  2. Feasibility of Noninvasive Temperature Assessment During Radiofrequency Liver Ablation on Computed Tomography

    NARCIS (Netherlands)

    Pandeya, Ganga D.; Greuter, Marcel J. W.; de Jong, Koert P.; Schmidt, Bernhard; Flohr, Thomas; Oudkerk, Matthijs

    2011-01-01

    Purpose: The purpose of this study was to assess the feasibility of noninvasive thermometry using high-resolution computer tomography (CT) for the monitoring of bovine liver during radiofrequency (RF) ablation. Methods: Radiofrequency probes were used to ablate bovine livers from 20 degrees C to 98

  3. Management of refractory trigeminal neuralgia using extended duration pulsed radiofrequency application.

    Science.gov (United States)

    Thapa, Deepak; Ahuja, Vanita; Dass, Christopher; Verma, Parul

    2015-01-01

    Trigeminal neuralgia (TN) produces incapacitating facial pain that reduces quality of life in patients. Thermal radiofrequency (RF) ablation of gasserian ganglion (GG) is associated with masseter weakness and unpleasant sensations along the distribution of the ablated nerve. Pulsed radiofrequency (PRF) of GG has minimal side effects but literature is inconclusive regarding its benefit in refractory TN. Increasing the duration of PRF application to 6 minutes in TN produced encouraging results. PRF application to the saphenous nerve for 8 minutes reported improved pain relief and patient satisfaction. We report successful management of two patients of classic TN, which were refractory to medical management and interventional nerve blocks. The lesion site were confirmed with motor and sensory stimulation through a 22 G, 10 cm RF needle with 5 mm active tip. Both the patients received four cycles of PRF at 42 °C with each cycle of 120 seconds (8 minutes). The visual analogue scale (VAS) in case 1 reduced from pre-block score of 80 to score 10 post-block, while in case 2 the VAS reduced from pre-block score of 85 to score 15 post-block. During follow up both the patients are now pain free with minimal dose of carbamazepine at 12 and 6 months respectively. We used PRF for longer duration (8 minutes) in these patients, which resulted in improved VAS and WHOQOL-BREF score in these patients. PRF of mandibular division of GG for extended duration provided long-term effective pain relief and quality of life in patients of refractory classic TN.

  4. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    Energy Technology Data Exchange (ETDEWEB)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  5. Effect of prior hyperthermia on subsequent thermal enhancement of radiation damage in mouse intestine

    International Nuclear Information System (INIS)

    Marigold, J.C.L.; Hume, S.P.

    1982-01-01

    Hyperthermia given in conjunction with X-rays results in a greater level of radiation injury than following X-rays alone, giving a thermal enhancement ratio (TER). The effect of prior hyperthermia ('priming') on TER was studied in the small intestine of mouse by giving 42.0 deg C for 1 hour at various times before the combined heat and X-ray treatments. Radiation damage was assessed by measuring crypt survival 4 days after radiation. TER was reduced when 'priming' hyperthermia was given 24-48 hours before the combined treatments. The reduction in effectiveness of the second heat treatment corresponded to a reduction in hyperthermal temperature of approximately 0.5 deg C, a value similar to that previously reported for induced resistance to heat given alone ('thermotolerance') (Hume and Marigold 1980). However, the time courses for development and decay of the TER response were much longer than those for 'thermotolerance', suggesting that different mechanisms are involved in thermal damage following heat alone and thermal enhancement of radiation damage

  6. Ophthalmic branch radiofrequency thermocoagulation for atypical trigeminal neuralgia:a case report.

    Science.gov (United States)

    Du, Shibin; Ma, Xiaoliang; Li, Xiaoqin; Yuan, Hongjie

    2015-01-01

    Trigeminal neuralgia is an intense neuralgia involving facial areas supplied by trigeminal nerve. The pain is characterized by sudden onset, short persistence, sharp or lancinating. Trigeminal neuralgia commonly affects frontal areas, infraorbital or paranasal areas, mandibular areas and teeth. While Trigeminal neuralgia affecting merely the upper eyelid is rare. Here we report a case of atypical Trigeminal neuralgia confined to the upper eyelid. The patient was pain free during the follow-up period of 6 months after unusual ophthalmic branch radiofrequency thermocoagulation. A 55-year-old female patient was diagnosed as primary trigeminal neuralgia involving the right upper eyelid. As the pain could not be controlled by drug therapy, peripheral nerve branch radiofrequency thermocoagulation was recommended. A combination of infratrochlear, supratrochlear and lacrimal radiofrequency thermocoagulation was implemented in this case. The point where the bridge of the nose abuts the supraorbital ridge and the point slightly above the lateral canthus along outer border of the orbit were selected respectively as the puncture sites. After positive diagnostic test, radiofrequency thermocoagulation of the above-mentioned nerve branches was performed respectively. The patient was pain free immediately after the treatment and during the follow-up period of 6 months. Trigeminal neuralgia is a common severe and chronic facial neuralgia which requires accurate diagnosis and effective therapy. With typical clinical symptoms, normal neurological signs, normal CT and MRI findings, the patient was diagnosed as classic trigeminal neuralgia. As the patient was drug resistant, some invasive treatments were considered. Peripheral branch neurolysis was chosen for its minimal invasiveness, convenience, low risk and not affecting further invasive treatments. According to the anatomic data and the diagnostic test results, infratrochlear, supratrochlear and lacrimal nerve were responsible

  7. Sphenopalatine ganglion: block, radiofrequency ablation and neurostimulation - a systematic review.

    Science.gov (United States)

    Ho, Kwo Wei David; Przkora, Rene; Kumar, Sanjeev

    2017-12-28

    Sphenopalatine ganglion is the largest collection of neurons in the calvarium outside of the brain. Over the past century, it has been a target for interventional treatment of head and facial pain due to its ease of access. Block, radiofrequency ablation, and neurostimulation have all been applied to treat a myriad of painful syndromes. Despite the routine use of these interventions, the literature supporting their use has not been systematically summarized. This systematic review aims to collect and summarize the level of evidence supporting the use of sphenopalatine ganglion block, radiofrequency ablation and neurostimulation. Medline, Google Scholar, and the Cochrane Central Register of Controlled Trials (CENTRAL) databases were reviewed for studies on sphenopalatine ganglion block, radiofrequency ablation and neurostimulation. Studies included in this review were compiled and analyzed for their treated medical conditions, study design, outcomes and procedural details. Studies were graded using Oxford Center for Evidence-Based Medicine for level of evidence. Based on the level of evidence, grades of recommendations are provided for each intervention and its associated medical conditions. Eighty-three publications were included in this review, of which 60 were studies on sphenopalatine ganglion block, 15 were on radiofrequency ablation, and 8 were on neurostimulation. Of all the studies, 23 have evidence level above case series. Of the 23 studies, 19 were on sphenopalatine ganglion block, 1 study on radiofrequency ablation, and 3 studies on neurostimulation. The rest of the available literature was case reports and case series. The strongest evidence lies in using sphenopalatine ganglion block, radiofrequency ablation and neurostimulation for cluster headache. Sphenopalatine ganglion block also has evidence in treating trigeminal neuralgia, migraines, reducing the needs of analgesics after endoscopic sinus surgery and reducing pain associated with nasal packing

  8. Effect of temperature, salinity, and food availability on the growth and food-conversion efficiency of postlarval pinfish

    International Nuclear Information System (INIS)

    Peters, D.S.; Boyd, M.T.; DeVane, J.C. Jr.

    1976-01-01

    Growth rate, feeding rate, and food-conversion efficiency of postlarval pinfish, Lagodon rhomboides, were measured under various combinations of temperature, salinity, and food availability. Data were analyzed by multiple regression and presented as response surfaces. Temperature accounted for most of the variation in maximum feeding rate. Temperature and feeding rate accounted for over 90 percent of the observed variation in growth rate. Salinity effects were more important in predicting growth efficiency than in predicting growth rate. Because a feeding--temperature interaction affects growth and because the effect of thermal effluents on food availability is unknown, it is impossible at this time to predict whether thermal alteration of the environment would increase or decrease growth of pinfish

  9. Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation.

    Directory of Open Access Journals (Sweden)

    Yi-Da Liu

    Full Text Available Radiofrequency ablation (RFA has been widely used as an alternative treatment modality for liver tumors. Monitoring the temperature distribution in the tissue during RFA is required to assess the thermal dosage. Ultrasound temperature imaging based on the detection of echo time shifts has received the most attention in the past decade. The coefficient k, connecting the temperature change and the echo time shift, is a medium-dependent parameter used to describe the confounding effects of changes in the speed of sound and thermal expansion as temperature increases. The current algorithm of temperature estimate based on echo time shift detection typically uses a constant k, resulting in estimation errors when ablation temperatures are higher than 50°C. This study proposes an adaptive-k algorithm that enables the automatic adjustment of the coefficient k during ultrasound temperature monitoring of RFA. To verify the proposed algorithm, RFA experiments on in vitro porcine liver samples (total n = 15 were performed using ablation powers of 10, 15, and 20 W. During RFA, a clinical ultrasound system equipped with a 7.5-MHz linear transducer was used to collect backscattered signals for ultrasound temperature imaging using the constant- and adaptive-k algorithms. Concurrently, an infrared imaging system and thermocouples were used to measure surface temperature distribution of the sample and internal ablation temperatures for comparisons with ultrasound estimates. Experimental results demonstrated that the proposed adaptive-k method improved the performance in visualizing the temperature distribution. In particular, the estimation errors were also reduced even when the temperature of the tissue is higher than 50°C. The proposed adaptive-k ultrasound temperature imaging strategy has potential to serve as a thermal dosage evaluation tool for monitoring high-temperature RFA.

