WorldWideScience

Sample records for saline lake water

  1. Decline of the world's saline lakes

    Science.gov (United States)

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  2. The Brine Shrimp Artemia Survives in Diluted Water of Lake Bunyampaka, an Inland Saline Lake in Uganda

    Directory of Open Access Journals (Sweden)

    Martin Sserwadda

    2018-02-01

    Full Text Available Ugandan aquaculture is in the process of development; however, it requires access to an affordable live food source, such as brine shrimp Artemia. This study fits within a broader feasibility study of domestic Artemia production in salt lakes. Since Uganda is a landlocked country, the only opportunity for live water food sources lies in the salt lakes in the west of the country. This study used saline water from one of these lakes, Lake Bunyampaka (salinity 72 mg L−1. Two Artemia strains, i.e., the Great Salt Lake strain, which is the dominant strain on the market, and the Vinh Chau strain, which is by far the most inoculated strain in the world, were assayed for their survival, growth, and reproduction in diluted Lake Bunyampaka water, using natural seawater as control. The organisms were fed live freshly cultured microalgae Tetraselmis suecica ad libitum. Our study revealed that the Vinh Chau strain performed especially well in Lake Bunyampaka water diluted to 50 g L−1. The data presented in this study generate the first useful information for the future inoculation of Artemia in Lake Bunyampaka in Uganda, and hence domestic Artemia production in the country; however, further larger-scale laboratory work, followed by field trials, is still needed.

  3. Decline of the world's saline lakes

    Science.gov (United States)

    Wayne A. Wurtsbaugh; Craig Miller; Sarah E. Null; R. Justin DeRose; Peter Wilcock; Maura Hahnenberger; Frank Howe; Johnnie Moore

    2017-01-01

    Many of the world’s saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and...

  4. Investigation of Lake Water Salinity by Using Four-Band Salinity Algorithm on WorldView-2 Satellite Image for a Saline Industrial Lake

    Science.gov (United States)

    Budakoǧlu, Murat; Karaman, Muhittin; Damla Uça Avcı, Z.; Kumral, Mustafa; Geredeli (Yılmaz), Serpil

    2014-05-01

    Salinity of a lake is an important characteristic since, these are potentially industrial lakes and the degree of salinity can significantly be used for determination of mineral resources and for the production management. In the literature, there are many studies of using satellite data for salinity related lake studies such as determination of salinity distribution and detection of potential freshwater sources in less salt concentrated regions. As the study area Lake Acigol, located in Denizli (Turkey) was selected. With it's saline environment, it's the major sodium sulphate production resource of Turkey. In this study, remote sensing data and data from a field study was used and correlated. Remote sensing is an efficient tool to monitor and analyze lake properties by using it complementary to field data. Worldview-2 satellite data was used in this study which consists of 8 bands. At the same time with the satellite data acquisition, a field study was conducted to collect the salinity values in 17 points of the laker with using YSI 556 Multiparametre for measurements. The values were measured as salinity amount in grams per kilogram solution and obtained as ppt unit. It was observed that the values vary from 34 ppt - 40.1 ppt and the average is 38.056 ppt. In Thalassic serie, the lake was in mixoeuhaline state in the time of issue. As a first step, ATCOR correction was performed on satellite image for atmospheric correction. There were some clouds on the lake field, hence it was decided to continue the study by using the 12 sampling points which were clear on the image. Then, for each sampling point, a spectral value was obtained by calculating the average at a 11*11 neighborhood. The relation between the spectral reflectance values and the salinity was investigated. The 4-band algorithm, which was used for determination of chlorophyll-a distribution in highly turbid coastal environment by Wei (2012) was applied. Salinity α (Λi-1 / Λj-1) * (Λk-1 / Λm-1) (i

  5. Saline lakes of the glaciated Northern Great Plains

    Science.gov (United States)

    Mushet, David M.

    2011-01-01

    Unless you have flown over the region or seen aerial photographs, it is hard to grasp the scale of the millions of lakes and wetlands that dot the prairie landscape of the glaciated Northern Great Plains (Figure 1). This region of abundant aquatic habitats within a grassland matrix provides for the needs of a wide diversity of wildlife species and has appropriately been deemed the "duck factory of North America." While the sheer number of lakes and wetlands within this area of the Northern Great Plains can be truly awe-inspiring, their diversity in terms of the chemical composition of their water adds an equally important component supporting biotic diversity and productivity. Water within these lakes and wetlands can range from extremely fresh with salinities approaching that of rainwater to hypersaline with salinity ten times greater than that of seawater. Additionally, while variation in salinity among these water bodies can be great, the ionic composition of lakes and wetlands with similar salinities can vary markedly, influencing the overall spatial and temporal diversity of the region's biota.

  6. Increase of urban lake salinity by road deicing salt

    International Nuclear Information System (INIS)

    Novotny, Eric V.; Murphy, Dan; Stefan, Heinz G.

    2008-01-01

    Over 317,000 tonnes of road salt (NaCl) are applied annually for road deicing in the Twin Cities Metropolitan Area (TCMA) of Minnesota. Although road salt is applied to increase driving safety, this practice influences environmental water quality. Thirteen lakes in the TCMA were studied over 46 months to determine if and how they respond to the seasonal applications of road salt. Sodium and chloride concentrations in these lakes were 10 and 25 times higher, respectively, than in other non-urban lakes in the region. Seasonal salinity/chloride cycles in the lakes were correlated with road salt applications: High concentrations in the winter and spring, especially near the bottom of the lakes, were followed by lower concentrations in the summer and fall due to flushing of the lakes by rainfall runoff. The seasonal salt storage/flushing rates for individual lakes were derived from volume-weighted average chloride concentration time series. The rate ranged from 9 to 55% of a lake's minimum salt content. In some of the lakes studied salt concentrations were high enough to stop spring turnover preventing oxygen from reaching the benthic sediments. Concentrations above the sediments were also high enough to induce convective mixing of the saline water into the sediment pore water. A regional analysis of historical water quality records of 38 lakes in the TCMA showed increases in lake salinity from 1984 to 2005 that were highly correlated with the amount of rock salt purchased by the State of Minnesota. Chloride concentrations in individual lakes were positively correlated with the percent of impervious surfaces in the watershed and inversely with lake volume. Taken together, the results show a continuing degradation of the water quality of urban lakes due to application of NaCl in their watersheds

  7. SALINE WATER RESOURCES IN CLUJ-NAPOCA SURROUNDINGS

    Directory of Open Access Journals (Sweden)

    B. CZELLECZ

    2016-03-01

    Full Text Available Saline waters are usually researched in those places where it is used for balneotherapy or other industrial purposes. The aim of this study is to describe the saline water sources from less known areas, as they are an important natural mineral water resource. Twenty nine water samples were analyzed from Cojocna-Pata-Sopor region, thirteen of them can be considered saline waters. The visited locations are 21, 15 and 3 km far from Cluj-Napoca. Highly concentrated springs are to be found in the old mine area from Pata village and in the slough from Cojocna. Beside the well known saline lakes from Cojocna, five other saline lakes were identified; most of them are having artificial origin.

  8. Epiphytic invertebrate patterns in coastal lakes along a gradient of salinity and water exchange with the sea

    Science.gov (United States)

    Obolewski, Krystian; Bąkowska, Martyna

    2017-10-01

    The species composition and abundance of epiphytic fauna inhabiting common reed (Phragmites australis (Cav.) Trin. ex Steud.) was performed in five coastal lakes in Słowiński National Park (southern Baltic coast in northern Poland). The lakes represent a salinity gradient (from freshwater to β-oligohaline waters) and four types of coastal lakes: (1) lagoon, L (Lake Łebsko, seawater enters it permanently); (2) coastal lake with periodically brackish water, CLB (Lake Gardno); (3) freshwater costal lake, CLF (Lake Smołdzińskie); and (4) coastal dune lakes, CLD (Dołgie Wielkie and Dołgie Małe). Using statistical ordination techniques, we found that the structure of epiphytic fauna (microinvertebrates and macroinvertebrates) is determined primarily by hydrological connectivity (water exchange) with the sea. Canonical Correspondence Analysis, coupled with variance partitioning, showed that hydrological connectivity accounted for 24% of the variation in the invertebrate community, followed by physico-chemical (19%) and trophic (8%) factors. Our results indicate that the assemblages of Ciliata-libera and Cnidaria are characteristic for L (β-oligohaline), Rotifera, Suctoria, Chaetogaster sp., Gastropoda and Trichoptera are characteristic for CLB (limnetic/β-oligohaline), but no taxonomic groups are characteristic for CLF and CLD (both limnetic). The index of multivariate dispersion showed a decreasing trend with the increasing lake isolation from the open sea, except for CLD. However, in terms of the structure of epiphytic fauna, Multi-Response Permutation Procedures showed that CLD significantly differed only from CLB. Our results suggest that the identified characteristic taxonomic groups of plant-associated macroinvertebrates have a high potential to be used as bioindicators of salinity and water exchange with the sea, due to their sensitivity to environmental stress.

  9. Surface Energy Balance of Fresh and Saline Waters: AquaSEBS

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelrady

    2016-07-01

    Full Text Available Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System model for large water bodies and add the effect of water salinity to the evaporation rate. Firstly, SEBS is modified for fresh-water whereby new parameterizations of the water heat flux and sensible heat flux are suggested. This is achieved by adapting the roughness heights for momentum and heat transfer. Secondly, a salinity correction factor is integrated into the adapted model. Eddy covariance measurements over Lake IJsselmeer (The Netherlands are carried out and used to estimate the roughness heights for momentum (~0.0002 m and heat transfer (~0.0001 m. Application of these values over the Victoria and Tana lakes (freshwater in Africa showed that the calculated latent heat fluxes agree well with the measurements. The root mean-square of relative-errors (rRMSE is about 4.1% for Lake Victoria and 4.7%, for Lake Tana. Verification with ECMWF data showed that the salinity reduced the evaporation at varying levels by up to 27% in the Great Salt Lake and by 1% for open ocean. Our results show the importance of salinity to the evaporation rate and the suitability of the adapted-SEBS model (AquaSEBS for fresh and saline waters.

  10. Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847-1987

    Science.gov (United States)

    Stephens, D.W.

    1990-01-01

    Great Salt Lake is the fourth largest terminal lake in the world, with an area of about 6000 square kilometers at its historic high elevation. Since its historic low elevation of 1277.52 meters in 1963, the lake has risen to a new historic high elevation of 1283.77 meters in 1986-1987, a net increase of about 6.25 meters. About 60 percent of this increase, 3.72 meters, has occurred since 1982 in response to greater than average precipitation and less than average evaporation. Variations in salinity have resulted in changes in the composition of the aquatic biological community which consists of bacteria, protozoa, brine shrimp and brine flies. These changes were particularly evident following the completion of a causeway in 1959 which divided the lake. Subsequent salinities in the north part of the lake have ranged from 16 to 29 percent and in the south part from 6 to 28 percent. Accompanying the rise in lake elevation from 1982 to 1987 have been large decreases in salinity of both parts of the lake. This has resulted in changes in the biota from obligate halophiles, such as Dunaliella salina and D. viridis, to opportunistic forms such as a blue-green alga (Nodularia spumigena). The distribution and abundance of brine shrimp (Artemia salina) in the lake also have followed closely the salinity. In 1986, when the salinity of the south part of the lake was about 6 percent, a population of brackish-water killifish (Lucania parva) was observed along the shore near inflow from a spring. ?? 1990 Kluwer Academic Publishers.

  11. Geophysical, geochemical and hydrological analyses of water-resource vulnerability to salinization: case of the Uburu-Okposi salt lakes and environs, southeast Nigeria

    Science.gov (United States)

    Ukpai, S. N.; Okogbue, C. O.

    2017-11-01

    Until this study, the location and depth of the saline units in Uburu-Okposi salt lake areas and environs have been unknown. This study aimed at delineating the saline lithofacies and dispersal configurations to water bodies, using electrical geophysical methods such as constant separation traversing (CST) and vertical electrical sounding (VES). Results showed weathered zones that represent aquifers mostly at the fourth geoelectric layer: between upper layered aquitards and underlying aquitards at depths 30-140 m. Lateral distribution of resistivity variance was defined by the CST, whereas the VES tool, targeted at low-resistivity zones, detected isolated saline units with less than 10 ohm-m at depths generally >78 m. The saline lithofacies were suspected to link freshwater zones via shear zones, which steer saline water towards the salt lakes and influence the vulnerability of groundwater to salinization. The level of salinization was verified by water sampling and analysis, and results showed general alkaline water type with a mean pH of 7.66. Water pollution was indicated: mean total dissolved solids (TDS) 550 mg/l, electrical conductivity (EC) 510 μS/cm, salinity 1.1‰, Cl- 200 mg/l, N03 -35.5 mg/l, Na+ 19.6 mg/l and Ca2+ 79.3 mg/l. The salinity is controlled by NaCl salt, as deduced from correlation analysis using the software package Statistical Product for Service Solutions (SPSS). Generally, concentrations of dissolved ions in the water of the area are enhanced via mechanisms such as evaporation, dissociation of salts, precipitation run off and leaching of dissolved rock minerals.

  12. Interactive effects of chemical and biological controls on food-web composition in saline prairie lakes.

    Science.gov (United States)

    Cooper, Ryan N; Wissel, Björn

    2012-11-27

    Salinity is restricting habitatability for many biota in prairie lakes due to limited physiological abilities to cope with increasing osmotic stress. Yet, it remains unclear how salinity effects vary among major taxonomic groups and what role other environmental parameters play in shaping food-web composition. To answer these questions, we sampled fish, zooplankton and littoral macroinvertebrates in 20 prairie lakes (Saskatchewan, Canada) characterized by large gradients in water chemistry and lake morphometry. We showed that salinity thresholds differed among major taxonomic groups, as most fishes were absent above salinities of 2 g L-1, while littoral macroinvertebrates were ubiquitous. Zooplankton occurred over the whole salinity range, but changed taxonomic composition as salinity increased. Subsequently, the complexity of fish community (diversity) was associated with large changes in invertebrate communities. The directional changes in invertebrate communities to smaller taxa indicated that complex fish assemblages resulted in higher predation pressure. Most likely, as the complexity of fish community decreased, controls of invertebrate assemblages shifted from predation to competition and ultimately to productivity in hypersaline lakes. Surprisingly, invertebrate predators did not thrive in the absence of fishes in these systems. Furthermore, the here identified salinity threshold for fishes was too low to be a result of osmotic stress. Hence, winterkill was likely an important factor eliminating fishes in low salinity lakes that had high productivity and shallow water depth. Ultimately, while salinity was crucial, intricate combinations of chemical and biological mechanisms also played a major role in controlling the assemblages of major taxonomic groups in prairie lakes.

  13. Biogeochemical conversion of sulfur species in saline lakes of Steppe Altai

    Science.gov (United States)

    Borzenko, Svetlana V.; Kolpakova, Marina N.; Shvartsev, Stepan L.; Isupov, Vitaly P.

    2017-08-01

    The aim of the present research is to identify the main mechanisms of sulfur behavior in saline lakes in the course of time and followed transformations in their chemical composition. The influence of water on chemical composition of biochemical processes involved in decomposition of organic matter was determined by the study of behavior of reduced forms of sulfur in lakes. The determination of reduced forms of sulfur was carried out by successive transfer of each form of sulfur to hydrogen sulfide followed by photometric measurements. The other chemical components were determined by standard methods (atomic absorption, potentiometric method, titration method and others). The salt lakes of the Altai steppe were studied in summer season 2013-2015. Analysis of the chemical composition of the saline lakes of Altai Krai has shown that carbonate-, hydrocarbonate- and chloride ions dominate among anions; sodium is main cation; sulfates are found in subordinate amounts. Reduced forms of sulfur occur everywhere: hydrogen and hydrosulfide sulfur S2- prevail in the bottom sediments; its derivative—elemental S0—prevails in the lakes water. The second important species in water of soda lakes is hydrosulfide sulfur S2-, and in chloride lakes is thiosulfate sulfur S2O3 2- . The lag in the accumulation of sulfates in soda lakes in comparison to chloride lakes can be explained by their bacterial reduction, followed by the formation and deposition of iron sulfides in sediments. In chloride lakes gypsum is a predominantly barrier for sulfates.

  14. Lake Afdera: a threatened saline lake in Ethiopia | Getahun | SINET ...

    African Journals Online (AJOL)

    Lake Afdera is a saline lake located in the Afar region, Northern Ethiopia. Because of its inaccessibility it is one of the least studied lakes of the country. It supports life including three species of fish of which two are endemic. Recently, reports are coming out that this lake is used for salt extraction. This paper gives some ...

  15. Salinity shapes food webs in shallow lakes: implications for increasing aridity with climate change

    DEFF Research Database (Denmark)

    Vidal, Nicolas; Yu, Jinlei; Gutierrez, Maria Florencia

    2015-01-01

    on community and food web structure in 24 lakes along a wide salinity gradient, from freshwater (0.5 g L-1) to hypersaline lakes (115 g L-1), in a semiarid region in North West China. Fish, zooplankton and macroinvertebrate communities were sampled during July 2014 for determination of taxonomy and size......A reduction in runoff and higher evaporation rates are expected to occur towards 2050 in arid and semiarid regions of the world, resulting in a reduction of water level and salinization of inland waters. Besides the natural process of catchment erosion, human activities such as irrigation of crops...... may also increase salinization. Reduced biodiversity in freshwater systems is the most commonly reported effect of salinization, which may have implications for food web structure and likely for ecosystem functioning as well. The objective of the study was to analyze the effects of salinity...

  16. The hydrogeochemical and isotopic investigations of the two-layered Shiraz aquifer in the northwest of Maharlou saline lake, south of Iran

    Science.gov (United States)

    Tajabadi, Mehdi; Zare, Mohammad; Chitsazan, Manouchehr

    2018-03-01

    Maharlou saline lake is the outlet of Shiraz closed basin in southern Iran, surrounded by several disconnected alluvial fresh water aquifers. These aquifers in the west and northwest of the lake are recharged by karstic anticlines such as Kaftarak in the north and Barmshour in the south. Here groundwater salinity varies along the depth so that better quality water is located below brackish or saline waters. The aim of this study is to investigate the reason for the salinity anomaly and the origin of the fresher groundwater in lower depth. Hence, the change in groundwater salinity along depth has been investigated by means of a set of geoelectrical, hydrogeological, hydrogeochemical, and environmental isotopes data. The interpretation of geoelectrical profiles and hydrogeological data indicates that the aquifer in the southeast of Shiraz plain is a two-layer aquifer separated by a fine-grained (silt and clay) layer with an approximate thickness of 40 m at the depth of about 100-120 m. Hydrgeochemistry showed that the shallow aquifer is recharged by Kaftarak karstic anticline and is affected by the saline lake water. The lake water fraction varies in different parts from zero for shallow aquifer close to the karstic anticlines to ∼70 percent in the margin of the lake. The deep aquifer is protected from the intrusion of saline lake water due to the presence of the above-mentioned confining layer with lake water fraction of zero. The stable isotopes signatures also indicate that the 'fresh' groundwater belonging to the deep aquifer is not subject to severe evaporation or mixing which is typical of the karstic water of the area. It is concluded that the characteristics of the deep aquifer are similar to those of the karstic carbonate aquifer. This karstic aquifer is most probably the Barmshour carbonated anticline buried under the shallow aquifer in the southern part. It may also be the extension of the Kaftarak anticline in the northern part.

  17. Vascular flora of saline lakes in the southern high plains of Texas and eastern New Mexico

    Science.gov (United States)

    Rosen, David J.; Conway, Warren C.; Haukos, David A.; Caskey, Amber D.

    2013-01-01

    Saline lakes and freshwater playas form the principal surface hydrological feature of the High Plains of the Southern Great Plains. Saline lakes number less than 50 and historically functioned as discharge wetlands with relatively consistent water availability due to the presence of one or more springs. Currently, less than ten saline lakes contain functional springs. A survey of vascular plants at six saline lakes in the Southern High Plains of northwest Texas and one in eastern New Mexico during May and September 2009 resulted in a checklist of 49 species representing 16 families and 40 genera. The four families with the most species were Asteraceae (12), Amaranthaceae (8), Cyperaceae (5), and Poaceae (12). Non-native species (Bromus catharticus, Poa compressa, Polypogon monspeliensis, Sonchus oleraceus, Kochia scoparia, and Tamarix ramosissima) accounted for 10% of the total species recorded. Whereas nearly 350 species of vascular plants have been identified in playas in the Southern High Plains, saline lakes contain a fraction of this species richness. The Southern High Plains saline lake flora is regionally unique, containing taxa not found in playas, with species composition that is more similar to temperate desert wetlands of the Intermountain Region and Gulf Coastal Plain of North America.

  18.  Marine derived dinoflagellates in Antarctic saline lakes: Community composition and annual dynamics

    DEFF Research Database (Denmark)

    Rengefors, K.; Layborn-Parry, L.; Logares, R.

    2008-01-01

    polar dinoflagellate community, and not freshwater species. Polarella glacialis Montresor, Procaccini et Stoecker, a bipolar marine species, was for the first time described in a lake habitat and was an important phototrophic component in the higher salinity lakes. In the brackish lakes, we found a new...... sibling species to the brackish-water species Scrippsiella hangoei (J. Schiller) J. Larsen, previously observed only in the Baltic Sea....

  19. A Geology-Based Estimate of Connate Water Salinity Distribution

    Science.gov (United States)

    2014-09-01

    poses serious environmental concerns if connate water is mobilized into shallow aquifers or surface water systems. Estimating the distribution of...groundwater flow and salinity transport near the Herbert Hoover Dike (HHD) surrounding Lake Okeechobee in Florida . The simulations were conducted using the...on the geologic configuration at equilibrium, and the horizontal salinity distribution is strongly linked to aquifer connectivity because

  20. Continuous water-quality monitoring to improve lake management at Lake Mattamuskeet National Wildlife Refuge

    Science.gov (United States)

    Michelle Moorman; Tom Augspurger

    2016-01-01

    The U.S. Fish and Wildlife Service has partnered with U.S. Geological Survey to establish 2 continuous water-quality monitoring stations at Lake Mattamuskeet. Stations on the east and west side of the lake measure water level, clarity, dissolved oxygen, pH, temperature, salinity, and conductivity.

  1. Multi-proxy paleoenvironmental reconstruction of saline lake carbonates: Paleoclimatic and paleogeographic implications (Priabonian-Rupelian, Issirac Basin, SE France)

    Science.gov (United States)

    Lettéron, Alexandre; Fournier, François; Hamon, Youri; Villier, Loïc; Margerel, Jean-Pierre; Bouche, Alexandre; Feist, Monique; Joseph, Philippe

    2017-08-01

    A 200-m thick carbonate succession has been deposited in shallow-water, saline lake environments during the Priabonian-Rupelian in the Issirac Basin (South-East France). The palaeoenvironmental and palaeogeographic significance of such saline lake carbonates has been characterized on the basis of a multi-proxy analysis including 1) depositional and diagenetic features, 2) biological components (molluscs, ostracods, benthic foraminifers, characean) and 3) carbon, oxygen and strontium stable isotopes. Biological associations are indicative of dominantly shallow (climate (dry versus humid) are the three key factors controlling the water composition, carbonate production and depositional environments in the Issirac lake. Although the ASCI (Alès-Issirac-Saint-Chaptes) lacustrine system likely represents an athalassic (inland) lake system evolving through times, the stable isotope composition (C, O and Sr) of carbonates strongly suggests the occurrence of transient connections of the ASCI lake water with water bodies influenced by seawater and/or fed with sulfates deriving from Triassic evaporites. The Issirac Basin may be therefore interpreted as a sill area connecting the ASCI lacustrine system with the Rhône valley (Mormoiron and Valence) saline lake systems during maximum flooding periods. Finally, changes in depositional features, biota and stable isotope composition of carbonates in unit U3 suggest a transition from relatively dry to more humid climate during the uppermost Priabonian or earliest Rupelian.

  2. Evaluation of Water Quality Change of Brackish Lake in Snowy Cold Regions Accompanying Climate Change

    Science.gov (United States)

    Kudo, K.; Hasegawa, H.; Nakatsugawa, M.

    2017-12-01

    This study addresses evaluation of water quality change of brackish lake based on the estimation of hydrological quantities resulting from long-term hydrologic process accompanying climate change. For brackish lakes, such as Lake Abashiri in Eastern Hokkaido, there are concerns about water quality deterioration due to increases in water temperature and salinity. For estimating some hydrological quantities in the Abashiri River basin, including Lake Abashiri, we propose the following methods: 1) MRI-NHRCM20, a regional climate model based on the Representative Concentration Pathways adopted by IPCC AR5, 2) generalized extreme value distribution for correcting bias, 3) kriging adopted variogram for downscaling and 4) Long term Hydrologic Assessment model considering Snow process (LoHAS). In addition, we calculate the discharge from Abashiri River into Lake Abashiri by using estimated hydrological quantities and a tank model, and simulate impacts on water quality of Lake Abashiri due to climate change by setting necessary conditions, including the initial conditions of water temperature and water quality, the pollution load from the inflow rivers, the duration of ice cover and salt pale boundary. The result of the simulation of water quality indicates that climate change is expected to raise the water temperature of the lake surface by approximately 4°C and increase salinity of surface of the lake by approximately 4psu, also if salt pale boundary in the lake raises by approximately 2-m, the concentration of COD, T-N and T-P in the bottom of the lake might increase. The processes leading to these results are likely to be as follows: increased river water flows in along salt pale boundary in lake, causing dynamic flow of surface water; saline bottom water is entrained upward, where it mixes with surface water; and the shear force acting at salt pale boundary helps to increase the supply of salts from bottom saline water to the surface water. In the future, we will

  3. Chemical composition and trophic state of shallow saline steppe lakes in central Asia (North Kazakhstan).

    Science.gov (United States)

    Boros, Emil; Jurecska, Laura; Tatár, Enikő; Vörös, Lajos; Kolpakova, Marina

    2017-10-09

    The purpose of this study was to identify the prevailing chemical composition and trophic state of the shallow saline steppe lakes of North Kazakhstan along a wide size range (SO 4 and Na-Cl (n = 16; 64%); the Ca, Mg, HCO 3 , and SO 4 ions precipitate with increasing salinity (2-322 g L -1 ); and ion composition shifts from Na>Mg-Cl>SO 4 to Na-Cl. The most of the chemical variables positively, but chlorophyll a negatively, correlated with total dissolved solids, and the total phosphorus had no significant correlation with any variables. The trophic state of these lakes in most cases exceeded the hypertrophic level. The increase in salinity causes change in chemical composition and effects on the phytoplankton development independently from the size of water surface, and the human disturbances had negligible effect on the trophic state of shallow saline lakes in this region of Kazakhstan.

  4. Water quality management for Lake Mariout

    Directory of Open Access Journals (Sweden)

    N. Donia

    2016-06-01

    Full Text Available A hydrodynamic and water quality model was used to study the current status of the Lake Mariout subject to the pollution loadings from the agricultural drains and the point sources discharging directly to the Lake. The basic water quality modelling component simulates the main water quality parameters including the oxygen compounds (BOD, COD, DO, nutrients compounds (NH4, TN, TP, and finally the temperature, salinity and inorganic matter. Many scenarios have been conducted to improve the circulation and the water quality in the lake and to assess the spreading and mixing of the discharge effluents and its impact on the water quality of the main basin. Several pilot interventions were applied through the model in the Lake Mariout together with the upgrades of the East and West Waste Water Treatment Plants in order to achieve at least 5% reduction in the pollution loads entering the Mediterranean Sea through Lake Mariout in order to improve the institutional mechanisms for sustainable coastal zone management in Alexandria in particular to reduce land-based pollution to the Mediterranean Sea.

  5. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming.

    Science.gov (United States)

    Lin, Qiuqi; Xu, Lei; Hou, Juzhi; Liu, Zhengwen; Jeppesen, Erik; Han, Bo-Ping

    2017-11-01

    Warming has pronounced effects on lake ecosystems, either directly by increased temperatures or indirectly by a change in salinity. We investigated the current status of zooplankton communities and trophic structure in 45 Tibetan lakes along a 2300 m altitude and a 76 g/l salinity gradient. Freshwater to hyposaline lakes mainly had three trophic levels: phytoplankton, small zooplankton and fish/Gammarus, while mesosaline to hypersaline lakes only had two: phytoplankton and large zooplankton. Zooplankton species richness declined significantly with salinity, but did not relate with temperature. Furthermore, the decline in species richness with salinity in lakes with two trophic levels was much less abrupt than in lakes with three trophic levels. The structural variation of the zooplankton community depended on the length of the food chain, and was significantly explained by salinity as the critical environmental variable. The zooplankton community shifted from dominance of copepods and small cladoceran species in the lakes with low salinity and three trophic levels to large saline filter-feeding phyllopod species in those lakes with high salinity and two trophic levels. The zooplankton to phytoplankton biomass ratio was positively related with temperature in two-trophic-level systems and vice versa in three-trophic-level systems. As the Tibetan Plateau is warming about three times faster than the global average, our results imply that warming could have a considerable impact on the structure and function of Tibetan lake ecosystems, either via indirect effects of salinization/desalinization on species richness, composition and trophic structure or through direct effects of water temperature on trophic interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Circulation and sedimentation in a tidal-influenced fjord lake: Lake McKerrow, New Zealand

    Science.gov (United States)

    Pickrill, R. A.; Irwin, J.; Shakespeare, B. S.

    1981-01-01

    Lake McKerrow is a tide-influenced fjord lake, separated from the open sea by a Holocene barrier spit. Fresh, oxygenated waters of the epilimnion overlie saline, deoxygenated waters of the hypolimnion. During winter, water from the Upper Hollyford River interflows along the pycnocline, depositing coarse silt on the steep delta and transporting finer sediment down-lake. An extensive sub-lacustrine channel system on the foreset delta slope is possibly maintained by turbidity currents. Saline waters of the hypolimnion are periodically replenished. During high tides and low lake levels saline water flows into the lake and downslope into the lake basin as a density current in a well defined channel.

  7. Physico-chemical conditions for plankton in Lake Timsah, a saline lake on the Suez Canal

    Science.gov (United States)

    El-Serehy, H. A. H.; Sleigh, M. A.

    1992-02-01

    Lake Timsah receives high salinity water from the Suez Canal, mainly from the south, and freshwater from a Nile canal and other sources, producing a salinity stratification with surface salinities of 20-40‰ and over 40‰ in deeper water. Water temperature at a depth of 50-70 cm fell to below 20 °C in winter and rose to above 30 °C in summer; oxygen concentration at the same depth ranged between 6-10 mg l -1 and the pH was 8·1-8·3, and at mid-day this water was supersaturated with oxygen through 6-8 months of the year. The main chemical nutrients reached their highest levels in winter (December-February) and their lowest levels in summer (May-August), silicate varying between 1-7 μ M, phosphate between 0·1 and 0·8 μ M and nitrate between 4-10 μ M; nitrite varied in a more complex manner, usually between 0·25 and 0·4 μ M. The atomic ratio of N/P was generally well above the Redfield ratio level, except for a few months in midwinter. These nutrient concentrations are high in comparison with those of unpolluted seas of the region, but are typical of the more eutrophic coastal waters in most parts of the world.

  8. Concentrations of arsenic in brackish lake water : Application of tristimulus colorimetric determination

    OpenAIRE

    Rahman, Md. Mustafizur; Seike, Yasushi; Okumura, Minoru

    2006-01-01

    The evaluation of a simple and rapid tristimulus colorimetric method for the determination of arsenic in brackish waters and its application to brackish water samples taken from brackish Lake Nakaumi are described. The determinations of arsenic in brackish water samples were made satisfactorily independent of sample salinity. By applying this method to lake water samples, the distributions and behaviors of arsenic in the lake and their controlling factors were clarified, such as seasonal vari...

  9. Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau.

    Science.gov (United States)

    Liu, Yongqin; Priscu, John C; Xiong, Jinbo; Conrad, Ralf; Vick-Majors, Trista; Chu, Haiyan; Hou, Juzhi

    2016-03-01

    Archaeal communities and the factors regulating their diversity in high altitude lakes are poorly understood. Here, we provide the first high-throughput sequencing study of Archaea from Tibetan Plateau lake sediments. We analyzed twenty lake sediments from the world's highest and largest plateau and found diverse archaeal assemblages that clustered into groups dominated by methanogenic Euryarchaeota, Crenarchaeota and Halobacteria/mixed euryarchaeal phylotypes. Statistical analysis inferred that salinity was the major driver of community composition, and that archaeal diversity increased with salinity. Sediments with the highest salinities were mostly dominated by Halobacteria. Crenarchaeota dominated at intermediate salinities, and methanogens were present in all lake sediments, albeit most abundant at low salinities. The distribution patterns of the three functional types of methanogens (hydrogenotrophic, acetotrophic and methylotrophic) were also related to changes in salinity. Our results show that salinity is a key factor controlling archaeal community diversity and composition in lake sediments on a spatial scale that spans nearly 2000 km on the Tibetan Plateau. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Environmental and zooplankton parameter changes during the drying of a saline shallow temporary lake in central Argentina

    Directory of Open Access Journals (Sweden)

    Alicia María Vignatti

    2017-09-01

    Full Text Available Central Argentina has numerous saline lakes sustained by groundwater sources and rainfall. These lakes are temporary and experience significant changes in water level and salinity, depending on wet and dry climate cycles. This study aims to investigate the scarcely known dynamics of environmental and zooplankton parameters during the drying phase of one of these lakes. Monthly samples were taken from December 2 012 to July 2 013 in the Ojo de Agua Uriburu lake, previous to its drying. At the beginning of the study, the lake’s depth was 0.7 m and its salinity was 16.65 g L−1, later, in July, its depth decreased to 0.06 m and its salinity increased to 92.9 g L−1. Zooplankton species richness was low (three crustaceans and three rotifers, with Boeckella poopoensis and Moina eugeniae dominating in the system. Maximum density and biomass were attained by the two dominant species in April (318.5 i nd L−1 and 3 029.1 µg L−1 dry weight; and 242.4 i nd L −1 and 1 530.4 µg L−1 dry weight, for B. poopoensis and M. ugeniae, respectively, and no correlation was found between these parameters and salinity. Maximum average body lengths for both species were observed in the last months of sampling (M. eugeniae: 1 020 ± 84.2 µm and B. poopoensis: 1 348.8 ± 89.0 µm. At this point of the study, neither juvenile nor larval stages were found. The increase in average body size is, arguably, the result of increased salinity in the system through a negative effect on reproduction. Because this lake reached hypersalinity, its ecological dynamics are unique among those of other temporary, saline lakes that dried in central Argentina. Similar studies on other temporary ecosystems are needed to increase the information on these little known ecological aspects.

  11. Ecological, biogeochemical and salinity changes in coastal lakes and wetlands over the last 200 years

    Science.gov (United States)

    Roberts, Lucy; Holmes, Jonathan; Horne, David

    2016-04-01

    Shallow lakes provide extensive ecosystem services and are ecologically important aquatic resources supporting a diverse flora and fauna. In marginal-marine areas, where such lakes are subjected to the multiple pressures of coastal erosion, sea level rise, increasing sea surface temperature and increasing frequency and intensity of storm surges, environments are complex and unstable. They are characterised by physico-chemical variations due to climatic (precipitation/evaporation cycles) and dynamic factors (tides, currents, freshwater drainage and sea level changes). Combined with human activity in the catchment these processes can alter the salinity, habitat and ecology of coastal fresh- to brackish water ecosystems. In this study the chemical and biological stability of coastal lakes forming the Upper Thurne catchment in the NE of the Norfolk Broads, East Anglia, UK are seriously threatened by long-term changes in salinity resulting from storm surges, complex hydrogeology and anthropogenic activity in the catchment. Future management decisions depend on a sound understanding of the potential ecological impacts, but such understanding is limited by short-term observations and measurements. This research uses palaeolimnological approaches, which can be validated and calibrated with historical records, to reconstruct changes in the aquatic environment on a longer time scale than can be achieved by observations alone. Here, salinity is quantitatively reconstructed using the trace-element geochemistry (Sr/Ca and Mg/Ca) of low Mg-calcite shells of Ostracoda (microscopic bivalved crustaceans) and macrophyte and macroinvertebrate macrofossil remains are used as a proxy to assess ecological change in response to variations in salinity. δ13C values of Cladocera (which are potentially outcompeted by the mysid Neomysis integer with increasing salinity and eutrophication) can be used to reconstruct carbon cycling and energy pathways in lake food webs, which alongside

  12. Modeling spatial and temporal variations in temperature and salinity during stratification and overturn in Dexter Pit Lake, Tuscarora, Nevada, USA

    Science.gov (United States)

    Balistrieri, L.S.; Tempel, R.N.; Stillings, L.L.; Shevenell, L.A.

    2006-01-01

    This paper examines the seasonal cycling of temperature and salinity in Dexter pit lake in arid northern Nevada, and describes an approach for modeling the physical processes that operate in such systems. The pit lake contains about 596,200 m3 of dilute, near neutral (pHs 6.7-9) water. Profiles of temperature, conductivity, and selected element concentrations were measured almost monthly during 1999 and 2000. In winter (January-March), the pit lake was covered with ice and bottom water was warmer (5.3 ??C) with higher total dissolved solids (0.298 g/L) than overlying water (3.96 ??C and 0.241 g/L), suggesting inflow of warm (11.7 ??C) groundwater with a higher conductivity than the lake (657 versus 126-383 ??S/cm). Seasonal surface inflow due to spring snowmelt resulted in lower conductivity in the surface water (232-247 ??S/cm) relative to deeper water (315-318 ??S/cm). The pit lake was thermally stratified from late spring through early fall, and the water column turned over in late November (2000) or early December (1999). The pit lake is a mixture of inflowing surface water and groundwater that has subsequently been evapoconcentrated in the arid environment. Linear relationships between conductivity and major and some minor (B, Li, Sr, and U) ions indicate conservative mixing for these elements. Similar changes in the elevations of the pit lake surface and nearby groundwater wells during the year suggest that the pit lake is a flow-through system. This observation and geochemical information were used to configure an one-dimensional hydrodynamics model (Dynamic Reservoir Simulation Model or DYRESM) that predicts seasonal changes in temperature and salinity based on the interplay of physical processes, including heating and cooling (solar insolation, long and short wave radiation, latent, and sensible heat), hydrologic flow (inflow and outflow by surface and ground water, pumping, evaporation, and precipitation), and transfers of momentum (wind stirring

  13. Modeling spatial and temporal variations in temperature and salinity during stratification and overturn in Dexter Pit Lake, Tuscarora, Nevada, USA

    International Nuclear Information System (INIS)

    Balistrieri, Laurie S.; Tempel, Regina N.; Stillings, Lisa L.; Shevenell, Lisa A.

    2006-01-01

    This paper examines the seasonal cycling of temperature and salinity in Dexter pit lake in arid northern Nevada, and describes an approach for modeling the physical processes that operate in such systems. The pit lake contains about 596,200 m 3 of dilute, near neutral (pHs 6.7-9) water. Profiles of temperature, conductivity, and selected element concentrations were measured almost monthly during 1999 and 2000. In winter (January-March), the pit lake was covered with ice and bottom water was warmer (5.3 deg. C) with higher total dissolved solids (0.298 g/L) than overlying water (3.96 deg. C and 0.241 g/L), suggesting inflow of warm (11.7 deg. C) groundwater with a higher conductivity than the lake (657 versus 126-383 μS/cm). Seasonal surface inflow due to spring snowmelt resulted in lower conductivity in the surface water (232-247 μS/cm) relative to deeper water (315-318 μS/cm). The pit lake was thermally stratified from late spring through early fall, and the water column turned over in late November (2000) or early December (1999). The pit lake is a mixture of inflowing surface water and groundwater that has subsequently been evapoconcentrated in the arid environment. Linear relationships between conductivity and major and some minor (B, Li, Sr, and U) ions indicate conservative mixing for these elements. Similar changes in the elevations of the pit lake surface and nearby groundwater wells during the year suggest that the pit lake is a flow-through system. This observation and geochemical information were used to configure an one-dimensional hydrodynamics model (Dynamic Reservoir Simulation Model or DYRESM) that predicts seasonal changes in temperature and salinity based on the interplay of physical processes, including heating and cooling (solar insolation, long and short wave radiation, latent, and sensible heat), hydrologic flow (inflow and outflow by surface and ground water, pumping, evaporation, and precipitation), and transfers of momentum (wind

  14. Salinity Affects the Composition of the Aerobic Methanotroph Community in Alkaline Lake Sediments from the Tibetan Plateau.

    Science.gov (United States)

    Deng, Yongcui; Liu, Yongqin; Dumont, Marc; Conrad, Ralf

    2017-01-01

    Lakes are widely distributed on the Tibetan Plateau, which plays an important role in natural methane emission. Aerobic methanotrophs in lake sediments reduce the amount of methane released into the atmosphere. However, no study to date has analyzed the methanotroph community composition and their driving factors in sediments of these high-altitude lakes (>4000 m). To provide new insights on this aspect, the abundance and composition in the sediments of six high-altitude alkaline lakes (including both freshwater and saline lakes) on the Tibetan Plateau were studied. The quantitative PCR, terminal restriction fragment length polymorphism, and 454-pyrosequencing methods were used to target the pmoA genes. The pmoA gene copies ranged 10 4 -10 6 per gram fresh sediment. Type I methanotrophs predominated in Tibetan lake sediments, with Methylobacter and uncultivated type Ib methanotrophs being dominant in freshwater lakes and Methylomicrobium in saline lakes. Combining the pmoA-pyrosequencing data from Tibetan lakes with other published pmoA-sequencing data from lake sediments of other regions, a significant salinity and alkalinity effect (P = 0.001) was detected, especially salinity, which explained ∼25% of methanotroph community variability. The main effect was Methylomicrobium being dominant (up to 100%) in saline lakes only. In freshwater lakes, however, methanotroph composition was relatively diverse, including Methylobacter, Methylocystis, and uncultured type Ib clusters. This study provides the first methanotroph data for high-altitude lake sediments (>4000 m) and shows that salinity is a driving factor for the community composition of aerobic methanotrophs.

  15. Features of acid-saline systems of Southern Australia

    International Nuclear Information System (INIS)

    Dickson, Bruce L.; Giblin, Angela M.

    2009-01-01

    The discovery of layered, SO 4 -rich sediments on the Meridiani Planum on Mars has focused attention on understanding the formation of acid-saline lakes. Many salt lakes have formed in southern Australia where regional groundwaters are characterized by acidity and high salinity and show features that might be expected in the Meridiani sediments. Many (but not all) of the acid-saline Australian groundwaters are found where underlying Tertiary sediments are sulfide-rich. When waters from the formations come to the surface or interact with oxidised meteoric water, acid groundwaters result. In this paper examples of such waters around Lake Tyrrell, Victoria, and Lake Dey-Dey, South Australia, are reviewed. The acid-saline groundwaters typically have dissolved solids of 30-60 g/L and pH commonly 4 and MgSO 4 ) or differential separation of elements with differing solubility (K, Na, Ti, Cr). Thus, it is considered unlikely that groundwaters or evaporative salt-lake systems, as found on earth, were involved. Instead, these features point to a water-poor system with local alteration and very little mobilization of elements

  16. Gymnocypris przewalskii decreases cytosolic carbonic anhydrase expression to compensate for respiratory alkalosis and osmoregulation in the saline-alkaline lake Qinghai.

    Science.gov (United States)

    Yao, Zongli; Guo, Wenfei; Lai, Qifang; Shi, Jianquan; Zhou, Kai; Qi, Hongfang; Lin, Tingting; Li, Ziniu; Wang, Hui

    2016-01-01

    Naked carp (Gymnocypris przewalskii), endemic to the saline-alkaline Lake Qinghai, have the capacity to tolerate combined high salinity and alkalinity, but migrate to spawn in freshwater rivers each year. In this study, the full-length cDNA of the cytosolic carbonic anhydrase c isoform of G. przewalskii (GpCAc) was amplified and sequenced; mRNA levels and enzyme activity of GpCAc and blood chemistry were evaluated to understand the compensatory responses as the naked carp returned to the saline-alkaline lake after spawning. We found that GpCAc had a total length of 1400 bp and encodes a peptide of 260 amino acids. Comparison of the deduced amino acid sequences and phylogenetic analysis showed that GpCAc was a member of the cytosolic carbonic anhydrase II-like c family. Cytosolic-carbonic-anhydrase-c-specific primers were used to analyze the tissue distribution of GpCAc mRNA expression. Expression of GpCAc mRNA was found in brain, gill, liver, kidney, gut, and muscle tissues, but primarily in the gill and posterior kidney; however, none was evident in red blood cells. Transferring fish from river water to lake water resulted in a respiratory alkalosis, osmolality, and ion rise in the blood, as well as significant decreases in the expression and enzyme activity of GpCAc in both the gill and kidney within 96 h. These results indicate that GpCAc may play an important role in the acclimation to both high salinity and carbonate alkalinity. Specifically, G. przewalskii decreases cytosolic carbonic anhydrase c expression to compensate for a respiratory alkalosis and to aid in osmoregulation during the transition from river to saline-alkaline lake.

  17. Use of microwave remote sensing in salinity estimation

    International Nuclear Information System (INIS)

    Singh, R.P.; Kumar, V.; Srivastav, S.K.

    1990-01-01

    Soil-moisture interaction and the consequent liberation of ions causes the salinity of waters. The salinity of river, lake, ocean and ground water changes due to seepage and surface runoff. We have studied the feasibility of using microwave remote sensing for the estimation of salinity by carrying out numerical calculations to study the microwave remote sensing responses of various models representative of river, lake and ocean water. The results show the dependence of microwave remote sensing responses on the salinity and surface temperature of water. The results presented in this paper will be useful in the selection of microwave sensor parameters and in the accurate estimation of salinity from microwave remote sensing data

  18. Lake Urmia (Iran): can future socio-ecologically motivated river basin management restore lake water levels in an arid region with extensive agricultural development?

    Science.gov (United States)

    Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh

    2015-04-01

    Lake Urmia, one of the world's largest hyper saline lakes located in northwest of Iran, is a UNESCO Biosphere Reserve and Ramsar site, protected as a national park and, supports invaluable and unique biodiversity and related ecosystem services for the region's 6.5 million inhabitants. Due to increased development of the region's water resources for agriculture and industry and to a certain extent climate change, the lake has started to shrink dramatically since 1995 and now is holding less than 30 percent of its volume. Rapid development in agricultural sector and land-use changes has resulted in immense construction of dams and water diversions in almost all lake feeding rivers, intensifying lake shrinking, increasing salinity and degrading its ecosystem. Recently, lake's cultural and environmental importance and social pressure has raised concerns and brought government attention to the lake restoration plans. Along with poor management, low yield agriculture as the most water consuming activity in the region with, rapid, insufficient development is one of the most influential drivers in the lake desiccation. Part of the lake restoration plans in agricultural sector is to restrict the agricultural areas in the main feeding river basins flowing mostly in the southern part of the lake and decreasing the agricultural water use in this area. This study assess the efficiency and effectiveness of the proposed plans and its influence on the lake level rise and its impacts on economy in the region using a system dynamics model developed for the Lake consist of hydrological and agro-economical sub-systems. The effect of decrease in agricultural area in the region on GDP and region economy was evaluated and compared with released water contribution in lake level rise for a five year simulation period.

  19. Changes in the water quality and bacterial community composition of an alkaline and saline oxbow lake used for temporary reservoir of geothermal waters.

    Science.gov (United States)

    Borsodi, Andrea K; Szirányi, Barbara; Krett, Gergely; Márialigeti, Károly; Janurik, Endre; Pekár, Ferenc

    2016-09-01

    Geothermal waters exploited in the southeastern region of Hungary are alkali-hydrogen-carbonate type, and beside the high amount of dissolved salt, they contain a variety of aromatic, heteroaromatic, and polyaromatic hydrocarbons. The majority of these geothermal waters used for heating are directed into surface waters following a temporary storage in reservoir lakes. The aim of this study was to gain information about the temporal and spatial changes of the water quality as well as the bacterial community composition of an alkaline and saline oxbow lake operated as reservoir of used geothermal water. On the basis of the water physical and chemical measurements as well as the denaturing gradient gel electrophoresis (DGGE) patterns of the bacterial communities, temporal changes were more pronounced than spatial differences. During the storage periods, the inflow, reservoir water, and sediment samples were characterized with different bacterial community structures in both studied years. The 16S ribosomal RNA (rRNA) gene sequences of the bacterial strains and molecular clones confirmed the differences among the studied habitats. Thermophilic bacteria were most abundant in the geothermal inflow, whereas the water of the reservoir was dominated by cyanobacteria and various anoxygenic phototrophic prokaryotes. In addition, members of several facultative anaerobic denitrifying, obligate anaerobic sulfate-reducing and syntrophic bacterial species capable of decomposition of different organic compounds including phenols were revealed from the water and sediment of the reservoir. Most of these alkaliphilic and/or halophilic species may participate in the local nitrogen and sulfur cycles and contribute to the bloom of phototrophs manifesting in a characteristic pink-reddish discoloration of the water of the reservoir.

  20. Salinization and dilution history of ground water discharging into the Sea of Galilee, the Dead Sea Transform, Israel

    International Nuclear Information System (INIS)

    Bergelson, G.; Nativ, R.; Bein, A.

    1999-01-01

    The mechanism governing salinization of ground water discharging into the Sea of Galilee in Israel has been the subject of debate for several decades. Because the lake provides 25% of the water consumed annually in Israel, correct identification of the salt sources is essential for the establishment of suitable water-management strategies for the lake and the ground water in the surrounding aquifers. Existing salinization models were evaluated in light of available and newly acquired data including general chemistry, and O, H, C and Cl isotopes. Based on the chemical and isotopic observations, the proposed salt source is an ancient, intensively evaporated brine (21- to 33-fold seawater) which percolated through the valley formations from a lake which had formed in the Rift Valley following seawater intrusion during the late Miocene. Low Na:Cl and high Br:Cl values support the extensive evaporation, whereas high Ca:Cl and low Mg:Cl values indicate the impact of dolomitization of the carbonate host rock on the residual solution. Based on radiocarbon and other isotope data, the dilution of the original brine occurred in two stages: the first took place similar30andpuncsp; omitted000 a ago by slightly evaporated fresh-to-brackish lake water to form the Sea of Galilee Brine. The second dilution phase is associated with the current hydrological regime as the Sea of Galilee Brine migrates upward along the Rift faults and mixes with the actively circulating fresh ground water to form the saline springs. The spatially variable chemical and isotopic features of the saline springs suggest not only differential dilution by fresh meteoric water, but also differential percolation timing of the original brine into the tectonically disconnected blocks, registering different evaporation stages in the original brine. Consequently, various operations to reduce the brine contribution to the lake may be differentially effective in the various areas. (Copyright (c) 1999 Elsevier Science

  1. Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey

    Directory of Open Access Journals (Sweden)

    Clemens eGlombitza

    2013-07-01

    Full Text Available As part of the International Continental Drilling Program (ICDP deep lake drilling project PaleoVan, we investigated sulfate reduction (SR in deep sediment cores of the saline, alkaline (salinity 21.4 ‰, alkalinity 155 m mEq-1, pH 9.81 Lake Van, Turkey. The cores were retrieved in the Northern Basin (NB and at Ahlat Ridge (AR and reached a maximum depth of 220 m. Additionally, 65-75 cm long gravity cores were taken at both sites. Sulfate reduction rates (SRR were low (≤ 22 nmol cm-3 d-1 compared to lakes with higher salinity and alkalinity, indicating that salinity and alkalinity are not limiting SR in Lake Van. Both sites differ significantly in rates and depth distribution of SR. In NB, SRR are up to 10 times higher than at AR. Sulfate reduction (SR could be detected down to 19 meters below lake floor (mblf at NB and down to 13 mblf at AR. Although SRR were lower at AR than at NB, organic matter (OM concentrations were higher. In contrast, dissolved OM in the pore water at AR contained more macromolecular OM and less low molecular weight OM. We thus suggest, that OM content alone cannot be used to infer microbial activity at Lake Van but that quality of OM has an important impact as well. These differences suggest that biogeochemical processes in lacustrine sediments are reacting very sensitively to small variations in geological, physical or chemical parameters over relatively short distances. 

  2. Plankton community and the relationship with the environment in saline lakes of Onon-Torey plain, Northeastern Mongolia.

    Science.gov (United States)

    Afonina, Ekaterina Yu; Tashlykova, Natalya A

    2018-02-01

    The plankton community of sixteen saline lakes located on Onon-Torey plain (Northeastern Mongolia) during the filling phase and the raising of the water level was investigated in July 2011. Thirty-five taxa of phytoplankton and thirty-one species of zooplankton were found. For phytoplankton, blue-green algae ( Merismopedia elegans , Anabaenopsis elenkinii , Arthrospora fusiformis , Spirulina major , Lyngbya sp., Oscillatoria sp.) and green algae ( Monoraphidium minutum , Tetrastrum komarekii , Ankyra ocellata , Oocystis sp.) were dominant. For zooplankton, Filinia longiseta, Brachionus plicatilis , B. variabilis , Hexarthra mira (Rotifera), Daphnia magna , Moina brachiata , M. mongolica (Cladocera), Arctodiaptomus bacillifer , Mixodiaptomus incrassatus , Metadiaptomus asiaticus (Copepoda) dominated. Mineralization, active hydrogen ratio, dissolved oxygen and water temperature were the main factors influencing the diversity, structure and distribution of plankton organisms in the steppe lakes during low water level. The RDA analysis for phytoplankton and zooplankton from different lakes was carried out for selected two groups which included lakes and a subset related species. The first group is of oligohaline and mesohaline lakes in which mostly green algae, rotifers and copepods inhabit. The second group is of mesohaline and polyhaline lakes with mainly blue-green algae , some crustaceans and rotifers inhabiting. High abundance and biomass of Spirulina major , Oscillatoria sp. and Brachionus variabilis were observed in lakes with high mineralization, pH and temperature.

  3. Ice formation in subglacial Lake Vostok, Central Antarctica

    Science.gov (United States)

    Souchez, R.; Petit, J. R.; Tison, J.-L.; Jouzel, J.; Verbeke, V.

    2000-09-01

    The investigation of chemical and isotopic properties in the lake ice from the Vostok ice core gives clues to the mechanisms involved in ice formation within the lake. A small lake water salinity can be reasonably deduced from the chemical data. Possible implications for the water circulation of Lake Vostok are developed. The characteristics of the isotopic composition of the lake ice indicate that ice formation in Lake Vostok occurred by frazil ice crystal generation due to supercooling as a consequence of rising waters and a possible contrast in water salinity. Subsequent consolidation of the developed loose ice crystals results in the accretion of ice to the ceiling of the lake.

  4. Plankton community and the relationship with the environment in saline lakes of Onon-Torey plain, Northeastern Mongolia

    Directory of Open Access Journals (Sweden)

    Ekaterina Yu. Afonina

    2018-02-01

    Full Text Available The plankton community of sixteen saline lakes located on Onon-Torey plain (Northeastern Mongolia during the filling phase and the raising of the water level was investigated in July 2011. Thirty-five taxa of phytoplankton and thirty-one species of zooplankton were found. For phytoplankton, blue-green algae (Merismopedia elegans, Anabaenopsis elenkinii, Arthrospora fusiformis, Spirulina major, Lyngbya sp., Oscillatoria sp. and green algae (Monoraphidium minutum, Tetrastrum komarekii, Ankyra ocellata, Oocystis sp. were dominant. For zooplankton, Filinia longiseta, Brachionus plicatilis, B. variabilis, Hexarthra mira (Rotifera, Daphnia magna, Moina brachiata, M. mongolica (Cladocera, Arctodiaptomus bacillifer, Mixodiaptomus incrassatus, Metadiaptomus asiaticus (Copepoda dominated. Mineralization, active hydrogen ratio, dissolved oxygen and water temperature were the main factors influencing the diversity, structure and distribution of plankton organisms in the steppe lakes during low water level. The RDA analysis for phytoplankton and zooplankton from different lakes was carried out for selected two groups which included lakes and a subset related species. The first group is of oligohaline and mesohaline lakes in which mostly green algae, rotifers and copepods inhabit. The second group is of mesohaline and polyhaline lakes with mainly blue-green algae, some crustaceans and rotifers inhabiting. High abundance and biomass of Spirulina major, Oscillatoria sp. and Brachionus variabilis were observed in lakes with high mineralization, pH and temperature.

  5. Characteristics of streams and aquifers and processes affecting the salinity of water in the upper Colorado River basin, Texas

    Science.gov (United States)

    Slade, R.M.; Buszka, P.M.

    1994-01-01

    The upper Colorado River and some of its tributaries between Lake J.B. Thomas and O.H. Ivie Reservoir contain saline water (defined as water having dissolved-solids concentrations greater than 1,000 milligrams per liter). Dissolved-solids loads at nine streamflow water-quality stations increased from 1986 to 1988. The largest increases were in Beals Creek and in the Colorado River downstream from Beals Creek as a result of outflow of saline water from Natural Dam Salt Lake. The outflow contained 654,000 tons of dissolved solids and had a mean dissolved-solids concentration of 7,900 milligrams per liter. This amount represents about 51 percent of the dissolved-solids load to E.V. Spence Reservoir during 1986-88.

  6. From lake to estuary, the tale of two waters: a study of aquatic continuum biogeochemistry.

    Science.gov (United States)

    Julian, Paul; Osborne, Todd Z

    2018-01-25

    The balance of fresh and saline water is essential to estuarine ecosystem function. Along the fresh-brackish-saline water gradient within the C-43 canal/Caloosahatchee River Estuary (CRE), the quantity, timing and distribution of water, and associated water quality significantly influence ecosystem function. Long-term trends of water quality and quantity were assessed from Lake Okeechobee to the CRE between May 1978 and April 2016. Significant changes to monthly flow volumes were detected between the lake and the estuary which correspond to changes in upstream management. and climatic events. Across the 37-year period, total phosphorus (TP) flow-weighted mean (FWM) concentration significantly increased at the lake; meanwhile, total nitrogen (TN) FMW concentrations significantly declined at both the lake and estuary headwaters. Between May 1999 and April 2016, TN, TP, and total organic carbon (TOC), ortho-P, and ammonium conditions were assessed within the estuary at several monitoring locations. Generally, nutrient concentrations decreased from upstream to downstream with shifts in TN/TP from values > 20 in the freshwater portion, ~ 20 in the estuarine portion, and estuary is net heterotrophic with productivity being negatively influenced by TP, TN, and TOC likely due to a combination of effects including shading by high color dissolved organic matter. We conclude that rainfall patterns, land use, and the resulting discharges of runoff drive the ecology of the C-43/CRE aquatic continuum and associated biogeochemistry rather than water management associated with Lake Okeechobee.

  7. Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century

    Science.gov (United States)

    Chaudhari, Suyog; Felfelani, Farshid; Shin, Sanghoon; Pokhrel, Yadu

    2018-05-01

    Urmia Lake, once the second largest saline lake in the world, is on the verge of complete desiccation. It has been suggested that the desiccation is caused by intensified human activities, especially irrigation, and prolonged droughts in the lake basin, but there is a lack of quantitative analysis to attribute the observed water level decline to natural and anthropogenic causes. In this study, we use remote sensing data, ground observations, and a hydrological model with human impact assessment capabilities (HiGW-MAT) to investigate the natural and human-induced changes in the hydrology of Urmia Lake basin from 1980 to 2010. Based on the analysis of remote sensing data, we find a ∼98% and ∼180% increase in agricultural lands and urban areas, respectively, from 1987 through 2016, with a corresponding shrinkage in lake area by ∼86%. Further, we use model results to examine the changes in terrestrial water storage (TWS) over the basin including the lake. Results indicate that TWS declined over the lake region and the lake lost water at a faster rate than the watershed did. Comparison of river inflow to the lake from two simulations-one with and the other without human activities-suggests that human water management activities caused a reduction in streamflow of ∼1.74 km3/year from 1995 to 2010, which accounts for ∼86% of the total depletion in lake volume during the same period. It is also found that irrigation water requirement almost tripled, causing high withdrawals from rivers. These results demonstrate that the on-going depletion of Urmia Lake is not solely due to prolonged droughts but also due to direct anthropogenic alterations which caused significant changes in land use, streamflow, and water storage within the basin. This study provides important insights on the natural and human-induced changes in the hydrology of Urmia Lake and highlights the need for a high resolution regional scale modeling approach for better understanding potential future

  8. Hydraulic connectivity and evaporation control the water quality and sources of chromophoric dissolved organic matter in Lake Bosten in arid northwest China.

    Science.gov (United States)

    Zhou, Lei; Zhou, Yongqiang; Hu, Yang; Cai, Jian; Bai, Chengrong; Shao, Keqiang; Gao, Guang; Zhang, Yunlin; Jeppesen, Erik; Tang, Xiangming

    2017-12-01

    Lake Bosten is the largest oligosaline lake in arid northwestern China, and water from its tributaries and evaporation control the water balance of the lake. In this study, water quality and chromophoric dissolved organic matter (CDOM) absorption and fluorescence were investigated in different seasons to elucidate how hydraulic connectivity and evaporation may affect the water quality and variability of CDOM in the lake. Mean suspended solids and turbidity were significantly higher in the upstream tributaries than in the lake, the difference being notably more pronounced in the wet than in the dry season. A markedly higher mean first principal component (PC1) score, which was significantly positively related to protein-like components, and a considerably lower fluorescence peak integration ratio - I C :I T , indicative of the terrestrial humic-like CDOM contribution percentage, were observed in the lake than in the upstream tributaries. Correspondingly, notably higher contribution percentages of terrestrial humic-like components were observed in the river mouth areas than in the remaining lake regions. Furthermore, significantly higher mean turbidity, and notably lower mean conductivity and salinity, were recorded in the southwestern Kaidu river mouth than in the remaining lake regions in the wet season. Notably higher mean salinity is recorded in Lake Bosten than in upstream tributaries. Autochthonous protein-like associated amino-acids and also PC1 scores increased significantly with increasing salinity. We conclude that the dynamics of water quality and CDOM composition in remote arid Lake Bosten are strongly driven by evaporation and also the hydraulic connectivity between the upstream tributaries and the downstream lake. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Stratigraphic and microfossil evidence for hydroclimate changes over the middle to late Holocene in the northern Bahamas from an inland saline lake

    Science.gov (United States)

    van Hengstum, P. J.; Maale, G. E.; Donnelly, J. P.; Onac, B. P.; Sullivan, R.; Winkler, T. S.; Albury, N. A.

    2016-12-01

    No Man's Land is one of the largest inland lakes on the Little Bahama Bank in the northern Bahamas, so its paleoenvironmental history may provide insight into how the regional hydroclimate developed over the Holocene. In its modern state, the site is shallow (aquatic invertebrates (e.g., ostracodes, foraminifera, aquatic mollusks) indicate that the site was a terrestrial ecosystem. However, the site transitioned into a subaqueous freshwater environment at 6400 Cal yrs BP, and the site became a palustrine-lacustrine setting thereafter until 4200 Cal yrs BP. During this time, widespread palustrine-lacustrine carbonate deposition and the appearance of freshwater to low mesohaline microfossils indicates that the lake's salinity was likely oligohaline (charophytes, ostracodes: Candona annae, Cypridopsis vidua, foraminifera: Helenina davescottensis, mollusks: Planorbis, Hydrobia). A salinity increase at 4200 Cal yrs BP is inferred from the appearance of the ostracode Cyprideis americana that typically prefers salinities exceeding 10 psu, and deposition of laminated microbial mats. Thereafter, an organic- rich, algal sapropel unit accumulated that was devoid of any microfossils or mollusks. This unit suggests that the lake hosted a stratified water column, where surface waters supported phytoplankton primary productivity and corrosive or anoxic bottom water conditions either hampered microfossil growth or precluded their preservation. The transition to the modern environment ( 20 psu) at 2600 cal yrs BP is characterized by diversification of brackish ostracodes (Aurila floridana, Dolerocypria inopinata, and Hemicyprideis setipunctata), foraminifera (Elphidium spp., Ammonia beccarii, Triloculina oblonga) and mollusks (Anomalocardia, Cerithidea). Over the middle to late Holocene, it appears that the stratigraphic development and salinity changes in No Man's Land has been driven by groundwater-level rise in response to Holocene sea-level rise, the regional delivery of fresh

  10. Impact of climate change on the Hii River basin and salinity in Lake Shinji: a case study using the SWAT model and a regression curve

    Science.gov (United States)

    The impacts of climate change on water resources were analysed for the Hii River basin and downstream Lake Shinji. The variation between saline and fresh water within these systems means that they encompass diverse ecosystems. Changes in evapotranspiration (ET), snow water equivalent, discharge into...

  11. Palaeoecology of fossil diatoms (the thermometers of salinity) of lake Bonneville, Utah, USA

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    and is presently the Great Salt Lake of Utah, having a salinity of 276 ppt. It is estimated that the saline content changed at the rate of 1 ppt per foot in stages, which is due to variation in the balance between precipitation and inflow evaporation and outflow...

  12. Lake Whitney Comprehensive Water Quality Assessment, Phase 1B- Physical and Biological Assessment (USDOE)

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Robert D; Byars, Bruce W

    2009-11-24

    Baylor University Center for Reservoir and Aquatic Systems Research (CRASR) has conducted a phased, comprehensive evaluation of Lake Whitney to determine its suitability for use as a regional water supply reservoir. The area along the Interstate 35 corridor between Dallas / Fort Worth Metroplex and the Waco / Temple Centroplex represents one of the fastest growth areas in the State of Texas and reliable water supplies are critical to sustainable growth. Lake Whitney is situated midway between these two metropolitan areas. Currently, the City of Whitney as well as all of Bosque and Hill counties obtain their potable water from the Trinity Sands aquifer. Additionally, parts of the adjoining McLennan and Burleson counties utilize the Trinity sands aquifer system as a supplement to their surface water supplies. Population growth coupled with increasing demands on this aquifer system in both the Metroplex and Centroplex have resulted in a rapid depletion of groundwater in these rural areas. The Lake Whitney reservoir represents both a potentially local and regional solution for an area experiencing high levels of growth. Because of the large scope of this project as well as the local, regional and national implications, we have designed a multifaceted approach that will lead to the solution of numerous issues related to the feasibility of using Lake Whitney as a water resource to the region. Phase IA (USEPA, QAPP Study Elements 1-4) of this research focused on the physical limnology of the reservoir (bathymetry and fine scale salinity determination) and develops hydrodynamic watershed and reservoir models to evaluate how salinity would be expected to change with varying hydrologic and climatic factors. To this end, we implemented a basic water quality modeling program in collaboration with the Texas Parks and Wildlife Department and the Texas Commission on Environmental Quality to add to the developing long-term database on Lake Whitney. Finally, we conducted an initial

  13. Water-quality and lake-stage data for Wisconsin lakes, water year 2014

    Science.gov (United States)

    Manteufel, S. Bridgett; Robertson, Dale M.

    2017-05-25

    IntroductionThe U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a database for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2014 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the periodOctober 1, 2013, through September 30, 2014, is called “water year 2014.”The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus, and chlorophyll a concentrations collected during nonfrozen periods are included for many lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes the location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published online at http://nwis.waterdata.usgs.gov/wi/nwis.Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available online. The Wisconsin Water Science Center’s home page is at https://www.usgs.gov/centers/wisconsin-water-science-center. Information

  14. Estimation of the Pollution Level in El Timsah Lake, Egypt

    International Nuclear Information System (INIS)

    Abd El Samie, S.G.; Hassan, H.B.; Hamza, M.S.

    2008-01-01

    The wide range of activities surrounding El Timsah Lake and the discharge effluent at the north and eastern parts of the lake led to high level of anthropogenic pollution in lake water more than the navigation activities. Heavy metals concentration increases in low salinity water toward the land from the discharging effluent. Whereas, oil hydrocarbon and water salinity increase toward Suez Canal current water. This indicates some dispersion of oil ballast water of shipping tankers or from petroleum companies during transportation in the Suez Canal. Chemical and isotopic results indicate lake water stratification, low mixing rate due to slow current of lake water. This led to long residence time of the pollution load enhancing accumulation and precipitation of the heavy metals to the bottom sediment near the boundaries of the lake

  15. Modelling assessment of oil sands pit lakes turn-over potential

    International Nuclear Information System (INIS)

    Mackenzie, I.; Vandenberg, J.; Lauzon, N.; Takyi, A.

    2006-01-01

    Pit lakes form when surface mining operations are discontinued and dewatering is terminated. Their use as a treatment step for oil sands surface mining reclamation waters was discussed. The goal of the End Pit Lake Subgroup of the Cumulative Environmental Management Association is to establish guidelines that will enable operators to achieve acceptable water quality for these lakes. Although both biological and physical processes affect turn-over potential, this presentation focused on the size of pit lakes, their depth, starting lake salinity concentrations, inflow rates and inflow salinity flux. These parameters where selected because of their influence on density gradients and turn-over potential. One-dimensional and two-dimensional modelling simulations were performed to examine turnover potential for a large range of pit lake configurations and conditions. The pit lake scenarios chosen for this modelling study included a wide range of changes in 3 lake sizes (1, 4 and 8 km 2 ), 3 lake depths (5, 20 and 50 m), 2 lake starting salinities (1 and 5 parts per thousand), 2 inflow rates (2 and 10 million m 3 per year), 3 starting inflow salinity concentrations (1, 2 and 4 parts per thousand) and 2 rates of influent salinity decrease (6- and 28- year half-life). Simulations showed that autumn is the governing season for determining turn-over potential. For the scenarios examined in this study, the expelling of salt from saline water upon ice formation and the effect of fresh water loading during spring melt events were not found to be significant factors governing turn-over potential. This presentation reviewed the DYRESM, CE-QUAL-W2, and RMA models used in this study. The conclusions reached by each model was also reviewed along with ongoing follow-up work

  16. Combined use of frequency‐domain electromagnetic and electrical resistivity surveys to delineate the freshwater/saltwater interface near saline lakes in the Nebraska Sand Hills, Nebraska, USA

    Science.gov (United States)

    Ong, John T.; White, Eric A.; Lane, John W.; Halihan, Todd; Zlotnik, Vitaly A; Butler, Dwain K.

    2009-01-01

    We investigate the use of frequency‐domain electromagnetic (FDEM) and electrical resistivity (ER) surveys for rapid and detailed characterization of the direction of lake‐aquifer fluxes and the configuration of salt plumes generated from saline lakes. This methodology was developed and applied at several lakes in the Nebraska Sand Hills, Nebraska, in an area with both freshwater and saline lakes hydraulically connected to the freshwater surficial aquifer. The FDEM survey was conducted by mounting the instrument on a fiberglass cart towed by an all‐terrain vehicle. The towed FDEM surveys covered about 25 km per day and served as a reconnaissance method for choosing locations for the more quantitative and detailed ER surveys. Around the saline lakes, areas with high electrical conductivity are consistent with the regional direction of ground‐water flow. Lower electrical conductivity was measured around the freshwater lakes with anomalies correlating to a paleovalley axis inferred from previous studies. The efficacy of this geophysical approach is attributed to: (1) significant contrast in electrical conductivity between freshwater and saltwater, (2) near‐surface location of the freshwater/saltwater interface, (3) minimal cultural interference, and (4) relative homogeneity of the aquifer materials.

  17. LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models

    Directory of Open Access Journals (Sweden)

    WIM Thiery

    2014-02-01

    Full Text Available The African great lakes are of utmost importance for the local economy (fishing, as well as being essential to the survival of the local people. During the past decades, these lakes experienced fast changes in ecosystem structure and functioning, and their future evolution is a major concern. In this study, for the first time a set of one-dimensional lake models are evaluated for Lake Kivu (2.28°S; 28.98°E, East Africa. The unique limnology of this meromictic lake, with the importance of salinity and subsurface springs in a tropical high-altitude climate, presents a worthy challenge to the seven models involved in the Lake Model Intercomparison Project (LakeMIP. Meteorological observations from two automatic weather stations are used to drive the models, whereas a unique dataset, containing over 150 temperature profiles recorded since 2002, is used to assess the model's performance. Simulations are performed over the freshwater layer only (60 m and over the average lake depth (240 m, since salinity increases with depth below 60 m in Lake Kivu and some lake models do not account for the influence of salinity upon lake stratification. All models are able to reproduce the mixing seasonality in Lake Kivu, as well as the magnitude and seasonal cycle of the lake enthalpy change. Differences between the models can be ascribed to variations in the treatment of the radiative forcing and the computation of the turbulent heat fluxes. Fluctuations in wind velocity and solar radiation explain inter-annual variability of observed water column temperatures. The good agreement between the deep simulations and the observed meromictic stratification also shows that a subset of models is able to account for the salinity- and geothermal-induced effects upon deep-water stratification. Finally, based on the strengths and weaknesses discerned in this study, an informed choice of a one-dimensional lake model for a given research purpose becomes possible.

  18. Potential nitrate removal in a coastal freshwater sediment (Haringvliet Lake, The Netherlands) and response to salinization

    NARCIS (Netherlands)

    Laverman, A.M.; Canavan, R.W.; Slomp, C.P.; Van Cappellen, P.

    2007-01-01

    Nitrogen transformations and their response to salinization were studied in bottom sediment of a coastal freshwater lake (Haringvliet Lake, The Netherlands). The lake was formed as the result of a river impoundment along the south-western coast of the Netherlands, and is currently targeted for

  19. Modelling assessment of End Pit Lakes meromictic potential

    International Nuclear Information System (INIS)

    2006-11-01

    The use of End Pit Lakes have been proposed as a remediation solution for oil sands reclamation and operational waters. This report modelled the main factors controlling the occurrence of stratification in Pit Lakes in order to establish design and management guidelines for the Cumulative Environmental Management Association's End Pit Lake Sub-group. The study focused on End Pit Lake size, depth, starting lake salinity concentrations, inflow rates and inflow salinity flux, and investigated their influence on density gradients. One-dimensional modelling and limited 2-D modelling simulations were conducted to examine meromictic potential for a large range of End Pit Lake configurations and conditions. Modelling results showed that fall is the governing season for determining meromixis. The expelling of salt from saline water upon ice formation and its effect on stratification potential and the effect of fresh water loading on stratification potential during spring melt events were not observed to be dominant factors governing meromictic potential for the scenarios examined in the study. Results suggested that shallow End Pit Lakes showed a high turn-over rate with seasonal heating and cooling cycles. Moderately deep End Pit Lakes demonstrated a meromictic potential that was inversely proportional to lake size and require higher starting salinities. With a 2 or 10 million m 3 /yr inflow rate and a 5 parts per thousand starting salinity, a 50 m deep End Pit Lake achieved meromixis at all 3 size ranges considered in the study. Results also showed that the rate of influent salinity decrease was the least important of the parameters influencing meromixis. It was observed that meromixis was a temporary condition in all of the End Pit Lake scenarios envisioned due to the lack of a constant, positive salt replenishment over the long term. It was concluded that further 3-D modelling is required to represent littoral areas as well as to account for extreme winter conditions. A

  20. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  1. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  2. Hydrologic Monitoring and Water Balance Modeling in West and Seven Palm Lake Drainages in the Florida Everglades

    Science.gov (United States)

    Allen, J.; Whitman, D.; Price, R.

    2016-02-01

    In the Florida Everglades, sea level rise and reduced freshwater inputs have altered the hydrologic and chemical conditions in coastal estuaries. Brackish coastal groundwater discharge, an inland intrusion of submarine groundwater discharge, has been shown to occur seasonally along the coastal wetlands of the Everglades. This brackish groundwater is enriched in total phosphorus, the limiting nutrient in the Everglades. A major component of the Comprehensive Everglades Restoration Plan is to increase freshwater delivery to the southern coastal Everglades and adjacent bays, in an effort to restore a salinity and nutrient regime conducive for the development of submerged aquatic vegetation. This study is being conducted in the estuarine lakes of the Everglades that are connected to Florida Bay. Water quality in these lakes has diminished over time, potentially due to increased nutrient deliveries from coastal groundwater discharge. Current hydrologic and chemical conditions are being established within the lakes in order to gain a better understanding of the effects of restoration efforts through time. Water budgets are being constructed on daily, monthly and annual time steps to estimate the groundwater-surface water interaction term. In addition, hydrologic and topographic data from the Everglades Depth Estimation Network is being utilized in order to calculate water budgets for the lakes region spanning ten years prior to the study period. Water chemistry in the lakes and groundwater is also being monitored to determine the influence of groundwater-surface water exchange on salinity and nutrient conditions in the lakes. The results of this study can be used to assess the influence of restoration efforts on the hydrochemical conditions of downstream coastal areas affected by coastal groundwater discharge and sea level rise.

