WorldWideScience

Sample records for saline group received

  1. Reinforcement of spinal anesthesia by epidural injection of saline: a comparison of hyperbaric and isobaric tetracaine.

    Science.gov (United States)

    Yamazaki, Y; Mimura, M; Hazama, K; Namiki, A

    2000-04-25

    An epidural injection of saline was reported to extend spinal anesthesia because of a volume effect. The aim of this study was to evaluate the influence of the baricity of spinal local anesthetics upon the extension of spinal anesthesia by epidural injection of saline. Forty patients undergoing elective lower-limb surgery were randomly allocated to four groups of 10 patients each. Group A received no epidural injection after the spinal administration of hyperbaric tetracaine (dissolved in 10% glucose). Group B received an epidural injection of 8 ml of physiological saline 20 min after spinal hyperbaric tetracaine. Group C received no epidural injection after spinal isobaric tetracaine (dissolved in physiological saline). Group D received an epidural injection of 8 ml of saline 20 min after spinal isobaric tetracaine. The level of analgesia was examined by the pinprick method at 5-min intervals. The levels of analgesia 20 min after spinal anesthesia were significantly higher in hyperbaric groups than in isobaric groups [T5 (T2-L2) vs. T7 (T3-12)]. After epidural injection of saline, the levels of analgesia in groups B and D were significantly higher than in groups A and C. The segmental increases after epidural saline injection were 2 (0-3) in group B and 2 (1-7) in group D. Sensation in the sacral area remained 20 min after spinal block in one patient in group D; however, it disappeared after epidural saline injection. In this study, 8 ml of epidural saline extended spinal analgesia. However, there was no difference between the augmenting effect in isobaric and hyperbaric spinal anesthesia. We conclude that the reinforcement of spinal anesthesia by epidural injection of saline is not affected by the baricity of the spinal anesthetic solution used.

  2. Efficacy of nebulised L-adrenaline with 3% hypertonic saline versus normal saline in bronchiolitis

    Directory of Open Access Journals (Sweden)

    Shabnam Sharmin

    2016-08-01

    Full Text Available Background: Bronchiolitis is one of the most common respiratory diseases requiring hospitalization. Nebulized epineph­rine and salbutamol therapy has been used in different centres with varying results. Objective: The objective of the study was to compare the efficacy of nebulised adrenaline diluted with 3% hypertonic saline with nebulised adrenaline diluted with normal saline in bronchiolitis. Methods: Fifty three infants and young children with bronchiolitis, age ranging from 2 months to 2 years, presenting in the emergency department of Manikganj Sadar Hospital were enrolled in the study. After initial evaluation, patients were randomized to receive either nebulized adrenaline I .5 ml ( 1.5 mg diluted with 2 ml of3% hypertonic saline (group I ornebulised adrenaline 1.5 ml (1.5 mg diluted with 2 ml of normal saline (group II. Patients were evaluated again 30 minutes after nebulization. Results: Twenty eight patients in the group I (hypertonic saline and twenty five in groupII (normal saline were included in the study. After nebulization, mean respiratory rate decreased from 63.7 to 48.1 (p<.01, mean clinical severity score decreased from 8.5 to 3.5 (p<.01 and mean oxygen satw·ation increased 94.7% to 96.9% (p<.01 in group I. In group II, mean respiratory rate decreased from 62.4 to 47.4 (p<.01, mean clinical severity score decreased from 7.2 to 4.1 (p<.01 and mean oxygen saturation increased from 94. 7% to 96. 7% (p<.01. Mean respiratory rate decreased by 16 in group I versus 14.8 (p>.05 in group 11, mean clinical severity score decreased by 4.6 in group versus 3 (p<.05 in group, and mean oxygen saturation increased by 2.2% and 1.9% in group and group respectively. Difference in reduction in clinical severity score was statistically significant , though the changes in respiratory rate and oxygen saturation were not statistically significant. Conclusion: The study concluded that both nebulised adrenaline diluted with 3% hypertonic saline and

  3. Postprocedural pain in shoulder arthrography: differences between using preservative-free normal saline and normal saline with benzyl alcohol as an intraarticular contrast diluent.

    Science.gov (United States)

    Storey, Troy F; Gilbride, George; Clifford, Kelly

    2014-11-01

    The purpose of this study was to prospectively evaluate the effect of benzyl alcohol, a common preservative in normal saline, on postprocedural pain after intraarticular injection for direct shoulder MR arthrography. From April 2011 through January 2013, 138 patients underwent direct shoulder MR arthrography. Using the Wong-Baker Faces Pain Scale, patients were asked to report their shoulder pain level immediately before and immediately after the procedure and then were contacted by telephone 6, 24, and 48 hours after the procedure. Fourteen patients did not receive the prescribed amount of contrast agent for diagnostic reasons or did not complete follow-up. Sixty-two patients received an intraarticular solution including preservative-free normal saline (control group) and 62 patients received an intraarticular solution including normal saline with 0.9% benzyl alcohol as a contrast diluent (test group). Patients were randomized as to which intraarticular diluent they received. Fluoroscopic and MR images were reviewed for extracapsular contrast agent administration or extravasation, full-thickness rotator cuff tears, and adhesive capsulitis. The effect of preservative versus control on pain level was estimated with multiple regression, which included time after procedure as the covariate and accounted for repeated measures over patients. Pain scale scores were significantly (p = 0.0382) higher (0.79 units; 95% CI, 0.034-1.154) with benzyl alcohol preservative compared with control (saline). In both study arms, the pain scale scores decreased slightly after the procedure, increased by roughly 1 unit over baseline for the test group and 0.3 unit over baseline for the control group by 6 hours after the procedure, were 0.50 unit over baseline for the test group and 0.12 unit over baseline for the control group at 24 hours, then fell to be slightly greater than baseline at 48 hours with benzyl alcohol and slightly less than baseline without benzyl alcohol. These trends

  4. Effect of saline iontophoresis on skin barrier function and cutaneous irritation in four ethnic groups.

    Science.gov (United States)

    Singh, J; Gross, M; Sage, B; Davis, H T; Maibach, H I

    2000-08-01

    The effect of saline iontophoresis on skin barrier function and irritation was investigated in four ethnic groups (Caucasians, Hispanics, Blacks and Asians). Forty healthy human volunteers were recruited according to specific entry criteria. Ten subjects, five males and five females, were assigned to each ethnic group. Skin barrier function was examined after 4 hours of saline iontophoresis at a current density of 0.2 mA/cm(2) on a 6.5 cm(2) area in terms of the measured responses: transepidermal water loss (TEWL), skin capacitance, skin temperature and visual scores. There were significant differences in TEWL among the ethnic groups prior to patch application. TEWL at baseline in ethnic groups was in the rank order: Caucasian>Asian>Hispanic>Black. Iontophoresis was generally well tolerated, and skin barrier function was not irreversibly affected by iontophoresis in any group. There was no significant skin temperature change, compared to baseline, in any ethnic groups at any observation point. Edema was not observed. At patch removal, the erythema score was elevated in comparison to baseline in all ethnic groups; erythema resolved within 24 hours. Thus, saline iontophoresis produced reversible changes in skin barrier function and irritation in healthy human subjects.