  10. Cooled radiofrequency denervation for treatment of sacroiliac joint pain: two-year results from 20 cases

    Science.gov (United States)

    Ho, Kok-Yuen; Hadi, Mohamed Abdul; Pasutharnchat, Koravee; Tan, Kian-Hian

    2013-01-01

    Background Sacroiliac joint pain is a common cause of chronic low back pain. Different techniques for radiofrequency denervation of the sacroiliac joint have been used to treat this condition. However, results have been inconsistent because the variable sensory supply to the sacroiliac joint is difficult to disrupt completely using conventional radiofrequency. Cooled radiofrequency is a novel technique that uses internally cooled radiofrequency probes to enlarge lesion size, thereby increasing the chance of completely denervating the sacroiliac joint. The objective of this study was to evaluate the efficacy of cooled radiofrequency denervation using the SInergy™ cooled radiofrequency system for sacroiliac joint pain. Methods The charts of 20 patients with chronic sacroiliac joint pain who had undergone denervation using the SInergy™ cooled radiofrequency system were reviewed at two years following the procedure. Outcome measures included the Numeric Rating Scale for pain intensity, Patient Global Impression of Change, and Global Perceived Effect for patient satisfaction. Results Fifteen of 20 patients showed a significant reduction in pain (a decrease of at least three points on the Numeric Rating Scale). Mean Numeric Rating Scale for pain decreased from 7.4 ± 1.4 to 3.1 ± 2.5, mean Patient Global Impression of Change was “improved” (1.4 ± 1.5), and Global Perceived Effect was reported to be positive in 16 patients at two years following the procedure. Conclusion Cooled radiofrequency denervation showed long-term efficacy for up to two years in the treatment of sacroiliac joint pain. PMID:23869175

  11. Thermal epiphysiodesis Made with RFA. An Alternative Treatment for Leg Length Discrepancy

    DEFF Research Database (Denmark)

    Shiguetomi Medina, Juan Manuel

    of staples or tension devices, and destruction with curettes or drills. Complications such as breaching of the cortex, damage to the metaphysis, and vascular or nerve injury have potentially serious consequences. Therefore, there is a need for a reliable and precise procedure which overcomes...... the complications. Radiofrequency ablation involves the application of energy in the radio wave frequency resulting in local thermal coagulative necrosis. It has been shown to be a reliable technique for creating thermally induced coagulation necrosis. The experience with this technique has been reported...

  12. Combination acetabular radiofrequency ablation and cementoplasty using a navigational radiofrequency ablation device and ultrahigh viscosity cement: technical note.

    Science.gov (United States)

    Wallace, Adam N; Huang, Ambrose J; Vaswani, Devin; Chang, Randy O; Jennings, Jack W

    2016-03-01

    Percutaneous radiofrequency ablation and cementoplasty is an alternative palliative therapy for painful metastases involving axial load-bearing bones. This technical report describes the use of a navigational radiofrequency probe to ablate acetabular metastases from an anterior approach followed by instillation of ultrahigh viscosity cement under CT-fluoroscopic guidance. The tumor ablation databases of two institutions were retrospectively reviewed to identify patients who underwent combination acetabular radiofrequency ablation and cementoplasty using the STAR Tumor Ablation and StabiliT Vertebral Augmentation Systems (DFINE; San Jose, CA). Pre-procedure acetabular tumor volume was measured on cross-sectional imaging. Pre- and post-procedure pain scores were measured using the Numeric Rating Scale (10-point scale) and compared. Partial pain improvement was categorically defined as ≥ 2-point pain score reduction. Patients were evaluated for evidence of immediate complications. Electronic medical records were reviewed for evidence of delayed complications. During the study period, 12 patients with acetabular metastases were treated. The median tumor volume was 54.3 mL (range, 28.3-109.8 mL). Pre- and post-procedure pain scores were obtained from 92% (11/12) of the cohort. The median pre-procedure pain score was 8 (range, 3-10). Post-procedure pain scores were obtained 7 days (82%; 9/11), 11 days (9.1%; 1/11) or 21 days (9.1%; 1/11) after treatment. The median post-treatment pain score was 3 (range, 1-8), a statistically significant difference compared with pre-treatment (P = 0.002). Categorically, 73% (8/11) of patients reported partial pain relief after treatment. No immediate symptomatic complications occurred. Three patients (25%; 3/12) were discharged to hospice within 1 week of treatment. No delayed complications occurred in the remaining 75% (9/12) of patients during median clinical follow-up of 62 days (range, 14-178 days). Palliative percutaneous

  13. Warm and Saline Events Embedded in the Meridional Circulation of the Northern North Atlantic

    Science.gov (United States)

    Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.

    2011-01-01

    Ocean state estimates from 1958 to 2005 from the Simple Ocean Assimilation System (SODA) system are analyzed to understand circulation between subtropical and subpolar Atlantic and their connection with atmospheric forcing. This analysis shows three periods (1960s, around 1980, and 2000s) with enhanced warm, saline waters reaching high latitudes, alternating with freshwater events originating at high latitudes. It complements surface drifter and altimetry data showing the subtropical -subpolar exchange leading to a significant temperature and salinity increase in the northeast Atlantic after 2001. The warm water limb of the Atlantic meridional overturning cell represented by SODA expanded in density/salinity space during these warm events. Tracer simulations using SODA velocities also show decadal variation of the Gulf Stream waters reaching the subpolar gyre and Nordic seas. The negative phase of the North Atlantic Oscillation index, usually invoked in such variability, fails to predict the warming and salinization in the early 2000s, with salinities not seen since the 1960s. Wind stress curl variability provided a linkage to this subtropical/subpolar gyre exchange as illustrated using an idealized two ]layer circulation model. The ocean response to the modulation of the climatological wind stress curl pattern was found to be such that the northward penetration of subtropical tracers is enhanced when amplitude of the wind stress curl is weaker than normal. In this case both the subtropical and subpolar gyres weaken and the subpolar density surfaces relax; hence, the polar front moves westward, opening an enhanced northward access of the subtropical waters in the eastern boundary current.

  14. Assessing factors affecting the thermal properties of a passive thermal refuge using three-dimensional hydrodynamic flow and transport modeling

    Science.gov (United States)

    Decker, Jeremy D.; Swain, Eric D.; Stith, Bradley M.; Langtimm, Catherine A.

    2013-01-01

    Everglades restoration activities may cause changes to temperature and salinity stratification at the Port of the Islands (POI) marina, which could affect its suitability as a cold weather refuge for manatees. To better understand how the Picayune Strand Restoration Project (PSRP) may alter this important resource in Collier County in southwestern Florida, the USGS has developed a three-dimensional hydrodynamic model for the marina and canal system at POI. Empirical data suggest that manatees aggregate at the site during winter because of thermal inversions that provide warmer water near the bottom that appears to only occur in the presence of salinity stratification. To study these phenomena, the environmental fluid dynamics code simulator was used to represent temperature and salinity transport within POI. Boundary inputs were generated using a larger two-dimensional model constructed with the flow and transport in a linked overland-aquifer density-dependent system simulator. Model results for a representative winter period match observed trends in salinity and temperature fluctuations and produce temperature inversions similar to observed values. Modified boundary conditions, representing proposed PSRP alterations, were also tested to examine the possible effect on the salinity stratification and temperature inversion within POI. Results show that during some periods, salinity stratification is reduced resulting in a subsequent reduction in temperature inversion compared with the existing conditions simulation. This may have an effect on POI’s suitability as a passive thermal refuge for manatees and other temperature-sensitive species. Additional testing was completed to determine the important physical relationships affecting POI’s suitability as a refuge.

  15. Osteoid osteoma of the spine: CT-guided monopolar radiofrequency ablation

    Energy Technology Data Exchange (ETDEWEB)

    Martel, Jose [Departamento de Diagnostico por Imagen, Fundacion Hospital Alcorcon, Alcorcon, Madrid (Spain)], E-mail: jmartel@fhalcorcon.es; Bueno, Angel [Departamento de Diagnostico por Imagen, Fundacion Hospital Alcorcon, Alcorcon, Madrid (Spain); Nieto-Morales, M Luisa [Servicio de Radiologia, Hospital Universitario de Tenerife (Spain); Ortiz, Eduardo J. [Departamento de Cirugia Ortopedica, Fundacion Hospital Alcorcon, Alcorcon, Madrid (Spain)

    2009-09-15

    CT-guided percutaneous radiofrequency ablation and laser photocoagulation have become the methods of choice for the treatment of all osteoid osteomas except those in contact with neural structures. We report 10 patients with spinal osteoid osteoma adjacent to the neural elements treated with 12 sessions of CT-guided monopolar radiofrequency ablation. The size range of the lesion was 3-14 mm (mean, 7.5 mm) and the distance between the nidus and the adjacent spinal cord or nerve root was 2-12 mm (mean, 5 mm). No intact cortex between the tumor and the spinal cord or nerve roots constituted an exclusion criterion because of a higher risk of undesirable neurotoxic effects. Patients were under general anesthesia. After location of the lesion, a 11G-bone biopsy was introduced into the nidus. The radiofrequency electrode was inserted through the biopsy needle and heated at 90 deg. C for 4 min. Primary success was obtained in eight patients. At follow-up (mean, 19.5 months; range, 6-24 months), pain persisted in two patients after 2 months. Both of them were re-treated. All patients are currently pain-free and complications were not detected. In our opinion, radiofrequency ablation can also be considered the treatment of choice for spinal osteoid osteoma.