  3. Coastal Water Quality Modeling in Tidal Lake: Revisited with Groundwater Intrusion

    Science.gov (United States)

    Kim, C.

    2016-12-01

    A new method for predicting the temporal and spatial variation of water quality, with accounting for a groundwater effect, has been proposed and applied to a water body partially connected to macro-tidal coastal waters in Korea. The method consists of direct measurement of environmental parameters, and it indirectly incorporates a nutrients budget analysis to estimate the submarine groundwater fluxes. Three-dimensional numerical modeling of water quality has been used with the directly collected data and the indirectly estimated groundwater fluxes. The applied area is Saemangeum tidal lake that is enclosed by 33km-long sea dyke with tidal openings at two water gates. Many investigations of groundwater impact reveal that 10 50% of nutrient loading in coastal waters comes from submarine groundwater, particularly in the macro-tidal flat, as in the west coast of Korea. Long-term monitoring of coastal water quality signals the possibility of groundwater influence on salinity reversal and on the excess mass outbalancing the normal budget in Saemangeum tidal lake. In the present study, we analyze the observed data to examine the influence of submarine groundwater, and then a box model is demonstrated for quantifying the influx and efflux. A three-dimensional numerical model has been applied to reproduce the process of groundwater dispersal and its effect on the water quality of Saemangeum tidal lake. The results show that groundwater influx during the summer monsoon then contributes significantly, 20% more than during dry season, to water quality in the tidal lake.

  4. [Effect of abiotic and biotic factors on the structural and functional organization of the saline lake ecosystems in Crimea].

    Science.gov (United States)

    Balushkina, E V; Golubkov, S M; Golubkov, M S; Litvinchuk, L F; Shadrin, N V

    2009-01-01

    Decrease of both zooplankton and zoobenthos species richness and a trend toward decrease of their biomass with the salinity increase was recorded in the hypersaline lakes of Crimea. The most of structural and functional characteristics of macrobenthos is positively correlated with abiotic and biotic characteristics of those lakes. Abundance, biomass, productivity of macrobenthos and ration of non-predating macrozoobenthos decrease with salinity increase, while they increase with the depth and growth of amount of chlorophyll a and primary production. Macrozoobenthos portion in the total zooplankton and macrozoobenthos biomass decreases with both salinity and depth increase. Zooplankton community is less controlled by abiotic factors as compared to macrozoobenthos, while the former's species number significantly decrease with salinity increase. Effect of salinity on zooplankton biomass is slightly significant, unlike that of macrozoobenthos. Comparison of total amount of rations of zooplankton and macrozoobenthos with amount of primary production indicates intense trophic interactions in the lakes under study.

  5. Water-quality and lake-stage data for Wisconsin lakes, water years 2012–2013

    Science.gov (United States)

    Manteufel, S. Bridgett; Robertson, Dale M.

    2017-05-25

    IntroductionThe U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2012 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2011 through September 30, 2012, is called “water year 2012.”The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published online at http://nwis.waterdata.usgs.gov/wi/nwis.Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available online. The Wisconsin Water Science Center’s home page is at https://www.usgs.gov/centers/wisconsin-water-science-center. Information on

  6. Salinization and Saline Environments

    Science.gov (United States)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  7. Soil salinization in different natural zones of intermontane depressions in Tuva

    Science.gov (United States)

    Chernousenko, G. I.; Kurbatskaya, S. S.

    2017-11-01

    Soil salinization features in semidesert, dry steppe, and chernozemic steppe zones within intermontane depressions in the central part of the Tuva Republic are discussed. Chernozems, chestnut soils, and brown desert-steppe soils of these zones are usually nonsaline. However, salinization of these zonal soils is possible in the case of the presence of salt-bearing parent materials (usually, the derivatives of Devonian deposits). In different natural zones of the intermontane depressions, salt-affected soils are mainly allocated to endorheic lake basins, where they are formed in places of discharge of mineral groundwater, and to river valleys. The composition and content of salts in the natural waters are dictated by the local hydrogeological conditions. The total content of dissolved solids in lake water varies from 1 to 370 g/L; the water is usually of the sulfate-chloride or chloride-sulfate salinity type; in some cases, soda-sulfate water is present. Soil salinity around the lakes is usually of the chloride-sulfate-sodium type; gypsum is often present in the profiles. Chloride salinization rarely predominates in this part of Tuva, because chlorides are easily leached off from the mainly coarse-textured soils. In some cases, the predominance of magnesium over sodium is observed in the composition of dissolved salts, which may be indicative of the cryogenic transformation of soil salts. Soda-saline soils are present in all the considered natural zones on minor areas. It is hardly possible to make unambiguous statements about the dominance of the particular type of salinity in the given natural zones. Zonal salinity patterns are weakly expressed in salinization of hydromorphic soils. However, a tendency for more frequent occurrence of soda-saline soils in steppe landscapes and chloride-sulfate salinization (often, with participation of gypsum) in the dry steppe and semidesert landscapes is observed.

  8. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes.

    Science.gov (United States)

    Yang, Jian; Ma, Li'an; Jiang, Hongchen; Wu, Geng; Dong, Hailiang

    2016-04-26

    Investigating microbial response to environmental variables is of great importance for understanding of microbial acclimatization and evolution in natural environments. However, little is known about how microbial communities responded to environmental factors (e.g. salinity, geographic distance) in lake surface sediments of the Qinghai-Tibetan Plateau (QTP). In this study, microbial diversity and community structure in the surface sediments of nine lakes on the QTP were investigated by using the Illumina Miseq sequencing technique and the resulting microbial data were statistically analyzed in combination with environmental variables. The results showed total microbial community of the studied lakes was significantly correlated (r = 0.631, P diversity and community structure in the studied samples. In addition, the abundant and rare taxa (OTUs with relative abundance higher than 1% and lower than 0.01% within one sample, respectively) were significantly (P < 0.05) correlated (r = 0.427 and 0.783, respectively) with salinity, suggesting rare taxa might be more sensitive to salinity than their abundant counterparts, thus cautions should be taken in future when evaluating microbial response (abundant vs. rare sub-communities) to environmental conditions.

  9. New insight into defining the lakes of the southern Baltic coastal zone.

    Science.gov (United States)

    Cieśliński, Roman; Olszewska, Alicja

    2018-01-29

    There exist many classification systems of hydrographic entities such as lakes found along the coastlines of seas and oceans. Each system has its advantages and can be used with some success in the area of protection and management. This paper aims to evaluate whether the studied lakes are only coastal lakes or rather bodies of water of a completely different hydrological and hydrochemical nature. The attempt to create a new classification system of Polish coastal lakes is related to the incompleteness of lake information in existing classifications. Thus far, the most frequently used are classifications based solely on lake basin morphogenesis or hydrochemical properties. The classifications in this paper are based not only on the magnitude of lake water salinity or hydrochemical analysis but also on isolation from the Baltic Sea and other sources of water. The key element of the new classification system for coastal bodies of water is a departure from the existing system used to classify lakes in Poland and the introduction of ion-"tracking" methods designed to identify anion and cation distributions in each body of water of interest. As a result of the work, a new classification of lakes of the southern Baltic Sea coastal zone was created. Featured objects such as permanently brackish lakes, brackish lakes that may turn into freshwater lakes from time to time, freshwater lakes that may turn into brackish lakes from time to time, freshwater lakes that experience low levels of salinity due to specific incidents, and permanently freshwater lakes. The authors have adopted 200 mg Cl -  dm -3 as a maximum value of lake water salinity. There are many conditions that determine the membership of a lake to a particular group, but the most important is the isolation lakes from the Baltic Sea. Changing a condition may change the classification of a lake.

  10. Estimation of lake water - groundwater interactions in meromictic mining lakes by modelling isotope signatures of lake water.

    Science.gov (United States)

    Seebach, Anne; Dietz, Severine; Lessmann, Dieter; Knoeller, Kay

    2008-03-01

    A method is presented to assess lake water-groundwater interactions by modelling isotope signatures of lake water using meteorological parameters and field data. The modelling of delta(18)O and deltaD variations offers information about the groundwater influx into a meromictic Lusatian mining lake. Therefore, a water balance model is combined with an isotope water balance model to estimate analogies between simulated and measured isotope signatures within the lake water body. The model is operated with different evaporation rates to predict delta(18)O and deltaD values in a lake that is only controlled by weather conditions with neither groundwater inflow nor outflow. Comparisons between modelled and measured isotope values show whether the lake is fed by the groundwater or not. Furthermore, our investigations show that an adaptation of the Craig and Gordon model [H. Craig, L.I. Gordon. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, E. Tongiorgi (Ed.), pp. 9-130, Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa (1965).] to specific conditions in temperate regions seems necessary.

  11. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies

    Science.gov (United States)

    Feinstein, D.T.; Hunt, R.J.; Reeves, H.W.

    2010-01-01

    A regional groundwater-flow model of the Lake Michigan Basin and surrounding areas has been developed in support of the Great Lakes Basin Pilot project under the U.S. Geological Survey's National Water Availability and Use Program. The transient 2-million-cell model incorporates multiple aquifers and pumping centers that create water-level drawdown that extends into deep saline waters. The 20-layer model simulates the exchange between a dense surface-water network and heterogeneous glacial deposits overlying stratified bedrock of the Wisconsin/Kankakee Arches and Michigan Basin in the Lower and Upper Peninsulas of Michigan; eastern Wisconsin; northern Indiana; and northeastern Illinois. The model is used to quantify changes in the groundwater system in response to pumping and variations in recharge from 1864 to 2005. Model results quantify the sources of water to major pumping centers, illustrate the dynamics of the groundwater system, and yield measures of water availability useful for water-resources management in the region. This report is a complete description of the methods and datasets used to develop the regional model, the underlying conceptual model, and model inputs, including specified values of material properties and the assignment of external and internal boundary conditions. The report also documents the application of the SEAWAT-2000 program for variable-density flow; it details the approach, advanced methods, and results associated with calibration through nonlinear regression using the PEST program; presents the water-level, drawdown, and groundwater flows for various geographic subregions and aquifer systems; and provides analyses of the effects of pumping from shallow and deep wells on sources of water to wells, the migration of groundwater divides, and direct and indirect groundwater discharge to Lake Michigan. The report considers the role of unconfined conditions at the regional scale as well as the influence of salinity on groundwater flow

  12. Arsenic, Fluoride and Vanadium in surface water (Chasicó Lake, Argentina

    Directory of Open Access Journals (Sweden)

    Maria laura ePuntoriero

    2014-06-01

    Full Text Available Chasicó Lake is the main water body in the southwest of the Chaco-Pampean plain. It shows some differences from the typical Pampean shallow lakes, such as high salinity and high arsenic and fluoride levels. The aim of this paper is to analyze the trace elements [arsenic (As, fluoride (F- and vanadium (V] present in Chasicó Lake. Surface and groundwater were sampled in dry and wet periods, during 2010 and 2011. Fluoride was determined with a selective electrode. As and V were determined by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES. Significant correlation in surface water was only found for As and F- (r=0.978, p<0.01. The As, F- and V concentration values were higher and more widely dispersed in surface water than in groundwater, as a consequence of evaporation. The fact that these elements do not correlate in surface water may also indicates that groundwater would not be the main source of origin of As, F- and V in surface water. The origin of these trace elements is from volcanic glass from Pampean loess. As, F- and V concentration were higher than in national and international guideline levels for the protection of aquatic biota. Hence, this issue is relevant since the silverside (Odontesthes bonariensis is the most important commercial species in Chasicó Lake. This fish is both consumed locally and exported to other South-American countries through commercial and sport fishing.

  13. [Absorption Characteristics of Particulates and CDOM in Waters of Chagan Lake and Xinlicheng Reservoir in Autumn].

    Science.gov (United States)

    Li, Si-jia; Song, Kai-shan; Zhao, Ying; Mu, Guang-yi; Shao, Tian-tian; Ma, Jian-hang

    2016-01-15

    Field surveys and laboratory analysis were carried out in Chagan Lake and Xinlicheng Reservoir under different salinity conditions in September 2012. In the laboratory, the absorption coefficients of particulates and chromophoric dissolved organic matter (CDOM) were measured, aiming to compare the absorption features, source of optical active substances and relative contribution of optical active constituents over the range of PAR (400-700 nm) in Chagan Lake and Xinlicheng Reservoir. The results showed that the Chagan Lake and Xinlicheng Reservoir were water bodies with medium eutrophication in autumn by TAL nutrient index and the absorption spectra of particulates matters were similar to those of phytoplankton. For the Chagan Lake with high salinity( EC = 988. 87 micro S x cm(-1)), the total particulate absorption was dominated by the nonalgal particles, and the contribution rate was in the order of nonalgal particles > phytoplankton > CDOM. For the Xinlicheng Reservoir with low salinity (EC = 311.67 microS x -cm(-1)), the total particulate absorption was dominated by the phytoplankton, and the contribution rate was ranked as phytoplankton > nonalgal particles > CDOM. Positive correlation was observed between a(p) (440), a(p) (675), a(d) (440) and total suspended matter (TSM), inorganic suspended matter (ISM), organic suspended matter (OSM) and Chl-a respectively in Chagan Lake, with correlation coefficients all above 0.55. Positive correlation was observed between a(p)(440), a(p) (675) and Chl-a (0.77 and 0.85, P CDOM in the Chagan Lake was less than that in the Xinlicheng Reservoir. The Chagan Lake was greatly affected by wind speed and shore collapse to produce suspended mineral and sediment particles. Thereby the total particulate absorption was dominated by the nonalgal particles. The waters in the Xinlicheng Reservoir were greatly impacted by terrestrial inorganic matter, and the growth of phytoplankton was weakened and microbes activities were strengthened

  14. Effect of salinity on diazotrophic activity and microbial composition of phototrophic communities from Bitter-1 soda lake (Kulunda Steppe, Russia).

    Science.gov (United States)

    Namsaraev, Zorigto; Samylina, Olga; Sukhacheva, Marina; Borisenko, Gennadii; Sorokin, Dimitry Y; Tourova, Tatiana

    2018-04-16

    Bitter-1 is a shallow hypersaline soda lake in Kulunda Steppe (Altai region, Russia). During a study period between 2005 and 2016, the salinity in the littoral area of the lake fluctuated within the range from 85 to 400 g/L (in July of each year). Light-dependent nitrogen fixation occurred in this lake up to the salt-saturating conditions. The rates increased with a decrease in salinity, both under environmental conditions and in laboratory simulations. The salinities below 100 g/L were favorable for light-dependent nitrogen fixation, while the process was dramatically inhibited above 200 g/L salts. The analysis of nifH genes in environmental samples and in enrichment cultures of diazotrophic phototrophs suggested that anaerobic fermenting and sulfate-reducing bacteria could participate in the dark nitrogen fixation process up to soda-saturating conditions. However, we cannot exclude the possibility that haloalkaliphilic nonheterocystous cyanobacteria (Euhalothece sp. and Geitlerinema sp.) and anoxygenic purple sulfur bacteria (Ectothiorhodospira sp.) might also play a role in the process at light conditions. The heterocystous cyanobacterium Nodularia sp. develops at low salinity (below 80 g/L) that is not characteristic for Bitter-1 Lake and thus does not make a significant contribution to the nitrogen fixation in this lake.

  15. Osmoregulatory physiology and rapid evolution of salinity tolerance in threespine stickleback recently introduced to fresh water

    Science.gov (United States)

    Divino, Jeffrey N; Monette, Michelle Y.; McCormick, Stephen; Yancey, Paul H.; Flannery, Kyle G.; Bell, Michael A.; Rollins, Jennifer L.; von Hippel, Frank A.; Schultz, Eric T.

    2016-01-01

    Background: Post-Pleistocene diversification of threespine stickleback in fresh water offers a valuable opportunity to study how changes in environmental salinity shape physiological evolution in fish. In Alaska, the presence of both ancestral oceanic populations and derived landlocked populations, including recent lake introductions, allows us to examine rates and direction of evolution of osmoregulation following halohabitat transition.

  16. Stable isotope and hydrogeochemical studies of Beaver Lake and Radok Lake, MacRobertson Land, East Antarctica

    International Nuclear Information System (INIS)

    Wand, U.; Hermichen, W.D.

    1988-01-01

    Beaver Lake and Radok Lake, the largest known epishelf lake and the deepest freshwater lake on the Antarctic continent, respectively, were isotopically (δ 2 H, δ 18 O) and hydrogeochemically studied. Radok Lake is an isothermal and nonstratified, i.e. homogeneous water body, while Beaver Lake is stratified with respect to temperature, salinity and isotopic composition. The results for the latter attest to freshwater (derived from snow and glacier melt) overlying seawater. (author)

  17. Chemical quality of surface waters in Devils Lake basin, North Dakota

    Science.gov (United States)

    Swenson, Herbert; Colby, Bruce R.

    1955-01-01

    fallen slowly. Hydrologic changes that may have caused Devils Lake to alter from a very large, moderately deep lake of fresh water to a small, shallow body of brackish water are discussed and evaluated on the basis of scanty information. During several years of average precipitation, temperature, and evaporation, Devils Lake and lakes upstream should receive nearly a quarter of an inch of runoff annually from the drainage area of about 3,000 square miles. Approximately 55 square miles of tributary area would be required to maintain each square mile of lake surface. However, runoff, expressed as percentage of the average, differs greatly from year to year. The amount of runoff retained in upstream lakes also Varies greatly. For these two reasons, annual inflow to Devils Lake is extremely variable. Because many waterways in this basin have no surface outlets at normal stages, runoff collects in depressions, is concentrated by evaporation, and forms saline or alkaline lakes. The chemical and physical properties of the lake waters vary chiefly with changes in lake stage and volume of inflow. Scattered records from 1899 to 1923 and more comprehensive data from 1948 to 1952 show a range of salt concentration from 6,130 to 25,000 parts per million (ppm) in the water of Devils Lake. Although concentration has varied, the chemical composition of the dissolved solids has not changed appreciably. Lake waters are more concentrated in the lower part of the basin, downstream from Devils Lake. For periods of record the salt concentration ranged from 14,932 to 62,000 ppm in East Devils Lake and from 19,000 to 106,000 ppm in east Stump Lake. Current and past tonnages of dissolved solids in Devils Lake, East Bay Devils Lake, East Devils Lake, and east and west Stump Lakes were computed from concentrations and from altitude-capacity curves for each lake. Neither the average rate of diversion of water to restore Devils Lake to a higher level nor the quality of the divert

  18. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology

    Science.gov (United States)

    Last, William M; Ginn, Fawn M

    2005-01-01

    In much of the northern Great Plains, saline and hypersaline lacustrine brines are the only surface waters present. As a group, the lakes of this region are unique: there is no other area in the world that can match the concentration and diversity of saline lake environments exhibited in the prairie region of Canada and northern United States. The immense number of individual salt lakes and saline wetlands in this region of North America is staggering. Estimates vary from about one million to greater than 10 million, with densities in some areas being as high as 120 lakes/km2. Despite over a century of scientific investigation of these salt lakes, we have only in the last twenty years advanced far enough to appreciate the wide spectrum of lake types, water chemistries, and limnological processes that are operating in the modern settings. Hydrochemical data are available for about 800 of the lake brines in the region. Composition, textural, and geochemical information on the modern bottom sediments has been collected for just over 150 of these lakes. Characterization of the biological and ecological features of these lakes is based on even fewer investigations, and the stratigraphic records of only twenty basins have been examined. The lake waters show a considerable range in ionic composition and concentration. Early investigators, concentrating on the most saline brines, emphasized a strong predominance of Na+ and SO4-2 in the lakes. It is now realized, however, that not only is there a complete spectrum of salinities from less than 1 ppt TDS to nearly 400 ppt, but also virtually every water chemistry type is represented in lakes of the region. With such a vast array of compositions, it is difficult to generalize. Nonetheless, the paucity of Cl-rich lakes makes the northern Great Plains basins somewhat unusual compared with salt lakes in many other areas of the world (e.g., Australia, western United States). Compilations of the lake water chemistries show distinct

  19. Hydrochemistry and water quality of Rewalsar Lake of Lesser Himalaya, Himachal Pradesh, India.

    Science.gov (United States)

    Gaury, Pawan Kumar; Meena, Narendra Kumar; Mahajan, A K

    2018-01-17

    The present research is to study hydrochemistry and water quality of Rewalsar Lake during pre-monsoon, monsoon, and post-monsoon seasons. The Ca 2+ and Na + are observed as the dominant cations from pre- to post-monsoon season. On the other hand, HCO 3 - and Cl - are observed dominant anions during pre-monsoon and monsoon seasons, whereas HCO 3 - and SO 4 2- during post-monsoon season. The comparison of alkaline earth metals with alkali metals and total cations (Tz + ) has specified that the carbonate weathering is the dominant source of major ions in the water of lake.  The HCO 3 - is noticed to be mainly originated from carbonate/calcareous minerals during monsoon and post-monsoon, but through silicate minerals during pre-monsoon.  The SO 4 2- in Rewalsar Lake is produced by the dissolution of calcite and dolomite etc. The alkali metals and Cl - in the lake can be attributed to the silicate weathering as well as halite dissolution and anthropogenic activities. Certain other parameters like NO 3 - , NH 4 + , F - , and Br - are mainly a result of anthropogenic activities. The alkaline earth metals are found to surpass over alkali metals, whereas weak acid (HCO 3 - ) exceed to strong acid (SO 4 2- ). The Piper diagram has shown Ca 2+ -HCO 3 - type of water during all the seasons. The water quality index has indicated that the water quality of the lake is unsuitable for drinking from pre- to post-monsoon. Several parameters like salinity index, sodium adsorption ratio, sodium percent, residual sodium carbonate, magnesium hazard etc. have revealed the water of Rewalsar Lake as suitable for irrigation.

  20. Stable isotope and hydrogeochemical studies of Beaver Lake and Lake Radok, MacRobertson Land, East Antarctica

    International Nuclear Information System (INIS)

    Wand, U.; Hermichen, W.D.; Hoefling, R.; Muehle, K.

    1987-01-01

    Beaver Lake and Lake Radok, the largest known epishelf and the deepest freshwater lake on the Antarctic continent, respectively, were isotopically (δ 2 H, δ 18 O) and hydrogeochemically studied. Lake Radok is an isothermal and non-stratified, i.e. homogeneous water body, while Beaver Lake is stratified with respect to temperature, salinity and isotopic composition. The results for the latter attest to freshwater (derived from snow and glacier melt) overlying seawater. (author)

  1. Monitoring Water Quality at Lake Merritt, Oakland, CA Following Improvements to the Tidal Channel to the San Francisco Bay

    Science.gov (United States)

    Bracho, H.; Martinez, J.; Johnson, M.; Turrey, A.; Avila, M.; Medina, S.; Rubio, E.; Ahumada, E.; Nguyen, S.; Guzman, Y.

    2014-12-01

    Elliot Ahumada, Esosa Oghogho, Samantha Nguyen, Humberto Bracho, Diego Quintero, Ashanti Johnson and Kevin Cuff Lake Merritt is a tidal lagoon in the center of Oakland, California, just east of Downtown. Water quality at Lake Merritt has been a major concern for community members and researchers for many years (Pham 200X). Results of past research lead to recommendations to lengthen a channel that connects Lake Merritt with the San Francisco Bay to improve water flow and quality. In 2012 the City of Oakland responded to these recommendations by initiating the creation of a 230-meter long channel. In conducting our research we use a water quality index that takes into account measurements of pH, temperature, water hardness (dissolved solids), ammonia, salinity, dissolved oxygen, and nitrate. Newly collected data is then compared with that collected by Pham using comparable parameters to assess the impact of recent changes at the Lake on its overall water quality. In addition, we measured the abundance of aquatic species at four different sites within the Lake. Preliminary results suggest that an increase in the abundance of fish and improved overall water quality have resulted from channel extension at Lake Merritt.

  2. Trend Analysis of Soil Salinity in Different Land Cover Types Using Landsat Time Series Data (case Study Bakhtegan Salt Lake)

    Science.gov (United States)

    Taghadosi, M. M.; Hasanlou, M.

    2017-09-01

    Soil salinity is one of the main causes of desertification and land degradation which has negative impacts on soil fertility and crop productivity. Monitoring salt affected areas and assessing land cover changes, which caused by salinization, can be an effective approach to rehabilitate saline soils and prevent further salinization of agricultural fields. Using potential of satellite imagery taken over time along with remote sensing techniques, makes it possible to determine salinity changes at regional scales. This study deals with monitoring salinity changes and trend of the expansion in different land cover types of Bakhtegan Salt Lake district during the last two decades using multi-temporal Landsat images. For this purpose, per-pixel trend analysis of soil salinity during years 2000 to 2016 was performed and slope index maps of the best salinity indicators were generated for each pixel in the scene. The results of this study revealed that vegetation indices (GDVI and EVI) and also salinity indices (SI-1 and SI-3) have great potential to assess soil salinity trends in vegetation and bare soil lands respectively due to more sensitivity to salt features over years of study. In addition, images of May had the best performance to highlight changes in pixels among different months of the year. A comparative analysis of different slope index maps shows that more than 76% of vegetated areas have experienced negative trends during 17 years, of which about 34% are moderately and highly saline. This percent is increased to 92% for bare soil lands and 29% of salt affected soils had severe salinization. It can be concluded that the areas, which are close to the lake, are more affected by salinity and salts from the lake were brought into the soil which will lead to loss of soil productivity ultimately.

  3. Vertical stratification of physical, chemical and biological components in two saline lakes Shira and Shunet (South Siberia, Russia)

    NARCIS (Netherlands)

    Degermendzhy, A.G.; Zadereev, E.S.; Rogozin, D.Y.; Prokopkin, I.; Barkhatov, Y.V.; Tolomeev, A.; Khromechek, E.B.; Janse, J.H.; Mooij, W.M.; Gulati, R.D.

    2010-01-01

    A feature of meromictic lakes is that several physicochemical and biological gradients affect the vertical distribution of different organisms. The vertical stratification of physical, chemical and biological components in saline, fishless meromictic lakes Shira and Shunet (Siberia, Russia) is quite

  4. Hydrogen sulfide production and volatilization in a polymictic eutrophic saline lake, Salton Sea, California.

    Science.gov (United States)

    Reese, Brandi Kiel; Anderson, Michael A; Amrhein, Christopher

    2008-11-15

    The Salton Sea is a large shallow saline lake located in southern California that is noted for high sulfate concentrations, substantial algal productivity, and very warm water column temperatures. These conditions are well-suited for sulfide production, and sulfide has been implicated in summer fish kills, although no studies have been conducted to specifically understand hydrogen sulfide production and volatilization there. Despite polymictic mixing patterns and relatively short accumulation periods, the amount of sulfide produced is comparable to meromictic lakes. Sulfide levels in the Salton Sea reached concentrations of 1.2 mmol L(-1) of total free sulfide in the hypolimnion and 5.6 mmol L(-1) in the sediment pore water. Strong winds in late July mixed H2S into the surface water, where it depleted the entire water column of dissolved oxygen and reached a concentration of 0.1 mmol L(-1). Sulfide concentrations exceeded the toxicity threshold of tilapia (Oreochromis mossambicus) and combined with strong anoxia throughout the water column, resulted in a massive fish kill. The mixing of sulfide into the surface waters also increased atmospheric H2S concentrations, reaching 1.0 micromol m(-3). The flux of sulfide from the sediment into the water column was estimated to range from 2-3 mmol m(-2) day(-1) during the winter and up to 8 mmol m(-2) day(-1) during the summer. Application of the two-layer model for volatilization indicates that up to 19 mmol m(-2) day(-1) volatilized from the surface during the mixing event. We estimate that as much as 3400 Mg year(-1) or approximately 26% of sulfide that diffused into the water column from the deepest sediments may have been volatilized to the atmosphere.

  5. Constraints on evaporation and dilution of terminal, hypersaline lakes under negative water balance: The Dead Sea, Israel

    Science.gov (United States)

    Zilberman, Tami; Gavrieli, Ittai; Yechieli, Yoseph; Gertman, Isaac; Katz, Amitai

    2017-11-01

    The response of hypersaline terminal lakes to negative water balance was investigated by studying brines evaporating to extreme salinities in sinkholes along the western coast of the Dead Sea and during on-site evaporation experiments of the Dead Sea brine. Density and temperature were determined in the field and all samples were analyzed for their major and a few minor solutes. The activity of H2O (aH2O) in the brines was calculated, and the degree of evaporation (DE) was established using Sr2+as a conservative solute. The relations between density and water activity were obtained by polynomial regression, and the relation between the lake's volume and level was established using Hall's (1996) hypsographic model for the Dead Sea basin. Relating the results to the modern, long-term relative humidity (RH) over the basin shows that (a) The lowermost attainable level of a terminal lake undergoing evaporation with no inflow is dictated by the median RH; this level represents equilibrium between the brine's aH2O and RH; (b) Small, saline water bodies with high surface to volume ratios (A/V), such as the hypersaline brines in the sinkholes, are very sensitive to short term changes in RH; in these, the brines' aH2O closely follows the seasonal changes; (c) the level decline of the Dead Sea due to evaporation under present climatic conditions and assuming no inflow to the lake may continue down to 516-537 m below mean sea level (bmsl), corresponding to a water activity range of 0.46-0.39 in its brine, in equilibrium with the overlying relative air humidity; this suggests that the lake level cannot drop more than ∼100 m from its present level; and (d) The maximum RH values that existed over the precursor lake of the Dead Sea (Lake Lisan) during geologically reconstructed minima levels can be similarly calculated.

  6. A Spaceborne Multisensory, Multitemporal Approach to Monitor Water Level and Storage Variations of Lakes

    Directory of Open Access Journals (Sweden)

    Alireza Taravat

    2016-10-01

    Full Text Available Lake Urmia, the second largest saline Lake on earth and a highly endangered ecosystem, is on the brink of a serious environmental disaster similar to the catastrophic death of the Aral Sea. Progressive drying has been observed during the last decade, causing dramatic changes to Lake Urmia’s surface and its regional water supplies. The present study aims to improve monitoring of spatiotemporal changes of Lake Urmia in the period 1975–2015 using the multi-temporal satellite altimetry and Landsat (5-TM, 7-ETM+ and 8-OLI images. In order to demonstrate the impacts of climate change and human pressure on the variations in surface extent and water level, Lake Sevan and Van Lake with different characteristics were studied along with the Urmia Lake. Normalized Difference Water Index-Principal Components Index (NDWI-PCs, Normalized Difference Water Index (NDWI, Modified NDWI (MNDWI, Normalized Difference Moisture Index (NDMI, Water Ratio Index (WRI, Normalized Difference Vegetation Index (NDVI, Automated Water Extraction Index (AWEI, and MultiLayer Perceptron Neural Networks (MLP NNs classifier were investigated for the extraction of surface water from Landsat data. The presented results revealed that MLP NNs has a better performance in the cases where the other models generate poor accuracy. The results show that the area of Lake Sevan and Van Lake have increased while the area of Lake Urmia has decreased by ~65.23% in the past decades, far more than previously reported (~25% to 50%. Urmia Lake’s shoreline has been receding severely between 2010 and 2015 with no sign of recovery, which has been partly blamed on prolonged droughts, aggressive regional water resources development plans, intensive agricultural activities, and anthropogenic changes to the system. The results also indicated that (among the proposed factors changes in inflows due to overuse of surface water resources and constructing dams (mostly during 1995–2005 are the main reasons

  7. Determining lake surface water temperatures worldwide using a tuned one-dimensional lake model (FLake, v1)

    Science.gov (United States)

    Layden, Aisling; MacCallum, Stuart N.; Merchant, Christopher J.

    2016-06-01

    A tuning method for FLake, a one-dimensional (1-D) freshwater lake model, is applied for the individual tuning of 244 globally distributed large lakes using observed lake surface water temperatures (LSWTs) derived from along-track scanning radiometers (ATSRs). The model, which was tuned using only three lake properties (lake depth, snow and ice albedo and light extinction coefficient), substantially improves the measured mean differences in various features of the LSWT annual cycle, including the LSWTs of saline and high altitude lakes, when compared to the observed LSWTs. Lakes whose lake-mean LSWT persists below 1 °C for part of the annual cycle are considered to be seasonally ice-covered. For trial seasonally ice-covered lakes (21 lakes), the daily mean and standard deviation (2σ) of absolute differences between the modelled and observed LSWTs are reduced from 3.07 °C ± 2.25 °C to 0.84 °C ± 0.51 °C by tuning the model. For all other trial lakes (14 non-ice-covered lakes), the improvement is from 3.55 °C ± 3.20 °C to 0.96 °C ± 0.63 °C. The post tuning results for the 35 trial lakes (21 seasonally ice-covered lakes and 14 non-ice-covered lakes) are highly representative of the post-tuning results of the 244 lakes. For the 21 seasonally ice-covered lakes, the modelled response of the summer LSWTs to changes in snow and ice albedo is found to be statistically related to lake depth and latitude, which together explain 0.50 (R2adj, p = 0.001) of the inter-lake variance in summer LSWTs. Lake depth alone explains 0.35 (p = 0.003) of the variance. Lake characteristic information (snow and ice albedo and light extinction coefficient) is not available for many lakes. The approach taken to tune the model, bypasses the need to acquire detailed lake characteristic values. Furthermore, the tuned values for lake depth, snow and ice albedo and light extinction coefficient for the 244 lakes provide some guidance on improving FLake LSWT modelling.

  8. Development, evolution, and destruction of the saline mineral area of Eocene Lake Uinta, Piceance Basin, western Colorado

    Science.gov (United States)

    Johnson, Ronald C.; Brownfield, Michael E.

    2015-01-01

    Halite and the sodium bicarbonate mineral nahcolite were deposited in Eocene-age saline Lake Uinta in the Piceance Basin, northwestern Colorado. Variations in the areal extent of saline mineral deposition through time were studied using descriptions of core and outcrop. Saline minerals have been extensively leached by groundwater, and the original extent of saline deposition was determined from the distribution of empty vugs and collapse breccias. Because vugs and breccias strongly influence groundwater movement, determining where leaching has occurred is an important consideration for in-situ oil shale extraction methods currently being developed.

  9. Effect of Different Alternate Irrigation Strategies using Saline and Non-Saline Water on Corn Yield, Salinity and Moisture Distribution in Soil Profile

    Directory of Open Access Journals (Sweden)

    Ali Reza Kiani

    2017-01-01

    Full Text Available Introduction: Lack of water and deterioration in the quality of soil and water resources are considered to be the prime cause of reduced crop yield in arid and semi-arid regions ‘More crop per drop’ by trickle irrigation, deficit irrigation, and uncommon water are the best strategies for mitigating water crises. Different irrigation management strategies are needed to increase production in different areas. In areas where sufficient water is available, a full irrigation strategy could be a suitable option, while in areas where water is limited, deficit irrigation would be an appropriate method, and finally in areas where water resources are saline, management strategies for achieving sustainable production as well as economic yields would be suitable. Maize is the third most important grain crop in the world following wheat and rice and it is the main source of nutrition for humans and animals. Because of the importance of maize in the world, increasing maize production under environmental stresses is a big challenge for agricultural scientists. Different methods of irrigation and the use of saline water that had satisfactory results for increasing agricultural production have been studied by several investigators . The main objective of this study was to establish an efficient use of limited water resources as well as to explore the possibility of replacing saline water with fresh water using different management techniques. Materials and Methods: A field experiment was conducted over two maize cropping seasons (2012–2013 in northern Iran (Gorgan Agricultural Research Station to compare different alternate irrigation scenarios using saline water on corn yield, salinity and soil moisture distribution in a randomized complete block design with three replications. Treatments were: T1 and T2 = 100 and 50 % of crop water requirement with non-saline water, respectively; T3 and T4 = variable and fixed full irrigation with saline and non-saline

  10. Ground-water flow and saline water in the shallow aquifer system of the southern watersheds of Virginia Beach, Virginia

    Science.gov (United States)

    Smith, Barry S.

    2003-01-01

    Population and tourism continues to grow in Virginia Beach, Virginia, but the supply of freshwater is limited. A pipeline from Lake Gaston supplies water for northern Virginia Beach, but ground water is widely used to water lawns in the north, and most southern areas of the city rely solely on ground water. Water from depths greater than 60 meters generally is too saline to drink. Concentrations of chloride, iron, and manganese exceed drinking-water standards in some areas. The U.S. Geological Survey, in cooperation with the city of Virginia Beach, Department of Public Utilities, investigated the shallow aquifer system of the southern watersheds to determine the distribution of fresh ground water, its potential uses, and its susceptibility to contamination. Aquifers and confining units of the southern watersheds were delineated and chloride concentrations in the aquifers and confining units were contoured. A ground-water-flow and solute-transport model of the shallow aquifer system reached steady state with regard to measured chloride concentrations after 31,550 years of freshwater recharge. Model simulations indicate that if freshwater is found in permeable sediments of the Yorktown-Eastover aquifer, such a well field could supply freshwater, possibly for decades, but eventually the water would become more saline. The rate of saline-water intrusion toward the well field would depend on the rate of pumping, aquifer properties, and on the proximity of the well field to saline water sources. The steady-state, ground-water-flow model also was used to simulate drawdowns around two hypothetical well fields and drawdowns around two hypothetical open-pit mines. The chloride concentrations simulated in the model did not approximate the measured concentrations for some wells, indicating sites where local hydrogeologic units or unit properties do not conform to the simple hydrogeology of the model. The Columbia aquifer, the Yorktown confining unit, and the Yorktown

  11. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China

    NARCIS (Netherlands)

    Wu, Q.L.; Zwart, G.; Schauer, M.; Kamst-van Agterveld, M.P.; Hahn, M.W.

    2006-01-01

    The influence of altitude and salinity on bacterioplankton community composition (BCC) in 16 high-mountain lakes located at altitudes of 2,817 to 5,134 m on the Eastern Qinghai-Xizang (Tibetan) Plateau, China, spanning a salinity gradient from 0.02% (freshwater) to 22.3% (hypersaline), was

  12. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia.

    Science.gov (United States)

    Hamamura, Natsuko; Itai, Takaaki; Liu, Yitai; Reysenbach, Anna-Louise; Damdinsuren, Narantuya; Inskeep, William P

    2014-10-01

    Microbial arsenic transformation pathways associated with a saline lake located in northern Mongolia were examined using molecular biological and culturing approaches. Bacterial 16S rRNA gene sequences recovered from saline lake sediments and soils were affiliated with haloalkaliphiles, including Bacillus and Halomonas spp. Diverse sequences of arsenate respiratory reductase (arrA) and a new group of arsenite oxidase (arxA) genes were also identified. Pure cultures of arsenate-reducing Nitrincola strain and anaerobic arsenite-oxidizing Halomonas strain were isolated. The chemoorganotrophic Halomonas strain contains arxA gene similar to that of a chemoautotrophic arsenite-oxidizing Alkalilimnicola ehrlichii strain MLHE-1. These results revealed the diversity of arsenic transformation pathways associated with a geographically distinct saline system and the potential contribution of arx-dependent arsenite oxidation by heterotrophic bacteria.

  13. Water quality of Lake Austin and Town Lake, Austin, Texas

    Science.gov (United States)

    Andrews, Freeman L.; Wells, Frank C.; Shelby, Wanda J.; McPherson, Emma

    1988-01-01

    Lake Austin and Town Lake are located on the Colorado River in Travis County, central Texas, and serve as a source of water for municipal and industrial water supplies, electrical-power generation, and recreation for more than 500,000 people in the Austin metropolitan area. Lake Austin, located immediately downstream of Lake Travis, extends for more than 20 miles into the western edge of the city of Austin. Town Lake extends through the downtown area of the city of Austin for nearly 6 miles where the Colorado River is impounded by Longhorn Dam.

  14. Palaeolimnological evidence of vulnerability of Lake Neusiedl (Austria) toward climate related changes since the last "vanished-lake" stage.

    Science.gov (United States)

    Tolotti, Monica; Milan, Manuela; Boscaini, Adriano; Soja, Gerhard; Herzig, Alois

    2013-04-01

    The palaeolimnological reconstruction of secular evolution of Euroepan Lakes with key socio-economical relevance respect to large (climate change) and local scale (land use, tourism) environmental changes, represents one of the objectives of the project EuLakes (European Lakes Under Environmental Stressors, Supporting lake governance to mitigate the impact of climate change, Reg. N. 2CE243P3), launched in 2010 within the Central European Inititiative. The project consortium comprises lakes of different morphology and prevalent human uses, including the meso-eutrophic Lake Neusiedl, the largest Austrian lake (total area 315 km2), and the westernmost shallow (mean depth 1.2 m) steppe lake of the Euro-Asiatic continent. The volume of Lake Neusiedl can potentially change over the years, in relation with changing balance between atmospheric precipitation and lake water evapotranspiration. Changing water budget, together with high lake salinity and turbidity, have important implications over the lake ecosystem. This contribution illustrates results of the multi-proxi palaeolimnological reconstruction of ecologial changes occurred in Lake Neusiedl during the last ca. 140 years, i.e. since the end of the last "vanished-lake" stage (1865-1871). Geochemical and biological proxies anticipate the increase in lake productivity of ca. 10 years (1950s) respect to what reported in the literature. Diatom species composition indicate a biological lake recovery in the late 1980s, and suggest a second increment in lake productivity since the late 1990s, possibly in relation with the progressive increase in the nitrogen input from agriculture. Abundance of diatoms typical of brackish waters indicated no significant long-term change in lake salinity, while variations in species toleranting dessiccation confirm the vulnerability of Lake Neusiedl toward climate-driven changes in the lake water balance. This fragility is aggravated by the the semi-arid climate conditions of the catchemnt

  15. Influence of salinity and water content on soil microorganisms

    Directory of Open Access Journals (Sweden)

    Nan Yan

    2015-12-01

    Full Text Available Salinization is one of the most serious land degradation problems facing world. Salinity results in poor plant growth and low soil microbial activity due to osmotic stress and toxic ions. Soil microorganisms play a pivotal role in soils through mineralization of organic matter into plant available nutrients. Therefore it is important to maintain high microbial activity in soils. Salinity tolerant soil microbes counteract osmotic stress by synthesizing osmolytes which allows them to maintain their cell turgor and metabolism. Osmotic potential is a function of the salt concentration in the soil solution and therefore affected by both salinity (measured as electrical conductivity at a certain water content and soil water content. Soil salinity and water content vary in time and space. Understanding the effect of changes in salinity and water content on soil microorganisms is important for crop production, sustainable land use and rehabilitation of saline soils. In this review, the effects of soil salinity and water content on microbes are discussed to guide future research into management of saline soils.

  16. Hydrogeologic setting, water budget, and preliminary analysis of ground-water exchange at Lake Starr, a seepage lake in Polk County, Florida

    Science.gov (United States)

    Swancar, Amy; Lee, T.M.; O'Hare, T. M.

    2000-01-01

    Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects

  17. Comparison of the hydrogeology and water quality of a ground-water augmented lake with two non-augmented lakes in northwest Hillsborough County, Florida

    Science.gov (United States)

    Metz, Patricia A.; Sacks, Laura A.

    2002-01-01

    The hydrologic effects associated with augmenting a lake with ground water from the Upper Floridan aquifer were examined in northwest Hillsborough County, Florida, from June 1996 through May 1999. The hydrogeology, ground-water flow patterns, water budgets, and water-quality characteristics were compared between a lake that has been augmented for more than 30 years (Round Lake) and two nearby nonaugmented lakes (Dosson Lake and Halfmoon Lake). Compared to the other study lakes, Round Lake is in a more leakage-dominated hydrogeologic setting. The intermediate confining unit is thin or highly breached, which increases the potential for vertical ground-water flow. Round Lake has the least amount of soft, organic lake-bottom sediments and the lake bottom has been dredged deeper and more extensively than the other study lakes, which could allow more leakage from the lake bottom. The area around Round Lake has experienced more sinkhole activity than the other study lakes. During this study, three sinkholes developed around the perimeter of the lake, which may have further disrupted the intermediate confining unit.Ground-water flow patterns around Round Lake were considerably different than the nonaugmented lakes. For most of the study, groundwater augmentation artificially raised the level of Round Lake to about 2 to 3 feet higher than the adjacent water table. As a result, lake water recharged the surficial aquifer around the entire lake perimeter, except during very wet periods when ground-water inflow occurred around part of the lake perimeter. The non-augmented lakes typically had areas of ground-water inflow and areas of lake leakage around their perimeter, and during wet periods, ground-water inflow occurred around the entire lake perimeter. Therefore, the area potentially contributing ground water to the non-augmented lakes is much larger than for augmented Round Lake. Vertical head loss within the surficial aquifer was greater at Round Lake than the other study

  18. A hydrous Ca-bearing magnesium carbonate from playa lake sediments, Salines Lake, Spain

    Science.gov (United States)

    Queralt, I.; Julia, R.; Plana, F.; Bischoff, J.L.

    1997-01-01

    Sediments of playa Lake Salines, SE, Spain, contain a carbonate mineral characterized by X-ray diffraction peaks very similar to, but systematically shifted from those of pure magnesite. Analyses (SEM, IR and Raman spectroscopy, DTA, TGA, and ICP) indicate the mineral is a hydrous Ca-bearing magnesium carbonate with the chemical formula (Mg0.92,Ca0.08)CO3??3H2O. Thermal characteristics of the mineral are similar to those of other known hydrated magnesium carbonates. X-ray and electron diffraction data suggests a monoclinic system (P21/n space group) with unit-cell parameters of a = 6.063(6), b = 10.668(5), and c = 6.014(4) A?? and ?? = 107.28??.

  19. Preliminary Hybrid Modeling of the Panama Canal: Operations and Salinity Diffusion

    Directory of Open Access Journals (Sweden)

    Luis Rabelo

    2012-01-01

    Full Text Available This paper deals with the initial modeling of water salinity and its diffusion into the lakes during lock operation on the Panama Canal. A hybrid operational model was implemented using the AnyLogic software simulation environment. This was accomplished by generating an operational discrete-event simulation model and a continuous simulation model based on differential equations, which modeled the salinity diffusion in the lakes. This paper presents that unique application and includes the effective integration of lock operations and its impact on the environment.

  20. 33 CFR 162.132 - Connecting waters from Lake Huron to Lake Erie; communications rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; communications rules. 162.132 Section 162.132 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.132 Connecting waters from Lake Huron to Lake Erie; communications rules. (a...

  1. 33 CFR 162.140 - Connecting waters from Lake Huron to Lake Erie; miscellaneous rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; miscellaneous rules. 162.140 Section 162.140 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.140 Connecting waters from Lake Huron to Lake Erie; miscellaneous rules. (a...

  2. 33 CFR 162.130 - Connecting waters from Lake Huron to Lake Erie; general rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; general rules. 162.130 Section 162.130 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.130 Connecting waters from Lake Huron to Lake Erie; general rules. (a) Purpose. The...

  3. A radical shift from soft-water to hard-water lake: palaeolimnological evidence from Lake Kooraste Kõverjärv, southern Estonia

    Directory of Open Access Journals (Sweden)

    Tiiu Alliksaar

    2012-11-01

    Full Text Available The Water Framework Directive (WFD of the European Union requires the quality of all European water bodies to be examined, and aims to achieve good status by 2015. This study was initiated to assess whether a potential reference lake for identifying lake-type specific reference conditions meets the WFD requirements, of being minimally impacted by human activity during the last centuries. The sediments of Lake Kooraste Kõverjärv were analysed for diatom assemblages and sediment composition; past changes in the lake-water pH and total phosphorus were reconstructed, using quantitative models on sedimentary diatoms. The chronology of sediments was established, using spheroidal fly-ash particles stratigraphy. Palaeolimnological investigations, supported by information from historical maps, revealed that man-made changes around the lake have severely influenced its ecological conditions. The lake, which had been oligotrophic with soft and clear water before the mid-17th century, has been trans­formed into a hard-water lake by modifications to the inflow and outflow. The lake water quality has also been altered by the infiltration of nutrients from a nearby hypertrophic lake that was used for flax retting since the 19th century. Although the ecological status of the lake has remained good despite all these changes, it is still questionable whether to nominate it as a reference lake for stratified hard-water lake types.

  4. Preliminary isotopic study of Lake Asal system (Republic of Djibouti)

    International Nuclear Information System (INIS)

    Fontes, J.C.; Zuppi, G.M.; Florkowski, T.; Pouchan, P.

    1979-01-01

    The saline Lake Asal at 155 m below sea level in the Afar Rift (Republic of Djibouti) is fed mainly by sea water. In spite of the intense evaporation (about 3 m annually), the 18 O and deuterium enrichments of the lake water are relatively low, because of the reduced activity of water as a consequence of the high salt content. Isotopic balance of the lake, as well as lithium and sulphate balances, support the hypothesis of leakages from the lake of about 15 to 20% of the inflow. (author)

  5. Effect of water regime and salinity on artichoke yield

    Directory of Open Access Journals (Sweden)

    Francesca Boari

    2012-03-01

    Full Text Available This work focuses on the effects of different salinity and water inputs on the yield of artichoke Violetto di Provenza. Two years of experimental works had been carried out in a site in Southern Italy characterized by semi-arid climate and deep loam soil. Three salinity levels of irrigation water (S0, S1 and S2 with electrical conductivity (ECw of 0.5, 5 and 10 dS m-1, respectively, were combined with three water regimes (W1, W2 and W3 corresponding in that order to 20 40 and 60% of available water depletion. The overall results of the salinity tolerance are in agreement with those from the literature. However, an higher tolerance to salinity was demonstrated when crop was watered more frequently (at 20% of available water depletion and a lower one when crop watering was performed less frequently (at 60% of available water depletion. The increase of salinity level reduced marketable yield (from 12.9 to 8.8 Mg ha-1, total heads (from 125,100 to 94,700 n ha-1 and heads mean weight (from 99.9 to 94.6 g, while increased heads dry matter (from 161.8 to 193.6 g kg-1 f.w. and reduced edible parte percentage of heads (from 35.2 to 33.2 %. Watering regimes, as average of the salinity levels, affected total heads marketable yield (115,350 n ha-1 and 11.4 Mg ha-1 for W1 and W2, 105,900 n ha-1 and 10 Mg ha-1 for W3. In addition, different watering regimes affected the secondary heads yield for which it was reduced by 3% of mean weight. The effect of different watering regimes changed with various salinity levels. In condition of moderate salinity (S1, maximum water depletion fraction to preserve heads number and weight yield was 40 and 20% of total soil available water, respectively. However, with high salinity (S2, maximum water depletion fraction to keep unchanged heads number and weight yield was 20% for both. The level of soil salinity at beginning of the crop cycle favoured the incidence of head atrophy in the main heads produced in the second year.

  6. 33 CFR 162.134 - Connecting waters from Lake Huron to Lake Erie; traffic rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; traffic rules. 162.134 Section 162.134 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.134 Connecting waters from Lake Huron to Lake Erie; traffic rules. (a) Detroit River. The...

  7. 33 CFR 162.138 - Connecting waters from Lake Huron to Lake Erie; speed rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; speed rules. 162.138 Section 162.138 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.138 Connecting waters from Lake Huron to Lake Erie; speed rules. (a) Maximum speed limit for...

  8. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...

  9. Simulation of the effects of different inflows on hydrologic conditions in Lake Houston with a three-dimensional hydrodynamic model, Houston, Texas, 2009–10

    Science.gov (United States)

    Rendon, Samuel H.; Lee, Michael T.

    2015-12-08

    Lake Houston, an important water resource for the Houston, Texas, area, receives inflows from seven major tributaries that compose the San Jacinto River Basin upstream from the reservoir. The effects of different inflows from the watersheds drained by these tributaries on the residence time of water in Lake Houston and closely associated physical and chemical properties including lake elevation, salinity, and water temperature are not well known. Accordingly, the U.S. Geological Survey (USGS), in cooperation with the City of Houston, developed a three-dimensional hydrodynamic model of Lake Houston as a tool for evaluating the effects of different inflows on residence time of water in the lake and associated physical and chemical properties. The Environmental Fluid Dynamics Code (EFDC), a grid-based, surface-water modeling package for simulating three-dimensional circulation, mass transport, sediments, and biogeochemical processes, was used to develop the model of Lake Houston. The Lake Houston EFDC model was developed and calibrated by using 2009 data and verified by using 2010 data. Three statistics (mean error, root mean square error, and the Nash-Sutcliffe model efficiency coefficient) were used to evaluate how well the Lake Houston EFDC model simulated lake elevation, salinity, and water temperature. The residence time of water in reservoirs is associated with various physical and chemical properties (including lake elevation, salinity, and water temperature). Simulated and measured lake-elevation values were compared at USGS reservoir station 08072000 Lake Houston near Sheldon, Tex. The accuracy of simulated salinity and water temperature values was assessed by using the salinity (computed from measured specific conductance) and water temperature at two USGS monitoring stations: 295826095082200 Lake Houston south Union Pacific Railroad Bridge near Houston, Tex., and 295554095093401 Lake Houston at mouth of Jack’s Ditch near Houston, Tex. Specific conductance

  10. Differential Gene Expression in Response to Salinity and Temperature in a Haloarcula Strain from Great Salt Lake, Utah

    Directory of Open Access Journals (Sweden)

    Swati Almeida-Dalmet

    2018-01-01

    Full Text Available Haloarchaea that inhabit Great Salt Lake (GSL, a thalassohaline terminal lake, must respond to the fluctuating climate conditions of the elevated desert of Utah. We investigated how shifting environmental factors, specifically salinity and temperature, affected gene expression in the GSL haloarchaea, NA6-27, which we isolated from the hypersaline north arm of the lake. Combined data from cultivation, microscopy, lipid analysis, antibiotic sensitivity, and 16S rRNA gene alignment, suggest that NA6-27 is a member of the Haloarcula genus. Our prior study demonstrated that archaea in the Haloarcula genus were stable in the GSL microbial community over seasons and years. In this study, RNA arbitrarily primed PCR (RAP-PCR was used to determine the transcriptional responses of NA6-27 grown under suboptimal salinity and temperature conditions. We observed alteration of the expression of genes related to general stress responses, such as transcription, translation, replication, signal transduction, and energy metabolism. Of the ten genes that were expressed differentially under stress, eight of these genes responded in both conditions, highlighting this general response. We also noted gene regulation specific to salinity and temperature conditions, such as osmoregulation and transport. Taken together, these data indicate that the GSL Haloarcula strain, NA6-27, demonstrates both general and specific responses to salinity and/or temperature stress, and suggest a mechanistic model for homeostasis that may explain the stable presence of this genus in the community as environmental conditions shift.

  11. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  12. The response of the diatom flora of St Lucia Lake and estuary, South ...

    African Journals Online (AJOL)

    Lake St. Lucia, South Africa's largest estuarine system, was isolated from the sea by a beach berm throughout a severe drought from 2002 to 2007, with the lake water level being extremely low over much of its total area. A reverse salinity gradient resulted, with the lowest salinity in the south near the sea and the highest in ...

  13. Reconstruction of a saline, lacustrine carbonate system (Priabonian, St-Chaptes Basin, SE France): Depositional models, paleogeographic and paleoclimatic implications

    Science.gov (United States)

    Lettéron, Alexandre; Hamon, Youri; Fournier, François; Séranne, Michel; Pellenard, Pierre; Joseph, Philippe

    2018-05-01

    A 220-m thick carbonate-dominated succession has been deposited in shallow-water, saline lake environments during the early to middle Priabonian (MP17A-MP18 mammal zones) in the Saint-Chaptes Basin (south-east France). The palaeoenvironmental, paleoclimatic and palaeogeographic significance of such saline lake carbonates has been deciphered on the basis of a multi-proxy analyses including: 1) depositional and diagenetic features; 2) biological components (molluscs, benthic foraminifera, characean gyrogonites, spores and pollens); 3) carbon and oxygen stable isotopes; 4) trace elements; and 5) clay mineralogy. Five stages of lacustrine system evolution have been identified: 1) fresh-water closed lake under dry climate (unit U1); 2) fresh to brackish water lacustrine deltaic system with a mixed carbonate-siliciclastic sedimentation under relatively wet climatic conditions (unit U2); 3) salt-water lacustrine carbonate system under humid climatic setting (unit U3); 4) evaporitic lake (unit U4); and 5) closed lake with shallow-water carbonate sedimentation under subtropical to Mediterranean climate with dry seasons (unit U5). Upper Eocene aridification is evidenced to have started as early as the earliest Priabonian (unit U1: MP17A mammal zone). A change from humid to dryer climatic conditions is recorded between units U3 and U4. The early to middle Priabonian saline lake is interpreted as an athalassic (inland) lake that have been transiently connected with neighboring salt lakes influenced by seawater and/or fed with sulfates deriving from recycling of evaporites. Maximum of connection with neighboring saline lakes (Mormoiron Basin, Camargue and Central grabens, Hérault Basin) likely occurred during unit U3 and at the base of unit U5. The most likely sources of salts of these adjacent basins are: 1) Triassic evaporites derived from salt-diapirs (Rhône valley) or from paleo-outcrops located east of the Durance fault or offshore in the Gulf of Lion; or 2) marine

  14. Characterising flow regime and interrelation between surface-water and ground-water in the Fuente de Piedra salt lake basin by means of stable isotopes, hydrogeochemical and hydraulic data

    Science.gov (United States)

    Kohfahl, Claus; Rodriguez, Miguel; Fenk, Cord; Menz, Christian; Benavente, Jose; Hubberten, Hans; Meyer, Hanno; Paul, Liisa; Knappe, Andrea; López-Geta, Juan Antonio; Pekdeger, Asaf

    2008-03-01

    SummaryThis research reports the characterisation of ground- and surface-water interaction in the Fuente de Piedra Salt lake basin in southern Spain by a combined approach using hydraulic, hydrogeochemical and stable isotope data. During three sampling campaigns (February 2004, 2005 and October 2005) ground- and surface-water samples were collected for stable isotope studies ( 18O, D) and for major and minor ion analysis. Hydraulic measurements at multilevel piezometers were carried out at four different locations around the lake edge. Conductivity logs were performed at four piezometers located along a profile at the northern lake border and at two deeper piezometers in the Miocene basin at a greater distance from the lake. To describe processes that control the brine evolution different hydrogeochemical simulations were performed. Hydrogeochemical data show a variety of brines related to thickness variations of lacustrine evaporites around the lake. Salinity profiles in combination with stable isotope and hydraulic data indicate the existence of convection cells and recycled brines. Furthermore restricted ground-water inflow into the lake was detected. Dedolomitisation processes were identified by hydrogeochemical simulations and different brine origins were reproduced by inverse modelling approaches.

  15. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    International Nuclear Information System (INIS)

    Hassanli, M.; Ebrahimian, H.

    2016-01-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  16. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    Energy Technology Data Exchange (ETDEWEB)

    Hassanli, M.; Ebrahimian, H.

    2016-07-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  17. Spatial and Temporal Water Quality Dynamics in the Lake Maumelle Reservoir (Arkansas): Geochemical and Planktonic Variance in a Drinking Water Source

    Science.gov (United States)

    Carey, M. D.; Ruhl, L. S.

    2017-12-01

    The Lake Maumelle reservoir is Central Arkansas's main water supply. Maintaining a high standard of water quality is important to the over 400,000 residents of this area whom rely on this mesotrophic waterbody for drinking water. Lake Maumelle is also a scenic attraction for recreational boating and fishing. Past research has focused primarily on watershed management with land use/land cover modeling and quarterly water sampling of the 13.91mi2 reservoir. The surrounding land within the watershed is predominately densely forested, with timber farms and the Ouachita National Forest. This project identifies water quality changes spatially and temporally, which have not been as frequently observed, over a 6-month timespan. Water samples were collected vertically throughout the water column and horizontally throughout the lake following reservoir zonation. Parameters collected vertically for water quality profiles are temperature, dissolved oxygen, electrical conductivity, salinity, and pH. Soft sediment samples were collected and pore water was extracted by centrifuge. Cation and anion concentrations in the water samples were determined using ion chromatography, and trace element concentrations were determined using ICPMS. Planktonic abundances were determined using an inverted microscope and a 5ml counting chamber. Trace element, cation, and anion concentrations have been compared with planktonic abundance and location to determine microorganismal response to geochemical variance. During June 2017 sampling, parameters varied throughout the water column (temperature decreased 4 degrees Celsius and dissolved oxygen decreased from 98% to 30% from surface to bottom depths), revealing that the reservoir was becoming stratified. Collected plankton samples revealed the presence of copepod, daphnia, and dinoflagellate algae. Utricularia gibba was present in the littoral zone. Low electrical conductivity readings and high water clarity are consistent with the lake

  18. Soil respiration in typical plant communities in the wetland surrounding the high-salinity Ebinur Lake

    Science.gov (United States)

    Li, Yanhong; Zhao, Mingliang; Li, Fadong

    2018-03-01

    Soil respiration in wetlands surrounding lakes is a vital component of the soil carbon cycle in arid regions. However, information remains limited on the soil respiration around highly saline lakes during the plant growing season. Here, we aimed to evaluate diurnal and seasonal variation in soil respiration to elucidate the controlling factors in the wetland of Ebinur Lake, Xinjiang Uygur Autonomous Region, western China. We used a soil carbon flux automatic analyzer (LI-840A) to measure soil respiration rates during the growing season (April to November) in two fields covered by reeds and tamarisk and one field with no vegetation (bare soil) from 2015 to 2016. The results showed a single peak in the diurnal pattern of soil respiration from 11:00 to 17:00 for plots covered in reeds, tamarisk, and bare soil, with minimum values being detected from 03:00 to 07:00. During the growing season, the soil respiration of reeds and tamarisk peaked during the thriving period (4.16 and 3.75 mmol•m-2•s-1, respectively), while that of bare soil peaked during the intermediate growth period (0.74 mmol•m-2•s-1). The soil respiration in all three plots was lowest during the wintering period (0.08, 0.09, and-0.87 mmol•m-2•s-1, respectively). Air temperature and relative humidity significantly influenced soil respiration. A significant linear relationship was detected between soil respiration and soil temperature for reeds, tamarisk, and bare soil. The average Q10 of reeds and tamarisk were larger than that of bare soil. However, soil moisture content was not the main factor controlling soil respiration. Soil respiration was negatively correlated with soil pH and soil salinity in all three plot types. In contrast, soil respiration was positively correlated with organic carbon. Overall, CO2 emissions and greenhouse gases had a relatively weak effect on the wetlands surrounding the highly saline Ebinur Lake.

  19. Geochemistry of great Salt Lake, Utah II: Pleistocene-Holocene evolution

    Science.gov (United States)

    Spencer, R.J.; Eugster, H.P.; Jones, B.F.

    1985-01-01

    Sedimentologic and biostratigraphic evidence is used to develop a geochemical model for Great Salt Lake, Utah, extending back some 30,000 yrs. B.P. Hydrologie conditions as defined by the water budget equation are characterized by a lake initially at a low, saline stage, rising by about 17,000 yrs. B.P. to fresh water basin-full conditions (Bonneville level) and then, after about 15,000 yrs. B.P., dropping rapidly to a saline stage again, as exemplified by the present situation. Inflow composition has changed through time in response to the hydrologie history. During fresh-water periods high discharge inflow is dominated by calcium bicarbonate-type river waters; during saline stages, low discharge, NaCl-rich hydrothermal springs are significant solute sources. This evolution in lake composition to NaCl domination is illustrated by the massive mirabilite deposition, free of halite, following the rapid drawdown until about 8,000 years ago, while historic droughts have yielded principally halite. Hydrologic history can be combined with inferred inflow composition to derive concentration curves with time for each major solute in the lake. Calcium concentrations before the drawdown were controlled by calcite solubility, and afterwards by aragonite. Significant amounts of solutes are removed from the lake by diffusion into the sediments. Na+, Cl- and SO42- are also involved in salt precipitation. By including pore fluid data, a surprisingly good fit has been obtained between solute input over the time period considered and the amounts actually found in lake brines, pore fluids, salt beds and sediments. Excess amounts are present for calcium, carbonate and silica, indicating detrital input. ?? 1985.

  20. Treatability of a Highly-Impaired, Saline Surface Water for Potential Urban Water Use

    Directory of Open Access Journals (Sweden)

    Frederick Pontius

    2018-03-01

    Full Text Available As freshwater sources of drinking water become limited, cities and urban areas must consider higher-salinity waters as potential sources of drinking water. The Salton Sea in the Imperial Valley of California has a very high salinity (43 ppt, total dissolved solids (70,000 mg/L, and color (1440 CU. Future wetlands and habitat restoration will have significant ecological benefits, but salinity levels will remain elevated. High salinity eutrophic waters, such as the Salton Sea, are difficult to treat, yet more desirable sources of drinking water are limited. The treatability of Salton Sea water for potential urban water use was evaluated here. Coagulation-sedimentation using aluminum chlorohydrate, ferric chloride, and alum proved to be relatively ineffective for lowering turbidity, with no clear optimum dose for any of the coagulants tested. Alum was most effective for color removal (28 percent at a dose of 40 mg/L. Turbidity was removed effectively with 0.45 μm and 0.1 μm microfiltration. Bench tests of Salton Sea water using sea water reverse osmosis (SWRO achieved initial contaminant rejections of 99 percent salinity, 97.7 percent conductivity, 98.6 percent total dissolved solids, 98.7 percent chloride, 65 percent sulfate, and 99.3 percent turbidity.

  1. Salinity and temperature variations around Peninsula Malaysia coastal waters

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak; Jeremy Andy Anak Dominic; Nazrul Hizam Yusof; Mohd Rafaei Murtadza

    2004-01-01

    Vertical profiles of salinity and temperature were measured at several offshore stations along east and west coast of Peninsula Malaysia coastal waters. The measurements which covered South China Sea and Straits of Malacca were made during sampling cruises for Marine Database Project for Peninsula Malaysia, and during an IAEA regional training course for Marine Pollution Project. The results show that the water temperature is highest at the surface and minimum at bottom, while the salinity is lowest at the surface and highest at the bottom. In Malacca Straits, the highest surface water temperature was 30.6 degree C and the lowest bottom water temperature was 20.4 degree C, recorded at a station located in Andaman Sea. The same station also recorded the highest surface and bottom salinity i.e. 31.3 ppt and 34.4 ppt, respectively. For South China Sea, the maximum surface water temperature was 30.4 degree C and the minimum bottom temperature was 25.9 degree C, while the highest surface salinity was 33.2 ppt and the highest bottom salinity was 34.1 ppt. The water in South China Sea also showed some degrees of stratifications with thermocline zones located between 10-40 m water depths. In Malacca Straits, stronger thermocline develops at higher latitude, while at lower latitude the water is more readily mixed. Beside the spatial variations, the seawater temperature and salinity around Peninsula Malaysia also subjected to temporal variation as seawater. (Author)

  2. The heliothermic lake: a direct method of collecting and storing solar energy

    Science.gov (United States)

    Kirkland, Douglas W.; Bradbury, J. Platt; Dean, Walter E.

    1980-01-01

    Heliothermic lakes contain a sun-heated layer of warm, saline water beneath a surface layer of cooler, less saline water. The two layers are separated by a chemocline, a stratum in which salinity increases progressively with depth. The chemocline, the position of which varies from lake to lake, functions as a heat trap. Most sunlight that penetrates this stratum is transformed into heat, which cannot escape by radiation because water is opaque to infrared light, and which cannot escape by convection because the specific gravity of the dense water below the chemocline is not significantly decreased by the increasing temperature. Heat can escape only by conduction through the chemocline, and water or brine is a very poor conductor. As a result, the temperature within and commonly below the chemocline rises. Under ideal conditions of a clear solution, high isolation, and a suitable salinity distribution, the temperature of the chemocline will increase to the boiling point. The lower part of the chemocline in a shallow (0.8-m) manmade heliothermic lake at Sedom, Israel, for example, reached a temperature of 96°C (205°F) in spite of a brine with poor light transmissibility.About 30 natural heliothermic lakes have been reported. The best known, Lake Ursului, occurs in Transylvania, Romania (latitude, 46°35'N). During four consecutive summers, 1899 to 1902, this lake had temperatures of 60-70°C (140-158°F) at a depth of 1-2 m. Heliothermic conditions have persisted in this lake for at least 28 and probably for more than 77 years. The most unusual, Lake Vanda, Victoria Land, Antarctica (latitude, 77°35'S), has a temperature of 26°C near the base of the chemocline at a depth of 61 despite a mean atmospheric temperature of -20°C. Sunlight penetrates into the chemocline through 5 m of remarkably clear ice.Maintenance of the chemocline is the chief problem preventing commercial use of manmade heliothermic lakes for the collection and storage of solar energy. The most

  3. Saline water intrusion toward groundwater: Issues and its control

    Directory of Open Access Journals (Sweden)

    Purnama S

    2012-10-01

    Full Text Available Nowadays, saline water pollution has been gaining its importance as the major issue around the world, especially in the urban coastal area. Saline water pollution has major impact on human life and livelihood. It ́s mainly a result from static fossil water and the dynamics of sea water intrusion. The problem of saline water pollution caused by seawater intrusion has been increasing since the beginning of urban population. The problem of sea water intrusion in the urban coastal area must be anticipated as soon as possible especially in the urban areas developed in coastal zones,. This review article aims to; (i analyze the distribution of saline water pollution on urban coastal area in Indonesia and (ii analyze some methods in controlling saline water pollution, especially due to seawater intrusion in urban coastal area. The strength and weakness of each method have been compared, including (a applying different pumping patterns, (b artificial recharge, (c extraction barrier, (d injection barrier and (e subsurface barrier. The best method has been selected considering its possible development in coastal areas of developing countries. The review is based considering the location of Semarang coastal area, Indonesia. The results have shown that artificial recharge and extraction barrier are the most suitable methods to be applied in the area.

  4. Lake Chini Water Quality Assessment Using Multivariate Approach

    International Nuclear Information System (INIS)

    Ahmad, A.K.; Shuhaimi, Othman M.; Lim, E.C.; Aziz, Z.A.

    2013-01-01

    An analysis was undertaken using the multivariate approach to determine the important water quality for shallow lake water quality assessment. Fourteen water quality parameters which includes biological, physical and chemical components were collected monthly over twelve month period. The data were analysed using factor analysis which involves identification of factor correlation, factor extraction and factor permutations. The first process involved the clustering of high correlation parameters into its respective factor and the removal of parameters that have more than one factor. Agglomerative hierarchy (HACA) and discriminant analysis (DA) were also used to exhibit the important factors that has significant influence on lake water quality. The analysis showed that Lake Chini water quality was determined by more than one factor. The results indicated that the biological and chemical (nutrients) components have significant influence in determining the lake water quality. The biological parameters namely BOD5, COD, chlorophyll a and chemical (nitrate and orthophosphate) are important parameters in Lake Chini. All analysis demonstrated the importance of biological and chemical water quality components in the determination of Lake Chini water quality. (author)

  5. Modern limnology of two lakes in the Tibetan Plateau - evidence from in-situ monitoring

    Science.gov (United States)

    Wang, M.; Li, X.; Lei, L.; He, Y.; Hou, J.

    2013-12-01

    The mechanisms of climate change in the Tibetan Plateau, known as the Third Pole, receive more and more attention due to its unique geographic location and the influence of multiple climate systems. Among the paleoclimate archives, widespread lakes provide abundant information on past climate changes and have been investigated for decades. Though many high-quality paleolimnological records have been reported in the Tibetan Plateau, little is known about the modern limnological processes in most Tibetan lakes as most lakes are difficult to access and not ready for long-term monitoring. We have installed a series of temperature data logger at different water levels in two Tibetan lakes, Bangong Co and Dagze Co in July 2012 to monitor hourly variability of temperature profile. Bangong Co (33.5°N, 79.8°E, 4245 m asl) is a freshwater lake (salinity ~0.5 g/L) in the westernmost Tibetan Plateau, receiving melt water from mountain glaciers in the basin. Dagze Co (31.9°N, 87.5°E, 4470 m asl) is saline lake (salinity ~15 g/L) in the central Tibetan Plateau, mostly fed by precipitation. In combination with the climate data in the nearby weather stations, we wish to understand the modern limnological processes in the two lakes and their potential effect on the lake biology, sedimentation, and sedimentary biomarkers. Based on the data collected for the first calendar year (Jul 2012 ~ Aug 2013), we anticipate to understand: 1) the influence of climate on the hydrological processes in high elevation lakes; 2) the difference in the metalimnion in meltwater-fed lake (Bangong Co) and precipitation-fed lake (Dagze Co) and their potential effect on the lake biology; 3) the difference in the spring turnover and fall turnover and the effect of meltwater and salinity.

  6. Evaluate prevailing climate change on Great Lakes water levels

    International Nuclear Information System (INIS)

    Islam, M.

    2009-01-01

    'Full text:'In this paper, results of a comprehensive water mass balance modeling for the Great Lakes against prevailing and different anticipated climate change scenarios would be presented. Modeling is done in evaluating the changes in the lake storages and then changes in the lake's water level considering present condition, uncertainty and variability of climate and hydrologic conditions in the future. Inflow-outflow and consequent changes in the five Great Lake's storages are simulated for the last 30 years and then projected to evaluate the changes in the lake storages for the next 50 years. From the predicted changes in the lake storage data, water level is calculated using mass to linear conversion equation. Modeling and analysis results are expected to be helpful in understanding the possible impacts of the climate change on the Great Lakes water environment and preparing strategic plan for the sustainable management of lake's water resources. From the recent past, it is observed that there is a depleting trend in the lakes water level and hence there is a potential threat to lake's water environment and uncertainty of the availability of quality and quantity of water for the future generations, especially against prevailing and anticipated climate changes. For this reason, it is an urgent issue of understanding and quantifying the potential impacts of climate change on the Great Lake's water levels and storages. (author)

  7. Energy and water in the Great Lakes.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll

    2011-11-01

    The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

  8. Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B. L. [Texas AgriLife Research, College Station, TX (United States); Roelke, Daniel [Texas AgriLife Research, College Station, TX (United States); Brooks, Bryan [Texas AgriLife Research, College Station, TX (United States); Grover, James [Texas AgriLife Research, College Station, TX (United States)

    2010-10-11

    A team of Texas AgriLife Research, Baylor University and University of Texas at Arlington researchers studied the biology and ecology of Prymnesium parvum (golden algae) in Texas lakes using a three-fold approach that involved system-wide monitoring, experimentation at the microcosm and mesocosm scales, and mathematical modeling. The following are conclusions, to date, regarding this organism's ecology and potential strategies for mitigation of blooms by this organism. In-lake monitoring revealed that golden algae are present throughout the year, even in lakes where blooms do not occur. Compilation of our field monitoring data with data collected by Texas Parks and Wildlife and Brazos River Authority (a period spanning a decade) revealed that inflow and salinity variables affect bloom formations. Thresholds for algae populations vary per lake, likely due to adaptations to local conditions, and also to variations in lake-basin morphometry, especially the presence of coves that may serve as hydraulic storage zones for P. parvum populations. More specifically, our in-lake monitoring showed that the highly toxic bloom that occurred in Lake Granbury in the winter of 2006/2007 was eliminated by increased river inflow events. The bloom was flushed from the system. The lower salinities that resulted contributed to golden algae not blooming in the following years. However, flushing is not an absolute requirement for bloom termination. Laboratory experiments have shown that growth of golden algae can occur at salinities ~1-2 psu but only when temperatures are also low. This helps to explain why blooms are possible during winter months in Texas lakes. Our in-lake experiments in Lake Whitney and Lake Waco, as well as our laboratory experiments, revealed that cyanobacteria, or some other bacteria capable of producing algicides, were able to prevent golden algae from blooming. Identification of this organism is a high priority as it may be a key to managing golden algae

  9. Establishment patterns of water-elm at Catahoula Lake, Louisiana

    Science.gov (United States)

    Karen S. Doerr; Sanjeev Joshi; Richard F. Keim

    2015-01-01

    At Catahoula Lake in central Louisiana, an internationally important lake for water fowl, hydrologic alterations to the surrounding rivers and the lake itself have led to an expansion of water-elm (Planera aquatic J.F. Gmel.) into the lake bed. In this study, we used dendrochronology and aerial photography to quantify the expansion of water-elm in the lake and identify...