  5. Saline instillation before tracheal suctioning decreases the incidence of ventilator-associated pneumonia.

    Science.gov (United States)

    Caruso, Pedro; Denari, Silvia; Ruiz, Soraia A L; Demarzo, Sergio E; Deheinzelin, Daniel

    2009-01-01

    To compare the incidence of ventilator-associated pneumonia (VAP) with or without isotonic saline instillation before tracheal suctioning. As a secondary objective, we compared the incidence of endotracheal tube occlusion and atelectasis. Randomized clinical trial. The study was conducted in a medical surgical intensive care unit of an oncologic hospital. We selected consecutive patients needing mechanical ventilation for >72 hrs. Patients were allocated into two groups: a saline group that received instillation of 8 mL of saline before tracheal suctioning and a control group which did not. VAP was diagnosed based on clinical suspicion and confirmed by bronchoalveolar lavage quantitative culture. The incidence of atelectasis on daily chest radiography and endotracheal tube occlusions were recorded. The sample size was calculated to a power of 80% and a type I error probability of 5%. One hundred thirty patients were assigned to the saline group and 132 to the control group. The baseline demographic variables were similar between groups. The rate of clinically suspected VAP was similar in both groups. The incidence of microbiological proven VAP was significantly lower in the saline group (23.5% x 10.8%; p = 0.008) (incidence density/1.000 days of ventilation 21.22 x 9.62; p < 0.01). Using the Kaplan-Meier curve analysis, the proportion of patients remaining without VAP was higher in the saline group (p = 0.02, log-rank test). The relative risk reduction of VAP in the saline instillation group was 54% (95% confidence interval, 18%-74%) and the number needed to treat was eight (95% confidence interval, 5-27). The incidence of atelectases and endotracheal tube occlusion were similar between groups. Instillation of isotonic saline before tracheal suctioning decreases the incidence of microbiological proven VAP.

  6. Profiles of temperature, salinity, and other measurements from CTD, XBT, and bottle samplers received from the Japan Oceanographic Data Center (NODC Accession 0054093)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Profiles of temperature, salinity, and other measurements received from the Japan Oceanographic Data Center, Hydrographic and Oceanographic Department as a...

  7. Effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats.

    Science.gov (United States)

    Kim, Dong-Hyun; Yeo, Sang Won

    2013-01-01

    This prospective, randomized, and controlled study examined the effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats. The study comprised two control groups (untreated and saline-treated) and three experimental groups of Sprague Dawley rats. The experimental groups received an instillation of lipopolysaccharide (LPS) only, LPS+normal saline (LPS/saline), or LPS+selenium-enriched hot spring water (LPS/selenium). Histopathological changes were identified using hematoxylin-eosin staining. Leakage of exudate was identified using fluorescence microscopy. Microvascular permeability was measured using the Evans blue dye technique. Expression of the Muc5ac gene was measured using reverse transcription-polymerase chain reaction. Mucosal edema and expression of the Muc5ac gene were significantly lower in the LPS/saline group than in the LPS group. Microvascular permeability, mucosal edema, and expression of the Muc5ac gene were significantly lower in the LPS/selenium group than in the LPS group. Mucosal edema was similar in the LPS/selenium group and LPS/saline group, but capillary permeability and Muc5ac expression were lower in the LPS/selenium group. This study shows that normal saline and selenium-enriched hot spring water reduce inflammatory activity and mucus hypersecretion in LPS-induced rhinosinusitis in rats. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. The optimal analgesic method in saline infusion sonogram: A comparison of two effective techniques with placebo

    Directory of Open Access Journals (Sweden)

    Sadullah Özkan

    2016-09-01

    Full Text Available Objective: Operations performed with local anesthesia can sometimes be extremely painful and uncomfortable for patients. Our aim was to investigate the optimal analgesic method in saline infusion sonograms.\tMaterials and Methods: This study was performed in our Clinic of Obstetrics and Gynecology between March and August 2011. Ninety-six patients were included. Patients were randomly divided into groups that received saline (controls, group 1, paracervical block (group 2, or paracervical block + intrauterine lidocaine (group 3. In all groups, a visual analogue scale score was performed during the tenaculum placement, while saline was administered, and 30 minutes after the procedure.\tResults: When all the patients were evaluated, the difference in the visual analogue scale scores in premenopausal patients during tenaculum placement, during the saline infusion into the cavity, and 30 minutes following the saline infusion sonography were statistically different between the saline and paracervical block groups, and between the saline and paracervical block + intrauterine lidocaine group. However, there was no statistically significant difference between paracervical block and paracervical block + intrauterine lidocaine groups.\tConclusion: As a result of our study, paracervical block is a safe method to use in premenopausal patients to prevent pain during saline infusion sonography. The addition of intrauterine lidocaine to the paracervical block does not increase the analgesic effect; moreover, it increases the cost and time that the patient stays in the dorsolithotomy position by 3 minutes.

  9. Epinephrine Improves the Efficacy of Nebulized Hypertonic Saline in Moderate Bronchiolitis: A Randomised Clinical Trial.

    Directory of Open Access Journals (Sweden)

    J Carlos Flores-González

    Full Text Available There is no evidence that the epinephrine-3% hypertonic saline combination is more effective than 3% hypertonic saline alone for treating infants hospitalized with acute bronchiolitis. We evaluated the efficacy of nebulized epinephrine in 3% hypertonic saline.We performed a randomized, double-blind, placebo-controlled clinical trial in 208 infants hospitalized with acute moderate bronchiolitis. Infants were randomly assigned to receive nebulized 3% hypertonic saline with either 3 mL of epinephrine or 3 mL of placebo, administered every four hours. The primary outcome measure was the length of hospital stay.A total of 185 infants were analyzed: 94 in the epinephrine plus 3% hypertonic saline group and 91 in the placebo plus 3% hypertonic saline group. Baseline demographic and clinical characteristics were similar in both groups. Length of hospital stay was significantly reduced in the epinephrine group as compared with the placebo group (3.94 ±1.88 days vs. 4.82 ±2.30 days, P = 0.011. Disease severity also decreased significantly earlier in the epinephrine group (P = 0.029 and P = 0.036 on days 3 and 5, respectively.In our setting, nebulized epinephrine in 3% hypertonic saline significantly shortens hospital stay in hospitalized infants with acute moderate bronchiolitis compared to 3% hypertonic saline alone, and improves the clinical scores of severity from the third day of treatment, but not before.EudraCT 2009-016042-57.

  10. Salinity sources of Kefar Uriya wells in the Judea Group aquifer of Israel. Part 1—conceptual hydrogeological model

    Science.gov (United States)

    Avisar, D.; Rosenthal, E.; Flexer, A.; Shulman, H.; Ben-Avraham, Z.; Guttman, J.

    2003-01-01

    In the Yarkon-Taninim groundwater basin, the karstic Judea Group aquifer contains groundwater of high quality. However, in the western wells of the Kefar Uriya area located in the foothills of the Judea Mountains, brackish groundwater was locally encountered. The salinity of this water is caused presumably by two end members designated as the 'Hazerim' and 'Lakhish' water types. The Hazerim type represents surface water percolating through a highly fractured thin chalky limestone formation overlying the Judea Group aquifer. The salinity of the water derives conjointly from several sources such as leachates from rendzina and grumosols, dissolution of caliche crusts which contain evaporites and of rock debris from the surrounding formations. This surface water percolates downwards into the aquifer through a funnel- or chimney-like mechanism. This local salinization mechanism supercedes another regional process caused by the Lakhish waters. These are essentially diluted brines originating from deep formations in the western parts of the Coastal Plain. The study results show that salinization is not caused by the thick chalky beds of the Senonian Mt Scopus Group overlying the Judea Group aquifer, as traditionally considered but prevalently by aqueous leachates from soils and rock debris. The conceptual qualitative hydrogeological model of the salinization as demonstrated in this study, is supported by a quantitative hydrological model presented in another paper in this volume.