  16. Long-wave plasma radiofrequency ablation for treatment of xanthelasma palpebrarum.

    Science.gov (United States)

    Baroni, Adone

    2018-03-01

    Xanthelasma palpebrarum is the most common type of xanthoma affecting the eyelids. It is characterized by asymptomatic soft yellowish macules, papules, or plaques over the upper and lower eyelids. Many treatments are available for management of xanthelasma palpebrarum, the most commonly used include surgical excision, ablative CO 2 or erbium lasers, nonablative Q-switched Nd:YAG laser, trichloroacetic acid peeling, and radiofrequency ablation. This study aims to evaluate the effectiveness of RF ablation in the treatment of xanthelasma palpebrarum, with D.A.S. Medical portable device (Technolux, Italia), a radiofrequency tool working with long-wave plasma energy and without anesthesia. Twenty patients, 15 female and 5 male, affected by xanthelasma palpebrarum, were enrolled for long-wave plasma radiofrequency ablation treatment. The treatment consisted of 3/4 sessions that were carried out at intervals of 30 days. Treatments were well tolerated by all patients with no adverse effects and optimal aesthetic results. The procedure is very fast and can be performed without anesthesia because of the low and tolerable pain stimulation. Long-wave plasma radiofrequency ablation is an effective option for treatment of xanthelasma palpebrarum and adds an additional tool to the increasing list of medical devices for aesthetic treatments. © 2018 Wiley Periodicals, Inc.

  17. Osteoid osteoma of the spine: CT-guided monopolar radiofrequency ablation

    International Nuclear Information System (INIS)

    Martel, Jose; Bueno, Angel; Nieto-Morales, M Luisa; Ortiz, Eduardo J.

    2009-01-01

    CT-guided percutaneous radiofrequency ablation and laser photocoagulation have become the methods of choice for the treatment of all osteoid osteomas except those in contact with neural structures. We report 10 patients with spinal osteoid osteoma adjacent to the neural elements treated with 12 sessions of CT-guided monopolar radiofrequency ablation. The size range of the lesion was 3-14 mm (mean, 7.5 mm) and the distance between the nidus and the adjacent spinal cord or nerve root was 2-12 mm (mean, 5 mm). No intact cortex between the tumor and the spinal cord or nerve roots constituted an exclusion criterion because of a higher risk of undesirable neurotoxic effects. Patients were under general anesthesia. After location of the lesion, a 11G-bone biopsy was introduced into the nidus. The radiofrequency electrode was inserted through the biopsy needle and heated at 90 deg. C for 4 min. Primary success was obtained in eight patients. At follow-up (mean, 19.5 months; range, 6-24 months), pain persisted in two patients after 2 months. Both of them were re-treated. All patients are currently pain-free and complications were not detected. In our opinion, radiofrequency ablation can also be considered the treatment of choice for spinal osteoid osteoma.

  18. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj, E-mail: pankaj@mail.nplindia.ernet.in [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Feron, Krishna [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); CSIRO Energy Technology, P. O. Box 330, Newcastle NSW 2300 (Australia)

    2014-05-12

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles.

  19. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C.; Feron, Krishna

    2014-01-01

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) and P3HT:indene-C 60 bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles

  20. Salinity variations and chemical compositions of waters in the Frio Formation, Texas Gulf Coast. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Morton, R.A.; Garrett, C.M. Jr.; Posey, J.S.; Han, J.H.; Jirik, L.A.

    1981-11-01

    Waters produced from sandstone reservoirs of the deep Frio Formation exhibit spatial variations in chemical composition that roughly coincide with the major tectonic elements (Houston and Rio Grande Embayments, San Marcos Arch) and corresponding depositional systems (Houston and Norias deltas, Greta-Carancahua barrier/strandplain system) that were respectively active along the upper, lower, and middle Texas Coast during Frio deposition. Within an area, salinities are usually depth dependent, and primary trends closely correspond to pore pressure gradients and thermal gradients. Where data are available (mainly in Brazoria County) the increases in TDS and calcium with depth coincide with the zone of albitization, smectite-illite transition, and calcite decrease in shales. Waters have fairly uniform salinities when produced from the same sandstone reservoir within a fault block or adjacent fault blocks with minor displacement. In contrast, stratigraphically equivalent sandstones separated by faults with large displacement usually yield waters with substantially different salinities owing to the markedly different thermal and pressure gradients across the faults that act as barriers to fluid movement.

  1. Cadmium tolerance and phytoremediation potential of acacia (Acacia nilotica L.) under salinity stress.

    Science.gov (United States)

    Shabir, Rahat; Abbas, Ghulam; Saqib, Muhammad; Shahid, Muhammad; Shah, Ghulam Mustafa; Akram, Muhammad; Niazi, Nabeel Khan; Naeem, Muhammad Asif; Hussain, Munawar; Ashraf, Farah

    2018-06-07

    In this study, we explored the effect of salinity on cadmium (Cd) tolerance and phytoremediation potential of Acacia nilotica. Two-month-old uniform plants of A. nilotica were grown in pots contaminated with various levels of Cd (0, 5, 10, and 15 mg kg -1 ), NaCl (0%, 0.5%, 1.0% (hereafter referred as salinity), and all possible combinations of Cd + salinity for a period of six months. Results showed that shoot and root growth, biomass, tissue water content and chlorophyll (chl a, chl b, and total chl a+b) contents decreased more in response to salinity and combination of Cd + salinity compared to Cd alone. Shoot and root K concentrations significantly decreased with increasing soil Cd levels, whereas Na and Cl concentrations were not affected significantly. Shoot and root Cd concentrations, bioconcentration factor (BCF) and translocation factor (TF) increased with increasing soil Cd and Cd + salinity levels. At low level of salinity (0.5%), shoot and root Cd uptake enhanced, while it decreased at high level of salinity (1.0%). Due to Cd tolerance, high shoot biomass and shoot Cd uptake, this tree species has some potential for phytoremediation of Cd from the metal contaminated saline and nonsaline soils.

  2. 6-Hydroxydopamine and radiofrequency lesions of the lateral entorhinal cortex facilitate an operant appetitive conditioning task in mice.

    Science.gov (United States)

    Gauthier, M; Soumireu-Mourat, B

    1981-07-02

    The entorhinal cortex seems heterogeneous as dopaminergic terminals are present only in the anterior part of the lateral entorhinal cortex. In order to clarify the interaction of this cortex with the hippocampus in memory processes, the effects of either 6-hydroxydopamine or radiofrequency bilateral lesions were compared. Both lesions enhance the retention of a Skinner task with continuous reinforcement schedule. Involvement of dopamine in memory processes is discussed.

  3. Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses.

    Science.gov (United States)

    Yu, Ying; Wu, Guangwen; Yuan, Hongmei; Cheng, Lili; Zhao, Dongsheng; Huang, Wengong; Zhang, Shuquan; Zhang, Liguo; Chen, Hongyu; Zhang, Jian; Guan, Fengzhi

    2016-05-27

    expression patterns are reported in this work. These findings will enhance our understanding of flax miRNA regulatory mechanisms under saline, alkaline, and saline-alkaline stresses and provide a foundation for future elucidation of the specific functions of these miRNAs.

  4. Metabolic Fingerprinting to Assess the Impact of Salinity on Carotenoid Content in Developing Tomato Fruits

    Directory of Open Access Journals (Sweden)

    Lieven Van Meulebroek

    2016-05-01

    Full Text Available As the presence of health-promoting substances has become a significant aspect of tomato fruit appreciation, this study investigated nutrient solution salinity as a tool to enhance carotenoid accumulation in cherry tomato fruit (Solanum lycopersicum L. cv. Juanita. Hereby, a key objective was to uncover the underlying mechanisms of carotenoid metabolism, moving away from typical black box research strategies. To this end, a greenhouse experiment with five salinity treatments (ranging from 2.0 to 5.0 decisiemens (dS m−1 was carried out and a metabolomic fingerprinting approach was applied to obtain valuable insights on the complicated interactions between salinity treatments, environmental conditions, and the plant’s genetic background. Hereby, several hundreds of metabolites were attributed a role in the plant’s salinity response (at the fruit level, whereby the overall impact turned out to be highly depending on the developmental stage. In addition, 46 of these metabolites embraced a dual significance as they were ascribed a prominent role in carotenoid metabolism as well. Based on the specific mediating actions of the retained metabolites, it could be determined that altered salinity had only marginal potential to enhance carotenoid accumulation in the concerned tomato fruit cultivar. This study invigorates the usefulness of metabolomics in modern agriculture, for instance in modeling tomato fruit quality. Moreover, the metabolome changes that were caused by the different salinity levels may enclose valuable information towards other salinity-related plant processes as well.

  5. Laparoscopic Ultrasound-Guided Radiofrequency Ablation of Uterine Fibroids

    International Nuclear Information System (INIS)

    Milic, Andrea; Asch, Murray R.; Hawrylyshyn, Peter A.; Allen, Lisa M.; Colgan, Terence J.; Kachura, John R.; Hayeems, Eran B.