  10. Assessment of Wetland Hydrological Dynamics in a Modified Catchment Basin: Case of Lake Buninjon, Victoria, Australia.

    Science.gov (United States)

    Yihdego, Yohannes; Webb, John A

    2017-02-01

      The common method to estimate lake levels is the water balance equation, where water input and output result in lake storage and water level changes. However, all water balance components cannot always be quickly assessed, such as due to significant modification of the catchment area. A method that assesses general changes in lake level can be a useful tool in examining why lakes have different lake level variation patterns. Assessment of wetlands using the dynamics of the historical hydrological and hydrogeological data set can provide important insights into variations in wetland levels in different parts of the world. A case study from a saline landscape, Lake Buninjon, Australia, is presented. The aim of the present study was to determine how climate, river regime, and lake hydrological properties independently influence lake water levels and salinity, leaving the discrepancy, for the effect of the non-climatic/catchment modification in the past and the model shows that surface inflow is most sensitive variable. The method, together with the analysis and interpretation, might be of interest to wider community to assess its response to natural/anthropogenic stress and decision choices for its ecological, social, scientific value, and mitigation measures to safe guard the wetland biodiversity in a catchment basin.

  11. [Water birds from Agua Dulce lake and El Ermitaño estuary, Jalisco, Mexico].

    Science.gov (United States)

    Hernández Vázquez, Salvador

    2005-01-01

    Waterbird abundance, and seasonal and spatial distribution, were studied in two natural water pools at Jalisco, Mexico, from December 1997 through November 1998. Maximum monthly abundance in Agua Dulce lake and El Ermitaño estuary was 86 471 birds (29 686 in Agua Dulce and 56 785 in Ermitaño), with a total cummulative abundance of 179 808 individuals (66 976 in Agua Dulce and 112 832 in Ermitaño). A total of 87 waterbirds species were recorded, 78 in Agua Dulce and 73 in Ermitaño. The higher species richness and abundance was observed during winter, when migratory species arrived. Most species prefered shallow waters, except seabirds which prefered protected areas such as dunes in Agua Dulce. Other groups, like clucks and related species. prefered low salinity areas, for example in the south-east area of Ermitaño. The higher abundance of the shorehirds was found when the water level on the estuary was low. Herons were seen often at areas with high salinity and influenced by tides (e.g. mouth of Ermitaño).

  12. Impacts of Salinity on Saint-Augustin Lake, Canada: Remediation Measures at Watershed Scale

    Directory of Open Access Journals (Sweden)

    Gaëlle Guesdon

    2016-07-01

    Full Text Available Winter road network management is a source of anthropogenic salinity in the Saint-Augustin Lake watershed (Quebec City, QC, Canada. To prevent the potential impact caused by road runoff involving de-icing salts (NaCl and trace metals (Cd and Pb on the watershed, a full-scale treatment chain system (including a detention basin, a filtering bed, and a constructed wetland was built. Average Cl and Na concentrations in groundwater were higher in wells affected by road network (125 mg/L Cl and 64 mg/L Na than in control wells (13 mg/L Cl and 33 mg/L Na suggesting a contamination by de-icing salts. The monitoring of influent and effluent surface water in the treatment system has shown a seasonal dependence in NaCl concentrations and electrical conductivity values, being the highest in summer, linked with the lower precipitation and higher temperature. Concentration ranges were as follows: 114–846 mg/L Na and 158–1757 mg/L Cl (summer > 61–559 mg/L Na and 63–799 mg/L Cl (spring and autumn. The treatment system removal efficiency was significant, however with seasonal variations: 16%–20% Cl, 3%–25% Na, 7%–10% Cd and 7%–36% Pb. The treatment system has shown an interesting potential to mitigate the impact of anthropogenic salinity at watershed scale with higher expected performances in the subsequent years of operation.

  13. Limnology and plankton diversity of salt lakes from Transylvanian Basin (Romania: A review

    Directory of Open Access Journals (Sweden)

    Mircea Alexe

    2017-09-01

    Full Text Available In the present work, we review the current knowledge on genesis, limnology and biodiversity of salt lakes distributed around the inner contour of Eastern Carpathian arc (Transylvanian Basin, Central Romania. Transylvanian salt lakes formed on ancient halite (NaCl deposits following natural processes or quarrying activities.  Most of these lakes are located in eastern (Sovata area, southern (Ocna Sibiului, and western (Turda-Cojocna parts of the Transylvanian Basin, have small surfaces (0.1-4 ha, variable depths (2-100 m, are hypersaline (>10%, w/v, total salts, mainly NaCl and permanently stratified. As consequence of steady salinity/density gradient, heat entrapment below surface layer (i.e., heliothermy develops in several Transylvanian lakes. The physical and chemical water stratification is mirrored in the partition of plankton diversity. Lakes with less saline (2-10% salinity water layers appear to harbor halotolerant representatives of phyto- (e.g., marine native Picochlorum spp. and Synechococcus spp., zoo- (e.g., Moina salina, and bacterioplankton (e.g., Actinobacteria, Verrucomicobia, whereas halophilic plankton communities (e.g., green algae Dunaliella sp., brine shrimp Artemia sp., and members of Halobacteria class dominate in the oxic surface of hypersaline (>10% salinity lakes. Molecular approaches (e.g., PCR-DGGE, 16S rRNA gene-based clone libraries, and DNA metabarcoding showed that the O2-depleted bottom brines of deep meromictic Transylvanian lakes are inhabited by known extremely halophilic anaerobes (e.g. sulfate-reducing Delta-Proteobacteria, fermenting Clostridia, methanogenic and polymer-degrading archaea in addition to representatives of uncultured/unclassified prokaryotic lineages. Overall, the plankton communities thriving in saline Transylvanian lakes seem to drive full biogeochemical cycling of main elements. However, the trophic interactions (i.e., food web structure and energy flow as well as impact of human

  14. Contributions of groundwater conditions to soil and water salinization

    Science.gov (United States)

    Salama, Ramsis B.; Otto, Claus J.; Fitzpatrick, Robert W.

    Salinization is the process whereby the concentration of dissolved salts in water and soil is increased due to natural or human-induced processes. Water is lost through one or any combination of four main mechanisms: evaporation, evapotranspiration, hydrolysis, and leakage between aquifers. Salinity increases from catchment divides to the valley floors and in the direction of groundwater flow. Salinization is explained by two main chemical models developed by the authors: weathering and deposition. These models are in agreement with the weathering and depositional geological processes that have formed soils and overburden in the catchments. Five soil-change processes in arid and semi-arid climates are associated with waterlogging and water. In all represented cases, groundwater is the main geological agent for transmitting, accumulating, and discharging salt. At a small catchment scale in South and Western Australia, water is lost through evapotranspiration and hydrolysis. Saline groundwater flows along the beds of the streams and is accumulated in paleochannels, which act as a salt repository, and finally discharges in lakes, where most of the saline groundwater is concentrated. In the hummocky terrains of the Northern Great Plains Region, Canada and USA, the localized recharge and discharge scenarios cause salinization to occur mainly in depressions, in conjunction with the formation of saline soils and seepages. On a regional scale within closed basins, this process can create playas or saline lakes. In the continental aquifers of the rift basins of Sudan, salinity increases along the groundwater flow path and forms a saline zone at the distal end. The saline zone in each rift forms a closed ridge, which coincides with the closed trough of the groundwater-level map. The saline body or bodies were formed by evaporation coupled with alkaline-earth carbonate precipitation and dissolution of capillary salts. Résumé La salinisation est le processus par lequel la

  15. Salamander colonization of Chase Lake, Stutsman County, North Dakota

    Science.gov (United States)

    Mushet, David M.; McLean, Kyle I.; Stockwell, Craig A.

    2013-01-01

    Salt concentrations in lakes are dynamic. In the western United States, water diversions have caused significant declines in lake levels resulting in increased salinity, placing many aquatic species at risk (Galat and Robinson 1983, Beutel et al. 2001). Severe droughts can have similar effects on salt concentrations and aquatic communities (Swanson et al. 2003). Conversely, large inputs of water can dilute salt concentrations and contribute to community shifts (Euliss et al. 2004).

  16. Cyclic heliothermal behaviour of the shallow, hypersaline Lake Hayward, Western Australia

    Science.gov (United States)

    Turner, Jeffrey V.; Rosen, Michael R.; Coshell, Lee; Woodbury, Robert J.

    2018-05-01

    Lake Hayward is one of only about 30 hypersaline lakes worldwide that is meromictic and heliothermal and as such behaves as a natural salt gradient solar pond. Lake Hayward acts as a local groundwater sink, resulting in seasonally variable hypersaline lake water with total dissolved solids (TDS) in the upper layer (mixolimnion) ranging between 56 kg m-3 and 207 kg m-3 and the deeper layer (monimolimnion) from 153 kg m-3 to 211 kg m-3. This is up to six times the salinity of seawater and thus has the highest salinity of all eleven lakes in the Yalgorup National Park lake system. A program of continuously recorded water temperature profiles has shown that salinity stratification initiated by direct rainfall onto the lake's surface and local runoff into the lake results in the onset of heliothermal conditions within hours of rainfall onset. The lake alternates between being fully mixed and becoming thermally and chemically stratified several times during the annual cycle, with the longest extended periods of heliothermal behaviour lasting 23 and 22 weeks in the winters of 1992 and 1993 respectively. The objective was to quantify the heat budgets of the cyclical heliothermal behaviour of Lake Hayward. During the period of temperature profile logging, the maximum recorded temperature of the monimolimnion was 42.6 °C at which time the temperature of the mixolimnion was 29.4 °C. The heat budget of two closed heliothermal cycles initiated by two rainfall events of 50 mm and 52 mm in 1993 were analysed. The cycles prevailed for 11 and 20 days respectively and the heat budget showed net heat accumulations of 34.2 MJ m-3 and 15.4 MJ m-3, respectively. The corresponding efficiencies of lake heat gain to incident solar energy were 0.17 and 0.18 respectively. Typically, artificial salinity gradient solar ponds (SGSP) have a solar radiation capture efficiencies ranging from 0.10 up to 0.30. Results from Lake Hayward have implications for comparative biogeochemistry and its

  17. Evaluation of ground-water flow and hydrologic budget for Lake Five-O, a seepage lake in northwestern Florida

    Science.gov (United States)

    Grubbs, J.W.

    1995-01-01

    Temporal and spatial distributions of ground-water inflow to, and leakage from Lake Five-O, a softwater, seepage lake in northwestern Florida, were evaluated using hydrologic data and simulation models of the shallow ground-water system adjacent to the lake. The simulation models indicate that ground-water inflow to the lake and leakage from the lake to the ground-water system are the dominant components in the total inflow (precipitation plus ground-water inflow) and total outflow (evaporation plus leakage) budgets of Lake Five-O. Simlulated ground-water inflow and leakage were approximately 4 and 5 times larger than precipitation inputs and evaporative losses, respectively, during calendar years 1989-90. Exchanges of water between Lake Five-O and the ground-water system were consistently larger than atmospheric-lake exchanges. A consistent pattern of shallow ground-water inflow and deep leakage was also evident throughout the study period. The mean time of travel from ground-water that discharges at Lake Five-O (time from recharge at the water table to discharge at the lake) was estimated to be within a range of 3 to 6 years. Flow-path evaluations indicated that the intermediate confining unit probably has a negligible influence on the geochemistry of ground-water inflow to Lake Five-O. The hydrologic budgets and flow-path evaluations provide critical information for developing geochemical budgets for Lake Five-O and for improving the understanding of the relative importance of various processes that regulate the acid-neutralizing capacity of softwater seepage lakes in Florida.

  18. Long-Term Variability of Satellite Lake Surface Water Temperatures in the Great Lakes

    Science.gov (United States)

    Gierach, M. M.; Matsumoto, K.; Holt, B.; McKinney, P. J.; Tokos, K.

    2014-12-01

    The Great Lakes are the largest group of freshwater lakes on Earth that approximately 37 million people depend upon for fresh drinking water, food, flood and drought mitigation, and natural resources that support industry, jobs, shipping and tourism. Recent reports have stated (e.g., the National Climate Assessment) that climate change can impact and exacerbate a range of risks to the Great Lakes, including changes in the range and distribution of certain fish species, increased invasive species and harmful algal blooms, declining beach health, and lengthened commercial navigation season. In this study, we will examine the impact of climate change on the Laurentian Great Lakes through investigation of long-term lake surface water temperatures (LSWT). We will use the ATSR Reprocessing for Climate: Lake Surface Water Temperature & Ice Cover (ARC-Lake) product over the period 1995-2012 to investigate individual and interlake variability. Specifically, we will quantify the seasonal amplitude of LSWTs, the first and last appearances of the 4°C isotherm (i.e., an important identifier of the seasonal evolution of the lakes denoting winter and summer stratification), and interpret these quantities in the context of global interannual climate variability such as ENSO.

  19. Water pollution control technology and strategy for river-lake systems: a case study in Gehu Lake and Taige Canal.

    Science.gov (United States)

    Zhang, Yimin; Zhang, Yongchun; Gao, Yuexiang; Zhang, Houhu; Cao, Jianying; Cai, Jinbang; Kong, Xiangji

    2011-07-01

    The Taoge water system is located in the upstream of Taihu Lake basin and is characterized by its multi-connected rivers and lakes. In this paper, current analyses of hydrology, hydrodynamics and water pollution of Gehu Lake and Taige Canal are presented. Several technologies are proposed for pollution prevention and control, and water environmental protection in the Taihu Lake basin. These included water pollution control integration technology for the water systems of Gehu Lake, Taige Canal and Caoqiao River. Additionally, river-lake water quality and quantity regulation technology, ecological restoration technology for polluted and degraded water bodies, and water environmental integration management and optimization strategies were also examined. The main objectives of these strategies are to: (a) improve environmental quality of relative water bodies, prevent pollutants from entering Gehu Lake and Taige Canal, and ensure that the clean water after the pre-treatment through Gehu Lake is not polluted before entering the Taihu Lake through Taige Canal; (b) stably and efficiently intercept and decrease the pollution load entering the lake through enhancing the river outlet ecological system structure function and water self-purifying capacity, and (c) designate Gehu Lake as a regulation system for water quality and water quantity in the Taoge water system and thus guarantee the improvement of the water quality of the inflow into Taihu Lake.

  20. Influence of salinity and water regime on tomato for processing

    Directory of Open Access Journals (Sweden)

    Vito Cantore

    2012-03-01

    Full Text Available The effects of salinity and watering regime on tomato crop are reported. The trials have been carried out over two years in Southern Italy on a deep loam soil. Three saline levels of irrigation water (with electrical conductivity of 0.5, 5 and 10 dS m-1, three watering regimes (at 20, 40 and 60% of available water depletion, and two cultivars (HLY19 and Perfectpeel were compared. The overall results related to the salinity tolerance are in agreement with those from the literature indicating that water salinity reduced marketable yield by 55% in respect to the control treatments. The irrigation regimes that provided higher total and marketable yield were at 40 and 60% of available water depletion (on average, 90.5 and 58.1 Mg ha-1 against 85.3 and 55.5 Mg ha-1 of the 20% available water depletion. Saline and irrigation treatments did not affect sunburned fruits, while affected incidence of fruits with blossom-end rot. The former disease appeared more dramatically in saline treatments (+28% in respect to the control, and occurred mainly in HLY19. The disease incidence was by 52% lower in W2 respect to the W1 and W3. Fruit firmness was higher in S0, whereas it was not affected by irrigation regimes. Total soluble solids and dry matter content of tomato fruits were increased by salinity, whereas it was not affected by irrigation regimes and cultivars. The pH and the titratable acidity remained unchanged between the years, the cultivar and the saline and irrigation treatments. Similarly to the last parameters, the fruit ascorbic acid content remained unchanged in relation to the treatments, but it was higher in HLY19. The recommended thresholds of easily available water to preserve total and marketable yield were at 40 and 60%, respectively. Watering more frequently, instead, on the soil type of the trial, probably caused water-logging and root hypoxia affecting negatively yield.

  1. Comparative limnology of strip-mine lakes

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, J D

    1964-01-01

    Lakes were classified according to chemical properties. The concentration of the ferric iron oxides was responsible for a reddish-black turbidity which, in turn, played a major role in the thermal stratification of red strip-mine lakes. Owing to the lack of measurable turbidity and as a result of selective absorption of visible solar radiation, other strip-mine lakes appeared blue in color. The annual heat budget and the summer heat budget are essentially equivalent under saline conditions. Regardless of the physical and chemical conditions of the strip-mine lakes, heat income was a function of the circulating water mass. The progressive oxidation and precipitation of the iron oxides is the key to the classification of strip-mine lakes.

  2. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    Science.gov (United States)

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  3. Stable isotopic composition of East African lake waters

    International Nuclear Information System (INIS)

    Odada, E.O.

    2001-01-01

    The investigation of stable isotopic composition of East African lake waters was conducted by scientists from the Department of Geology, University of Nairobi, as part of the International Decade for the East African Lakes (IDEAL) project and in close collaboration with the scientists from Large Lakes Observatory of the University of Minnesota and the Isotope Hydrology Laboratory of the IAEA in Vienna. The Research Contract was part of the IAEA Co-ordinated Research Programme on Isotope Techniques in Lake Dynamics Investigations, and was sponsored by the Agency. Water and grab sediment samples were obtained from East African Lakes during the month of January and February 1994 and July/August 1995. Water samples were analysed for oxygen and deuterium isotopic composition at the IAEA Laboratories in Vienna, Austria. In this final paper we report the results of the study of oxygen and deuterium isotopic composition from the East African lake waters. (author)

  4. Deep lake water cooling a renewable technology

    Energy Technology Data Exchange (ETDEWEB)

    Eliadis, C.

    2003-06-01

    In the face of increasing electrical demand for air conditioning, the damage to the ozone layer by CFCs used in conventional chillers, and efforts to reduce the greenhouse gases emitted into the atmosphere by coal-fired power generating stations more and more attention is focused on developing alternative strategies for sustainable energy. This article describes one such strategy, namely deep lake water cooling, of which the Enwave project recently completed on the north shore of Lake Ontario is a prime example. The Enwave Deep Lake Water Cooling (DLWC) project is a joint undertaking by Enwave and the City of Toronto. The $180 million project is unique in design and concept, using the coldness of the lake water from the depths of Lake Ontario (not the water itself) to provide environmentally friendly air conditioning to office towers. Concurrently, the system also provides improved quality raw cold water to the city's potable water supply. The plant has a rated capacity of 52,200 tons of refrigeration. The DLWC project is estimated to save 75-90 per cent of the electricity that would have been generated by a coal-fired power station. Enwave, established over 20 years ago, is North America's largest district energy system, delivering steam, hot water and chilled water to buildings from a central plant via an underground piping distribution network. 2 figs.

  5. An approach to the coastal water circulation in the Piratuba Lake Biological Reservation, Northeast of Amapa State, Brazil

    Science.gov (United States)

    Takiyama, L. R.; Silveira, O. M.

    2007-05-01

    This study shows the pioneer results of the water quality characterization of a lake region, including the Piratuba lake (within the limits of the Piratuba Lake Biological Reservation) and the Sucuriju river, localized at the northeast portion of the Amapa State, Brazil, and left margin of the Amazon River mouth. Due to the influence of the Amazon river and another important river, the Araguari river, the northeast coast of Amapa State receive little impact of salty water from the Atlantic ocean. The highest salinity values detected on this coastal area is 20 psu. The Piratuba Lake region which can be described as an unique wetland system formed by recent geological processes (Quaternary), it constitutes a very fragile environment and possesses a number of shallow water lakes distributed into a mixed mangrove and "varzea" type of vegetation and it is considered very important looking at the biological point of view. The borderline between this lake system with the coastal waters is a narrow portion of mangrove containing species of Rizhophora and Avicennia parallel to the coast line. A preliminary water circulation could be accessed through the detection of variation in water quality parameters throughout three field studies conducted on March, 2004, June 2005 and November 2005. Surface water sampling points spatially distributed on the study area with distances less than 2 km were set, covering almost 800 square kilometers. Among the parameters studied (pH, electrical conductivity, turbidity, concentration of suspended solids, depth, temperature, chloride, dissolved oxygen, nitrate, nitrite and phosphate) the turbidity, electrical conductivity and pH were the most important for identifying the entering of coastal waters into the lake region. Mainly, three points of direct contact were identified; one of them is a manmade illegal entrance to the Biological Reservation. The seasonal variation was also very important factor and as expected, during the dry season

  6. Perchlorate in Lake Water from an Operating Diamond Mine.

    Science.gov (United States)

    Smith, Lianna J D; Ptacek, Carol J; Blowes, David W; Groza, Laura G; Moncur, Michael C

    2015-07-07

    Mining-related perchlorate [ClO4(-)] in the receiving environment was investigated at the operating open-pit and underground Diavik diamond mine, Northwest Territories, Canada. Samples were collected over four years and ClO4(-) was measured in various mine waters, the 560 km(2) ultraoligotrophic receiving lake, background lake water and snow distal from the mine. Groundwaters from the underground mine had variable ClO4(-) concentrations, up to 157 μg L(-1), and were typically an order of magnitude higher than concentrations in combined mine waters prior to treatment and discharge to the lake. Snow core samples had a mean ClO4(-) concentration of 0.021 μg L(-1) (n=16). Snow and lake water Cl(-)/ClO4(-) ratios suggest evapoconcentration was not an important process affecting lake ClO4(-) concentrations. The multiyear mean ClO4(-) concentrations in the lake were 0.30 μg L(-1) (n = 114) in open water and 0.24 μg L(-1) (n = 107) under ice, much below the Canadian drinking water guideline of 6 μg L(-1). Receiving lake concentrations of ClO4(-) generally decreased year over year and ClO4(-) was not likely [biogeo]chemically attenuated within the receiving lake. The discharge of treated mine water was shown to contribute mining-related ClO4(-) to the lake and the low concentrations after 12 years of mining were attributed to the large volume of the receiving lake.

  7. Cyclic heliothermal behaviour of the shallow, hypersaline Lake Hayward, Western Australia

    Science.gov (United States)

    Turner, Jeffrey V.; Rosen, Michael R.; Coshell, Lee; Woodbury, Robert J.

    2018-01-01

    Lake Hayward is one of only about 30 hypersaline lakes worldwide that is meromictic and heliothermal and as such behaves as a natural salt gradient solar pond. Lake Hayward acts as a local groundwater sink, resulting in seasonally variable hypersaline lake water with total dissolved solids (TDS) in the upper layer (mixolimnion) ranging between 56 kg m−3 and 207 kg m−3 and the deeper layer (monimolimnion) from 153 kg m−3 to 211 kg m−3. This is up to six times the salinity of seawater and thus has the highest salinity of all eleven lakes in the Yalgorup National Park lake system. A program of continuously recorded water temperature profiles has shown that salinity stratification initiated by direct rainfall onto the lake’s surface and local runoff into the lake results in the onset of heliothermal conditions within hours of rainfall onset.The lake alternates between being fully mixed and becoming thermally and chemically stratified several times during the annual cycle, with the longest extended periods of heliothermal behaviour lasting 23 and 22 weeks in the winters of 1992 and 1993 respectively. The objective was to quantify the heat budgets of the cyclical heliothermal behaviour of Lake Hayward.During the period of temperature profile logging, the maximum recorded temperature of the monimolimnion was 42.6 °C at which time the temperature of the mixolimnion was 29.4 °C.The heat budget of two closed heliothermal cycles initiated by two rainfall events of 50 mm and 52 mm in 1993 were analysed. The cycles prevailed for 11 and 20 days respectively and the heat budget showed net heat accumulations of 34.2 MJ m−3 and 15.4 MJ m−3, respectively. The corresponding efficiencies of lake heat gain to incident solar energy were 0.17 and 0.18 respectively. Typically, artificial salinity gradient solar ponds (SGSP) have a solar radiation capture efficiencies ranging from 0.10 up to 0.30. Results from Lake Hayward have

  8. Environmental Monitoring, Water Quality - Lakes Assessments - Attaining

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This layer shows only attaining lakes of the Integrated List. The Lakes Integrated List represents lake assessments in an integrated format for the Clean Water Act...

  9. Effects of deficit drip-irrigation scheduling regimes with saline water on pepper yield, water productivity and soil salinity under arid conditions of Tunisia

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2012-12-01

    Full Text Available A two-year study was carried out in order to assess the effects of different irrigation scheduling regimes with saline water on soil salinity, yield and water productivity of pepper under actual commercial-farming conditions in the arid region of Tunisia. Pepper was grown on a sandy soil and drip-irrigated with water having an ECi of 3.6 dS/m. Irrigation treatments consisted in water replacements of accumulated ETc at levels of 100% (FI, full irrigation, 80% (DI-80, 60% (DI-60, when the readily available water in the control treatment (FI is depleted, deficit irrigation during ripening stage (FI-MDI60 and farmer method corresponding to irrigation practices implemented by the local farmers (FM. Results on pepper yield and soil salinity are globally consistent between the two-year experiments and shows significant difference between irrigation regimes. Higher soil salinity was maintained over the two seasons, 2008 and 2009, with DI-60 and FM treatments than FI. FI-MDI60 and DI-80 treatments resulted also in low ECe values. Highest yields for both years were obtained under FI (22.3 and 24.4 t/ha although we didn’t find significant differences with the regulated deficit irrigation treatment (FI-DI60. However, the DI-80 and DI-60 treatments caused significant reductions in pepper yields through a reduction in fruits number/m² and average fruit weight in comparison with FI treatment. The FM increased soil salinity and caused significant reductions in yield with 14 to 43%, 12 to 39% more irrigation water use than FI, FI-MDI60 and DI-80 treatments, respectively, in 2008 and 2009. Yields for all irrigation treatments were higher in the second year compared to the first year. Water productivity (WP values reflected this difference and varied between 2.31 and 5.49 kg/m3. The WP was found to vary significantly among treatments, where the highest and the lowest values were observed for DI-60 treatment and FM, respectively. FI treatment provides

  10. Evaluation of CDOM sources and their links with water quality in the lakes of Northeast China using fluorescence spectroscopy

    Science.gov (United States)

    Zhao, Ying; Song, Kaishan; Wen, Zhidan; Fang, Chong; Shang, Yingxin; Lv, Lili

    2017-07-01

    The spatial distributions of the fluorescence intensities Fmax for chromophoric dissolved organic matter (CDOM) components, the fluorescence indices (FI370 and FI310) and their correlations with water quality of 19 lakes in the Songhua River Basin (SHRB) across semiarid regions of Northeast China were examined with the data collected in September 2012 and 2015. The 19 lakes were divided into two groups according to EC (threshold value = 800 μS cm-1): fresh water (N = 13) and brackish water lakes (N = 6). The fluorescent characteristics of CDOM in the 19 lakes were investigated using excitation-emission matrix fluorescence spectroscopy (EEM) coupled with parallel factor (PARAFAC) and multivariate analysis. Two humic-like components (C1 and C3), one tryptophan-like component (C2), and one tyrosine-like component (C4) were identified by PARAFAC. The component C4 was not included in subsequent analyses due to the strong scatter in some colloidal water samples from brackish water lakes. The correlations between Fmax for the three EEM-PARAFAC extracted CDOM components C1-C3, the fluorescence indices (FI370 and FI310) and the water quality parameters (i.e., TN, TP, Chl-a, pH, EC, turbidity (Turb) and dissolved organic carbon (DOC)) were determined by redundancy analysis (RDA). The results of RDA analysis showed that spatial variation in land cover, pollution sources, and salinity/EC gradients in water quality affected Fmax for the fluorescent components C1-C3 and the fluorescence indices (FI370 and FI310). Further examination indicated that the CDOM fluorescent components and the fluorescence indices (FI370 and FI310) did not significantly differ (t-test, p > 0.05) in fresh water (N = 13) and brackish water lakes (N = 6). There was a difference in the distribution of the average Fmax for the CDOM fluorescent components between C1 to C3 from agricultural sources and urban wastewater sources in hypereutrophic brackish water lakes. The Fmax for humic-like components C1 and

  11. Coagulation processes of kaolinite and montmorillonite in calm, saline water

    Science.gov (United States)

    Zhang, Jin-Feng; Zhang, Qing-He; Maa, Jerome P.-Y.

    2018-03-01

    A three dimensional numerical model for simulating the coagulation processes of colloids has been performed by monitoring the time evolution of particle number concentration, the size distribution of aggregates, the averaged settling velocity, the collision frequency, and the collision efficiency in quiescent water with selected salinities. This model directly simulates all interaction forces between particles based on the lattice Boltzmann method (LBM) and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and thus, can reveal the collision and coagulation processes of colloidal suspensions. Although using perfect spherical particles in the modeling, the results were compared with those for kaolinite and montmorillonite suspensions to demonstrate the capability of simulating the responses of these particles with highly irregular shape. The averaged settling velocity of kaolinite aggregates in quiescent saline water reached a maximum of 0.16 mm/s when the salinity increasing to about 3, and then, exhibited little dependence on salinity thereafter. Model simulations results (by choosing specific values that represent kaolinite's characteristics) indicate a similar trend: rapid decrease of the particle number concentration (i.e., rapidly flocculated, and thus, settling velocity also increases rapidly) when salinity increases from 0 to 2, and then, only increased slightly when salinity was further increased from 5 to 20. The collision frequency for kaolinite only decreases slightly with increasing salinity because that the fluid density and viscosity increase slightly in sea water. It suggests that the collision efficiency for kaolinite rises rapidly at low salinities and levels off at high salinity. For montmorillonite, the settling velocity of aggregates in quiescent saline water continuedly increases to 0.022 mm/s over the whole salinity range 0-20, and the collision efficiency for montmorillonite rises with increasing salinities.

  12. Oh Magadi! Interpreting isoGDGTs and n-alkanes in a saline tropical lake: Lake Magadi, Kenya

    Science.gov (United States)

    Ferland, T. M.; Werne, J. P.; Castañeda, I. S.; Cohen, A. S.; Lowenstein, T. K.; Deocampo, D.; Renaut, R.; Bernhart, O. R.

    2017-12-01

    The Hominin Sites and Paleolakes Drilling Project (HSPDP) seeks to understand the paleoclimatic and paleoenvironmental context of hominin adaptation and evolution by analysis of paleolacustrine cores taken near key hominin fossil and artifact localities in Kenya and Ethiopia. We present biomarker and compound specific isotope data from a 200 m drill core from Lake Magadi, Kenya. Located 20 km from the Koora Plain in the southern Kenya Rift, and adjacent to the Olorgesailie basin, Lake Magadi is in one of the richest Early-Late Pleistocene archaeological localities in Africa, a region that has been key in debates about the relationship between climate and evolution. Present-day Lake Magadi is a saline pan, a descendant of a series of paleolakes that have occupied its drainage basin and progressively dried for approximately one million years. Nearly 70% of samples analyzed for n-alkanes recorded a robust terrestrial signal. The majority of samples did not contain the complete suite of branched GDGTs necessary to reconstruct temperature from the Methylation of Branched Tetraethers and Cyclisation of Branched Tetraethers (MBT/CBT; Weijers et al., 2007) proxy. The TetraEther indeX with 86 carbon atoms (TEX86; Schouten et al., 2002) temperature proxy was established for 90% of samples analyzed for isoGDGTs, however the Methane and Ring Indices (Zhang et al., 2011; Zhang et al., 2016) suggest that the TEX86 is not applicable to temperature reconstruction at Magadi. Despite this, the Magadi TEX86 temperature reconstruction appears to agree with not only the trends in our n-alkane data but with other regional and global records, including the GRIP-2 δ18O record. We compare our temperature data to other records in the region, and investigate influences on our TEX86 data including microbial community turnover and lake drying.

  13. Intrusion of low-salinity water into the Yellow Sea Interior in 2012

    Science.gov (United States)

    Oh, Kyung-Hee; Lee, Joon-Ho; Lee, Seok; Pang, Ig-Chan

    2014-12-01

    Abnormally low-salinity water was detected in the surface layer of the central region of the Yellow Sea in August 2012. The presence of such low-salinity water in the Yellow Sea interior has never been reported previously. To understand the origin of this low-salinity water, oceanographic and wind data were analyzed, and the circulation of the surface layer was also examined in the Yellow and East China Seas using a numerical ocean model. The results confirmed that typhoons caused the low-salinity water. Two consecutive typhoons passed from east to west across the East China Sea, around the Changjiang Bank in early August 2012. Strong easterly and southeasterly winds created by the typhoons in the Yellow and East China Seas drove the low-salinity water to the north along the coast of China and northeastward toward the central region of the Yellow Sea, respectively. Usually, the northward drifting of Changjiang Diluted Water along the coast of China ends around the Jiangsu coast, where the drifting is blocked and is turned by the offshore Eulerian residual current. Therefore, the Changjiang Diluted Water does not intrude more into the Yellow Sea interior. However, in 2012, the low-salinity water drifted up to the Shandong Peninsula along the coast of China, and formed massive low-salinity water in the Yellow Sea interior combining with the other low-salinity water extended toward the central region of the Yellow Sea directly from the Changjiang Bank. Thus, the typhoons play a key role in the appearance of abnormally low-salinity water in the Yellow Sea interior and it means that the Yellow Sea ecosystem could be significantly influenced by the Changjiang Diluted Water.

  14. Isotope techniques in lake water studies

    International Nuclear Information System (INIS)

    Gourcy, L.

    1999-01-01

    Freshwater lakes are among the most easily exploitable freshwater resources. Lakes are also recognized as major sedimentological features in which stored material can be used to study recent climate and pollution evolution. To adequately preserve these important landscape features, and to use them as climatic archives, an improved understanding of processes controlling their hydrologic and bio-geochemical environments if necessary. This article briefly describes the IAEA activities related to the study of lakes in such areas as lake budget, lake dynamics, water contamination, and paleolimnological investigations

  15. Taxonomic and functional diversity provides insight into microbial pathways and stress responses in the saline Qinghai Lake, China.

    Directory of Open Access Journals (Sweden)

    Qiuyuan Huang

    Full Text Available Microbe-mediated biogeochemical cycles contribute to the global climate system and have sensitive responses and feedbacks to environmental stress caused by climate change. Yet, little is known about the effects of microbial biodiversity (i.e., taxonmic and functional diversity on biogeochemical cycles in ecosytems that are highly sensitive to climate change. One such sensitive ecosystem is Qinghai Lake, a high-elevation (3196 m saline (1.4% lake located on the Tibetan Plateau, China. This study provides baseline information on the microbial taxonomic and functional diversity as well as the associated stress response genes. Illumina metagenomic and metatranscriptomic datasets were generated from lake water samples collected at two sites (B and E. Autotrophic Cyanobacteria dominated the DNA samples, while heterotrophic Proteobacteria dominated the RNA samples at both sites. Photoheterotrophic Loktanella was also present at both sites. Photosystem II was the most active pathway at site B; while, oxidative phosphorylation was most active at site E. Organisms that expressed photosystem II or oxidative phosphorylation also expressed genes involved in photoprotection and oxidative stress, respectively. Assimilatory pathways associated with the nitrogen cycle were dominant at both sites. Results also indicate a positive relationship between functional diversity and the number of stress response genes. This study provides insight into the stress resilience of microbial metabolic pathways supported by greater taxonomic diversity, which may affect the microbial community response to climate change.

  16. Saline water irrigation of quinoa and chickpea

    DEFF Research Database (Denmark)

    Hirich, A.; Jelloul, A.; Choukr-Allah, R.

    2014-01-01

    A pot experiment was conducted in the south of Morocco to evaluate the response of chickpea and quinoa to different irrigation water salinity treatments (1, 4, 7 and 10 dS m-1 for chickpea and 1, 10, 20 and 30 dS m-1 for quinoa). Increasing salinity affected significantly (P

  17. Lake Tahoe Water Quality Improvement Programs

    Science.gov (United States)

    Information on the Lake Tahoe watershed, EPA's protection efforts, water quality issues, effects of climate, change, Lake Tahoe Total Maximum Daily Load (TMDL), EPA-sponsored projects, and list of partner agencies.

  18. Eutrophication of Lake Waters in China: Cost, Causes, and Control

    Science.gov (United States)

    Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lu, H.; Yin, B.

    2010-04-01

    Lake water eutrophication has become one of the most important factors impeding sustainable economic development in China. Knowledge of the current status of lake water eutrophicatoin and determination of its mechanism are prerequisites to devising a sound solution to the problem. Based on reviewing the literature, this paper elaborates on the evolutional process and current state of shallow inland lake water eutrophication in China. The mechanism of lake water eutrophication is explored from nutrient sources. In light of the identified mechanism strategies are proposed to control and tackle lake water eutrophication. This review reveals that water eutrophication in most lakes was initiated in the 1980s when the national economy underwent rapid development. At present, the problem of water eutrophication is still serious, with frequent occurrence of damaging algal blooms, which have disrupted the normal supply of drinking water in shore cities. Each destructive bloom caused a direct economic loss valued at billions of yuan. Nonpoint pollution sources, namely, waste discharge from agricultural fields and nutrients released from floor deposits, are identified as the two major sources of nitrogen and phosphorus. Therefore, all control and rehabilitation measures of lake water eutrophication should target these nutrient sources. Biological measures are recommended to rehabilitate eutrophied lake waters and restore the lake ecosystem in order to bring the problem under control.

  19. Water balance and irrigation water pumping of Lake Merdada for potato farming in Dieng Highland, Indonesia.

    Science.gov (United States)

    Fadlillah, Lintang N; Widyastuti, M

    2016-08-01

    Lakes provide water resources for domestic use, livestock, irrigational use, etc. Water availability of lakes can be estimated using lake water balance. Lake water balance is calculated from the water input and output of a lake. Dieng Highland has several volcanic lakes in its surroundings. Lake Merdada in Dieng Highland has been experiencing extensive water pumping for several years more than other lakes in the surrounding area. It provides irrigation water for potato farming in Dieng Highland. The hydrological model of this lake has not been studied. The modeled water balance in this research uses primary data, i.e., bathymetric data, soil texture, and outflow discharge, as well as secondary data, i.e., rainfall, temperature, Landsat 7 ETM+ band 8 image, and land use. Water balance input components consist of precipitation on the surface area, surface (direct) runoff from the catchment area, and groundwater inflow and outflow (G net), while the output components consist of evaporation, river outflow, and irrigation. It shows that groundwater is the dominant input and output of the lake. On the other hand, the actual irrigation water pumping plays the leading role as human-induced alteration of outflow discharge. The maximum irrigation pumping modeling shows that it will decrease lake storage up to 37.14 % per month and may affect the ecosystem inside the lake.

  20. Terrestrial hydro-climatic change, lake shrinkage and water resource deterioration: Analysis of current to future drivers across Asia

    Science.gov (United States)

    Jarsjo, J.; Beygi, H.; Thorslund, J.

    2016-12-01

    Due to overlapping effects of different anthropogenic pressures and natural variability, main drivers behind on-going changes in the water cycle have in many cases not been identified, which complicates management of water resources. For instance, in many parts of the world, and not least in semi-arid and arid parts of Asia, lowered groundwater levels and shrinkage of surface water bodies with associated salinization and water quality deterioration constitute great challenges. With the aim to identify main drivers and mechanisms behind such changes, we here combine (i) historical observations of long-term, large scale change, (ii) ensemble projections of expected future change from the climate models of the Coupled Model Intercomparison Project Phase 5 (CMIP 5) and (iii) output from water balance modelling. Our particular focus is on regions near shrinking lakes. For the principal Lake Urmia in Iran, results show that agricultural intensification including irrigation expansion has clearly contributed to the surprisingly rapid water quality deterioration and lake shrinkage, from 10% lake area reduction in 2002 to the current value of about 75% (leaving billion of tons of salt exposed in its basin). Nevertheless, runoff decrease due to climate change has had an even larger effect. For the Aral Sea in Central Asia, where problems accelerated much earlier (in the 1990's), land-use change and irrigation expansion can fully explain the disastrous surface water deficits and water quality problems in the extensive low-lying parts of the basin. However, projections show that climate-driven runoff decrease in the headwaters of the Aral Sea basin may become a dominant driver of continued change in the near-future. More generally, present results illustrate that mitigation measures that compensate only for land-use driven effects may not reverse current trends of decreasing water availability, due to increasingly strong impacts of climate-driven runoff decrease. This has

  1. Geochemical monitoring of volcanic lakes. A generalized box model for active crater lakes

    Directory of Open Access Journals (Sweden)

    Franco Tassi

    2011-06-01

    Full Text Available

    In the past, variations in the chemical contents (SO42−, Cl−, cations of crater lake water have not systematically demonstrated any relationships with eruptive activity. Intensive parameters (i.e., concentrations, temperature, pH, salinity should be converted into extensive parameters (i.e., fluxes, changes with time of mass and solutes, taking into account all the internal and external chemical–physical factors that affect the crater lake system. This study presents a generalized box model approach that can be useful for geochemical monitoring of active crater lakes, as highly dynamic natural systems. The mass budget of a lake is based on observations of physical variations over a certain period of time: lake volume (level, surface area, lake water temperature, meteorological precipitation, air humidity, wind velocity, input of spring water, and overflow of the lake. This first approach leads to quantification of the input and output fluxes that contribute to the actual crater lake volume. Estimating the input flux of the "volcanic" fluid (Qf- kg/s –– an unmeasurable subsurface parameter –– and tracing its variations with time is the major focus during crater lake monitoring. Through expanding the mass budget into an isotope and chemical budget of the lake, the box model helps to qualitatively characterize the fluids involved. The (calculated Cl− content and dD ratio of the rising "volcanic" fluid defines its origin. With reference to continuous monitoring of crater lakes, the present study provides tips that allow better calculation of Qf in the future. At present, this study offers the most comprehensive and up-to-date literature review on active crater lakes.

  2. Hydrology and water quality of Shell Lake, Washburn County, Wisconsin, with special emphasis on the effects of diversion and changes in water level on the water quality of a shallow terminal lake

    Science.gov (United States)

    Juckem, Paul F.; Robertson, Dale M.

    2013-01-01

    Shell Lake is a relatively shallow terminal lake (tributaries but no outlets) in northwestern Wisconsin that has experienced approximately 10 feet (ft) of water-level fluctuation over more than 70 years of record and extensive flooding of nearshore areas starting in the early 2000s. The City of Shell Lake (City) received a permit from the Wisconsin Department of Natural Resources in 2002 to divert water from the lake to a nearby river in order to lower water levels and reduce flooding. Previous studies suggested that water-level fluctuations were driven by long-term cycles in precipitation, evaporation, and runoff, although questions about the lake’s connection with the groundwater system remained. The permit required that the City evaluate assumptions about lake/groundwater interactions made in previous studies and evaluate the effects of the water diversion on water levels in Shell Lake and other nearby lakes. Therefore, a cooperative study between the City and U.S. Geological Survey (USGS) was initiated to improve the understanding of the hydrogeology of the area and evaluate potential effects of the diversion on water levels in Shell Lake, the surrounding groundwater system, and nearby lakes. Concerns over deteriorating water quality in the lake, possibly associated with changes in water level, prompted an additional cooperative project between the City and the USGS to evaluate efeffects of changes in nutrient loading associated with changes in water levels on the water quality of Shell Lake. Numerical models were used to evaluate how the hydrology and water quality responded to diversion of water from the lake and historical changes in the watershed. The groundwater-flow model MODFLOW was used to simulate groundwater movement in the area around Shell Lake, including groundwater/surface-water interactions. Simulated results from the MODFLOW model indicate that groundwater flows generally northward in the area around Shell Lake, with flow locally converging

  3. Thermodynamics of saline and fresh water mixing in estuaries

    Science.gov (United States)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2018-03-01

    The mixing of saline and fresh water is a process of energy dissipation. The freshwater flow that enters an estuary from the river contains potential energy with respect to the saline ocean water. This potential energy is able to perform work. Looking from the ocean to the river, there is a gradual transition from saline to fresh water and an associated rise in the water level in accordance with the increase in potential energy. Alluvial estuaries are systems that are free to adjust dissipation processes to the energy sources that drive them, primarily the kinetic energy of the tide and the potential energy of the river flow and to a minor extent the energy in wind and waves. Mixing is the process that dissipates the potential energy of the fresh water. The maximum power (MP) concept assumes that this dissipation takes place at maximum power, whereby the different mixing mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with respect to the dispersion coefficient that reflects the combined mixing processes. The resulting equation is an additional differential equation that can be solved in combination with the advection-dispersion equation, requiring only two boundary conditions for the salinity and the dispersion. The new equation has been confronted with 52 salinity distributions observed in 23 estuaries in different parts of the world and performs very well.

  4. The structural modification of cassava starch using a saline water pretreatment

    Directory of Open Access Journals (Sweden)

    Hanny Frans SANGIAN

    2018-04-01

    Full Text Available Abstract The cassava has been modified successfully by using the saline water, which was abundantly available on the planet. The biomass was submerged in saline waters that salt concentrations were altered at 0, 3.5 percent (seawater and 10 percent (w/w and were kept 5 days. After recovery by washing steps, the treated solids were characterized by using XRD (X-ray diffraction , FTIR (Fourier transform infra-red, and SEM (Scanning electron microscopic. The results showed that the XRD pattern of saline water pretreatment decreased significantly. The biggest decrease of X-ray intensity occurred at around 18o. Meanwhile, the fingerprint of FTIR revealed the transmittance intensity of infra-red ray of saline water treated solid inclined for all wave constant numbers, suggesting that many hydrogen bonds were disconnected. Those findings also were enhanced by SEM pictures that showed the change of surface morphology of treated biomass. It was indicative that cassava structure was modified becoming more textured after employing saline water pretreatment. This work is an innovative finding to gradually substitute commercial ionic liquids that are very expensive with saline water for biomass pretreatment.

  5. Hydrology and water quality of Park Lake, south-central Wisconsin

    Science.gov (United States)

    Kammerer, P.A.

    1996-01-01

    Park Lake extends to the northeast from the village of Pardeeville in Columbia County (fig. 1). Local residents perceive water-quality problems in the lake that include excessive algae and aquatic plant growth. Algae and plant growth in a lake are controlled, in part, by the availability of phosphorus in the water. However, no measurements of phosphorus enter- ing the lake or of other factors that affect lake-water quality had been made, and available data on water quality were limited to 2 years of measurements at one site in the lake in 1986- 87. To obtain the data and in- formation needed to address the water-quality problems at Park Lake and to develop a management plan that would limit the input of phosphorus to the lake, the U.S. Geologi- cal Survey, in cooperation with the Park Lake Management District, studied the hydrology of the lake and collected data needed to determine sources and amount of phosphorus en- tering the lake. This Fact Sheet summarizes the results of that study. Data collected during the study were published in a separate report (Holmstrom and others, 1994, p. 70-85).

  6. Salinization and arsenic contamination of surface water in southwest Bangladesh.

    Science.gov (United States)

    Ayers, John C; George, Gregory; Fry, David; Benneyworth, Laura; Wilson, Carol; Auerbach, Leslie; Roy, Kushal; Karim, Md Rezaul; Akter, Farjana; Goodbred, Steven

    2017-09-11

    To identify the causes of salinization and arsenic contamination of surface water on an embanked island (i.e., polder) in the tidal delta plain of SW Bangladesh we collected and analyzed water samples in the dry (May) and wet (October) seasons in 2012-2013. Samples were collected from rice paddies (wet season), saltwater ponds used for brine shrimp aquaculture (dry season), freshwater ponds and tidal channels (both wet and dry season), and rainwater collectors. Continuous measurements of salinity from March 2012 to February 2013 show that tidal channel water increases from ~0.15 ppt in the wet season up to ~20 ppt in the dry season. On the polder, surface water exceeds the World Health Organization drinking water guideline of 10 μg As/L in 78% of shrimp ponds and 27% of rice paddies, raising concerns that produced shrimp and rice could have unsafe levels of As. Drinking water sources also often have unsafe As levels, with 83% of tubewell and 43% of freshwater pond samples having >10 μg As/L. Water compositions and field observations are consistent with shrimp pond water being sourced from tidal channels during the dry season, rather than the locally saline groundwater from tubewells. Irrigation water for rice paddies is also obtained from the tidal channels, but during the wet season when surface waters are fresh. Salts become concentrated in irrigation water through evaporation, with average salinity increasing from 0.43 ppt in the tidal channel source to 0.91 ppt in the rice paddies. Our observations suggest that the practice of seasonally alternating rice and shrimp farming in a field has a negligible effect on rice paddy water salinity. Also, shrimp ponds do not significantly affect the salinity of adjacent surface water bodies or subjacent groundwater because impermeable shallow surface deposits of silt and clay mostly isolate surface water bodies from each other and from the shallow groundwater aquifer. Bivariate plots of conservative element

  7. Cold Lake-Beaver River water management study update: Report of the Cold Lake Regional Water Management Task Force

    International Nuclear Information System (INIS)

    1994-01-01

    The Cold Lake Regional Water Management Task Force was formed in 1992, comprising representatives from local governments, aboriginal groups, the oil industry, and the public. The Task Force's mandate was to advise Alberta Environmental Protection on updating the Cold Lake-Beaver River Water Management Plan, taking into acocunt the views and concerns of the public, industry, and local governments. Industrial water use was found to be the key issue to be addressed in the plan update, so the Task Force focused on reviewing industrial water supply options and developing recommendations on the appropriate water supply to meet long-term requirements. A subcommittee was established to monitor groundwater use by the heavy oil industry. This committee took readings at Imperial Oil's water production and observation wells on a biweekly basis. Nine options for supplying industrial water requirements were examined and evaluated using criteria including supply reliability, economic factors, and impacts on other users and the environment. The Task Force found that the preferred source of water for industrial use is the North Saskatchewan River, to be accessed by a water pipeline. The second and less desirable source of water for industrial use would be a system of weirs on Cold or Primrose Lakes and Wolf Lake, supplemented by the use of brackish water to the maximum extent possible. In the interim, industry was recommended to maximize its use of brackish water and continue to use surface and ground water within existing license limits. Other recommendations were to form provincial or regional boards to oversee water use and issue water licenses, to treat water as a resource, and to establish a fee for industrial use of water. 3 figs., 5 tabs

  8. Multi-Elements in Waters and Sediments of Shallow Lakes: Relationships with Water, Sediment, and Watershed Characteristics.

    Science.gov (United States)

    Kissoon, La Toya T; Jacob, Donna L; Hanson, Mark A; Herwig, Brian R; Bowe, Shane E; Otte, Marinus L

    2015-06-01

    We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds.

  9. Water Quality and Hydrology of Silver Lake, Barron County, Wisconsin, With Special Emphasis on Responses of a Terminal Lake to Changes in Phosphorus Loading and Water Level

    Science.gov (United States)

    Robertson, Dale M.; Rose, William J.; Fitzpatrick, Faith A.

    2009-01-01

    Silver Lake is typically an oligotrophic-to-mesotrophic, soft-water, terminal lake in northwestern Wisconsin. A terminal lake is a closed-basin lake with surface-water inflows but no surface-water outflows to other water bodies. After several years with above-normal precipitation, very high water levels caused flooding of several buildings near the lake and erosion of soil around much of the shoreline, which has been associated with a degradation in water quality (increased phosphorus and chlorophyll a concentrations and decreased water clarity). To gain a better understanding of what caused the very high water levels and degradation in water quality and collect information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. This report describes results of the study; specifically, lake-water quality, historical changes in water level, water and phosphorus budgets for the two years monitored in the study, results of model simulations that demonstrate how changes in phosphorus inputs affect lake-water quality, and the relative importance of changes in hydrology and changes in the watershed to the water quality of the lake. From 1987 to about 1996, water quality in Silver Lake was relatively stable. Since 1996, however, summer average total phosphorus concentrations increased from about 0.008 milligrams per liter (mg/L) to 0.018 mg/L in 2003, before decreasing to 0.011 mg/L in 2008. From 1996 to 2003, Secchi depths decreased from about 14 to 7.4 feet, before increasing to about 19 feet in 2008. Therefore, Silver Lake is typically classified as oligotrophic to mesotrophic; however, during 2002-4, the lake was classified as mesotrophic to eutrophic. Because productivity in Silver Lake is limited by phosphorus, phosphorus budgets for the lake were constructed for monitoring years 2005 and 2006. The average annual input of phosphorus was 216 pounds: 78 percent from tributary and

  10. Water quality and bathymetry of Sand Lake, Anchorage, Alaska

    Science.gov (United States)

    Donaldson, Donald E.

    1976-01-01

    Sand Lake, a dimictic lowland lake in Anchorage, Alaska, has recently become as urban lake. Analyses indicate that the lake is oligotrophic, having low dissolved solids and nutrient concentrations. Snowmelt runoff from an adjacent residential area, however, has a dissolved-solids concentration 10 times that of the main body of Sand Lake. Lead concentrations in the runoff exceed known values from other water in the ANchorage area, including water samples taken beneath landfills. The volume of the snowmelt runoff has not been measured. The data presented can be used as a baseline for water-resource management. (Woodard-USGS)

  11. Salinity and cationic nature of irrigation water on castor bean cultivation

    Directory of Open Access Journals (Sweden)

    Geovani S. de Lima

    Full Text Available ABSTRACT This study aimed to evaluate the water relations, cell damage percentage and growth of the castor bean cv. ‘BRS Energia’ as a function of salinity and cationic nature of the water used in irrigation. The experiment was conducted in drainage lysimeters under greenhouse conditions in eutrophic Grey Argisol of sandy loam texture. Six combinations of water salinity and cations were studied (S1 - Control; S2 - Na+, S3 - Ca2+, S4 - Na+ + Ca2+; S5 - K+ and S6 - Na+ + Ca2+ + Mg2+, in a randomized block design with four replicates. In the control (S1, plants were irrigated with 0.6 dS m-1 water, whereas the other treatments received 4.5 dS m-1 water, obtained by adding different salts, all in the chloride form. Higher relative water content in the leaf blade of plants irrigated with K+-salinized water associated with leaf succulence are indicative of tolerance of the castor bean cv. ‘BRS Energia’ to salinity. Saline stress negatively affected castor bean growth, regardless of cationic nature of water. Among the ions studied, ‘BRS Energia’ castor bean was more sensitive to the presence of sodium in the irrigation water, in terms of both water relations and leaf succulence.

  12. Natural and human drivers of salinity in reservoirs and their implications in water supply operation through a Decision Support System

    Science.gov (United States)

    Contreras, Eva; Gómez-Beas, Raquel; Linares-Sáez, Antonio

    2016-04-01

    Salt can be a problem when is originally in aquifers or when it dissolves in groundwater and comes to the ground surface or flows into streams. The problem increases in lakes hydraulically connected with aquifers affecting water quality. This issue is even more alarming when water resources are used for urban and irrigation supply and water quantity and quality restrict that water demand. This work shows a data based and physical modeling approach in the Guadalhorce reservoir, located in southern Spain. This water body receives salt contribution from mainly groundwater flow, getting salinity values in the reservoir from 3500 to 5500 μScm-1. Moreover, Guadalhorce reservoir is part of a complex system of reservoirs fed from the Guadalhorce River that supplies all urban, irrigation, tourism, energy and ecology water uses, which makes that implementation and validation of methods and tools for smart water management is required. Meteorological, hydrological and water quality data from several monitoring networks and data sources, with both historical and real time data during a 40-years period, were used to analyze the impact salinity. On the other hand, variables that mainly depend on the dam operation, such as reservoir water level and water outflow, were also analyzed to understand how they affect to salinity in depth and time. Finally surface and groundwater inflows to the reservoir were evaluated through a physically based hydrological model to forecast when the major contributions take place. Reservoir water level and surface and groundwater inflows were found to be the main drivers of salinity in the reservoir. When reservoir water level is high, daily water inflow around 0.4 hm3 causes changes in salinity (both drop and rise) up to 500 μScm-1, but no significant changes are found when water level falls 2-3 m. However the gradual water outflows due to dam operation and consequent decrease in reservoir water levels makes that, after dry periods, salinity

  13. Recent warming of lake Kivu.

    Science.gov (United States)

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  14. Recent warming of lake Kivu.

    Directory of Open Access Journals (Sweden)

    Sergei Katsev

    Full Text Available Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  15. Particulate Matter Sources and Composition near a Shrinking Saline Lake (Salton Sea)

    Science.gov (United States)

    Frie, A. L.; Dingle, J. H.; Garrison, A.; Ying, S.; Bahreini, R.

    2017-12-01

    Dried lake beds (playas) are large dust sources in arid regions, and with increased global water demand many large lakes are shrinking. The Salton Sea is an example of one such lake in the early stages of desiccation, with about 15,000 acres of exposed playa. To quantify the impacts of the shrinking lake on airborne particulate matter(PM) composition, PM samples were collected in August of 2015 and February of 2016 near the Salton Sea, CA. These samples were analyzed for total elemental concentration of 15 elements. For these elements, enrichment factors relative to aluminum were calculated and PMF modeling was applied to deconvolve source factors. From these data, desert-like and playa-like sources were estimated to accounted for 45% and 9% of PM10 mass during these sampling periods. PMF results also revealed that playa sources account for 70% of PM10 Na, evidencing playa-driven PM compositional changes. Additionally, PM Se displayed strong seasonal variation, which is thought to be driven by Se volatilization within Salton Sea sediments, playas, or waters.

  16. Groundwater and surface-water interactions near White Bear Lake, Minnesota, through 2011

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Rosenberry, Donald O.; Jackson, P. Ryan; Bode, Jenifer A.; O'Grady, Ryan M.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the White Bear Lake Conservation District, the Minnesota Pollution Control Agency, the Minnesota Department of Natural Resources, and other State, county, municipal, and regional planning agencies, watershed organizations, and private organizations, conducted a study to characterize groundwater and surface-water interactions near White Bear Lake through 2011. During 2010 and 2011, White Bear Lake and other lakes in the northeastern part of the Twin Cities Metropolitan Area were at historically low levels. Previous periods of lower water levels in White Bear Lake correlate with periods of lower precipitation; however, recent urban expansion and increased pumping from the Prairie du Chien-Jordan aquifer have raised the question of whether a decline in precipitation is the primary cause for the recent water-level decline in White Bear Lake. Understanding and quantifying the amount of groundwater inflow to a lake and water discharge from a lake to aquifers is commonly difficult but is important in the management of lake levels. Three methods were used in the study to assess groundwater and surface-water interactions on White Bear Lake: (1) a historical assessment (1978-2011) of levels in White Bear Lake, local groundwater levels, and their relation to historical precipitation and groundwater withdrawals in the White Bear Lake area; (2) recent (2010-11) hydrologic and water-quality data collected from White Bear Lake, other lakes, and wells; and (3) water-balance assessments for White Bear Lake in March and August 2011. An analysis of covariance between average annual lake-level change and annual precipitation indicated the relation between the two variables was significantly different from 2003 through 2011 compared with 1978 through 2002, requiring an average of 4 more inches of precipitation per year to maintain the lake level. This shift in the linear relation between annual lake-level change and annual precipitation

  17. A new species of Cletocamptus Schmankewitsch, 1875 (Crustacea, Copepoda, Harpacticoida from a high altitude saline lake in Central Mexico

    Directory of Open Access Journals (Sweden)

    Eduardo Suarez Morales

    2013-04-01

    Full Text Available During the analysis of littoral samples collected from a high-altitude saline crater lake in Central Mexico, several female and male specimens of harpacticoid copepods were recovered and taxonomically examined. They were found to represent an undescribed species of the canthocamptid genus Cletocamptus Schmankewitsch, 1875. The new species, C. gomezi n. sp. is described herein based on specimens of both sexes. It resembles C. stimpsoni Gómez, Fleeger, Rocha-Olivares and Foltz, 2004 from Louisiana but also C. trichotus Kiefer, 1929. The new species differs from C. stimpsoni and from other congeners by details of the maxillular armature, the setation of the endopodal segments of legs 2 and 3, and the armature of the third exopodal segment of legs 3 and 4. Also, the dorsal (VII and the outer (IV caudal setae are both relatively shorter than in C. stimpsoni. This is the second species of the genus known to be distributed in Mexico. The occurrence of the new species in a high-altitude saline lake, the isolation of the type locality, and its absence from adjacent freshwater lakes suggest that this species is endemic to this site.

  18. Watershed land use effects on lake water quality in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Anders; Trolle, Dennis; Søndergaard, Martin

    2012-01-01

    Mitigating nutrient losses from anthropogenic nonpoint sources is today of particular importance for improving the water quality of numerous freshwater lakes worldwide. Several empirical relationships between land use and in-lake water quality variables have been developed, but they are often weak......, which can in part be attributed to lack of detailed information about land use activities or point sources. We examined a comprehensive data set comprising land use data, point-source information, and in-lake water quality for 414 Danish lakes. By excluding point-source-influenced lakes (n = 210....... Relationships between TP and agricultural land use were even stronger for lakes with rivers in their watershed (55%) compared to lakes without (28%), indicating that rivers mediate a stronger linkage between landscape activity and lake water quality by providing a “delivery” mechanism for excess nutrients...

  19. Saline-water intrusion related to well construction in Lee County, Florida

    Science.gov (United States)

    Boggess, Durward Hoye; Missimer, T.M.; O'Donnell, T. H.

    1977-01-01

    Ground water is the principle source of water supply in Lee County, Florida where an estimated 30,000 wells have been drilled since 1990. These wells ranges in depth from about 10 to 1,240 feet and tap the water table aquifer or one or more of the artesian water-bearing units or zones in the Tamiami Formation, the upper part of the Hawthorn Formation, the lower part of the Hawthorn Formation and the Tampa Limestone and the Suwannee Limestone. Before 1968, nearly all wells were constructed with galvanized or black iron pipe. Many of these wells are sources of saline-water intrusion into freshwater-bearing zones. The water-bearing zones in the lower part of the Hawthorn Formation, Tampa Limestone, and Suwannee Limestone are artesian-they have higher water levels and usually contain water with a higher concentration of dissolved solids than do the aquifers occurring at shallower depths. The water from these deeper aquifers generally range in dissolved solids concentration from about 1,500 to 2,400 mg/L, and in chloride from about 500 to 1,00 mg/L. A maximum chloride concentration of 15,200 mg/L has been determined. Few of the 3,00 wells estimated to have been drilled to these zones contain sufficient casing to prevent upward flow into overlaying water-bearing zones. Because of water-level differentials, upward movement and lateral intrusion of saline water occurs principally into the upper part of the Hawthorn Formation where the chloride concentrations in water unaffected by saline-water intrusion ranges from about 80 to 150 mg/L. Where intrusion from deep artesian zones has occurred, the chloride concentration in water from the upper part of the Hawthorn Formation ranges from about 300 to more than 2,100 mg/L Surface discharges of the saline water from wells tapping the lower part of the Hawthorn Formation and the Suwannee Limestone also had affected the water-table aquifer which normally contains water with 10 to 50 mg/L of chloride. In one area, the chloride

  20. Variación estacional e influencia de la turbidez y la salinidad sobre el zooplancton de un lago salino de la región central de Argentina Seasonal variation and influence of turbidity and salinity on the zooplankton of a saline lake in central Argentina

    Directory of Open Access Journals (Sweden)

    Santiago Andrés Echaniz

    2011-07-01

    Full Text Available The limnology of saline water bodies at other latitudes is fairly well known, but in Argentina such studies have only recently begun. The applicability of many conclusions regarding the functioning of these environments around the world is limited due to the scant ecological knowledge of some endemic species recorded in the assemblages of Argentine lakes. The aims of this work were to determine the effects of salinity and inorganic turbidity on the taxonomic composition, abundance, and zooplankton biomass in a shallow, hypereutrophic, mesosaline lake in the north of La Pampa province characterized by seasonality, variations in level and salinity, and the lack of macrophytes and fishes, and to compare it with other shallow lakes of the province. We found important differences with other saline lakes: the species richness was lower; the mean abundance of zooplankton was between four and six times higher; and rotifers, which were not affected by salinity or the concentration of inorganic suspended solids, were numerically predominant. Crustaceans, on the other hand, were negatively affected by these environmental factors. Biomass was twofold higher than that recorded in the same period in two shallow lakes of Pampa, with similar nutrient concentrations but lower salinities.La limnología de los cuerpos de agua salinos de otras latitudes es bastante conocida, pero en Argentina se ha comenzado a estudiar recientemente. Muchas conclusiones sobre el funcionamiento de estos ambientes a nivel mundial son de aplicación restringida debido a que las asociaciones registradas en los lagos argentinos tienen algunas especies endémicas, cuyo conocimiento ecológico es escaso. Los objetivos de este trabajo fueron determinar los efectos de la salinidad y la turbidez inorgánica sobre la composición taxonómica, abundancia y biomasa zooplanctónica en un lago somero mesosalino hipereutrófico del norte de La Pampa, caracterizado por su temporalidad, variaciones

  1. Is water age a reliable indicator for evaluating water quality effectiveness of water diversion projects in eutrophic lakes?

    Science.gov (United States)

    Zhang, Xiaoling; Zou, Rui; Wang, Yilin; Liu, Yong; Zhao, Lei; Zhu, Xiang; Guo, Huaicheng

    2016-11-01

    Water diversion has been applied increasingly to promote the exchange of lake water and to control eutrophication of lakes. The accelerated water exchange and mass transport by water diversion can usually be represented by water age. But the responses of water quality after water diversion is still disputed. The reliability of using water age for evaluating the effectiveness of water diversion projects in eutrophic lakes should be thereby explored further. Lake Dianchi, a semi-closed plateau lake in China, has suffered severe eutrophication since the 1980s, and it is one of the three most eutrophic lakes in China. There was no significant improvement in water quality after an investment of approximately 7.7 billion USD and numerous project efforts from 1996 to 2015. After the approval of the Chinese State Council, water has been transferred to Lake Dianchi to alleviate eutrophication since December 2013. A three-dimensional hydrodynamic and water quality model and eight scenarios were developed in this study to quantity the influence of this water diversion project on water quality in Lake Dianchi. The model results showed that (a) Water quality (TP, TN, and Chla) could be improved by 13.5-32.2%, much lower than the approximate 50% reduction in water age; (b) Water exchange had a strong positive relationship with mean TP, and mean Chla had exactly the same response to water diversion as mean TN; (c) Water level was more beneficial for improving hydrodynamic and nutrient concentrations than variation in the diverted inflowing water volume; (d) The water diversion scenario of doubling the diverted inflow rate in the wet season with the water level of 1886.5 m and 1887 m in the remaining months was the best water diversion mode for mean hydrodynamics and TP, but the scenario of doubling the diverted inflow rate in the wet season with 1887 m throughout the year was optimum for mean TN and Chla; (e) Water age influenced the effectiveness of water diversion on the

  2. Geo- and Biogeochemical Processes in a Heliothermal Hypersaline Lake

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, Jim K.

    2016-03-17

    Water chemical variations were investigated over three annual hydrologic cycles in hypersaline, heliothermal, meromictic Hot Lake in north-central Washington State, USA. The lake, originally studied by Anderson (1958), contains diverse biota with dramatic zonation related to salinity and redox state. Water samples were collected at 10 cm depth intervals through the shallow lake (2.4 m) at a consistent location during 2012-2014, with comprehensive monitoring performed in 2013. Inorganic salt species, total dissolved solids (TDS), dissolved carbon forms (DOC, DIC), oxygen, sulfide, and methane were analyzed in lake water samples. Depth sonde measurements of pH and temperature were also performed to track their seasonal variations. A bathymetric survey of the lake was conducted to enable lake water volume and solute inventory calculations. Sediment cores were collected at low water and analyzed by x-ray diffraction to investigate sediment mineralogy. The primary dissolved salt in Hot Lake water was Mg2+-SO42- while sediments were dominated by gypsum (CaSO4•2H2O). Lake water concentrations increased with depth to reach saturation with epsomite that was exposed at lake bottom. At maximum volume in spring, Hot Lake exhibited a relatively dilute mixolimnion containing phyto- and zooplankton; a lower saline metalimnion with stratified oxygenic and anoxygenic photosynthetic microbiologic communities; and a stable, hypersaline monimolimnion, separated from above layers by a chemocline, containing high levels of sulfide and methane. The thickness of the mixolimnion regulates a heliothermal effect which creates temperatures in excess of 60 oC in the underlying metalimnion and monimolimnion. The mixolimnion was dynamic and actively mixed. It displayed large pH variations, in-situ calcium carbonate precipitation, and large evaporative volume losses. The depletion of this ephemeral layer by fall allowed deeper mixing into the volume-stable lower mixolimnion, more rapid heat

  3. Analysis of black water aggregation in Taihu Lake

    Directory of Open Access Journals (Sweden)

    Gui-hua Lu

    2011-12-01

    Full Text Available Black water aggregation (BWA in Taihu Lake is a disaster for the lake environment. It is a phenomenon resulting from water environmental deterioration and eutrophication caused by accumulation of pollutants in the lake, according to research on the water quality, pollutants of BWA, and occurrence mechanisms of BWA. Dead algae are the material base of BWA, the polluted sediment is an important factor for the formation of BWA, and hydrological and meteorological conditions such as sun light, air temperature, wind speed, and water flow are the other factors that may lead to the formation of BWA. Thioether substances such as dimethyl trisulfide are the representative pollutants of BWA. Parameters such as chlorophyll-a, DO, pH, and water temperature are sensitive indicators of BWA. Measures such as algae collection, ecological dredging, pollution control, and water diversion from the Yangtze River to the lake, are effective, and strengthening aeration is an emergency measure to control BWA.

  4. Mid-depth temperature maximum in an estuarine lake

    Science.gov (United States)

    Stepanenko, V. M.; Repina, I. A.; Artamonov, A. Yu; Gorin, S. L.; Lykossov, V. N.; Kulyamin, D. V.

    2018-03-01

    The mid-depth temperature maximum (TeM) was measured in an estuarine Bol’shoi Vilyui Lake (Kamchatka peninsula, Russia) in summer 2015. We applied 1D k-ɛ model LAKE to the case, and found it successfully simulating the phenomenon. We argue that the main prerequisite for mid-depth TeM development is a salinity increase below the freshwater mixed layer, sharp enough in order to increase the temperature with depth not to cause convective mixing and double diffusion there. Given that this condition is satisfied, the TeM magnitude is controlled by physical factors which we identified as: radiation absorption below the mixed layer, mixed-layer temperature dynamics, vertical heat conduction and water-sediments heat exchange. In addition to these, we formulate the mechanism of temperature maximum ‘pumping’, resulting from the phase shift between diurnal cycles of mixed-layer depth and temperature maximum magnitude. Based on the LAKE model results we quantify the contribution of the above listed mechanisms and find their individual significance highly sensitive to water turbidity. Relying on physical mechanisms identified we define environmental conditions favouring the summertime TeM development in salinity-stratified lakes as: small-mixed layer depth (roughly, ~wind and cloudless weather. We exemplify the effect of mixed-layer depth on TeM by a set of selected lakes.

  5. Noble Gases in Lakes and Ground Waters

    OpenAIRE

    Kipfer, Rolf; Aeschbach-Hertig, Werner; Peeters, Frank; Stute, Marvin

    2002-01-01

    In contrast to most other fields of noble gas geochemistry that mostly regard atmospheric noble gases as 'contamination,' air-derived noble gases make up the far largest and hence most important contribution to the noble gas abundance in meteoric waters, such as lakes and ground waters. Atmospheric noble gases enter the meteoric water cycle by gas partitioning during air / water exchange with the atmosphere. In lakes and oceans noble gases are exchanged with the free atmosphere at the surface...

  6. Water Surface Overgrowing of the Tatra’s Lakes

    Directory of Open Access Journals (Sweden)

    Kapusta Juraj

    2018-03-01

    Full Text Available Tatra’s lakes are vulnerable ecosystems and an important element of the alpine landscape. Mainly some shallow lake basins succumb to intense detritus sedimentation, fine fractions of material from the catchment area or to the overgrowing of water level by vegetation. In this paper, changes and dynamics of the 12 Tatra’s lake shorelines that were selected based on the detailed mapping of their extent are pointed out. Changes were assessed by accurate comparisons of historical and current orthophoto maps from the years 1949, 1955 and 2015 – and therefore, based on the oldest and the latest relevant materials. Due to the overgrowing of lakes caused by vegetation, their water surface decreased from −0.9% up to −47.9%, during the examined period. Losses were caused by the overgrowing of open water surface by the communities of sedges and peat bogs. The most significant dynamics of the shorelines during the last decades were reached by those lakes, into which fine sediments were simultaneously deposited by means of mountain water coarse. These sediments made the marginal parts of the lake basins shallower and accelerated rapid expansion of vegetation to the detriment of the open water surface. The overgrowing of shallow moraine lakes lying in the vegetation zone is a significant phenomenon of the High Tatras alpine landscape. It leads to their gradual extinction, turn into peat bogs and wet alpine meadows.

  7. Linking water and carbon cycles through salinity observed from space

    Science.gov (United States)

    Xie, X.; Liu, W. T.

    2017-12-01

    The association of ocean surface salinity in global hydrological cycle and climate change has been traditionally studied through the examination of its tendency and advection as manifestation of ocean's heat and water fluxes with the atmosphere. The variability of surface heat and water fluxes are linked to top of atmosphere radiation, whose imbalance is the main cause of global warming. Besides the link of salinity to greenhouse warming through water balance, this study will focus on the effect of changing salinity on carbon dioxide flux between the ocean and the atmosphere. We have built statistical models to estimate the partial pressure of carbon dioxide (pCO2) and ocean acidification (in terms of total alkalinity and pH) using spacebased data. PCO2 is a critical parameter governing ocean as source and sink of the accumulated greenhouse gas in the atmosphere. The exchange also causes ocean acidification, which is detrimental to marine lives and ecology. Before we had sufficient spacebased salinity measurements coincident with in situ pCO2 measurement, we trained our statistical models to use satellite sea surface temperature and chlorophyll, with one model using salinity climatology and the other without. We found significant differences between the two models in regions of strong water input through river discharge and surface water flux. The pCO2 output follows the seasonal salinity advection of the Amazon outflow. The seasonal salinity advection between Bay of Bengal and Arabian Sea are followed by change of pCO2 and total alkalinity. At shorter time scales, the signatures of rain associated with intraseasonal organized convection of summer monsoon can be detected. We have observed distribution agreement of among pCO2, surface salinity, and surface water flux for variation from a few days to a few years under the Pacific ITCZ; the agreement varies slightly with season and longitudes and the reason is under study.

  8. Lake water quality: Chapter 4 in A synthesis of aquatic science for management of Lakes Mead and Mohave

    Science.gov (United States)

    Tietjen, Todd; Holdren, G. Chris; Rosen, Michael R.; Veley, Ronald J.; Moran, Michael J.; Vanderford, Brett; Wong, Wai Hing; Drury, Douglas D.

    2012-01-01

    Given the importance of the availability and quality of water in Lake Mead, it has become one of the most intensely sampled and studied bodies of water in the United States. As a result, data are available from sampling stations across the lake (fig. 4-1 and see U.S. Geological Survey Automated Water-Quality Platforms) to provide information on past and current (2012) water-quality conditions and on invasive species that influence—and are affected by—water quality. Water quality in Lakes Mead and Mohave generally exceeds standards set by the State of Nevada to protect water supplies for public uses: drinking water, aquatic ecosystem health, recreation, or agricultural irrigation. In comparison to other reservoirs studied by the U.S. Environmental Protection Agency (USEPA) for a national lake assessment (U.S. Environmental Protection Agency, 2010), Lake Mead is well within the highest or ‘good’ category for recreation and aquatic health (see U.S. Environmental Protection Agency National Lakes Assessment and Lake Mead for more details). While a small part of the lake, particularly Las Vegas Bay, is locally influenced by runoff from urbanized tributaries such as Las Vegas Wash, contaminant loading in the lake as a whole is low compared to other reservoirs in the nation, which are influenced by runoff from more heavily urbanized watersheds (Rosen and Van Metre, 2010).