  11. Dextrose saline compared with normal saline rehydration of hyperemesis gravidarum: a randomized controlled trial.

    Science.gov (United States)

    Tan, Peng Chiong; Norazilah, Mat Jin; Omar, Siti Zawiah

    2013-02-01

    To compare 5% dextrose-0.9% saline against 0.9% saline solution in the intravenous rehydration of hyperemesis gravidarum. Women at their first hospitalization for hyperemesis gravidarum were enrolled on admission to the ward and randomly assigned to receive either 5% dextrose-0.9% saline or 0.9% saline by intravenous infusion at a rate 125 mL/h over 24 hours in a double-blind trial. All participants also received thiamine and an antiemetic intravenously. Oral intake was allowed as tolerated. Primary outcomes were resolution of ketonuria and well-being (by 10-point visual numerical rating scale) at 24 hours. Nausea visual numerical rating scale scores were obtained every 8 hours for 24 hours. Persistent ketonuria rates after the 24-hour study period were 10 of 101 (9.9%) compared with 11 of 101 (10.9%) (P>.99; relative risk 0.9, 95% confidence interval 0.4-2.2) and median (interquartile range) well-being scores at 24 hours were 9 (8-10) compared with 9 (8-9.5) (P=.73) in the 5% dextrose-0.9% saline and 0.9% saline arms, respectively. Repeated measures analysis of variance of the nausea visual numerical rating scale score as assessed every 8 hours during the 24-hour study period showed a significant difference in favor of the 5% dextrose-0.9% saline arm (P=.046) with the superiority apparent at 8 and 16 hours, but the advantage had dissipated by 24 hours. Secondary outcomes of vomiting, resolution of hyponatremia, hypochloremia and hypokalemia, length of hospitalization, duration of intravenous antiemetic, and rehydration were not different. Intravenous rehydration with 5% dextrose-0.9% saline or 0.9% saline solution in women hospitalized for hyperemesis gravidarum produced similar outcomes. ISRCTN Register, www.controlled-trials.com/isrctn, ISRCTN65014409. I.

  12. COMPARATIVE EFFICACY OF HYPERTONIC SALINE AND NORMAL SALINE SOLUTIONS IN EXPERIMENTALLY INDUCED ENDOTOXIC SHOCK IN DOGS

    Directory of Open Access Journals (Sweden)

    M. A. ZAFAR, G. MUHAMMAD, M. H. HUSSAIN, T. AHMAD, A. YOUSAF AND I. SARFARAZ

    2009-07-01

    Full Text Available This study was contemplated to determine the comparative beneficial effects of hypertonic saline solution and sterile saline solution in induced endotoxic shock in dogs. For this purpose, 12 healthy Mongrel dogs were randomly divided into two equal groups (A and B. All the animals were induced endotoxaemia by slow intravenous administration of Escherichia coli endotoxins 0111:B4. Group A was treated with normal saline solution @ 90 ml/kg BW, while group B was given hypertonic saline solution @ 4 ml/kg BW, followed by normal saline solution @ 10 ml/kg BW. Different parameters were observed for evaluation of these fluids including clinical and haematological parameters, serum electrolytes, mean arterial pressure, and blood gases at different time intervals up to 24 hours post treatments. After infusion of respective fluids, all parameters returned to baseline values in both the groups but group B showed better results than group A except bicarbonates, which better recovered in group A. Thus, it was concluded that a small-volume of hypertonic saline solution could be effectively used in reversing the endotoxaemia. Moreover, it provides a rapid and inexpensive resuscitation from endotoxic shock.

  13. Usefulness of normal saline for sealing the needle track after CT-guided lung biopsy

    International Nuclear Information System (INIS)

    Li, Y.; Du, Y.; Luo, T.Y.; Yang, H.F.; Yu, J.H.; Xu, X.X.; Zheng, H.J.; Li, B.

    2015-01-01

    Aim: To determine whether the use of normal saline for sealing the needle track can reduce the incidence of pneumothorax and chest tube placement after computed tomography (CT)-guided lung biopsy. Materials and methods: A prospective, randomised, controlled trial enrolling 322 patients was conducted. All patients were randomly assigned to one of two groups: those in whom the needle track was not sealed with normal saline (n=161, Group A) and those who did receive normal saline (n=161, Group B). CT-guided biopsy was performed with coaxial technique. Normal saline, which ranged from 1–3 ml, was injected while the trocar needle was being withdrawn. Patient characteristics, lesion, and procedure variables were analysed as potential risk variables for occurrence of pneumothorax and chest tube placement. Results: The incidence of pneumothorax was 26.1% in Group A and 6.2% in Group B (p<0.001). Nine patients in Group A and one patient in Group B required chest tube placement (p=0.010). Using multiple logistic regression analysis, smaller lesion size, greater needle–pleural angle, longer lesion–pleural distance, presence of emphysema, and no sealing the needle track with normal saline were significantly associated with an increased risk of pneumothorax, and that the latter three factors were also associated with an increased risk of pneumothorax requiring chest tube placement. Conlusion: Normal saline for sealing the needle track significantly reduces the incidence of pneumothorax and prevents subsequent chest tube placement after CT-guided lung biopsy. - Highlights: • Normal saline is an effective sealant for use in lung biopsy. • This technique reduced the incidence of pneumothorax and chest tube placement. • This technique should be recommended for CT-guided lung biopsy.

  14. Quantification and characterization of putative diazotrophic bacteria from forage palm under saline water irrigation

    Directory of Open Access Journals (Sweden)

    Gabiane dos Reis Antunes

    2017-09-01

    Full Text Available The aim of this study was to evaluate the density and phenotypical diversity of diazotrophic endophytic bacteria from the forage palm irrigated with different saline water depths. Opuntia stricta (IPA-200016 received five depths of saline water (L1: 80%. ETo; L2: 60%.ETo; L3: 40%; ETo; L4: 20%; ETo and, L5: 0% ETo, where ETo is the reference evapotranspiration. The roots were collected in the field, disinfected, grounded and serial diluted from 10-1 to 10-4. The total concentration of diazotrophic bacteria was determined by the most probable number method (MPN and the isolated bacteria were characterized phenotipically. The concentration of bacteria found in forage palm roots ranged from 0.36 x 104 to 109.89 104 cells per gram of root, with highest occurrence on the 60 and 80% ETo. In the dendrogram of similarity it was possible to observe the formation of 24 phenotypic groups with 100% similarity. All bacteria presented similarity superior to 40%. Among these groups, 14 are rare groups, formed by only a single bacterial isolate. In the Semi-Arid conditions, the forage palm that receives the highest amount of saline water, presents a higher density of putative nitrogen-fixing endophytic bacteria with high phenotypic diversity.