    2006-01-01

    Four patients with symptomatic uterine fibroids measuring less than 6 cm underwent laparoscopic ultrasound-guided radiofrequency ablation (RFA) using multiprobe-array electrodes. Follow-up of the treated fibroids was performed with gadolinium-enhanced magnetic resonance imaging (MRI) and patients' symptoms were assessed by telephone interviews. The procedure was initially technically successful in 3 of the 4 patients and MRI studies at 1 month demonstrated complete fibroid ablation. Symptom improvement, including a decrease in menstrual bleeding and pain, was achieved in 2 patients at 3 months. At 7 months, 1 of these 2 patients experienced symptom worsening which correlated with recurrent fibroid on MRI. The third, initially technically successfully treated patient did not experience any symptom relief after the procedure and was ultimately diagnosed with adenomyosis. Our preliminary results suggest that RFA is a technically feasible treatment for symptomatic uterine fibroids in appropriately selected patients

  6. Radiofrequency energy in the arthroscopic treatment of knee chondral lesions: a systematic review.

    Science.gov (United States)

    Rocco, Papalia; Lorenzo, Diaz Balzani; Guglielmo, Torre; Michele, Paciotti; Nicola, Maffulli; Vincenzo, Denaro

    2016-03-01

    Cartilage debridement is one of the recommended procedures for the management of chondral defects. Radiofrequency probes allow to debride the cartilage, but may induce subchondral bone necrosis. Medline, Cochrane and Google Scholar were searched to identify studies on arthroscopic debridement of the articular cartilage of the knee using radiofrequency chondroplasty. The methodological quality of the studies was assessed using the Coleman methodology score (CMS). Monopolar and bipolar radiofrequency devices provide significantly better clinical outcomes, especially for patients with high-grade chondral lesions, compared with mechanical shaver only. Despite the original concerns regarding subchondral bone necrosis, low complication rates are reported. Heterogeneity in terms of type of device does not allow sound comparison of the published results. There is lack of evidence on the long-term effects of radiofrequency chondroplasty. Study methodology should be improved: the average Coleman methodology score was 56.2 out of 100. More comparative, well-designed and larger cohort trials are needed to ascertain whether radiofrequency chondroplasty offers long-term benefits over other simpler and more economical alternatives. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Enhanced Thermal Conductivity and Viscosity of Nanodiamond-Nickel Nanocomposite Nanofluids

    Science.gov (United States)

    Sundar, L. Syam; Singh, Manoj K.; Ramana, E. Venkata; Singh, Budhendra; Grácio, José; Sousa, Antonio C. M.

    2014-01-01

    We report a new type of magnetic nanofluids, which is based on a hybrid composite of nanodiamond and nickel (ND-Ni) nanoparticles. We prepared the nanoparticles by an in-situ method involving the dispersion of caboxylated nanodiamond (c-ND) nanoparticles in ethylene glycol (EG) followed by mixing of nickel chloride and, at the reaction temperature of 140°C, the use of sodium borohydrate as the reducing agent to form the ND-Ni nanoparticles. We performed their detailed surface and magnetic characterization by X-ray diffraction, micro-Raman, high-resolution transmission electron microscopy, and vibrating sample magnetometer. We prepared stable magnetic nanofluids by dispersing ND-Ni nanoparticles in a mixture of water and EG; we conducted measurements to determine the thermal conductivity and viscosity of the nanofluid with different nanoparticles loadings. The nanofluid for a 3.03% wt. of ND-Ni nanoparticles dispersed in water and EG exhibits a maximum thermal conductivity enhancement of 21% and 13%, respectively. For the same particle loading of 3.03% wt., the viscosity enhancement is 2-fold and 1.5-fold for water and EG nanofluids. This particular magnetic nanofluid, beyond its obvious usage in heat transfer equipment, may find potential applications in such diverse fields as optics and magnetic resonance imaging. PMID:24509508

  8. Salinity Trends within the Upper Layers of the Subpolar North Atlantic

    Science.gov (United States)

    Tesdal, J. E.; Abernathey, R.; Goes, J. I.; Gordon, A. L.; Haine, T. W. N.

    2017-12-01

    Examination of a range of salinity products collectively suggest widespread freshening of the North Atlantic from the mid-2000 to the present. Monthly salinity fields reveal negative trends that differ in magnitude and significance between western and eastern regions of the North Atlantic. These differences can be attributed to the large negative interannual excursions in salinity in the western subpolar gyre and the Labrador Sea, which are not apparent in the central or eastern subpolar gyre. This study demonstrates that temporal trends in salinity in the northwest (including the Labrador Sea) are subject to mechanisms that are distinct from those responsible for the salinity trends in central and eastern North Atlantic. In the western subpolar gyre a negative correlation between near surface salinity and the circulation strength of the subpolar gyre suggests that negative salinity anomalies are connected to an intensification of the subpolar gyre, which is causing increased flux of freshwater from the East Greenland Current and subsequent transport into the Labrador Sea during the melting season. Analyses of sea surface wind fields suggest that the strength of the subpolar gyre is linked to the North Atlantic Oscillation and Arctic Oscillation-driven changes in wind stress curl in the eastern subpolar gyre. If this trend of decreasing salinity continues, it has the potential to enhance water column stratification, reduce vertical fluxes of nutrients and cause a decline in biological production and carbon export in the North Atlantic Ocean.

  9. NON-INVASIVE RADIOFREQUENCY ABLATION OF CANCER TARGETED BY GOLD NANOPARTICLES

    Science.gov (United States)

    Cardinal, Jon; Klune, John Robert; Chory, Eamon; Jeyabalan, Geetha; Kanzius, John S.; Nalesnik, Michael; Geller, David A.

    2008-01-01

    Introduction Current radiofrequency ablation (RFA) techniques require invasive needle placement and are limited by accuracy of targeting. The purpose of this study was to test a novel non-invasive radiowave machine that uses RF energy to thermally destroy tissue. Gold nanoparticles were designed and produced to facilitate tissue heating by the radiowaves. Methods A solid state radiowave machine consisting of a power generator and transmitting/receiving couplers which transmit radiowaves at 13.56 MHz was used. Gold nanoparticles were produced by citrate reduction and exposed to the RF field either in solutions testing or after incubation with HepG2 cells. A rat hepatoma model using JM-1 cells and Fisher rats was employed using direct injection of nanoparticles into the tumor to focus the radiowaves for select heating. Temperatures were measured using a fiber-optic thermometer for real-time data. Results Solutions containing gold nanoparticles heated in a time- and power-dependent manner. HepG2 liver cancer cells cultured in the presence of gold nanoparticles achieved adequate heating to cause cell death upon exposure to the RF field with no cytotoxicity attributable to the gold nanoparticles themselves. In vivo rat exposures at 35W using gold nanoparticles for tissue injection resulted in significant temperature increases and thermal injury at subcutaneous injection sites as compared to vehicle (water) injected controls. Discussion These data show that non-invasive radiowave thermal ablation of cancer cells is feasible when facilitated by gold nanoparticles. Future studies will focus on tumor selective targeting of nanoparticles for in vivo tumor destruction. PMID:18656617

  10. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Directory of Open Access Journals (Sweden)

    D. G. Wright

    2011-01-01

    Full Text Available Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models.

    First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies.

    Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol

  11. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol.

    Science.gov (United States)

    Bhattarai, Surya P; Midmore, David J

    2009-07-01

    Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m EC(e). In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.

  12. Enhancement of discharge performance of Li/CF x cell by thermal treatment of CF x cathode material

    Science.gov (United States)

    Zhang, Sheng S.; Foster, Donald; Read, Jeffrey

    In this work we demonstrate that the thermal treatment of CF x cathode material just below the decomposition temperature can enhance discharge performance of Li/CF x cells. The performance enhancement becomes more effective when heating a mixture of CF x and citric acid (CA) since CA serves as an extra carbon source. Discharge experiments show that the thermal treatment not only reduces initial voltage delay, but also raises discharge voltage. Whereas the measurement of powder impedance indicates the thermal treatment does not increase electronic conductivity of CF x material. Based on these facts, we propose that the thermal treatment results in a limited decomposition of CF x, which yields a subfluorinated carbon (CF x- δ), instead of a highly conductive carbon. In the case of CF x/AC mixture, the AC provides extra carbon that reacts with F 2 and fluorocarbon radicals generated by the thermal decomposition of CF x to form subfluorinated carbon. The process of thermal treatment is studied by thermogravimetric analysis and X-ray diffraction, and the effect of treatment conditions such as heating temperature, heating time and CF x/CA ratio on the discharge performance of CF x cathode is discussed. As an example, a Li/CF x cell using CF x treated with CA at 500 °C under nitrogen for 2 h achieved theretical specific capacity when being discharged at C/5. Impedance analysis indicates that the enhanced performance is attributed to a significant reduction in the cell reaction resistance.

  13. Stepwise radiofrequency ablation of Barrett's esophagus preserves esophageal inner diameter, compliance, and motility

    NARCIS (Netherlands)

    Beaumont, H.; Gondrie, J. J.; McMahon, B. P.; Pouw, R. E.; Gregersen, H.; Bergman, J. J.; Boeckxstaens, G. E.

    2009-01-01

    Background and aim: Stepwise endoscopic circumferential and focal radiofrequency ablation is safe and effective for the eradication of Barrett's esophagus. In contrast to other techniques, radiofrequency ablation appears to avoid significant esophageal scarring or stenosis. Our aim was to evaluate

  14. Superconducting Radio-Frequency Cavities

    Science.gov (United States)

    Padamsee, Hasan S.