  9. Impacts of irrigation regimes with saline water on carrot productivity and soil salinity

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2012-01-01

    Full Text Available A three-year study was conducted to evaluate the effects of different irrigation regimes with saline water on soil salinity, yield and water productivity of carrot as a fall-winter crop under actual commercial-farming conditions in the arid region of Tunisia. Carrot was grown on a sandy soil and surface-irrigated with a water having an ECi of 3.6 dS/m. For the three years, a complete randomized block design with four replicates was used to evaluate five irrigation regimes. Four irrigation methods were based on the use of soil water balance (SWB to estimate irrigation amounts and timing while the fifth consisted of using traditional farmers practices. SWB methods consisted in replacement of cumulated ETc when readily available water is depleted with levels of 100% (FI-100, 80% (DI-80 and 60% (DI-60. FI-100 was considered as full irrigation while DI-80 and DI-60 were considered as deficit irrigation regimes. Regulated deficit irrigation regime where 40% reduction is applied only during ripening stage (FI-DI60 was also used. Farmer method (Farmer consisted in giving fixed amounts of water (25 mm every 7 days from planting till harvest. Results on carrot production and soil salinization are globally consistent between the three-year experiments and shows significant difference between irrigation regimes. Higher soil salinity in the root zone is observed at harvest under DI-60 (3.1, 3.4, 3.9 dS/m, respectively, for the three years and farmer irrigation (3.3, 3.6, 3.9 dS/m treatments compared to FI-100 treatment (2.3, 2.6 and 3.1 dS/m. Relatively low ECe values were also observed under FI-DI60 and DI-80 treatments with respectively (2.7, 3, 3.5 dS/m and (2.5, 2.9, 3.3 dS/m. ECe values under the different irrigation treatments were generally lower than or equal to the EC of irrigation water used. Rainfall received during fall and/or winter periods (57, 26 and 29 mm, respectively, during the three years contributed probably to leaching soluble

  10. Carbonate microbialites and hardgrounds from Manito Lake, an alkaline, hypersaline lake in the northern Great Plains of Canada

    Science.gov (United States)

    Last, Fawn M.; Last, William M.; Halden, Norman M.

    2010-03-01

    Manito Lake is a large, perennial, Na-SO 4 dominated saline to hypersaline lake located in the northern Great Plains of western Canada. Significant water level decrease over the past several decades has led to reduction in volume and surface area, as well as an increase in salinity. The salinity has increased from 10 ppt to about 50 ppt TDS. This decrease in water level has exposed large areas of nearshore microbialites. These organogenic structures range in size from several cm to over a meter and often form large bioherms several meters high. They have various external morphologies, vary in mineralogical composition, and show a variety of internal fabrics from finely laminated to massive. In addition to microbiolities and bioherms, the littoral zone of Manito Lake contains a variety of carbonate hardgrounds, pavements, and cemented clastic sediments. Dolomite and aragonite are the most common minerals found in these shoreline structures, however, calcite after ikaite, monohydrocalcite, magnesian calcite, and hydromagnesite are also present. The dolomite is nonstoichiometric and calcium-rich; the magnesian calcite has about 17 mol% MgCO 3. AMS radiocarbon dating of paired organic matter and endogenic carbonate material confirms little or no reservoir affect. Although there is abundant evidence for modern carbonate mineral precipitation and microbialite formation, most of the larger microbialites formed between about 2300 and 1000 cal BP, whereas the hardgrounds, cements, and laminated crusts formed about 1000-500 cal BP.

  11. Geo- and biogeochemical processes in a heliothermal hypersaline lake

    Science.gov (United States)

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, James K.

    2016-05-01

    Water chemical variations were investigated over three annual hydrologic cycles in hypersaline, heliothermal, meromictic Hot Lake in north-central Washington State, USA. The lake contains diverse biota with dramatic zonation related to salinity and redox state. Water samples were collected at 10-cm depth intervals through the shallow lake (2.4 m) during 2012-2014, with comprehensive monitoring performed in 2013. Inorganic salt species, dissolved carbon forms (DOC, DIC), oxygen, sulfide, and methane were analyzed in lake water samples. Depth sonde measurements of pH and temperature were also performed to track their seasonal variations. A bathymetric survey of the lake was conducted to enable lake water volume and solute inventory calculations. Sediment cores were collected at low water and analyzed by X-ray diffraction to investigate sediment mineralogy. The primary dissolved salt in Hot Lake water was Mg2+-SO42- whereas sediments were dominated by gypsum (CaSO4·2H2O). Lake water concentrations increased with depth, reaching saturation with epsomite (MgSO4·7H2O) that was exposed at lake bottom. At maximum volume in spring, Hot Lake exhibited a relatively dilute mixolimnion; a lower saline metalimnion with stratified oxygenic and anoxygenic photosynthetic microbiological communities; and a stable, hypersaline monimolimnion, separated from above layers by a chemocline, containing high levels of sulfide and methane. The thickness of the mixolimnion regulates a heliothermal effect that creates temperatures in excess of 60 °C in the underlying metalimnion and monimolimnion. The mixolimnion was dynamic in volume and actively mixed. It displayed large pH variations, in-situ calcium carbonate precipitation, and large evaporative volume losses. The depletion of this layer by fall allowed deeper mixing into the metalimnion, more rapid heat exchange, and lower winter lake temperatures. Solubility calculations indicate seasonal biogenic and thermogenic aragonite

  12. Environmental Monitoring, Water Quality - Lakes Assessments - Non Attaining

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This layer shows only non attaining lakes of the Integrated List. The Lakes Integrated List represents lake assessments in an integrated format for the Clean Water...

  13. Hydrology and water quality of East Lake Tohopekaliga, Osceola County, Florida

    Science.gov (United States)

    Schiffer, Donna M.

    1987-01-01

    East Lake Tohopekaliga, one of the major lakes in central Florida, is located in the upper Kissimmee River basin in north-east Osceola County. It is one of numerous lakes in the upper basin used for flood control, in addition to recreation and some irrigation of surrounding pasture. This report is the fourth in a series of lake reconnaissance studies in the Kissimmee River basin prepared in cooperation with the South Florida Water Management District. The purpose of the report is to provide government agencies and the public with a brief summary of the lake 's hydrology and water quality. Site information is given and includes map number, site name, location, and type of data available (specific conductivity, pH, alkalinity, turbidity, color, dissolved oxygen, hardness, dissolved chlorides, dissolved sodium, dissolved calcium, dissolved magnesium, dissolved potassium, nitrogen, ammonia, nitrates, carbon and phosphorus). The U.S. Geological Survey (USGS) maintained a lake stage gaging station on East Lake Tohopekaliga from 1942 to 1968. The South Florida Water Management District has recorded lake stage since 1963. Periodic water quality samples have been collected from the lake by the South Florida Water Management District and USGS. Water quality and discharge data have been collected for one major tributary to the lake, Boggy Creek. Although few groundwater data are available for the study area, results of previous studies of the groundwater resources of Osceola County are included in this report. To supplement the water quality data for East Lake Tohopekaliga, water samples were collected at selected sites in November 1982 (dry season) and in August 1983 (rainy season). Samples were taken at inflow points, and in the lake, and vertical profiles of dissolved oxygen and temperature were measured in the lake. A water budget from an EPA report on the lake is also included. (Lantz-PTT)

  14. Salinity controls on plant transpiration and soil water balance

    Science.gov (United States)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  15. SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA

    Science.gov (United States)

    Mohanty, A. K.

    2009-12-01

    SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA A.K. Mohanty, K. Mahesh Kumar, B. A. Prakash and V.V.S. Gurunadha Rao Ecology and Environment Group National Geophysical Research Institute, (CSIR) Hyderabad - 500 606, India E-mail:atulyakumarmohanty@yahoo.com Abstract: Hyderabad Metropolitan Development Authority has taken up restoration of urban lakes around Hyderabad city under Green Hyderabad Environment Program. Restoration of Mir Alam Tank, Durgamcheruvu, Patel cheruvu, Pedda Cheruvu and Nallacheruvu lakes have been taken up under the second phase. There are of six lakes viz., RKPuramcheruvu, Nadimicheruvu (Safilguda), Bandacheruvu Patelcheruvu, Peddacheruvu, Nallacheruvu, in North East Musi Basin covering 38 sq km. Bimonthly monitoring of lake water quality for BOD, COD, Total Nitrogen, Total phosphorous has been carried out for two hydrological cycles during October 2002- October 2004 in all the five lakes at inlet channels and outlets. The sediments in the lake have been also assessed for nutrient status. The nutrient parameters have been used to assess eutrophic condition through computation of Trophic Status Index, which has indicated that all the above lakes under study are under hyper-eutrophic condition. The hydrogeological, geophysical, water quality and groundwater data base collected in two watersheds covering 4 lakes has been used to construct groundwater flow and mass transport models. The interaction of lake-water with groundwater has been computed for assessing the lake water budget combining with inflow and outflow measurements on streams entering and leaving the lakes. Individual lake water budget has been used for design of appropriate capacity of Sewage Treatment Plants (STPs) on the inlet channels of the lakes for maintaining Full Tank Level (FTL) in each lake. STPs are designed for tertiary treatment i.e. removal of nutrient load viz., Phosphates and Nitrates. Phosphates are

  16. Water hyacinth hotspots in the Ugandan waters of Lake Victoria in ...

    African Journals Online (AJOL)

    Water hyacinth invaded Lake Victoria in the 1980s and, by 1998, had attained peak coverage of approximately 2 000 ha in the Ugandan waters of the lake. Control interventions, especially via biological means, significantly reduced the weed's coverage to non-nuisance levels (<10 ha) by 1999. Although resurgence was ...

  17. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.

    Science.gov (United States)

    Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L

    2007-07-01

    The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to

  18. Implications of salinity pollution hotspots on agricultural production

    Science.gov (United States)

    Floerke, Martina; Fink, Julia; Malsy, Marcus; Voelker, Jeanette; Alcamo, Joseph

    2016-04-01

    Salinity pollution can have many negative impacts on water resources used for drinking, irrigation, and industrial purposes. Elevated concentrations of salinity in irrigation water can lead to decreased crop production or crop death and, thus, causing an economic problem. Overall, salinity pollution is a global problem but tends to be more severe in arid and semi-arid regions where the dilution capacity of rivers and lakes is lower and the use of irrigation higher. Particularly in these regions agricultural production is exposed to high salinity of irrigation water as insufficient water quality further reduces the available freshwater resources. According to the FAO, irrigated agriculture contributes about 40 percent of the total food production globally, and therefore, high salinity pollution poses a major concern for food production and food security. We use the WaterGAP3 modeling framework to simulate hydrological, water use, and water quality conditions on a global scale for the time period 1990 to 2010. The modeling framework is applied to simulate total dissolved solids (TDS) loadings and in-stream concentrations from different point and diffuse sources to get an insight on potential environmental impacts as well as risks to agricultural food production. The model was tested and calibrated against observed data from GEMStat and literature sources. Although global in scope, the focus of this study is on developing countries, i.e., in Africa, Asia, and Latin America, as these are most threatened by salinity pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use are examined, indicating limitations to crop production. Our results show that elevated salinity concentrations in surface waters mainly occur in peak irrigation regions as irrigated agriculture is not only the most relevant water use sector contributing to water abstractions, but also the dominant source of salinity pollution. Additionally

  19. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  20. Stable water isotopic composition of the Antarctic subglacial Lake Vostok: implications for understanding the lake's hydrology.

    Science.gov (United States)

    Ekaykin, Alexey A; Lipenkov, Vladimir Y; Kozachek, Anna V; Vladimirova, Diana O

    2016-01-01

    We estimated the stable isotopic composition of water from the subglacial Lake Vostok using two different sets of samples: (1) water frozen on the drill bit immediately after the first lake unsealing and (2) water frozen in the borehole after the unsealing and re-drilled one year later. The most reliable values of the water isotopic composition are: -59.0 ± 0.3 ‰ for oxygen-18, -455 ± 1 ‰ for deuterium and 17 ± 1 ‰ for d-excess. This result is also confirmed by the modelling of isotopic transformations in the water which froze in the borehole, and by a laboratory experiment simulating this process. A comparison of the newly obtained water isotopic composition with that of the lake ice (-56.2 ‰ for oxygen-18, -442.4 ‰ for deuterium and 7.2 ‰ for d-excess) leads to the conclusion that the lake ice is very likely formed in isotopic equilibrium with water. In turn, this means that ice is formed by a slow freezing without formation of frazil ice crystals and/or water pockets. This conclusion agrees well with the observed physical and chemical properties of the lake's accreted ice. However, our estimate of the water's isotopic composition is only valid for the upper water layer and may not be representative for the deeper layers of the lake, so further investigations are required.

  1. Evolution of alkaline lakes - Lake Van case study

    Science.gov (United States)

    Tillman Meyer, Felix; Viehberg, Finn; Bahroun, Sonya; Wolf, Annabel; Immenhauser, Adrian; Kwiecien, Ola

    2017-04-01

    Lake Van in Eastern Anatolia (Turkey) is the largest terminal soda lake on Earth. The lake sedimentary profile covers ca. 600 ka (Stockhecke et al. 2014) Based on lithological changes, the presence of freshwater microfossils and close-to-freshwater pH value in the pore water, members of ICDP PALEOVAN concluded that Lake Van might have started as an open lake. Here we show paleontological and geochemical evidence in favour of this idea and constrain the time, when Lake Van likely transformed into a closed lake. Additionally we provide the first conceptual model of how this closure may have happened. Our archives of choice are inorganic and biogenic carbonates, separated by wet sieving. We identified microfossil assemblages (fraction > 125 µm) and performed high-resolution oxygen isotope (delta18O) and elemental (Mg/Ca, Sr/Ca) analyses of the fraction plants growing in the photic zone as food supply. These two aspects point to an increasing salinity in a shallowing lake. The delta18O values of inorganic carbonates are relatively low during the initial phase of Lake Van and increase abruptly (ca. 7‰) after 530 ka BP. At approximately the same time combination of Sr/Ca and Mg/Ca data suggest first occurrence of aragonite. Again, these findings suggest geochemical changes of the lake water concurrent with transition documented by microfossils. Comparison between Lake Van and Lake Ohrid (Lacey et al. 2016) delta18O data, precludes regional climate change (e.g.: increased evaporation) as the main driver of observed changes. With no evidence for increased volcanic or tectonic activity (e.g.: tephra layers, deformation structures, slumping) in the Lake Van sedimentary profile around 530 ka, it seems unlikely that a pyroclastic flow blocked the outflow of the lake. Alternatively, a portion of inflow has been diverged which might have caused a change in the hydrological balance and lake level falling below its outlet. However, as no geomorphological data confirming this

  2. Hydrochemical determination of source water contributions to Lake Lungo and Lake Ripasottile (central Italy

    Directory of Open Access Journals (Sweden)

    Claire Archer

    2016-12-01

    Full Text Available Lake Lungo and Lake Ripasottile are two shallow (4-5 m lakes located in the Rieti Basin, central Italy, that have been described previously as surface outcroppings of the groundwater table. In this work, the two lakes as well as springs and rivers that represent their potential source waters are characterized physio-chemically and isotopically, using a combination of environmental tracers. Temperature and pH were measured and water samples were analyzed for alkalinity, major ion concentration, and stable isotope (δ2H, δ18O, δ13C of dissolved inorganic carbon, and δ34S and δ18O of sulfate composition.  Chemical data were also investigated in terms of local meteorological data (air temperature, precipitation to determine the sensitivity of lake parameters to changes in the surrounding environment. Groundwater represented by samples taken from Santa Susanna Spring was shown to be distinct with SO42- and Mg2+ content of 270 and 29 mg/L, respectively, and heavy sulfate isotopic composition (δ34S=15.2 ‰ and δ18O=10‰. Outflow from the Santa Susanna Spring enters Lake Ripasottile via a canal and both spring and lake water exhibits the same chemical distinctions and comparatively low seasonal variability. Major ion concentrations in Lake Lungo are similar to the Vicenna Riara Spring and are interpreted to represent the groundwater locally recharged within the plain. The δ13CDIC exhibit the same groupings as the other chemical parameters, providing supporting evidence of the source relationships. Lake Lungo exhibited exceptional ranges of δ13CDIC (±5 ‰ and δ2H, δ18O (±5 ‰ and ±7 ‰, respectively, attributed to sensitivity to seasonal changes. The hydrochemistry results, particularly major ion data, highlight how the two lakes, though geographically and morphologically similar, represent distinct hydrochemical facies. These data also show a different response in each lake to temperature and precipitation patterns in the basin that

  3. Spatial distribution of saline water and possible sources of intrusion ...

    African Journals Online (AJOL)

    The spatial distribution of saline water and possible sources of intrusion into Lekki lagoon and transitional effects on the lacustrine ichthyofaunal characteristics were studied during March, 2006 and February, 2008. The water quality analysis indicated that, salinity has drastically increased recently in the lagoon (0.007 to ...

  4. The effects of salinity in the soil water balance: A Budyko's approach

    Science.gov (United States)

    Perri, S.; Viola, F.; Molini, A.

    2017-12-01

    Soil degradation and water scarcity pose important constraints on productivity and development of arid and semi-arid countries. Among the main causes of loss of soil fertility, aridification and soil salinization are deeply connected threats enhanced by climate change. Assessing water availability is fundamental for a large number of applications especially in arid regions. An approach often adopted to estimate the long-term rainfall partitioning into evapotranspiration and runoff is the Budyko's curve. However, the classical Budyko framework might not be able to properly reproduce the water balance in salt affected basins, especially under elevated soil salinization conditions. Salinity is a limiting factor for plant transpiration (as well as growth) affecting both short and long term soil moisture dynamics and ultimately the hydrologic balance. Soluble salts cause a reduction of soil water potential similar to the one arising from droughts, although plant adaptations to soil salinity show extremely different traits and can vary from species to species. In a similar context, the salt-tolerance plants are expected to control the amount of soil moisture lost to transpiration in saline soils, also because salinity reduces evaporation. We propose a simple framework to include the effects of salinization on the surface energy and water balance within a simple Budyko approach. By introducing the effects of salinity in the stochastic water balance we are able to include the influence of vegetation type (i.e. in terms of salt-tolerance) on evapotranspiration-runoff partitioning under different climatic conditions. The water balance components are thus compared to data obtained from arid salt-affected regions.

  5. The Comparison of Micromorphological properties of Saline – Sodic and Nonsaline-Nonsodic Soils around the Urmia Lake

    Directory of Open Access Journals (Sweden)

    S. chakherloo

    2015-06-01

    Full Text Available In order to comparision of the micromorphic properties of saline-sodic and nonsaline-nonsodic soils in the west of Urmia Lake, four soil profiles (2profile in saline-sodic soils and 2profiles in nonsaline-nonsodic soils were investigated. These profiles were described and sampled using standard methods. soil samples were used for physico chemical analysis and undisturbed and oriented samples were used for thin section preparation. Thin sections were studied using polarizing microscope in PPL and XPL lights. Thin sections studies showed that saline-sodic soils are structure less (apedal, and their voids are mostly vughs and channel and as a result, their, nonsaline-nonsodic soils are pedal with compound packing voids, vughs and planar voids and as a result, The b.fabric in these to group of soils is crystallitic. In saline sodic soils pedofeatures are illuvial clay coatings, salt accumulations including coatings and infillings of halite in channel and vughs. These pedofeatures were not seen in nonsaline-nonsodic soils. Organic coatings were seen as black colored films on peds and in some cases mixed with groundmass of saline-sodic soils.Calcium carbonate accumulations as nodules and coatings and nodules and coatings of iron and Mn oxides were seen in both saline-sodic and nonsaline-nonsodic soils.

  6. Restoration of Eutrophic Lakes with Fluctuating Water Levels: A 20-Year Monitoring Study of Two Inter-Connected Lakes

    Directory of Open Access Journals (Sweden)

    Meryem Beklioğlu

    2017-02-01

    Full Text Available Eutrophication continues to be the most important problem preventing a favorable environmental state and detrimentally impacting the ecosystem services of lakes. The current study describes the results of analyses of 20 year monitoring data from two interconnected Anatolian lakes, Lakes Mogan and Eymir, receiving sewage effluents and undergoing restoration. The first step of restoration in both lakes was sewage effluent diversion. Additionally, in hypertrophic Lake Eymir, biomanipulation was conducted, involving removal of benthi-planktivorous fish and prohibition of pike fishing. The monitoring period included high (H and low (L water levels (WL enabling elucidation of the effects of hydrological changes on lake restoration. In shallower Lake Mogan, macrophyte abundance increased after the sewage effluent diversion in periods with low water levels even at turbid water. In comparatively deeper Lake Eymir, the first biomanipulation led to a clear water state with abundant macrophyte coverage. However, shortly after biomanipulation, the water clarity declined, coinciding with low water level (LWL periods during which nutrient concentrations increased. A second biomanipulation was conducted, mostly during high water level (HWL period, resulting in a major decrease in nutrient concentrations and clearer water, but without an expansion of macrophytes. We conclude that repetitive fish removal may induce recovery but its success may be confounded by high availability of nutrients and adverse hydrological conditions.

  7. Water Quality Investigations at Lake Merritt in Oakland, California

    Science.gov (United States)

    Carter, G.; Casino, C.; Johnson, K.; Huang, J.; Le, A.; Truisi, V. M.; Turner, D.; Yanez, F.; Yu, J. F.; Unigarro, M.; Vue, G.; Garduno, L.; Cuff, K.

    2005-12-01

    Lake Merritt is a saltwater tidal lagoon that forms a portion of a wildlife refuge in downtown Oakland, California. The general area was designated as the nation's first wildlife refuge in 1869, and is currently the home to over 90 species of migrating waterfowl, as well as a variety of aquatic wildlife. Situated within an area composed of compacted marine sediment located near the center of Oakland, Lake Merritt also serves as a major local catchment basin, receiving significant urban runoff from a 4,650 acre local watershed through 60 storm drains and four culverted creeks. Due to factors related to its geographical location, Lake Merritt has suffered from poor water quality at various times throughout its history. In fact, in May of 1999 the US Environmental Protection Agency designated Lake Merritt as a body of water whose beneficial uses are impaired, mainly due to high levels of trash and low levels of dissolved oxygen. As a contribution to continuing efforts to monitor and assess water quality of the Lake, we began a water quality investigation during the Summer of 2005, which included the measurement of dissolved oxygen concentrations of samples collected near its surface at over 85 different locations. These measurements were made using a sensor attached to a PASCO data- logger. The sensor measures the electric current produced by a chemical reaction in its probe, which is composed of a platinum cathode and a silver anode surrounded by an electrolyte solution. Results of these measurements were statistically analyzed, mapped, and then used in assessing the quality of Lake Merritt's water, particularly in relation to supporting aquatic biota. Preliminary analysis of results obtained so far indicates that the highest quality waters in Lake Merritt occur in areas that are closest to a source of San Francisco Bay water, as well as those areas nearby where water circulation is robust. Significantly high levels of dissolved oxygen were measured in an area that

  8. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    Science.gov (United States)

    Shabani, A.; Zhang, X.

    2017-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is

  9. Modeling and management of pit lake water chemistry 1: Theory

    International Nuclear Information System (INIS)

    Castendyk, D.N.; Eary, L.E.; Balistrieri, L.S.

    2015-01-01

    Highlights: • Review of pit lake literature in the context of pit lake predictions. • Review of approaches used to predict pit wall-rock runoff and leachate. • Review of approaches used to generate a pit lake water balance. • Review of approaches used to generate a hydrodynamic prediction. • Review of approaches used to generate a geochemical prediction of a future pit lake. - Abstract: Pit lakes are permanent hydrologic/landscape features that can result from open pit mining for metals, coal, uranium, diamonds, oil sands, and aggregates. Risks associated with pit lakes include local and regional impacts to water quality and related impacts to aquatic and terrestrial ecosystems. Stakeholders rely on predictive models of water chemistry to prepare for and manage these risks. This paper is the first of a two part series on the modeling and management of pit lakes. Herein, we review approaches that have been used to quantify wall-rock runoff geochemistry, wall-rock leachate geochemistry, pit lake water balance, pit lake limnology (i.e. extent of vertical mixing), and pit lake water quality, and conclude with guidance on the application of models within the mine life cycle. The purpose of this paper is to better prepare stakeholders, including future modelers, mine managers, consultants, permitting agencies, land management agencies, regulators, research scientists, academics, and other interested parties, for the challenges of predicting and managing future pit lakes in un-mined areas

  10. Utilization of saline water and land: Reclaiming lost resources

    International Nuclear Information System (INIS)

    Naqvi, Mujtaba

    2001-01-01

    There is an abundance of saline water on the globe. Large tracts of land are arid and/or salt-affected, and a large number of plant species are known to be salt-tolerant. It would seem obvious that salt tolerant plants (halophytes) have a role in utilizing the two wasted resources, saline water and wastelands. We will briefly describe how these resources can be fruitfully utilized and how the IAEA has helped several countries to demonstrate the possibility of cultivating salt tolerant plant species on arid saline wastelands for economic and environmental benefit. After some brief introductory remarks we will discuss the results of the project

  11. Bathymetric survey and estimation of the water balance of Lake ...

    African Journals Online (AJOL)

    Quantification of the water balance components and bathymetric survey is very crucial for sustainable management of lake waters. This paper focuses on the bathymetry and the water balance of the crater Lake Ardibo, recently utilized for irrigation. The bathymetric map of the lake is established at a contour interval of 10 ...

  12. Responses of three tomato cultivars to sea water salinity 1. Effect of ...

    African Journals Online (AJOL)

    The effect of sea water salinity (1500, 2500 and 3500 ppm) on the growth of tomato (Lycopersicon esculentum) cultivars (Trust, Grace and Plitz) was studied. The sea water salinity delayed seed germination and reduced germination percentage especially with increasing salinity level. Chlorophyll b content was higher than ...

  13. Phenotypic characterization and 16S rDNA identification of culturable non-obligate halophilic bacterial communities from a hypersaline lake, La Sal del Rey, in extreme South Texas (USA).

    Science.gov (United States)

    Phillips, Kristen; Zaidan, Frederic; Elizondo, Omar R; Lowe, Kristine L

    2012-02-02

    La Sal del Rey ("the King's Salt") is one of several naturally-occurring salt lakes in Hidalgo County, Texas and is part of the Lower Rio Grande Valley National Wildlife Refuge. The research objective was to isolate and characterize halophilic microorganisms from La Sal del Rey. Water samples were collected from the lake and a small creek that feeds into the lake. Soil samples were collected from land adjacent to the water sample locations. Sample salinity was determined using a refractometer. Samples were diluted and cultured on a synthetic saline medium to grow halophilic bacteria. The density of halophiles was estimated by viable plate counts. A collection of isolates was selected, gram-stained, tested for catalase, and characterized using API 20E® test strips. Isolates were putatively identified by sequencing the 16S rDNA. Carbon source utilization by the microbial community from each sample site was examined using EcoPlate™ assays and the carbon utilization total activity of the community was determined. Results showed that salinity ranged from 4 parts per thousand (ppt) at the lake water source to 420 ppt in water samples taken just along the lake shore. The density of halophilic bacteria in water samples ranged from 1.2 × 102 - 5.2 × 103 colony forming units per ml (cfu ml-1) whereas the density in soil samples ranged from 4.0 × 105 - 2.5 × 106 colony forming units per gram (cfu g-1). In general, as salinity increased the density of the bacterial community decreased. Microbial communities from water and soil samples were able to utilize 12 - 31 carbon substrates. The greatest number of substrates utilized was by water-borne communities compared to soil-based communities, especially at lower salinities. The majority of bacteria isolated were gram-negative, catalase-positive, rods. Biochemical profiles constructed from API 20E® test strips showed that bacterial isolates from low-salinity water samples (4 ppt) showed the greatest phenotypic diversity

  14. THE WATER QUALITY FROM SAINT ANA LAKE

    Directory of Open Access Journals (Sweden)

    M.VIGH

    2013-03-01

    Full Text Available Inside the Ciomad Massive appears a unique lake in Romania, with an exclusive precipitations alimentation regime. The lake’s origin and the morphometric elements, together with the touristic activity, determine the water’s quality and characteristics. Water status evaluation was realized using random samples taken between the years 2005 and 2010. Qualitative parameters indicate the existence of a clear water lake, belonging to ultra-oligotrophic faze. This is because the crater is covered with forest and the surface erosion is very poor. Also the aquatic vegetation is rare. From all analyzed indicators, only ammonium and total mineral nitrogen have higher values during last years. In the future, the lake needs a higher protection against water quality degradation.

  15. Quality of jackfruit seedlings under saline water stress and nitrogen fertilisation

    Directory of Open Access Journals (Sweden)

    Francisco Ítalo Fernandes de Oliveira

    2017-08-01

    Full Text Available The lack of good quality water for agriculture purposes regarding salts and quantity in relation to demand for the plants has, for more than 30 years, been forcing the use of restrictive water because of salinity issues in agricultural production systems worldwide. In Brazil, the situation is no different, in the semi-arid areas, there are reports of losses of seed germination, initial growth of seedlings and yield of crops of commercial importance due to the salinity of the water used in irrigation systems. Therefore, an experiment was carried out from June to September/2014 in a protected environment, with a plastic film on the upper base and a thin screen against insects on the sides, to evaluate the effects of salinity interaction between water irrigation and nitrogen fertilisation sources on soil salinity, initial plant growth and the quality of the jackfruit seedlings. The treatments were distributed in randomised blocks, in the factorial scheme 5 × 3, reference irrigation water of 0.3, 1.0, 2.0, 3.0 and 4.0 dS m-1, in soil with and without ammonium sulfate and urea. An increase in the salinity of the irrigation water to 1.32 and 1.70 dS m-1 on the substrate without nitrogen stimulated an increase in the number of leaves and leaf area of the jackfruit seedlings. The ammonium sulfate was the nitrogen source that mainly contributed to the increase of soil salinity and to the reduction of the quality index of the seedlings. Despite the reduction of the Dickson quality index due to the salinity of the irrigation water and the nitrogen sources, the seedlings were suitable for cultivation.

  16. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes.

    Science.gov (United States)

    Herrera, Christian; Custodio, Emilio; Chong, Guillermo; Lambán, Luis Javier; Riquelme, Rodrigo; Wilke, Hans; Jódar, Jorge; Urrutia, Javier; Urqueta, Harry; Sarmiento, Alvaro; Gamboa, Carolina; Lictevout, Elisabeth

    2016-01-15

    Laguna Tuyajto is a small, shallow saline water lake in the Andean Altiplano of northern Chile. In the eastern side it is fed by springs that discharge groundwater of the nearby volcanic aquifers. The area is arid: rainfall does not exceed 200mm/year in the rainiest parts. The stable isotopic content of spring water shows that the recharge is originated mainly from winter rain, snow melt, and to a lesser extent from some short and intense sporadic rainfall events. Most of the spring water outflowing in the northern side of Laguna Tuyajto is recharged in the Tuyajto volcano. Most of the spring water in the eastern side and groundwater are recharged at higher elevations, in the rims of the nearby endorheic basins of Pampa Colorada and Pampa Las Tecas to the East. The presence of tritium in some deep wells in Pampa Colorada and Pampa Las Tecas indicates recent recharge. Gas emission in recent volcanoes increase the sulfate content of atmospheric deposition and this is reflected in local groundwater. The chemical composition and concentration of spring waters are the result of meteoric water evapo-concentration, water-rock interaction, and mainly the dissolution of old and buried evaporitic deposits. Groundwater flow is mostly shallow due to a low permeability ignimbrite layer of regional extent, which also hinders brine spreading below and around the lake. High deep temperatures near the recent Tuyajto volcano explain the high dissolved silica contents and the δ(18)O shift to heavier values found in some of the spring waters. Laguna Tuyajto is a terminal lake where salts cumulate, mostly halite, but some brine transfer to the Salar de Aguas Calientes-3 cannot be excluded. The hydrogeological behavior of Laguna Tuyajto constitutes a model to understand the functioning of many other similar basins in other areas in the Andean Altiplano. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Community exposure and vulnerability to water quality and availability: a case study in the mining-affected Pazña Municipality, Lake Poopó Basin, Bolivian Altiplano

    OpenAIRE

    French, Megan; Alem, Natalie; Edwards, Stephen J.; Blanco Coariti, Efraín; Cauthin, Helga; Hudson-Edwards, Karen A.; Luyckx, Karen; Quintanilla, Jorge; Sánchez Miranda, Oscar

    2017-01-01

    Assessing water sources for drinking and irrigation along with community vulnerability, especially in developing and rural regions, is important for reducing risk posed by poor water quality and limited water availability and accessibility. We present a case study of rural mining-agricultural communities in the Lake Poopó Basin, one of the poorest regions on the Bolivian Altiplano. Here, relatively low rainfall, high evaporation, salinization and unregulated mining activity have contributed t...

  18. Effects of temperature and salinity on light scattering by water

    Science.gov (United States)

    Zhang, Xiaodong; Hu, Lianbo

    2010-04-01

    A theoretical model on light scattering by water was developed from the thermodynamic principles and was used to evaluate the effects of temperature and salinity. The results agreed with the measurements by Morel within 1%. The scattering increases with salinity in a non-linear manner and the empirical linear model underestimate the scattering by seawater for S < 40 psu. Seawater also exhibits an 'anomalous' scattering behavior with a minimum occurring at 24.64 °C for pure water and this minimum increases with the salinity, reaching 27.49 °C at 40 psu.

  19. Technologies for lake restoration

    Directory of Open Access Journals (Sweden)

    Helmut KLAPPER

    2003-09-01

    Full Text Available Lakes are suffering from different stress factors and need to be restored using different approaches. The eutrophication remains as the main water quality management problem for inland waters: both lakes and reservoirs. The way to curb the degradation is to stop the nutrient sources and to accelerate the restoration with help of in-lake technologies. Especially lakes with a long retention time need (eco- technological help to decrease the nutrient content in the free water. The microbial and other organic matter from sewage and other autochthonous biomasses, causes oxygen depletion, which has many adverse effects. In less developed countries big reservoirs function as sewage treatment plants. Natural aeration solves problems only partly and many pollutants tend to accumulate in the sediments. The acidification by acid rain and by pyrite oxidation has to be controlled by acid neutralizing technologies. Addition of alkaline chemicals is useful only for soft waters, and technologies for (microbial alkalinization of very acidic hardwater mining lakes are in development. The corrective measures differ from those in use for eutrophication control. The salinization and water shortage mostly occurs if more water is used than available. L. Aral, L. Tschad, the Dead Sea or L. Nasser belong to waters with most severe environmental problems on a global scale. Their hydrologic regime needs to be evaluated. The inflow of salt water at the bottom of some mining lakes adds to stability of stratification, and thus accumulation of hydrogen sulphide in the monimolimnion of the meromictic lakes. Destratification, which is the most used technology, is only restricted applicable because of the dangerous concentrations of the byproducts of biological degradation. The contamination of lakes with hazardous substances from industry and agriculture require different restoration technologies, including subhydric isolation and storage, addition of nutrients for better self

  20. Impacts of population growth and economic development on water quality of a lake: case study of Lake Victoria Kenya water.

    Science.gov (United States)

    Juma, Dauglas Wafula; Wang, Hongtao; Li, Fengting

    2014-04-01

    Anthropogenic-induced water quality pollution is a major environmental problem in freshwater ecosystems today. As a result of this, eutrophication of lakes occurs. Population and economic development are key drivers of water resource pollution. To evaluate how growth in the riparian population and in the gross domestic product (GDP) with unplanned development affects the water quality of the lake, this paper evaluates Lake Victoria Kenyan waters basin. Waters quality data between 1990 and 2012 were analyzed along with reviews of published literature, papers, and reports. The nitrate-nitrogen (NO3-N), soluble phosphorus (PO4-P), chlorophyll a, and Secchi transparencies were evaluated as they are key water quality indicators. The NO3-N increased from 10 μg l(-1) in 1990 to 98 μg 1(-1) in 2008, while PO4-P increased from 4 μg l(-1) in 1990 to 57 μg l(-1) in 2008. The population and economic growth of Kenya are increasing with both having minimums in 1990 of 24.143 million people and 12.18 billion US dollars, to maximums in 2010 of 39.742 million people and 32.163 billion US dollars, respectively. A Secchi transparency is reducing with time, indicating an increasing pollution. This was confirmed by an increase in aquatic vegetation using an analysis of moderate resolution imaging spectroradiometer (MODIS) images of 2000 and 2012 of Kenyan waters. This study found that increasing population and GDP increases pollution discharge thus polluting lakes. One of major factors causing lake water pollution is the unplanned or poor waste management policy and service.

  1. Spinach biomass yield and physiological response to interactive salinity and water stress

    Science.gov (United States)

    Critical shortages of fresh water throughout arid regions means that growers must face the choice of applying insufficient fresh water, applying saline water, or consider the option of combined water and salt stress. The best approach to manage drought and salinity is evaluation of the impact of wat...

  2. Water pollution in Rawal lake Islamabad (part-1)

    International Nuclear Information System (INIS)

    Ahmad, I.; Ali, S.; Tariq, M.; Ikram, M.

    2001-01-01

    Water pollution of Rawal Lake, one of the three major drinking water sources (21 MG) to Rawalpindi and Islamabad, by anionic pollutants is reported. Physicochemical analysis of water samples collected during September 1996 - January 1997, was carried out using ASTM and AOAC methods. Water samples from Rawal Lake and its tributaries were collected periodically and analyzed for pH, conductivity, turbidity, alkalinity, TDS, TSS, anions (chlorides, phosphates, nitrates, sulfates) and trace metals. (author)

  3. Salinity impacts on water solubility and n-octanol/water partition coefficients of selected pesticides and oil constituents.

    Science.gov (United States)

    Saranjampour, Parichehr; Vebrosky, Emily N; Armbrust, Kevin L

    2017-09-01

    Salinity has been reported to influence the water solubility of organic chemicals entering marine ecosystems. However, limited data are available on salinity impacts for chemicals potentially entering seawater. Impacts on water solubility would correspondingly impact chemical sorption as well as overall bioavailability and exposure estimates used in the regulatory assessment. The pesticides atrazine, fipronil, bifenthrin, and cypermethrin, as well as the crude oil constituent dibenzothiophene together with 3 of its alkyl derivatives, all have different polarities and were selected as model compounds to demonstrate the impact of salinity on their solubility and partitioning behavior. The n-octanol/water partition coefficient (K OW ) was measured in both distilled-deionized water and artificial seawater (3.2%). All compounds had diminished solubility and increased K OW values in artificial seawater compared with distilled-deionized water. A linear correlation curve estimated salinity may increase the log K OW value by 2.6%/1 log unit increase in distilled water (R 2  = 0.97). Salinity appears to generally decrease the water solubility and increase the partitioning potential. Environmental fate estimates based on these parameters indicate elevated chemical sorption to sediment, overall bioavailability, and toxicity in artificial seawater. These dramatic differences suggest that salinity should be taken into account when exposure estimates are made for marine organisms. Environ Toxicol Chem 2017;36:2274-2280. © 2017 SETAC. © 2017 SETAC.

  4. Significance of salinity and silicon levels for growth of a formerly estuarine eelgrass (Zostera marina) population (Lake Grevelingen, the Netherlands)

    NARCIS (Netherlands)

    Kamermans, P.; Hemminga, M.A.; De Jong, D.J.

    1999-01-01

    Since the early 1980s, the eelgrass, Zostera marina L., population in the saline Lake Gevelingen, The Netherlands, is rapidly declining. An earlier study, in which long-term data on eelgrass coverage in this former estuary were correlated with several environmental variables, showed only one

  5. Seasonal influence on water quality status of Temenggor Lake, Perak

    International Nuclear Information System (INIS)

    Wan Mohd Afiq Wan Abdul Khalik; Mohd Pauzi Abdullah; Mohd Pauzi Abdullah

    2012-01-01

    A study of the water quality in Temenggor Lake was conducted within two different seasons, namely wet season (November - January 2009) and dry season (March - July 2010). Thirteen sampling stations were selected representing open water body of the lake particularly surrounding Banding Island. Three depths layered sampling (surface, middle and bottom of lake) was performed at each sampling stations except in zone B. An average WQI for Temenggor Lake in wet season (90.49) is slightly higher than the average for dry season (88.87). This study indicates quite significant seasonal influence of rainfalls on environmental lake ecosystems by improving the quality through dilution effect on several parameters. Statistical analysis of two-way ANOVA test indicates that all measured parameters are affected by seasonal changes except for pH, turbidity, DO, BOD, oil and grease. Biochemical Oxygen Demand (BOD) and water hardness showed significant relationship with local community activities. Considering future development as eco tourism destination, the water quality of Temenggor Lake should be maintained thus some sort of integrated lake management system model on the integrated water resource management concept should be implemented. (author)

  6. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jian [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Zhang, Yuan, E-mail: zhangyuan@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Zhou, Changbo [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Guo, Changsheng; Wang, Dingming [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Du, Ping [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Luo, Yi [College of Environmental Sciences and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071 (China); Wan, Jun; Meng, Wei [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China)

    2014-11-01

    The occurrence of 15 antibiotics classified as sulphonamides, fluoroquinolones, macrolides, tetracyclines and trimethoprim in sediment, overlying water, and pore water matrices in Taihu Lake, China was studied. The total concentrations were from 4.1 μg/kg to 731 μg/kg, from 127 ng/L to 1210 ng/L, and from 1.5 ng/L to 216 ng/L in sediment, overlying water and pore water, respectively. Antibiotics in different locations originated from various sources, depending on human, agricultural and aquacultural activities. Composition analysis indicated that human-derived and animal-derived drugs significantly contributed to the total contamination of antibiotics in the lake, indicating the high complexity of contamination sources in Taihu Lake Basin. The in situ sediment–pore water partitioning coefficients were generally greater than sediment–overlying water partitioning coefficients, suggesting continuous inputs into the lake water. This study shows that antibiotics are ubiquitous in all compartments in Taihu Lake, and their potential hazards to the aquatic ecosystem need further investigation. - Highlights: • Antibiotics are ubiquitous in sediment, overlying water and pore water in Taihu Lake. • Antibiotics in Taihu Lake originated from human and nonhuman activities. • Ksp is higher than Ksw, indicating the continuous antibiotics input to lake water.

  7. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China

    International Nuclear Information System (INIS)

    Xu, Jian; Zhang, Yuan; Zhou, Changbo; Guo, Changsheng; Wang, Dingming; Du, Ping; Luo, Yi; Wan, Jun; Meng, Wei

    2014-01-01

    The occurrence of 15 antibiotics classified as sulphonamides, fluoroquinolones, macrolides, tetracyclines and trimethoprim in sediment, overlying water, and pore water matrices in Taihu Lake, China was studied. The total concentrations were from 4.1 μg/kg to 731 μg/kg, from 127 ng/L to 1210 ng/L, and from 1.5 ng/L to 216 ng/L in sediment, overlying water and pore water, respectively. Antibiotics in different locations originated from various sources, depending on human, agricultural and aquacultural activities. Composition analysis indicated that human-derived and animal-derived drugs significantly contributed to the total contamination of antibiotics in the lake, indicating the high complexity of contamination sources in Taihu Lake Basin. The in situ sediment–pore water partitioning coefficients were generally greater than sediment–overlying water partitioning coefficients, suggesting continuous inputs into the lake water. This study shows that antibiotics are ubiquitous in all compartments in Taihu Lake, and their potential hazards to the aquatic ecosystem need further investigation. - Highlights: • Antibiotics are ubiquitous in sediment, overlying water and pore water in Taihu Lake. • Antibiotics in Taihu Lake originated from human and nonhuman activities. • Ksp is higher than Ksw, indicating the continuous antibiotics input to lake water

  8. Assessing Lake Level Variability and Water Availability in Lake Tana, Ethiopia using a Groundwater Flow Model and GRACE Satellite Data

    Science.gov (United States)

    Hasan, E.; Dokou, Z.; Kirstetter, P. E.; Tarhule, A.; Anagnostou, E. N.; Bagtzoglou, A. C.; Hong, Y.

    2017-12-01

    Lake Tana is the source of the Blue Nile and Ethiopia's largest natural buffer against seasonal variations of rainfall. Assessing the interactions between the lake level fluctuation, hydroclimatic variabilities and anthropogenic factors is essential to detect drought conditions and identify the role of human management in controlling the Lake water balance. Via an extended record of Total Water Storage (TWS) anomalies for the period 1960-2016, a water budget model for the lake water inflow/outflow was developed. Estimates of Lake Level Altimetry (LLA) based on in-situ and satellite altimetry were composited from 1960-2016 and compared to the extended TWS anomalies, the self-calibrated Palmer Drought Severity Index (scPDSI), the El Niño Southern Oscillation (ENSO) and the historical lake water levels and releases. In addition, the simulated lake levels and water budget from a coupled groundwater and lake model of the Lake Tana basin were compared to the above results. Combining the different approaches, the water budget of the lake can be monitored, the drought conditions can be identified and the role of human management in the lake can be determined. For instance, three major drought periods are identified, 1970 to 1977, 1979 to 1987 and 1990 to 1998, each succeeded with an interposed flooding related recovery year, i.e. 1978, 1988 and 1999. The drought/flooding events were attributed mainly to the ENSO interactions that resulted in lake level fluctuations. The period from 2002-2006 was associated with a remarkable decline of the lake level that was attributed partly in drought conditions and the full flow regulation of the Chara Chara weir at the lake outlet, initiated in 2001.

  9. Water logging and salinity control for environmentally sustainable crop production

    International Nuclear Information System (INIS)

    Chaudhry, M.R.; Bhutta, M.N.

    2005-01-01

    Irrigation supplies at proper time and adequate quantities are imperative for potential agricultural production under arid and semi-arid climatic conditions. To achieve this goal one of the largest integrated irrigation network was established. Without adequate drainage it resulted in the problems of water logging and salinity. To control these problems a big programme of Salinity Control and Reclamation projects (SCARPs) was initiated during 1960 and 82 such SCARPs have been completed and 9 were in progress up to June, 2002 covering an area of 18.6 ma (7.5 mh) at a cost of Rs.93 billions. Under these projects 12746 tube wells in fresh, 3572 in saline groundwater and 13726 km surface and 12612 km tile pipes covering 6391.7 ha, 160 km interceptor drains have been constructed an area of 0.998 ma (GCA). In addition to this some other measures like on farm water management, canal command project, canal lining, construction of evaporation ponds, establishment of research Inst./Organizations were also taken. Many drainage plans like Master Plan (1963), Northern Regional Plan (1967), Water Sector Investment Plan Study (1990), Right Bank Master Plan (1992), Drainage Sector Environmental Assessment (1993) and National Drainage Programme (1995) were prepared and implemented. The cost of the, phase-I of the National Drainage Programme was 785 million US$. The main activities undertaken were remodeling/extension of existing surface and new drains; rehabilitation/replacement of saline ground water (SGW) tube wells; construction of interceptor drains, reclamation of waterlogged areas through biological drainage and transfer of fresh ground water tube wells to the farmers. The data indicate that all the measures taken have played a significant role in reducing the water logging, salinity/sodicity and have increased the crop production and consequently improved the socio-economic conditions of the peoples especially the farming community. The environment in these areas was also

  10. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    Science.gov (United States)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  11. Protecting water resources from pollution in the Lake Badovc

    Energy Technology Data Exchange (ETDEWEB)

    Avdullahi, Sabri; Fejza, Islam; Tmava, Ahmet [Faculty of Geosciences and Technology, University of Prishtina, Str. Parku Industrial, 40000 Mitrovic, Republic of Kosova

    2012-07-01

    In recent years, the international community has witnessed incidence of climate variability and human activities. The objective of this paper is protecting water resources from pollution in the catchments area of Lake Badovc. The catchments area of the Lake Badovc has a size of 109 km² and the active storage volume of the lake is assessed to 26.4 Mill.m3. Around 28% of the total population of Municipality of Prishtina supply with drinking water from Lake Badovc. The hydrologic modelling system used, is HEC-HMS developed by the Hydrologic Engineering Centre of the US Corps of Engineers. The model is designed to simulate the rainfall-runoff processes of catchments areas and is applicable to a wide range of geographic areas.Water samples are taken from two streams reach Lake Badovc and from the lake in three different depths (5m, 10m and 15m) at different locations. Concerning the environment impact more than 140 interviews were conducted and questionnaires filled in the period October-November for Mramor area, concentrating on the most important issues: building, water supply, wastewater disposal and west disposal.

  12. The major and trace element chemistry of fish and lake water within ...

    African Journals Online (AJOL)

    Chemical elements in lake water are incorporated into fish tissues through bioconcentration and biomagnification. Lake water and fish tissue samples from 23 lakes, located within 4 major South African catchments, were analysed to investigate the link between element concentrations in lake water and otolith, fin spine, ...

  13. Quantification of dissolved organic carbon (DOC) storage in lakes and reservoirs of mainland China.

    Science.gov (United States)

    Song, Kaishan; Wen, Zhidan; Shang, Yingxing; Yang, Hong; Lyu, Lili; Liu, Ge; Fang, Chong; Du, Jia; Zhao, Ying

    2018-04-04

    As a major fraction of carbon in inland waters, dissolved organic carbon (DOC) plays a crucial role in carbon cycling on a global scale. However, the quantity of DOC stored in lakes and reservoirs was not clear to date. In an attempt to examine the factors that determine the DOC storage in lakes and reservoirs across China, we assembled a large database (measured 367 lakes, and meta-analyzed 102 lakes from five limnetic regions; measured 144 reservoirs, and meta-analyzed 272 reservoirs from 31 provincial units) of DOC concentrations and water storages for lakes and reservoirs that are used to determine DOC storage in static inland waters. We found that DOC concentrations in saline waters (Mean/median ± S.D: 50.5/30.0 ± 55.97 mg/L) are much higher than those in fresh waters (8.1/5.9 ± 6.8 mg/L), while lake DOC concentrations (25.9/11.5 ± 42.04 mg/L) are much higher than those in reservoirs (5.0/3.8 ± 4.5 mg/L). In terms of lake water volume and DOC storage, the Tibet-Qinghai lake region has the largest water volume (552.8 km 3 ), 92% of which is saline waters, thus the largest DOC (13.39 Tg) is stored in these alpine lake region; followed by the Mengxin lake region, having a water volume of 99.4 km 3 in which 1.75 Tg DOC was stored. Compared to Mengxin lake region, almost the same amount of water was stored in East China lake region (91.9 km 3 ), however, much less DOC was stored in this region (0.43 Tg) due to the lower DOC concentration (Ave: 3.45 ± 2.68 mg/L). According to our investigation, Yungui and Northeast lake regions had water storages of 32.14 km 3 and 19.44 km 3 respectively, but relatively less DOC was stored in Yungui (0.13 Tg) than in Northeast lake region (0.19 Tg). Due to low DOC concentration in reservoirs, especially these large reservoirs having lower DOC concentration (V > 1.0 km 3 : 2.31 ± 1.48 mg/L), only 1.54 Tg was stored in a 485.1 km 3 volume of water contained

  14. Distribution and behavior of radionuclides and stable elements in Lake Obuchi

    International Nuclear Information System (INIS)

    Ueda, Shinji; Hasegawa, Hidenao; Takaku, Yuichi; Kondo, Kunio; Inaba, Jiro

    2001-01-01

    This investigation focused on the relationship between the uranium concentration and organic matter in the lake water and the bottom sediment of Lake Obuchi, Rokkasho Village, Aomori. Concentrations of 238 U and organic matter were measured at various points in the lake, and compiled to obtain the distributions and variation characteristics. Concentrations of dissolved organic carbon (DOC) in the lake water were approximately 1.8 mg l -1 . In contrast, these concentrations were low (0.5 mg l -1 ) in Futamata River. The relationship between the concentrations of 238 U and DOC in the lake water did not have a significant correlation. However, there was a close relationship (r=-0.87) between the ratios of 238 U/salinity and DOC in the bottom layer water. Moreover, a relationship between concentration of uranium and total organic carbon in core sediment had a significant correlation (r=0.80). These results suggest that uranium was reduced from a stable form +6 valence from to an unstable +4 valence form and was removed from the lake water, after the consumption of O 2 accompanied by the decomposition of the organic matter in sediment caused chemical reduction in the bottom layer. (author)

  15. Citizen and Satellite Measurements Used to Estimate Lake Water Storage Variations

    Science.gov (United States)

    Parkins, G.; Pavelsky, T.; Yelton, S.; Ghafoor, S. K.; Hossain, F.

    2017-12-01

    Of the roughly 20-40 million lakes in the world larger than 0.01 km2, perhaps a few thousand receive regular water level monitoring, and only approximately a thousand are included in the largest lake level databases. The prospect for on-the-ground, automated monitoring of a significant fraction of the world's lakes is not high given the considerable expense involved. In comparison to many other measurements, however, measuring lake water level is relatively simple under most conditions. A staff gauge installed in a lake, essentially a leveled ruler, can be read relatively simply by both experts and ordinary citizens. Reliable staff gauges cost far less than automated systems, making them an attractive alternative. However, staff gauges are only effective when they are regularly observed and when those observations are communicated to a central database. We have developed and tested a system for citizen scientists to monitor water levels in 15 lakes in Eastern North Carolina, USA and to easily report those measurements to our project team. We combine these citizen measurements with Landsat measurements of inundated area to track variations in lake water storage. Here, we present the resulting lake water level, inundation extent, and lake storage change time series and assess measurement accuracy. Our primary validation method for citizen-measured lake water levels is comparison with heights from pressure transducers also installed in all fifteen lakes. We use the validated results to understand spatial patterns in the lake hydrology of Eastern North Carolina. Finally, we consider the motivations of citizens who participate in the project and discuss the feedback they have provided regarding our measurement and communication systems.

  16. Transport of Astyanax altiparanae Garutti and Britski, 2000 in saline water

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Salaro

    2015-08-01

    Full Text Available Two experiments were performed. The first aimed to assess the tolerance of fingerlings Astyanax altiparanae to water salinity. Fish were exposed to salinity of 0, 3, 6, 9, 12 or 15 g NaCl L-1 for 96 hours. The fish mortality was 0%, in the levels of 0, 3 and 6 g L-1; 75% in the level of 9 g L-1and 100% at 12 and 15 g L-1 of common salt. The second experiment aimed to assess the parameters of water quality, mortality and blood glucose during transport. For this, A. altiparanae were stored in plastic bags at 22, 30 and 37 g of fish L-1 stocking densities and salinity of 0, 3, 6 and 9 g L-1, for. Fish showed similar mortality levels in the different salinities and stocking densities. The increase in fish density reduced the dissolved oxygen levels and salinity decreased the pH. The blood glucose levels were higher in those fish with 0 g L-1 salinity and higher stocking densities. The addition of salt to the water reduces the stress responses of A. altiparanae during transport.

  17. LIMNOLOGY, LAKE BASINS, LAKE WATERS

    Directory of Open Access Journals (Sweden)

    Petre GÂŞTESCU

    2009-06-01

    Full Text Available Limnology is a border discipline between geography, hydrology and biology, and is also closely connected with other sciences, from it borrows research methods. Physical limnology (the geography of lakes, studies lake biotopes, and biological limnology (the biology of lakes, studies lake biocoenoses. The father of limnology is the Swiss scientist F.A. Forel, the author of a three-volume entitled Le Leman: monographie limnologique (1892-1904, which focuses on the geology physics, chemistry and biology of lakes. He was also author of the first textbook of limnology, Handbuch der Seenkunde: allgemeine Limnologie,(1901. Since both the lake biotope and its biohydrocoenosis make up a single whole, the lake and lakes, respectively, represent the most typical systems in nature. They could be called limnosystems (lacustrine ecosystems, a microcosm in itself, as the American biologist St.A. Forbes put it (1887.

  18. Ikaite precipitation by mixing of shoreline springs and lake water, Mono Lake, California, USA

    Science.gov (United States)

    Bischoff, James L.; Stine, Scott; Rosenbauer, Robert J.; Fitzpatrick, John A.; Stafford, Thomas W., Jr.

    1993-08-01

    Metastable ikaite (CaCO 3·6H 2O) forms abundantly during winter months along the south shoreline of Mono Lake where shoreline springs mix with lake water. Ikaite precipitates because of its decreased solubility at low temperature and because of orthophosphate-ion inhibition of calcite and aragonite. During the spring some of the ikaite is transformed to anhydrous CaCO 3 and is incorporated into tufa, but most is dispersed by wave action into the lake where it reacts to form gaylussite (Na 2Ca(CO 3) 2· 5H 2O). Spring waters have low pH values, are dominantly Ca-Na-HCO 3, have low radiocarbon activities, and are mixtures of deep-seated geothermal and cold groundwaters. Chemical modeling reveals that precipitation of CaCO 3 can occur over a broad range of mixtures of spring and lake water with a maximum production occurring at 96% spring water and 4% lake water. Under these conditions all the Ca and a significant fraction of the CO 3 of the precipitate is spring supplied. A radiocarbon age of 19,580 years obtained on a natural ikaite sample supports this conclusion. With the springs supplying a large and probably variable portion of the carbonate, and with apparent 14C age of the carbonate varying from spring to spring, tufa of similar actual antiquity may yield significantly different 14C dates, making tufa at this location unsuitable for absolute age dating by the radiocarbon method.

  19. Water Use Efficiency in Saline Soils under Cotton Cultivation in the Tarim River Basin

    Directory of Open Access Journals (Sweden)

    Xiaoning Zhao

    2015-06-01

    Full Text Available The Tarim River Basin, the largest area of Chinese cotton production, is receiving increased attention because of serious environmental problems. At two experimental stations (Korla and Aksu, we studied the influence of salinity on cotton yield. Soil chemical and physical properties, soil water content, soil total suction and matric suction, cotton yield and water use efficiency under plastic mulched drip irrigation in different saline soils was measured during cotton growth season. The salinity (mS·cm−1 were 17–25 (low at Aksu and Korla, 29–50 (middle at Aksu and 52–62 (high at Aksu for ECe (Electrical conductivity measured in saturation-paste extract of soil over the 100 cm soil profile. The soil water characteristic curves in different saline soils showed that the soil water content (15%–23% at top 40 cm soil, lower total suction power (below 3500 kPa and lower matric suction (below 30 kPa in low saline soil at Korla had the highest water use efficiency (10 kg·ha−1·mm−1 and highest irrigation water use efficiency (12 kg·ha−1·mm−1 and highest yield (6.64 t·ha−1. Higher water content below 30 cm in high saline soil increased the salinity risk and led to lower yield (2.39 t·ha−1. Compared to low saline soils at Aksu, the low saline soil at Korla saved 110 mm irrigation and 103 mm total water to reach 1 t·ha−1 yield and increased water use efficiency by 5 kg·ha−1·mm−1 and 7 kg·ha−1·mm−1 for water use efficiency (WUE and irrigation water use efficiency (IWUE respectively.

  20. Microbiology of Lonar Lake and other soda lakes

    Science.gov (United States)

    Paul Antony, Chakkiath; Kumaresan, Deepak; Hunger, Sindy; Drake, Harold L; Murrell, J Colin; Shouche, Yogesh S

    2013-01-01

    Soda lakes are saline and alkaline ecosystems that are believed to have existed throughout the geological record of Earth. They are widely distributed across the globe, but are highly abundant in terrestrial biomes such as deserts and steppes and in geologically interesting regions such as the East African Rift valley. The unusual geochemistry of these lakes supports the growth of an impressive array of microorganisms that are of ecological and economic importance. Haloalkaliphilic Bacteria and Archaea belonging to all major trophic groups have been described from many soda lakes, including lakes with exceptionally high levels of heavy metals. Lonar Lake is a soda lake that is centered at an unusual meteorite impact structure in the Deccan basalts in India and its key physicochemical and microbiological characteristics are highlighted in this article. The occurrence of diverse functional groups of microbes, such as methanogens, methanotrophs, phototrophs, denitrifiers, sulfur oxidizers, sulfate reducers and syntrophs in soda lakes, suggests that these habitats harbor complex microbial food webs that (a) interconnect various biological cycles via redox coupling and (b) impact on the production and consumption of greenhouse gases. Soda lake microorganisms harbor several biotechnologically relevant enzymes and biomolecules (for example, cellulases, amylases, ectoine) and there is the need to augment bioprospecting efforts in soda lake environments with new integrated approaches. Importantly, some saline and alkaline lake ecosystems around the world need to be protected from anthropogenic pressures that threaten their long-term existence. PMID:23178675

  1. Water Budgets of the Walker River Basin and Walker Lake, California and Nevada

    Science.gov (United States)

    Lopes, Thomas J.; Allander, Kip K.

    2009-01-01

    The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. The only outflow from Walker Lake is evaporation from the lake surface. Between 1882 and 2008, upstream agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-feet. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes streamflow in the Walker River basin and an updated water budget of Walker Lake with emphasis on the lower Walker River basin downstream from Wabuska, Nevada. Water budgets are based on average annual flows for a 30-year period (1971-2000). Total surface-water inflow to the upper Walker River basin upstream from Wabuska was estimated to be 387,000 acre-feet per year (acre-ft/yr). About 223,000 acre-ft/yr (58 percent) is from the West Fork of the Walker River; 145,000 acre-ft/yr (37 percent) is from the East Fork of the Walker River; 17,000 acre-ft/yr (4 percent) is from the Sweetwater Range; and 2,000 acre-ft/yr (less than 1 percent) is from the Bodie Mountains, Pine Grove Hills, and western Wassuk Range. Outflow from the upper Walker River basin is 138,000 acre-ft/yr at Wabuska. About 249,000 acre-ft/yr (64 percent) of inflow is diverted for irrigation, transpired by riparian vegetation, evaporates from lakes and reservoirs, and recharges alluvial aquifers. Stream losses in Antelope, Smith, and Bridgeport Valleys are due to evaporation from reservoirs and agricultural diversions with negligible stream infiltration or riparian evapotranspiration. Diversion rates in Antelope and Smith Valleys were estimated to be 3.0 feet per year (ft/yr) in each valley. Irrigated fields receive an additional 0.8 ft of precipitation, groundwater pumpage, or both for a total applied-water rate

  2. Quality of drinking water from ponds in villages of Kolleru Lake region.

    Science.gov (United States)

    Rao, A S; Rao, P R; Rao, N S

    2001-01-01

    Kolleru Lake is the largest natural freshwater lake in the districts of East and West Godavari of Andhra Pradesh. The major population centres in the Kolleru Lake region are the 148 villages of which 50 bed villages and 98 belt villages. All bed and belt villages in lake region have at least one drinking water pond. Drinking water ponds are filled with lake water during monsoon season and directly supplied to the public throughout the year. The water samples were collected from village drinking water ponds in a year by covering three seasons and analysed for different physico-chemical parameters to assess the quality of drinking water.

  3. Hydrochemistry of the Lake Magadi basin, Kenya

    Science.gov (United States)

    Jones, B.F.; Eugster, H.P.; Rettig, S.L.

    1977-01-01

    New and more complete compositional data are presented for a large number of water samples from the Lake Magadi area, Kenya. These water samples range from dilute inflow (300 g/kg dissolved solids). Five distinct hydrologic stages can be recognized in the evolution of the water compositions: dilute streamflow, dilute ground water, saline ground water (or hot spring reservoir), saturated brines, and residual brines. Based on the assumption that chloride is conserved in the waters during evaporative concentration, these stages are related to each other by the concentration factors of about 1:28:870:7600:16,800. Dilute streamflow is represented by perennial streams entering the Rift Valley from the west. All but one (Ewaso Ngiro) of these streams disappear in the alluvium and do not reach the valley floor. Dilute ground water was collected from shallow pits and wells dug into lake sediments and alluvial channels. Saline ground water is roughly equivalent to the hot springs reservoir postulated by Eugster (1970) and is represented by the hottest of the major springs. Saturated brines represent surficial lake brines just at the point of saturation with respect to trona (Na2CO3.NaHCO3.2H2O), while residual brines are essentially interstitial to the evaporite deposit and have been subjected to a complex history of precipitation and re-solution. The new data confirm the basic hydrologic model presented by Eugster (1970) which has now been refined, particularly with respect to the early stages of evaporative concentration. Budget calculations show that only bromide is conserved as completely as chloride. Sodium follows chloride closely until trona precipitation, whereas silica and sulfate are largely lost during the very first concentration' step (dilute streamflow-dilute ground water). A large fraction of potassium and all calcium plus magnesium are removed during the first two concentration steps (dilute streamflow-dilute ground water-saline ground water). Carbonate and

  4. Controls on the pH of hyper-saline lakes - A lesson from the Dead Sea

    Science.gov (United States)

    Golan, Rotem; Gavrieli, Ittai; Ganor, Jiwchar; Lazar, Boaz

    2016-01-01

    The pH of aqueous environments is determined by the dominant buffer systems of the water, defined operationally as total alkalinity (TA). The major buffer systems in the modern ocean are carbonic and boric acids of which the species bicarbonate, carbonate and borate make up about 77%, 19% and 4% of the TA, respectively. During the course of seawater evaporation (e.g. lagoons) the residual brine loses considerable portion of the dissolved inorganic carbon (DIC) and carbonate alkalinity (CA) already at the early stages of evaporation. DIC and CA decrease due to massive precipitation of CaCO3, while total boron (TB) increases conservatively, turning borate to the dominant alkalinity species in marine derived brines. In the present work we assess the apparent dissociation constant value of boric acid (KB‧) in saline and hypersaline waters, using the Dead Sea (DS) as a case study. We explain the DS low pH (∼6.3) and the effect of the boric and carbonic acid pK‧-s on the behavior of the brine's buffer system, including the pH increase that results from brine dilution. The KB‧ in DS was estimated from TB, TA, DIC and pH data measured in this study and early empirical data on artificial DS brines containing just carbonic acid. The KB‧ value was corroborated by Pitzer ion interaction model calculations using PHREEQC thermodynamic code applied to the chemical composition of the DS. Our results show that KB‧ increases considerably with the brine's ionic strength, reaching in the DS to a factor of 100 higher than in ;mean; seawater. Based on theoretical calculations and analyses of other natural brines it is suggested that brines' composition is a major factor in determining the KB‧ value and in turn the pH of such brines. We show that the higher the proportion of divalent cations in the brine the higher the dissociation constants of the weak acids (presumably due to formation of complexes). The low pH of the Dead Sea is accordingly explained by its extremely

  5. The Model of Lake Operation in Water Transfer Projects Based on the Theory of Water- right

    Science.gov (United States)

    Bi-peng, Yan; Chao, Liu; Fang-ping, Tang

    the lake operation is a very important content in Water Transfer Projects. The previous studies have not any related to water-right and water- price previous. In this paper, water right is divided into three parts, one is initialization waterright, another is by investment, and the third is government's water- right re-distribution. The water-right distribution model is also build. After analyzing the cost in water transfer project, a model and computation method for the capacity price as well as quantity price is proposed. The model of lake operation in water transfer projects base on the theory of water- right is also build. The simulation regulation for the lake was carried out by using historical data and Genetic Algorithms. Water supply and impoundment control line of the lake was proposed. The result can be used by south to north water transfer projects.

  6. Geochemical response of a closed-lake basin to 20th century recurring droughts/wet intervals in the subtropical Pampean Plains of South America

    Directory of Open Access Journals (Sweden)

    Daniel ARIZTEGUI

    2004-02-01

    Full Text Available Laguna Mar Chiquita is a highly variable closed saline lake located in the Pampean Plains of central Argentina. Presently is the largest saline lake in South America (∼ 6,000 km2 and also one of the largest in the world. During the 20th century the hydrological balance of the region was characterized by contrasting scenarios. Well-defined wet or dry climatic phases had ruled the lake level fluctuations and the rivers discharge, mainly controlling the geochemical composition of sediments. Sediments accumulated during positive hydrological balances (i.e., high lake level are mainly composed of allogenic mineral due to higher riverine inputs into the lake. This fluvial-dominated lake phases are recorded as sediments enriched in Al2O3, SiO2, K2O, Fe2O3 and TiO2 and in trace elements such as Co, Cr, Cs, Rb, Sc, Hf, Ta, Th as well as rare earth elements (REE. Sediments accumulated during dry phases (i.e., low lake levels and high salinity are evaporite mineral-rich with elevated concentrations of CaO, MnO, MgO, and P2O5. High contents of As and U are probably due to a co-precitation during high evaporative phases. The calibration of the sediment chemical composition of Laguna Mar Chiquita to well-defined water-level fluctuations of the 20th century shows that elemental geochemistry can be a useful proxy to study former lake-water fluctuations. It may further provide a comparative model to evaluate past environmental conditions in other saline lacustrine basins.

  7. LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes

    Science.gov (United States)

    Bacon, Linda C; Beauchene, Michael; Bednar, Karen E; Bissell, Edward G; Boudreau, Claire K; Boyer, Marvin G; Bremigan, Mary T; Carpenter, Stephen R; Carr, Jamie W; Christel, Samuel T; Claucherty, Matt; Conroy, Joseph D; Downing, John A; Dukett, Jed; Filstrup, Christopher T; Funk, Clara; Gonzalez, Maria J; Green, Linda T; Gries, Corinna; Halfman, John D; Hamilton, Stephen K; Hanson, Paul C; Henry, Emily N; Herron, Elizabeth M; Hockings, Celeste; Jackson, James R; Jacobson-Hedin, Kari; Janus, Lorraine L; Jones, William W; Jones, John R; Keson, Caroline M; King, Katelyn B S; Kishbaugh, Scott A; Lathrop, Barbara; Latimore, Jo A; Lee, Yuehlin; Lottig, Noah R; Lynch, Jason A; Matthews, Leslie J; McDowell, William H; Moore, Karen E B; Neff, Brian P; Nelson, Sarah J; Oliver, Samantha K; Pace, Michael L; Pierson, Donald C; Poisson, Autumn C; Pollard, Amina I; Post, David M; Reyes, Paul O; Rosenberry, Donald O; Roy, Karen M; Rudstam, Lars G; Sarnelle, Orlando; Schuldt, Nancy J; Scott, Caren E; Smith, Nicole J; Spinelli, Nick R; Stachelek, Joseph J; Stanley, Emily H; Stoddard, John L; Stopyak, Scott B; Stow, Craig A; Tallant, Jason M; Thorpe, Anthony P; Vanni, Michael J; Wagner, Tyler; Watkins, Gretchen; Weathers, Kathleen C; Webster, Katherine E; White, Jeffrey D; Wilmes, Marcy K; Yuan, Shuai

    2017-01-01

    Abstract Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states. LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600–12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales. PMID:29053868

  8. LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes.

    Science.gov (United States)

    Soranno, Patricia A; Bacon, Linda C; Beauchene, Michael; Bednar, Karen E; Bissell, Edward G; Boudreau, Claire K; Boyer, Marvin G; Bremigan, Mary T; Carpenter, Stephen R; Carr, Jamie W; Cheruvelil, Kendra S; Christel, Samuel T; Claucherty, Matt; Collins, Sarah M; Conroy, Joseph D; Downing, John A; Dukett, Jed; Fergus, C Emi; Filstrup, Christopher T; Funk, Clara; Gonzalez, Maria J; Green, Linda T; Gries, Corinna; Halfman, John D; Hamilton, Stephen K; Hanson, Paul C; Henry, Emily N; Herron, Elizabeth M; Hockings, Celeste; Jackson, James R; Jacobson-Hedin, Kari; Janus, Lorraine L; Jones, William W; Jones, John R; Keson, Caroline M; King, Katelyn B S; Kishbaugh, Scott A; Lapierre, Jean-Francois; Lathrop, Barbara; Latimore, Jo A; Lee, Yuehlin; Lottig, Noah R; Lynch, Jason A; Matthews, Leslie J; McDowell, William H; Moore, Karen E B; Neff, Brian P; Nelson, Sarah J; Oliver, Samantha K; Pace, Michael L; Pierson, Donald C; Poisson, Autumn C; Pollard, Amina I; Post, David M; Reyes, Paul O; Rosenberry, Donald O; Roy, Karen M; Rudstam, Lars G; Sarnelle, Orlando; Schuldt, Nancy J; Scott, Caren E; Skaff, Nicholas K; Smith, Nicole J; Spinelli, Nick R; Stachelek, Joseph J; Stanley, Emily H; Stoddard, John L; Stopyak, Scott B; Stow, Craig A; Tallant, Jason M; Tan, Pang-Ning; Thorpe, Anthony P; Vanni, Michael J; Wagner, Tyler; Watkins, Gretchen; Weathers, Kathleen C; Webster, Katherine E; White, Jeffrey D; Wilmes, Marcy K; Yuan, Shuai

    2017-12-01

    Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states.LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600-12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales. © The Author 2017. Published by Oxford University Press.

  9. LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes

    Science.gov (United States)

    Soranno, Patricia A.; Bacon, Linda C.; Beauchene, Michael; Bednar, Karen E.; Bissell, Edward G.; Boudreau, Claire K.; Boyer, Marvin G.; Bremigan, Mary T.; Carpenter, Stephen R.; Carr, Jamie W.; Cheruvelil, Kendra S.; Christel, Samuel T.; Claucherty, Matt; Collins, Sarah M.; Conroy, Joseph D.; Downing, John A.; Dukett, Jed; Fergus, C. Emi; Filstrup, Christopher T.; Funk, Clara; Gonzalez, Maria J.; Green, Linda T.; Gries, Corinna; Halfman, John D.; Hamilton, Stephen K.; Hanson, Paul C.; Henry, Emily N.; Herron, Elizabeth M.; Hockings, Celeste; Jackson, James R.; Jacobson-Hedin, Kari; Janus, Lorraine L.; Jones, William W.; Jones, John R.; Keson, Caroline M.; King, Katelyn B.S.; Kishbaugh, Scott A.; Lapierre, Jean-Francois; Lathrop, Barbara; Latimore, Jo A.; Lee, Yuehlin; Lottig, Noah R.; Lynch, Jason A.; Matthews, Leslie J.; McDowell, William H.; Moore, Karen E.B.; Neff, Brian; Nelson, Sarah J.; Oliver, Samantha K.; Pace, Michael L.; Pierson, Donald C.; Poisson, Autumn C.; Pollard, Amina I.; Post, David M.; Reyes, Paul O.; Rosenberry, Donald; Roy, Karen M.; Rudstam, Lars G.; Sarnelle, Orlando; Schuldt, Nancy J.; Scott, Caren E.; Skaff, Nicholas K.; Smith, Nicole J.; Spinelli, Nick R.; Stachelek, Joseph J.; Stanley, Emily H.; Stoddard, John L.; Stopyak, Scott B.; Stow, Craig A.; Tallant, Jason M.; Tan, Pang-Ning; Thorpe, Anthony P.; Vanni, Michael J.; Wagner, Tyler; Watkins, Gretchen; Weathers, Kathleen C.; Webster, Katherine E.; White, Jeffrey D.; Wilmes, Marcy K.; Yuan, Shuai

    2017-01-01

    Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states.LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600–12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales.

  10. Chlorine isotopic geochemistry of salt lakes in the Qaidam Basin, China

    Digital Repository Service at National Institute of Oceanography (India)

    Liu, W.G.; Xiao, Y.K.; Wang, Q.Z.; Qi, H.P.; Wang, Y.H.; Zhou, Y.M.; Shirodkar, P.V.

    *Cl+ ion. Int. J. Mass Spectrom. Ion Process., 116: crysatallization of saline minerals in salt lake. J. Salt Lake 183-192. Sci., 2: 35-40 (in Chinese). Xiao, Y.K., Sun, D.P., Wang, Y.H., Qi, H.P. and Jin, L., 1992. Boron isotopic compositions of brine..., sediments, and source water in Da Qaidam Lake, Qinghai, China. Geochim. Cos- mochim. Acta, 56: 1.561-1568. Xiao, Y.K., Jin, L., Liu. W.G., Qi, H.P., Wang, W.H. and Sun, D.P., 1994a. The isotopic compositions of chlorine in Da Qaidam Lake. Chin. Sci...

  11. Effect of salinity on cell growth and β-carotene production in ...

    African Journals Online (AJOL)

    Urmia Lake, the second largest hyper-saline lake by area in the world, has fluctuated in salinity over time, but recently, it has reached a maximum of 360 g/l. Dunaliella is a type of halophile green-orange microalgae especially found in lake and salty fields and is known for its antioxidant activity; because of its ability to create ...