  15. A randomized clinical trial on comparison of corticosteroid injection with or without splinting versus saline injection with or without splinting in patients with lateral epicondylitis

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Tahririan

    2014-01-01

    Full Text Available Background: Lateral epicondylitis is a common problem affecting 1-3% of the population. There has been much debate about the best treatment modality for this condition. There is, however, no conclusive evidence in support of any of the proposed treatment modalities. In this trial, we have studied the effect of corticosteroid injection (with or without splinting with normal saline injection (with or without splinting. Materials and Methods: In this double-blind, randomized clinical trial, individuals were randomly assigned to either of four treatment groups and received either 40 mg depomedrol injection alone, 40 mg depomedrol injection with splinting, normal saline injection alone, or normal saline injection with splinting. They were evaluated using the visual analog scale (VAS at weeks 2, 4 and 24 and with the Oxford elbow scale (OES at 24 weeks. Results: A total of 79 patients were participated in the study. The corticosteroid injection groups had better pain relief as measured by VAS at 2 and 4 weeks compared with the two saline injection groups. Mean VAS difference at week 0 versus week 2 was 4.5 ± 0.9 and 2.8 ± 0.6 in corticosteroid injection groups and saline injection groups respectively (P < 0.01 but at 24 weeks, there was only moderate benefit reported for the group which received steroid injection and splinting (P < 0.01 compared to the saline injection groups. The saline injection groups reported better improvement in OES scores (20.1 ± 3.7 at the end of the trial compared corticosteroid injection groups (16.1 ± 2.9 (P < 0.05. Conclusion: Our results indicate that despite the clear pain reduction benefit associated with steroid injection in short term, this benefit in comparison with normal saline injection fades by the 24 th week of follow-up.

  16. The effectiveness of a saline mouth rinse regimen and education programme on radiation-induced oral mucositis and quality of life in oral cavity cancer patients: A randomised controlled trial.

    Science.gov (United States)

    Huang, B-S; Wu, S-C; Lin, C-Y; Fan, K-H; Chang, J T-C; Chen, S-C

    2018-03-01

    Radiation therapy (RT) and concurrent chemotherapy RT (CCRT) generate radiation-induced oral mucositis (OM) and lower quality of life (QOL). This study assessed the impact of a saline mouth rinse regimen and education programme on radiation-induced OM symptoms, and QOL in oral cavity cancer (OCC) patients receiving RT or CCRT. Ninety-one OCC patients were randomly divided into a group that received saline mouth rinses and an education programme and a control group that received standard care. OM symptoms and QOL were assessed with the WHO Oral Toxicity Scale, MSS-moo and UW-QOL. Data were collected at the first postoperative visit to the radiation department (T0) and at 4 weeks and 8 weeks after beginning RT or CCRT. Patients in both groups had significantly higher levels of physical and social-emotional QOL at 8 weeks after beginning RT or CCRT compared to the first visit. Patients in the saline rinse group had significantly better physical and social-emotional QOL as compared to the standard care group at 8 weeks. Radiation-induced OM symptoms and overall QOL were not different between the groups. We thus conclude the saline rinse and education programme promote better physical and social-emotional QOL in OCC patients receiving RT/CCRT. © 2018 John Wiley & Sons Ltd.

  17. The effect of saline lock on phlebitis rates of patients in cardiac care units.

    Science.gov (United States)

    Eghbali-Babadi, Maryam; Ghadiriyan, Raziyeh; Hosseini, Sayed Mohsen

    2015-01-01

    Despite advances in the field of intravenous therapy, phlebitis is still a common complication of peripheral venous catheter and finding an appropriate solution to prevent and reduce the incidence of this complication remains challenging. One of the methods used in reducing the incidence of phlebitis is the use of saline lock, which is forgotten in most hospitals. Therefore, this study aimed to evaluate its impact on the incidence and severity of phlebitis. In a single-blind (the researcher) clinical trial, 88 patients with peripheral venous catheter admitted in cardiac care units in selected hospitals of Isfahan University of Medical Sciences, Iran, were selected through convenient sampling method. They were randomly divided into two groups of intervention and control groups using random number table. The intervention group received 3 ml of 0.9% normal saline sterilized before and after each intravenous drug or every 12 h. However, in the control group, the intravenous drugs were given as routine and saline lock was not used. The evaluation of intravenous catheter regarding the incidence of phlebitis and its degrees using Jackson's Visual Infusion Phlebitis Scale was performed 6 times within 72 h (every 12 h). Results were evaluated by SPSS software using descriptive statistics, Chi-square test, t-test, and Mann-Whitney test. Results showed that there was a statistically significant difference between the two groups regarding the degree of phlebitis (P = 0.003). The percentage of phlebitis incidence in the control group was 88.6% and in the intervention group was 43.2%. There was a statistically significant difference between the two groups (P phlebitis in the group without saline lock (control), compared to the intervention group, was 10.3 times greater (CI = 95%). The incidence of phlebitis in both groups increased with increase in the duration of catheter placement. The results of this study showed that the use of saline lock in the intervention group compared

  18. Sub-tropical coastal lagoon salinization associated to shrimp ponds effluents

    Science.gov (United States)

    Cardoso-Mohedano, José-Gilberto; Lima-Rego, Joao; Sanchez-Cabeza, Joan-Albert; Ruiz-Fernández, Ana-Carolina; Canales-Delgadillo, Julio; Sánchez-Flores, Eric-Ivan; Páez-Osuna, Federico

    2018-04-01

    Anthropogenic salinization impacts the health of aquatic and terrestrial ecosystems worldwide. In tropical and subtropical areas, shrimp farm aquaculture uses water from adjacent ecosystems to fill the culture ponds, where enhanced evaporation cause salinization of discharged water. In this study, we studied water salinity before and after shrimp farm harvest and implemented a three-dimensional hydrodynamic model to assess the impact on a subtropical coastal lagoon that receives water releases from shrimp ponds. The shrimp pond discharge significantly increased the salinity of receiving waters, at least 3 psu over the local variation. In the worst-case salinization scenario, when harvest occurs after a long dry season, salinity could increase by up to 6 psu. The induced salinization due to shrimp pond effluents remained up to 2 tidal cycles after harvest, and could affect biota. The methodology and results of this study can be used to assess the impacts of shrimp aquaculture worldwide.

  19. [Effect of compound hypertonic saline solution on septic rats].

    Science.gov (United States)

    Dong, Fang; Xu, Liang; Xu, Gang; Wang, Huabing; Lu, Huizhi; Cai, Liping

    2015-01-01

    To study the effect of compound hypertonic saline solution ( HSD ) on sepsis. 133 male Wistar rats were divided into four groups, sham operation group ( n = 15 ), cecal ligation and puncture ( CLP ) group ( n = 45 ), CLP plus normal saline ( NS ) group ( n = 45 ), and CLP plus HSD group ( n = 28 ). A rat model of sepsis was reproduced by CLP, and the rats in sham operation group received celiotomy without ligation and puncture. All rats in four groups received subcutaneous injection of 30 mL/kg 0.9% sodium chloride after laparotomy. The rats in CLP plus NS group and CLP plus HSD group received infusion of 5 mL/kg 0.9% sodium chloride or 7.5% sodium chloride/6% dextran post CLP via jugular vein for 3 hours, with the infusion rate of 0.4 mL×kg(-1)×min(-1). The survival rate of each group was observed 9 hours and 18 hours after laparotomy. Mean arterial pressure ( MAP ) at 0, 9, 18 hours were monitored. Blood specimens were collected from all rats 0, 9 and 18 hours after laparotomy, respectively, for measurement of the plasma levels of tumor necrosis factor-α ( TNF-α), interleukin-1β ( IL-1β ), and procalcitonin ( PCT ). The rats were all sacrificed, and their lung tissues were harvested for the neutrophil count in bronchoalveolar lavage fluid ( BALF ), myeloperoxidase ( MPO ) activity in lung tissue, wet/dry weight ratio ( W/D ) of lung, and pathological changes in lung tissue. There was no death in the sham operation group. The survival rates at 9 hours and 18 hours were 62.2% and 31.1% in the CLP group, 57.8% and 35.6% in the CLP plus NS group, 85.7% and 64.3% in the CLP plus HSD group, and they were all significantly higher compared with those of the CLP group and the CLP plus NS group ( Pmicroscope, no pathobiological changes were found in sham operation group. The lung tissues in the CLP group and the CLP plus NS group showed congestion, edema, infiltrating inflammatory changes, while the inflammatory changes in the lung tissue in the CLP plus HSD group