    2014-10-01

    Superconducting cavities have been operating routinely in a variety of accelerators with a range of demanding applications. With the success of completed projects, niobium cavities have become an enabling technology, offering upgrade paths for existing facilities and pushing frontier accelerators for nuclear physics, high-energy physics, materials science, and the life sciences. With continued progress in basic understanding of radio-frequency superconductivity, the performance of cavities has steadily improved to approach theoretical capabilities.

  15. Thermal performance of cooling system for a laptop computer using a boiling enhancement microstructure

    International Nuclear Information System (INIS)

    Cho, N. H.; Jeong, W. Y.; Park, S. H.

    2008-01-01

    The increasing heat generation rates in CPU of notebook computers motivate a research on cooling technologies with low thermal resistance. This paper develops a closed-loop two-phase cooling system using a micropump to circulate a dielectric liquid(PF5060). The cooling system consists of an evaporator containing a boiling enhancement microstructure connected to a condenser with mini fans providing external forced convection. The cooling system is characterized by a parametric study which determines the effects of volume fill ratio of coolant, existence of a boiling enhancement microstructure and pump flow rates on thermal performance of the closed loop. Experimental data shows the optimal parametric values which can dissipate 33.9W with a film heater maintained at 95 .deg. C

  16. Thermal performance of cooling system for a laptop computer using a boiling enhancement microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Cho, N. H.; Jeong, W. Y.; Park, S. H. [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2008-07-01

    The increasing heat generation rates in CPU of notebook computers motivate a research on cooling technologies with low thermal resistance. This paper develops a closed-loop two-phase cooling system using a micropump to circulate a dielectric liquid(PF5060). The cooling system consists of an evaporator containing a boiling enhancement microstructure connected to a condenser with mini fans providing external forced convection. The cooling system is characterized by a parametric study which determines the effects of volume fill ratio of coolant, existence of a boiling enhancement microstructure and pump flow rates on thermal performance of the closed loop. Experimental data shows the optimal parametric values which can dissipate 33.9W with a film heater maintained at 95 .deg. C.

  17. Influence of radiofrequency surgery on architecture of the palatine tonsils.

    Science.gov (United States)

    Plzak, Jan; Macokova, Pavla; Zabrodsky, Michal; Kastner, Jan; Lastuvka, Petr; Astl, Jaromir

    2014-01-01

    Radiofrequency surgery is a widely used modern technique for submucosal volume reduction of the tonsils. So far there is very limited information on morphologic changes in the human tonsils after radiofrequency surgery. We performed histopathological study of tonsillectomy specimens after previous bipolar radiofrequency induced thermotherapy (RFITT). A total of 83 patients underwent bipolar RFITT for hypertrophy of palatine tonsils. Tonsil volume reduction was measured by 3D ultrasonography. Five patients subsequently underwent tonsillectomy. Profound histopathological examination was performed to determine the effect of RFITT on tonsillar architecture. All tonsillectomy specimens showed the intact epithelium, intact germinal centers, normal vascularization, and no evidence of increased fibrosis. No microscopic morphological changes in tonsillectomy specimens after bipolar RFITT were observed. RFITT is an effective submucosal volume reduction procedure for treatment of hypertrophic palatine tonsils with no destructive effect on microscopic tonsillar architecture and hence most probably no functional adverse effect.

  18. Acoustic Radiation Force Impulse Elastography for Efficacy Evaluation after Hepatocellular Carcinoma Radiofrequency Ablation: A Comparative Study with Contrast-Enhanced Ultrasound

    Directory of Open Access Journals (Sweden)

    Xiaohong Xu

    2014-01-01

    Full Text Available Aim. To explore acoustic radiation force impulse (ARFI elastography in assessing residual tumors of hepatocellular carcinoma (HCC after radiofrequency ablation (RFA. Materials and Methods. There were 83 HCC lesions among 72 patients. All patients were examined with ARFI, contrast enhanced ultrasound (CEUS, and CT or MRI. Tumor brightness on virtual touch tissue imaging (VTI and shear wave velocity (SWV were assessed before and approximately one month after RFA. Results. There were 14 residual tumors after RFA. VTI showed that all the tumors were darker after RFA. VTI was not able to distinguish the ablated lesions and the residual tumors. 13 residual tumor lesions were detected by CEUS. All completely ablated nodules had SWV demonstration of x.xx., while with those residual nodules, 6 tumors had x.xx measurement and 8 tumors had measurable SWV. nine lesions with residual tumors occurred in cirrhosis subjects and 5 lesions with residual tumors occurred in fibrosis subjects; there was no residual tumor in the normal liver subjects. Conclusion. VTI technique cannot demonstrate residual tumor post RFA. While SWV measurement of less than x.xx is likely associated with residual tumors, measurement of less than x.xx cannot exclude residual tumors. Liver cirrhosis is associated with decreased chance of a complete ablation.

  19. Acoustic Radiation Force Impulse Elastography for Efficacy Evaluation after Hepatocellular Carcinoma Radiofrequency Ablation: A Comparative Study with Contrast-Enhanced Ultrasound

    Science.gov (United States)

    Xu, Xiaohong; Luo, Liangping; Chen, Jiexin; Wang, Jiexin; Zhou, Honglian; Li, Mingyi; Jin, Zhanqiang; Chen, Nianping; Miao, Huilai; Lin, Manzhou; Dai, Wei; Ahuja, Anil T.; Wang, Yi-Xiang J.

    2014-01-01

    Aim. To explore acoustic radiation force impulse (ARFI) elastography in assessing residual tumors of hepatocellular carcinoma (HCC) after radiofrequency ablation (RFA). Materials and Methods. There were 83 HCC lesions among 72 patients. All patients were examined with ARFI, contrast enhanced ultrasound (CEUS), and CT or MRI. Tumor brightness on virtual touch tissue imaging (VTI) and shear wave velocity (SWV) were assessed before and approximately one month after RFA. Results. There were 14 residual tumors after RFA. VTI showed that all the tumors were darker after RFA. VTI was not able to distinguish the ablated lesions and the residual tumors. 13 residual tumor lesions were detected by CEUS. All completely ablated nodules had SWV demonstration of x.xx., while with those residual nodules, 6 tumors had x.xx measurement and 8 tumors had measurable SWV. nine lesions with residual tumors occurred in cirrhosis subjects and 5 lesions with residual tumors occurred in fibrosis subjects; there was no residual tumor in the normal liver subjects. Conclusion. VTI technique cannot demonstrate residual tumor post RFA. While SWV measurement of less than x.xx is likely associated with residual tumors, measurement of less than x.xx cannot exclude residual tumors. Liver cirrhosis is associated with decreased chance of a complete ablation. PMID:24895624

  20. Strategy of metabolic phenotype modulation in Portunus trituberculatus exposed to low salinity.

    Science.gov (United States)

    Ye, Yangfang; An, Yanpeng; Li, Ronghua; Mu, Changkao; Wang, Chunlin

    2014-04-16

    Extreme low salinity influences normal crab growth, morphogenesis, and production. Some individuals of swimming crab Portunus trituberculatus have, however, an inherent ability to adapt to such a salinity fluctuation. This study investigated the dynamic metabolite alterations of two P. trituberculatus strains, namely, a wild one and a screened (low-salinity tolerant) one in response to low-salinity challenge by combined use of NMR spectroscopy and high-throughput data analysis. The dominant metabolites in crab muscle were found to comprise amino acids, sugars, carboxylic acids, betaine, trimethylamine-N-oxide, 2-pyridinemethanol, trigonelline, and nucleotides. These results further showed that the strategy of metabolic modulation of P. trituberculatus after low-salinity stimulus includes osmotic rebalancing, enhanced gluconeogenesis from amino acids, and energy accumulation. These metabolic adaptations were manifested in the accumulation of trimethylamine-N-oxide, ATP, 2-pyridinemethanol, and trigonelline and in the depletion of the amino acid pool as well as in the fluctuation of inosine levels. This lends support to the fact that the low-salinity training accelerates the responses of crabs to low-salinity stress. These findings provide a comprehensive insight into the mechanisms of metabolic modulation in P. trituberculatus in response to low salinity. This work highlights the approach of NMR-based metabonomics in conjunction with multivariate data analysis and univariate data analysis in understanding the strategy of metabolic phenotype modulation against stressors.

  1. Systematic Review of Radiofrequency Ablation and Pulsed Radiofrequency for Management of Cervicogenic Headaches.

    Science.gov (United States)

    Grandhi, Ravi K; Kaye, Alan David; Abd-Elsayed, Alaa

    2018-02-23

    Cervicogenic headache (CHA) is a secondary headache which has a source in the upper cervical spine. Many traditional analgesic choices lack good efficacy in managing the associated pain. As a result, in management of CHA, radiofrequency ablation (RFA) or pulse radiofrequency (PRF) has been tried with success. Our study investigated the use of RFA and PRF for the management of CHA. In the present investigation, a review of the literature was conducted using PubMed (1966 to February 2017). The quality assessment was determined using The Cochrane Risk of Bias. After initial search and consultation with experts, 34 articles were identified for initial review and 10 articles met inclusion for review. Criteria for inclusion were primarily based on identification of articles discussing cervicogenic headaches which were previously treatment resistant and occurred without any other pathology of the craniofacial region or inciting event such as trauma. This systematic review demonstrated that RFA and PRFA provide very limited benefit in the management of CHA. At present, there is no high-quality RCT and/or strong non-RCTs to support the use of these techniques, despite numerous case reports which have demonstrated benefit. This review is one of the first to provide a comprehensive overview of the use of RFA and PRF in the management of CHA.