  12. Nitrogen Dynamics Variation in Overlying Water of Jinshan Lake, China

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhou

    2015-01-01

    Full Text Available Jinshan Lake is a famous urban landscape lake with approximately 8.8 km2 water area, which is located on the north of Zhenjiang, of Jiangsu Province, China. Eighteen sampled sites were selected and overlying water was sampled from 2013 to 2014 to study the seasonal and spatial variation of nitrogen in overlying water of Jinshan Lake. Results showed that physicochemical characteristics of temperature, pH, and DO showed high seasonal variation, whereas they had no significant spatial differences in the 18 sampling points (P>0.05 in overlying water of Jinshan Lake. Nitrogen concentrations showed strong seasonal variation trends. The ranked order of TN was as follows: spring > summer > autumn > winter; the order of NH4+-N was as follows: spring > autumn > summer > winter, whereas NO3--N concentrations revealed an inverse seasonal pattern, with maxima occurring in winter and minimal values occurring in spring. Nitrogen concentrations had dramatic spatial changes in 18 sampling points of Jinshan Lake. Physicochemical parameter difference, domestic wastes pollution, and rainfall runoff source may have led to seasonal and spatial fluctuation variations of nitrogen in overlying water of Jinshan Lake, China.

  13. Using Snow Fences to Augument Fresh Water Supplies in Shallow Arctic Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Stuefer, Svetlana

    2013-03-31

    This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory (NETL) to address environmental research questions specifically related to Alaska's oil and gas natural resources development. The focus of this project was on the environmental issues associated with allocation of water resources for construction of ice roads and ice pads. Earlier NETL projects showed that oil and gas exploration activities in the U.S. Arctic require large amounts of water for ice road and ice pad construction. Traditionally, lakes have been the source of freshwater for this purpose. The distinctive hydrological regime of northern lakes, caused by the presence of ice cover and permafrost, exerts influence on lake water availability in winter. Lakes are covered with ice from October to June, and there is often no water recharge of lakes until snowmelt in early June. After snowmelt, water volumes in the lakes decrease throughout the summer, when water loss due to evaporation is considerably greater than water gained from rainfall. This balance switches in August, when air temperature drops, evaporation decreases, and rain (or snow) is more likely to occur. Some of the summer surface storage deficit in the active layer and surface water bodies (lakes, ponds, wetlands) is recharged during this time. However, if the surface storage deficit is not replenished (for example, precipitation in the fall is low and near‐surface soils are dry), lake recharge is directly affected, and water availability for the following winter is reduced. In this study, we used snow fences to augment fresh water supplies in shallow arctic lakes despite unfavorable natural conditions. We implemented snow‐control practices to enhance snowdrift accumulation (greater snow water equivalent), which led to increased meltwater production and an extended melting season that resulted in lake recharge despite low precipitation during the years of the experiment. For three years (2009

  14. Behavior of chlorine in lake water

    International Nuclear Information System (INIS)

    Sriraman, A.K.

    2006-01-01

    Water from monsoon fed Sagre lake is being used as a source of raw water for Tarapur Atomic Power Station (TAPS--1 and 2). The raw water from the lake is initially pumped to Sagre water treatment plant (SWTP) operated by Maharashtra Industrial Development Corporation (MIDC) from where, the processed water is sent to cater the needs of both the units of TAPS-1 and 2, townships of TAPS and MIDC, and the nearby villages. At the SWTP the raw water is treated with alum to remove the turbidity, filtered and chlorinated using bleaching powder. All these years the raw water is chlorinated in such a way whereby a residual chlorine level of 0.5-1.0 mg/l, is maintained at the outlet of water treatment plant. The adequacy of the current chlorination practice was investigated, at the request of the NPC-500 MWe group during 1990, so that the future requirements of raw water for TAPP-3 and 4, can be met from the expanded SWTP. In this connection experiments on chlorine dose -- residual chlorine relationship and the decay pattern of chlorine with time was carried out in the lake water (with low value of total dissolved solids and total hardness 3 sample at the site. The total bacterial count in the raw water observed to be 10 7 counts/ml originally came down to 10 3 counts/ml at the end of one-hour exposure time to chlorine. It was found that the chlorine demand of the water was around 6 mg/l. In addition Jar test to evaluate the aluminum dose was also carried out. Based on these experiments a chlorine dose of 6 mg/l for one hour contact time was arrived at. The experimental findings were in agreement with the current chlorination practices. (author)

  15. Monitoring soil coverage and yield of cowpea furrow irrigated with saline water

    Directory of Open Access Journals (Sweden)

    Antonia Leila Rocha Neves

    Full Text Available Abstract Cowpea crop is of great importance for northeast Brazil. The objective of this work was to evaluate the application of saline water in different developing stages on plant growth and changes in soil characteristics, measured by soil coverage, and on yield of cowpea plants. The experiment was conducted under field conditions, during the dry season in a completely randomized block design with five treatments and five replications. Each experimental unit consisted of 4 lines of plants with 5.0 m long. The treatments evaluated were: 1. irrigation with groundwater with electrical conductivity (ECw of 0.8 dS m-1 during the whole crop cycle; 2. saline water (5.0 dS m-1 during the whole crop cycle; 3, 4 and 5. saline water (5.0 dS m-1 up to 22nd, during 23rd to 42nd and from the 43rd to 62nd days after sowing, respectively, and groundwater in the remaining period. Soil coverage was evaluated by digital images using the software ENVI for image processing and classification. It was found that the continuous use of saline water inhibits plant growth, while irrigation with saline water during germination and initial growth stages caused retardation in plant development, but in this last case a recovery was observed in the final part of the experimental period. For treatments 2 and 3, a reduction was verified in the number of pods and in seed production, as compared to other treatments. Irrigation with saline water during 23 to 42 and 43 to 62 days after sowing did not affect reproductive and vegetative growth, but the saline water application in the pre-flowering (treatment 4 caused anticipation of the reproductive cycle.

  16. Interaction effects of water salinity and hydroponic growth medium on eggplant yield, water-use efficiency, and evapotranspiration

    Directory of Open Access Journals (Sweden)

    Farnoosh Mahjoor

    2016-06-01

    Full Text Available Eggplant (Solanum melongena L. is a plant native to tropical regions of Southeast Asia. The water crisis and drought on the one hand and eggplant greenhouse crop development as one of the most popular fruit vegetables for people on the other hand, led to the need for more research on the use of saline water and water stress to optimize salinity level and their impact on eggplant evapotranspiration and encounter better yield and crop quality. The objective of the present study was to investigate the interactions of water salinity and hydroponic growth medium on qualitative and quantitative properties of eggplant and its water-use efficiency. The study used the factorial experiment based on completely randomized design with three replications of four levels of water salinity (electrical conductivity of 0.8 (control, 2.5, 5, and 7 dS m−1 and three growth media (cocopeat, perlite, and a 50–50 mixture of the two by volume. Total yield, yield components, evapotranspiration, and water-use efficiency were determined during two growing periods, one each in 2012 and 2013. All of these indices decreased significantly as water salinity increased. Water with of 0.8 dS m−1 produced an average eggplant yield of 2510 g per plant in 2012 and 2600 g in 2013. The highest yield was observed in cocopeat. Water with 7 dS m−1 reduced yield to 906 g per plant in 2012 and to 960 g in 2013. Lowest yield was observed in perlite. The highest evapotranspiration values occurred in cocopeat at the lowest salinity in both years. Cocopeat and the cocopeat–perlite mixture were equally good substrates. The mixture significantly improved the quantitative and qualitative properties of eggplant yield.

  17. Distribution of fallout plutonium in the waters of the lower Great Lakes

    International Nuclear Information System (INIS)

    Alberts, J.J.; Wahlgren, M.A.; Nelson, D.M.

    1976-01-01

    The concentrations of fallout 239 240 Pu in the surface waters from all the Great Lakes were slightly lower in 1976 samples than in those from 1973. The same trend of higher concentrations in the surface waters of the upper lakes as in the surface waters of the lower lakes was observed for both years. In addition, the 239 240 Pu concentration in samples of deep water collected during the summer of 1976 was higher than in the surface waters but was similar to the surface water values of the 1973 spring samples. This observation is significant in that it suggests that the surface waters of all the Great Lakes undergo a seasonal decrease in plutonium concentration similar to that already observed in Lake Michigan

  18. Exploratory Hydrocarbon Drilling Impacts to Arctic Lake Ecosystems

    Science.gov (United States)

    Thienpont, Joshua R.; Kokelj, Steven V.; Korosi, Jennifer B.; Cheng, Elisa S.; Desjardins, Cyndy; Kimpe, Linda E.; Blais, Jules M.; Pisaric, Michael FJ.; Smol, John P.

    2013-01-01

    Recent attention regarding the impacts of oil and gas development and exploitation has focused on the unintentional release of hydrocarbons into the environment, whilst the potential negative effects of other possible avenues of environmental contamination are less well documented. In the hydrocarbon-rich and ecologically sensitive Mackenzie Delta region (NT, Canada), saline wastes associated with hydrocarbon exploration have typically been disposed of in drilling sumps (i.e., large pits excavated into the permafrost) that were believed to be a permanent containment solution. However, failure of permafrost as a waste containment medium may cause impacts to lakes in this sensitive environment. Here, we examine the effects of degrading drilling sumps on water quality by combining paleolimnological approaches with the analysis of an extensive present-day water chemistry dataset. This dataset includes lakes believed to have been impacted by saline drilling fluids leaching from drilling sumps, lakes with no visible disturbances, and lakes impacted by significant, naturally occurring permafrost thaw in the form of retrogressive thaw slumps. We show that lakes impacted by compromised drilling sumps have significantly elevated lakewater conductivity levels compared to control sites. Chloride levels are particularly elevated in sump-impacted lakes relative to all other lakes included in the survey. Paleolimnological analyses showed that invertebrate assemblages appear to have responded to the leaching of drilling wastes by a discernible increase in a taxon known to be tolerant of elevated conductivity coincident with the timing of sump construction. This suggests construction and abandonment techniques at, or soon after, sump establishment may result in impacts to downstream aquatic ecosystems. With hydrocarbon development in the north predicted to expand in the coming decades, the use of sumps must be examined in light of the threat of accelerated permafrost thaw, and the

  19. Determination of Water Quality Parameters in Sivas - Kurugöl Lake

    Directory of Open Access Journals (Sweden)

    Ekrem Mutlu

    2013-12-01

    Full Text Available Kurugöl Lake; Sivas province Hafik county Kurugöl village located within the boundaries of Sivas province, 54 km, Hafik the town 24 miles away, an area of 8.9 ha altitude of 1362 m, an average depth of 3.4 - 4 m with gypsum plateau on the bottom of the boiling water along with rainfall and snowmelt with the lake is fed naturally. Kurugöl (Hafik - Sivas waters of Lake of the physical and chemical properties during the year changes occurring determining water quality characteristics to reveal the pollution levels are determined, living life in terms of the availability of the detection, water pollution and control regulations by the lake water classification and fishing activities, compliance with were identified. The inland lake in Kurugöl (SKKY according to the classification of water resources in accordance with the parameters measured I-III water quality varies from class.

  20. Salinity guidelines for irrigation: Case studies from Water Research ...

    African Journals Online (AJOL)

    Salinity guidelines for irrigation: Case studies from Water Research Commission projects along the Lower Vaal, Riet, Berg and Breede Rivers. ... It is suggested that a more dynamic approach be used for managing salinity under irrigation at farm level, i.e. the use of models. Amongst others, future research should focus on ...

  1. Spatial variation in nutrient and water color effects on lake chlorophyll at macroscales

    Science.gov (United States)

    Fergus, C. Emi; Finley, Andrew O.; Soranno, Patricia A.; Wagner, Tyler

    2016-01-01

    The nutrient-water color paradigm is a framework to characterize lake trophic status by relating lake primary productivity to both nutrients and water color, the colored component of dissolved organic carbon. Total phosphorus (TP), a limiting nutrient, and water color, a strong light attenuator, influence lake chlorophyll a concentrations (CHL). But, these relationships have been shown in previous studies to be highly variable, which may be related to differences in lake and catchment geomorphology, the forms of nutrients and carbon entering the system, and lake community composition. Because many of these factors vary across space it is likely that lake nutrient and water color relationships with CHL exhibit spatial autocorrelation, such that lakes near one another have similar relationships compared to lakes further away. Including this spatial dependency in models may improve CHL predictions and clarify how well the nutrient-water color paradigm applies to lakes distributed across diverse landscape settings. However, few studies have explicitly examined spatial heterogeneity in the effects of TP and water color together on lake CHL. In this study, we examined spatial variation in TP and water color relationships with CHL in over 800 north temperate lakes using spatially-varying coefficient models (SVC), a robust statistical method that applies a Bayesian framework to explore space-varying and scale-dependent relationships. We found that TP and water color relationships were spatially autocorrelated and that allowing for these relationships to vary by individual lakes over space improved the model fit and predictive performance as compared to models that did not vary over space. The magnitudes of TP effects on CHL differed across lakes such that a 1 μg/L increase in TP resulted in increased CHL ranging from 2–24 μg/L across lake locations. Water color was not related to CHL for the majority of lakes, but there were some locations where water color had a

  2. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Christian, E-mail: cherrera@ucn.cl [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Custodio, Emilio [Department of Geo-Engineering, Technical University of Catalonia/Barcelona Tech (UPC), Barcelona (Spain); Chong, Guillermo [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Lambán, Luis Javier [Geological Institute of Spain (IGME), Zaragoza (Spain); Riquelme, Rodrigo; Wilke, Hans [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Jódar, Jorge [Department of Geo-Engineering, Technical University of Catalonia/Barcelona Tech (UPC), Barcelona (Spain); Urrutia, Javier; Urqueta, Harry [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Sarmiento, Alvaro [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); and others

    2016-01-15

    Laguna Tuyajto is a small, shallow saline water lake in the Andean Altiplano of northern Chile. In the eastern side it is fed by springs that discharge groundwater of the nearby volcanic aquifers. The area is arid: rainfall does not exceed 200 mm/year in the rainiest parts. The stable isotopic content of spring water shows that the recharge is originated mainly from winter rain, snow melt, and to a lesser extent from some short and intense sporadic rainfall events. Most of the spring water outflowing in the northern side of Laguna Tuyajto is recharged in the Tuyajto volcano. Most of the spring water in the eastern side and groundwater are recharged at higher elevations, in the rims of the nearby endorheic basins of Pampa Colorada and Pampa Las Tecas to the East. The presence of tritium in some deep wells in Pampa Colorada and Pampa Las Tecas indicates recent recharge. Gas emission in recent volcanoes increase the sulfate content of atmospheric deposition and this is reflected in local groundwater. The chemical composition and concentration of spring waters are the result of meteoric water evapo-concentration, water–rock interaction, and mainly the dissolution of old and buried evaporitic deposits. Groundwater flow is mostly shallow due to a low permeability ignimbrite layer of regional extent, which also hinders brine spreading below and around the lake. High deep temperatures near the recent Tuyajto volcano explain the high dissolved silica contents and the δ{sup 18}O shift to heavier values found in some of the spring waters. Laguna Tuyajto is a terminal lake where salts cumulate, mostly halite, but some brine transfer to the Salar de Aguas Calientes-3 cannot be excluded. The hydrogeological behavior of Laguna Tuyajto constitutes a model to understand the functioning of many other similar basins in other areas in the Andean Altiplano. - Highlights: • Recent volcanism formations play a key role in producing recharge. • Groundwater can flow across local

  3. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes

    International Nuclear Information System (INIS)

    Herrera, Christian; Custodio, Emilio; Chong, Guillermo; Lambán, Luis Javier; Riquelme, Rodrigo; Wilke, Hans; Jódar, Jorge; Urrutia, Javier; Urqueta, Harry; Sarmiento, Alvaro

    2016-01-01

    Laguna Tuyajto is a small, shallow saline water lake in the Andean Altiplano of northern Chile. In the eastern side it is fed by springs that discharge groundwater of the nearby volcanic aquifers. The area is arid: rainfall does not exceed 200 mm/year in the rainiest parts. The stable isotopic content of spring water shows that the recharge is originated mainly from winter rain, snow melt, and to a lesser extent from some short and intense sporadic rainfall events. Most of the spring water outflowing in the northern side of Laguna Tuyajto is recharged in the Tuyajto volcano. Most of the spring water in the eastern side and groundwater are recharged at higher elevations, in the rims of the nearby endorheic basins of Pampa Colorada and Pampa Las Tecas to the East. The presence of tritium in some deep wells in Pampa Colorada and Pampa Las Tecas indicates recent recharge. Gas emission in recent volcanoes increase the sulfate content of atmospheric deposition and this is reflected in local groundwater. The chemical composition and concentration of spring waters are the result of meteoric water evapo-concentration, water–rock interaction, and mainly the dissolution of old and buried evaporitic deposits. Groundwater flow is mostly shallow due to a low permeability ignimbrite layer of regional extent, which also hinders brine spreading below and around the lake. High deep temperatures near the recent Tuyajto volcano explain the high dissolved silica contents and the δ"1"8O shift to heavier values found in some of the spring waters. Laguna Tuyajto is a terminal lake where salts cumulate, mostly halite, but some brine transfer to the Salar de Aguas Calientes-3 cannot be excluded. The hydrogeological behavior of Laguna Tuyajto constitutes a model to understand the functioning of many other similar basins in other areas in the Andean Altiplano. - Highlights: • Recent volcanism formations play a key role in producing recharge. • Groundwater can flow across local

  4. What caused the decline of China's largest freshwater lake? Attribution analysis on Poyang Lake water level variations in recent years

    Science.gov (United States)

    Ye, Xuchun; Xu, Chong-Yu; Zhang, Qi

    2017-04-01

    In recent years, dramatic decline of water level of the Poyang Lake, China's largest freshwater lake, has raised wide concerns about the water security and wetland ecosystem. This remarkable hydrological change coincided with several factors like the initial operation of the Three Gorges Dam (TGD) in 2003, the big change of lake bottom topography due to extensive sand mining in the lake since 2000, and also climate change and other human activities in the Yangtze River basin may add to this complexity. Questions raised to what extent that the lake hydrological changes is caused by climate change and/or human activities. In this study, quantitative assessment was conducted to clarify the magnitude and mechanism of specific influencing factors on recent lake decline (2003-2014), with reference to the period of 1980-1999. The attempts were achieved through the reconstruction of lake water level scenarios by the framework of neural network. Major result indicates that the effect of lake bottom topography change due to sand mining activities has became the dominant factor for the recent lake decline, especially in winter season with low water level. However, the effect of TGD regulation shows strong seasonal features, its effect can accounts for 33%-42% of the average water level decline across the lake during the impoundment period of September-October. In addition, the effect of climate change and other human activities over the Yangtze River basin needs to be highly addressed, which is particularly prominent on reducing lake water level during the summer flood season and autumn recession period. The result also revealed that due to different mechanism, the responses of the lake water level to the three influencing factors are not consistent and show great spatial and temporal differences.

  5. Waterborne parasites and physico-chemical assessment of selected lakes in Malaysia.

    Science.gov (United States)

    Onichandran, Subashini; Kumar, Thulasi; Lim, Yvonne A L; Sawangjaroen, Nongyao; Andiappan, Hemah; Salibay, Cristina C; Chye, Tan Tian; Ithoi, Init; Dungca, Julieta Z; Sulaiman, Wan Y W; Ling, Lau Yee; Nissapatorn, Veeranoot

    2013-12-01

    The objective of this study was to assess the physico-chemical parameters and waterborne parasites in selected recreational lakes from Malaysia. Samples were collected from seven stations of Recreational Lake A (RL-A) and six stations of Recreational Lake B (RL-B). The samples were processed to detect the presence of Giardia spp. and Cryptosporidium spp. using immunomagnetic separation kit, helminth eggs or ova by bright field microscopy and Acanthamoeba spp. by cultivation in non-nutrient agar. Chemical parameters such as ammonia, chlorine, fluoride, nitrate and nitrite and physical parameters such as dissolved oxygen, electrical conductivity, pH, salinity, temperature and total dissolved solid were also measured. Both lakes were freshwater with salinity ranging from 0.05 to 0.09 ppt. Most stations of these lakes were contaminated with Cryptosporidium spp., Giardia spp., Ascaris spp. and hookworm. Schistosoma spp. was found in RL-B only, while Acanthamoeba spp. was found in all stations. Of all sampling sites, station 5 of RL-B is the most contaminated. Linear regression and correlation analysis revealed that Giardia spp. and Schistosoma spp. showed a significant negative correlation with turbidity (p Malaysia. Future work on heavy metals (chromium, copper, mercury and zinc) is recommended to enhance the overall water quality monitoring and to take appropriate safety measures to ensure maintenance of good water standards.

  6. Elementary introduction into thermal desalination of saline waters

    International Nuclear Information System (INIS)

    Froehner, K.R.

    1979-01-01

    The principle of thermal conversion of saline waters into potable water are described from an elementary point of view in an easy understandable manner, covering distillation, submerged coil evaporation, flash evaporation, multiple effect distillation, vapour compression, and solar distillation in simple solar stills. (orig.)

  7. Impact of water-level changes to aquatic vegetation in small oligotrophic lakes

    Directory of Open Access Journals (Sweden)

    Egert VANDEL

    2016-06-01

    Full Text Available This study demonstrates the effect of drastic water-level changes to the aquatic vegetation in three small oligotrophic lakes situated in Kurtna Kame Field in north-eastern Estonia. The area holds around 40 lakes in 30 km2 of which 18 lakes are under protection as Natura Habitat lakes (Natura 2000 network. The area is under a strong human impact as it is surrounded by oil shale mines, sand quarry, peat harvesting field etc. The most severe impact comes from the groundwater intake established in 1972 in the vicinity of three studied lakes. The exploitation of groundwater led to drastic water-level drops. In 1980s the water-level drops were measured to be up to 3 to 4 meters compared to the levels of 1946. Lake Martiska and Lake Kuradijärv were severely affected and only 29% and 45% of lake area respectively and 21% of initial volume remained. Both lakes were described as oligotrophic lakes before severe human impact and held characteristic macrophytes such as Isoëtes lacustris L., Sparganium angustifolium Michx and Lobelia dortmanna L. As the water level declined the lakes lost their rare characteristic species and can now be described more as a meso- or even eutrophic lakes. When the volume of groundwater abstraction decreased in the 1990s the water levels started to recover but did not reach the natural levels of pre-industrialized era. Also the vegetation did not show any signs of recovery. In 2012 the pumping rates increased again causing a new rapid decline in water levels which almost exceed the previous minimum levels. The water-level monitoring alongside with the macrophyte monitoring data gives us a good case study on how the long term abrupt water-level changes can affect the aquatic vegetation

  8. Evaluation of Water Quality in Shallow Lakes, Case Study of Lake Uluabat

    Directory of Open Access Journals (Sweden)

    Saadet İLERİ

    2014-04-01

    Full Text Available Lake Uluabat, located 20 km south of the Marmara Sea, between 42° 12' North latitude, 28° 40'East longitude and is located in the province of Bursa. The Lake is one of the richest lakes in terms of aquatic plants besides fish and bird populations in Turkey. In this study, water quality of the Lake was monitored from June 2008 to May 2009 during the 12 month period with the samples taken from 8 points in the lake and spatial and temporal variations of the parameters were examined. pH, temperature (T, electrical conductivity (EC, dissolved oxygen (DO, suspended solids (SS, secchi depth (SD, water level (WL, nitrate nitrogen (NO3-N, total nitrogen (TN, phosphate-phosphorus (PO4-P, total phosphorus (TP, alkalinity, chemical oxygen demand (COD and chlorophyll-a (Chl-a were the monitoring parameters. As a result, concentrations of the parameters were found at high levels especially the 1st, 4th, 5th, and 8th stations and temporally were found at high levels often in the summer. According to the results of analysis of variance, regional and temporal variations of all parameters were found important except SS and NO3-N

  9. Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy

    Science.gov (United States)

    Mongelli, G.; Monni, S.; Oggiano, G.; Paternoster, M.; Sinisi, R.

    2013-07-01

    Throughout the Mediterranean, salinization threatens water quality, especially in coastal areas. This salinization is the result of concomitant processes related to both seawater intrusion and water-rock interaction, which in some cases are virtually indistinguishable. In the Nurra region of northwestern Sardinia, recent salinization related to marine water intrusion has been caused by aquifer exploitation. However, the geology of this region records a long history from the Palaeozoic to the Quaternary, and is structurally complex and comprises a wide variety of lithologies, including Triassic evaporites. Determining the origin of the saline component of the Jurassic and Triassic aquifers in the Nurra region may provide a useful and more general model for salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activity and recent climatic change, the Nurra has become vulnerable to desertification and, in common with other Mediterranean islands, surface water resources periodically suffer from severe shortages. With this in mind, we report new data regarding brackish and surface waters (outcrop and lake samples) of the Na-Cl type from the Nurra region, including major ions and selected trace elements (B, Br, I, and Sr), in addition to isotopic data including δ18O, δD in water, and δ34S and δ18O in dissolved SO4. To identify the origin of the salinity more precisely, we also analysed the mineralogical and isotopic composition of Triassic evaporites. The brackish waters have Cl contents of up to 2025 mg L-1 , and the ratios between dissolved ions and Cl, with the exception of the Br / Cl ratio, are not those expected on the basis of simple mixing between rainwater and seawater. The δ18O and δD data indicate that most of the waters fall between the regional meteoric water line and the global meteoric water line, supporting the conclusion that they are

  10. Multifactorial control of water and saline intake: role of a2-adrenoceptors

    Directory of Open Access Journals (Sweden)

    L.A. De-Luca Jr.

    1997-04-01

    Full Text Available Water and saline intake is controlled by several mechanisms activated during dehydration. Some mechanisms, such as the production of angiotensin II and unloading of cardiovascular receptors, activate both behaviors, while others, such as the increase in blood osmolality or sodium concentration, activate water, but inhibit saline intake. Aldosterone probably activates only saline intake. Clonidine, an a2-adrenergic agonist, inhibits water and saline intake induced by these mechanisms. One model to describe the interactions between these multiple mechanisms is a wire-block diagram, where the brain circuit that controls each intake is represented by a summing point of its respective inhibiting and activating factors. The a2-adrenoceptors constitute an inhibitory factor common to both summing points

  11. Hydrology, water quality, trophic status, and aquatic plants of Fowler Lake, Wisconsin

    Science.gov (United States)

    Hughes, P.E.

    1993-01-01

    The U.S. Geological Survey, in cooperation with the Fowler Lake Management District, completed a hydrologic and water-quality study of Fowler Lake in southeastern Wisconsin during calendar year 1984. Data on temperature, pH, specific conductance, and concentrations of dissolved oxygen, total phosphorus, dissolved orthophosphate phosphorus, and various nitrogen species were collected from January through November 1984. The water-quality data indicate that Fowler Lake can be classified as a mildly fertile lake with excellent water clarity as indicated by Secchi depth readings generally greater than 12 feet. Although phosphorus concentrations are generally less than 0.01 milligram per liter, the lake does produce dense stands of macrophytes during the open-water period. The lake is thermally stratified during the summer months, resulting in oxygen depletion in the deepest parts of the lake.

  12. The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh.

    Science.gov (United States)

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia

    2016-07-01

    More than 35 million people in coastal Bangladesh are vulnerable to increasing freshwater salinization. This will continue to affect more people and to a greater extent as climate change projections are realised in this area in the future. However the evidence for health effects of consuming high salinity water is limited. This research examined the association between drinking water salinity and blood pressure in young adults in coastal Bangladesh. We conducted a cross-sectional study during May-June 2014 in a rural coastal sub-district of Bangladesh. Data on blood pressure (BP) and salinity of potable water sources was collected from 253 participants aged 19-25 years. A linear regression method was used to examine the association between water salinity exposure categories and systolic BP (SBP) and diastolic BP (DBP) level. Sixty five percent of the study population were exposed to highly saline drinking water above the Bangladesh standard (600 mg/L and above). Multivariable linear regression analyses identified that compared to the low water salinity exposure category (water salinity category (>600 mg/L), had statistically significantly higher SBP (B 3.46, 95% CI 0.75, 6.17; p = 0.01) and DBP (B 2.77, 95% CI 0.31, 5.24; p = 0.03). Our research shows that elevated salinity in drinking water is associated with higher BP in young coastal populations. Blood pressure is an important risk factor of hypertension and cardiovascular diseases. Given the extent of salinization of freshwater in many low-lying countries including in Bangladesh, and the likely exacerbation related to climate change-induced sea level rise, implementation of preventative strategies through dietary interventions along with promotion of low saline drinking water must be a priority in these settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Water-quality characteristics of Michigan's inland lakes, 2001-10

    Science.gov (United States)

    Fuller, L.M.; Taricska, C.K.

    2012-01-01

    The U.S. Geological Survey and the Michigan Department of Environmental Quality (MDEQ) jointly monitored for selected water-quality constituents and properties of inland lakes during 2001–10 as part of Michigan's Lake Water-Quality Assessment program. During 2001–10, 866 lake basins from 729 inland lakes greater than 25 acres were monitored for baseline water-quality conditions and trophic status. This report summarizes the water-quality characteristics and trophic conditions of the monitored lakes throughout the State; the data include vertical-profile measurements, nutrient measurements at three discrete depths, Secchi-disk transparency (SDT) measurements, and chlorophyll a measurements for the spring and summer, with major ions and other chemical indicators measured during the spring at mid-depth and color during the summer from near-surface samples. In about 75 percent of inland lake deep basins (index stations), trophic characteristics were associated with oligotrophic or mesotrophic conditions; 5 percent or less were categorized as hypereutrophic, and 80 percent of hypereutrophic lakes had a maximum depth of 30 feet or less. Comparison of spring and summer measurements shows that water clarity based on SDT measurements were clearer in the spring than in the summer for 63 percent of lakes. For near-surface measurements made in spring, 97 percent of lakes can be considered phosphorus limited and less than half a percent nitrogen limited; for summer measurements, 96 percent of lakes can be considered phosphorus limited and less than half a percent nitrogen limited. Spatial patterns of major ions, alkalinity, and hardness measured in the spring at mid-depth all showed lower values in the Upper Peninsula of Michigan and a southward increase toward the southern areas of the Lower Peninsula, though the location of increase varied by constituent. A spatial analysis of the data based on U.S. Environmental Protection Agency Level III Ecoregions separated potassium

  14. Chemical and biotic characteristics of prairie lakes and large wetlands in south-central North Dakota—Effects of a changing climate

    Science.gov (United States)

    Mushet, David M.; Goldhaber, Martin B.; Mills, Christopher T.; McLean, Kyle I.; Aparicio, Vanessa M.; McCleskey, R. Blaine; Holloway, JoAnn M.; Stockwell, Craig A.

    2015-09-28

    The climate of the prairie pothole region of North America is known for variability that results in significant interannual changes in water depths and volumes of prairie lakes and wetlands; however, beginning in July 1993, the climate of the region shifted to an extended period of increased precipitation that has likely been unequaled in the preceding 500 years. Associated changing water volumes also affect water chemical characteristics, with potential effects on fish and wildlife populations. To explore the effect of changing climate patterns, in 2012 and 2013, the U.S. Geological Survey revisited 167 of 178 prairie lakes and large wetlands of south-central North Dakota that were originally sampled in the mid-1960s to mid-1970s. During the earlier sampling period, these lakes and wetlands displayed a great range of chemical characteristics (for example, specific conductance ranged from 365 microsiemens per centimeter at 25 degrees Celsius to 70,300 microsiemens per centimeter at 25 degrees Celsius); however, increased water volumes have resulted in greatly reduced variation among lakes and wetlands and a more homogeneous set of chemical conditions defined by pH, specific conductance, and concentrations of major cations and anions. High concentrations of dissolved solids previously limited fish occurrence in many of the lakes and wetlands sampled; however, freshening of these lakes and large wetlands has allowed fish to populate and flourish where they were previously absent. Conversely, the freshening of previously saline lakes and wetlands has resulted in concurrent shifts away from invertebrate species adapted to live in these highly saline environments. A shift in the regional climate has changed a highly diverse landscape of wetlands (fresh to highly saline) to a markedly more homogeneous landscape that has reshaped the fish and wildlife communities of this ecologically and economically important region.

  15. Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.

    2016-10-19

    OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling.  Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake.  Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.

  16. Irrigation with saline-sodic water: effects on two clay soils

    Directory of Open Access Journals (Sweden)

    Giovanna Cucci

    2013-05-01

    Full Text Available The results of a 4-year experiment aimed at evaluating the effect of irrigation with saline-sodic water on the soil are reported. The research was carried out at the Campus of the Agricultural Faculty of Bari University (Italy on 2 clay soils (Bologna – T1 and Locorotondo – T2. The soils were cropped to borlotto bean (Phaseolus vulgaris L., capsicum (Capsicum annuum L., sunflower (Helianthus annuus L., wheat (Triticum durum Desf grown in succession; the crops were irrigated with 9 saline-sodic types of water and subjected to two different leaching fractions (10% and 20% of the watering volume. The 9 solutions were obtained dissolving in de-ionised water weighted amounts of sodium chloride (NaCl and calcium chloride (CaCl2, deriving from the combination of 3 saline concentrations and 3 sodicity levels. The crops were irrigated whenever the water lost by evapotranspiration from the soil contained in the pots was equal to 30% of the soil maximum available water. The results showed that, though the soils were leached during the watering period, they showed a high salt accumulation. Consequently, the saturated soil extract electrical conductivity increased from initial values of 0.65 and 0.68 dS m-1 to 11.24 and 13.61 dS m-1 at the end of the experiment, for the soils T1 and T2, respectively. The saline concentration increase in irrigation water caused in both soils a progressive increase in exchangeable sodium, and a decrease in exchangeable calcium and non-significant variations in exchangeable potassium (K and magnesium (Mg.

  17. The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh

    International Nuclear Information System (INIS)

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia

    2016-01-01

    More than 35 million people in coastal Bangladesh are vulnerable to increasing freshwater salinization. This will continue to affect more people and to a greater extent as climate change projections are realised in this area in the future. However the evidence for health effects of consuming high salinity water is limited. This research examined the association between drinking water salinity and blood pressure in young adults in coastal Bangladesh. We conducted a cross-sectional study during May-June 2014 in a rural coastal sub-district of Bangladesh. Data on blood pressure (BP) and salinity of potable water sources was collected from 253 participants aged 19–25 years. A linear regression method was used to examine the association between water salinity exposure categories and systolic BP (SBP) and diastolic BP (DBP) level. Sixty five percent of the study population were exposed to highly saline drinking water above the Bangladesh standard (600 mg/L and above). Multivariable linear regression analyses identified that compared to the low water salinity exposure category (<600 mg/L), those in the high water salinity category (>600 mg/L), had statistically significantly higher SBP (B 3.46, 95% CI 0.75, 6.17; p = 0.01) and DBP (B 2.77, 95% CI 0.31, 5.24; p = 0.03). Our research shows that elevated salinity in drinking water is associated with higher BP in young coastal populations. Blood pressure is an important risk factor of hypertension and cardiovascular diseases. Given the extent of salinization of freshwater in many low-lying countries including in Bangladesh, and the likely exacerbation related to climate change-induced sea level rise, implementation of preventative strategies through dietary interventions along with promotion of low saline drinking water must be a priority in these settings. - Highlights: • Freshwater salinization will affect more people and to a greater extent as climate projections are realised in low-lying regions of the world.

  18. Effect of volume loading with water, normal saline, palm wine and ...

    African Journals Online (AJOL)

    A comparative study of the diuretic effect of water, normal saline, palm wine and Lipton tea was carried out on forty (40) randomly selected, apparently normal undergraduate students of Medicine and Pharmacy at the University of Uyo, Nigeria. One and a half (1.5) litres of water, normal saline, palm wine and Lipton tea were ...

  19. Impacts of flamingos on saline lake margin and shallow lacustrine sediments in the Kenya Rift Valley

    Science.gov (United States)

    Scott, Jennifer J.; Renaut, Robin W.; Owen, R. Bernhart

    2012-11-01

    Studies of modern, Holocene, and Pleistocene sediments around saline to hypersaline, alkaline Lake Bogoria and Lake Magadi show that evidence of flamingo activity in marginal areas of these lakes is nearly ubiquitous. Flamingos produce discrete structures such as webbed footprints (~ 9 cm long, ~ 11 cm wide) and nest mounds (~ 30 cm wide, ~ 20 cm high), and they also extensively rework sediments in delta front, delta plain, and shoreline areas. Large (~ 0.5-2 cm in diameter), pinched, 'bubble pores' and ped-like mud clumps are formed by the trampling and churning of wet clay-rich sediments in these settings. Flamingo nest mounds, although superficially similar to some thrombolite mounds, are typically internally structureless, unless formed on pre-existing sediments that preserve internal structures. The flamingo mounds consist of a dense, packed oval-shaped core, a surrounding 'body' of packed sediment, and an external layer with a ped-like texture of clumped mud. The nests may contain open holes from roots or feather shafts incorporated into the nest, and (or) burrows produced once the nests are abandoned. In areas with high densities of flamingos, lake margin sediments may be preferentially compacted, particularly at breeding sites, and become resistant to subaerial erosion and the effects of transgressive ravinement on time scales ranging from seasons to tens of thousands of years. The relatively well-compacted nest mounds and associated sediments also contribute to the stability of delta distributary channels during regressive-transgressive cycles, and can lead to the minor channelization of unconfined flows where currents are diverted around nest mounds. Pleistocene exhumed surfaces of relatively well-indurated lake margin sediments at Lake Bogoria and Lake Magadi that are interpreted as combined regressive and transgressive surfaces (flooding surface/sequence boundary) preserve evidence of flamingo activities, and are overlain by younger, porous lacustrine

  20. Fluctuations of Lake Orta water levels: preliminary analyses

    Directory of Open Access Journals (Sweden)

    Helmi Saidi

    2016-04-01

    Full Text Available While the effects of past industrial pollution on the chemistry and biology of Lake Orta have been well documented, annual and seasonal fluctuations of lake levels have not yet been studied. Considering their potential impacts on both the ecosystem and on human safety, fluctuations in lake levels are an important aspect of limnological research. In the enormous catchment of Lake Maggiore, there are many rivers and lakes, and the amount of annual precipitation is both high and concentrated in spring and autumn. This has produced major flood events, most recently in November 2014. Flood events are also frequent on Lake Orta, occurring roughly triennially since 1917. The 1926, 1951, 1976 and 2014 floods were severe, with lake levels raised from 2.30 m to 3.46 m above the hydrometric zero. The most important event occurred in 1976, with a maximum level equal to 292.31 m asl and a return period of 147 years. In 2014 the lake level reached 291.89 m asl and its return period was 54 years. In this study, we defined trends and temporal fluctuations in Lake Orta water levels from 1917 to 2014, focusing on extremes. We report both annual maximum and seasonal variations of the lake water levels over this period. Both Mann-Kendall trend tests and simple linear regression were utilized to detect monotonic trends in annual and seasonal extremes, and logistic regression was used to detect trends in the number of flood events. Lake level decreased during winter and summer seasons, and a small but statistically non-significant positive trend was found in the number of flood events over the period. We provide estimations of return period for lake levels, a metric which could be used in planning lake flood protection measures.

  1. Improvement of Chickpea Growth and Biological N Fixation under Water Salinity Stress

    International Nuclear Information System (INIS)

    Gadalla, A. M.; Galal, Y. G. M.; Hamdy, A.

    2004-01-01

    This work had been carried out under greenhouse conditions of IAM-Bari, aimed at evaluating the effects of water and soil salinity on growth, yield and nitrogen fixation by chickpea plants inoculated with selected Rhizobium strains. Isotope dilution approach ( 15 N) was applied for quantification of biological N fixation and portions derived from fertilizer and soil (Ndff and Ndfs, respectively). Number of pods was decreased gradually with increasing water salinity levels. High levels of salinity negatively affected shoot, root dry matter, seed yield and N accumulated in shoots and roots. A slight difference in seed N was noticed between fresh water and 9 dS/m treatments. Nitrogen derived from fertilizer by shoots was slightly increased with 3, 6 and 9 dS/m treatments, while they were notably higher than the fresh water control. More than 80% and 70% of N accumulated in shoots and seeds, respectively were derived from fixation. Portions of N 2 -fixed in shoots was decreased with the level of 3 dS/m as compared to the fresh water, then tended to increase with both 6 and 9 dS/m treatments. Stability of %Ndfa with increasing salinity was noticed with seeds-N. Soil-N came next as a fraction of nitrogen demand, where it increased with increasing water salinity levels. Under adverse conditions of salinity, the plants offered some of their N requirements from the other two N sources. Application of the suitable Rhizobium bacteria strains could be profits for both of the plant growth and soil fertility via N 2 fixation. (Authors)

  2. High-coercivity minerals from North African Humid Period soil material deposited in Lake Yoa (Chad)

    Science.gov (United States)

    Just, J.; Kroepelin, S.; Wennrich, V.; Viehberg, F. A.; Wagner, B.; Rethemeyer, J.; Karls, J.; Melles, M.

    2015-12-01

    The Holocene is a period of fundamental climatic change in North Africa. Humid conditions during the so-called African Humid Period (AHP) have favored the formation of big lake systems. Only very few of these lakes persist until today. One of them is Lake Yoa (19°03'N/20°31'E) in the Ounianga Basin, Chad, which maintains its water level by ground water inflow. Here we present the magnetic characteristics together with proxies for lacustrine productivity and biota of a sediment core (Co1240) from Lake Yoa, retrieved in 2010 within the framework of the Collaborative Research Centre 806 - Our Way to Europe (Deutsche Forschungsgemeinschaft). Magnetic properties of AHP sediments show strong indications for reductive diagenesis. An up to ~ 80 m higher lake level is documented by lacustrine deposits in the Ounianga Basin, dating to the early phase of the AHP. The higher lake level and less strong seasonality restricted deep mixing of the lake. Development of anoxic conditions consequently lead to the dissolution of iron oxides. An exception is an interval with high concentration of high-coercivity magnetic minerals, deposited between 7800 - 8120 cal yr BP. This interval post-dates the 8.2 event, which was dry in Northern Africa and probably caused a reduced vegetation cover. We propose that the latter resulted in the destabilization of soils around Lake Yoa. After the re-establishment of humid conditions, these soil materials were eroded and deposited in the lake. Magnetic minerals appear well preserved in the varved Late Holocene sequence, indicating (sub-) oxic conditions in the lake. This is surprising, because the occurrence of varves is often interpreted as an indicator for anoxic conditions of the lake water. However, the salinity of lake water rose strongly after the AHP. We therefore hypothesize that the conservation of varves and absence of benthic organisms rather relates to the high salinity than to anoxic conditions.

  3. Water and nutrient budgets for Vancouver Lake, Vancouver, Washington, October 2010-October 2012

    Science.gov (United States)

    Sheibley, Rich W.; Foreman, James R.; Marshall, Cameron A.; Welch, Wendy B.

    2014-01-01

    Vancouver Lake, a large shallow lake in Clark County, near Vancouver, Washington, has been undergoing water-quality problems for decades. Recently, the biggest concern for the lake are the almost annual harmful cyanobacteria blooms that cause the lake to close for recreation for several weeks each summer. Despite decades of interest in improving the water quality of the lake, fundamental information on the timing and amount of water and nutrients entering and exiting the lake is lacking. In 2010, the U.S. Geological Survey conducted a 2-year field study to quantify water flows and nutrient loads in order to develop water and nutrient budgets for the lake. This report presents monthly and annual water and nutrient budgets from October 2010–October 2012 to identify major sources and sinks of nutrients. Lake River, a tidally influenced tributary to the lake, flows into and out of the lake almost daily and composed the greatest proportion of both the water and nutrient budgets for the lake, often at orders of magnitude greater than any other source. From the water budget, we identified precipitation, evaporation and groundwater inflow as minor components of the lake hydrologic cycle, each contributing 1 percent or less to the total water budget. Nutrient budgets were compiled monthly and annually for total nitrogen, total phosphorus, and orthophosphate; and, nitrogen loads were generally an order of magnitude greater than phosphorus loads across all sources. For total nitrogen, flow from Lake River at Felida, Washington, made up 88 percent of all inputs into the lake. For total phosphorus and orthophosphate, Lake River at Felida flowing into the lake was 91 and 76 percent of total inputs, respectively. Nutrient loads from precipitation and groundwater inflow were 1 percent or less of the total budgets. Nutrient inputs from Burnt Bridge Creek and Flushing Channel composed 12 percent of the total nitrogen budget, 8 percent of the total phosphorus budget, and 21 percent

  4. Modeling aluminum-silicon chemistries and application to Australian acidic playa lakes as analogues for Mars

    Science.gov (United States)

    Marion, G. M.; Crowley, J. K.; Thomson, B. J.; Kargel, J. S.; Bridges, N. T.; Hook, S. J.; Baldridge, A.; Brown, A. J.; Ribeiro da Luz, B.; de Souza Filho, C. R.

    2009-06-01

    Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO 4-NO 3-OH-HCO 3-CO 3-CO 2-O 2-CH 4-Si-H 2O system that now contain 95 solid phases. There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron precipitates such as jarosite and hematite. Differences include: (1) the dominance of NaCl in many WA lakes, versus the dominance of Fe-Mg-Ca-SO 4 in Meridiani Planum, (2) excessively low K + concentrations in Meridiani Planum due to jarosite precipitation, (3) higher acid production in the presence of high iron concentrations in Meridiani Planum, and probably lower rates of acid neutralization and hence, higher acidities on Mars owing to colder temperatures, and (4) lateral salt patterns in WA lakes. The WA playa lakes display significant lateral variations in mineralogy and water

  5. Paleoecology of a Northern Michigan Lake and the relationship among climate, vegetation, and Great Lakes water levels

    Science.gov (United States)

    Booth, R.K.; Jackson, S.T.; Thompson, T.A.

    2002-01-01

    We reconstructed Holocene water-level and vegetation dynamics based on pollen and plant macrofossils from a coastal lake in Upper Michigan. Our primary objective was to test the hypothesis that major fluctuations in Great Lakes water levels resulted in part from climatic changes. We also used our data to provide temporal constraints to the mid-Holocene dry period in Upper Michigan. From 9600 to 8600 cal yr B.P. a shallow, lacustrine environment characterized the Mud Lake basin. A Sphagnum-dominated wetland occupied the basin during the mid-Holocene dry period (???8600 to 6600 cal yr B.P.). The basin flooded at 6600 cal yr B.P. as a result of rising water levels associated with the onset of the Nipissing I phase of ancestral Lake Superior. This flooding event occured contemporaneously with a well-documented regional expansion of Tsuga. Betula pollen increased during the Nipissing II phase (4500 cal yr B.P.). Macrofossil evidence from Mud Lake suggests that Betula alleghaniensis expansion was primarily responsible for the rising Betula pollen percentages. Major regional and local vegetational changes were associated with all the major Holocene highstands of the western Great Lakes (Nipissing I, Nipissing II, and Algoma). Traditional interpretations of Great Lakes water-level history should be revised to include a major role of climate. ?? 2002 University of Washington.

  6. 46 CFR 11.430 - Endorsements for the Great Lakes and inland waters.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Endorsements for the Great Lakes and inland waters. 11... Endorsements for the Great Lakes and inland waters. Any license or MMC endorsement issued for service on the Great Lakes and inland waters is valid on all of the inland waters of the United States as defined in...

  7. Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy

    Directory of Open Access Journals (Sweden)

    G. Mongelli

    2013-07-01

    Full Text Available Throughout the Mediterranean, salinization threatens water quality, especially in coastal areas. This salinization is the result of concomitant processes related to both seawater intrusion and water–rock interaction, which in some cases are virtually indistinguishable. In the Nurra region of northwestern Sardinia, recent salinization related to marine water intrusion has been caused by aquifer exploitation. However, the geology of this region records a long history from the Palaeozoic to the Quaternary, and is structurally complex and comprises a wide variety of lithologies, including Triassic evaporites. Determining the origin of the saline component of the Jurassic and Triassic aquifers in the Nurra region may provide a useful and more general model for salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activity and recent climatic change, the Nurra has become vulnerable to desertification and, in common with other Mediterranean islands, surface water resources periodically suffer from severe shortages. With this in mind, we report new data regarding brackish and surface waters (outcrop and lake samples of the Na-Cl type from the Nurra region, including major ions and selected trace elements (B, Br, I, and Sr, in addition to isotopic data including δ18O, δD in water, and δ34S and δ18O in dissolved SO4. To identify the origin of the salinity more precisely, we also analysed the mineralogical and isotopic composition of Triassic evaporites. The brackish waters have Cl contents of up to 2025 mg L−1 , and the ratios between dissolved ions and Cl, with the exception of the Br / Cl ratio, are not those expected on the basis of simple mixing between rainwater and seawater. The δ18O and δD data indicate that most of the waters fall between the regional meteoric water line and the global meteoric water line, supporting the

  8. Hydroecological condition and potential for aquaculture in lakes of the arid region of Khorezm, Uzbekistan

    Science.gov (United States)

    Crootof, Africa; Mullabaev, Nodirbek; Saito, Laurel; Atwell, Lisa; Rosen, Michael R.; Bekchonova, Marhabo; Ginatullina, Elena; Scott, Julian; Chandra, Sudeep; Nishonov, Bakhriddin; Lamers, John P.A.; Fayzieva, Dilorom

    2015-01-01

    With >400 small (water resources to provide a local food supply could increase fish consumption while improving the rural economy. Hydroecological (biological and physical) and chemical characteristics (including legacy pesticides ΣDDT and ΣHCH) of four representative drainage lakes in Khorezm from 2006 to 2008 were analyzed for the lakes’ capability to support healthy fish populations. Lake characteristics were categorized as “optimal” (having little or no effect on growth and development), “tolerable” (corresponding to chronic or sub-lethal toxicity) and “lethal” (corresponding to acute toxicity). Results indicate that three lakes are likely well-suited for raising fish species, with water quality meeting World Bank aquaculture guidelines. However, the fourth lake often had salinity concentrations > optimal levels for local fish species. Pesticide concentrations in water of all four lakes were within tolerable aquaculture ranges. Although water ΣDDT concentrations were >optimal limits, results from chemical analysis of fish tissues and semi-permeable membrane devices indicated that study lake ΣDDT concentrations were not accumulating in fish or posing a human health threat. Land and water management to maintain adequate lake water quality are imperative for sustaining fish populations for human consumption.

  9. Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery

    Directory of Open Access Journals (Sweden)

    Komeil Rokni

    2014-05-01

    Full Text Available Lake Urmia is the 20th largest lake and the second largest hyper saline lake (before September 2010 in the world. It is also the largest inland body of salt water in the Middle East. Nevertheless, the lake has been in a critical situation in recent years due to decreasing surface water and increasing salinity. This study modeled the spatiotemporal changes of Lake Urmia in the period 2000–2013 using the multi-temporal Landsat 5-TM, 7-ETM+ and 8-OLI images. In doing so, the applicability of different satellite-derived indexes including Normalized Difference Water Index (NDWI, Modified NDWI (MNDWI, Normalized Difference Moisture Index (NDMI, Water Ratio Index (WRI, Normalized Difference Vegetation Index (NDVI, and Automated Water Extraction Index (AWEI were investigated for the extraction of surface water from Landsat data. Overall, the NDWI was found superior to other indexes and hence it was used to model the spatiotemporal changes of the lake. In addition, a new approach based on Principal Components of multi-temporal NDWI (NDWI-PCs was proposed and evaluated for surface water change detection. The results indicate an intense decreasing trend in Lake Urmia surface area in the period 2000–2013, especially between 2010 and 2013 when the lake lost about one third of its surface area compared to the year 2000. The results illustrate the effectiveness of the NDWI-PCs approach for surface water change detection, especially in detecting the changes between two and three different times, simultaneously.

  10. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles.

    Science.gov (United States)

    Cramer, Grant R; Ergül, Ali; Grimplet, Jerome; Tillett, Richard L; Tattersall, Elizabeth A R; Bohlman, Marlene C; Vincent, Delphine; Sonderegger, Justin; Evans, Jason; Osborne, Craig; Quilici, David; Schlauch, Karen A; Schooley, David A; Cushman, John C

    2007-04-01

    Grapes are grown in semiarid environments, where drought and salinity are common problems. Microarray transcript profiling, quantitative reverse transcription-PCR, and metabolite profiling were used to define genes and metabolic pathways in Vitis vinifera cv. Cabernet Sauvignon with shared and divergent responses to a gradually applied and long-term (16 days) water-deficit stress and equivalent salinity stress. In this first-of-a-kind study, distinct differences between water deficit and salinity were revealed. Water deficit caused more rapid and greater inhibition of shoot growth than did salinity at equivalent stem water potentials. One of the earliest responses to water deficit was an increase in the transcript abundance of RuBisCo activase (day 4), but this increase occurred much later in salt-stressed plants (day 12). As water deficit progressed, a greater number of affected transcripts were involved in metabolism, transport, and the biogenesis of cellular components than did salinity. Salinity affected a higher percentage of transcripts involved in transcription, protein synthesis, and protein fate than did water deficit. Metabolite profiling revealed that there were higher concentrations of glucose, malate, and proline in water-deficit-treated plants as compared to salinized plants. The metabolite differences were linked to differences in transcript abundance of many genes involved in energy metabolism and nitrogen assimilation, particularly photosynthesis, gluconeogenesis, and photorespiration. Water-deficit-treated plants appear to have a higher demand than salinized plants to adjust osmotically, detoxify free radicals (reactive oxygen species), and cope with photoinhibition.

  11. Holocene paleoclimate inferred from salinity histories of adjacent lakes in southwestern Sicily (Italy)

    Science.gov (United States)

    Curry, B Brandon; Henne, Paul; Mezquita-Joanes, Francesc; Marrone, Federico; Pieri, Valentina; La Mantia, Tommaso; Calo, Camilla; Tinner, Willy

    2016-01-01

    Marked uncertainties persist regarding the climatic evolution of the Mediterranean region during the Holocene. For instance, whether moisture availability gradually decreased, remained relatively constant, or increased during the last 7000 years remains a matter of debate. To assess Holocene limnology, hydrology and moisture dynamics, the coastal lakes Lago Preola and Gorgo Basso, located in southwestern Sicily, were investigated through several stratigraphic analyses of ostracodes, including multivariate analyses of assemblages, transfer functions of salinity, and biochemical analyses of valves (Sr/Ca, δ18O and δ13C). During the early Holocene, the Gorgo Basso and Lago Preola ostracode records are similar. After an initial period of moderate salinity (1690–6100 mg/l from ca. 10,000–8190 cal yr BP), syndepositional or diagenetic dissolution of ostracode valves suggests that salinity declined to Greek civilization took root in Sicily (2600 cal yr BP), and it completely dominates the record during Roman occupation (roughly 2100 to 1700 cal yr BP). These freshwater conditions at Gorgo Basso suggest high effective moisture when evergreen olive-oak forests collapsed in response to increased Greco-Roman land use and fire. Ostracode valve geochemistry (Sr/Ca, δ18O) suggests significant changes in early vs. late Holocene hydrochemistry, either as changes in salinity or in the seasonality of precipitation. Harmonizing the autecological and geochemical data from Gorgo Basso suggests the latter was more likely, with relatively more late Holocene precipitation falling during the spring, summer, and fall, than winter compared to the early Holocene. Our ostracode-inferred paleosalinity data indicate that moisture availability did not decline during the late Holocene in the central Mediterranean region. Instead, moisture availability was lowest during the early Holocene, and most abundant during the late Holocene.

  12. Key Lake mine water spill: further clean-up not required

    International Nuclear Information System (INIS)

    Potvin, R.

    1984-02-01

    The Atomic Energy Control Board (AECB) has concluded that no additional remedial measures are warranted with regard to the mine water spill which occurred in early January at the Key Lake Mining Corporation facility in northern Saskatchewan, and has advised the company to reconsider its proposal for clean-up of the adjoining Gerald Lake basin. On January 5, an estimated 87 million litres of mine water was accidentally released to the environment when a water storage reservoir at the mine site overflowed. The spilled water flowed into the adjoining Gerald Lake catchment area where it has remained adequately contained

  13. Formation and spreading of Arabian Sea high-salinity water mass

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Prasad, T.G.

    The formation and seasonal spreading of the Arabian Sea High-Salinity Water (ASHSW) mass were studied based on the monthly mean climatology of temperature and salinity in the Arabian Sea, north of the equator and west of 80 degrees E, on a 2 degrees...

  14. Water Balance of the Eğirdir Lake and the Influence of Budget Components, Isparta,Turkey

    Directory of Open Access Journals (Sweden)

    Ayşen DAVRAZ

    2014-09-01

    Full Text Available Water budget of lakes must be determined regarding to their sustainable usage as for all water resources. One of the major problems in the management of lakes is the estimation of water budget components. The lack of regularly measured data is the biggest problem in calculation of hydrological balance of a lake. A lake water budget is computed by measuring or estimating all of the lake’s water gains and losses and measuring the corresponding changes in the lake volume over the same time period. Eğirdir Lake is one of the most important freshwater lakes in Turkey and is the most important surface water resources in the region due to different usages. Recharge of the Eğirdir Lake is supplied from especially precipitation, surface and subsurface water inflow. The discharge components of the lake are evaporation and water intake for irrigation, drinking and energy purposes. The difference between recharge and discharge of the lake was calculated as 7.78 hm3 for 1970-2010 period. According to rainfall, evaporation and the lake water level relations, rainfall is dominantly effective on the lake water level such as direct recharge to the lake and indirect recharge with groundwater flow

  15. Physiological changes of pepper accessions in response to salinity and water stress

    Energy Technology Data Exchange (ETDEWEB)

    López-Serrano, L.; Penella, C.; San Bautista, A.; López-Galarza, S.; Calatayud, A.

    2017-07-01

    New sources of water stress and salinity tolerances are needed for crops grown in marginal lands. Pepper is considered one of the most important crops in the world. Many varieties belong to the genus Capsicum spp., and display wide variability in tolerance/sensitivity terms in response to drought and salinity stress. The objective was to screen seven salt/drought-tolerant pepper accessions to breed new cultivars that could overcome abiotic stresses, or be used as new crops in land with water and salinity stress. Fast and effective physiological traits were measured to achieve the objective. The present study showed wide variability of the seven pepper accessions in response to both stresses. Photosynthesis, stomatal conductance and transpiration reduced mainly under salinity due to stomatal and non-stomatal (Na+ accumulation) constraints and, to a lesser extent, in the accessions grown under water stress. A positive relationship between CO2 fixation and fresh weight generation was observed for both stresses. Decreases in Ys and YW and increased proline were observed only when accessions were grown under salinity. However, these factors were not enough to alleviate salt effects and an inverse relation was noted between plant salt tolerance and proline accumulation. Under water stress, A31 was the least affected and A34 showed the best tolerance to salinity in terms of photosynthesis and biomass.

  16. Physiological changes of pepper accessions in response to salinity and water stress

    International Nuclear Information System (INIS)

    López-Serrano, L.; Penella, C.; San Bautista, A.; López-Galarza, S.; Calatayud, A.

    2017-01-01

    New sources of water stress and salinity tolerances are needed for crops grown in marginal lands. Pepper is considered one of the most important crops in the world. Many varieties belong to the genus Capsicum spp., and display wide variability in tolerance/sensitivity terms in response to drought and salinity stress. The objective was to screen seven salt/drought-tolerant pepper accessions to breed new cultivars that could overcome abiotic stresses, or be used as new crops in land with water and salinity stress. Fast and effective physiological traits were measured to achieve the objective. The present study showed wide variability of the seven pepper accessions in response to both stresses. Photosynthesis, stomatal conductance and transpiration reduced mainly under salinity due to stomatal and non-stomatal (Na+ accumulation) constraints and, to a lesser extent, in the accessions grown under water stress. A positive relationship between CO2 fixation and fresh weight generation was observed for both stresses. Decreases in Ys and YW and increased proline were observed only when accessions were grown under salinity. However, these factors were not enough to alleviate salt effects and an inverse relation was noted between plant salt tolerance and proline accumulation. Under water stress, A31 was the least affected and A34 showed the best tolerance to salinity in terms of photosynthesis and biomass.

  17. Surface energy balance of fresh and saline waters : AquaSEBS

    NARCIS (Netherlands)

    Abdelrady, A.R.; Timmermans, J.; Vekerdy, Z.; Salama, M.S.

    2016-01-01

    Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System) model

  18. Origin of salinity in produced waters from the Palm Valley gas field, Northern Territory, Australia

    International Nuclear Information System (INIS)

    Andrew, Anita S.; Whitford, David J.; Berry, Martin D.; Barclay, Stuart A.; Giblin, Angela M.

    2005-01-01

    The chemical composition and evolution of produced waters associated with gas production in the Palm Valley gas field, Northern Territory, has important implications for issues such as gas reserve calculations, reservoir management and saline water disposal. The occurrence of saline formation water in the Palm Valley field has been the subject of considerable debate. There were no occurrences of mobile water early in the development of the field and only after gas production had reduced the reservoir pressure, was saline formation water produced. Initially this was in small quantities but has increased dramatically with time, particularly after the initiation of compression in November 1996. The produced waters range from highly saline (up to 300,000 mg/L TDS), with unusual enrichments in Ca, Ba and Sr, to low salinity fluids that may represent condensate waters. The Sr isotopic compositions of the waters ( 87 Sr/ 86 Sr = 0.7041-0.7172) are also variable but do not correlate closely with major and trace element abundances. Although the extreme salinity suggests possible involvement of evaporite deposits lower in the stratigraphic sequence, the Sr isotopic composition of the high salinity waters suggests a more complex evolutionary history. The formation waters are chemically and isotopically heterogeneous and are not well mixed. The high salinity brines have Sr isotopic compositions and other geochemical characteristics more consistent with long-term residence within the reservoir rocks than with present-day derivation from a more distal pool of brines associated with evaporites. If the high salinity brines entered the reservoir during the Devonian uplift and were displaced by the reservoir gas into a stagnant pool, which has remained near the reservoir for the last 300-400 Ma, then the size of the brine pool is limited. At a minimum, it might be equivalent to the volume displaced by the reservoired gas

  19. Evaluating lake stratification and temporal trends by using near-continuous water-quality data from automated profiling systems for water years 2005-09, Lake Mead, Arizona and Nevada

    Science.gov (United States)

    Veley, Ronald J.; Moran, Michael J.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Southern Nevada Water Authority, collected near-continuous depth-dependent water-quality data at Lake Mead, Arizona and Nevada, as part of a multi-agency monitoring network maintained to provide resource managers with basic data and to gain a better understanding of the hydrodynamics of the lake. Water-quality data-collection stations on Lake Mead were located in shallow water (less than 20 meters) at Las Vegas Bay (Site 3) and Overton Arm, and in deep water (greater than 20 meters) near Sentinel Island and at Virgin and Temple Basins. At each station, near-continual depth-dependent water-quality data were collected from October 2004 through September 2009. The data were collected by using automatic profiling systems equipped with multiparameter water-quality sondes. The sondes had sensors for temperature, specific conductance, dissolved oxygen, pH, turbidity, and depth. Data were collected every 6 hours at 2-meter depth intervals (for shallow-water stations) or 5-meter depth intervals (for deep-water stations) beginning at 1 meter below water surface. Data were analyzed to determine water-quality conditions related to stratification of the lake and temporal trends in water-quality parameters. Three water-quality parameters were the main focus of these analyses: temperature, specific conductance, and dissolved oxygen. Statistical temporal-trend analyses were performed for a single depth at shallow-water stations [Las Vegas Bay (Site 3) and Overton Arm] and for thermally-stratified lake layers at deep-water stations (Sentinel Island and Virgin Basin). The limited period of data collection at the Temple Basin station prevented the application of statistical trend analysis. During the summer months, thermal stratification was not observed at shallow-water stations, nor were major maxima or minima observed for specific-conductance or dissolved-oxygen profiles. A clearly-defined thermocline

  20. Groundwater salinity in coastal aquifer of Karachi, Pakistan

    International Nuclear Information System (INIS)

    Mashiatullah, A.; Qureshi, R.M.; Ahmad, E.; Tasneem, M.A.; Sajjad, M.I.; Khan, H.A.

    2002-01-01

    Potable groundwater salinity has become a problem of great concern in the Karachi Metropolis, which is not only the most populous and biggest industrial base but also the largest coastal dwelling of Pakistan. Stable isotope techniques [O/sup 18/ content of Oxygen in the water molecular and C/sup 13/ content of the Total Dissolved Inorganic Carbon (TDIC)] have been used, in conjunction with physiochemical tools (temperature, dissolved oxygen, pH, redox electrical conductivity, salinity), to examine the quality of potable water and the source of salinity. Surface water samples (12 No.) were collected from polluted streams, namely: Layeri River, Malir River; Hub River/Hub Lake and the Indus River. Shallow groundwater samples (7 No. ) were collected from operating dug wells. Relatively deep groundwater samples (12 No.) were collected from operating dug wells, relatively deep groundwater samples (12 No.) were collected from pumping wells/tube-wells. Physicochemical analysis of water samples was completed in the field. In the laboratory, water samples were analyzed for O/sup 18/ content of oxygen in the water molecule and C/sup 13/ content of the TDIC, using specific gas extraction systems and a modified GD-150 gas source mass spectrometer. It is concluded from this preliminary investigation that the potable aquifer system in coastal Karachi hosts a mixture of precipitation (rainwater only) from hinterlands, trapped seawater in relatively deep aquifer system, as well as intruded seawater under natural infiltration conditions and/or induced recharge conditions (in shallow aquifers). (author)

  1. Development of Turbulent Diffusion Transfer Algorithms to Estimate Lake Tahoe Water Budget

    Science.gov (United States)

    Sahoo, G. B.; Schladow, S. G.; Reuter, J. E.

    2012-12-01

    The evaporative loss is a dominant component in the Lake Tahoe hydrologic budget because watershed area (813km2) is very small compared to the lake surface area (501 km2). The 5.5 m high dam built at the lake's only outlet, the Truckee River at Tahoe City can increase the lake's capacity by approximately 0.9185 km3. The lake serves as a flood protection for downstream areas and source of water supply for downstream cities, irrigation, hydropower, and instream environmental requirements. When the lake water level falls below the natural rim, cessation of flows from the lake cause problems for water supply, irrigation, and fishing. Therefore, it is important to develop algorithms to correctly estimate the lake hydrologic budget. We developed a turbulent diffusion transfer model and coupled to the dynamic lake model (DLM-WQ). We generated the stream flows and pollutants loadings of the streams using the US Environmental Protection Agency (USEPA) supported watershed model, Loading Simulation Program in C++ (LSPC). The bulk transfer coefficients were calibrated using correlation coefficient (R2) as the objective function. Sensitivity analysis was conducted for the meteorological inputs and model parameters. The DLM-WQ estimated lake water level and water temperatures were in agreement to those of measured records with R2 equal to 0.96 and 0.99, respectively for the period 1994 to 2008. The estimated average evaporation from the lake, stream inflow, precipitation over the lake, groundwater fluxes, and outflow from the lake during 1994 to 2008 were found to be 32.0%, 25.0%, 19.0%, 0.3%, and 11.7%, respectively.

  2. Effects of recharge, Upper Floridan aquifer heads, and time scale on simulated ground-water exchange with Lake Starr, a seepage lake in central Florida

    Science.gov (United States)

    Swancar, Amy; Lee, Terrie Mackin

    2003-01-01

    Lake Starr and other lakes in the mantled karst terrain of Florida's Central Lake District are surrounded by a conductive surficial aquifer system that receives highly variable recharge from rainfall. In addition, downward leakage from these lakes varies as heads in the underlying Upper Floridan aquifer change seasonally and with pumpage. A saturated three-dimensional finite-difference ground-water flow model was used to simulate the effects of recharge, Upper Floridan aquifer heads, and model time scale on ground-water exchange with Lake Starr. The lake was simulated as an active part of the model using high hydraulic conductivity cells. Simulated ground-water flow was compared to net ground-water flow estimated from a rigorously derived water budget for the 2-year period August 1996-July 1998. Calibrating saturated ground-water flow models with monthly stress periods to a monthly lake water budget will result in underpredicting gross inflow to, and leakage from, ridge lakes in Florida. Underprediction of ground-water inflow occurs because recharge stresses and ground-water flow responses during rainy periods are averaged over too long a time period using monthly stress periods. When inflow is underestimated during calibration, leakage also is underestimated because inflow and leakage are correlated if lake stage is maintained over the long term. Underpredicted leakage reduces the implied effect of ground-water withdrawals from the Upper Floridan aquifer on the lake. Calibrating the weekly simulation required accounting for transient responses in the water table near the lake that generated the greater range of net ground-water flow values seen in the weekly water budget. Calibrating to the weekly lake water budget also required increasing the value of annual recharge in the nearshore region well above the initial estimate of 35 percent of the rainfall, and increasing the hydraulic conductivity of the deposits around and beneath the lake. To simulate the total

  3. Intentional introduction of Artemia sinica (Anostraca) in the high-altitude Tibetan lake Dangxiong Co: the new population and consequences for the environment and for humans

    Science.gov (United States)

    Jia, Qinxian; Anufriieva, Elena; Liu, Xifang; Kong, Fanjing; Shadrin, Nickolai

    2015-11-01

    The imbalance between supply and demand of Artemia cysts in China and around the world is increasing now. Salt lakes in Tibet may contribute to the solution of the problem. In Northern Tibet there are 26 saline lakes whose salinity and temperature may support Artemia survival at an altitude of 4 000-5 100 m. We found Artemia in 15 of these lakes. The saline lakes with Artemia populations mainly belong to the shallow basin lakes, and the majority of these lakes are small in area. The total area of lakes without Artemia is more than 1 000 km2. Lake Dangxiong Co (Co means lake in Tibet) was chosen for the intentional introduction of Artemia sinica. In 2004, 850 g of A. sinica cysts, originating from Qinghai, were introduced in the lake. Surveys in 2006-2014 showed that the average abundance of Artemia adults in the lake gradually increased from 20 ind./m3 in 2006 to 1950 ind./m3 in 2013. We assume that two subpopulations of A. sinica, separated by depth, may exist in the lake. The new Artemia population caused an increase in the number of species of phytoplankton and heterotrophic protozoa with a decrease of their total abundance. Water transparency also increased. Dominance in phytoplankton passed from cyanobacteria to diatoms. Changes occurred not only in the lake ecosystem; the number of water birds using the lakes also dramatically increased. Preliminary calculations showed that is it possible to harvest at least about 150 t cysts per year from the lake as well as 3.2 thousand tons of frozen or 350 t of dried biomass of adult Artemia.

  4. Enhanced remediation of an oily sludge with saline water ...

    African Journals Online (AJOL)

    Enhanced remediation of an oily sludge with saline water. ... the remediation of an oily sludge, which was part of the waste stream from the improvement ... m3 of fresh water respectively while 'treatment' reactors C and D received ...

  5. Hydroecological condition and potential for aquaculture in lakes of the arid region of Khorezm, Uzbekistan

    Science.gov (United States)

    Crootof, Africa; Mullabaev, Nodirbek; Saito, Laurel; Atwell, Lisa; Rosen, Michael R.; Bekchonova, Marhabo; Ginatullina, Elena; Scott, Julian; Chandra, Sudeep; Nishonov, Bakhriddin; Lamers, John P.A.; Fayzieva, Dilorom

    2015-01-01

    With >400 small (resources to provide a local food supply could increase fish consumption while improving the rural economy. Hydroecological (biological and physical) and chemical characteristics (including legacy pesticides ΣDDT and ΣHCH) of four representative drainage lakes in Khorezm from 2006 to 2008 were analyzed for the lakes’ capability to support healthy fish populations. Lake characteristics were categorized as “optimal” (having little or no effect on growth and development), “tolerable” (corresponding to chronic or sub-lethal toxicity) and “lethal” (corresponding to acute toxicity). Results indicate that three lakes are likely well-suited for raising fish species, with water quality meeting World Bank aquaculture guidelines. However, the fourth lake often had salinity concentrations > optimal levels for local fish species. Pesticide concentrations in water of all four lakes were within tolerable aquaculture ranges. Although water ΣDDT concentrations were >optimal limits, results from chemical analysis of fish tissues and semi-permeable membrane devices indicated that study lake ΣDDT concentrations were not accumulating in fish or posing a human health threat. Land and water management to maintain adequate lake water quality are imperative for sustaining fish populations for human consumption.

  6. A Research for Massive Fish Kills in Lake Bafa (Turkey

    Directory of Open Access Journals (Sweden)

    Murat Yabanlı

    2011-06-01

    Full Text Available As there were massive fish kills in Lake Bafa which is a lagoon situated in Southwestern Turkey in October, 2006, water and fish samples were taken from the region. Water samples were analysed physicochemically, toxicologically and microbiologically and fish samples were subjected to toxicological analysis. The analyses of lake water revealed on oxygen value of approximately 5.0 mg/L, salinity 16.2 ‰, nitrogen from ammonia 0.1 mg/L, nitrogen nitrite 0.013 mg/L, and total organic carbon 13 mg/L. Total coliform count was 1100 MPN/100 ml and faecal coliform count was 28 MPN/100 ml. There was no detection of any pesticide residues in fish and water samples. Massive fish kills are thought to be due to the decrease in water quality.

  7. Water ecological carrying capacity of urban lakes in the context of rapid urbanization: A case study of East Lake in Wuhan

    Science.gov (United States)

    Ding, Lei; Chen, Kun-lun; Cheng, Sheng-gao; Wang, Xu

    With the excessive development of social economy, water scarcity and water environment deterioration become a common phenomenon in metropolis. As a crucial component of urban water environment system, urban lake is mainly influenced by social economic system and tourism system. In this paper, a framework for quantitatively evaluating development sustainability of urban lake was established by a multi-objective model that represented water ecological carrying capacity (WECC). And nine key indicators including population, irrigation area, tourist quantity, the average number of hotel daily reception, TP, TN, CODMn, BOD5 were chosen from urban social-economy system and natural resilience aspects, with their index weight was determined by using the Structure Entropy Weight method. Then, we took Wuhan East Lake, the largest urban lake in China as a case study, and selected five time sections including 2002, 2004, 2007, 2009 and 2012 to synthetically evaluate and comparatively analyze the dynamic change of WECC. The results showed that: firstly, the water ecological carrying capacity values of the East Lake in five time sections were 1.17, 1.07, 1.64, 1.53 and 2.01 respectively, which all exceeded 1 and increased fluctuation. The rapid growth of population and GDP lead to sharply increasing demand for water quantity. However, a large amount of the domestic sewage and industrial waste led by economic development increases pressure on ecological environment of urban lakes. Secondly, the carrying capacity of the East Lake for tourist activities was still low. The value in 2012 was only 0.22, keeping at a slowly increasing phase, which indicates that the East Lake has large opportunity and space for developing the water resource carrying capacity and could make further efforts to attract tourists. Moreover, the WECC of the East Lake was mainly affected by rapid social and economic development and water environment damage caused by organic pollutants. From the view of urban

  8. A systematic examination of the relationships between CDOM and DOC in inland waters in China

    Science.gov (United States)

    Song, Kaishan; Zhao, Ying; Wen, Zhidan; Fang, Chong; Shang, Yingxin

    2017-10-01

    Chromophoric dissolved organic matter (CDOM) plays a vital role in the biogeochemical cycle in aquatic ecosystems. The relationship between CDOM and dissolved organic carbon (DOC) has been investigated, and this significant relationship lays the foundation for the estimation of DOC using remotely sensed imagery data. The current study examined samples from freshwater lakes, saline lakes, rivers and streams, urban water bodies, and ice-covered lakes in China for tracking the variation of the relationships between DOC and CDOM. The regression model slopes for DOC vs. aCDOM (275) ranged from extremely low 0.33 (highly saline lakes) to 1.03 (urban waters) and 3.01 (river waters). The low values were observed in saline lake waters and waters from semi-arid or arid regions, where strong photobleaching is expected due to less cloud cover, longer water residence time, and daylight hours. In contrast, high values were found in waters developed in wetlands or forest in Northeast China, where more organic matter was transported from catchment to waters. The study also demonstrated that closer relationships between CDOM and DOC were revealed when aCDOM (275) were sorted by the ratio of aCDOM(250)/aCDOM (365), which is a measure for the CDOM absorption with respect to its composition, and the determination of coefficient of the regression models ranged from 0.79 to 0.98 for different groups of waters. Our results indicate the relationships between CDOM and DOC are variable for different inland waters; thus, models for DOC estimation through linking with CDOM absorption need to be tailored according to water types.