  20. Evaluating the effect of administrating hypertonic and isotonic saline solutions on clinical improvement, serum electrolyte concentrations and renal function of calves affected by diarrhea

    Directory of Open Access Journals (Sweden)

    A Hasanpour

    2009-11-01

    This study was conducted on 40 calves under the age of one mouth with 30 calves affected by diarrhea allocated to 3 treatment groups of 10 calves each and the control group consisting of 10 calves. The control group received neither treatment nor any injections. In the first treatment group, only antibiotics were administered without any fluid therapy. In the second treatment group, apart from antibiotic therapy of diarrhea, hypertonic saline solution (7.5% was administered at a dose of 5 ml/kg as slow intravenous infusion alongside oral ORS solution whereas in the third treatment group isotonic saline solution (0.9% was given intravenously according to the formula (Body weight × %Dehydration alongside oral ORS solution. In all groups, clinical examination and blood sampling was undertaken at times 0, 1, 2, 8 and 24 hours following treatment. At time 0, the diarrhea had resulted in clinical and laboratory signs such as a fever, the dehydration, tachycardia, oligopnea, increased packed sell volume, hypernatremia, hyperchloremia, hyperkalemia, hyperphosphatemia, hypercalcemia, increased serum creatinine and BUN values. Following treatment, fever subsided and the dehydration was corrected and this correction occurred faster in calves which had received hypertonic saline solution. Correction of sodium, potassium, chloride, phosphorus and calsium imbalance occurred faster in patients which were treated by hypertonic solution. Fluid therapy with saline solutions prevented the increase in serum creatinine and BUN values. In conclusion, the administration of hypertonic saline solutions leads to much faster and more reliable clinical improvement and electrolyte imbalance correction in calves affected by diarrhea.

  1. Effects of Streptokinase and Normal Saline on the Incidence of Intra-abdominal Adhesion 1 Week and 1 Month after Laparotomy in Rats

    Directory of Open Access Journals (Sweden)

    Ali Hosseini

    2018-01-01

    Full Text Available Background: Intra-abdominal adhesions after surgery are usually in the form of bands and can annoy the patient throughout life causing repeated surgical procedures. Therefore, any action to prevent adhesions after surgery can increase longevity and quality of life. For this aim, this study investigates the effect of streptokinase and normal saline on the 7th day and 1 month after laparotomy. Materials and Methods: Experimental study was conducted on thirty healthy male Wistar rats weighing 200–250 g with age of 3 months divided into three groups of 10. Group I: No treatment, Group II: Received normal saline, and Group III: Received normal saline and streptokinase at the same time. One week and 1 month after laparotomy, the frequency of the presence or absence of adhesion bands was performed by a person who was unaware of the sample grouping. The collected information was analyzed with the SPSS software (version 16; SPSS Inc., Chicago, IL, USA. Results: Adhesion frequency was found to be 20% on the 7th day (early and 1 month after laparotomy (late for Group 1, and it was 40% on early and late for Group II, while 0% on the early and late for Group III. Hence, in the group receiving streptokinase, no early or late adhesion was observed; therefore, it had a significant role in the prevention of intra-abdominal adhesions (P 0.05. Conclusion: According to the results of our study, we believe that streptokinase could be a good antiadhesive agent considering its effectiveness.

  2. Salinization and Saline Environments

    Science.gov (United States)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  3. Saline-enhanced radiofrequency electrocoagulation in bovine liver

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hong Seop; Oh, Joo Hyeong; Yoon, Yup; Kim, Hyun Cheol; Ko, Young Tae; Choi, Woo Suk; Lim, Joo Won; Kim, Eui Jong [Kyunghee Univ. Hospital, Seoul (Korea, Republic of)

    1997-08-01

    To determine the effectiveness of saline-enhanced radiofrequency electrocoagulation in bovine liver tissue Saline-enhanced radiofrequency electrocoagulation (group I), hot saline injection induced by radiofrequency electrocoagulation (group II), and radiofrequency electrocoagulation (group III) were performed in ex vivo bovine liver. Radiofrequency power was 100 and 200 watts, and current was applied for 10, 20, and 30 seconds. Tissue was histopathologically examined for thermal injury. The largest diameter of thermal injury was about 41.0 mm in group I, 12.3 mm in group II and 9.3 mm in group III. The mean diameter of the injury increased with higher wattage in group I and II and with longer procedure time in group I (p<0.05). At corresponding wattage and times, group I showed a larger diameter of thermal injury and more increase in than group II or III (p<0.05). The degree of carbonization was more severe in group III than in groups I and II. Grossly, thermal injury showed a well-defined, relatively spherical configuration without extension along parenchymal interstitium. In an animal model, saline-enhanced radiofrequency electrocoagulation may effectively induce thermal injury, and may thus be another effective tool for use in the treatment of hepatic tumors. Further clinical experience is needed.

  4. Saline-enhanced radiofrequency electrocoagulation in bovine liver

    International Nuclear Information System (INIS)

    Shin, Hong Seop; Oh, Joo Hyeong; Yoon, Yup; Kim, Hyun Cheol; Ko, Young Tae; Choi, Woo Suk; Lim, Joo Won; Kim, Eui Jong

    1997-01-01

    To determine the effectiveness of saline-enhanced radiofrequency electrocoagulation in bovine liver tissue Saline-enhanced radiofrequency electrocoagulation (group I), hot saline injection induced by radiofrequency electrocoagulation (group II), and radiofrequency electrocoagulation (group III) were performed in ex vivo bovine liver. Radiofrequency power was 100 and 200 watts, and current was applied for 10, 20, and 30 seconds. Tissue was histopathologically examined for thermal injury. The largest diameter of thermal injury was about 41.0 mm in group I, 12.3 mm in group II and 9.3 mm in group III. The mean diameter of the injury increased with higher wattage in group I and II and with longer procedure time in group I (p<0.05). At corresponding wattage and times, group I showed a larger diameter of thermal injury and more increase in than group II or III (p<0.05). The degree of carbonization was more severe in group III than in groups I and II. Grossly, thermal injury showed a well-defined, relatively spherical configuration without extension along parenchymal interstitium. In an animal model, saline-enhanced radiofrequency electrocoagulation may effectively induce thermal injury, and may thus be another effective tool for use in the treatment of hepatic tumors. Further clinical experience is needed

  5. A Comparative Study of the Efficacy of IV Dexketoprofen, Lornoxicam, and Diclophenac Sodium on Postoperative Analgesia and Tramadol Consumption in Patients Receiving Patient-Controlled Tramadol.