  2. Thermal conductivity enhancement and sedimentation reduction of magnetorheological fluids with nano-sized Cu and Al additives

    Science.gov (United States)

    Rahim, M. S. A.; Ismail, I.; Choi, S. B.; Azmi, W. H.; Aqida, S. N.

    2017-11-01

    This work presents enhanced material characteristics of smart magnetorheological (MR) fluids by utilizing nano-sized metal particles. Especially, enhancement of thermal conductivity and reduction of sedimentation rate of MR fluids those are crucial properties for applications of MR fluids are focussed. In order to achieve this goal, a series of MR fluid samples are prepared using carbonyl iron particles (CIP) and hydraulic oil, and adding nano-sized particles of copper (Cu), aluminium (Al), and fumed silica (SiO2). Subsequently, the thermal conductivity is measured by the thermal property analyser and the sedimentation of MR fluids is measured using glass tubes without any excitation for a long time. The measured thermal conductivity is then compared with theoretical models such as Maxwell model at various CIP concentrations. In addition, in order to show the effectiveness of MR fluids synthesized in this work, the thermal conductivity of MRF-132DG which is commercially available is measured and compared with those of the prepared samples. It is observed that the thermal conductivity of the samples is much better than MRF-132DG showing the 148% increment with 40 vol% of the magnetic particles. It is also observed that the sedimentation rate of the prepared MR fluid samples is less than that of MRF-132DG showing 9% reduction with 40 vol% of the magnetic particles. The mixture optimized sample with high conductivity and low sedimentation was also obtained. The magnetization of the sample recorded an enhancement of 70.5% when compared to MRF-132DG. Furthermore, the shear yield stress of the sample were also increased with and without the influence of magnetic field.

  3. A Newly Developed Perfused Umbrella Electrode for Radiofrequency Ablation: An Ex Vivo Evaluation Study in Bovine Liver

    International Nuclear Information System (INIS)

    Bruners, Philipp; Pfeffer, Jochen; Kazim, Rana M.; Guenther, Rolf W.; Schmitz-Rode, Thomas; Mahnken, Andreas H.

    2007-01-01

    The purpose of this study was to evaluate the effectiveness of a newly developed perfused monopolar radiofrequency (RF) probe with an umbrella-shaped array. A perfused umbrella-shaped monopolar RF probe based on a LeVeen electrode (Boston Scientific Corp., Natick, MA, USA) with a 3-cm array diameter was developed. Five different configurations of this electrode were tested: (a) perfusion channel/endhole, (b) perfusion channel/endhole + sideholes, (c) 1 cm insulation removed at the tip, (d) 1 cm insulation removed at the tip + perfusion channel/endhole, and (e) 1 cm insulation removed at the tip + perfusion channel/endhole + sideholes. An unmodified LeVeen electrode served as a reference standard. RF ablations were performed in freshly excised bovine liver using a commercial monopolar RF system with a 200-W generator (RF 3000; Boston Scientific Corp.). Each electrode was tested 10 times applying the vendor's recommended ablation protocol combined with the preinjection of 2 ml 0.9% saline. Volumes and shapes of the lesions were compared. Lesions generated with the original LeVeen electrode showed a mean volume of 12.74 ± 0.52 cm 3 . Removing parts of the insulation led to larger coagulation volumes (22.65 ± 2.12 cm 3 ). Depending on the configuration, saline preinjection resulted in a further increase in coagulation volume (25.22 ± 3.37 to 31.28 ± 2.32 cm 3 ). Besides lesion volume, the shape of the ablation zone was influenced by the configuration of the electrode used. We conclude that saline preinjection in combination with increasing the active tip length of the umbrella-shaped LeVeen RF probe allows the reliable ablation of larger volumes in comparison to the originally configured electrode

  4. Optical tool for salinity detection by remote sensing spectroscopy: application on Oran watershed, Algeria

    Science.gov (United States)

    Abdellatif, Dehni; Mourad, Lounis

    2017-07-01

    Soil salinity is a complex problem that affects groundwater aquifers and agricultural lands in the semiarid regions. Remote sensing and spectroscopy database systems provide accuracy for salinity autodetection and dynamical delineation. Salinity detection techniques using polychromatic wavebands by field geocomputation and experimental data are time consuming and expensive. This paper presents an automated spectral detection and identification of salt minerals using a monochromatic waveband concept from multispectral bands-Landsat 8 Operational Land Imager (OLI) and Thermal InfraRed Sensor (TIRS) and spectroscopy United States Geological Survey database. For detecting mineral salts related to electrolytes, such as electronical and vibrational transitions, an integrated approach of salinity detection related to the optical monochromatic concept has been addressed. The purpose of this paper is to discriminate waveband intrinsic spectral similarity using the Beer-Lambert and Van 't Hoff laws for spectral curve extraction such as transmittance, reflectance, absorbance, land surface temperature, molar concentration, and osmotic pressure. These parameters are primordial for hydrodynamic salinity modeling and continuity identification using chemical and physical approaches. The established regression fitted models have been addressed for salt spectroscopy validation for suitable calibration and validation. Furthermore, our analytical tool is conducted for better decision interface using spectral salinity detection and identification in the Oran watershed, Algeria.

  5. Enhancement of thermal neutron attenuation of nano-B{sub 4}C, -BN dispersed neutron shielding polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaewoo, E-mail: kimj@kaeri.re.kr [Nuclear Materials Research Division, Korea Atomic Energy Research Institute, 111-989 Daeduck-daero, Yuseong-gu, Daejeon-si 305-353 (Korea, Republic of); WCI Quantum Beam based Radiation Research Center, Korea Atomic Energy Research Institute, 111-989 Daeduck-daero, Yuseong-gu, Daejeon-si 305-353 (Korea, Republic of); Missouri University Research Reactor, University of Missouri-Columbia, Columbia, MO 65211 (United States); Lee, Byung-Chul [Nuclear Reactor Core Design Division, Korea Atomic Energy Research Institute, 111-989 Daeduck-daero, Yuseong-gu, Daejeon-si 305-353 (Korea, Republic of); Uhm, Young Rang [Radioisotopes Research Division, Korea Atomic Energy Research Institute, 111-989 Daeduck-daero, Yuseong-gu, Daejeon-si 305-353 (Korea, Republic of); Miller, William H. [Missouri University Research Reactor, University of Missouri-Columbia, Columbia, MO 65211 (United States)

    2014-10-15

    Highlights: • Preparation of B{sub 4}C and BN nanopowders using a simple ball milling process. • Homogeneous dispersion and strong adhesion of nano-B{sub 4}C and -BN with polymer matrix. • Enhancement of mechanical properties of the nanocomposites compared to their micro counterparts. • Enhancement of thermal neutron attenuation of the nanocomposites. - Abstract: Nano-sized boron carbide (B{sub 4}C) and boron nitride (BN) powder were prepared using ball milling. Micro- and milled nano-powders were melt blended with high density polyethylene (HDPE) using a polymer mixer followed by hot pressing to fabricate sheet composites. The tensile and flexural strengths of HDPE nanocomposites were ∼20% higher than their micro counterparts, while those for latter decreased compared to neat HDPE. Thermal neutrons attenuation of the prepared HDPE nanocomposites was evaluated using a monochromatic ∼0.025 eV neutron beam. Thermal neutron attenuation of the HDPE nanocomposites was greatly enhanced compared to their micro counterparts at the same B-10 areal densities. Monte Carlo n-Particles (MCNP) simulations based on the lattice structure modeling also shows the similar filler size dependent thermal neutron absorption.

  6. Full Product Pattern Recognition in β-Carotene Thermal Degradation through Ionization Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiaoyin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Lance Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bernstein, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hochrein, James M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    The full product pattern including both volatile and nonvolatile compounds was presented for the first time for β-Carotene thermal degradation at variable temperatures up to 600°C. Solvent-enhanced ionization was used to confirm and distinguish between the dissociation mechanisms that lead to even and odd number mass products.

  7. Estimates of matter yield and N-uptake in sorghum grown on saline and non-saline soils manured with dhaincha (sesbania aculeata) plant residues utilizing 15N tracer techniques

    International Nuclear Information System (INIS)

    Kurdali, F.