  9. Candona alchichica (Podocopida: Candonidae, a new ostracod species from saline, tropical Lake Alchichica, Mexico

    Directory of Open Access Journals (Sweden)

    Sergio Cohuo

    2016-09-01

    Full Text Available In North America, most species of the Candonidae family belong to the genus Candona. These species are frequently found in freshwater ecosystems and in sediment sequences, which makes them valuable tools for paleoenvironmental reconstructions. Knowledge of Mexican Candona species is limited, however, and scant information exists regarding their taxonomy and ecology. Here we describe Candona alchichica, a new ostracod species we suggest being endemic to Lake Alchichica, central Mexico. The species belongs to the acuminata group of species, based on the presence of 5+1 setae on the second segment of the mandibular palp. It is closely related to C. patzcuaro, C. tahoensis and C. ohioensis, but differs from those species in that the females have an elongated genital field, wide at the base and narrow at the end. Males have elongated hook-like prehensile palps and a particular arrangement of lobes in the hemipenis, i.e., the a-lobe is inclined with a digitiform basal projection, the b-lobe is distally rounded and the h-lobe is square-shaped and exceeding the length of the b-lobe. Candona alchichica n. sp. and C. patzcuaro display very similar shells in length and morphology, which can cause confusion if identification is carried out in the absence of soft parts, a common situation when dealing with carapace and valve remains in sediment cores. Detailed morphometric analyses, however, revealed a clear difference between the valves of the two taxa. Candona alchichica n. sp. has taller valves (p˂0.05, with concave dorsal margin, and with the anterior margin considerably narrower than posterior margin, all characteristics different from C. patzcuaro. Most important, in spite of their similar shape, the two species exhibit contrasting ecological preferences. Candona alchichica n. sp. inhabits clear, cold, saline, oligotrophic waters, whereas C. patzcuaro dwells in turbid, warm, fresh, eutrophic waters. In addition, we include a revision of the

  10. Geochemical processes controlling water salinization in an irrigated basin in Spain: Identification of natural and anthropogenic influence

    Energy Technology Data Exchange (ETDEWEB)

    Merchán, D., E-mail: d.merchan@igme.es [Geological Survey of Spain — IGME, C/Manuel Lasala 44 9B, 50006 Zaragoza (Spain); Auqué, L.F.; Acero, P.; Gimeno, M.J. [University of Zaragoza — Department of Earth Sciences (Geochemical Modelling Group), C/Pedro Cerbuna 12, 50009 Zaragoza (Spain); Causapé, J. [Geological Survey of Spain — IGME, C/Manuel Lasala 44 9B, 50006 Zaragoza (Spain)

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. - Highlights: • Salinization in Lerma Basin was controlled by the dissolution of soluble salts. • Water salinization and nitrate pollution were found to be independent processes. • High NO{sub 3}, fresh groundwater evolved to lower NO{sub 3}, higher salinity surface water. • Inverse and direct geochemical modeling confirmed the hypotheses. • Salinization was a natural ongoing process

  11. LakeSST: Lake Skin Surface Temperature in French inland water bodies for 1999-2016 from Landsat archives

    Science.gov (United States)

    Prats, Jordi; Reynaud, Nathalie; Rebière, Delphine; Peroux, Tiphaine; Tormos, Thierry; Danis, Pierre-Alain

    2018-04-01

    The spatial and temporal coverage of the Landsat satellite imagery make it an ideal resource for the monitoring of water temperature over large territories at a moderate spatial and temporal scale at a low cost. We used Landsat 5 and Landsat 7 archive images to create the Lake Skin Surface Temperature (LakeSST) data set, which contains skin water surface temperature data for 442 French water bodies (natural lakes, reservoirs, ponds, gravel pit lakes and quarry lakes) for the period 1999-2016. We assessed the quality of the satellite temperature measurements by comparing them to in situ measurements and taking into account the cool skin and warm layer effects. To estimate these effects and to investigate the theoretical differences between the freshwater and seawater cases, we adapted the COARE 3.0 algorithm to the freshwater environment. We also estimated the warm layer effect using in situ data. At the reservoir of Bimont, the estimated cool skin effect was about -0.3 and -0.6 °C most of time, while the warm layer effect at 0.55 m was negligible on average, but could occasionally attain several degrees, and a cool layer was often observed in the night. The overall RMSE of the satellite-derived temperature measurements was about 1.2 °C, similar to other applications of satellite images to estimate freshwater surface temperatures. The LakeSST data can be used for studies on the temporal evolution of lake water temperature and for geographical studies of temperature patterns. The LakeSST data are available at https://doi.org/10.5281/zenodo.1193745" target="_blank">https://doi.org/10.5281/zenodo.1193745.

  12. The importance of lake-specific characteristics for water quality across the continental United States.

    Science.gov (United States)

    Read, Emily K; Patil, Vijay P; Oliver, Samantha K; Hetherington, Amy L; Brentrup, Jennifer A; Zwart, Jacob A; Winters, Kirsten M; Corman, Jessica R; Nodine, Emily R; Woolway, R Iestyn; Dugan, Hilary A; Jaimes, Aline; Santoso, Arianto B; Hong, Grace S; Winslow, Luke A; Hanson, Paul C; Weathers, Kathleen C

    2015-06-01

    Lake water quality is affected by local and regional drivers, including lake physical characteristics, hydrology, landscape position, land cover, land use, geology, and climate. Here, we demonstrate the utility of hypothesis testing within the landscape limnology framework using a random forest algorithm on a national-scale, spatially explicit data set, the United States Environmental Protection Agency's 2007 National Lakes Assessment. For 1026 lakes, we tested the relative importance of water quality drivers across spatial scales, the importance of hydrologic connectivity in mediating water quality drivers, and how the importance of both spatial scale and connectivity differ across response variables for five important in-lake water quality metrics (total phosphorus, total nitrogen, dissolved organic carbon, turbidity, and conductivity). By modeling the effect of water quality predictors at different spatial scales, we found that lake-specific characteristics (e.g., depth, sediment area-to-volume ratio) were important for explaining water quality (54-60% variance explained), and that regionalization schemes were much less effective than lake specific metrics (28-39% variance explained). Basin-scale land use and land cover explained between 45-62% of variance, and forest cover and agricultural land uses were among the most important basin-scale predictors. Water quality drivers did not operate independently; in some cases, hydrologic connectivity (the presence of upstream surface water features) mediated the effect of regional-scale drivers. For example, for water quality in lakes with upstream lakes, regional classification schemes were much less effective predictors than lake-specific variables, in contrast to lakes with no upstream lakes or with no surface inflows. At the scale of the continental United States, conductivity was explained by drivers operating at larger spatial scales than for other water quality responses. The current regulatory practice of using

  13. Recent changes in the deep-water fish populations of Lake Michigan

    Science.gov (United States)

    Moffett, James W.

    1957-01-01

    The deep-water fish fauna of Lake Michigan consisted of lake trout (Salvelinus namaycush), burbot (Lota lota maculosa), seven species of chubs or deep-water ciscoes (Leucichthys spp.), and the deep-water sculpin (Myoxocephalus quadricornis). Other species occupied the deep-water zone but were not typically part of the fauna.

  14. The Socio-hydrology of Bangalore's Lake System and implications for Urban Water Security

    Science.gov (United States)

    Srinivasan, V.; Roy, S.

    2017-12-01

    Bengaluru city has experienced unprecedented growth in recent decades. If the city is to sustain growth and claim its position as a "global" high-tech city, it must be able to secure sufficient water supply and also create a healthy livable environment. With the city's many lakes vanishing due to rapid urbanisation, depletion of groundwater as a result of overuse in the peri-urban areas, and lack of proper underground drainage system and sewage treatment plants, Bangalore is now grappling with issues of imminent water crisis, inequitable access to water supply, and public health hazards. In this context, the restoration of Bangalore's lakes has been promoted as a panacea for its flooding, water stress, and wastewater problems. It has been argued that lakes can store storm water and recycled wastewater and avoid the need for potentially destructive, expensive schemes that may destroy biodiversity rich aquatic ecosystems and forests. Bangalore's lakes are linked by the drainage channels to form a cascade; overflow from each lake flows to the next lake downstream. Yet, most efforts have tended to view the lakes in isolation. This study of the hydrology of Bangalore's lake system in its entirety simulates the lake system as a whole. The study explores approaches to management and theor impact on urban water security.

  15. 75 FR 45579 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Supplemental Notice...

    Science.gov (United States)

    2010-08-03

    ... Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Supplemental Notice of Data...), proposing numeric nutrient water quality criteria to protect aquatic life in lakes and flowing waters within... will consider the comments received before finalizing the proposed rule, ``Water Quality Standards for...

  16. Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2006

    Science.gov (United States)

    Lindenberg, Mary K.; Hoilman, Gene; Wood, Tamara M.

    2008-01-01

    The U.S. Geological Survey Upper Klamath Lake water quality monitoring program gathered information from multiparameter continuous water quality monitors, physical water samples, dissolved oxygen production and consumption experiments, and meteorological stations during the June-October 2006 field season. The 2006 study area included Agency Lake and all of Upper Klamath Lake. Seasonal patterns in water quality were similar to those observed in 2005, the first year of the monitoring program, and were closely related to bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae (AFA) in the two lakes. High dissolved oxygen and pH conditions in both lakes before the bloom declined in July, which coincided with seasonal high temperatures and resulted in seasonal lows in dissolved oxygen and decreased pH. Dissolved oxygen and pH in Upper Klamath and Agency Lakes increased again after the bloom recovered. Seasonal low dissolved oxygen and decreased pH coincided with seasonal highs in ammonia and orthophosphate concentrations. Seasonal maximum daily average temperatures were higher and minimum dissolved oxygen concentrations were lower in 2006 than in 2005. Conditions potentially harmful to fish were influenced by seasonal patterns in bloom dynamics and bathymetry. Potentially harmful low dissolved oxygen and high un-ionized ammonia concentrations occurred mostly at the deepest sites in the Upper Klamath Lake during late July, coincident with a bloom decline. Potentially harmful pH conditions occurred mostly at sites outside the deepest parts of the lake in July and September, coincident with a heavy bloom. Instances of possible gas bubble formation, inferred from dissolved oxygen data, were estimated to occur frequently in shallow areas of Upper Klamath and Agency Lakes simultaneously with potentially harmful pH conditions. Comparison of the data from monitors in nearshore areas and monitors near the surface of the water column in the open waters of

  17. Determining the water cut and water salinity in an oil-water flowstream by measuring the sulfur content of the produced oil

    International Nuclear Information System (INIS)

    Smith, H.D.; Arnold, D.M.

    1980-01-01

    A technique for detecting water cut and water salinity in an oil/water flowstream in petroleum refining and producing operations is described. The fluid is bombarded with fast neutrons which are slowed down and then captured producing gamma spectra characteristic of the fluid material. Analysis of the spectra indicates the relative presence of the elements sulfur, hydrogen and chlorine and from the sulfur measurement, the oil cut (fractional oil content) of the fluid is determined, enabling the water cut to be found. From the water cut, water salinity can also be determined. (U.K.)

  18. Water Balance and Level Change of Lake Babati, Tanzania: Sensitivity to Hydroclimatic Forcings

    Directory of Open Access Journals (Sweden)

    René P. Mbanguka

    2016-12-01

    Full Text Available We develop and present a novel integrated water balance model that accounts for lake water—groundwater interactions, and apply it to the semi-closed freshwater Lake Babati system, Northern Tanzania, East Africa. The model was calibrated and used to evaluate the lake level sensitivity to changes in key hydro-climatic variables such as temperature, precipitation, humidity and cloudiness. The lake response to the Coupled Model Intercomparison Project, Phase 5 (CMIP5 output on possible future climate outcomes was evaluated, an essential basis in understanding future water security and flooding risk in the region. Results show high lake level sensitivity to cloudiness. Increased focus on cloud fraction measurement and interpretation could likely improve projections of lake levels and surface water availability. Modelled divergent results on the future (21st century development of Lake Babati can be explained by the precipitation output variability of CMIP5 models being comparable to the precipitation change needed to drive the water balance model from lake dry-out to overflow; this condition is likely shared with many other East African lake systems. The developed methodology could be useful in investigations on change-driving processes in complex climate—drainage basin—lake systems, which are needed to support sustainable water resource planning in data scarce tropical Africa.

  19. Anatomical adaptations of cynodon dactylon (l.) pers., from the salt range Pakistan, to salinity stress. I. root and stem anatomy

    International Nuclear Information System (INIS)

    Hameed, M.; Ashraf, M.; Naz, N.; Al-qurainy, F.

    2010-01-01

    A naturally adapted salt tolerant population of Cynodon dactylon (L.) Pers., from highly saline soils of Uchhali Lake, the Salt Range, Pakistan was evaluated for root and stem anatomical modifications. A population from the normal (non-saline) soils of the Faisalabad region was also collected for comparison. Both populations were subjected to salt stress hydroponically. The salt treatments used were: control (0 mM salt), 50, 100, 150 and 200 mM NaCl in 0.5 strength Hoagland's nutrient solution. The Salt Range population showed specific root and stem anatomical adaptations for its better survival under harsh saline environments. Increased exodermis and sclerenchyma, endodermis, cortex and pith parenchyma in roots were critical for checking water loss and enhancing water storage capability. In stem, increased stem area (succulence), increased epidermis and sclerenchyma thicknesses (preventing water loss), increased cortex thickness (increasing water storage), and increased number and area of vascular tissue (increased water conduction) seemed to be crucial for its better survival under harsh saline environments. (author)

  20. Case study on combined CO₂ sequestration and low-salinity water production potential in a shallow saline aquifer in Qatar.

    Science.gov (United States)

    Ahmed, Tausif Khizar; Nasrabadi, Hadi

    2012-10-30

    CO₂ is one of the byproducts of natural gas production in Qatar. The high rate of natural gas production from Qatar's North Field (world's largest non-associated gas field) has led to the production of significant amounts of CO₂. The release of CO₂ into the atmosphere may be harmful from the perspective of global warming. In this work, we study the CO₂ sequestration potential in Qatar's Aruma aquifer. The Aruma aquifer is a saline aquifer in the southwest of Qatar. It occupies an area of approximately 1985 km₂ on land (16% of Qatar's total area). We have developed a compositional model for CO₂ sequestration in the Aruma aquifer on the basis of available log and flow test data. We suggest water production at some distance from the CO₂ injection wells as a possible way to control the pore pressure. This method increases the potential for safe sequestration of CO₂ in the aquifer without losing integrity of the caprock and without any CO₂ leakage. The water produced from this aquifer is considerably less saline than seawater and could be a good water source for the desalination process, which is currently the main source of water in Qatar. The outcome of the desalination process is water with higher salinity than the seawater that is currently discharged into the sea. This discharge can have negative long-term environmental effects. The water produced from the Aruma aquifer is considerably less saline than seawater and can be a partial solution to this problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Saline water in southeastern New Mexico

    Science.gov (United States)

    Hiss, W.L.; Peterson, J.B.; Ramsey, T.R.

    1969-01-01

    Saline waters from formations of several geologic ages are being studied in a seven-county area in southeastern New Mexico and western Texas, where more than 30,000 oil and gas tests have been drilled in the past 40 years. This area of 7,500 sq. miles, which is stratigraphically complex, includes the northern and eastern margins of the Delaware Basin between the Guadalupe and Glass Mountains. Chloride-ion concentrations in water produced from rocks of various ages and depths have been mapped in Lea County, New Mexico, using machine map-plotting techniques and trend analyses. Anomalously low chloride concentrations (1,000-3,000 mg/l) were found along the western margin of the Central Basin platform in the San Andres and Capitan Limestone Formations of Permian age. These low chloride-ion concentrations may be due to preferential circulation of ground water through the more porous and permeable rocks. Data being used in the study were obtained principally from oil companies and from related service companies. The P.B.W.D.S. (Permian Basin Well Data System) scout-record magnetic-tape file was used as a framework in all computer operations. Shallow or non-oil-field water analyses acquired from state, municipal, or federal agencies were added to these data utilizing P.B.W.D.S.-compatible reference numbers and decimal latitude-longitude coordinates. Approximately 20,000 water analyses collected from over 65 sources were coded, recorded on punch cards and stored on magnetic tape for computer operations. Extensive manual and computer error checks for duplication and accuracy were made to eliminate data errors resulting from poorly located or identified samples; non-representative or contaminated samples; mistakes in coding, reproducing or key-punching; laboratory errors; and inconsistent reporting. The original 20,000 analyses considered were reduced to 6,000 representative analyses which are being used in the saline water studies. ?? 1969.

  2. Chemical Evolution of Groundwater Near a Sinkhole Lake, Northern Florida: 1. Flow Patterns, Age of Groundwater, and Influence of Lake Water Leakage

    Science.gov (United States)

    Katz, Brian G.; Lee, Terrie M.; Plummer, L. Niel; Busenberg, Eurybiades

    1995-06-01

    Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11-67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.

  3. Water clarity of the Upper Great Lakes: tracking changes between 1998-2012

    Science.gov (United States)

    Yousef, F.; Shuchman, R. A.; Sayers, M.; Fahnenstiel, G.; Henareh Khalyani, A.

    2016-12-01

    Water clarity trends in three upper Great Lakes, Lakes Superior, Michigan, and Huron, were assessed via satellite imagery from 1998 to 2012. Water attenuation coefficients (Kd490) from SeaWiFS and Aqua MODIS satellites compared favorably with in situ measurements. Significant temporal and spatial trends and differences in Kd490 were noted within all three of the lakes. Lake-wide average Kd490 for Lake Superior did not exhibited any changes between 1998 and 2012. Annual Kd490 values for Lake Huron, however, showed a significant negative trend during the study period using both SeaWiFS and MODIS datasets. Similarly, annual Kd490 values of Lake Michigan declined between 1998 and 2010. Additionally, Kd490 trend for depths >90m in northern Lake Michigan reversed (increased) after 2007. Photic depth increased significantly in both Lake Michigan (≃5m), and Lake Huron (≃10m) when comparing annual Kd490 for pre- (1998-2001) and post-mussel (2006-2010). At seasonal level, significant decreases in Kd490 in lakes Michigan and Huron were mainly noted for the spring/fall/winter mixing periods. After current changes in water clarity, lake-wide photic depths in lakes Michigan and Huron superseded Lake Superior; thus, making Lake Superior no longer the clearest Great Lake. Combination of several factors (filtering activities of quagga mussels [Dreissena bugensis rostriformis], phosphorus abatement, climate change, etc.) are likely responsible for these large changes.

  4. Physical and Chemical Characteristics of Lake Edku Water, Egypt

    Directory of Open Access Journals (Sweden)

    M.A. OKBAH

    2002-12-01

    Full Text Available The objective of this work is to evaluate the quality of Lake Edku water. Regional and seasonal variations of some physico-chemical parameters (nutrient salts, total nitrogen, total phosphorous and silicate, in addition to pH, total alkalinity, chlorosity, dissolved oxygen, biological oxygen demand and oxidizable organic matter that were determined during the period from January to December 2000. Important variations have occurred in the investigated area as a result of human activity and the discharge of wastewater to the lake. The relatively low pH values reflect the decreased productivity of the Lake as a result of the polluted water discharged into the lake. Total alkalinity varied between 2.25 ± 0.35 to 8.38 ± 0.9 meq/l. In comparison with previous decades chlorosity content (586-1562 mg/l showed the general decreasing trend. Dissolved oxygen varied (2.37 ± 0.72 - 4.47 ± 0.94 mg/l. The ratios of BOD/ OOM values indicate that the lake water has a biodegradable nature. There was a noticeable variation in ammonia levels; a lower ammonia content was recorded in summer and spring. Nitrite and nitrate concentrations in Lake Edku water showed values ranging from 3.7±1.4 to 7.8±1.9 ΜM and from 15.2±2.9 to 45.9±11.8 ΜM, respectively. The total nitrogen of the lake exhibited higher levels (53.1±12.2 – 164.2±30.7 ΜM. The ratio of NH4/TIN (0.09-0.45 seems to be highly representative of the microbial nitrification rate as well as of the varying agricultural inflows. It is interesting to note that increasing values of reactive phosphate (11.6±1.8 – 14.7±2.5 ΜM were determined in autumn and winter respectively. The higher concentrations of reactive silicate were directly proportional to drainage water discharged into the Lake. It is clear from the mean ratio of N/P (2.4-8.8 nitrogen is the limiting factor. The lower values of N/P ratio could be related to an allochthonous condition.

  5. Effect of water salinity on wheat inoculated with N fixing bacteria using 15N tracer technique

    International Nuclear Information System (INIS)

    Al-Sayed, M. A.; Soliman, S. M.; Galal, Y. G. M.; El-Hadidi, E. M.

    2012-12-01

    A pot experiment was carried out under greenhouse controlled conditions to investigate the effect of water salinity and bacterial inoculation on growth parameters and nutrient uptake by wheat ( Triticum aestivum, L. seda 6). Dry matter yield of shoots was gradually increased with increasing water salinity levels under dual inoculation (Rh + Az). This phenomenon was more pronounced with 6 ds m -1 rather than 3 ds m -1 water salinity level. This holds true with all inoculation treatments. Similar trend was noticed with root dry matter yield. N uptake by shoots was positively affected by water salinity levels under bacterial inoculation especially the dual treatments where N uptake tended to increase with increasing water salinity levels. N uptake by roots was severely affected by increasing water salinity levels as compared to fresh water treatment. N uptake by shoots was enhanced by inoculation under different water salinity levels as compared to the un inoculated treatment. Nitrogen uptake roots was dramatically affected by inoculation. It was only increased by inoculation when plants were irrigated with fresh water. Portions of Ndff were frequently affected by both water salinity levels and microbial inoculation. wheat plant as representative of cereal crops was more dependent on the portion of nitrogen up taken from fertilizer rather than those fixed from the air. Therefore, the plant-bacteria association was not efficient enough. Inoculated treatments compensated considerable amounts of its N demand from air beside those derived from fertilizer, therefore the remained N from fertilizer in soil was higher than those of un inoculated control which is more dependable on Ndff as well as Ndf s. 1 5N recovery by wheat plants was enhanced by bacterial inoculation as well as water salinity levels did. (Author)

  6. Hydrochemical measures and salinity studies in Inhanhuns' waters, Ceara State, Brazil

    International Nuclear Information System (INIS)

    Lima, Carlos Henrique; Santiago, Marlucia Freitas; Mendes Filho, Josue; Frischkorn, Horst

    1996-08-01

    The Inhamuns region is one of the most arid in Ceara Waters exhibit very high salinity. Here we evaluate measurements of chemical parameters (electrical conductivity, EC, and major ions) and δ 18 O for waters from wells, springs and surface reservoirs. Results show that springs, with EC of up to nearly 5000 μS/cm, are fed by pluvial water, exchange through dams can be excluded. Electrical conductivity is well correlated with Na + Mg ++ and Cl - for waters of various origins, whereas Ca ++ correlates reasonably only for wells. We conclude that aerosol deposition is a major source of salt, Enrichment through evaporation constitutes the most important process for surface water salination. Dissolution of chlorite-silicates is the cause for the magnesian character of underground water. (author)

  7. Salinization may attack you from behind: upconing and related long-term downstream salinization in the Amsterdam Water Supply Dunes (Invited)

    Science.gov (United States)

    Olsthoorn, T.

    2010-12-01

    Groundwater from the Amsterdam Water Supply Dunes (GE: 52.35°N 4.55°E) has been used for the drinking water supply of Amsterdam since 1853. During the first half of the 20th century, severe intrusion and upconing occurred, with many of the wells turning brackish or saline. Already in 1903, the hydrologist/director of the Amsterdam Water Supply, Pennink, predicted this, based on his unique sand-box modeling, which he published in 1915 in the form of a large-size hard-bound book in four languages showing detailed black and white photographs of his tests. This book is now on the web: http://www.citg.tudelft.nl/live/pagina.jsp?id=68e12562-a4d2-489a-b82e-deca5dd32c42&lang=en Pennink devoted much of his work on saltwater upconing below wells, which he so feared. He simulated simultaneous flow of fresh and salt water, using milk to represent the saltwater having about the same density. With our current modeling tools, we can simulate his experiments, allowing to better understand his setup and even to verify our code. Pennink took interest in the way these cones form and in the point at which the salt water enters the screen. Surprizing, at least to many, is that this entry point is not necessarily the screen bottom. Measurements of the salinity distribution in salinized wells in the Amsterdam Water Supply Dune area confirmed this thirty years later when salinzation was severely occurring. The curved cone shape under ambient flow conditions provides part of the explanation why a short-term shut down of a well almost immediately diminishes salt concentrations, but salinization downstream of the wells in case with substantial lateral groundwater flow is not affected. Downstream salinization due to extraction was clearly shown in Pennink's experiments. However, the phenomenon seems still largely unknown or ignored. Downstream salinization also affects downstream heads for years after extraction has stopped. The presentation demonstrates and explains these local and more

  8. The community structure and seasonal dynamics of plankton in Bange Lake, northern Tibet, China

    Science.gov (United States)

    Zhao, Wen; Zhao, Yuanyi; Wang, Qiaohan; Zheng, Mianping; Wei, Jie; Wang, Shan

    2016-11-01

    The seasonal variations in biomass, abundance, and species composition of plankton in relation to hydrography were studied in the saline Bange Lake, northern Tibet, China. Sampling was carried out between one to three times per month from May 2001 to July 2002. Salinity ranged from 14 to 146. The air and water temperature exhibited a clear seasonal pattern, and mean annual temperatures were approximately 4.8°C and 7.3°C, respectively. The lowest water temperature occurred in winter from December to March at -2°C and the highest in June and July at 17.7°C. Forty-one phytoplankton taxa, 21 zooplankton, and 5 benthic or facultative zooplankton were identified. The predominant phytoplankton species were Gloeothece linearis, Oscillatoria tenuis, Gloeocapsa punctata, Ctenocladus circinnatus, Dunaliella salina, and Spirulina major. The predominant zooplankton species included Holophrya actra, Brachionus plicatilis, Daphniopsis tibetana, Cletocamptus dertersi, and Arctodiaptomus salinus. The mean annual total phytoplankton density and biomass for the entire lake were 4.52×107 cells/L and 1.60 mg/L, respectively. The annual mean zooplankton abundance was 52, 162, 322, and 57, 144 ind./L, in the three sublakes. The annual mean total zooplankton biomass in Lakes 1-3 was 1.23, 9.98, and 2.13 mg/L, respectively. The annual mean tychoplankton abundances in Bg1, 2, and 3 were 47, 67, and 654 ind./L. The annual mean tychoplankton biomass was 2.36, 0.16, and 2.03 mg/L, respectively. The zooplankton biomass (including tychoplankton) in the lake was 9.11 mg/L. The total number of plankton species in the salt lake was significantly negatively correlated with salinity.

  9. The reproductive biology of an open-water spawning Lake Malawi ...

    African Journals Online (AJOL)

    The reproductive biology of an open-water spawning Lake Malawi cichlid, Copadichromis chrysonotus. Lance W. Smith. Abstract. Copadichromis chrysonotus is a zooplanktivorous cichlid member of the diverse fish community inhabiting Lake Malawi's rocky, littoral habitat. Like most Lake Malawi cichlids, this species' ...

  10. An inductive conductivity meter for monitoring the salinity of dialysis water

    DEFF Research Database (Denmark)

    Diamond, J.M.

    1970-01-01

    An inductive conductivity meter is described, especially adapted as a salinity monitor for dialysis water. Salinity are given. The principal problems of the inductive conductivity meter result from the low conductivity of electrolytes. The weak coupling due to the electrolyte means that stray...

  11. An improved film evaporation correlation for saline water at sub-atmospheric pressures

    KAUST Repository

    Shahzada, Muhammad Wakil; Ng, Kim Choon; Thu, Kyaw; Myat, Aung; Gee, Chun Won

    2011-01-01

    This paper presents an investigation of heat transfer correlation in a falling-film evaporator working with saline water at sub-atmospheric pressures. The experiments are conducted at different salinity levels ranging from 15000 to 90000 ppm, and the pressures were maintained between 0.92 to 2.81 kPa (corresponds to saturation temperatures of 5.9 – 23 0C). The effect of salinity, saturation pressures and chilled water temperatures on the heat transfer coefficient are accounted in the modified film evaporation correlations. The results are fitted to the Han & Fletcher's and Chun & Seban's falling-film correlations which are used in desalination industry. We modify the said correlations by adding salinity and saturation temperature corrections with respective indices to give a better agreement to our measured data.

  12. Water sources accessed by arid zone riparian trees in highly saline environments, Australia.

    Science.gov (United States)

    Costelloe, Justin F; Payne, Emily; Woodrow, Ian E; Irvine, Elizabeth C; Western, Andrew W; Leaney, Fred W

    2008-05-01

    The flow regimes of arid zone rivers are often highly variable, and shallow groundwater in the alluvial aquifers can be very saline, thus constraining the availability and quality of the major water sources available to riparian trees-soil water, shallow groundwater and stream water. We have identified water sources and strategies used by riparian trees in more highly saline and arid conditions than previously studied for riparian trees of arid zone rivers. Our research focused on the riparian species Eucalyptus coolabah, one of the major riparian trees of ephemeral arid zone rivers in Australia. The water sources available to this riparian tree were examined using delta(18)O isotope data from xylem, soil water, groundwater and surface water. Additionally, soil chloride and matric potential data were used to infer zones of water availability for root uptake. Despite the saline conditions, the trees used a mixture of soil water and groundwater sources, but they did not use surface water directly. The study identified three strategies used to cope with typically high groundwater and soil water salinities. Firstly, the trees preferentially grow in zones of most frequent flushing by infiltrating streamflow, such as the bank-tops of channels. Secondly, the trees limit water use by having low transpiration rates. Thirdly, the trees are able to extract water at very low osmotic potentials, with water uptake continuing at chloride concentrations of at least 20,000-30,000 mg L(-1).

  13. Treating cooling pond water for Wabamun Lake level mitigation project in Alberta

    International Nuclear Information System (INIS)

    Anon

    2004-01-01

    Dealing with the challenge of recharging Wabamun Lake by treating nearby cooling pond water, fed by the North Saskatchewan River, and returning it to the lake, is discussed. To deal with the problem, TransAlta Utilities constructed a treatment plant in 1997 next to the 2,029 MW Sundance power plant to mitigate the effect the power plant's ongoing and historical effect on the lake's water level. The objective of the treatment plant is to treat cooling pond water and return it to the lake to raise water levels there, which have been significantly reduced over the last 25 years mostly by power plant intake, but also by lack of rainfall, surface runoff, and natural evaporation. At the Treatment Facility the water to be treated is first chlorinated to kill zooplankton, algae and bacteria, followed by adjusting the pH using sulfuric acid. Alum coagulant is used to destabilize colour, particles and colloids. The next step is feeding the water to the Actiflo clarifiers which use microsand to provide increased surface area for floc attachment, and to act as ballast. Clarified water from the Actiflo system is then fed to to the Dusenflo filters to remove the largest particles of suspended solids, and through a finer sand media to remove the remaining turbidity, colour and bacteria. Thiosulfate is used in the ozonation system to inactivate any remaining bacteria and zooplankton in the filtered water, before discharging it to the lake. The cooling towers, which are part of the system, ensure that the treated water returned to the lake is kept at a constant temperature, varying no more than three degrees C from the lake water temperature. 3 figs

  14. Water-quality and bottom-material characteristics of Cross Lake, Caddo Parish, Louisiana, 1997-99

    Science.gov (United States)

    McGee, Benton D.

    2004-01-01

    Cross Lake is a shallow, monomictic lake that was formed in 1926 by the impoundment of Cross Bayou. The lake is the primary drinking-water supply for the City of Shreveport, Louisiana. In recent years, the lakeshore has become increasinginly urbanized. In addition, the land use of the watershed contributing runoff to Cross Lake has changed. Changes in land use and urbanization could affect the water chemistry and biology of the Lake. Water-quality data were collected at 10 sites on Cross Lake from February 1997 to February 1999. Water-column and bottom-material samples were collected. The water-column samples were collected at least four times per year. These samples included physical and chemical-related properties such as water temperature, dissolved oxygen, pH, and specific conductance; selected major inorganic ions; nutrients; minor elements; organic chemical constituents; and bacteria. Suspended-sediment samples were collected seven times during the sampling period. The bottom-material samples, which were collected once during the sampling period, were analyzed for selected minor elements and inorganic carbon. Aside from the nutrient-enriched condition of Cross Lake, the overall water-quality of Cross Lake is good. No primary Federal or State water-quality criteria were exceeded by any of the water-quality constituents analyzed for this report. Concentrations of major inorganic constituents, except iron and manganese, were low. Water from the lake is a sodium-bicarbonate type and is soft. Minor elements and organic compounds were present in low concentrations, many below detection limits. Nitrogen and phosphorus were the nutrients occurring in the highest concentrations. Nutrients were evenly distributed across the lake with no particular water-quality site indicating consistently higher or lower nutrient concentrations. No water samples analyzed for nitrate exceeded the U.S. Environmental Protection Agency's Maximum Contaminant Level of 10 milligrams per

  15. Environmental Evaluation of Soil Salinity with Various Watering Technologies Assessment.

    Science.gov (United States)

    Seitkaziev, Adeubay; Shilibek, Kenzhegali; Fakhrudenova, Idiya; Salybayev, Satybaldy; Zhaparova, Sayagul; Duisenbayeva, Saule; Bayazitova, Zulfia; Aliya, Maimakova; Seitkazieva, Karlygash; Aubakirov, Hamit

    2018-01-01

      The purpose of this study is to develop mathematical tools for evaluating the level of environmental safety of various watering technologies. A set of indicators, was developed with regard to the natural factors, the nature of the man-induced load, degradation type, and characteristics of the disruption of humification conditions. Thermal and physical characteristics of the soil, the state of its surface, and meteorological factors, including air temperature, relative humidity, precipitation, wind speed, solar radiation, etc. were studied with a view to determining the heat and air exchange in the soil. An environmental evaluation of the methods for saline land development was conducted with regard to the heat and moisture supply. This tool can be used to determine the level of environmental safety of soil salinization during the environmental evaluation of the investigation of soil salinity with various watering technologies.

  16. Simulation of hydrodynamics, water quality, and lake sturgeon habitat volumes in Lake St. Croix, Wisconsin and Minnesota, 2013

    Science.gov (United States)

    Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.; Elliott, Sarah M.; Magdalene, Suzanne

    2018-01-05

    Lake St. Croix is a naturally impounded, riverine lake that makes up the last 40 kilometers of the St. Croix River. Substantial land-use changes during the past 150 years, including increased agriculture and urban development, have reduced Lake St. Croix water-quality and increased nutrient loads delivered to Lake St. Croix. A recent (2012–13) total maximum daily load phosphorus-reduction plan set the goal to reduce total phosphorus loads to Lake St. Croix by 20 percent by 2020 and reduce Lake St. Croix algal bloom frequencies. The U.S. Geological Survey, in cooperation with the National Park Service, developed a two-dimensional, carbon-based, laterally averaged, hydrodynamic and water-quality model, CE–QUAL–W2, that addresses the interaction between nutrient cycling, primary production, and trophic dynamics to predict responses in the distribution of water temperature, oxygen, and chlorophyll a. Distribution is evaluated in the context of habitat for lake sturgeon, including a combination of temperature and dissolved oxygen conditions termed oxy-thermal habitat.The Lake St. Croix CE–QUAL–W2 model successfully reproduced temperature and dissolved oxygen in the lake longitudinally (from upstream to downstream), vertically, and temporally over the seasons. The simulated water temperature profiles closely matched the measured water temperature profiles throughout the year, including the prediction of thermocline transition depths (often within 1 meter), the absolute temperature of the thermocline transitions (often within 1.0 degree Celsius), and profiles without a strong thermocline transition. Simulated dissolved oxygen profiles matched the trajectories of the measured dissolved oxygen concentrations at multiple depths over time, and the simulated concentrations matched the depth and slope of the measured concentrations.Additionally, trends in the measured water-quality data were captured by the model simulation, gaining some potential insights into the

  17. Provision of Desalinated Irrigation Water by the Desalination of Groundwater within a Saline Aquifer

    Directory of Open Access Journals (Sweden)

    David D. J. Antia

    2016-12-01

    Full Text Available Irrigated land accounts for 70% of global water usage and 30% of global agricultural production. Forty percent of this water is derived from groundwater. Approximately 20%–30% of the groundwater sources are saline and 20%–50% of global irrigation water is salinized. Salinization reduces crop yields and the number of crop varieties which can be grown on an arable holding. Structured ZVI (zero valent iron, Fe0 pellets desalinate water by storing the removed ions as halite (NaCl within their porosity. This allows an “Aquifer Treatment Zone” to be created within an aquifer, (penetrated by a number of wells (containing ZVI pellets. This zone is used to supply partially desalinated water directly from a saline aquifer. A modeled reconfigured aquifer producing a continuous flow (e.g., 20 m3/day, 7300 m3/a of partially desalinated irrigation water is used to illustrate the impact of porosity, permeability, aquifer heterogeneity, abstraction rate, Aquifer Treatment Zone size, aquifer thickness, optional reinjection, leakage and flow by-pass on the product water salinity. This desalination approach has no operating costs (other than abstraction costs (and ZVI regeneration and may potentially be able to deliver a continuous flow of partially desalinated water (30%–80% NaCl reduction for $0.05–0.5/m3.

  18. Radioactivity levels in surface water of lakes around Izmir / Turkey

    International Nuclear Information System (INIS)

    Doyurum, S.; Turkozu, D. A.; Aslani, M. A. A.; Aytas, S.; Eral, M.; Kaygun, A. K.

    2006-01-01

    Radioactivity presents in surface continental waters is mainly due to the presence of radioactive elements in the earth's crust, other artificial radionuclides have appeared due to such human activities as nuclear power plants, nuclear weapons testing and manufacture and use of radioactive sources It is well known that natural radionuclides can be effective as tracers for the different processes controlling the distribution of elements among dissolved and particulate phases in aquatic systems. The detection of high radionuclide concentrations was proposed as a public health problem in several areas and consequently studies into the risks of radionuclides were started in the 2000s. Especially, these radioactive substances in groundwater are an unwanted and involuntary risk factor from natural sources, not artificial sources. These radioactive substances include uranium, radon found in uranium series, and other radioactive substances such as radium and gross alpha. Uranium present in rock, soil, and natural materials, and is found in small quantities in air, water, and food that people always contact. In this project, lake water samples were collected from three lakes around Izmir-Turkey. In surface lake water samples, pH, mV and conductivity values were measured and alkaline content was determined titrimetrically. The uranium concentrations in the lake water samples were measured using uranium analyzer. The radioactivity concentrations related to gross radium isotopes, gross-? and gross-? activities in the surface lake water were determined. The correlation among some parameters for water samples and concentrations of uranium, activity concentration of gross radium isotopes, gross alpha and gross beta radioactivity are also discussed

  19. Biogeochemistry of Lakes in Western Papua, Indonesia - First Results of a Pilot Study.

    Science.gov (United States)

    Kallmeyer, J.; Nomosatryo, S.; Henny, C.; Kopalit, H.

    2016-12-01

    Despite years of exploration for mineral and hydrocarbon resources, the lakes of Western Papua have received very little attention from a limnogeologic perspective. In some cases not even the maximum water depth of the lakes is published. The only research carried out so far focused on the fish and invertebrate fauna of the lakes, because the macrofauna of Papuan Lakes is significantly different from other islands of western Indonesia. Most lakes harbor numerous endemic species. We carried out a first limnogeologic pilot campaign in spring 2016 to measure water column profiles and take short (max 80 cm long) sediment cores.Lake Sentani is seated in Mesozoic mafic bedrock and consists of four separate basins with maximum water depths of 30 to 40 m. Three basins are connected by shallow sills and one by a natural canal. Although all four basins share almost identical surface water chemistry and exhibit sub- to anoxic bottom waters, each basin has its distinct water column stratification and sediment geochemistry. Despite its coastal location and minimal elevation we could not identify an influx of seawater into the lake. Lake Ayamaru is located further inland on a densely forested karstified carbonate platform. The lake level has dropped significantly in recent years due to water loss into the karst, further reduction of open water surface is caused by massive growth of Pistia. Currently the lake has a maximum depth of around 2 m. Its sediment is mainly composed of carbonate minerals and methane saturated. Due to the carbonate bedrock the lake is highly alkaline (up to 20 meq/L) despite its very low salinity. The initial analyses show that these lakes offer unique biogeochemical conditions that require further in-depth studies.Our research will expand to lakes Anggi Giji and Anggi Gida, which are at almost 2000 m elevation. They have maximum depths of around 200 m and much colder surface waters (12-20°C) compared to the other two lakes that have about 30

  20. Challenge to the model of lake charr evolution: Shallow- and deep-water morphs exist within a small postglacial lake

    Science.gov (United States)

    Chavarie, Louise; Muir, Andrew M.; Zimmerman, Mara S.; Baillie, Shauna M.; Hansen, Michael J.; Nate, Nancy A.; Yule, Daniel L.; Middel, Trevor; Bentzen, Paul; Krueger, Charles C.

    2016-01-01

    All examples of lake charr (Salvelinus namaycush) diversity occur within the largest, deepest lakes of North America (i.e. > 2000 km2). We report here Rush Lake (1.3 km2) as the first example of a small lake with two lake charr morphs (lean and huronicus). Morphology, diet, life history, and genetics were examined to demonstrate the existence of morphs and determine the potential influence of evolutionary processes that led to their formation or maintenance. Results showed that the huronicus morph, caught in deep-water, had a deeper body, smaller head and jaws, higher eye position, greater buoyancy, and deeper peduncle than the shallow-water lean morph. Huronicus grew slower to a smaller adult size, and had an older mean age than the lean morph. Genetic comparisons showed low genetic divergence between morphs, indicating incomplete reproductive isolation. Phenotypic plasticity and differences in habitat use between deep and shallow waters associated with variation in foraging opportunities seems to have been sufficient to maintain the two morphs, demonstrating their important roles in resource polymorphism. Rush Lake expands previous explanations for lake charr intraspecific diversity, from large to small lakes and from reproductive isolation to the presence of gene flow associated with strong ecological drivers.

  1. A systematic examination of the relationships between CDOM and DOC in inland waters in China

    Directory of Open Access Journals (Sweden)

    K. Song

    2017-10-01

    Full Text Available Chromophoric dissolved organic matter (CDOM plays a vital role in the biogeochemical cycle in aquatic ecosystems. The relationship between CDOM and dissolved organic carbon (DOC has been investigated, and this significant relationship lays the foundation for the estimation of DOC using remotely sensed imagery data. The current study examined samples from freshwater lakes, saline lakes, rivers and streams, urban water bodies, and ice-covered lakes in China for tracking the variation of the relationships between DOC and CDOM. The regression model slopes for DOC vs. aCDOM (275 ranged from extremely low 0.33 (highly saline lakes to 1.03 (urban waters and 3.01 (river waters. The low values were observed in saline lake waters and waters from semi-arid or arid regions, where strong photobleaching is expected due to less cloud cover, longer water residence time, and daylight hours. In contrast, high values were found in waters developed in wetlands or forest in Northeast China, where more organic matter was transported from catchment to waters. The study also demonstrated that closer relationships between CDOM and DOC were revealed when aCDOM (275 were sorted by the ratio of aCDOM(250∕aCDOM (365, which is a measure for the CDOM absorption with respect to its composition, and the determination of coefficient of the regression models ranged from 0.79 to 0.98 for different groups of waters. Our results indicate the relationships between CDOM and DOC are variable for different inland waters; thus, models for DOC estimation through linking with CDOM absorption need to be tailored according to water types.

  2. Geochemical processes controlling water salinization in an irrigated basin in Spain: identification of natural and anthropogenic influence.

    Science.gov (United States)

    Merchán, D; Auqué, L F; Acero, P; Gimeno, M J; Causapé, J

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Chickpea (Cicer arietinum L.) physiological, chemical and growth responses to irrigation with saline water

    DEFF Research Database (Denmark)

    Hirich, Abdelaziz; Omari, Halima El; Jacobsen, Sven-Erik

    2014-01-01

    and soluble sugars as osmolytes produced by chickpea to mitigate the effect of salinity stress. The added value of these results is that the crop's responses to salinity are quantified. The obtained values can be used to determine 'threshold values'; should the salinity of the irrigation water go above...... these threshold values one may expect the crop yield parameters to be affected. The quantified responses also indicate the rate of change of yield parameters in response to the irrigation water salinity level. This could help in avoiding significant yield reduction when deciding on the irrigation water salinity...

  4. Simulation and assessment of groundwater flow and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2003 through 2013: Chapter B of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Roth, Jason L.; Trost, Jared J.; Christenson, Catherine A.; Diekoff, Aliesha L.; Erickson, Melinda L.

    2017-09-05

    Water levels during 2003 through 2013 were less than mean water levels for the period 1925–2013 for several lakes in the northeast Twin Cities Metropolitan Area in Minnesota. Previous periods of low lake-water levels generally were correlated with periods with less than mean precipitation. Increases in groundwater withdrawals and land-use changes have brought into question whether or not recent (2003–13) lake-water-level declines are solely caused by decreases in precipitation. A thorough understanding of groundwater and surface-water exchanges was needed to assess the effect of water-management decisions on lake-water levels. To address this need, the U.S. Geological Survey, in cooperation with the Metropolitan Council and the Minnesota Department of Health, developed and calibrated a three-dimensional, steady-state groundwater-flow model representing 2003–13 mean hydrologic conditions to assess groundwater and lake-water exchanges, and the effects of groundwater withdrawals and precipitation on water levels of 96 lakes in the northeast Twin Cities Metropolitan Area.Lake-water budgets for the calibrated groundwater-flow model indicated that groundwater is flowing into lakes in the northeast Twin Cities Metropolitan Area and lakes are providing water to underlying aquifers. Lake-water outflow to the simulated groundwater system was a major outflow component for Big Marine Lake, Lake Elmo, Snail Lake, and White Bear Lake, accounting for 45 to 64 percent of the total outflows from the lakes. Evaporation and transpiration from the lake surface ranged from 19 to 52 percent of the total outflow from the four lakes. Groundwater withdrawals and precipitation were varied from the 2003‒13 mean values used in the calibrated model (30-percent changes in groundwater withdrawals and 5-percent changes in precipitation) for hypothetical scenarios to assess the effects of groundwater withdrawals and precipitation on water budgets and levels in Big Marine Lake, Snail Lake

  5. An improved film evaporation correlation for saline water at sub-atmospheric pressures

    KAUST Repository

    Shahzada, Muhammad Wakil

    2011-10-03

    This paper presents an investigation of heat transfer correlation in a falling-film evaporator working with saline water at sub-atmospheric pressures. The experiments are conducted at different salinity levels ranging from 15000 to 90000 ppm, and the pressures were maintained between 0.92 to 2.81 kPa (corresponds to saturation temperatures of 5.9 – 23 0C). The effect of salinity, saturation pressures and chilled water temperatures on the heat transfer coefficient are accounted in the modified film evaporation correlations. The results are fitted to the Han & Fletcher\\'s and Chun & Seban\\'s falling-film correlations which are used in desalination industry. We modify the said correlations by adding salinity and saturation temperature corrections with respective indices to give a better agreement to our measured data.

  6. Age of ground water and the origin of its salinity in the Leba region

    International Nuclear Information System (INIS)

    Kwaterkiewicz, A.; Sadurski, A.; Zuber, A.

    1999-01-01

    Intensive exploitation of ground waters in the Leba region caused a strong increase of salinity, which on the basis of hydrochemistry, was supposed to result from the intrusion of the Baltic Sea water. Environmental isotope data revealed that water in the tertiary sediments is of glacial origin and its salinity is related to the admixture of ascending older waters. (author)

  7. Molecular Determinants of Dissolved Organic Matter Reactivity in Lake Water

    Directory of Open Access Journals (Sweden)

    Alina Mostovaya

    2017-12-01

    Full Text Available Lakes in the boreal region have been recognized as the biogeochemical hotspots, yet many questions regarding the regulators of organic matter processing in these systems remain open. Molecular composition can be an important determinant of dissolved organic matter (DOM fate in freshwater systems, but many aspects of this relationship remain unclear due to the complexity of DOM and its interactions in the natural environment. Here, we combine ultrahigh resolution mass spectrometry (FT-ICR-MS with kinetic modeling of decay of >1,300 individual DOM molecular formulae identified by mass spectrometry, to evaluate the role of specific molecular characteristics in decomposition of lake water DOM. Our data is derived from a 4 months microbial decomposition experiment, carried out on water from three Swedish lakes, with the set-up including natural lake water, as well as the lake water pretreated with UV light. The relative decay rate of every molecular formula was estimated by fitting a single exponential model to the change in FT-ICR-MS signal intensities over decomposition time. We found a continuous range of exponential decay coefficients (kexp within different groups of compounds and show that for highly unsaturated and phenolic compounds the distribution of kexp was shifted toward the lowest values. Contrary to this general trend, plant-derived polyphenols and polycondensed aromatics were on average more reactive than compounds with an intermediate aromaticity. The decay rate of aromatic compounds increased with increasing nominal oxidation state of carbon, and molecular mass in some cases showed an inverse relationship with kexp in the UV-manipulated treatment. Further, we observe an increase in formulae-specific kexp as a result of the UV pretreatment. General trends in reactivity identified among major compound groups emphasize the importance of the intrinsic controllers of lake water DOM decay. However, we additionally indicate that each

  8. Effect of Salinity on Germination and Its Relationship with Vegetative growth in Bromus danthoniae Genotypes from Saline and Non-Saline Areas of Iran

    Directory of Open Access Journals (Sweden)

    M. Rezaei

    2018-02-01

    Full Text Available Bromus danthoniae Trin. is an annual grass species that is well adapted to harsh climates and could be considered as an important genetic resources for tolerance to environmental stresses such as salinity. In this study, 24 genotypes collected from Ilam, Kurdistan, Kermanshah (non-saline areas and West Azerbaijan (saline area: shores of Uremia Salt Lake provinces of Iran were investigated at the germination stage under salt treatments with concentrations of 0, 60, 120, 180, 240 and 300 mM sodium chloride. Germination percentage, germination rate index, seed vigor, root length, shoot length and seedling fresh and dry weights were measured. In addition, the relationship between the percentage of germination in 300 mM sodium chloride and the survival rate (% after four weeks in 350 mM sodium chloride at the vegetative stage was evaluated. The results of analysis of variance showed that salinity treatments caused significant reductions in all the studied traits. Genotypic variation and the interaction of genotype × salt treatments were also significant. Genotypes USLN3 and KER4 were found to be the most tolerant and sensitive genotypes to salinity stress, with 13% and 98% reduction in germination percentage at 300 mM NaCl, respectively. Cluster analysis divided the genotypes into three groups, with one group containing only tolerant genotypes from Uremia Salt Lake, another one comprising only sensitive genotypes from non-saline regions, and the third one containing genotypes from both regions. The correlation between the germination percentage and the survival rate at the vegetative stage was not significant, indicating that different mechanisms are, perhaps, responsible for salinity tolerance at the germination and vegetative stages in B. danthoniae.

  9. Soil-water salinity pollution: extent, management and potential impacts on agricultural sustain ability

    International Nuclear Information System (INIS)

    Javid, M.A.; Ali, K.; Javed, M.; Mahmood, A.

    1999-01-01

    One of the significant environmental hazards of irrigated agriculture is the accumulation of salts in the soil. The presence of large quantities of certain soluble salts badly affects the physical, chemical, biological and fertility characteristics of the soils. This pollution of soil salinity and its toxic degradation directly affects plants, hence impacting the air filters of nature. The soil and water salinity has adversely reduced the yield of our major agricultural crops to an extent that agricultural sustainability is being threatened. Salinity has also dwindled the survival of marine life, livestock, in addition to damaging of construction works. The problem can be estimated from the fact that out of 16.2 m.ha of irrigated land of Pakistan, 6.3 . ha are salt affected in the Indus Plain. The state of water pollution can further be assessed from the fact that presently about 106 MAF of water is diverted from the rivers into the canals of the Indus Plain which contains 28 MT of salts. Due to soil and water pollution more than 40,000 ha of good irrigated land goes out of cultivation every year. This it has drastically reduced the potential of our agricultural lands. Hence, an estimated annual loss of Rs. 14,000 million has been reported due to this soil-water salinity pollution in Pakistan. Some management options to mitigate the soil - water salinity pollution are proposed. (author)

  10. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Directory of Open Access Journals (Sweden)

    Yaming Zhai

    Full Text Available To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt, quality, irrigation water use efficiency (IWUE and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1, 320 mm (W2 and 360 mm (W3, and the salinity levels were 1.0 dS/m (F, 3.0 dS/m (S1 and 5.0 dS/m (S2. Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym. After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual, and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  11. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Science.gov (United States)

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  12. Trends and variability of water quality in Lake Tana, Ethiopia using MODIS-Aqua

    Science.gov (United States)

    DeLuca, N. M.; Zaitchik, B. F.; Monger, B. C.

    2017-12-01

    Determining long-term water quality trends and variability in remote inland lakes has been challenging due to a lack of continuous in situ measurements. Utilizing ocean color remote sensing techniques for these lakes is difficult due to their sizes, shapes, and optically complex waters. Lake Tana is the largest body of water in Ethiopia, and is located in the country's northwestern highlands. The lake is quite shallow, averaging at about 8 meters depth, and is characteristically turbid due to nearby land degradation and high soil erosion rates. Lake Tana is an important source of accessible water for the rapidly growing population of Ethiopia and serves as the headwaters for the Blue Nile. Therefore, understanding water quality trends and seasonal variation over the past decade is essential to better preparing for future water needs. Here we use MODIS-Aqua data spanning years 2002-2016 to investigate these trends and variability in Lake Tana, where in situ measurements are limited. Daily water quality products were first processed using SeaDAS and then aggregated by month and year for analyses. Frequent cloud cover in the June, July, and August (JJA) rainy season due to monsoon and zonal dynamics presents an obstacle for obtaining mean lake values during these months. We also performed analyses on targeted regions of Lake Tana to determine whether some of the major tributaries and their corresponding watersheds have more influence on observed trends than others.

  13. Managing water and salinity with desalination, conveyance, conservation, waste-water treatment and reuse to counteract climate variability in Gaza

    Science.gov (United States)

    Rosenberg, D. E.; Aljuaidi, A. E.; Kaluarachchi, J. J.

    2009-12-01

    We include demands for water of different salinity concentrations as input parameters and decision variables in a regional hydro-economic optimization model. This specification includes separate demand functions for saline water. We then use stochastic non-linear programming to jointly identify the benefit maximizing set of infrastructure expansions, operational allocations, and use of different water quality types under climate variability. We present a detailed application for the Gaza Strip. The application considers building desalination and waste-water treatment plants and conveyance pipelines, initiating water conservation and leak reduction programs, plus allocating and transferring water of different qualities among agricultural, industrial, and urban sectors and among districts. Results show how to integrate a mix of supply enhancement, conservation, water quality improvement, and water quality management actions into a portfolio that can economically and efficiently respond to changes and uncertainties in surface and groundwater availability due to climate variability. We also show how to put drawn-down and saline Gaza aquifer water to more sustainable and economical use.

  14. Estimating the effects of land-use and catchment characteristics on lake water quality: Irish lakes 2004-2009

    OpenAIRE

    Curtis, John; Morgenroth, Edgar

    2013-01-01

    This paper attributes the variation in water quality across Irish lakes to a range of contributory factors such as human population, septic tanks, urban waste water treatment, phosphorous excreted by livestock, as well as catchment soil and geology. Both linear and non-linear quadratic models were estimated in the analysis, which attempts to account for point and non-point sources of pollution affecting water quality in 216 lake catchments. The models show a clear link between activities with...

  15. Methane oxidation in anoxic lake waters

    Science.gov (United States)

    Su, Guangyi; Zopfi, Jakob; Niemann, Helge; Lehmann, Moritz

    2017-04-01

    Freshwater habitats such as lakes are important sources of methante (CH4), however, most studies in lacustrine environments so far provided evidence for aerobic methane oxidation only, and little is known about the importance of anaerobic oxidation of CH4 (AOM) in anoxic lake waters. In marine environments, sulfate reduction coupled to AOM by archaea has been recognized as important sinks of CH4. More recently, the discorvery of anaerobic methane oxidizing denitrifying bacteria represents a novel and possible alternative AOM pathway, involving reactive nitrogen species (e.g., nitrate and nitrite) as electron acceptors in the absence of oxygen. We investigate anaerobic methane oxidation in the water column of two hydrochemically contrasting sites in Lake Lugano, Switzerland. The South Basin displays seasonal stratification, the development of a benthic nepheloid layer and anoxia during summer and fall. The North Basin is permanently stratified with anoxic conditions below 115m water depth. Both Basins accumulate seasonally (South Basin) or permanently (North Basin) large amounts of CH4 in the water column below the chemocline, providing ideal conditions for methanotrophic microorganisms. Previous work revealed a high potential for aerobic methane oxidation within the anoxic water column, but no evidence for true AOM. Here, we show depth distribution data of dissolved CH4, methane oxidation rates and nutrients at both sites. In addition, we performed high resolution phylogenetic analyses of microbial community structures and conducted radio-label incubation experiments with concentrated biomass from anoxic waters and potential alternative electron acceptor additions (nitrate, nitrite and sulfate). First results from the unamended experiments revealed maximum activity of methane oxidation below the redoxcline in both basins. While the incubation experiments neither provided clear evidence for NOx- nor sulfate-dependent AOM, the phylogenetic analysis revealed the

  16. Microplastics in surface waters of Dongting Lake and Hong Lake, China.

    Science.gov (United States)

    Wang, Wenfeng; Yuan, Wenke; Chen, Yuling; Wang, Jun

    2018-08-15

    Microplastics pollution is an environmental issue of increasing concern. Much work has been done on the microplastics pollution in the marine environments. Although freshwaters are potential sources and transport pathways of plastic debris to the oceans, there is a lack of knowledge regarding the presence of microplastics in freshwater systems, especially in China, the world's largest producer of plastics. This study investigated the occurrence and properties of microplastics in surface waters of two important lakes in the middle reaches of the Yangtze River. The concentration ranges of microplastics in Dongting Lake and Hong Lake were 900-2800 and 1250-4650n/m 3 , respectively. Fiber was the dominant shape. Colored items occupied the majority. Particles with a size of 20% of total microplastics collected in both lakes. Most of the selected particles were identified as plastics, with polyethylene (PE) and polypropylene (PP) being the major components. This study can provide valuable reference for better understanding the microplastics pollution in inland freshwater ecosystems. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Sources of inflow and nature of redistribution of 90Sr in the salt lakes of the Crimea.

    Science.gov (United States)

    Mirzoyeva, N Yu; Arkhipova, S I; Kravchenko, N V

    2018-08-01

    At the first time for the period after the Chernobyl NPP accident the nature of the redistribution of the 90 Sr concentrations in components of the ecosystems of the salt lakes of the Crimea were identified and described. Concentration of 90 Sr in water of the salt lakes depends on the sources of the inflow this radionuclide into aquatic ecosystems and salinity level of lakes water. Until April 2014 the flow of the Dnieper river water through the Northern-Crimean canal was more important factor of contamination of salt lakes of the Crimea by 90 Sr, than atmospheric fallout of this radionuclide after the Chernobyl NPP accident. Concentrations of 90 Sr in water of the salt lakes of the Crimea exceeded 2.4-156.5 times its concentrations in their bottom sediments. The 90 Sr dose commitments to hydrophytes, which were sampled from the salt lakes of the Crimea have not reached values which could impact them during entire the after-accident period. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Statistical analysis of lake levels and field study of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015: Chapter A of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Diekoff, Aliesha L.; Rosenberry, Donald O.; White, Eric A.; Erickson, Melinda L.; Morel, Daniel L.; Heck, Jessica M.

    2016-10-19

    Water levels declined from 2003 to 2011 in many lakes in Ramsey and Washington Counties in the northeast Twin Cities Metropolitan Area, Minnesota; however, water levels in other northeast Twin Cities Metropolitan Area lakes increased during the same period. Groundwater and surface-water exchanges can be important in determining lake levels where these exchanges are an important component of the water budget of a lake. An understanding of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area has been limited by the lack of hydrologic data. The U.S. Geological Survey, in cooperation with the Metropolitan Council and Minnesota Department of Health, completed a field and statistical study assessing lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes. This report documents the analysis of collected hydrologic, water-quality, and geophysical data; and existing hydrologic and geologic data to (1) assess the effect of physical setting and climate on lake-level fluctuations of selected lakes, (2) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (3) estimate general ages for waters extracted from the wells, and (4) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake. Statistical analyses of lake levels during short-term (2002–10) and long-term (1925–2014) periods were completed to help understand lake-level changes across the northeast Twin Cities Metropolitan Area. Comparison of 2002–10 lake levels to several landscape and geologic characteristics explained variability in lake-level changes for 96 northeast Twin Cities Metropolitan Area lakes. Application of several statistical methods determined that (1) closed-basin lakes (without an active outlet) had larger lake-level declines than flow-through lakes with an outlet; (2

  19. Long-term citizen-collected data reveal geographical patterns and temporal trends in lake water clarity

    Science.gov (United States)

    Lottig, Noah R.; Wagner, Tyler; Henry, Emily N.; Cheruvelil, Kendra Spence; Webster, Katherine E.; Downing, John A.; Stow, Craig A.

    2014-01-01

    We compiled a lake-water clarity database using publically available, citizen volunteer observations made between 1938 and 2012 across eight states in the Upper Midwest, USA. Our objectives were to determine (1) whether temporal trends in lake-water clarity existed across this large geographic area and (2) whether trends were related to the lake-specific characteristics of latitude, lake size, or time period the lake was monitored. Our database consisted of >140,000 individual Secchi observations from 3,251 lakes that we summarized per lake-year, resulting in 21,020 summer averages. Using Bayesian hierarchical modeling, we found approximately a 1% per year increase in water clarity (quantified as Secchi depth) for the entire population of lakes. On an individual lake basis, 7% of lakes showed increased water clarity and 4% showed decreased clarity. Trend direction and strength were related to latitude and median sample date. Lakes in the southern part of our study-region had lower average annual summer water clarity, more negative long-term trends, and greater inter-annual variability in water clarity compared to northern lakes. Increasing trends were strongest for lakes with median sample dates earlier in the period of record (1938–2012). Our ability to identify specific mechanisms for these trends is currently hampered by the lack of a large, multi-thematic database of variables that drive water clarity (e.g., climate, land use/cover). Our results demonstrate, however, that citizen science can provide the critical monitoring data needed to address environmental questions at large spatial and long temporal scales. Collaborations among citizens, research scientists, and government agencies may be important for developing the data sources and analytical tools necessary to move toward an understanding of the factors influencing macro-scale patterns such as those shown here for lake water clarity.

  20. Microbial methane production in oxygenated water column of an oligotrophic lake

    Science.gov (United States)

    Grossart, Hans-Peter; Frindte, Katharina; Dziallas, Claudia; Eckert, Werner; Tang, Kam W.

    2011-01-01

    The prevailing paradigm in aquatic science is that microbial methanogenesis happens primarily in anoxic environments. Here, we used multiple complementary approaches to show that microbial methane production could and did occur in the well-oxygenated water column of an oligotrophic lake (Lake Stechlin, Germany). Oversaturation of methane was repeatedly recorded in the well-oxygenated upper 10 m of the water column, and the methane maxima coincided with oxygen oversaturation at 6 m. Laboratory incubations of unamended epilimnetic lake water and inoculations of photoautotrophs with a lake-enrichment culture both led to methane production even in the presence of oxygen, and the production was not affected by the addition of inorganic phosphate or methylated compounds. Methane production was also detected by in-lake incubations of lake water, and the highest production rate was 1.8–2.4 nM⋅h−1 at 6 m, which could explain 33–44% of the observed ambient methane accumulation in the same month. Temporal and spatial uncoupling between methanogenesis and methanotrophy was supported by field and laboratory measurements, which also helped explain the oversaturation of methane in the upper water column. Potentially methanogenic Archaea were detected in situ in the oxygenated, methane-rich epilimnion, and their attachment to photoautotrophs might allow for anaerobic growth and direct transfer of substrates for methane production. Specific PCR on mRNA of the methyl coenzyme M reductase A gene revealed active methanogenesis. Microbial methane production in oxygenated water represents a hitherto overlooked source of methane and can be important for carbon cycling in the aquatic environments and water to air methane flux. PMID:22089233

  1. Remote Sensing of Salinity: The Dielectric Constant of Sea Water

    Science.gov (United States)

    LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.

    2011-01-01

    Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.

  2. Cold-Active, Heterotrophic Bacteria from the Highly Oligotrophic Waters of Lake Vanda, Antarctica

    Directory of Open Access Journals (Sweden)

    Nicole A. Vander Schaaf

    2015-07-01

    Full Text Available The permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica are distinctive ecosystems that consist strictly of microbial communities. In this study, water samples were collected from Lake Vanda, a stratified Dry Valley lake whose upper waters (from just below the ice cover to nearly 60 m are highly oligotrophic, and used to establish enrichment cultures. Six strains of psychrotolerant, heterotrophic bacteria were isolated from lake water samples from a depth of 50 or 55 m. Phylogenetic analyses showed the Lake Vanda strains to be species of Nocardiaceae, Caulobacteraceae, Sphingomonadaceae, and Bradyrhizobiaceae. All Lake Vanda strains grew at temperatures near or below 0 °C, but optimal growth occurred from 18 to 24 °C. Some strains showed significant halotolerance, but no strains required NaCl for growth. The isolates described herein include cold-active species not previously reported from Dry Valley lakes, and their physiological and phylogenetic characterization broadens our understanding of these limnologically unique lakes.

  3. 40 CFR Appendix B to Part 132 - Great Lakes Water Quality Initiative

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Great Lakes Water Quality Initiative B Appendix B to Part 132 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Water Quality Initiative Methodology for Deriving Bioaccumulation Factors Great Lakes States and Tribes...

  4. Dryland salinity: threatening water resources in the semi-arid Western Cape

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2010-11-01

    Full Text Available associated with the mobilisation of inorganic salts from the landscape and the consequent increase in salt concentrations in receiving water bodies. Dyland salinity is not new to this area. Wheat lands in the Swartland and Overberg regions are widely known... to contain ?brak kolle? (saline scalds) where the wheat will not germinate. CAPTION: The Berg River near Velddrif. The river drains an area of approximately 9 000 km? and is an important source of water to the Boland and Cape Peninsula (source: Vernon...

  5. The origin of shallow lakes in the Khorezm Province, Uzbekistan, and the history of pesticide use around these lakes

    Science.gov (United States)

    Rosen, Michael R.; Crootof, Arica; Reidy, Liam; Saito, Laurel; Nishonov, Bakhriddin; Scott, Julian A.

    2018-01-01

    The economy of the Khorezm Province in Uzbekistan relies on the large-scale agricultural production of cotton. To sustain their staple crop, water from the Amu Darya is diverted for irrigation through canal systems constructed during the early to mid-twentieth century when this region was part of the Soviet Union. These diversions severely reduce river flow to the Aral Sea. The Province has >400 small shallow (data indicate that the majority of the lakes investigated are less than 150 years old, which supports a recent origin of the lakes. The thickness of lacustrine sediments in the cores analyzed ranged from 20 to 60 cm in all but two of the lakes, indicating a relatively slow sedimentation rate and a relatively short-term history for the lakes. Hydrologic changes in the lakes are evident from loss on ignition and pollen analyses of a subset of the lake cores. The data indicate that the lakes have transitioned from a dry, saline, arid landscape during pre-lake conditions (low organic carbon content) and low pollen concentrations (in the basal sediments) to the current freshwater lakes (high organic content), with abundant freshwater pollen taxa over the last 50–70 years. Sediments at the base of the cores contain pollen taxa dominated by Chenopodiaceae and Tamarix, indicating that the vegetation growing nearby was tolerant to arid saline conditions. The near surface sediments of the cores are dominated by Typha/Sparganium, which indicate freshwater conditions. Increases in pollen of weeds and crop plants indicate an intensification of agricultural activities since the 1950s in the watersheds of the lakes analyzed. Pesticide profiles of DDT (dichlorodiphenyltrichloroethane) and its degradates and γ-HCH (gamma-hexachlorocyclohexane), which were used during the Soviet era, show peak concentrations in the top 10 cm of some of the cores, where estimated ages of the sediments (1950–1990) are associated with peak pesticide use during the Soviet era. These data

  6. Assessing heat fluxes and water quality trends in subalpine lakes from EO

    Science.gov (United States)

    Cazzaniga, Ilaria; Giardino, Claudia; Bresciani, Mariano; Elli, Chiara; Valerio, Giulia; Pilotti, Marco

    2017-04-01

    Lakes play a fundamental role in providing ecosystem services such as water supplying, hydrological regulation, climate change mitigation, touristic recreation (Schallenberg et al., 2013). Preserving and improving of quality of lakes waters, which is a function of either both natural and human influences, is therefore an important action to be considered. Remote Sensing techniques are spreading as useful instrument for lakes, by integrating classical in situ limnological measurements to frequent and synoptic monitoring capabilities. Within this study, Earth Observation data are exploited for understanding the temporal changes of water quality parameters over a decade, as well as for measuring the surface energy fluxes in recent years in deep clear lakes in the European subalpine ecoregion. According to Pareth et al. (2016), subalpine lakes are showing a clear response to climate change with an increase of 0.017 °C /year of lake surface temperature, whilst the human activities contribute to produce a large impact (agriculture, recreation, industry, fishing and drinking) on these lakes. The investigation is focused on Lake Iseo, which has shown a significant deterioration of water quality conditions since the seventies, and on Lake Garda, the largest Italian lake where EO data have been widely used for many purposes and applications (Giardino et al., 2014). Available ENVISAT-MERIS (2002-2012) and Landsat-8-OLI (2013-on going) imagery has been exploited to produce chlorophyll-a (chl-a) concentration maps, while Landsat-8-TIRS imagery has been used for estimating lake surface temperatures. MERIS images were processed through a neural network (namely the C2R processor, Doerffer et al., 2007), to correct the atmospheric effects and to retrieve water constituents concentration in optically complex deep waters. With regard to L8's images, some atmospheric correctors (e.g. ACOLITE and 6SV) were tested and validated to indentify, for each of the two lakes, the more accurate

  7. Novel water filtration of saline water in the outermost layer of mangrove roots.

    Science.gov (United States)

    Kim, Kiwoong; Seo, Eunseok; Chang, Suk-Kyu; Park, Tae Jung; Lee, Sang Joon

    2016-02-05

    The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na(+) ions are filtered at the first sublayer of the outermost layer. The high blockage of Na(+) ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na(+) ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method.

  8. A broadband helical saline water liquid antenna for wearable systems

    Science.gov (United States)

    Li, Gaosheng; Huang, Yi; Gao, Gui; Yang, Cheng; Lu, Zhonghao; Liu, Wei

    2018-04-01

    A broadband helical liquid antenna made of saline water is proposed. A transparent hollow support is employed to fabricate the antenna. The rotation structure is fabricated with a thin flexible tube. The saline water with a concentration of 3.5% can be injected into or be extracted out from the tube to change the quantity of the solution. Thus, the tunability of the radiation pattern could be realised by applying the fluidity of the liquid. The radiation feature of the liquid antenna is compared with that of a metal one, and fairly good agreement has been achieved. Furthermore, three statements of the radiation performance corresponding to the ratio of the diameter to the wavelength of the helical saline water antenna have been proposed. It has been found that the resonance frequency increases when the length of the feeding probe or the radius of the vertical part of the liquid decreases. The fractional bandwidth can reach over 20% with a total height of 185 mm at 1.80 GHz. The measured results indicate reasonable approximation to the simulated. The characteristics of the liquid antenna make it a good candidate for various wireless applications, especially the wearable systems.

  9. Late Quaternary Paleoclimatic History of Tropical South America From Drilling Lake Titicaca and the Salar de Uyuni

    Science.gov (United States)

    Baker, P. A.; Fritz, S. C.; Seltzer, G. O.; Rigsby, C. A.; Lowenstein, T. K.; Ku, R.

    2003-12-01

    Seven drill cores were recovered from Lake Titicaca during the NSF/ICDP/DOSECC drilling expedition of 2001. Sub-lake floor drilling depths ranged from 53 to 139 m; water depths ranged from 40 to 232 m; recoveries ranged from 75 to 112 percent. Our most detailed multi-proxy analyses to date have been done on Core 2B raised from the central basin of the lake from 232 m water depth, drilled to 139.26 m sub-lakefloor with 140.61 m of total sediment recovered (101 percent). A basal age of 200 Ka is estimated by linear extrapolation from radiocarbon measurements in the upper 25 m of core; Ar-Ar dating of interbedded ashes and U/Th dating of abiogenic aragonites are underway. The volume and lake level of Lake Titicaca have undergone large changes several times during the late Quaternary. Proxies for these water level changes (each of different fidelity) include the ratio of planktonic-to-benthic diatoms, sedimentary carbonate content, and stable isotopic content of organic carbon. The most recent of these changes, has been described previously from earlier piston cores. In the early and middle Holocene the lake fell below its outlet to 85 m below modern level, lake salinity increased several-fold, and the Salar de Uyuni, which receives overflow from Titicaca, dessicated. In contrast, Lake Titicaca was deep, fresh, and overflowing (southward to the Salar de Uyuni) throughout the last glacial maximum from prior to 25,000 BP to at least 15,000 BP. According to extrapolated ages, the penultimate major lowstand of Lake Titicaca occurred prior to 60,000 BP, when seismic evidence indicates that lake level was about 200 m lower than present. Near the end of this lowstand, the lake also became quite saline. There are at least three, and possibly more, older lowstands, each separated temporally by periods in which the lake freshened dramatically and overflowed. These results will be compared with results from previous drilling in the Salar de Uyuni.

  10. Contribution of water chemistry and fish condition to otolith chemistry: comparisons across salinity environments.

    Science.gov (United States)

    Izzo, C; Doubleday, Z A; Schultz, A G; Woodcock, S H; Gillanders, B M

    2015-06-01

    This study quantified the per cent contribution of water chemistry to otolith chemistry using enriched stable isotopes of strontium ((86) Sr) and barium ((137) Ba). Euryhaline barramundi Lates calcarifer, were reared in marine (salinity 40), estuarine (salinity 20) and freshwater (salinity 0) under different temperature treatments. To calculate the contribution of water to Sr and Ba in otoliths, enriched isotopes in the tank water and otoliths were quantified and fitted to isotope mixing models. Fulton's K and RNA:DNA were also measured to explore the influence of fish condition on sources of element uptake. Water was the predominant source of otolith Sr (between 65 and 99%) and Ba (between 64 and 89%) in all treatments, but contributions varied with temperature (for Ba), or interactively with temperature and salinity (for Sr). Fish condition indices were affected independently by the experimental rearing conditions, as RNA:DNA differed significantly among salinity treatments and Fulton's K was significantly different between temperature treatments. Regression analyses did not detect relations between fish condition and per cent contribution values. General linear models indicated that contributions from water chemistry to otolith chemistry were primarily influenced by temperature and secondly by fish condition, with a relatively minor influence of salinity. These results further the understanding of factors that affect otolith element uptake, highlighting the necessity to consider the influence of environment and fish condition when interpreting otolith element data to reconstruct the environmental histories of fish. © 2015 The Fisheries Society of the British Isles.

  11. Late Quaternary sedimentary features of Bear Lake, Utah and Idaho

    Science.gov (United States)

    Smoot, J.P.