    Science.gov (United States)

    Kılıçkaya, Refika; Güleç, Ersel; Ünlügenç, Hakkı; Gündüz, Murat; Işık, Geylan

    2015-06-01

    This study was designed to compare the effects of dexketoprofen, lornoxicam, and diclophenac sodium on postoperative analgesia and tramadol consumption in patients receiving postoperative patient-controlled tramadol after a major abdominal surgery. Eighty patients were randomized to receive one of the four study drugs. Patients in group dexketoprofen (DT) received IV 50 mg dexketoprofen, group lornoxicam (LR) received IV 8 mg lornoxicam, group diclophenac sodium (DS) received 75 mg IV diclophenac sodium and group saline (S) received 0.9% saline in 2 mL syringes, 20 min before the end of anaesthesia. A standardized (1 mg kg(-1)) dose of tramadol was routinely administered to all patients as the loading dose at the end of surgery. Postoperatively, whenever patients requested, they were allowed to use a tramadol patient-controlled analgesia device giving a bolus dose (0.2 mg kg(-1)) of tramadol. Pain, discomfort, and sedation scores, cumulative tramadol consumption, supplemental meperidine requirement, and side effects were recorded. Visual rating scale and patient discomfort scores were significantly lower in DT, LR and DS groups compared to those in in group S (pdexketoprofen to patient-controlled tramadol resulted in lower pain scores, smaller tramadol consumption, less rescue supplemental analgesic requirement, and fewer side effects compared with the tramadol alone group.

  6. Effect of Saline Pushing after Contrast Material Injection in Abdominal Multidetector Computed Tomography with the Use of Different Iodine Concentrations

    International Nuclear Information System (INIS)

    Tatsugami, F.; Matsuki, M.; Kani, H.; Tanikake, M.; Miyao, M.; Yoshikawa, S.; Narabayashi, I.

    2006-01-01

    Purpose: To investigate whether saline pushing after contrast material improves hepatic vascular and parenchymal enhancement, and to determine whether this technique permits decreased contrast material concentration. Material and Methods: 120 patients who underwent hepatic multidetector computed tomography were divided randomly into four groups (Groups A-D): receiving 100 ml of contrast material (300 mgI/ml) only (A) or with 50 ml of saline solution (B); or 100 ml of contrast material (350 mgI/ml) only (C) or with 50 ml of saline solution (D). Computed tomography (CT) values of the aorta in the arterial phase, the portal vein in the portal venous inflow phase, and the liver in the hepatic phase were measured. Visualization of the hepatic artery and the portal vein by 3D CT angiography was evaluated as well. Results: Although the enhancement values of the aorta were not improved significantly with saline pushing, they continued at a high level to the latter slices with saline pushing. The enhancement value of the portal vein increased significantly and CT portography was improved with saline pushing. The enhancement value of the liver was not improved significantly using saline pushing. In a comparison between groups B and C, the enhancement values of the aorta and portal vein and the visualization of CT arteriography and portography were not statistically different. Conclusion: The saline pushing technique can contribute to a decrease in contrast material concentration for 3D CT arteriography and portography

  7. Comparative study of anticoagulation versus saline flushes in continuous renal replacement therapy

    Directory of Open Access Journals (Sweden)

    Nagarik Amit

    2010-01-01

    Full Text Available Systemic heparinization during continuous renal replacement therapy (CRRT is associated with disadvantage of risk of bleeding. This study analyses the efficacy of frequent saline flushes compared with heparin anticoagulation to maintain filter life. From January 2004 to November 2007, 65 critically ill patients with acute renal failure underwent CRRT. Continuous venovenous hemodialfiltration (CVVHDF was performed using Diapact Braun CRRT machine. 1.7% P.D. fluid was used as dialysate. 0.9% NS with addition of 10% Ca Gluconate, Magnesium Sulphate, Soda bicarbonate and Potassium Chloride added sequentially in separate units were used for replacement, carefully monitoring their levels. Anticoagulation of extracorporeal circuit was achieved with unfractionated heparin (250-500 units alternate hour in 35 patients targeting aPTT of 45-55 seconds. No anticoagulation was used in 30 patients with baseline APTT > 55 seconds and extracorporeal circuit was maintained with saline flushes at 30 min interval. 65 pa-tients including 42 males. Co-morbidities were comparable in both groups. HMARF was signifi-cantly more common in heparin group while Sepsis was comparable in both the groups. CRRT parameters were similar in both groups. Average filter life in heparin group was 26 ± 6.4 hours while it was 24.5 ± 6.36 hours in heparin free group ( P=NS. Patients receiving heparin had 16 bleeding episodes (0.45/patient while only four bleeding episodes occurred in heparin free group (0.13/patient, P< 0.05. Mortality was 71% in heparin group and 67% in heparin free group. Frequent saline flushes is an effective mode of maintainance of extracorporeal circuit in CRRT when aPTT is already on the higher side, with significantly decreased bleeding episodes.

  8. Effect of Salinity on Germination and Its Relationship with Vegetative growth in Bromus danthoniae Genotypes from Saline and Non-Saline Areas of Iran

    Directory of Open Access Journals (Sweden)

    M. Rezaei

    2018-02-01

    Full Text Available Bromus danthoniae Trin. is an annual grass species that is well adapted to harsh climates and could be considered as an important genetic resources for tolerance to environmental stresses such as salinity. In this study, 24 genotypes collected from Ilam, Kurdistan, Kermanshah (non-saline areas and West Azerbaijan (saline area: shores of Uremia Salt Lake provinces of Iran were investigated at the germination stage under salt treatments with concentrations of 0, 60, 120, 180, 240 and 300 mM sodium chloride. Germination percentage, germination rate index, seed vigor, root length, shoot length and seedling fresh and dry weights were measured. In addition, the relationship between the percentage of germination in 300 mM sodium chloride and the survival rate (% after four weeks in 350 mM sodium chloride at the vegetative stage was evaluated. The results of analysis of variance showed that salinity treatments caused significant reductions in all the studied traits. Genotypic variation and the interaction of genotype × salt treatments were also significant. Genotypes USLN3 and KER4 were found to be the most tolerant and sensitive genotypes to salinity stress, with 13% and 98% reduction in germination percentage at 300 mM NaCl, respectively. Cluster analysis divided the genotypes into three groups, with one group containing only tolerant genotypes from Uremia Salt Lake, another one comprising only sensitive genotypes from non-saline regions, and the third one containing genotypes from both regions. The correlation between the germination percentage and the survival rate at the vegetative stage was not significant, indicating that different mechanisms are, perhaps, responsible for salinity tolerance at the germination and vegetative stages in B. danthoniae.