    2002-11-01

    Pot experiments were conducted to study the effect of manuring with three types of plant residues (roots, shoots or roots plus shoots) of Dhaincha (Sesbania aculeata Pers.) on the yield and N-uptake of Sorghum bicolor grown in saline and non-saline soils. For measuring various sources of N-uptake, two isotopic dilution techniques were utilized by adding to these soils either 15 N-labelled inorganic N-fertilizer (indirect method) or 15 N-labelled sesbania leaves (direct method). For the indirect method, both soils manured with each type of sesbania residue, received four split applications of 15 N-labelled ammonium sulphate. Results indicated that each type of sesbania residue, applied as a green manure, resulted in significant increases in both dry matter yield and N-uptake of sorghum as compared with the un manured control. Moreover, sesbania residues decreased the harmful effect of salinity on plant growth. Percentages of N derived from residues (%Ndfr) in sorghum grown in non saline soil ranged between 3.9 and 33%; whereas, in saline soil, the observed values ranged between 4.9 and 19.8%. N recoveries in sorghum grown in non saline soil were 61, 45 and 37% of the total amount contained in the sesbania root, shoot and root plus shoot; whereas, values in sorghum grown in saline soils were 48, 14,8 and 15.7%, respectively. The beneficial effects of sesbania residues have been attributed not only to the additional N availability to the plants, but also to its effects on the enhancement of soil N uptake. Percentages and amounts of Ndfr calculated using the indirect method were not significantly different from those obtained by the direct method indicating that the indirect method used herein is feasible and simple for measuring N release from organic residues. It is suggested that the use of Sesbania aculeata residues, particularly the shoots, as a green manure, can provide a substantial portion of total N in sorghum. Moreover, the use of sesbania green manure in

  8. Radiofrequency tissue ablation with cooled-tip electrodes:an experimental study in a bovine liver model on variables influencing lesion size

    International Nuclear Information System (INIS)

    Han, Hyun Young; Lee, Jeong Min; Kim, Chong Soo

    2001-01-01

    The purpose of this study was to determine the influence of various factors on the extent of thermal coagulation necrosis after radiofrequency (RF) tissue ablation using a cooled-tip electrode in bovine liver. RF ablation was induced by a monopolar 500 KHz-RF generator (CC-1; Radionics, Burlington, Mass., U.S.A.) and an 18-G cooled-tip with single or clustered electrodes. The ablation protocol involved a combination of varying current, ablation time, power output, gradual or abrupt increase of this out-put, and pulsed radiofrequency techniques. The maximum diameter of all thermal lesions which showed a color change was measured perpendicular to the electrode axis by two observers who reached their decisions by consensus. Twenty representative lesions were pathologically examined. With increasing current lesion diameter also increased, but above 1500 mA no further increase was induced. Extending the ablation time to 9 minutes for a single electrode and 15 minutes for a clustered electrode increased lesion diameter until a steady state was reached. Higher power levels caused larger lesions, but above 100 W no increase was observed. Ample exposure time coupled with a stepwise increase in power level induced a lesion larger than that resulting from an abrupt increase. Continuous pulsed RF with a high current led to increased coagulation necrosis diameter. These experimental findings may be useful thermotherapy. The data suggest that all involved factors significantly affect lesion size:if the factors are better understood, cancer thermotherapy can be better controlled

  9. Efficacy and safety of catheter-based radiofrequency renal denervation in stented renal arteries.

    Science.gov (United States)

    Mahfoud, Felix; Tunev, Stefan; Ruwart, Jennifer; Schulz-Jander, Daniel; Cremers, Bodo; Linz, Dominik; Zeller, Thomas; Bhatt, Deepak L; Rocha-Singh, Krishna; Böhm, Michael; Melder, Robert J

    2014-12-01

    In selected patients with hypertension, renal artery (RA) stenting is used to treat significant atherosclerotic stenoses. However, blood pressure often remains uncontrolled after the procedure. Although catheter-based renal denervation (RDN) can reduce blood pressure in certain patients with resistant hypertension, there are no data on the feasibility and safety of RDN in stented RA. We report marked blood pressure reduction after RDN in a patient with resistant hypertension who underwent previous stenting. Subsequently, radiofrequency ablation was investigated within the stented segment of porcine RA, distal to the stented segment, and in nonstented RA and compared with stent only and untreated controls. There were neither observations of thrombus nor gross or histological changes in the kidneys. After radiofrequency ablation of the nonstented RA, sympathetic nerves innervating the kidney were significantly reduced, as indicated by significant decreases in sympathetic terminal axons and reduction of norepinephrine in renal tissue. Similar denervation efficacy was found when RDN was performed distal to a renal stent. In contrast, when radiofrequency ablation was performed within the stented segment of the RA, significant sympathetic nerve ablation was not seen. Histological observation showed favorable healing in all arteries. Radiofrequency ablation of previously stented RA demonstrated that RDN provides equally safe experimental procedural outcomes in a porcine model whether the radiofrequency treatment is delivered within, adjacent, or without the stent struts being present in the RA. However, efficacious RDN is only achieved when radiofrequency ablation is delivered to the nonstented RA segment distal to the stent. © 2014 American Heart Association, Inc.

  10. Co-inoculation of arbusculr mycorrhizae and nitrogen fixing bacteria enhance alfalfa yield under saline conditions

    International Nuclear Information System (INIS)

    Zhu, R.; Tang, F.; Liu, F.; Chen, J.

    2016-01-01

    The study was to investigate the effects of combined inoculation of Glomus mosseae (arbusculr mycorrhizae fungi, AMF) and Sinorhizobium meliloti (nitrogen-fixing bacteria, i.e., an Rhizobium meliloti, RM) on yield, nutrient contents, nodulation and mycorrhizal colonization of different alfalfa cultivars under saline conditions. An experiment was conducted to test the efficacy of AMF and RM inoculation in development of salt tolerance in alfalfa cultivars (Zhaodong, Nongjing and Longmu) under different salinity levels (0, 60, 120 and 180 mM NaCl). We found that under non stress condition, double inoculation of alfalfa with rhizobium and AM increased the alfalfa yield, nodule weight and number, as well as shoot proline contents, the most when plants were double inoculated followed by AM and rhizobium inoculation, respectively. Whereas under salinity condition, double inoculation of alfalfa with rhizobium and AM increased alfalfa yield, mycorrhizal infection, nodule weight and number as well as increased in shoot proline content, the most followed by AM and rhizobium inoculation, respectively. The Results suggest that growth of alfalfa may be improved by combined inoculation of alfalfa with AM and rhizobium under salt and non-stress conditions. Alleviation of alfalfa growth under saline condition was perhaps due to an increase in mycorrhizal infection and nodule weight and number as well as an increased in shoot proline content by dual inoculation. (author)

  11. Pulse-Dose Radiofrequency in Athletic Pubalgia: Preliminary Results.

    Science.gov (United States)

    Masala, Salvatore; Fiori, Roberto; Raguso, Mario; Ojango, Christine; Morini, Marco; Cuzzolino, Alessandro; Calabria, Eros; Simonetti, Giovanni

    2017-05-01

    Chronic pubalgia affects around 10% of athletes. To determine the role of pulse-dose radiofrequency (PDRF) in athletes with chronic pubalgia and investigate the causes with imaging. Prospective nonrandomized single-group study. PDRF was performed on 32 patients with a chronic pain that had been refractory to conservative therapies during the last 3 mo. The genital branches of the genitofemoral, ilioinguinal, and iliohypogastric nerves and the obturator nerve were the goals of treatment. A 10-cm, 20-gauge cannula was inserted with a percutaneous access on the upper and lower edges of the iliopubic branch. After the spindle was removed, a radiofrequency needle with a 10-mm "active tip" was inserted. The radiofrequency technique was performed with 1200 pulses at 45 V and 20-ms duration, followed by a 480-ms silent phase. The follow-up with a clinical examination was performed at 1, 3, 6, and 9 mo after the procedure. During the follow-up visits, the patients were asked to rate their pain on a 0-10 VAS scale. All of the enrolled patients completed the study. Mean VAS score before the treatment was 8.4 ± 0.6. Twenty-four patients had a reduction of pain VAS scores more than 50% during all follow-up visits and started training and physiotherapy in the days after the radiofrequency procedure. Six patients, each treated 2 times, had a reduction more than 50% of VAS scores and could start training and physiotherapy only after the 2nd procedure. One patient had no pain relief with 2 treatments. Pain intensity decreased up to 9 mo in 31 patients (mean VAS scores 3.4 ± 0.5 at 6 mo and 3.8 ± 0.9 at 9 mo). No complications were observed. PDRF is an effective and safe technique in management of chronic pubalgia in athletes.

  12. Renal Cell Carcinoma Perfusion before and after Radiofrequency Ablation Measured with Dynamic Contrast Enhanced MRI: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Tze Min Wah

    2018-01-01

    Full Text Available Aim: To investigate if the early treatment effects of radiofrequency ablation (RFA on renal cell carcinoma (RCC can be detected with dynamic contrast enhanced (DCE-MRI and to correlate RCC perfusion with RFA treatment time. Materials and methods: 20 patients undergoing RFA of their 21 RCCs were evaluated with DCE-MRI before and at one month after RFA treatment. Perfusion was estimated using the maximum slope technique at two independent sittings. Total RCC blood flow was correlated with total RFA treatment time, tumour location, size and histology. Results: DCE-MRI examinations were successfully evaluated for 21 RCCs (size from 1.3 to 4 cm. Perfusion of the RCCs decreased significantly (p < 0.0001 from a mean of 203 (±80 mL/min/100 mL before RFA to 8.1 (±3.1 mL/min/100 mL after RFA with low intra-observer variability (r ≥ 0.99, p < 0.0001. There was an excellent correlation (r = 0.95 between time to complete ablation and pre-treatment total RCC blood flow. Tumours with an exophytic location exhibit the lowest mean RFA treatment time. Conclusion: DCE-MRI can detect early treatment effects by measuring RCC perfusion before and after RFA. Perfusion significantly decreases in the zone of ablation, suggesting that it may be useful for the assessment of treatment efficacy. Pre-RFA RCC blood flow may be used to predict RFA treatment time.

  13. A molecular dynamics study of liquid layering and thermal conductivity enhancement in nanoparticle suspensions

    Science.gov (United States)

    Paul, J.; Madhu, A. K.; Jayadeep, U. B.; Sobhan, C. B.; Peterson, G. P.