    2009-01-01

    over 40 m of water. The subaerial surfaces are indicated by root casts and gypsum-rich soil features. Bear Lake remained at this low state with a minor transgression until ca. 15 ka. A new influx of Bear River water produced a major lake transgression and deposited a thin calcite deposit. Bear Lake quickly dropped to a shallow-water state, accumulating a mixture of calcite and siliciclastic sediment that contains at least two intervals of root-disrupted horizons indicating lake-level drops to more than 40 m below the modern highstand. About 11,500 yr B.P., the lake level rose again through an influx of Bear River water producing another thin calcite layer. The Bear River ceased to flow into the basin and the lake salinity increased, resulting in the aragonite deposition that persisted until modern human activity. The climatic record of Bear Lake sediment is difficult to ascertain by using standard chemical and biological techniques because of variations in the inflow hydrology and the significant amount of erosion and redeposition of chemical and biological sediment components. Copyright ?? 2009 The Geological Society of America.

  12. Dust Generation Resulting from Desiccation of Playa Systems: Studies on Mono and Owens Lakes, California

    Science.gov (United States)

    Gill, Thomas Edward

    1995-01-01

    Playas, evaporites, and aeolian sediments frequently are linked components within the Earth system. Anthropogenic water diversions from terminal lakes form playas that release fugitive dust. These actions, documented worldwide, simulate aeolian processes activated during palaeoclimatic pluvial/interpluvial transitions, and have significant environmental impacts. Pluvial lakes Russell and Owens in North America's Great Basin preceded historic Mono and Owens Lakes, now desiccated by water diversions into dust-generating, evaporite -encrusted playas. Geochemical and hydrologic cycles acting on the Owens (Dry) Lake playa form three distinct crust types each year. Although initial dust production results from deflation of surface efflorescences after the playa dries, most aerosols are created by saltation abrasion of salt/silt/clay crusts at crust/ sand sheet contacts. The warm-season, clastic "cemented" crust is slowest to degrade into dust. If the playa surface is stabilized by an unbroken, non-efflorescent crust, dust formation is discouraged. When Mono Lake's surFace elevation does not exceed 1951 meters (6400 feet), similar processes will also generate dust from its saline lower playa. Six factors--related to wind, topography, groundwater, and sediments--control dust formation at both playas. These factors were combined into a statistical model relating suspended dust concentrations to playa/lake morphometry. The model shows the extent and severity of Mono Lake dust storms expands significantly below the surface level 6376 feet (1943.5 meters). X-ray diffraction analysis of Mono Basin soils, playa sediments, and aerosols demonstrates geochemical cycling of materials through land, air and water during Mono Lake's 1982 low stand. Soils and clastic playa sediments contain silicate minerals and tephra. Saline groundwater deposited calcite, halite, thenardite, gaylussite, burkeite and glauberite onto the lower playa. Aerosols contained silicate minerals (especially

  13. Chemical interaction of fresh and saline waters with compacted bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Lehikoinen, J.; Melamed, A.; Pitkaenen, P.

    1996-01-01

    The interaction of compacted sodium bentonite with fresh and saline ground-water simulant was studied. The parameters varied in the experiments were the compositions of the solutions and oxygen and carbon dioxide content in the surroundings. The main interests of the study were the chemical changes in the experimental solution, bentonite porewater and bentonite together with the microstructural properties of bentonite. The major processes with fresh water were the diffusion of sodium, potassium, sulphate, bicarbonate and chloride from bentonite to the solution, and the diffusion of calcium and magnesium from the solution into bentonite. The major processes in the experiments with saline water were the diffusion of the sodium, magnesium, sulphate and bicarbonate from bentonite into the solution, and the diffusion of calcium from the solution into bentonite

  14. Mercury and water level fluctuations in lakes of northern Minnesota

    Science.gov (United States)

    Larson, James H.; Maki, Ryan P; Christensen, Victoria G.; Sandheinrich, Mark B.; LeDuc, Jaime F.; Kissane, Claire; Knights, Brent C.

    2017-01-01

    Large lake ecosystems support a variety of ecosystem services in surrounding communities, including recreational and commercial fishing. However, many northern temperate fisheries are contaminated by mercury. Annual variation in mercury accumulation in fish has previously been linked to water level (WL) fluctuations, opening the possibility of regulating water levels in a manner that minimizes or reduces mercury contamination in fisheries. Here, we compiled a long-term dataset (1997-2015) of mercury content in young-of-year Yellow Perch (Perca flavescens) from six lakes on the border between the U.S. and Canada and examined whether mercury content appeared to be related to several metrics of WL fluctuation (e.g., spring WL rise, annual maximum WL, and year-to-year change in maximum WL). Using simple correlation analysis, several WL metrics appear to be strongly correlated to Yellow Perch mercury content, although the strength of these correlations varies by lake. We also used many WL metrics, water quality measurements, temperature and annual deposition data to build predictive models using partial least squared regression (PLSR) analysis for each lake. These PLSR models showed some variation among lakes, but also supported strong associations between WL fluctuations and annual variation in Yellow Perch mercury content. The study lakes underwent a modest change in WL management in 2000, when winter WL minimums were increased by about 1 m in five of the six study lakes. Using the PLSR models, we estimated how this change in WL management would have affected Yellow Perch mercury content. For four of the study lakes, the change in WL management that occurred in 2000 likely reduced Yellow Perch mercury content, relative to the previous WL management regime.

  15. Soil Moisture Ocean Salinity (SMOS) salinity data validation over Malaysia coastal water

    International Nuclear Information System (INIS)

    Reba, M N M; Rosli, A Z; Rahim, N A

    2014-01-01

    The study of sea surface salinity (SSS) plays an important role in the marine ecosystem, estimation of global ocean circulation and observation of fisheries, aquaculture, coral reef and sea grass habitats. The new challenge of SSS estimation is to exploit the ocean surface brightness temperature (Tb) observed by the Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) onboard the Soil Moisture Ocean Salinity (SMOS) satellite that is specifically designed to provide the best retrieval of ocean salinity and soil moisture using the L band of 1.4 GHz radiometer. Tb observed by radiometer is basically a function of the dielectric constant, sea surface temperature (SST), wind speed (U), incidence angle, polarization and SSS. Though, the SSS estimation is an ill-posed inversion problem as the relationship between the Tb and SSS is non-linear function. Objective of this study is to validate the SMOS SSS estimates with the ground-truth over the Malaysia coastal water. The LM iteratively determines the SSS of SMOS by the reduction of the sum of squared errors between Tb SMOS and Tb simulation (using in-situ) based on the updated geophysical triplet in the direction of the minimum of the cost function. The minimum cost function is compared to the desired threshold at each iteration and this recursive least square process updates the SST, U and SSS until the cost function converged. The designed LM's non-linear inversion algorithm simultaneously estimates SST, U and SSS and thus, map of SSS over Malaysia coastal water is produced from the regression model and accuracy assessment between the SMOS and in-situ retrieved SSS. This study found a good agreement in the validation with R square of 0.9 and the RMSE of 0.4. It is concluded that the non-linear inversion method is effective and practical to extract SMOS SSS, U and SST simultaneously

  16. Preliminary assessment of the impact of fluctuating water levels on northern pike in Reindeer Lake

    International Nuclear Information System (INIS)

    Chen, M.

    1993-03-01

    Reindeer Lake in north eastern Saskatchewan regulates water levels for the Island Falls hydroelectric power plant. Since inception of the Whitesand Dam on the lake, there have been concerns that fluctuating water levels could be adversely impacting the habitat and population of northern pike in the lake. The extent of water level fluctuations during the pike spawning period of Reindeer Lake and its effect on spawning success was investigated. Since construction of the Whitesand Dam in 1942 Reindeer Lake water levels have averaged ca 1.71 m higher than had the dam not existed, creating ca 430 km 2 of new surface area. Much of this area is shallow water and prone to growth of aquatic vegetation, which is suitable spawning and nursery habitat for northern pike. Annual and periodic water level fluctuations of Reindeer Lake have been higher than under natural conditions. During northern pike spawning and nursing periods, water levels in the lake have generally increased, in 60 out of 64 y. It is concluded that operation of the dam has not caused any direct negative impacts on the northern pike habitat in the lake. 2 refs., 4 figs., 4 tabs

  17. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    Science.gov (United States)

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  18. Great Lakes waters: radiation dose commitments, potential health effects, and cost-benefit considerations

    International Nuclear Information System (INIS)

    Ainsworth, E.J.

    1977-07-01

    In 1972, a Great Lakes Water Quality Agreement was signed by the United States and Canadian Governments. It was stipulated that the operation and effectiveness of the agreement were to be reviewed comprehensively in 1977. Aspects of the agreement concern nondegradation of Great Lakes waters and maintenance of levels of radioactivity or other potential pollutants at levels considered as low as practicable. A refined radioactivity objective of one millirem is proposed in the Water Quality Agreement. The implications of adoption of this objective are not known fully. The Division of Environmental Impact Studies was commissioned by ERDA's Division of Technology Overview to summarize the information available on the current levels of radioactivity in Great Lakes waters, compute radiation-dose commitment (integrated dose over 50 years after consumption of 2.2 liters of water of one year), and to comment on the feasibility and cost-benefit considerations associated with the refined one-millirem objective. Current levels of radioactivity in the waters of Lakes Michigan, Ontario, Erie, and Huron result in dose commitments in excess of 1 mrem for whole body and 6 mrem for bone. Future projections of isotope concentrations in Great lakes water indicate similar dose commitments for drinking water in the year 2050. Reduction of the levels of radioactivity in Great Lakes waters is not feasible, but cost-benefit considerations support removal of 226 Ra and 90 Sr through interceptive technology before water consumption. Adoption of the one-millirem objective is not propitious

  19. The use of short rotation willows and poplars for the recycling of saline waste waters

    Science.gov (United States)

    Jaconette Mirck; Ronald S. Jr. Zalesny; Ioannis Dimitriou; Jill A. Zalesny; Timothy A. Volk; Warren E. Mabee

    2009-01-01

    The production of high-salinity waste waters by landfills and other waste sites causes environmental concerns. This waste water often contains high concentrations of sodium and chloride, which may end up in local ground and surface waters. Vegetation filter systems comprised of willows and poplars can be used for the recycling of saline waste water. These vegetation...

  20. Geoelectric imaging for saline water intrusion in Geopark zone of Ciletuh Bay, Indonesia

    Science.gov (United States)

    Ardi, N. D.; Iryanti, M.; Asmoro, C. P.; Yusuf, A.; Sundana, A. N. A.; Safura, H. Y.; Fitri, M.; Anggraeni, M.; Kurniawan, R.; Afrianti, R.; Sumarni

    2018-05-01

    Saline water intrusion in estuary is an urgent ecological encounter across the world. The Ciletuh Bay, located in the southern Sukabumi district, is an area with high cultivated potential becoming one of the most important geology tourism zones in Indonesia. However, salt water intrusion along the creek is a natural spectacle that disturbs the economic growth of the whole region. This research was intended at plotting the subsurface level of saltwater interventions into aquifers at the northern part of Ciletuh creek, Indonesia. The study implemented geoelectric imaging methods. 37 imaging datum were acquired using Wenner array configuration. The saline water were identified across the study area. The result of two dimensional cross-sectional resistivity shows that there is an indication of sea content in our measured soil, i.e. the smallest resistivity value is 0.579 Ωm found at a depth of 12.4 m to 19.8 m at a track length of 35 m to 60 m is categorized in the clayey which shows low groundwater quality. However, when compared with the results of direct observation of groundwater from the wells of residents, the water obtained is brackish water. A water chemistry test is conducted to ascertain the initial results of this method so that a potential sea intrusion potential map can be interpreted more clearly. This can consequently help as an extrapolative model to define depth to saline water at any site within the saline water zone in the study area.

  1. Cyanobacteria and cyanotoxins in the source water from Lake ...

    African Journals Online (AJOL)

    The phytoplankton community and cyanotoxins in Lake Chivero (formerly Lake McIlwaine) and the presence of cyanotoxins in treated drinking water were investigated between 2003 and 2004. A typical seasonal succession of Cyanobacteria species occurred from January to April, Bacillariophyta from May to July, and ...

  2. Climate change and water quality in the Great Lakes Basin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    The Great Lakes Basin is subjected to several stresses, such as land use changes, chemical contamination, nutrient over-enrichment, alien invasive species, and acid precipitation. Climate change is now added to this list. The Water Quality Board was asked to provide advice concerning the impacts of climate change on the water quality of the Great Lakes and on how to address the issue. A White Paper was commissioned by the Board to address four key questions: (1) what are the Great Lakes water quality issues associated with climate change, (2) what are potential impacts of climate change on beneficial uses, (3) how might impacts vary across the Great Lakes region, and (4) what are the implications for decision making. The conclusions and findings of the White Paper were then discussed at a workshop held in May 2003. Part 1 of the document provides an executive summary. The advice of the Water Quality Board was based on the findings of the White Paper and presented in Part 2. Part 3 presented the White Paper, while a summary of the workshop was provided in Part 4. A presentation on cross border tools and strategies was also presented by a workshop participant.

  3. Assessment of microcystins in lake water and fish (Mugilidae, Liza sp.) in the largest Spanish coastal lake.

    Science.gov (United States)

    Romo, Susana; Fernández, Francisca; Ouahid, Youness; Barón-Sola, Ángel

    2012-01-01

    Cyanobacteria dominance and cyanotoxin production can become major threats to humans and aquatic life, especially in warm shallow lakes, which are often dominated by cyanobacteria. This study investigates the occurrence and distribution of microcystins (MCYST) in water, cell-bound and in the tissues of the commercial mugilid Liza sp. in the largest, coastal, Spanish Mediterranean lake (Albufera of Valencia). This is the first report concerning microcystin accumulation in tissues of mugilid fish species. Considerable amounts of microcystins were found in the water and seston, which correlated with development of Microcystis aeruginosa populations in the lake. The MCYST concentrations found in Lake Albufera (mean 1.7 and 17 μg/L and maximum 16 and 120 μg/L in water and seston, respectively) exceeded by one to two orders of magnitude the guideline levels proposed by the World Health Organization and were higher than that reported in other lakes of the Mediterranean zone. The presence of MCYST was found in all the fishes studied and accumulated differently among tissues of the commercial species Liza sp. Toxin accumulation in fish tissues showed that although the target organ for MCYST was the liver, high concentrations of microcystins were also found in other analysed tissues (liver>intestine>gills>muscle). Human tolerable daily intake for microcystins is assessed relative to the WHO guidelines, and potential toxicological risks for humans, wildlife and related ecosystems of the lake are discussed.

  4. Strategies for safe exploitation of fresh water through multi-strainer skimming wells in saline groundwater areas

    International Nuclear Information System (INIS)

    Alam, M.M.; Jaffery, H.M.; Hanif, M.

    2005-01-01

    Due to growing population of Pakistan, there is a tremendous pressure on our agriculture sector to increase its production to meet the food and fiber requirement. Water is a basic need to increase the agriculture production and to bring more areas under cultivation. The exploitation of groundwater resources is increasing because of limited surface water availability. Statistics indicated that number of public and private tube-wells have increased to more than 5 lacs. Over exploitations of groundwater caused a number of environmental problems including salt water intrusion and increase in the soil and groundwater salinity. A large number of fresh water tube-wells have started pumping saline groundwater in various parts of Pakistan indicating up-coning of saline groundwater in the relatively fresh water aquifers. Use of poor quality groundwater for irrigation is considered as one of the major causes of salinity in the areas of irrigated agriculture. Indiscriminate pumping of the groundwater of marginal quality through skimming fresh water overlain by saline groundwater can not be helpful in the long run. It can add to the root zone salinity and ultimately reduction of crops yield. Mona Reclamation Experimental Project (MREP) is conducting a collaborative research study on 'Root Zone Salinity Management using Fractional Skimming Wells with Pressurized Irrigation' under a research and studies portfolio of the country wide National Drainage Programme (NDP) MREP, IWMI Pakistan and Water Resources Research Institute of PARC are collaborators in this joint research effort. MREP is responsible to specifically address the objective of the study to identify and test a limited number of promising skimming well techniques in the shallow fresh water aquifers which could control the saline water up-coning phenomenon as a consequence of groundwater pumping. Detailed investigations have been done at various locations in the north-central part of Chaj Doab (Sargodha Region) in the

  5. Remotely Sensing Lake Water Volumes on the Inner Arctic Coastal Plain of Northern Alaska

    Science.gov (United States)

    Simpson, C. E.; Arp, C. D.; Jones, B. M.; Hinkel, K. M.; Carroll, M.; Smith, L. C.

    2017-12-01

    Thermokarst lake depth is controlled by the amount of excess ice in near-surface permafrost, with lake depths of about 1 - 3 m in areas of epigenetic permafrost and over 10 m in areas of syngenetic permafrost. An important exception to these general patterns is found on the inner Arctic Coastal Plain (ACP) of northern Alaska, where deep lakes occur in Pleistocene-aged, ground-ice poor sandy terrain. These lakes cover 20% of the currently inactive sand sheet and dune deposit (referred to as the Pleistocene Sand Sea) that comprises approximately 7000 km2 of the ACP. Surrounded by high and eroding bluffs, sand sea lakes lie in natural depressions and are characterized by wide, shallow littoral shelves and central troughs that are typically oriented NNW to SSE and can reach depths greater than 20 m. Despite their unique form and extensive coverage, these lakes have received little prior study and a literature gap remains regarding regional water storage. This research classifies sand sea lakes, estimates individual lake volume, and provides a first quantification of water storage in a region of the lake-dominated ACP. We measured bathymetric profiles in 19 sand sea lakes using a sonar recorder to capture various lake depth gradients. Bathymetric surveys collected by oil industry consultants, lake monitoring programs, and habitat studies serve as additional datasets. These field measured lake depth data points were used to classify Color Infrared Photography, WorldView-2 satellite imagery, and Landsat-OLI satellite imagery to develop a spectral depth-classification algorithm and facilitate the interpolation of the bathymetry for study lakes in the inner ACP. Finally, we integrate the remotely sensed bathymetry and imagery-derived lake surface area to estimate individual and regional-scale lake volume. In addition to the natural function of these lakes in water storage, energy balance, and habitat provision, the need for winter water supply to build ice roads for oil

  6. Plant aquaporins: new perspectives on water and nutrient uptake in saline environment.

    Science.gov (United States)

    del Martínez-Ballesta, M C; Silva, C; López-Berenguer, C; Cabañero, F J; Carvajal, M

    2006-09-01

    The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.

  7. The effect of process water salinity on flotation of copper ore from Lubin mining region (SW Poland

    Directory of Open Access Journals (Sweden)

    Bakalarz Alicja

    2017-01-01

    Full Text Available The process water used for the flotation of sedimentary copper ore in ore concentration plants in KGHM Polska Miedz S.A. were characterized. The process water used in the flotation circuits is heavily saline. It contains between 25 and 45 g/dm3 of soluble components, and the main constituent, in about 75%, is NaCl. Process water used for flotation consists of reclaimed water from the tailing dam and mine water. The effect of process water salinity on the processes of copper flotation from the Lubin mine area was described. The results of laboratory flotation experiments conducted in tap water and in water of different salinity levels were compared. The effect of the salinity of water within specified concentration limits was generally found to be beneficial for upgrading of the examined ore.

  8. Bacterial diversity and ecological function in lake water bodies

    OpenAIRE

    Lijuan Ren; Dan He; Peng Xing; Yujing Wang; Qinglong Wu

    2013-01-01

    The healthy development of lake ecosystems is a global issue. Bacteria are not only an integral component of food webs, but also play a key role in controlling and regulating water quality in lake ecosystems. Hence, in order to provide some suggestions for maintaining the long-term and healthy development of lake ecosystems, this review discusses and analyses concepts and assessment of bacterial diversity, the distribution of bacteria communities, mechanisms of formation, and the ecological f...

  9. Monitoring and Modelling of Salinity Behaviour in Drinking Water Ponds in Southern Bangladesh

    Science.gov (United States)

    Hoque, M. A.; Williams, A.; Mathewson, E.; Rahman, A. K. M. M.; Ahmed, K. M.; Scheelbeek, P. F. D.; Vineis, P.; Butler, A. P.

    2015-12-01

    Drinking water in southern Bangladesh is provided by a variety of sources including constructed storage ponds, seasonal rainwater and, ubiquitously saline, shallow groundwater. The ponds, the communal reservoirs for harvested rainwater, also tend to be saline, some as high as 2 g/l. Drinking water salinity has several health impacts including high blood pressure associated major risk factor for several cardio-vascular diseases. Two representative drinking water ponds in Dacope Upazila of Khulna District in southwest Bangladesh were monitored over two years for rainfall, evaporation, pond and groundwater level, abstraction, and solute concentration, to better understand the controls on drinking water salinity. Water level monitoring at both ponds shows groundwater levels predominantly below the pond level throughout the year implying a downward gradient. The grain size analysis of the underlying sediments gives an estimated hydraulic conductivity of 3E-8 m/s allowing limited seepage loss. Water balance modelling indicates that the seepage has a relatively minor effect on the pond level and that the bulk of the losses come from the combination of evaporation and abstraction particularly in dry season when precipitation, the only inflow to the pond, is close to zero. Seasonal variation in salinity (electrical conductivities, EC, ranged between 1500 to 3000 μS/cm) has been observed, and are primarily due to dilution from rainfall and concentration from evaporation, except on one occasion when EC reached 16,000 μS/cm due to a breach in the pond levee. This event was analogous to the episodic inundation that occurs from tropical cyclone storm surges and appears to indicate that such events are important for explaining the widespread salinisation of surface water and shallow groundwater bodies in coastal areas. A variety of adaptations (either from practical protection measures) or novel alternative drinking sources (such as aquifer storage and recovery) can be applied

  10. The Water Level Fall of Lake Megali Prespa (N Greece): an Indicator of Regional Water Stress Driven by Climate Change and Amplified by Water Extraction?

    Science.gov (United States)

    van der Schriek, Tim; Giannakopoulos, Christos

    2014-05-01

    The Mediterranean stands out globally due to its sensitivity to (future) climate change, with future projections predicting an increase in excessive drought events and declining rainfall. Regional freshwater ecosystems are particularly threatened: precipitation decreases, while extreme droughts increase and human impacts intensify (e.g. water extraction, drainage, pollution and dam-building). Many Mediterranean lake-wetland systems have shrunk or disappeared over the past two decades. Protecting the remaining systems is extremely important for supporting global biodiversity and for ensuring sustainable water availability. This protection should be based on a clear understanding of lake-wetland hydrological responses to natural and human-induced changes, which is currently lacking in many parts of the Mediterranean. The interconnected Prespa-Ohrid Lake system is a global hotspot of biodiversity and endemism. The unprecedented fall in water level (~8m) of Lake Megali Prespa threatens this system, but causes remain debated. Modelling suggests that the S Balkan will experience rainfall and runoff decreases of ~30% by 2050. However, projections revealing the potential impact of these changes on future lake level are unavailable as lake regime is not understood. A further drop in lake level may have serious consequences. The Prespa Lakes contribute ~25% of the total inflow into Lake Ohrid through underground karst channels; falling lake levels decrease this discharge. Lake Ohrid, in turn, feeds the Drim River. This entire catchment may therefore be affected by falling lake levels; its water resources are of great importance for Greece, Albania, FYROM and Montenegro (e.g. tourism, agriculture, hydro-energy, urban & industrial use). This new work proves that annual water level fluctuations of Lake Megali Prespa are predominantly related to precipitation during the first 7 months (Oct-Apr) of the hydrological year (Oct-Sep). Lake level is very sensitive to regional and

  11. Triple Isotope Water Measurements of Lake Untersee Ice using Off-Axis ICOS

    Science.gov (United States)

    Berman, E. S.; Huang, Y. W.; Andersen, D. T.; Gupta, M.; McKay, C. P.

    2015-12-01

    Lake Untersee (71.348°S, 13.458°E) is the largest surface freshwater lake in the interior of the Gruber Mountains of central Queen Maud Land in East Antarctica. The lake is permanently covered with ice, is partly bounded by glacier ice and has a mean annual air temperature of -10°C. In contrast to other Antarctic lakes the dominating physical process controlling ice-cover dynamics is low summer temperatures and high wind speeds resulting in sublimation rather than melting as the main mass-loss process. The ice-cover of the lake is composed of lake-water ice formed during freeze-up and rafted glacial ice derived from the Anuchin Glacier. The mix of these two fractions impacts the energy balance of the lake, which directly affects ice-cover thickness. Ice-cover is important if one is to understand the physical, chemical, and biological linkages within these unique, physically driven ecosystems. We have analyzed δ2H, δ18O, and δ17O from samples of lake and glacier ice collected at Lake Untersee in Dec 2014. Using these data we seek to answer two specific questions: Are we able to determine the origin and history of the lake ice, discriminating between rafted glacial ice and lake water? Can isotopic gradients in the surface ice indicate the ablation (sublimation) rate of the surface ice? The triple isotope water analyzer developed by Los Gatos Research (LGR 912-0032) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures δ2H, δ18O, and δ17O from water, as well as the calculated d-excess and 17O-excess. The laboratory precision in high performance mode for both δ17O and δ18O is 0.03 ‰, and for δ2H is 0.2 ‰. Methodology and isotope data from Lake Untersee samples are presented. Figure: Ice samples were collected across Lake Untersee from both glacial and lake ice regions for this study.

  12. Assessing trends in fishery resources and lake-water aluminum from paleolimnological analyses of siliceous algae

    International Nuclear Information System (INIS)

    Kingston, J.C.; Birks, H.J.B.; Uutala, A.J.; Cummings, B.F.; Smol, J.P.

    1992-01-01

    Lake water aluminum concentrations have a significant influence on the composition of microfossil assemblages of diatoms and chrysophytes deposited in lake sediments. With the paleolimnological approach of multilake datasets in the Adirondack region of New York, USA, the authors use canonical correspondence analysis to describe past trends in lake water Al. Four lakes, previously investigated regarding acidification and fishery trends, are used to demonstrate that paleolimnological assessment can also provide direction, timing, and magnitude of trends for both toxic metals and fish resources. Additionally, the authors use weighted average regression and calibration to obtain quantitative reconstructions of past lake water Al concentrations. Such reconstructions provide further insight into fishery resource damage and can be compared with modelling results. According to paleolimnological reconstructions, some of the naturally most acidic lakes in the Adirondack region had preindustrial lake water concentrations of inorganic monomeric Al near 4/micromol times L. Although these high concentrations are surprising from a geochemical point of view, they may partially explain the preindustrial absence of fish, as has been independently determined by paleolimnological analysis of phantom midges (Chaoborus). Fishery resource deterioration in acidified Adirondack lakes was coincident with major increases in lake water Al concentrations

  13. Water resources of the Lake Erie shore region in Pennsylvania

    Science.gov (United States)

    Mangan, John William; Van Tuyl, Donald W.; White, Walter F.

    1952-01-01

    An abundant supply of water is available to the Lake Erie Shore region in Pennsylvania. Lake i£rie furnishes an almost inexhaustible supply of water of satisfactory chemical quality. Small quantities of water are available from small streams in the area and from the ground. A satisfactory water supply is one of the factors that affect the economic growth of a region. Cities and towns must have adequate amounts of pure water for human consumption. Industries must have suitable water ih sufficient quantities for all purposes. In order to assure. success and economy, the development of water resources should be based on adequate knowledge of the quantity and quality of the water. As a nation, we can not afford to run the risk of dissipating our resources, especially in times of national emergency, by building projects that are not founded on sound engineering and adequate water-resources information. The purpose of this report is to summarize and interpret all available water-resources information for the Lake Erie Shore region in Pennsylvania. The report will be useful for initial guidance in the location or expansion of water facilities for defense and nondefense industries and the municipalities upon which they are dependent. It will also be useful in evaluating the adequacy of the Geological Survey's part of the basic research necessary to plan the orderly development of the water resources of the Lake Erie Shore region. Most of the data contained inthis report have been obtained'by the U. S. Geological Survey in cooperation with the Pennsylvania Department of Forests and Waters, the Pennsylvania Department of Internal Affairs, and the Pennsylvania State Planning Board, Department of Commerce. The Pennsylv~nia Department of Health furnished information on water pollution. The report was prepared in the Water Resources Division of the U. S. Geological Survey b:y John W. Mangan (Surface Water). Donald W. VanTuyl (Ground Water). and Walter F. White, Jr. (Quality of

  14. Water sampling using a drone at Yugama crater lake, Kusatsu-Shirane volcano, Japan

    Science.gov (United States)

    Terada, Akihiko; Morita, Yuichi; Hashimoto, Takeshi; Mori, Toshiya; Ohba, Takeshi; Yaguchi, Muga; Kanda, Wataru

    2018-04-01

    Remote sampling of water from Yugama crater lake at Kusatsu-Shirane volcano, Japan, was performed using a drone. Despite the high altitude of over 2000 m above sea level, our simple method was successful in retrieving a 250 mL sample of lake water. The procedure presented here is easy for any researcher to follow who operates a drone without additional special apparatus. We compare the lake water sampled by drone with that sampled by hand at a site where regular samplings have previously been carried out. Chemical concentrations and stable isotope ratios are largely consistent between the two techniques. As the drone can fly automatically with the aid of navigation by Global Navigation Satellite System (GNSS), it is possible to repeatedly sample lake water from the same location, even when entry to Yugama crater lake is restricted due to the risk of eruption.[Figure not available: see fulltext.

  15. Water circulation and recharge pathways of coastal lakes along the southern Baltic Sea in northern Poland

    Directory of Open Access Journals (Sweden)

    Cieśliński Roman

    2016-12-01

    Full Text Available The purpose of this paper is to describe water circulation patterns for selected lakes found along the Baltic coast in northern Poland and to determine primary recharge mechanisms or pathways that produce an influx or loss of lake water. A secondary purpose of the paper is to determine the magnitude of recharge for each studied source of water – river water influx, surface runoff from direct catchments, forced influx from polders surrounding lakes, and periodic marine water intrusions from the nearby Baltic Sea. It is also important to determine the magnitude of water outflow from lakes to the sea via existing linkages as well as to compare horizontal influx and outflow data. The study area consisted of five lakes located along the Baltic Sea in northern Poland: Łebsko, Gardno, Bukowo, Kopań, Resko Przymorskie. The main driving force of the studied lakes are large rivers that drain lake catchment areas and periodic brackish water intrusions by the Baltic Sea.

  16. Devils Lake Climate, Weather, and Water Decision Support System

    Science.gov (United States)

    Horsfall, F. M.; Kluck, D. R.; Brewer, M.; Timofeyeva, M. M.; Symonds, J.; Dummer, S.; Frazier, M.; Shulski, M.; Akyuz, A.

    2010-12-01

    North Dakota’s Devils Lake area represents an example of a community struggling with a serious climate-related problem. The Devils Lake water level elevation has been rising since 1993 due to a prolonged wet period, and it is now approaching the spill stage into the Cheyenne River and ultimately into the Red River of the North. The impacts of the rising water have already caused significant disruption to the surrounding communities, and even greater impacts will be seen if the lake reaches the spill elevation. These impacts include flooding, water quality issues, impacts to agriculture and ecosystems, and impacts to local and regional economies. National Oceanic and Atmospheric Administration (NOAA), through the National Weather Service (NWS), the National Environmental Satellite, Data, and Information Service (NESDIS), and the Office of Oceanic and Atmospheric Research (OAR), provides the U.S. public with climate, water, and weather services, including meteorological, hydrological and climate data, warnings, and forecasts of weather and climate from near- to longer-term timescales. In support of the people of Devils Lake, the surrounding communities, the people of North Dakota, and the other Federal agencies with responsibilities in the area, NOAA launched the first ever climate-sensitive decision support web site (www.devilslake.noaa.gov) in July 2010. The website is providing integrated weather, water, and climate information for the area, and has links to information from other agencies, such as USGS, to help decision makers as they address this ongoing challenge. This paper will describe the website and other ongoing activities by NOAA in support of this community.

  17. Water quality monitoring: A comparative case study of municipal and Curtin Sarawak's lake samples

    Science.gov (United States)

    Anand Kumar, A.; Jaison, J.; Prabakaran, K.; Nagarajan, R.; Chan, Y. S.

    2016-03-01

    In this study, particle size distribution and zeta potential of the suspended particles in municipal water and lake surface water of Curtin Sarawak's lake were compared and the samples were analysed using dynamic light scattering method. High concentration of suspended particles affects the water quality as well as suppresses the aquatic photosynthetic systems. A new approach has been carried out in the current work to determine the particle size distribution and zeta potential of the suspended particles present in the water samples. The results for the lake samples showed that the particle size ranges from 180nm to 1345nm and the zeta potential values ranges from -8.58 mV to -26.1 mV. High zeta potential value was observed in the surface water samples of Curtin Sarawak's lake compared to the municipal water. The zeta potential values represent that the suspended particles are stable and chances of agglomeration is lower in lake water samples. Moreover, the effects of physico-chemical parameters on zeta potential of the water samples were also discussed.

  18. Monitoring of Water-Level Fluctuation of Lake Nasser Using Altimetry Satellite Data

    Science.gov (United States)

    El-Shirbeny, Mohammed A.; Abutaleb, Khaled A.

    2018-05-01

    Apart from the Renaissance Dam and other constructed dams on the River Nile tributaries, Egypt is classified globally as a state of scarce water. Egypt's water resources are very limited and do not contribute a significant amount to its water share except the River Nile (55.5 billion m3/year). While the number of population increases every year, putting more stress on these limited resources. This study aims to use remote-sensing data to assess the change in surface area and water-level variation in Lake Nasser using remote-sensing data from Landsat-8 and altimetry data. In addition, it investigates the use of thermal data from Landsat-8 to calculate water loss based on evaporation from Lake Nasser. The eight Landsat-8 satellite images were used to study the change in surface area of Lake Nasser representing winter (January) and summer (June/July) seasons in two consecutive years (2015 and 2016). Time series analyses for 10-day temporal resolution water-level data from Jason-2/OSTM and Jason-3 altimetry was carried out to investigate water-level trends over the long term (1993 and 2016) and short term (2015-2016) in correspondence with the change of the surface area. Results indicated a shrink in the lake surface area in 2016 of approximately 14% compared to the 2015 area. In addition, the evaporation rate in the lake is very high causing a loss of approximately 20% of the total water share from the river Nile.

  19. Early steroid sulfurisation in surface sediments of a permanebtly stratified lake (Ace Lake, Antarctica)

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Rijpstra, W.I.C.; Robertson, L.; Volkman, J.K.

    2000-01-01

    Surface sediments (0 25 cm) from Ace Lake (eastern Antarctica), a saline euxinic lake, were analyzed to study the early incorporation of reduced inorganic sulfur species into organic matter. The apolar fractions were shown to consist predominantly of dimeric (poly)sulfide linked C27-C29 steroids.

  20. Stable isotopes, δ18O and δ2H, in the study of water balance of Lake Massoko, Tanzania: Investigation of the exchange between lake and underground water

    International Nuclear Information System (INIS)

    Bergonzini, L.; Gibert, E.; Winckel, A.

    2002-01-01

    Full text: The stable oxygen and deuterium isotope compositions of a lake depend upon its water balance. Therefore the balance equations of stable isotopes, which imply calculation of the composition of evaporating moisture α E , provide information for assessing the water balance. In most cases, this approach is used to investigate the relationships between lakes and groundwater. Lake Massoko (8 deg. 20'S, 33 deg. 45'E, 870 m.a.s.l.) is a freshwater maar-lake without surface outlet. The lake surface and its runoff area cover 0.38 and 0.55 km 2 respectively. In contrast with the mean annual rainfall in the other parts of south Tanzania (1000-1200 mm y -1 ), the presence of Lake Malawi to the South, and the high ranges to the North (Mounts Poroto, Rungwe and Livingstone) imply local climatic features. Air masses overloaded with humidity bypassing Lake Malawi are submitted, especially in April, to ascending currents, producing rainfalls up to 2450 mm y -1 over Massoko area. Because of the evaporation rate from the lake's surface (around 2100 mm y -1 ) and without taking into account the runoff from the drainage basin, hydrological balance is positive and imply underground lost. One of most difficult points in the establishment of the isotope balances is the calculation of the composition of the evaporated water (δ E ), which requires an estimation of the isotopic composition of the water vapour in the atmosphere over the lake (δ Atm ). Without direct measurements, two ways can be used for the determination of the vapour composition (i) equilibrium with precipitation and reconstitution from them, or (ii) calculation from the balances of a terminal lake of the region. Both approaches are presented and compared, but only the second one allows physical solutions. δ Atm determined from Lake Rukwa hydrological and isotope balances has been used to calculate values for δ E over Lake Massoko. The estimation of δ Atm obtained from Lake Rukwa budgets presents a deuterium

  1. Effect of Saline Water on Yield and Nitrogen Acquisition by Sugar Beet (Beta vulgaris L.) Using 15N Technique

    International Nuclear Information System (INIS)

    Gadalla, A. M.; Galal, Y. G. M.; Abdel Aziz, A.; Hamdy, A.

    2007-01-01

    Sugar beet growth response to the interactive effects of salinity and N-fertilization was investigated using 15N tracer technique under greenhouse condition. Data showed that dry matter yield of sugar beet shoots and roots were frequently affected by N and water regime. Total N uptake by leaves was increased under almost water salinity treatments in spite of increasing salinity levels. It appears that in case of W I , N I I the N-uptake by roots was significantly decreased along with raising salinity levels from 4 to 8 dS/m. The portions of N derived from fertilizer (whole plant) showed that the trend was affected by salinity level of irrigation water, and fertilization treatments. The highest amount of N derived from fertilizer was obtained with the 4 dS/m level under N I I with the two water regimes. The efficient use of fertilizer-N was slightly but positively affected by raising salinity levels of irrigation water. Sugar percent was increased with increasing salinity levels of irrigation water under both N I and N I I treatments, but it was higher in case of N I than NII under different salinity levels. Generally, Irrigation with saline water in combination with water regime of 75-80% of field capacity and splitting nitrogen technique are better for enhancement of sugar beet production grown under such adverse conditions

  2. Validating an erosion model using the environmental radionuclide 210Pb in the Lake Wollumboola catchment, southwestern NSW, Australia

    International Nuclear Information System (INIS)

    Simms, A.; Woodroffe, C.; Jones, B.G.; Heijnis, H.; Harrison, J.; Brooke, B.

    2005-01-01

    Soil erosion is a key limitation to achieving sustainable land use and effective soil management, and is the major source of sediment to Australian water bodies resulting in degradation of water quality. Sediment delivery is an important constraint on the sustainable management of coastal lakes along the south coast of New South Wales. Assessment and mitigation of sediment input is a major issue for the sustainable management of water bodies such as coastal lakes and soil erosion caused by rainfall and runoff is of particular concern. In this paper we examine the application of 210 Pb analyses of sediment samples to test the extent to which a modified version of the Universal Soil Loss Equation for Australian conditions (OxMUSCLE) is valid. The model is applied to Lake Wollumboola to estimate sediment yield from the catchment into its terminal lake, which is a saline coastal lake 172 km south of Sydney. 14 refs., 1 fig., 1 tab

  3. The Potential of Satellite Imagery to Estimate Chlorophyll-a and Water Clarity Data For the Assessment of Lake Water Quality

    Science.gov (United States)

    Shrift, M.; Weathers, K. C.; Norouzi, H.; Ewing, H. A.

    2017-12-01

    Lake water quality is declining nationwide and has become a tremendous point of interest. Remote sensing (RS) data have provided the ability to efficiently study oceans and terrestrial systems over space and time. However, fresh water systems, especially small, nutrient poor lakes have only recently been assessed using remote sensing technology. Prior research suggests that there is poor satellite sensitivity to lakes with low chlorophyll a (chl a) values. This study focuses on the potential to utilize Landsat 8 satellite imagery to predict chl a and Secchi disk transparency values from Lake Auburn, Maine, an oligo-mesotrophic lake that is the primary source of drinking water for the cities of Lewiston and Auburn and has had an increasing number of algal blooms. A total of 28 Landsat scenes from 2013-2017 within 4 days of in-lake measurements were collected for band value extraction and radiometric correction. Band combinations were explored and analyzed to obtain the most reliable prediction of in-lake chl a and Secchi disk values. A nonlinear combination of bands 5 and 4 for chl a, and bands 3 and 2 for Secchi disk transparency show the most promising algorithms, with correlations coefficients of 0.57 and 0.74, respectively. The resultant algorithms show promise for utilizing RS data to estimate water quality for a large array of low-nutrient lakes in northern North America, and thereby to gain a better understanding of water quality of our vital fresh water resources.

  4. NOAA NDBC SOS, 2007-present, sea_water_practical_salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_water_practical_salinity data. Because of the nature of SOS...

  5. Introducing TEX86 as a Water pH Proxy for Alkaline Lakes on the Tibetan Plateau

    Science.gov (United States)

    Wang, M.; Tian, Q.; Li, X.; Liang, J.; Yue, H.; Hou, J.

    2017-12-01

    Lake water pH represents one of the most important indicators for lake evolution and factors influencing the evolution of aquatic ecosystem, however, which is less studied on the Tibetan Plateau (TP). Applicability of diatom assemblages, an effective proxy of lake water pH variation in freshwater lakes, is highly limited on the TP because the widespread distribution of alkaline lakes is unfavorable for preservation of diatom shells. Glycerol dialkyl glycerol tetraethers (GDGTs) are a series of specific membrane lipids biosynthesized by archaea and bacteria, which appear to be a promising method to reflect lake water pH variation. Here we present the distribution of iGDGTs compounds in surface sediments across the TP to discuss the effect of various environmental factors on iGDGTs distribution. The results show that TEX86 is a promising proxy for lake water pH in high-elevation alkaline lakes, as water pH appears to be the most important factor to affect the cyclization of iGDGTs. We proposed the water pH calibration for lakes (salinitywater pH. The TEX86-derived pH at Bangong Co varied from 8.69 to 9.49 since the last 16 kyr BP, which is generally consistent with precipitation isotope variation that was reconstructed from leaf wax D/H ratios in the same sediment core, suggesting the lake water pH was mainly controlled by local hydrology. We believe that TEX86 will be able to infer past water pH of alkaline lakes over TP and could be a potentially useful tool for reconstructing pH in alkaline lakes worldwide after regional calibrated.

  6. Spatial variations in water composition at a northern Canadian lake impacted by mine drainage

    International Nuclear Information System (INIS)

    Moncur, M.C.; Ptacek, C.J.; Blowes, D.W.; Jambor, J.L.

    2006-01-01

    Release of acid drainage from mine-waste disposal areas is a problem of international scale. Contaminated surface water, derived from mine wastes, originates both as direct surface runoff and, indirectly, as subsurface groundwater flow. At Camp Lake, a small Canadian Shield lake that is in northern Manitoba and is ice-covered 6 months of the year, direct and indirect release of drainage from an adjacent sulfide-rich tailings impoundment has severely affected the quality of the lake water. Concentrations of the products from sulfide oxidation are extremely high in the pore waters of the tailings impoundment. Groundwater and surface water derived from the impoundment discharge into a semi-isolated shallow bay in Camp Lake. The incorporation of this aqueous effluent has altered the composition of the lake water, which in turn has modified the physical limnology of the lake. Geochemical profiles of the water column indicate that, despite its shallow depth (6 m), the bay is stratified throughout the year. The greatest accumulation of dissolved metals and SO 4 is in the lower portion of the water column, with concentrations up to 8500 mg L -1 Fe, 20,000 mg L -1 SO 4 , 30 mg L -1 Zn, 100 mg L -1 Al, and elevated concentrations of Cu, Cd, Pb and Ni. Meromictic conditions and very high solute concentrations are limited to the bay. Outside the bay, solute concentrations are lower and some stratification of the water column exists. Identification of locations and composition of groundwater discharge relative to lake bathymetry is a fundamental aspect of understanding chemical evolution and physical stability of mine-impacted lakes

  7. Yield of cherry tomatoes as a function of water salinity and irrigation frequency

    Directory of Open Access Journals (Sweden)

    Alexandre N. Santos

    2016-02-01

    Full Text Available ABSTRACT The use of brackish water in agriculture can cause salinization of soils and reduce plant yield. This problem can be minimized by hydroponic cultivation, which improves plant development. The aim of this study was to evaluate the yield of cherry tomatoes grown in hydroponic system with substrate under salinity levels of the nutrient solution (NS, exposure time to salinity and irrigation frequency. The experiment was conducted in a greenhouse, in a randomized complete block design, in a 6 x 2 x 2 factorial scheme with five replicates: six salinity levels of NS prepared with brackish water (3.01; 4.51; 5.94; 7.34; 8.71 and 10.40 dS m-1; two exposure times to NS (60 and 105 days and two irrigation frequencies (one irrigation per day and irrigation every two days. Yield and production components of cherry tomatoes cv. 'Rita' were evaluated. NS salinity affected plant yield, reducing fruit production, which was more significant when plants were subjected to a longer time of exposure to salinity. There was no difference between NS applications on fruit production, when these applications were performed once a day or once every two days.

  8. Response of CO and H2 uptake to extremes of water stress in saline and non-saline soils

    Science.gov (United States)

    King, G.

    2017-12-01

    Neither carbon monoxide (CO) nor hydrogen (H2) have direct impacts on radiative forcing, but both play important roles in tropospheric chemistry. Soils affect both the fate and significance of atmospheric CO and H2 by acting as strong global gas sinks ( 15% and >75 %, respectively), but much remains unknown about the microbiology of these gases, including responses to key environmental drivers. The role of water availability, measured as water potential, has been addressed to a limited extent by earlier studies with results suggesting that CO and H2 uptake are strongly limited by water stress. However recent results indicate a much greater tolerance of water stress than previously suspected. Ex situ assays have shown that non-saline playa soils from the Alvord Basin (Oregon, USA) consumed atmospheric and exogenous hydrogen and CO under conditions of severe water stress. CO uptake occurred at water potentials values considered optimal for terrestrial bacterial growth. Surface soils that had been exposed to water potentials as low as -300 MPa also oxidized CO and H2 after brief equilibration at higher potentials (less water stress), indicating remarkable tolerance of desiccating conditions. Tolerance to water stress for CO and H2 uptake was also observed for soils from a montane rainforest (Hawai`i, USA). However, unlike playa soils rainforest soils seldom experience extended drought that would select for desiccation tolerance. While CO uptake by forest soils was more sensitive to water stress (limits -10MPa) than in playa soils, H2 uptake was observed at -90 MPa to -100 MPa. Tolerance at these levels might be due to the formation of intracellular water that limits the local effects of stress. Comparisons of water stress responses between saline and non-saline soils further suggested that communities of CO- and H2-oxidizing were generally robust with respect to stresses resulting from solute and matric effects. Collectively the results indicate that models of global

  9. Stable isotope evolution and paleolimnology of ancient Lake Creede

    Science.gov (United States)

    Rye, Robert O.; Bethke, Philip M.; Finkelstein, David B.

    2000-01-01

    The lacustrine carbonate and travertine (tufa) deposits of ancient Lake Creede preserve a remarkable record of the isotopic evolution of the lake. That record indicates that the δ18O of the lake water, and by analogy its salinity, evolved through evaporation. Limited and less reliable data on hydrous minerals and fluid inclusions in early diagenetic carbonates indicate that the δD of the lake waters also evolved through evaporation. The isotope data place restrictions on models of the physical limnology of the lake and its evolution.The closed-basin Lake Creede formed shortly after collapse of the 26.9 Ma Creede caldera. Throughout most of its history it occupied the northern three quarters of the moat between the resurgent dome and wall of the caldera. The Creede Formation was deposited in the basin, dominantly as lacustrine sediments. Travertine mounds interfinger with Creede Formation sediments along the inner and outer margins of the lake basin. An estimated one-half of the original thickness of the Creede Formation has been lost mainly to erosion although scattered remnants of the upper portion remain on the caldera walls. Two diamond core holes (CCM-1 and CCM-2) sampled the uneroded portion of the Creede Formation as part of the U.S. Continental Drilling Program. Volcaniclastic material, including tuff units deposited directly into the lake and ash washed in from the watershed, compose the main lithologies of the Creede Formation. These volcaniclastic strata were produced by episodic ring-fracture volcanism.Lacustrine carbonates make up about 15% of the section sampled by drill core. They occur as 1 mm to 2 cm low-Mg calcite laminae alternating with siliciclastic laminae in scattered intervals throughout the preserved section. The carbonate laminae are accumulations of 5–20 µm crystallites (microsparites) and brine shrimp fecal pellets (peloids) composed mainly of microsparite particles. Low-Mg calcite also occurs as an early diagenetic replacement of

  10. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Marco Antonio Russo

    2009-12-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  11. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Vito Sardo

    2011-02-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  12. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    Science.gov (United States)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage

  13. An evaluation of the chemical, radiological, and ecological conditions of West Lake on the Hanford site

    Energy Technology Data Exchange (ETDEWEB)

    Poston, T.M.; Price, K.L.; Newcomer, D.R.

    1991-03-01

    West Lake and its immediate surrounding basin represent a unique habitat that is dominated by highly saline water and soil. The basin offers a valuable research site for studies of a rare and complex wetland area in the desert. This report is an evaluation of the chemical, radiological, and ecological conditions at West Lake and describes how ground water influences site properties. The scope of this evaluation consisted of a sampling program in 1989 and a review of data from the perspective of assessing the impact of Hanford Site operations on the physical, chemical, and ecological conditions of West Lake and its surrounding basin. The water level in West Lake fluctuates in relation to changes in the water table. The connection between West Lake and ground water is also supported by the presence of {sup 3}H and {sup 99}Tc in the ground water and in the lake. There are relatively high concentrations of uranium in West Lake; the highest concentrations are found in the northernmost isolated pool. Analyses of water, sediment, vegetation, and soil indicate possible shifts of isotropic ratios that indicate a reduction of {sup 235}U. Uranium-236 was not detected in West Lake water; its presence would indicate neutron-activated {sup 235}U from fuel reprocessing at Hanford. Trace metals are found at elevated concentrations in West Lake. Arsenic, chromium, copper, and zinc were found at levels in excess of US Environmental Protection Agency water quality criteria. Levels of radiological and chemical contamination in the West Lake basin are relatively low. Concentrations of fission isotopes exceed those that could be explained by atmospheric fallout, but fall short of action levels for active waste management areas. 31 refs., 8 figs., 18 tabs.

  14. An evaluation of the chemical, radiological, and ecological conditions of West Lake on the Hanford site

    International Nuclear Information System (INIS)

    Poston, T.M.; Price, K.L.; Newcomer, D.R.

    1991-03-01

    West Lake and its immediate surrounding basin represent a unique habitat that is dominated by highly saline water and soil. The basin offers a valuable research site for studies of a rare and complex wetland area in the desert. This report is an evaluation of the chemical, radiological, and ecological conditions at West Lake and describes how ground water influences site properties. The scope of this evaluation consisted of a sampling program in 1989 and a review of data from the perspective of assessing the impact of Hanford Site operations on the physical, chemical, and ecological conditions of West Lake and its surrounding basin. The water level in West Lake fluctuates in relation to changes in the water table. The connection between West Lake and ground water is also supported by the presence of 3 H and 99 Tc in the ground water and in the lake. There are relatively high concentrations of uranium in West Lake; the highest concentrations are found in the northernmost isolated pool. Analyses of water, sediment, vegetation, and soil indicate possible shifts of isotropic ratios that indicate a reduction of 235 U. Uranium-236 was not detected in West Lake water; its presence would indicate neutron-activated 235 U from fuel reprocessing at Hanford. Trace metals are found at elevated concentrations in West Lake. Arsenic, chromium, copper, and zinc were found at levels in excess of US Environmental Protection Agency water quality criteria. Levels of radiological and chemical contamination in the West Lake basin are relatively low. Concentrations of fission isotopes exceed those that could be explained by atmospheric fallout, but fall short of action levels for active waste management areas. 31 refs., 8 figs., 18 tabs

  15. On the optimization of empirical data concerning radionuclides in water of Lake Juodis

    International Nuclear Information System (INIS)

    Tarasiuk, N.; Koviazina, E.; Shliahtich, E.

    2004-01-01

    Quality of site-dependent water sampling for radionuclide analysis assessing their removal from the complicated aquatic system of eutrophic Lake Juodis is analyzed comparing time courses of site-specific data on standard variables (pH, temperature, redox potential, oxygen concentration, conductivity) in 2003-2004. Compared data were measured simultaneously: a) in the open bottom terrace of the lake adjoining its outflow; b) before the beaver dam bounding the lake rush grown area and c) at the site of the outflowing brook usually used for water sampling for radionuclide analysis. The rush grown area adjoining the outflowing brook is a natural filter for plutonium transport from the lake during warm season as well as for radiocesium activity fraction associated with the suspended matter. Using information on site-specific variations of vertical profiles of standard variables measured in the shallow bottom terrace of the lake, seasonal peculiarities of vertical radionuclide transport in the water column and their release from the sediments are discussed. In winter beaver activities in the lake as well as formation of the anaerobic zone in the rush grown area are considered as supplementary mechanisms facilitating vertical transport of radionuclides in the temperature stratificated water column and their removal from similar lakes. (author)

  16. Laboratory studies of dissolved radiolabelled microcystin-LR in lake water

    DEFF Research Database (Denmark)

    Hyenstrand, Per; Rohrlack, Thomas; Beattie, Kenneth A

    2003-01-01

    The fate of dissolved microcystin-LR was studied in laboratory experiments using surface water taken from a eutrophic lake. Based on initial range finding, a concentration of 50 microg l(-1) dissolved 14C-microcystin-LR was selected for subsequent time-course experiments. The first was performed ...... fractions. The study demonstrated that biodegradation of dissolved microcystin-LR occurred in water collected at a lake surface with carbon dioxide as a major end-product....

  17. Integral Analysis of Field Work and Laboratory Electrical Resistivity Imaging for Saline Water Intrusion Prediction in Groundwater

    Science.gov (United States)

    Zawawi, M. H.; Zahar, M. F.; Hashim, M. M. M.; Hazreek, Z. A. M.; Zahari, N. M.; Kamaruddin, M. A.

    2018-04-01

    Saline water intrusion is a serious threat to the groundwater as many part of the world utilize groundwater as their main source of fresh water supply. The usage of high salinity level of water as drinking water can lead to a very serious health hazard towards human. Saline water intrusion is a process by which induced flow of seawater into freshwater aquifer along the coastal area. It might happen due to human action and/or by natural event. The climate change and rise up of sea level may speed up the saline water intrusion process. The conventional method for distinguishing and checking saltwater interference to groundwater along the coast aquifers is to gather and test the groundwater from series of observation wells (borehole) with an end goal to give the important information about the hydrochemistry data to conclude whether the water in the well are safe to consume or not. An integrated approach of field and laboratory electrical resistivity investigation is proposed for indicating the contact region between saline and fresh groundwater. It was found that correlation for both soilbox produced almost identical curvilinear trends for 2% increment of seawater tested using sand sample. This project contributes towards predicting the saline water intrusion to the groundwater by non-destructive test that can replaced the conventional method of groundwater monitoring using series of boreholes in the coastal area

  18. Abundance and Diversity of Denitrifying and Anammox Bacteria in Seasonally Hypoxic and Sulfidic Sediments of the Saline Lake Grevelingen

    Science.gov (United States)

    Lipsewers, Yvonne A.; Hopmans, Ellen C.; Meysman, Filip J. R.; Sinninghe Damsté, Jaap S.; Villanueva, Laura

    2016-01-01

    Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity, and potential activity of denitrifying, anammox, and sulfide-dependent denitrifying bacteria in the sediments of the seasonally hypoxic saline Lake Grevelingen, known to harbor an active microbial community involved in sulfur oxidation pathways. Depth distributions of 16S rRNA gene, nirS gene of denitrifying and anammox bacteria, aprA gene of sulfur-oxidizing and sulfate-reducing bacteria, and ladderane lipids of anammox bacteria were studied in sediments impacted by seasonally hypoxic bottom waters. Samples were collected down to 5 cm depth (1 cm resolution) at three different locations before (March) and during summer hypoxia (August). The abundance of denitrifying bacteria did not vary despite of differences in oxygen and sulfide availability in the sediments, whereas anammox bacteria were more abundant in the summer hypoxia but in those sediments with lower sulfide concentrations. The potential activity of denitrifying and anammox bacteria as well as of sulfur-oxidizing, including sulfide-dependent denitrifiers and sulfate-reducing bacteria, was potentially inhibited by the competition for nitrate and nitrite with cable and/or Beggiatoa-like bacteria in March and by the accumulation of sulfide in the summer hypoxia. The simultaneous presence and activity of organoheterotrophic denitrifying bacteria, sulfide-dependent denitrifiers, and anammox bacteria suggests a tight network of bacteria coupling carbon-, nitrogen-, and sulfur cycling in Lake Grevelingen sediments. PMID:27812355

  19. Abundance and diversity of denitrifying and anammox bacteria in seasonally hypoxic and sulfidic sediments of the saline Lake Grevelingen

    Directory of Open Access Journals (Sweden)

    Yvonne A. Lipsewers

    2016-10-01

    Full Text Available Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity and potential activity of denitrifying, anammox, and sulfide-dependent denitrifying bacteria in the sediments of the seasonally hypoxic saline Lake Grevelingen, known to harbor an active microbial community involved in sulfur oxidation pathways. Depth distributions of 16S rRNA gene, nirS gene of denitrifying and anammox bacteria, aprA gene of sulfur-oxidizing and sulfate-reducing bacteria, and ladderane lipids of anammox bacteria were studied in sediments impacted by seasonally hypoxic bottom waters. Samples were collected down to 5 cm depth (1 cm resolution at three different locations before (March and during summer hypoxia (August. The abundance of denitrifying bacteria did not vary despite of differences in oxygen and sulfide availability in the sediments, whereas anammox bacteria were more abundant in the summer hypoxia but in those sediments with lower sulfide concentrations. The potential activity of denitrifying and anammox bacteria as well as of sulfur-oxidizing, including sulfide-dependent denitrifiers and sulfate-reducing bacteria, was potentially inhibited by the competition for nitrate and nitrite with cable and/or Beggiatoa-like bacteria in March and by the accumulation of sulfide in the summer hypoxia. The simultaneous presence and activity of organoheterotrophic denitrifying bacteria, sulfide-dependent denitrifiers and anammox bacteria suggests a tight network of bacteria coupling carbon-, nitrogen- and sulfur cycling in Lake Grevelingen sediments.

  20. ECONOMETRIC MODELLING OD THE INFLUENCE OF LAKE WATER QUALITY CHANGES ON FISHING ECONOMY

    Directory of Open Access Journals (Sweden)

    Marek Antoni Ramczyk

    2017-06-01

    Full Text Available The econometric model can be a precise instrument for the analysis of the impact of the natural environment's degradation on fishing economy. This paper aims at analysing the influence of the water quality changes in lake Charzykowskie on the fishing economy. This dissertation present the results of a research on the lake water pollution's impact on fishing economy. The economic-ecological models have been constructed, explaining the changes of economic effects of the lake fishery in the conditions of an increasing water pollution in the epilimnion on the example of the catch of Rutilus rutilus, Abramis brama, Blicca bjoerkna, Coregonus albula, Coregonus lavaretus, Anguilla anguilla and Esox lucius in Lake Charzykowskie. Performed empirical research looked into the influence of the environmental factors on the size of fish catch. Calculations and analysis show clearly that though the habitat factors do influence the catch size of each studied fish species, they do it with different intensity and in various combinations. Both lake water quality and climate factors changes cause measurable effects on fishing industry of lake Charzykowskie. Among all the examined Rutilus rutilus, Abramis brama and Blicca bjoerkna the highest environmental requirements concerning water quality has Blicca bjoerkna. Whereas Abramis brama has slightly higher environmental requirements than Rutilus rutilus. Empirical calculations showed as well that Coregonus albula and Coregonus lavaretus have considerably higher water cleanness requirements than Rutilus rutilus, Abramis brama and Blicca bjoerkna. While when talking about Rutilus rutilus, Abramis brama and Blicca bjoerkna, most water characteristics still rather stimulated these species' development, when it comes to Coregonus albula and Coregonus lavaretus, in general they suppressed their development. The model has also proved quite high habitat requierements of Anquilla anquilla and correctness of the thesis that

  1. The effect of lake water quality and wind turbines on Rhode Island property sales price

    Science.gov (United States)

    Gorelick, Susan Shim

    This dissertation uses the hedonic pricing model to study the impact of lake water quality and wind turbines on Rhode Island house sales prices. The first two manuscripts are on lake water quality and use RI house sales transactions from 1988--2012. The third studies wind turbines using RI house sales transactions from 2000--2013. The first study shows that good lake water quality increases lakefront property price premium. It also shows that environmental amenities, such as forests, substitute for lake amenity as the property's distance from the lake increases. The second lake water quality study incorporates time variables to examine how environmental amenity values change over time. The results show that property price premium associated with good lake water quality does not change as it is constant in proportion to housing prices with short term economic fluctuations. The third study shows that wind turbines have a negative and significant impact on housing prices. However, this is highly location specific and varies with neighborhood demographics. All three studies have policy implications which are discussed in detail in the manuscripts below.

  2. Diatom-Based Paleoenvironmental Reconstruction of Lake Telmen for the Last 6230 Years

    Directory of Open Access Journals (Sweden)

    N.Soninkhishig

    2003-06-01

    Full Text Available The preserved diatom flora in a 14C dated (0-6230 yBP, 343 cm long core sequence from Lake Telmen, Mongolia, was investigated to determine the nature of the lake-ecosystem and watershed response to Late Holocene climate change. Modern Lake Telmen is a slightly saline (presently 4 g L-1 closed- basin lake located along a N-S and E-W aridity ecotone in north-central Mongolia, making it sensitive to climate-driven changes in effective moisture balance. Diatoms were not preserved regularly in two areas of the Lake Telmen sediment record (5380-41 50 yBP and 1050-425 yBP possibly due to high carbonate preservation; however, diatom preservation between these areas was good to excellent. Diatom-based paleosalinity reconstruction using species-specific salinity optima from the Northern Great Plains of North America and community analysis suggests the following climate-lake response model during the Late Holocene. From 6230 to 5520 radiocarbon years ago, warm-dry climate resulted in a small salty (20 g L-1 lake in the Telmen basin that was dominated by high salinity indicator species (e.g. Cyclotella caspia, Navicellapusilla, Brachysira aponina. From 3 860 to 1200 radiocarbon yBP, Lake Telmen recorded a period of a modulating climate that resulted in regular fluctuations in paleosalinity from 2 to 4 g L-1 in conjunction with lake level changes. Dominance in the diatom flora fluctuated between the freshwater planktonic form Cyclotella bodanica var. affinis and the salinity-tolerant benthic taxon Anomoeoneis sphaerophora f. costata during this period characterized by generally more humid climatic periods interspersed with dry-as-present conditions. The most modern samples (0-250 yBP preserve floristic assemblages similar to those found between 3860 to 1200 radiocarbon yBP and indicate that as recently as 250 years ago Lake Telmen had lower salinity values than modern day.

  3. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat.

    Science.gov (United States)

    Khataar, Mahnaz; Mohhamadi, Mohammad Hossien; Shabani, Farzin

    2018-02-08

    We studied the effects of soil matric potential and salinity on the water use (WU), water use efficiency (WUE) and yield response factor (Ky), for wheat (Triticum aestivum cv. Mahdavi) and bean (Phaseoulus vulgaris cv. COS16) in sandy loam and clay loam soils under greenhouse conditions. Results showed that aeration porosity is the predominant factor controlling WU, WUE, Ky and shoot biomass (Bs) at high soil water potentials. As matric potential was decreased, soil aeration improved, with Bs, WU and Ky reaching maximum value at -6 to -10 kPa, under all salinities. Wheat WUE remained almost unchanged by reduction of matric potential under low salinities (EC ≤ 8 dSm -1 ), but increased under higher salinities (EC ≥ 8 dSm -1 ), as did bean WUE at all salinities, as matric potential decreased to -33 kPa. Wheat WUE exceeds that of bean in both sandy loam and clay loam soils. WUE of both plants increased with higher shoot/root ratio and a high correlation coefficient exists between them. Results showed that salinity decreases all parameters, particularly at high potentials (h = -2 kPa), and amplifies the effects of waterlogging. Further, we observed a strong relationship between transpiration (T) and root respiration (Rr) for all experiments.

  4. Water balance along a chain of tundra lakes: A 20-year isotopic perspective

    Science.gov (United States)

    Gibson, J. J.; Reid, R.

    2014-11-01

    Stable isotope measurements and isotope mass balance (IMB) calculations are presented in support of an unprecedented 20-year water balance assessment for a tailings pond and a chain of downstream lakes at the Salmita-Tundra mine site, situated near Courageous Lake, Northwest Territories, Canada (65°03‧N; 111°11‧W). The method is shown to provide a comprehensive annual and interannual perspective of water balance fluxes along a chain of lakes during the period 1991-2010, without the need for continuous streamflow gauging, and reveals important lake-order-dependent patterns of land-surface runoff, discharge accumulation, and several key diagnostic ratios, i.e., evaporation/inflow, evaporation/evapotranspiration, land-surface-runoff/precipitation and discharge/ precipitation. Lake evaporation is found to be a significant component of the water balance, accounting for between 26% and 32% of inflow to natural lakes and between 72% and 100% of inflow to mine-tailings ponds. Evaporation/evapotranspiration averages between 7% and 22% and is found to be higher in low-precipitation years, and in watersheds with a higher proportion of lakes. Runoff ratios for land-surface drainages and runoff ratios for watersheds (including lakes) ranged between 14-47% and 20-47%, respectively, and were higher in low precipitation years, in watersheds with a higher proportion of lakes, and in watersheds less affected by mining development. We propose that in general these two runoff ratios will likely converge as lake order increases and as land cover conditions become regionally representative. Notably, the study demonstrates application of IMB, validated with streamflow measurements, to constrain local water balance in a remote low-arctic region. For IMB chain-of-lakes applications, it underlines the importance of accounting for evaporatively-enriched upstream sources to avoid overestimation of evaporation losses.

  5. Spatiotemporal assessment of water chemistry in intermittently open/closed coastal lakes of Southern Baltic

    Science.gov (United States)

    Astel, Aleksander M.; Bigus, Katarzyna; Obolewski, Krystian; Glińska-Lewczuk, Katarzyna

    2016-12-01

    Ionic profile, pH, electrolytic conductivity, chemical oxygen demand and concentration of selected heavy metals (Ni, Cu, Zn, Fe and Mn) were determined in water of 11 intermittently closed and open lakes and lagoons (ICOLLs) located in Polish coastline. Multidimensional data set was explored by the use of the self-organizing map (SOM) technique to avoid supervised and predictable division for fully isolated, partially and fully connected lakes. Water quality assessment based on single parameter's mean value allowed classification of majority of lakes to first or second class of purity according to regulation presenting classification approach applicable to uniform parts of surface waters. The SOM-based grouping revealed seven clusters comprising water samples of similar physico-chemical profile. Fully connected lakes were characterized by the highest concentration of components characteristic for sea salts (NaCl, MgCl2, MgSO4, CaSO4, K2SO4 and MgBr2), however spring samples from Łebsko were shifted to another cluster suggesting that intensive surface run-off and fresh-water inflow through Łupawa river decreases an impact of sea water intrusions. Forecasted characteristic of water collected in Resko Przymorskie lake was disturbed by high contamination by nitrites indicating accidental and local contamination due to usage of sodium nitrite for the curing of meat. Some unexpected sources of contamination was discovered in intermittently open and closed lakes. Presumably Zn contamination is due to use of wood preservatives to protect small wooden playgrounds or camping places spread around one of the lake, while increased concentration of Ni could be connected with grass and vegetation burning. Waters of Jamno lake are under the strongest anthropogenic impact due to inefficient removal of phosphates by waste water treatment plant and contamination by Fe and Mn caused by backwashing of absorption filters. Generally, the quality of ICOLLs' water was diversified, while

  6. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B., E-mail: otero@ien.gov.b, E-mail: cmnap@ien.gov.b, E-mail: brandao@ien.gov.b [Instituto de Engenharia Nuclear (DIRA/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos

    2011-07-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  7. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    International Nuclear Information System (INIS)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B.

    2011-01-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  8. Mercury in sediment, water, and fish in a managed tropical wetland-lake ecosystem.

    Science.gov (United States)

    Malczyk, Evan A; Branfireun, Brian A

    2015-08-15

    Mercury pollution has not been well documented in the inland lakes or fishes of Mexico, despite the importance of freshwater fish as a source of protein in local diets. Total mercury and methylmercury in waters, sediments, and the commercial fish catch were investigated in Lake Zapotlán, Mexico. Concentrations of total and methylmercury were very high in runoff and wastewater inputs, but very low in sediments and surface waters of the open water area of the lake. Concentrations of total mercury in tilapia and carp were very low, consistent with the low concentrations in lake water and sediments. Particle settling, sorption, the biogeochemical environment, and/or bloom dilution are all plausible explanations for the significant reductions in both total mercury and methylmercury. Despite very high loading of mercury, this shallow tropical lake was not a mercury-impaired ecosystem, and these findings may translate across other shallow, alkaline tropical lakes. Importantly, the ecosystem services that seemed to be provided by peripheral wetlands in reducing mercury inputs highlight the potential for wetland conservation or restoration in Mexico. Copyright © 2015. Published by Elsevier B.V.

  9. Algal massive growth in relation to water quality and salinity at Damietta, north of Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Ibraheem Deyab

    2015-02-01

    Full Text Available Objective: To relate the proliferation and dominance of certain algal species at the Damietta and its relation to water quality. Methods: Water and algal biomass were bimonthly sampled from five selected sites at Damietta Province, Egypt during 2012. Algae were identified and quantified. Waters, algae and sediment were analyzed. Results: The physicochemical properties of water showed limited seasonal but substantial local variation. The high levels of nitrogen and phosphorus and turbidity of water pointed to marked eutrophication, which could enhance massive algal growth. The temporal fluctuation in temperature, exposure to industrial and domestic sewage and salinity results in succession between blooming algal species. Spirulina platensis and Chlorella vulgaris alternated in a moderately saline water and Oscillatoria agardhii and Mougeotia scalaris in a fresh water body during summer and winter respectively. Likewise, Microcystis aureginosa and Ulva lactuca alternated in a moderately saline site during autumn and summer respectively. Cladophora albida dominated a fish pond of brackish water and Dunaliella salina dominated the most saline water over the whole period of study. Conclusions: Growth of the predominant algal species is correlated to water quality. These species are of considerable nutritive value, with moderate contents of protein, carbohydrate, macronutrients and micronutrients, which evaluates them for usage as food (green and macroalgae, fodder or bio-fertilizer (cyanophytes.

  10. Light attenuation in estuarine mangrove lakes

    Science.gov (United States)

    Frankovich, Thomas A.; Rudnick, David T.; Fourqurean, James W.

    2017-01-01

    Submerged aquatic vegetation (SAV) cover has declined in brackish lakes in the southern Everglades characterized by low water transparencies, emphasizing the need to evaluate the suitability of the aquatic medium for SAV growth and to identify the light attenuating components that contribute most to light attenuation. Underwater attenuation of downwards irradiance of photosynthetically active radiation (PAR) was determined over a three year period at 42 sites in shallow (freshwater flow into these areas may dilute CDOM concentrations and improve the salinity and light climate for SAV communities.

  11. Advances in authigenic silicate geochemistry: Evidence for Precessional Control of Pleistocene Lake Salinity at Olduvai Gorge, Tanzania

    Science.gov (United States)

    Deocampo, D.; Simpson, A. J.; Cuadros, J.; Beverly, E.; Ashley, G. M.; Delaney, J. S.; Longstaffe, F. J.

    2017-12-01

    Magnesium enrichment of authigenic clays is an indicator of elevated salinity in hydrologically closed lake basins. Studies at Olduvai Gorge over the last four decades have shown that chemically-precipitated clay minerals form a substantial portion of the sedimentary succession, in some intervals even dominating the sediment. Outcrops of lacustrine mud in two localities near the depocenter were examined using a new geochronological framework based on Ar/Ar dating of volcaniclastic sanidine (Deino, 2012). Olduvai's clay mineralogy is dominated by 2:1 clays, including smectite, illite, and interstratified illite-smectite. Previous work has shown that clay alteration includes octahedral Mg-enrichment, Fe-reduction, K-fixation, and low-temperature illitization. Here we show that long term environmental conditions in Paleolake Olduvai indicated by sub-micron clay geochemistry were generally saline and alkaline between 1.78 and 1.92 Ma, but 6 episodes of freshened paleolake water are indicated by intervals of lower Mg content. Five of these freshening episodes occurred at peak climatic precession. The sub-micron clay geochemistry agrees with infrared spectroscopy and whole-rock geochemical compositions, and the same stratigraphic variation is observed at both localities, separated laterally by 330m. Preliminary analyses show that the values are associated stratigraphically with geochemically defined freshening events. This suggests that isotopic and elemental equilibrium may not be reached at the same time, or that diagenetic events may have differentially altered the isotopic record. The environmental changes recorded in the Olduvai sediments occurred at a time when zonal Walker circulation increasingly affected global climate, new stone technologies emerged, and the genus Homo spread beyond Africa. Unraveling the details of mineralogical records such as those at Olduvai will be important in characterizing details of continental Quaternary environmental change

  12. climate change and lake water resourcesin sub-saharan africa: case ...

    African Journals Online (AJOL)

    user

    STUDY OF LAKE CHAD AND LAKE VICTORIA ... contribution to agriculture and socio-economic development of the region were ... many developing countries, current levels in water use .... 2050 and will become increasingly urban by implication. ... 4.1 Justification of Selected Case Studies ..... Orstom, Paris France. 1996.

  13. Influence of Microsprinkler Irrigation Amount on Water, Soil, and pH Profiles in a Coastal Saline Soil

    Directory of Open Access Journals (Sweden)

    Linlin Chu

    2014-01-01

    Full Text Available Microsprinkler irrigation is a potential method to alleviate soil salinization. After conducting a homogeneous, highly saline, clayey, and coastal soil from the Bohai Gulf in northern China in a column experiment, the results show that the depth of the wetting front increased as the water amount applied increased, low-salinity and low-SAR enlarged after irrigation and water redistribution, and the soil pH increased with an increase in irrigation amount. We concluded that a water amount of 207 mm could be used to reclaim the coastal saline soil in northern China.

  14. The geographical conditions of intensity of salty waters intrusions to coastal lakes on Polish Southern Baltic coast

    Science.gov (United States)

    Cieslinski, R.

    2009-04-01

    geographical conditions, especially on hydrographical and hydrological ones, which determine their variability and distribution. The objects of research have been chosen to be the two largest coastal lakes in the Polish section of the southern Baltic shore, i.e. Łebsko and Gardno. References: Ataie-Ashtiani, B., Volkerand, R.E., Lockington, D.A. (1999) Tidal effects on sea water intrusion in unconfined aquifers, Journal of Hydrology, 216 (1-2), 17-31. Cieśliński R., Drwal J. (2005) Quasi - estuary processes and consequences for human activity, South Baltic, Estuarine, Coastal and Shelf Science, 62, 477 - 485. De Louw, P., Oude Essink, G. (2001) Salinisation of the northern coastel area of the netherlands due to land subsidence and sea level rise. In: Vijay P. Singh (eds), Coastal Environment and Water Quality (ed. by Y. Jun Xu & V. P. Singh), 424 - 434. Water Resources Publications. Demirel, Z. (2004) The history and evaluation of saltwater intrusion into a coastal aquifer in Mersin, Turkey, Journal of Environmental Management, 70 (3), 275-282. Drwal, J., Cieśliński, R. (2007) Coastal lakes and marine intrusions on the southern Baltic coast, Oceanological and Hydrobiological Studies, XXXVI (2), 61 - 75. Grassi, S., Netti, R. (2000) Sea water intrusion and mercury pollution of some coastal aquifers in the province of Grosseto (Southern Tuscany — Italy), Journal of Hydrology, 237 (3-4), 198-211. Hsing-Juh, L., Xiao-Xun, D., Kwang-Tsao, S., Huei-Meei, S., Wen-Tseng, L., Hwey-Lian, H., Lee-Shing, F., Jia-Jang, H. (2006) Trophic structure and functioning in a eutrophic and poorly flushed lagoon in southwestern Taiwan, Marine environmental research, 62 (1), 61-82. Ishitobi, Y., Kamiya, H., Yokoyama, K., Kumagai, M., Okuda, S. (1999) Physical Conditions of Saline Water Intrusion into a Coastal Lagoon, Lake Shinji, Japanese Journal of Limnology, 4, 439-452. Uncles, R. J. , Stephens, J. A., Smith, R. E. (2002) The dependence of estuarine turbidity on tidal intrusion length

  15. An operational analysis of Lake Surface Water Temperature

    Directory of Open Access Journals (Sweden)

    Emma K. Fiedler

    2014-07-01

    Full Text Available Operational analyses of Lake Surface Water Temperature (LSWT have many potential uses including improvement of numerical weather prediction (NWP models on regional scales. In November 2011, LSWT was included in the Met Office Operational Sea Surface Temperature and Ice Analysis (OSTIA product, for 248 lakes globally. The OSTIA analysis procedure, which has been optimised for oceans, has also been used for the lakes in this first version of the product. Infra-red satellite observations of lakes and in situ measurements are assimilated. The satellite observations are based on retrievals optimised for Sea Surface Temperature (SST which, although they may introduce inaccuracies into the LSWT data, are currently the only near-real-time information available. The LSWT analysis has a global root mean square difference of 1.31 K and a mean difference of 0.65 K (including a cool skin effect of 0.2 K compared to independent data from the ESA ARC-Lake project for a 3-month period (June to August 2009. It is demonstrated that the OSTIA LSWT is an improvement over the use of climatology to capture the day-to-day variation in global lake surface temperatures.