  9. Saline Flush After Rocuronium Bolus Reduces Onset Time and Prolongs Duration of Effect: A Randomized Clinical Trial.

    Science.gov (United States)

    Ishigaki, Sayaka; Masui, Kenichi; Kazama, Tomiei

    2016-03-01

    Circulatory factors modify the onset time of neuromuscular-blocking drugs. Therefore, we hypothesized that infusion of a saline flush immediately after rocuronium administration would shorten the onset time without influencing the duration of the rocuronium effect. Forty-eight patients were randomly allocated to the control or saline flush group. Anesthesia was induced and maintained with propofol and remifentanil, and all patients received 0.6 mg/kg rocuronium in 10 mL of normal saline. In the saline flush group, 20 mL normal saline was immediately infused after rocuronium administration. Neuromuscular blockade was assessed using acceleromyography at the adductor pollicis muscle with train-of-four (TOF) stimulation. The neuromuscular indices for rocuronium were calculated as follows: the latent onset time, defined as the time from the start of rocuronium infusion until first occurrence of depression of the first twitch of the TOF (T1) ≥5%; onset time, defined as the time from the start of rocuronium infusion until first occurrence of depression of the T1 ≥95%; clinical duration, defined as the time from the start of rocuronium administration until T1 recovered to 25% of the final T1 value; recovery index, defined as the time for recovery of T1 from 25% to 75% of the final T1 value; and the total recovery time, defined as the time from the start of rocuronium administration until reaching a TOF ratio of 0.9. Significance was designated at P rocuronium bolus by 17%, 24%, and 14%, respectively. In addition, the recovery phase was significantly prolonged in the saline flush group. The mean clinical duration (5th-95th percentile range) in the saline flush group and control group was 35 minutes (27-63 minutes) and 31 minutes (19-48 minutes; P = 0.032), respectively; the recovery index was 13 minutes (8-25 minutes) and 10 minutes (7-19 minutes; P = 0.019), respectively; and the total recovery time was 61 minutes (44-108 minutes) and 50 minutes (35-93 minutes; P = 0

  10. A randomized controlled trial comparing parenteral normal saline with and without 5% dextrose on the course of labor in nulliparous women.

    Science.gov (United States)

    Sharma, Chanderdeep; Kalra, Jasvinder; Bagga, Rashmi; Kumar, Praveen

    2012-12-01

    The objective of this study was to compare intravenous normal saline with and without 5% dextrose on the course of labor in nulliparous women in active phase of spontaneous labor. In a randomized controlled trial, term, nulliparous women with singleton pregnancy in active labor were randomized into one of two groups receiving either normal saline or normal saline alternating with 5% dextrose at rate of 175 ml/h. The primary outcome was total length of labor from onset of study fluid in vaginally delivered women. Maternal and neonatal outcomes were also analyzed. Of 250 women enrolled, in vaginally delivered subjects, there was significant difference in the duration of labor (p=0.0) and prolonged labor (p=0.01), with favorable results for women in 5% dextrose alternating with normal saline. No statistically significant differences were observed in the cesarean section rates between the groups. The cord pH was significantly higher in neonates born to women in 5% dextrose alternating with normal saline infusion as compared to normal saline alone (p=0.01), however, no neonate in the study had acidemia. Administration of a 5% dextrose solution alternating with normal saline is a better parenteral fluid for significantly decreasing duration of labor in term vaginally delivered nulliparous women in spontaneous active labor as compared to normal saline alone.

  11. Deposition of a saline giant in the Mississippian Windsor Group, Nova Scotia, and the nascent Late Paleozoic Ice Age

    Science.gov (United States)

    MacNeil, Laura A.; Pufahl, Peir K.; James, Noel P.

    2018-01-01

    Saline giants are vast marine evaporite deposits that currently have no modern analogues and remain one of the most enigmatic of chemical sedimentary rocks. The Mississippian Windsor Group (ca. 345 Ma), Maritimes Basin, Atlantic Canada is a saline giant that consists of two evaporite-rich sedimentary sequences that are subdivided into five subzones. Sequence 1 is composed almost entirely of thick halite belonging to Subzone A (Osagean). Sequence 2 is in unconformable contact and comprised of stacked carbonate-evaporite peritidal cycles of Subzones B through E (Meramecian). Subzone B, the focus of research herein, documents the transition from wholly evaporitic to open marine conditions and thus, preserves an exceptional window into the processes forming saline giants. Lithofacies stacking patterns in Subzone B reveal that higher-order fluctuations in relative sea level produced nine stacked parasequences interpreted to reflect high frequency glacioeustatic oscillations during the onset of the Late Paleozoic Ice Age. Each parasequence reflects progradation of intertidal and sabkha sediments over subtidal carbonate and evaporite deposits. Dissimilarities in cycle composition between sub-basins imply the development of contrasting brine chemistries from differing recharge rates with the open ocean. What the Windsor Group shows is that evaporite type is ostensibly linked to the amplitude and frequency of sea level rise and fall during deposition. True saline giants, like the basinwide evaporites of Sequence 1, apparently require low amplitude, long frequency changes in sea level to promote the development of stable brine pools that are only periodically recharged with seawater. By contrast, the high amplitude, short frequency glacioeustatic variability in sea level that controlled the accumulation of peritidal evaporites in Subzone B produce smaller, subeconomic deposits with more complex facies relationships.

  12. PRODUCTION OF TOMATO SEEDLINGS UNDER SALINE IRRIGATION

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Brasiliano Campos

    2007-01-01

    Full Text Available Processing tomato is the most important vegetable crop of the Brazilian agribusiness and few researches have been conducted to evaluate the tolerance of this crop to saline stress. In this study, the effects of five levels of salinity of the irrigation water (1, 2, 3, 4 and 5 dS m-1 and three equivalent proportions of Na:Ca:Mg (1:1:0.5, 4:1:0.5 and 7:1:0.5 were tested on the emergence and vigor of processing tomato, cultivar IPA 6. Seeds were sowed in expanded polystyrene tray (128 cells and each tray received 1 L of water after sowing. The trays were piled and, four days after sowing, they were placed on suspended supports in a greenhouse. Irrigation was accomplished daily from the fifth day after sowing. Only dry weight of shoot and root was affected by sodium proportions, while linear reductions of the speed of emergence, stem length and the dry weight of shoot and root were observed with increasing salinity. Root was more affected than shoot by salinity and relative growth ratioincreased with salinity levels on the 14-21 days after sowing period, indicating that the crop showed a certain increase of salinity tolerance with the time of exposure to salts.

  13. Changes in Hepatic Blood Flow During Transcatheter Arterial Infusion with Heated Saline in Hepatic VX2 Tumor

    International Nuclear Information System (INIS)

    Cao Wei; Li Jing; Wu Zhiqun; Zhou Changxi; Liu Xi; Wan Yi; Duan Yunyou

    2013-01-01

    Purpose. This study evaluates the influence of transcatheter arterial infusion with heated saline on hepatic arterial and portal venous blood flows to tumor and normal hepatic tissues in a rabbit VX2 tumor model. Methods. All animal experiments were approved by the institutional animal care and use committee. Twenty rabbits with VX2 liver tumors were divided into the following two groups: (a) the treated group (n = 10), which received a 60 mL transarterial injection of 60 °C saline via the hepatic artery; (b) the control group (n = 10), which received a 60 mL injection of 37 °C saline via the hepatic artery. Using ultrasonography, the blood flows in both the portal vein and hepatic artery were measured, and the changes in the hemodynamic indices were recorded before and immediately after the injection. The changes in the tumor and normal liver tissues of the two groups were histopathologically examined by hematoxylin and eosin staining after the injection. Results. After the transcatheter arterial heated infusion, there was a decrease in the hepatic arterial blood flow to the tumor tissue, a significant decrease in the hepatic artery mean velocity (P < 0.05), and a significant increase in the resistance index (P < 0.05). On hematoxylin and eosin staining, there were no obvious signs of tissue destruction in the normal liver tissue or the tumor tissue after heated perfusion, and coagulated blood plasma was observed in the cavities of intratumoral blood vessels in the treated group. Conclusions. The changes in tumor blood flow in the rabbit VX2 tumor model were presumably caused by microthrombi in the tumor vessels, and the portal vein likely mediated the heat loss in normal liver tissue during the transarterial heated infusion.