    2018-03-01

    Liquid layering is considered to be one of the factors contributing to the often anomalous enhancement in thermal conductivity of nanoparticle suspensions. The extent of this layering was found to be significant at lower particle sizes, as reported in an earlier work by the authors. In continuation to that work, an investigation was conducted to better understand the fundamental parameters impacting the reported anomalous enhancement in thermal conductivity of nanoparticle suspensions (nanofluids), utilizing equilibrium molecular dynamics simulations in a copper-argon system. Nanofluids containing nanoparticles of size less than 6 nm were investigated and studied analytically. The heat current auto-correlation function in the Green-Kubo formulation for thermal conductivity was decomposed into self-correlations and cross-correlations of different species and the kinetic, potential, collision and enthalpy terms of the dominant portion of the heat current vector. The presence of liquid layering around the nanoparticle was firmly established through simulations that show the dominant contribution of Ar-Ar self-correlation and the trend displayed by the kinetic-potential cross-correlation within the argon species.

  14. Perivascular radiofrequency renal denervation lowers blood pressure and ameliorates cardiorenal fibrosis in spontaneously hypertensive rats

    Science.gov (United States)

    Zhang, Yan; Su, Linan; Zhang, Yunrong; Wang, Qiang; Yang, Dachun; Li, De; Yang, Yongjian; Ma, Shuangtao

    2017-01-01

    Background Catheter-based renal denervation (RDN) is a promising approach to treat hypertension, but innervation patterns limit the response to endovascular RDN and the post-procedural renal artery narrowing or stenosis questions the endovascular ablation strategy. This study was performed to investigate the anti-hypertensive and target organ protective effects of perivascular RDN in spontaneously hypertensive rats (SHR). Methods SHR and normotensive Wistar-Kyoto (WKY) rats were divided into sham group (n = 10), radiofrequency ablation group (n = 20) in which rats received bilateral perivascular ablation with radiofrequency energy (2 watts), and chemical (10% phenol in 95% ethanol) ablation group (n = 12). The tail-cuff blood pressure was measured before the ablation and on day 14 and day 28 after the procedure. The plasma levels of creatinine, urea nitrogen, and catecholamines, urinary excretion of electrolytes and protein, and myocardial and glomerular fibrosis were analyzed and compared among the groups on day 28 after the procedure. Results We identified that 2-watt is the optimal radiofrequency power for perivascular RDN in rats. Perivascular radiofrequency and chemical ablation achieved roughly comparable blood pressure reduction in SHR but not in WKY on day 14 and day 28 following the procedure. Radiofrequency-mediated ablation substantially destroyed the renal nerves surrounding the renal arteries of both SHR and WKY without damaging the renal arteries and diminished the expression of tyrosine hydroxylase, the enzyme marker for postganglionic sympathetic nerves. Additionally, perivascular radiofrequency ablation also decreased the plasma catecholamines of SHR. Interestingly, both radiofrequency and chemical ablation decreased the myocardial and glomerular fibrosis of SHR, while neither increased the plasma creatinine and blood urea nitrogen nor affected the urinary excretion of electrolytes and protein when compared to sham group. Conclusions Radiofrequency

  15. Radiofrequency glow discharge time of flight mass spectrometry: pulsed vs. continuous mode

    International Nuclear Information System (INIS)

    Lobo, L.; Pereiro, R.; Sanz-Medel, A.; Bordel, N.; Tempez, A.; Chapon, P.; Hohl, M.; Michler, J.

    2009-01-01

    Full text: Glow discharge (GD) is a well established tool for the direct analysis of solids. The application field of the original direct current GD, restricted to conductive samples, has been extended by radiofrequency powered GDs that can be applied for conductive and non-conductive samples. Moreover, the introduction of pulsed GD has opened the possibility of applying higher instantaneous powers that can improve the atomization-ionization processes and therefore the sensitivity. Furthermore, pulsed-GD may enable temporal separation of discharge gas species from the sample ions. In this work the analytical performances of radiofrequency and pulsed radiofrequency glow discharges are evaluated by using a time of flight mass analyzer (TOFMS). (author)

  16. Radiofrequency fields in our surroundings

    International Nuclear Information System (INIS)

    2011-01-01

    In 2010, the National Radiation Protection Authority (NRPA) with the Post and Telecommunications Authority carried out a project where it is measured radiofrequency fields from various telecom systems in homes, kindergartens, schools, offices, and urban environments. Close to 99 percent of the measurement points were found values of less than one thousandth of the maximum. No values were near the limits. (AG)

  17. Atorvastatin can ameliorate left atrial stunning induced by radiofrequency ablation for atrial fibrillation.

    Science.gov (United States)

    Xie, Ruiqin; Yang, Yingtao; Cui, Wei; Yin, Hongning; Zheng, Hongmei; Zhang, Jidong; You, Ling

    2017-09-01

    The objective of this study was to study the functional changes of the left atrium after radiofrequency ablation treatment for atrial fibrillation and the therapeutic effect of atorvastatin. Fifty-eight patients undergoing radiofrequency ablation for atrial fibrillation were randomly divided into non-atorvastatin group and atorvastatin group. Patients in the atorvastatin group were treated with atorvastatin 20 mg p.o. per night in addition to the conventional treatment of atrial fibrillation; patients in the non-atorvastatin group received conventional treatment of atrial fibrillation only. Echocardiography was performed before radiofrequency ablation operation and 1 week, 2 weeks, 3 weeks, and 4 weeks after operation. Two-dimensional ultrasound speckle tracking imaging system was used to measure the structural indexes of the left atrium. Results indicated that there was no significant change for indexes representing the structural status of the left atrium within a month after radiofrequency ablation (P > 0.05); however, there were significant changes for indexes representing the functional status of the left atrium. There were also significant changes in indexes reflecting left atrial strain status: the S and SRs of atorvastatin group were higher than those of non-atorvastatin group (P atorvastatin could improve left atrial function and shorten the duration of atrial stunning after radiofrequency ablation of atrial fibrillation.

  18. Effects of radiation from a radiofrequency identification (RFID) microchip on human cancer cells.

    Science.gov (United States)

    Lai, Henry C; Chan, Ho Wing; Singh, Narendra P

    2016-01-01

    Radiofrequency identification (RFID) microchips are used to remotely identify objects, e.g. an animal in which a chip is implanted. A passive RFID microchip absorbs energy from an external source and emits a radiofrequency identification signal which is then decoded by a detector. In the present study, we investigated the effect of the radiofrequency energy emitted by a RFID microchip on human cancer cells. Molt-4 leukemia, BT474 breast cancer, and HepG2 hepatic cancer cells were exposed in vitro to RFID microchip-emitted radiofrequency field for 1 h. Cells were counted before and after exposure. Effects of pretreatment with the spin-trap compound N-tert-butyl-alpha-phenylnitrone or the iron-chelator deferoxamine were also investigated. Results We found that the energy effectively killed/retarded the growth of the three different types of cancer cells, and the effect was blocked by the spin-trap compound or the iron-chelator, whereas an inactive microchip and energy from the external source had no significant effect on the cells. Conclusions Data of the present study suggest that radiofrequency field from the microchip affects cancer cells via the Fenton Reaction. Implantation of RFID microchips in tumors may provide a new method for cancer treatment.

  19. First muon acceleration using a radio-frequency accelerator

    Directory of Open Access Journals (Sweden)

    S. Bae

    2018-05-01

    Full Text Available Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu^{-}, which are bound states of positive muons (μ^{+} and two electrons, are generated from μ^{+}’s through the electron capture process in an aluminum degrader. The generated Mu^{-}’s are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ. In the RFQ, the Mu^{-}’s are accelerated to 89 keV. The accelerated Mu^{-}’s are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  20. Multifunctional fluorescent iron quantum clusters for non-invasive radiofrequency ablationof cancer cells.

    Science.gov (United States)

    Jose, Akhila; Surendran, Mrudula; Fazal, Sajid; Prasanth, Bindhu-Paul; Menon, Deepthy

    2018-05-01

    This work reports the potential of iron quantum clusters (FeQCs) as a hyperthermia agent for cancer, by testing its in-vitro response to shortwave (MHz range), radiofrequency (RF) waves non-invasively. Stable, fluorescent FeQCs of size ∼1 nm prepared by facile aqueous chemistry from endogenous protein haemoglobin were found to give a high thermal response, with a ΔT ∼50 °C at concentrationsas low as165 μg/mL. The as-prepared nanoclusters purified by lyophilization as well as dialysis showed a concentration, power and time-dependent RF response, with the lyophilized FeQCs exhibiting pronounced heating effects. FeQCs were found to be cytocompatible to NIH-3T3 fibroblast and 4T1 cancer cells treated at concentrations upto 1000 μg/mL for 24 h. Upon incubation with FeQCs and exposure to RF waves, significant cancer cell death was observed which proves its therapeutic ability. The fluorescent ability of the clusters could additionally be utilized for imaging cancer cells upon excitation at ∼450 nm. Further, to demonstrate the feasibility of imparting additional functionality such as drug/biomolecule/dye loading to FeQCs, they were self assembled with cationic polymers to form nanoparticles. Self assembly did not alter the RF heating potential of FeQCs and additionally enhanced its fluorescence. The multifunctional fluorescent FeQCs therefore show good promise as a novel therapeutic agent for RF hyperthermia and drug loading. Copyright © 2018 Elsevier B.V. All rights reserved.