  16. A Comparison of Alternative Strategies for Cost-Effective Water Quality Management in Lakes

    Science.gov (United States)

    Daniel Boyd Kramer; Stephen Polasky; Anthony Starfield; Brian Palik; Lynn Westphal; Stephanie Snyder; Pamela Jakes; Rachel Hudson; Eric Gustafson

    2006-01-01

    Roughly 45% of the assessed lakes in the United States are impaired for one or more reasons. Eutrophication due to excess phosphorus loading is common in many impaired lakes. Various strategies are available to lake residents for addressing declining lake water quality, including septic system upgrades and establishing riparian buffers. This study examines 25 lakes to...

  17. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery.

    Science.gov (United States)

    Pérez-Pérez, J G; Syvertsen, J P; Botía, P; García-Sánchez, F

    2007-08-01

    Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. Plants preconditioned by

  18. Response of balanites aegyptiaca (l.) del. var. aegyptiaca seedlings from three different sources to water and salinity stressess

    International Nuclear Information System (INIS)

    Elfeel, A.A.; Abohassan, R.A.

    2015-01-01

    Water and salinity are main co-occurring stresses affecting plant growth and development in arid lands. In this study interactive effects of water and salinity stresses on Balanites aegyptiaca seedlings from three different sources (SD5.1, SD6.2 and KSA) were assessed in potted experiment under greenhouse conditions. The effect was measured on stomatal conductance (Gs), specific leaf area (SLA), seedling quality (Shoot to Root ratio (S/R), Dickson Quality Index (DQI) and Sturdiness Quotient (SQ)), Nutrient uptake (N content, K/Na and Ca/Na ratios) and growth. The seedlings were either watered twice a week (well watered) or every two weeks (water stressed), in addition to four salt concentrations (fresh water as control, 5 dS m-1, 7 dS m-1 and 9 dS m-1 EC). Water and salinity stresses resulted in reduced Gs, SLA, DQ, SQ and S/R, associated with lower height and root collar diameter. However, irrespective of salt concentration, water stressed seedlings displayed substantial reduction in Gs, indicating that Gs is among the most important water conservation strategy for this species. S/R also, remarkably decreased in water stressed seedlings, but, within watering treatment it was increased with increasing salt concentration. SLA and DQI were more affected by salinity stress, due to the increased leaf weight with increasing salinity. N content was more sensitive to water stress than salinity. Both Ca/Na and K/Na ratios were decreased with increasing salt concentration. The three sources exhibited significant variation in their response to water and salinity stresses. SD5.1 displayed higher values in most of studied traits. Gs and S/R may be considered as fitness responses of this species to water stress, while DQI, SLA and K/Na can serve as good indicators to measure response to salt stress. (author)

  19. Simulated Effects of Ground-Water Augmentation on the Hydrology of Round and Halfmoon Lakes in Northwestern Hillsborough County, Florida

    Science.gov (United States)

    Yager, Richard M.; Metz, P.A.

    2004-01-01

    Pumpage from the Upper Floridan aquifer in northwest Hillsborough County near Tampa, Florida, has induced downward leakage from the overlying surficial aquifer and lowered the water table in many areas. Leakage is highest where the confining layer separating the aquifers is breached, which is common beneath many of the lakes in the study area. Leakage of water to the Upper Floridan aquifer has lowered the water level in many lakes and drained many wetlands. Ground water from the Upper Floridan aquifer has been added (augmented) to some lakes in an effort to maintain lake levels, but the resulting lake-water chemistry and lake leakage patterns are substantially different from those of natural lakes. Changes in lake-water chemistry can cause changes in lake flora, fauna, and lake sediment composition, and large volumes of lake leakage are suspected to enhance the formation of sinkholes near the shoreline of augmented lakes. The leakage rate of lake water through the surficial aquifer to the Upper Floridan aquifer was estimated in this study using ground-water-flow models developed for an augmented lake (Round Lake) and non-augmented lake (Halfmoon Lake). Flow models developed with MODFLOW were calibrated through nonlinear regression with UCODE to measured water levels and monthly net ground-water-flow rates from the lakes estimated from lake-water budgets. Monthly estimates of ground-water recharge were computed using an unsaturated flow model (LEACHM) that simulated daily changes in storage of water in the soil profile, thus estimating recharge as drainage to the water table. Aquifer properties in the Round Lake model were estimated through transient-state simulations using two sets of monthly recharge rates computed during July 1996 to February 1999, which spanned both average conditions (July 1996 through October 1997), and an El Ni?o event (November 1997 through September 1998) when the recharge rate doubled. Aquifer properties in the Halfmoon Lake model were

  20. Effect of agriculture on water quality of Lake Biwa tributaries, Japan

    International Nuclear Information System (INIS)

    Nakano, Takanori; Tayasu, Ichiro; Yamada, Yoshihiro; Hosono, Takahiro; Igeta, Akitake; Hyodo, Fujio; Ando, Atsushi; Saitoh, Yu; Tanaka, Takuya; Wada, Eitaro; Yachi, Shigeo

    2008-01-01

    We investigated the effects of natural environments and human activity on Lake Biwa, central Japan. We determined the concentrations of 19 elements and the compositions of stable S and Sr isotopes in the main tributaries of the lake and compared them with the corresponding values obtained from the lake water during the circulation period. Results of a principal component analysis indicated that the components dissolved in the lower reaches of the tributaries can be divided into group 1 (HCO 3 , SO 4 , NO 3 , Ca, Mg, Sr) and group 2 components (Cl, Br, Na, K, Ba, Rb, Cs). The concentrations of group 1 components were high in the rivers of the southern area, which is urbanized and densely populated, and the eastern area, which consists of plains where agriculture predominates, compared with the rivers of the northern and western areas, which are mostly mountainous and sparsely populated. The concentrations of group 2 components tended to be high in the river water of industrial areas. The δ 34 S values of SO 4 in the river water converged to 0 ± 2 per mille as the SO 4 concentration increased and, excluding the areas where limestone is extensively distributed, as the HCO 3 concentration increased. In particular, both the δ 34 S values (0 ± 2 per mille ) and the 87 Sr/ 86 Sr ratios (0.7117 ± 0.0005) fell within narrow ranges in the small and medium rivers of the eastern plain area, where rice is widely grown. These values agreed respectively with the δ 34 S values of the fertilizers used in the Lake Biwa basin and the soil-exchangeable 87 Sr/ 86 Sr in the eastern plain. The characteristics of water quality in the small and medium rivers of the eastern area can be explained by a model in which sulfuric, nitric, and bicarbonic acids generated by the decomposition of agricultural fertilizer and paddy rice selectively leached out alkaline-earth elements adsorbed on the soil and sediments of the plain or dissolved calcium carbonate enriched with Mg and Sr. Compared

  1. Effects of application timing of saline irrigation water on broccoli production and quality

    Science.gov (United States)

    Irrigation with moderately saline water is a necessity in many semi-arid areas of the Mediterranean Basin, and requires adequate irrigation management strategies. Broccoli (Brassica oleracea var. italica), a crop moderately tolerant to salinity stress, was used to evaluate the effects of the applica...

  2. Evidence for Upward Flow of Saline Water from Depth into the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    Science.gov (United States)

    Larsen, D.; Paul, J.

    2017-12-01

    Groundwater salinization is occurring in the Mississippi River Valley Alluvial (MRVA) aquifer in southeastern Arkansas (SE AR). Water samples from the MRVA aquifer in Chicot and Desha counties have yielded elevated Cl-concentrations with some as high as 1,639 mg/L. Considering that the MRVA aquifer is the principle source of irrigation water for the agricultural economy of SE AR, salinization needs to be addressed to ensure the sustainability of crop, groundwater, and soil resources in the area. The origin of elevated salinity in MRVA aquifer was investigated using spatial and factor analysis of historical water quality data, and sampling and tracer analysis of groundwater from irrigation, municipal, and flowing industrial wells in SE AR. Spatial analysis of Cl- data in relation to soil type, geomorphic features and sand-blow density indicate that the Cl- anomalies are more closely related to the sand-blow density than soil data, suggesting an underlying tectonic control for the distribution of salinity. Factor analysis of historical geochemical data from the MRVA and underlying Sparta aquifer shows dilute and saline groups, with saline groups weighted positively with Cl- or Na+ and Cl-. Tracer data suggest a component of evaporatively evolved crustal water of pre-modern age has mixed with younger, fresher meteoric sources in SE AR to create the saline conditions in the MRVA aquifer. Stable hydrogen and oxygen values of waters sampled from the Tertiary Sparta and MRVA aquifers deviate from the global and local meteoric water lines along an evaporative trend (slope=4.4) and mixing line with Eocene Wilcox Group groundwaters. Ca2+ and Cl- contents vary with Br- along mixing trends between dilute MRVA water and Jurassic Smackover Formation pore fluids in southern AR. Increasing Cl- content with C-14 age in MRVA aquifer groundwater suggests that the older waters are more saline. Helium isotope ratios decrease with He gas content for more saline water, consistent with

  3. Physiology of ‘Paluma’ guava under irrigation with saline water and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Evandro Manoel da Silva

    2017-05-01

    Full Text Available The use of saline water in irrigation causes osmotic and toxic effects and nutritional imbalance in plants, leading to morphophysiological modifications in the leaves and compromising the production of photosynthetic pigments, which negatively reflects in the growth and development of the crops. Hence, this study aimed to evaluate the effect of irrigation water salinity on the content of photosynthetic pigments and leaf morphophysiology of guava seedlings cv. ‘Paluma’ under nitrogen (N fertilization. A randomized block design was used, testing five levels of irrigation water electrical conductivity - ECw (0.3, 1.1, 1.9, 2.7, and 3.5 dS m-1 and four N doses (541.1, 773.0, 1,004.9, and 1,236.8 mg of N dm-3 of soil in a 5 x 4 factorial scheme with three replicates and five plants per plot. The contents of photosynthetic pigments in the leaves of the guava seedlings cv. ‘Paluma’ were inhibited by the increase in irrigation water salinity at 190 days after emergence, and the salt stress was lessened with the N dose of 1,004.9 mg dm-3 up to an ECw level of 1.2 dS m-1. Leaf morphophysiology of guava seedlings was not compromised by irrigation water salinity up to 1.5 dS m-1, and the highest values were obtained in plants fertilized with 541.1 mg of N dm-3.

  4. Energy and water exchange from a saline-sodic overburden restoration cover, Fort McMurray, Alberta

    International Nuclear Information System (INIS)

    Carey, S.

    2006-01-01

    The Canadian oil sand mining industry takes responsibility for restoring mining areas to an equivalent level that existed before mining occurred. During this process, the surface-vegetation-atmosphere continuum is dramatically altered, creating few similarities to the boreal forest that existed prior to mining. Using the eddy covariance method, a study of the integrated salt and water balance of a saline-sodic overburden pile at Syncrude Canada Ltd.'s Mildred Lake mine north of Fort McMurray, Alberta was undertaken in order to measure the surface energy balance for three summers (2003 - 2005) with different climatic and phenological conditions. The objective of this study was to document how evapotranspiration and energy partitioning varied inter-annually during the growing season atop the restoration cover and to relate the portioning of energy at the surface to environmental and physiological variables. The paper described the site and measurement specifics and also presented the results and discussion. Results were organized under the following topics: climate; soil moisture and suction; leaf area index and vegetation; surface energy balance; evapotranspiration; and controls on evapotranspiration. It was concluded that results from this study have important implications for recovery strategies, as the availability water for plant growth, the movement and migration of salts and percolating water for deep drainage all depend on accurate quantification of evapotranspiration. 9 refs., 1 tab

  5. The evaluation of water hyacinth (Eichhornia crassiper) control program in Rawapening Lake, Central Java Indonesia

    Science.gov (United States)

    Hidayati, N.; Soeprobowati, T. R.; Helmi, M.

    2018-03-01

    The existence of water hyacinths and other aquatic plants have been a major concern in Rawapening Lake for many years. Nutrient input from water catchment area and fish feed residues suspected to leads eutrophication, a condition that induces uncontrolled growth of aquatic plants. In dry season, aquatic plants cover almost 70% of lake area. This problem should be handled properly due to wide range of lake function such as water resources, fish farming, power plants, flood control, irrigation and many other important things. In 2011, Rawapening Lake was appointed as pilot project of Save Indonesian Lake Movement: the Indonesian movement for lakes ecosystem conservation and rehabilitation. This project consists of 6 super priority programs and 11 priority programs. This paper will evaluate the first super priority program which aims to control water hyacinth bloom. Result show that the three indicators in water hyacinth control program was not achieved. The coverage area of Water hyacinth was not reduced, tend to increase during period 2012 to 2016. We suggesting better coordination should be performed in order to avoid policies misinterpretation and to clarify the authority from each institution. We also give a support to the establishment of lake zonation plan and keep using all the three methods of cleaning water hyacinth with a maximum population remained at 20%.

  6. Aerosol Particles from Dried Salt-Lakes and Saline Soils Carried on Dust Storms over Beijing

    Directory of Open Access Journals (Sweden)

    Xingying Zhang

    2009-01-01

    Full Text Available Characteristics of individual particles from a super dust storm (DS on 20 March 2002, and those of non dust storm aero sols for Beijing (NDS and Duolun (DL (a desert area are determined using a variety of methods. In China, typically the source of aero sols in dust storms is thought to be deserts with alumino silicates being the main constituent particles; how ever, this does not reflect a complete analysis with our evidence indicating potential alternate dust sources along the storm's trans port path. Individual particle anal y sis of aero sols collected from a super dust storm on 20 March 2002 in Beijing shows that among all the 14 elements measured, only S and Cl have re mark able positive correlation. 82.5% of all particles measured contained both S and Cl, and the relative mass per cent age of S and Cl in these particles is much higher than the average of all particles. 62.0% of all particles contained S, Cl, and Na, in which the concentration of Na is 1.4 times higher than average. PMF (Positive Matrix Factorization anal y sis indicates that NaCl and Na2SO4 are major components of these particles with S and Cl showing significant positive correlation. More over, SO4 2- and Cl- also show significant positive correlation in bulk aero sol analysis. XPS (X-ray Pho to electron Spectros copy analysis of the surface of aero sols demonstrates that concentrations of Na and S on particles from the dust storm are higher than those from non-dust storm particles in Beijing and also for particles from. It is very likely that particles enriched with S, Cl, and Na is from the surface soils of dried salt-lakes and saline soils enriched with chloride and sulfate. This evidence demonstrates that be sides deserts, surface soils from dry salt-lakes and saline soils of arid and semi-arid areas are also sources of particulates in dust storms over Beijing.

  7. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    Science.gov (United States)

    Nyman, J.A.; LaPeyre, Megan K.; Caldwell, Andral W.; Piazza, Sarai C.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable.

  8. Microbial safety assessment of recreation water at Lake Nabugabo ...

    African Journals Online (AJOL)

    EJIRO

    Key words: Lake Nabugabo, microbial safety assessment, recreation water, water quality. ... the environment is favourable for growth (Jaiani et al., ... Swimming and bathing in inland waters are recognized .... in India. This can be attributed to variation in number of recreational users and the frequency of use of the various.

  9. Assessment of Lake Water Quality and Quantity Using Satellite Remote Sensing

    Science.gov (United States)

    Daniel, K. C.; Suresh, A.; Paredes Mesa, S.

    2017-12-01

    Lakes are one of the few sources of freshwater used throughout the world but due to human activities, its quality and availability has been decreasing. The drying of lakes is a concerning issue in different communities around the world. This problem can affect jobs and the lives of individuals who use lakes as a source of income, consumption and recreation. Another dilemma that has occurred in lakes is eutrophication which is the buildup of excess nutrients in the lakes caused by runoff. This natural process can lead to anoxic conditions that may have a detrimental impact on surrounding ecosystems. Therefore, causing a devastating impact to economies and human livelihood worldwide. To monitor these issues, satellite data can be used to assess the water quality of different lakes throughout the world. Landsat satellite data from the past 10 years was used to conduct this research. By using the IOP (Inherent Optical Properties) of chlorophyll and suspended solids in the visible spectrum, the presence of algal blooms and sediments was determined. ARCGIS was used to outline the areas of the lakes and obtain reflectance values for quantity and quality assessment. Because there is always a certain amount of contamination in the lake, this research is used to evaluate the condition of the lakes throughout the years. Using the data that we have collected, we are able to understand how the issues addressed can harm civilians seasonally. Key Words: Lakes, Water Quality, Algal Blooms, Eutrophication, Remote Sensing, Satellite DataData Source: Landsat 4, Landsat 5, Landsat 7, Landsat 8

  10. Study of the Effect of Clay Particles on Low Salinity Water Injection in Sandstone Reservoirs

    Directory of Open Access Journals (Sweden)

    Sina Rezaei Gomari

    2017-03-01

    Full Text Available The need for optimal recovery of crude oil from sandstone and carbonate reservoirs around the world has never been greater for the petroleum industry. Water-flooding has been applied to the supplement primary depletion process or as a separate secondary recovery method. Low salinity water injection is a relatively new method that involves injecting low salinity brines at high pressure similar to conventional water-flooding techniques, in order to recover crude oil. The effectiveness of low salinity water injection in sandstone reservoirs depends on a number of parameters such as reservoir temperature, pressure, type of clay particle and salinity of injected brine. Clay particles present on reservoir rock surfaces adsorb polar components of oil and modify wettability of sandstone rocks to the oil-wet state, which is accountable for the reduced recovery rates by conventional water-flooding. The extent of wettability alteration caused by three low salinity brines on oil-wet sandstone samples containing varying clay content (15% or 30% and type of clay (kaolinite/montmorillonite were analyzed in the laboratory experiment. Contact angles of mica powder and clay mixture (kaolinite/montmorillonite modified with crude oil were measured before and after injection with three low salinity sodium chloride brines. The effect of temperature was also analyzed for each sample. The results of the experiment indicate that samples with kaolinite clay tend to produce higher contact angles than samples with montmorillonite clay when modified with crude oil. The highest degree or extent of wettability alteration from oil-wet to intermediate-wet state upon injection with low salinity brines was observed for samples injected with brine having salinity concentration of 2000 ppm. The increase in temperature tends to produce contact angles values lying in the higher end of the intermediate-wet range (75°–115° for samples treated at 50 °C, while their corresponding

  11. Lake Mixing Regime Influences Arsenic Transfer from Sediments into the Water Column and Uptake in Plankton

    Science.gov (United States)

    Gawel, J.; Barrett, P. M.; Hull, E.; Burkart, K.; McLean, J.; Hargrave, O.; Neumann, R.

    2017-12-01

    The former ASARCO copper smelter in Ruston, WA, now a Superfund site, contaminated a large area of the south-central Puget Sound region with arsenic over its almost 100-year history. Arsenic, a priority Superfund contaminant and carcinogen, is a legacy pollutant impacting aquatic ecosystems in urban lakes downwind of the ASARCO emissions stack. We investigated the impact of lake mixing regime on arsenic transfer from sediments into lake water and aquatic biota. We regularly collected water column and plankton samples from four study lakes for two years, and deployed sediment porewater peepers and sediment traps to estimate arsenic flux rates to and from the sediments. In lakes with strong seasonal stratification, high aqueous arsenic concentrations were limited to anoxic hypolimnetic waters while low arsenic concentrations were observed in oxic surface waters. However, in polymictic, shallow lakes, we observed elevated arsenic concentrations throughout the entire oxic water column. Sediment flux estimates support higher rates of arsenic release from sediments and vertical transport. Because high arsenic in oxic waters results in spatial overlap between arsenate, a phosphate analog, and lake biota, we observed enhanced trophic transfer of arsenic in polymictic, shallow study lakes, with higher arsenic accumulation (up to an order of magnitude) in both phytoplankton and zooplankton compared to stratified lakes. Chemical and physical mechanisms for higher steady-state arsenic concentrations will be explored. Our work demonstrates that physical mixing processes coupled with sediment/water redox status exert significant control over bioaccumulation, making shallow, periodically-mixed urban lakes uniquely vulnerable to environmental and human health risks from legacy arsenic contamination.

  12. Water level changes of high altitude lakes in Himalaya–Karakoram ...

    Indian Academy of Sciences (India)

    2Department of Geology, University of Pune, Pune 411 007, India. 3Chhattisgarh Council of .... influenced by three climate patterns as categorized by precipitation regime: (1) ... Water level changes of high altitude lakes in Himalaya–Karakoram. 1535 ...... mate warming and growth of high elevation inland lakes on the ...

  13. Flood frequency matters: Why climate change degrades deep-water quality of peri-alpine lakes

    Science.gov (United States)

    Fink, Gabriel; Wessels, Martin; Wüest, Alfred

    2016-09-01

    Sediment-laden riverine floods transport large quantities of dissolved oxygen into the receiving deep layers of lakes. Hence, the water quality of deep lakes is strongly influenced by the frequency of riverine floods. Although flood frequency reflects climate conditions, the effects of climate variability on the water quality of deep lakes is largely unknown. We quantified the effects of climate variability on the potential shifts in the flood regime of the Alpine Rhine, the main catchment of Lake Constance, and determined the intrusion depths of riverine density-driven underflows and the subsequent effects on water exchange rates in the lake. A simplified hydrodynamic underflow model was developed and validated with observed river inflow and underflow events. The model was implemented to estimate underflow statistics for different river inflow scenarios. Using this approach, we integrated present and possible future flood frequencies to underflow occurrences and intrusion depths in Lake Constance. The results indicate that more floods will increase the number of underflows and the intensity of deep-water renewal - and consequently will cause higher deep-water dissolved oxygen concentrations. Vice versa, fewer floods weaken deep-water renewal and lead to lower deep-water dissolved oxygen concentrations. Meanwhile, a change from glacial nival regime (present) to a nival pluvial regime (future) is expected to decrease deep-water renewal. While flood frequencies are not expected to change noticeably for the next decades, it is most likely that increased winter discharge and decreased summer discharge will reduce the number of deep density-driven underflows by 10% and favour shallower riverine interflows in the upper hypolimnion. The renewal in the deepest layers is expected to be reduced by nearly 27%. This study underlines potential consequences of climate change on the occurrence of deep river underflows and water residence times in deep lakes.

  14. Regulatory impact analysis of the proposed great lakes water quality guidance. Final report

    International Nuclear Information System (INIS)

    Raucher, R.; Dixon, A.; Trabka, E.

    1993-01-01

    The Regulatory Impact Analysis provides direction to the Great Lakes States and Tribes on minimum water quality standards and contains numerical water quality criteria for 32 pollutants as well as methodologies for the development of water quality criteria for additional pollutants discharged to these waters. It also provides guidance to the Great Lakes States and Tribes on antidegradation policies and standards and implementation procedures

  15. Evaluation of Different Rice Genotypes Tolerance to Saline Irrigation Water

    Directory of Open Access Journals (Sweden)

    S. Jafari Rad

    2015-12-01

    Full Text Available To study the responses of seven rice genotypes (Khazar, SA13, Deylam, Sange Joe, Sepidrud, 831 and T5 to different levels of irrigation water salinity, and determining grain yield based on tolerance indices, a CRD based factorial pot experiment with five levels of irrigation water salinity (1, 2, 4, 6 and 8 dSm-1 and three replications was carried out at Rice Research Institute of Iran in 2011. Indices such as SSI, TOL, MP, GMP, HM, STI, YI and YSI were calculated and their correlations with grain yield were estimated for both stress and non-stress conditions. Results indicated significant differences among genotypes and the indices within both conditions. Results also showed that STI and MP indices could be considered as the best indices to screen salt tolerant genotypes. Among the genotypes used in the experiment, T5 produced the highest yield in both non-stress (19.71 g/plant and stress (10.69 g/plant conditions, while the lowest yield in normal (11.84 g/plant and stressful (4.29 g/plant conditions was recorded for Deylam and Khazar, respectively. The highest and the lowest percentage of yield reduction were found in Khazar (69.49% and Sange Joe (31.48% in stressful conditions, respectively. Overall, genotypes T5, 831, Sepidrud and Sange Joe can probably be considered as superior high yielding genotypes in both saline and non-saline conditions for further research.

  16. Impact of water quality and irrigation management on soil salinization in the Drâa valley of Morocco.

    Science.gov (United States)

    Beff, L.; Descamps, C.; Dufey, J.; Bielders, C.

    2009-04-01

    Under the arid climatic conditions of the Drâa valley in southern Morocco, irrigation is essential for crop production. Two sources of water are available to farmers: (1) moderate salinity water from the Oued Drâa (classified as C3-S1 in the USDA irrigation water classification diagram) which is available only a few times per year following discrete releases from the Mansour Eddahbi dam, and (2) high salinity water from wells (C4-S2). Soil salinization is frequently observed, principally on plots irrigated with well water. As Oued water is available in insufficient amounts, strategies must be devised to use well and Oued water judiciously, without inducing severe salinization. The salinization risk under wheat production was evaluated using the HP1 program (Jacques and Šimůnek, 2005) for different combinations of the two main water sources, different irrigation frequencies and irrigation volumes. The soil was a sandy clay loam (topsoil) to sandy loam (40 cm depth). Soil hydrodynamic properties were derived from in situ measurements and lab measurements on undisturbed soil samples. The HP1 model was parameterized for wheat growth and 12 scenarios were run for 10 year periods using local climatic data. Water quality was measured or estimated on the basis of water samples in wells and various Oueds, and the soil chemical properties were determined. Depending on the scenario, soil salinity in the mean root zone increased from less than 1 meq/100g of soil to more than 5 meq/100g of soil over a ten year period. Salt accumulation was more pronounced at 45 cm soil depth, which is half of the maximum rooting depth, and when well water was preferentially used. Maximum crop yield (water transpired / potential water transpired) was achieved for five scenarios but this implied the use of well water to satisfy the crop water requirements. The usual Drâa Valley irrigation scenario, with five, 84 mm dam water applications per year, lead to a 25% yield loss. Adding the amount

  17. Dynamics of biogeochemical sulfur cycling in Mono Lake

    Science.gov (United States)

    Phillips, A. A.; Fairbanks, D.; Wells, M.; Fullerton, K. M.; Bao, R.; Johnson, H.; Speth, D. R.; Stamps, B. W.; Miller, L.; Sessions, A. L.

    2017-12-01

    Mono Lake, California is a closed-basin soda lake (pH 9.8) with high sulfate (120mM), and is an ideal natural laboratory for studying microbial sulfur cycling. Mono Lake is typically thermally stratified in summer while mixing completely in winter. However, large snowmelt inputs may induce salinity stratification that persists for up to five years, causing meromixis. During the California drought of 2014-16, the lake has mixed thoroughly each winter, but the abundant 2017 snowmelt may usher in a multi-year stratification. This natural experiment provides an opportunity to investigate the temporal relationship between microbial sulfur cycling and lake biogeochemistry. We analyzed water samples from five depths at two stations in May of 2017, before the onset of meromixis. Water column sulfate isotope values were generally constant with depth, centering at a δ34SVCDT of 17.39 ± 0.06‰. Organic sulfur isotopes were consistently lighter than lake sulfate, with a δ34SVCDT of 15.59 ± 0.56‰. This significant offset between organic and inorganic sulfur contradicts the minimal isotope effect associated with sulfate assimilation. Sediment push core organic values were further depleted, ranging between δ34SVCDT of -8.94‰ and +0.23‰, implying rapid turnover of Mono Lake sulfur pools. Both lipid biomarkers and 16S rRNA gene amplicons identify Picocystis salinarum, a unicellular green alga, as the dominant member of the microbial community. However, bacterial biomarkers and 16S rRNA genes point to microbes capable of sulfur cycling. We found that dsrA increased with depth (R2 = 0.9008, p reducers and sulfide oxidizers after >1 year of stratification. We saw no evidence in May of 2017 of sulfate reducing bacteria across the oxycline. Additionally, no sulfide was detectable in lake bottom waters despite oxygen below 6.25 µM. Preliminary results suggest a dynamic interplay between sulfide oxidation, sulfate reduction, and the onset of lake stratification. Additional

  18. Use of Satellite and In Situ Reflectance Data for Lake Water Color Characterization in the Everest Himalayan Region

    Directory of Open Access Journals (Sweden)

    Erica Matta

    2017-02-01

    Full Text Available This study applied remote sensing techniques to the study of water color in Himalayan glacial lakes as a proxy of suspended solid load. In situ measurements gathered in 5 lakes in October 2014 during satellite data acquisition enabled the characterization of water reflectance and clarity and supported image processing. Field data analysis led to a distinction between 3 water colors and a consequent lake water color classification on a regional scale from Landsat-8 data previously corrected for atmospheric and adjacency effects. Several morphometric parameters (lake size and shape, distance between lake and glacier were also computed for the lakes thus classified. The results showed spatial and temporal variations in lake water color, suggestive of relationships between glacier shrinkage and the presence of brighter and more turbid water. A finer-scale analysis of the spatial variability of water reflectance on Chola Lake (based on GeoEye-1 data captured on 18 October 2014 showed the contribution of water component absorption from the inflow. Overall, the findings support further research to monitor Himalayan lakes using both Landsat-8 and Sentinel-2 (with its improved resolutions.

  19. Using microbial desalination cells to reduce water salinity prior to reverse osmosis

    KAUST Repository

    Mehanna, Maha

    2010-01-01

    A microbial desalination cell (MDC) is a new method to reduce the salinity of one solution while generating electrical power from organic matter and bacteria in another (anode) solution. Substantial reductions in the salinity can require much larger volumes of the anode solution than the saline water, but any reduction of salinity will benefit the energy efficiency of a downstream reverse osmosis (RO) desalination system. We investigated here the use of an MDC as an RO pre-treatment method using a new type of air-cathode MDC containing three equally sized chambers. A single cycle of operation using a 1 g L -1 acetate solution reduced the conductivity of salt water (5 g L-1 NaCl) by 43 ± 6%, and produced a maximum power density of 480 mW m-2 with a coulombic efficiency of 68 ± 11%. A higher concentration of acetate (2 g L-1) reduced solution conductivity by 60 ± 7%, and a higher salt concentration (20 g L-1 NaCl) reduced solution conductivity by 50 ± 7%. The use of membranes with increased ion exchange capacities further decreased the solution conductivity by 63 ± 2% (20 g L-1 NaCl). These results demonstrate substantial (43-67%) desalination of water is possible using equal volumes of anode solution and salt water. These results show that MDC treatment could be used to substantially reduce salt concentrations and thus energy demands for downstream RO processing, while at the same time producing electrical power. © 2010 The Royal Society of Chemistry.

  20. A multivariate analysis of water quality in lake Naivasha, Kenya

    NARCIS (Netherlands)

    Ndungu, J.N.; Augustijn, Dionysius C.M.; Hulscher, Suzanne J.M.H.; Fulanda, B.; Kitaka, N.; Mathooko, J.M.

    2014-01-01

    Water quality information in aquatic ecosystems is crucial in setting up guidelines for resource management. This study explores the water quality status and pollution sources in Lake Naivasha, Kenya. Analysis of water quality parameters at seven sampling sites was carried out from water samples

  1. Simulation of climate-change effects on streamflow, lake water budgets, and stream temperature using GSFLOW and SNTEMP, Trout Lake Watershed, Wisconsin

    Science.gov (United States)

    Hunt, Randall J.; Walker, John F.; Selbig, William R.; Westenbroek, Stephen M.; Regan, R. Steve

    2013-01-01

    Although groundwater and surface water are considered a single resource, historically hydrologic simulations have not accounted for feedback loops between the groundwater system and other hydrologic processes. These feedbacks include timing and rates of evapotranspiration, surface runoff, soil-zone flow, and interactions with the groundwater system. Simulations that iteratively couple the surface-water and groundwater systems, however, are characterized by long run times and calibration challenges. In this study, calibrated, uncoupled transient surface-water and steady-state groundwater models were used to construct one coupled transient groundwater/surface-water model for the Trout Lake Watershed in north-central Wisconsin, USA. The computer code GSFLOW (Ground-water/Surface-water FLOW) was used to simulate the coupled hydrologic system; a surface-water model represented hydrologic processes in the atmosphere, at land surface, and within the soil-zone, and a groundwater-flow model represented the unsaturated zone, saturated zone, stream, and lake budgets. The coupled GSFLOW model was calibrated by using heads, streamflows, lake levels, actual evapotranspiration rates, solar radiation, and snowpack measurements collected during water years 1998–2007; calibration was performed by using advanced features present in the PEST parameter estimation software suite. Simulated streamflows from the calibrated GSFLOW model and other basin characteristics were used as input to the one-dimensional SNTEMP (Stream-Network TEMPerature) model to simulate daily stream temperature in selected tributaries in the watershed. The temperature model was calibrated to high-resolution stream temperature time-series data measured in 2002. The calibrated GSFLOW and SNTEMP models were then used to simulate effects of potential climate change for the period extending to the year 2100. An ensemble of climate models and emission scenarios was evaluated. Downscaled climate drivers for the period

  2. Water-Sediment Partition of Polycyclic Aromatic Hydrocarbons (PAHs) in Nansi Lake

    Science.gov (United States)

    Zhang, Guizhai; Diao, Youjiang

    2018-06-01

    Based on field data of polycyclic aromatic hydrocarbons (PAHs) in water and sediment in Nansi Lake. The concentrations and the partitioning characteristic of PAHs in the water and sediment were studied. The lgKd of high molecular weight PAHs were higher than the low molecular weight PAHs. The most of PAHs Kd values were negligible correlated with TOC, soluble salt, clay and pH of the sediment in Nansi Lake.

  3. The role of deuterium excess in determining the water salinisation mechanism: A case study of the arid Tarim River Basin, NW China

    International Nuclear Information System (INIS)

    Huang, Tianming; Pang, Zhonghe

    2012-01-01

    Understanding the water salinisation mechanism is the basis for regional salt management. Mineral dissolution, evaporation and transpiration are the main factors controlling natural water salinity in arid inland basins; however, the two are difficult to differentiate. Because deuterium excess decreases during evaporation and is unrelated to the isotopic composition of the initial water, it is a potential tool for determining the contribution of the evapoconcentration of a given water body using the relationship between deuterium excess and salinity rather than between δ 18 O (or δ 2 H) and salinity. In this paper, the relationship between the residual water fraction and deuterium excess was derived from the Rayleigh distillation equation. The contribution of evapoconcentration and mineral dissolution and/or transpiration for a given water body can be determined by comparing the residual water fraction and salinity between the initial water and the evapoconcentrated water. The extremely arid Tarim River Basin in NW China is taken as an example to demonstrate deuterium excess and salinity evolution from the source stream to river water, lake/reservoir water and groundwater. The results show that mineral dissolution contributes most of the salinity (67–77%) for Boston Lake and the Kongque and Tarim rivers relative to the source stream. Mineral dissolution and/or transpiration contribute greater salinity (73–99.6%) to the groundwater recharged by the river water in the middle and lower reaches of the Tarim River. The study provides a method for determining the salinisation mechanism and is important for salt movement and management.

  4. Paleomagnetism and environmental magnetism of GLAD800 sediment cores from Bear Lake, Utah and Idaho

    Science.gov (United States)

    Heil, C.W.; King, J.W.; Rosenbaum, J.G.; Reynolds, R.L.; Colman, Steven M.

    2009-01-01

    A ???220,000-year record recovered in a 120-m-long sediment core from Bear Lake, Utah and Idaho, provides an opportunity to reconstruct climate change in the Great Basin and compare it with global climate records. Paleomagnetic data exhibit a geomagnetic feature that possibly occurred during the Laschamp excursion (ca. 40 ka). Although the feature does not exhibit excursional behavior (???40?? departure from the expected value), it might provide an additional age constraint for the sequence. Temporal changes in salinity, which are likely related to changes in freshwater input (mainly through the Bear River) or evaporation, are indicated by variations in mineral magnetic properties. These changes are represented by intervals with preserved detrital Fe-oxide minerals and with varying degrees of diagenetic alteration, including sulfidization. On the basis of these changes, the Bear Lake sequence is divided into seven mineral magnetic zones. The differing magnetic mineralogies among these zones reflect changes in deposition, preservation, and formation of magnetic phases related to factors such as lake level, river input, and water chemistry. The occurrence of greigite and pyrite in the lake sediments corresponds to periods of higher salinity. Pyrite is most abundant in intervals of highest salinity, suggesting that the extent of sulfidization is limited by the availability of SO42-. During MIS 2 (zone II), Bear Lake transgressed to capture the Bear River, resulting in deposition of glacially derived hematite-rich detritus from the Uinta Mountains. Millennial-scale variations in the hematite content of Bear Lake sediments during the last glacial maximum (zone II) resemble Dansgaard-Oeschger (D-O) oscillations and Heinrich events (within dating uncertainties), suggesting that the influence of millennial-scale climate oscillations can extend beyond the North Atlantic and influence climate of the Great Basin. The magnetic mineralogy of zones IV-VII (MIS 5, 6, and 7

  5. Ecological Health and Water Quality Assessments in Big Creek Lake, AL

    Science.gov (United States)

    Childs, L. M.; Frey, J. W.; Jones, J. B.; Maki, A. E.; Brozen, M. W.; Malik, S.; Allain, M.; Mitchell, B.; Batina, M.; Brooks, A. O.

    2008-12-01

    Big Creek Lake (aka J.B. Converse Reservoir) serves as the water supply for the majority of residents in Mobile County, Alabama. The area surrounding the reservoir serves as a gopher tortoise mitigation bank and is protected from further development, however, impacts from previous disasters and construction have greatly impacted the Big Creek Lake area. The Escatawpa Watershed drains into the lake, and of the seven drainage streams, three have received a 303 (d) (impaired water bodies) designation in the past. In the adjacent ecosystem, the forest is experiencing major stress from drought and pine bark beetle infestations. Various agencies are using control methods such as pesticide treatment to eradicate the beetles. There are many concerns about these control methods and the run-off into the ecosystem. In addition to pesticide control methods, the Highway 98 construction projects cross the north area of the lake. The community has expressed concern about both direct and indirect impacts of these construction projects on the lake. This project addresses concerns about water quality, increasing drought in the Southeastern U.S., forest health as it relates to vegetation stress, and state and federal needs for improved assessment methods supported by remotely sensed data to determine coastal forest susceptibility to pine bark beetles. Landsat TM, ASTER, MODIS, and EO-1/ALI imagery was employed in Normalized Difference Vegetation Index (NDVI) and Normalized Difference Moisture Index (NDMI), as well as to detect concentration of suspended solids, chlorophyll and water turbidity. This study utilizes NASA Earth Observation Systems to determine how environmental conditions and human activity relate to pine tree stress and the onset of pine beetle invasion, as well as relate current water quality data to community concerns and gain a better understanding of human impacts upon water resources.

  6. The greatest soda-water lake in the world and how it is influenced by climatic change

    Directory of Open Access Journals (Sweden)

    M. Kadioğlu

    1997-11-01

    Full Text Available Global warming resulting from increasing greenhouse gases in the atmosphere and the local climate changes that follow affect local hydrospheric and biospheric environments. These include lakes that serve surrounding populations as a fresh water resource or provide regional navigation. Although there may well be steady water-quality alterations in the lakes with time, many of these are very much climate-change dependent. During cool and wet periods, there may be water-level rises that may cause economic losses to agriculture and human activities along the lake shores. Such rises become nuisances especially in the case of shoreline settlements and low-lying agricultural land. Lake Van, in eastern Turkey currently faces such problems due to water-level rises. The lake is unique for at least two reasons. First, it is a closed basin with no natural or artificial outlet and second, its waters contain high concentrations of soda which prevent the use of its water as a drinking or agricultural water source. Consequently, the water level fluctuations are entirely dependent on the natural variability of the hydrological cycle and any climatic change affects the drainage basin. In the past, the lake-level fluctuations appear to have been rather systematic and unrepresentable by mathematical equations. Herein, monthly polygonal climate diagrams are constructed to show the relation between lake level and some meteorological variables, as indications of significant and possible climatic changes. This procedure is applied to Lake Van, eastern Turkey, and relevant interpretations are presented.

  7. Kinetic model for predicting the concentrations of active halogen species in chlorinated saline cooling waters

    International Nuclear Information System (INIS)

    Lietzke, M.H.; Haag, W.R.

    1979-01-01

    A kinetic model for predicting the composition of chlorinated water discharged from power plants using fresh water for cooling was previously reported. The model has now been extended to be applicable to power plants located on estuaries or on the seacoast where saline water is used for cooling purposes. When chloride is added to seawater to prevent biofouling in cooling systems, bromine is liberated. Since this reaction proceeds at a finite rate there is a competition between the bromine (i.e., hypobromous acid) and the added chlorine (i.e., hypochlorous acid) for halogenation of any amine species present in the water. Hence not only chloramines but also bromamines and bromochloramines will be formed, with the relative concentrations a function of the pH, temperature, and salinity of the water. The kinetic model takes into account the chemical reactions leading to the formation and disappearance of the more important halamines and hypohalous acids likely to be encountered in chlorinated saline water

  8. Investigation of water and saline solution drops evaporation on a solid substrate

    Directory of Open Access Journals (Sweden)

    Orlova Evgenija G.

    2014-01-01

    Full Text Available Experimental investigation water and saline solution drops evaporation on a solid substrate made of anodized aluminum is presented in the paper. Parameters characterizing drop profile have been obtained (contact angle, contact diameter, height. The specific evaporation rate has been calculated from obtained values. It was found that water and saline solution drops with concentration up to 9.1% evaporate in the pinning mode. However, with increasing the salt concentration in the solution up to 16.7% spreading mode was observed. Two stages of drop evaporation depending on change of the evaporation rate have been separated.

  9. subsurface sequence delineation and saline water mapping of lagos

    African Journals Online (AJOL)

    A subsurface sequence delineation and saline water mapping of Lagos State was carried out. Ten (10) deep boreholes with average depth of 300 m were drilled within the sedimentary basin. The boreholes were lithologically and geophysically logged. The driller's lithological logs aided by gamma and resistivity logs, ...

  10. A fast alternative to core plug tests for optimising injection water salinity for EOR

    DEFF Research Database (Denmark)

    Hassenkam, Tue; Andersson, Martin Peter; Hilner, Emelie Kristin Margareta

    2014-01-01

    of the clays which would lead to permanent reservoir damage but evidence of effectiveness at moderate salinity would offer the opportunity to dispose of produced water. The goal is to define boundary conditions so injection water salinity is high enough to prevent reservoir damage and low enough to induce...... the low salinity effect while keeping costs and operational requirements at a minimum. Traditional core plug testing for optimising conditions has some limitations. Each test requires a fresh sample, core testing requires sophisticated and expensive equipment, and reliable core test data requires several...... experiments can be done relatively quickly on very little material, it gives the possibility of testing salinity response on samples from throughout a reservoir and for gathering statistics. Our approach provides a range of data that can be used to screen core plug testing conditions and to provide extra data...

  11. Remote Sensing of Black Lakes and Using 810 nm Reflectance Peak for Retrieving Water Quality Parameters of Optically Complex Waters

    Directory of Open Access Journals (Sweden)

    Tiit Kutser

    2016-06-01

    Full Text Available Many lakes in boreal and arctic regions have high concentrations of CDOM (coloured dissolved organic matter. Remote sensing of such lakes is complicated due to very low water leaving signals. There are extreme (black lakes where the water reflectance values are negligible in almost entire visible part of spectrum (400–700 nm due to the absorption by CDOM. In these lakes, the only water-leaving signal detectable by remote sensing sensors occurs as two peaks—near 710 nm and 810 nm. The first peak has been widely used in remote sensing of eutrophic waters for more than two decades. We show on the example of field radiometry data collected in Estonian and Swedish lakes that the height of the 810 nm peak can also be used in retrieving water constituents from remote sensing data. This is important especially in black lakes where the height of the 710 nm peak is still affected by CDOM. We have shown that the 810 nm peak can be used also in remote sensing of a wide variety of lakes. The 810 nm peak is caused by combined effect of slight decrease in absorption by water molecules and backscattering from particulate material in the water. Phytoplankton was the dominant particulate material in most of the studied lakes. Therefore, the height of the 810 peak was in good correlation with all proxies of phytoplankton biomass—chlorophyll-a (R2 = 0.77, total suspended matter (R2 = 0.70, and suspended particulate organic matter (R2 = 0.68. There was no correlation between the peak height and the suspended particulate inorganic matter. Satellite sensors with sufficient spatial and radiometric resolution for mapping lake water quality (Landsat 8 OLI and Sentinel-2 MSI were launched recently. In order to test whether these satellites can capture the 810 nm peak we simulated the spectral performance of these two satellites from field radiometry data. Actual satellite imagery from a black lake was also used to study whether these sensors can detect the peak

  12. Study of environmental isotope distribution in the Aswan High Dam Lake (Egypt) for estimation of evaporation of lake water and its recharge to adjacent groundwater

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Nada, A.; Awad, M.; Hamza, M.; Salem, W.M.

    1993-01-01

    Oxygen-18 ( 18 O) and deuterium isotopes were used to estimate the evaporation from the Aswan High Dam Lake and to investigate the inter-relation between the lake water and adjacent groundwater. According to stable isotopic analysis of samples taken in 1988 and 1989, the lake can be divided into two sections. In the first section extending between Abu Simbel and a point between El-Alaki and Krosko, a remarkable vertical gradient of 18 O and deuterium isotopic composition was observed. The second northern sector extending to the High Dam is characterised by a lower vertical isotopic gradient. In this sector in general, higher values of 18 O and deuterium contents were found at the top and lower values at the bottom. Also a strong horizontal increase of the heavy isotope content was observed. Thus, in the northern section evaporation is of dominating influence on the isotopic composition of the lake water. With the help of an evaporation pan experiment it was possible to calibrate the evaporative isotope enrichment in the lake and to facilitate a preliminary estimate of evaporative losses of lake water. The evaporation from the lake was estimated to be about 19% of the input water flow rate. The groundwater around the lake was investigated and samples from production wells and piezometers were subjected to isotopic analysis. The results indicate that recent recharge to the groundwater aquifer is limited to wells near to the lake and up to a maximum distance of about 10 km. The contribution of recent Nile water to the groundwater in these wells was estimated to range between 23 and 70%. Beyond this distance, palaeowater was observed with highly depleted deuterium and 18 O contents, which was also confirmed by 14c dating. The age of palaeo groundwater in this area can reach values of more than 26,000 years. Recommendations are given for efficient water management of the lake water. (Author)

  13. Batteries for Efficient Energy Extraction from a Water Salinity Difference

    KAUST Repository

    La Mantia, Fabio; Pasta, Mauro; Deshazer, Heather D.; Logan, Bruce E.; Cui, Yi

    2011-01-01

    The salinity difference between seawater and river water is a renewable source of enormous entropic energy, but extracting it efficiently as a form of useful energy remains a challenge. Here we demonstrate a device called "mixing entropy battery

  14. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments

    Science.gov (United States)

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Quensen, John; Tiedje, James M.; Leigh, Mary Beth

    2012-01-01

    Methane (CH4) emitted from high-latitude lakes accounts for 2–6% of the global atmospheric CH4 budget. Methanotrophs in lake sediments and water columns mitigate the amount of CH4 that enters the atmosphere, yet their identity and activity in arctic and subarctic lakes are poorly understood. We used stable isotope probing (SIP), quantitative PCR (Q-PCR), pyrosequencing and enrichment cultures to determine the identity and diversity of active aerobic methanotrophs in the water columns and sediments (0–25 cm) from an arctic tundra lake (Lake Qalluuraq) on the north slope of Alaska and a subarctic taiga lake (Lake Killarney) in Alaska's interior. The water column CH4 oxidation potential for these shallow (~2m deep) lakes was greatest in hypoxic bottom water from the subarctic lake. The type II methanotroph, Methylocystis, was prevalent in enrichment cultures of planktonic methanotrophs from the water columns. In the sediments, type I methanotrophs (Methylobacter, Methylosoma and Methylomonas) at the sediment-water interface (0–1 cm) were most active in assimilating CH4, whereas the type I methanotroph Methylobacter and/or type II methanotroph Methylocystis contributed substantially to carbon acquisition in the deeper (15–20 cm) sediments. In addition to methanotrophs, an unexpectedly high abundance of methylotrophs also actively utilized CH4-derived carbon. This study provides new insight into the identity and activity of methanotrophs in the sediments and water from high-latitude lakes.

  15. WATER QUALITY ASSESSMENT OF LAKE TEXOMA BEACHES, 1999-2001

    Science.gov (United States)

    A biological and inorganic assessment of five beaches on Lake Texoma was conducted from September 1999 through July 2001. Water samples for each beach site were divided into two groups, a swimming season and non-swimming season. Water properties such as temperature, alkalinity,...

  16. Water level monitoring using radar remote sensing data: Application to Lake Kivu, central Africa

    Science.gov (United States)

    Munyaneza, Omar; Wali, Umaru G.; Uhlenbrook, Stefan; Maskey, Shreedhar; Mlotha, McArd J.

    Satellite radar altimetry measures the time required for a pulse to travel from the satellite antenna to the earth’s surface and back to the satellite receiver. Altimetry on inland lakes generally shows some deviation from in situ level measurements. The deviation is attributed to the geographically varying corrections applied to account for atmospheric effects on radar waves. This study was focused on verification of altimetry data for Lake Kivu (2400 km 2), a large inland lake between Rwanda and the Democratic Republic of Congo (DRC) and estimating the lake water levels using bathymetric data combined with satellite images. Altimetry data obtained from ENVISAT and ERS-2 satellite missions were compared with water level data from gauging stations for Lake Kivu. Gauge data for Lake Kivu were collected from the stations ELECTROGAZ and Rusizi. ENVISAT and ERS-2 data sets for Lake Kivu are in good agreement with gauge data having R2 of 0.86 and 0.77, respectively. A combination of the two data sets improved the coefficient of determination to 95% due to the improved temporal resolution of the data sets. The calculated standard deviation for Lake Kivu water levels was 0.642 m and 0.701 m, for ENVISAT and ERS-2 measurements, respectively. The elevation-surface area characteristics derived from bathymetric data in combination with satellite images were used to estimate the lake level gauge. Consequently, the water level of Lake Kivu could be estimated with an RMSE of 0.294 m and an accuracy of ±0.58 m. In situations where gauges become malfunctioning or inaccessible due to damage or extreme meteorological events, the method can be used to ensure data continuity.

  17. Water quality and water pollution sources in Poyang lake, China; Poyang ko ni okeru suishitsu chosa to odakugen kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ito, M. [Shin-Nippon Meteorological and Oceanographical Consultant Co. Ltd., Tokyo (Japan)

    1996-01-10

    This paper summarizes the current status of water quality and pollution sources in Poyang Lake in China. The lake is located in Chianghsi Province of China, and a largest fresh water lake in China that flows out into the Yangtze river. The basin is surrounded by mountains on three sides and faces the Yangtze on one side, whereas the plains formed by the lake and the rivers flowing in extends in the center of the basin. The plains around the lake has the city of Nanchang, the capital of the province, the city of Jiujiang (both cities have a population of about 4 million, respectively), and four other cities with a size of one million people including Jingdezhen. Water supply system in the basin is used in a 37% area of the urban areas, and no sewage facilities of whatsoever are available as of 1991. The lake has COD of about 3 mg{times}1/l. No severe pollution by organic matters is seen. While the T-P concentration is at a high level, PO4-P is low. Majority of phosphorus flowing into the basin exists in the form trapped in soil particles. In order to maintain the current water quality in the future, waste water treatment is required in the basin. Construction of an oxidation pond in the vast land exposed during the drought period is a measure that can be tackled relatively easily. 1 fig., 4 tabs.

  18. Response of lupine plants irrigated with saline water to rhizobium inoculation using 15N-isotope dilution

    International Nuclear Information System (INIS)

    Gadalla, A.M.; El-Ghandour, I.A.; Abdel Aziz, H.A.; Hamdy, A.; Aly, M.M.

    2002-01-01

    The lupine Rhizobium symbiosis and contribution of N 2 fixation under different levels of irrigation water salinity were examined. Lysimeter experiment was established under greenhouse conditions during the year 2002-2003. In this experiment, inoculated plants were imposed to different salinity levels of irrigation water and N-fertilizer treatment. Plant height was decreased under different salinity levels, nitrogen treatments and bacterial inoculation. Similar trend was noticed with leaf area. The highest leaf area was recorded with salt tolerant bacterial inoculation (SBI) and splitting N-treatment. Highest values of N-uptake occurred after 100 day intervals under the tested factors. Relative decrease in N-uptake did not exceed 40% of those recorded with the fresh water treatment as affected by experimental factors. Nitrogen uptake by the whole plant reflected an increase at 3 dS/m salinity level of irrigation water. Relative increases were 5% and 15% for normal bacteria inoculation under single dose (NI) and splitting

  19. Evaluation of Serum for Pathophysiological Effects of Prolonged Low Salinity Water Exposure in Displaced Bottlenose Dolphins (Tursiops truncatus

    Directory of Open Access Journals (Sweden)

    Ruth Y. Ewing

    2017-06-01

    Full Text Available We conducted a retrospective study of serum biochemistry and hematologic findings from displaced, out-of-habitat bottlenose dolphins (Tursiops truncatus exposed to various low salinity environments in waters along the southern United States including southeastern Atlantic and northern Gulf of Mexico. Serum sodium, chloride, and calculated osmolality were significantly lower and below reference ranges in displaced animals compared to free-ranging case control animals. This suggests clinical hyponatremia, hypochloremia, and hypo-osmolality due to an uptake of low saline water from the environment. In addition, significant differences were found in other serum chemistry variables, although none were outside of normal reference ranges for non-controlled free-ranging animals. Multiple linear regressions demonstrated the degree of salinity had a greater pathophysiologic response than the duration of fresh water exposure. The Na/Cl ratio and bicarbonate were the only variables that were significantly modulated by exposure duration. These findings suggest that the degree of salinity is a critical factor when assessing and managing care for dolphins chronically exposed to low salinity water. Results from this study indicate that changes in various biochemical parameters can be used to determine fresh water exposure and aid in determining the treatment for animals recovered from low salinity waters.

  20. Modelling the Loktak Lake Basin to Assess Human Impact on Water Resources

    Science.gov (United States)

    Eliza, K.

    2015-12-01

    Loktak Lake is an internationally important, Ramsar designated, fresh water wetland system in the state of Manipur, India. The lake was also listed under Montreux Record on account of the ecological modifications that the lake system has witnessed over time. A characteristic feature of this lake is the extensive occurrence of coalesced, naturally or otherwise, vegetative masses floating over it. A contiguous 40 km2 area of Phumdis, as these vegetative masses are locally referred to, also constitutes the only natural home of the endemic and endangered species of Manipur's brow-antlered deer popularly known as Sangai. Appropriately notified as Keibul Lamjao National Park by Government of India, this natural feature is known to be the world's largest floating park. Water quality and sediment deposition on account of soil erosion in its catchments are some of the emerging concerns along with a reported enhanced frequency and duration of flooding of the shore areas, reduced fish catch within a visibly deteriorated overall natural ecosystem. Disturbances of watershed processes, command area management practices, ineffective as indeed largely absent, waste management practices and management interventions linked to the Loktak Hydroelectric Project are often cited as the principal triggers that are seen to be responsible for the damage. An effective management protocol for the Lake requires a rigorous understanding of its hydrobiology and eco-hydrodynamics. The present study is carried out to establish such a characterization of the various rivers systems draining directly into the Lake using MIKE SHE, MIKE 11 HD and MIKE 11 ECO Lab modelling platforms. Water quality modelling was limited to dissolved oxygen (DO), biological oxygen demand (BOD) and water temperature. Model calibration was done using the available measured water quality data. The derived results were then investigated for causal correlation with anthropogenic influences to assess human impact on water

  1. Salinity effect on seedling growth, water, sodium and potassium ...

    African Journals Online (AJOL)

    Mature leaves exhibited good adaptative behavior toward salinity stress by increasing succulence due to absorption of large quantities of water and K+ in leaves. Potassium uptake in leaves was not found to be affected by NaCl concentration. As a consequence, monovalent cations adsorption resulted in an increase in the ...

  2. Water-quality and sediment-chemistry data of drain water and evaporation ponds from Tulare Lake Drainage District, Kings County, California March 1985 to March 1986

    Science.gov (United States)

    Fujii, Roger

    1988-01-01

    Trace element and major ion concentrations were measured in water samples collected monthly between March 1985 and March 1986 at the MD-1 pumping station at the Tulare Lake Drainage District evaporation ponds, Kings County, California. Samples were analyzed for selected pesticides several times during the year. Salinity, as measured by specific conductance, ranged from 11,500 to 37,600 microsiemens/centimeter; total recoverable boron ranged from 4,000 to 16,000 micrg/L; and total recoverable molybdenum ranged from 630 to 2,600 microg/L. Median concentrations of total arsenic and total selenium were 97 and 2 microg/L. Atrazine, prometone, propazine, and simazine were the only pesticides detected in water samples collected at the MD-1 pumping station. Major ions, trace elements, and selected pesticides also were analyzed in water and bottom-sediment samples from five of the southern evaporation ponds at Tulare Lake Drainage District. Water enters the ponds from the MD-1 pumping station at pond 1 and flows through the system terminating at pond 10. The water samples increased in specific conductance (21,700 to 90,200 microsiemens/centimeter) and concentrations of total arsenic (110 to 420 microg/L), total recoverable boron (12,000 to 80,000 microg/L) and total recoverable molybdenum (1,200 to 5,500 microg/L) going from pond 1 to pond 10, respectively. Pesticides were not detected in water from any of the ponds sampled. Median concentrations of total arsenic and total selenium in the bottom sediments were 4.0 and 0.9 microg/g, respectively. The only pesticides detected in bottom sediment samples from the evaporation ponds were DDD and DDE, with maximum concentration of 0.8 microg/kilogram. (Author 's abstract)

  3. Physical, chemical and microbiological analysis of the water quality of Rawal Lake, Pakistan

    Directory of Open Access Journals (Sweden)

    Mehreen Hassan

    2014-06-01

    Full Text Available What better gift of nature would be than good quality water? In order to assess the quality of water of Rawal Lake, following research was carried out. Rawal lake is a source of drinking water supplied to many areas of Rawalpindi and Islamabad’ the capital city of Pakistan. Water of this lake is being highly polluted by the local communities alongside the lake through solid waste dumping. Samples of surface water were collected, tested and analyzed in the laboratory on the basis of physical, chemical and microbiological parameters. The results showed uncertainties in many of the selected parameters. Microbiological analysis revealed high contamination of E. coli, fecal coliform and total coliform in the samples proving it unfit for drinking. It was found that the concentration of all physical parameters such as nitrates, chloride, pH and conductivity were within the normal limits. The level of heavy metals like lead, iron, chromium etc. was also found low. Turbidity at some points exceeded the maximum acceptable limit as per WHO statement.

  4. Impact of urbanization on inflows and water quality of rawal lake

    International Nuclear Information System (INIS)

    Awais, M.; Afzal, M.

    2016-01-01

    Two phenomena playing important role in affecting water resources all over the world are: urbanization and climate changes. Urban and peri-urban water bodies are very vulnerable to these phenomena in terms of quality and quantity protection. This study was aimed to perceive the impact of ever-increasing urbanization on water quality in the catchment area of Rawal Lake. Rawal Lake supplies water for domestic use to Rawalpindi city and Cantonment area. The water was found biologically unfit for human consumption due to total and faecal coliforms counts higher than WHO limits. Similarly, turbidity and calcium was more than WHO standards. There should be detailed study on climate change parallel to urbanization in the Rawal catchment to quantify its impacts on water quality and inflows. (author)

  5. An Analysis of Total Phosphorus Dispersion in Lake Used As a Municipal Water Supply.

    Science.gov (United States)

    Lima, Rômulo C; Mesquita, André L A; Blanco, Claudio J C; Santos, Maria de Lourdes S; Secretan, Yves

    2015-09-01

    In Belém city is located the potable water supply system of its metropolitan area, which includes, in addition to this city, four more municipalities. In this water supply complex is the Água Preta lake, which serves as a reservoir for the water pumped from the Guamá river. Due to the great importance of this lake for this system, several works have been devoted to its study, from the monitoring of the quality of its waters to its hydrodynamic modeling. This paper presents the results obtained by computer simulation of the phosphorus dispersion within this reservoir by the numerical solution of two-dimensional equation of advection-diffusion-reaction by the method θ/SUPG. Comparing these results with data concentration of total phosphorus collected from November 2008 to October 2009 and from satellite photos show that the biggest polluters of the water of this lake are the domestic sewage dumps from the population living in its vicinity. The results obtained indicate the need for more information for more precise quantitative analysis. However, they show that the phosphorus brought by the Guamá river water is consumed in an area adjacent to the canal that carries this water into the lake. Phosphorus deposits in the lake bottom should be monitored to verify their behavior, thus preventing the quality of water maintained therein.

  6. Aquatic environmental assessment of Lake Balaton in the light of physical-chemical water parameters.

    Science.gov (United States)

    Sebestyén, Vitkor; Németh, József; Juzsakova, Tatjana; Domokos, Endre; Kovács, Zsófia; Rédey, Ákos

    2017-11-01

    One of the issues of the Hungarian Water Management Strategy is the improvement and upgrading of the water of Lake Balaton. The Water Framework Directive (WFD) specifies and sets forth the achievement of the good ecological status. However, the assessment of the water quality of the lake as a complex system requires a comprehensive monitoring and evaluation procedure. Measurements were carried out around the Lake Balaton at ten different locations/sites and 13 physical-chemical parameters were monitored at each measurement site.For the interpretation of the water chemistry parameters the Aquatic Environmental Assessment (AEA) method devised by authors was used for the water body of the Lake Balaton. The AEA method can be used for all types of the water bodies since it is flexible and using individual weighting procedure for the water chemistry parameters comprehensive information can be obtain. The AEA method was compared with existing EIA methods according to a predefined criterion system and proved to be the most suitable tool for evaluating the environmental impacts in our study.On the basis of the results it can be concluded that the status of the quality of studied area on the Lake Balaton can be categorized as proper quality (from the outcome of the ten measurement sites this conclusion was reached at seven sites).

  7. Lake Victoria's Water Budget and the Potential Effects of Climate ...

    African Journals Online (AJOL)

    This paper presents the Lake Victoria water budget for the period 1950-2004 and findings of a study on potential climate change impact on the lake's Hydrology through the 21st Century. The mass balance components are computed from measured and simulated data. A2 and B2 emission scenarios of the Special Report ...

  8. Water quality assessment in a shallow lake used for tourism

    Directory of Open Access Journals (Sweden)

    Dembowska Ewa A.

    2015-12-01

    Full Text Available The routine evaluation of water quality is limited to lakes with the largest area. In Poland, only lakes with an area exceeding 50 hectares are monitored by the State Environmental Monitoring System. For many local communities, however, small lakes are more important. This applies mainly to areas with a small number of lakes, where even the smallest lakes are used for various purposes. This paper presents the results of phytoplankton analysis in a small and shallow lake used for recreation. The study was conducted at three sites located in different parts of the lake. A total of 122 algae taxa were identified in the phytoplankton, mainly diatoms and green algae. The most constant taxa in the lake were: Stephanodiscus hantzschii, Desmodesmus communis, Pediastrum tetras and Crucigenia tetrapedia. The average phytoplankton biomass was 37 mg l−1. The maximum biomass, almost 140 mg dm−3, was recorded in late July at the site located near the beach. At that time, there was a massive cyanobacterial bloom composed of Microcystis wesenbergii and Aphanizomenon issatschenkoi. Based on these studies, the lake should be classified as hypertrophic with bad ecological status. This lake should not be used for recreational purposes in the current state.

  9. Water quality and fish dynamics in forested wetlands associated with an oxbow lake

    Science.gov (United States)

    Andrews, Caroline S.; Miranda, Leandro E.; Kroger, Robert

    2015-01-01

    Forested wetlands represent some of the most distinct environments in the Lower Mississippi Alluvial Valley. Depending on season, water in forested wetlands can be warm, stagnant, and oxygen-depleted, yet may support high fish diversity. Fish assemblages in forested wetlands are not well studied because of difficulties in sampling heavily structured environments. During the April–July period, we surveyed and compared the water quality and assemblages of small fish in a margin wetland (forested fringe along a lake shore), contiguous wetland (forested wetland adjacent to a lake), and the open water of an oxbow lake. Dissolved-oxygen levels measured hourly 0.5 m below the surface were higher in the open water than in either of the forested wetlands. Despite reduced water quality, fish-species richness and catch rates estimated with light traps were greater in the forested wetlands than in the open water. The forested wetlands supported large numbers of fish and unique fish assemblages that included some rare species, likely because of their structural complexity. Programs developed to refine agricultural practices, preserve riparian zones, and restore lakes should include guidance to protect and reestablish forested wetlands.

  10. NPDES Draft Permit for Spirit Lake Water Treatment Facility in North Dakota

    Science.gov (United States)

    Under NPDES draft permit ND-0031101, Spirit Lake Water Resource Management is authorized to discharge to an unnamed intermittent tributary to Devils Lake which is tributary to Sheyenne River in North Dakota.

  11. Changing climate in the Lake Superior region: a case study of the June 2012 flood and its effects on the western-lake water column

    Science.gov (United States)

    Minor, E. C.; Forsman, B.; Guildford, S. J.

    2013-12-01

    In Lake Superior, the world's largest freshwater lake by area, we are seeing annual surface-water temperature increases outpacing those of the overlying atmosphere. We are also seeing ever earlier onsets of water-column stratification (in data sets from the mid-1980s to the present). In Minnesota, including the Lake Superior watershed, precipitation patterns are also shifting toward fewer and more extreme storm events, such as the June 2012 solstice flood, which impacted the western Lake Superior basin. We are interested in how such climatological changes will affect nutrient and carbon biogeochemistry in Lake Superior. The lake is currently an oligotrophic system exhibiting light limitation of primary production in winter and spring, with summer primary production generally limited by phosphorus and sometimes co-limited by iron. Analyses in the western arm of Lake Superior showed that the June 2012 flood brought large amounts of sediment and colored dissolved organic matter (CDOM) from the watershed into the lake. There was initially a ~50-fold spike in the total phosphorus concentrations (and a 5 fold spike in soluble reactive phosphorus) in flood-impacted waters. This disappeared rapidly, in large part due to sediment settling and did not lead to an increase in chlorophyll concentrations at monitored sampling sites. Instead, lake phytoplankton appeared light limited by a surface lens of warm water enriched in CDOM that persisted for over a month after the flood event itself. Our observations highlight the need for continuing research on these complex in-lake processes in order to make accurate predictions about longer term impacts of these large episodic inputs in CDOM, sediment, and nutrient loading.

  12. Climate change induced salinisation of artificial lakes in the Netherlands and consequences for drinking water production.

    Science.gov (United States)

    Bonte, Matthijs; Zwolsman, John J G

    2010-08-01

    In this paper we present a modelling study to investigate the impacts of climate change on the chloride concentration and salinisation processes in two man-made freshwater lakes in the Netherlands, Lake IJsselmeer and Lake Markermeer. We used a transient compartmental chloride and water balance model to elucidate the salinisation processes occurring under present conditions and assess future salinisation under two climate forcing scenarios. The model results showed that the Rhine River is the dominant determinant for the chloride concentration in both lakes, followed by drainage of brackish groundwater from the surrounding polders. The results further show that especially during dry years, seawater intrusion through the tidal closure dam is an important source of chloride to Lake IJsselmeer. The results from the climatic forcing scenarios show that Lake IJsselmeer is especially vulnerable to climate-induced salinisation whereas effects on Lake Markermeer are relatively small. Peak chloride concentrations at the raw water intake of the Andijk drinking water facility on Lake IJsselmeer are projected to increase to values above 250 mg/l in the most far-reaching climate change scenario W+ in 2050 for dry years. This is well above the maximum allowable concentration of 150 mg/l for chloride in drinking water. Modelling showed that climate change impacts the chloride concentrations in a variety of ways: 1) an increasing occurrence of low river flows from summer to autumn reduces the dilution of the chloride that is emitted to the Rhine with a constant load thereby increasing its concentration; 2) increased open water evaporation and reduced rainfall during summer periods and droughts increases the chloride concentration in the water; and 3) rises in sea level increase seawater intrusion through the tidal closure dam of Lake IJsselmeer. The processes described here are likely to affect many other tidal rivers or lakes and should be considered when planning future raw

  13. Monitoring changes in Greater Yellowstone Lake water quality following the 1988 wildfires

    Science.gov (United States)

    Lathrop, Richard G., Jr.; Vande Castle, John D.; Brass, James A.

    1994-01-01

    The fires that burned the Greater Yellowstone Area (GYA) during the summer of 1988 were the largest ever recorded for the region. Wildfire can have profound indirect effects on associated aquatic ecosystems by increased nutrient loading, sediment, erosion, and runoff. Satellite remote sensing and water quality sampling were used to compare pre- versus post-fire conditions in the GYA's large oliotrophic (high transparency, low productivity) lakes. Inputs of suspended sediment to Jackson Lake appear to have increased. Yellowstone Lake has not shown any discernable shift in water quality. The insights gained separately from the Landsat Thematic and NOAA Advanced Very High Resolution Radiometer (AVHRR) remote sensing systems, along with conventional in-situ sampling, can be combined into a useful water quality monitoring tool.

  14. Environmental effects on proline accumulation and water potential in olive leaves (Olea europaea L. (cv Chemlali)) under saline water irrigated field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ahmed, C.; Ben Rouina, B.; Boukhris, M.

    2009-07-01

    In arid regions in Tunisia suffering from limited water resources, the olive extension to irrigated lands has led to the urgent use of saline water, the most readily available water in the these areas. Nevertheless, the effects of salt stress on olive tree seem to be reinforced by environmental conditions. The issue of this paper is to determine how does the olive tree respond to environmental stress in the Mediterranean climate under saline water irrigated field conditions with respect to leaf proline concentrations and water Status. (Author)

  15. Environmental effects on proline accumulation and water potential in olive leaves (Olea europaea L. CV Chemlali)) under saline water irrigated field conditions

    International Nuclear Information System (INIS)

    Ben Ahmed, C.; Ben Rouina, B.; Boukhris, M.

    2009-01-01

    In arid regions in Tunisia suffering from limited water resources, the olive extension to irrigated lands has led to the urgent use of saline water, the most readily available water in the these areas. Nevertheless, the effects of salt stress on olive tree seem to be reinforced by environmental conditions. The issue of this paper is to determine how does the olive tree respond to environmental stress in the Mediterranean climate under saline water irrigated field conditions with respect to leaf proline concentrations and water Status. (Author)

  16. Investigation by tritium of the dynamics of Lake Leman waters. Contribution of tritium to physical limnology

    International Nuclear Information System (INIS)

    Hubert, P.

    1971-01-01

    This research thesis addressed the fundamental issues of kinematics of lakeside waters. The author investigated vertical movements of waters related to lakeside thermodynamics, as well as the large horizontal circulations related to lake renewal (the mixing of lakeside and fluvial waters is an aspect of that). He also studied the notion of renewal time for a lake by determining the distribution of stay times of water molecules in a lake

  17. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    International Nuclear Information System (INIS)

    Gustafsson, Bo G.

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m 3 /s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say ±1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m 3 /s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the shoreline

  18. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Bo G. [Oceanus Havsundersoekningar, Goeteborg (Sweden)

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m{sup 3}/s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say {+-}1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m{sup 3}/s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the

  19. Satellite remote sensing for modeling and monitoring of water quality in the Great Lakes

    Science.gov (United States)

    Coffield, S. R.; Crosson, W. L.; Al-Hamdan, M. Z.; Barik, M. G.

    2017-12-01

    Consistent and accurate monitoring of the Great Lakes is critical for protecting the freshwater ecosystems, quantifying the impacts of climate change, understanding harmful algal blooms, and safeguarding public health for the millions who rely on the Lakes for drinking water. While ground-based monitoring is often hampered by limited sampling resolution, satellite data provide surface reflectance measurements at much more complete spatial and temporal scales. In this study, we implemented NASA data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to build robust water quality models. We developed and validated models for chlorophyll-a, nitrogen, phosphorus, and turbidity based on combinations of the six MODIS Ocean Color bands (412, 443, 488, 531, 547, and 667nm) for 2003-2016. Second, we applied these models to quantify trends in water quality through time and in relation to changing land cover, runoff, and climate for six selected coastal areas in Lakes Michigan and Erie. We found strongest models for chlorophyll-a in Lake Huron (R2 = 0.75), nitrogen in Lake Ontario (R2=0.66), phosphorus in Lake Erie (R2=0.60), and turbidity in Lake Erie (R2=0.86). These offer improvements over previous efforts to model chlorophyll-a while adding nitrogen, phosphorus, and turbidity. Mapped water quality parameters showed high spatial variability, with nitrogen concentrated largely in Superior and coastal Michigan and high turbidity, phosphorus, and chlorophyll near urban and agricultural areas of Erie. Temporal analysis also showed concurrence of high runoff or precipitation and nitrogen in Lake Michigan offshore of wetlands, suggesting that water quality in these areas is sensitive to changes in climate.

  20. Effects of water salinity on the correlation scale of Root density and Evapotranspiration fluxes

    Science.gov (United States)

    Ajeel, Ali; Saeed, Ali; Dragonetti, Giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Spatial pattern and the correlation of different soil and plant parameters were examined in a green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari, Italy. The experiment aimed to evaluate the role of local processes of salt accumulation and transport which mainly influences the evapotranspiration (and thus the root uptake) processes under different water salinity levels. The experiment consisted of three transects of 30m length and 4.2 m width, irrigated with three different salinity levels (1dSm-1, 3dSm-1, 6dSm-1). Soil measurements (electrical conductivity and soil water content) were monitored along transects in 24 sites, 1 m apart by using TDR probes and Diviner 2000. Water storage measured by TDR and Diviner sensor were coupled for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Leaf Water Potential (LWP), and Root length Density (RlD). Soil and plant properties were analyzed by classical statistics, geostatistics methods and spectral analysis. Results indicated moderate to large spatial variability across the field for soil and plant parameters under all salinity treatments. Furthermore, cross-semivariograms exhibited a strong positive spatial interdependence between electrical conductivity of soil solution ECw with ET and RlD in transect treated with 3dSm-1 as well as with LAI in transect treated with 6dSm-1 at all 24 monitoring sites. Spectral analysis enabled to identify the observation window to sample the soil salinity information responsible for a given plant response (ET, OP, RlD). It is also allowed a clear identification of the spatial scale at which the soil water salinity level and distribution and the crop response in terms of actual evapotranspiration ET, RlD and OP, are actually correlated. Additionally