  14. Changes in Hepatic Blood Flow During Transcatheter Arterial Infusion with Heated Saline in Hepatic VX2 Tumor

    Energy Technology Data Exchange (ETDEWEB)

    Cao Wei, E-mail: cawe-001@163.com [Tangdu Hospital, The Fourth Military Medical University, Department of Interventional Radiology (China); Li Jing, E-mail: lijing02@fmmu.edu.cn [Tangdu Hospital, The Fourth Military Medical University, Department of Burn and Plastic Surgery (China); Wu Zhiqun, E-mail: zhiqunwu@fmmu.edu.cn [Tangdu Hospital, The Fourth Military Medical University, Department of Interventional Radiology (China); Zhou Changxi, E-mail: changxizhou@163.com [Chinese PLA General Hospital, Department of Respiratory Disease (China); Liu Xi, E-mail: xiliu@fmmu.edu.cn [Tangdu Hospital, The Fourth Military Medical University, Department of Ultrasound Diagnostics (China); Wan Yi, E-mail: yiwan@163.com [The Fourth Military Medical University, Department of Health Statistics, Institute for Health Informatics (China); Duan Yunyou, E-mail: yunyouduan@fmmu.edu.cn [Tangdu Hospital, The Fourth Military Medical University, Department of Ultrasound Diagnostics (China)

    2013-06-15

    Purpose. This study evaluates the influence of transcatheter arterial infusion with heated saline on hepatic arterial and portal venous blood flows to tumor and normal hepatic tissues in a rabbit VX2 tumor model. Methods. All animal experiments were approved by the institutional animal care and use committee. Twenty rabbits with VX2 liver tumors were divided into the following two groups: (a) the treated group (n = 10), which received a 60 mL transarterial injection of 60 Degree-Sign C saline via the hepatic artery; (b) the control group (n = 10), which received a 60 mL injection of 37 Degree-Sign C saline via the hepatic artery. Using ultrasonography, the blood flows in both the portal vein and hepatic artery were measured, and the changes in the hemodynamic indices were recorded before and immediately after the injection. The changes in the tumor and normal liver tissues of the two groups were histopathologically examined by hematoxylin and eosin staining after the injection. Results. After the transcatheter arterial heated infusion, there was a decrease in the hepatic arterial blood flow to the tumor tissue, a significant decrease in the hepatic artery mean velocity (P < 0.05), and a significant increase in the resistance index (P < 0.05). On hematoxylin and eosin staining, there were no obvious signs of tissue destruction in the normal liver tissue or the tumor tissue after heated perfusion, and coagulated blood plasma was observed in the cavities of intratumoral blood vessels in the treated group. Conclusions. The changes in tumor blood flow in the rabbit VX2 tumor model were presumably caused by microthrombi in the tumor vessels, and the portal vein likely mediated the heat loss in normal liver tissue during the transarterial heated infusion.

  15. Management of ocular trauma in emergency (MOTE trial: A pilot randomized double-blinded trial comparing topical amethocaine with saline in the outpatient management of corneal trauma

    Directory of Open Access Journals (Sweden)

    Ting Joseph

    2009-01-01

    Full Text Available Background: It is unclear whether local anesthetic eye drops can be safely used for the topical anesthesia of patients with minor corneal injury who are discharged from the emergency department (ED. Objectives: To assess whether topical 0.4% amethocaine self-administered to a maximum recommended frequency of once every hour for 36-48 h is safe in the management of uncomplicated corneal injury in patients discharged from the ED. Patients and Methods: A pilot randomized double-blinded trial comparing topical 0.4% amethocaine with topical normal saline. Results: Forty-seven subjects were recruited, with 22 randomized to receive amethocaine and 25 to receive placebo (normal saline . Baseline characteristics, including corneal injury type, were similar in both groups. There were no significant functional or clinical adverse sequelae in the majority of enrolled patients who could be contacted at 2 weeks (17/22 for amethocaine and 21/25 for placebo. Follow-up for the primary study outcome was suboptimal, with only 7/22 from the amethocaine group and 9/25 from the saline group presenting for 36-48 h review; there was a statistically nonsignificant trend for persistence of the corneal defect in the amethocaine group as compared with the saline group (2/7 and 1/9, respectively. Conclusion: Compared with saline drops, amethocaine eye drops are not definitely safe but they are effective for topical analgesia in minor corneal injury. Until further definitive studies, topical nonsteroidal agents or long-lasting artificial tears may be preferred for the topical analgesia of minor corneal injury. Return for corneal re-evaluation will necessarily remain suboptimal in an otherwise self-limiting condition, leading to a bias even if study recruitment is good.

  16. Halophyte filters as saline treatment wetlands; Applicators and constraints

    OpenAIRE

    Gaag, J.J.; Paulissen, M.P.C.P.; Slim, P.A.

    2010-01-01

    Purification of wastewater rich in nutrients and organic pollutants is essential for the protection of receiving waters and to enable water reuse. This report investigates the possibilities and constraints of constructed wetlands for treatment of slightly saline wastewater from aquaculture systems. As the body of literature for saline treatment wetlands is relatively small, the reports starts with a summary of processes in freshwater systems. It is then explained that these processes are also...

  17. Molecular mechanisms underlying the protective effects of hydrogen-saturated saline on noise-induced hearing loss.

    Science.gov (United States)

    Chen, Liwei; Han, Mingkun; Lu, Yan; Chen, Daishi; Sun, Xuejun; Yang, Shiming; Sun, Wei; Yu, Ning; Zhai, Suoqiang

    2017-10-01

    This study aimed to explore the molecular mechanism of the protective effects of hydrogen-saturated saline on NIHL. Guinea pigs were divided into three groups: hydrogen-saturated saline; normal saline; and control. For saline administration, the guinea pigs were given daily abdominal injections 3 d before and 1 h before noise exposure. ABR were tested to examine cochlear physiology changes. The changes of 8-hydroxy-desoxyguanosine (8-HOdG), interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), intercellular cell adhesion molecule-1 (ICAM-1) and high mobility group box-1 protein (HMGB1) in the cochlea were also examined. The results showed that pre-treatment with hydrogen-saturated saline could significantly attenuate noise-induced hearing loss. The concentration of 8-HOdG was also significantly decreased in the hydrogen-saturated saline group compared with the normal saline group. After noise exposure, the concentrations of IL-1, IL-6, TNF-α, and ICAM-1 in the cochlea of guinea pigs in the hydrogen-saturated saline group were dramatically reduced compared to those in the normal saline group. The concentrations of HMGB-1 and IL-10 in the hydrogen-saturated saline group were significantly higher than in those in the normal saline group immediately and at 7 d after noise exposure. This study revealed for the first time the protective effects of hydrogen-saturated saline on noise-induced hearing loss (NIHL) are related to both the anti-oxidative activity and anti-inflammatory activity.

  18. Hypertonic saline reduces inflammation and enhances the resolution of oleic acid induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-07-01

    Full Text Available Abstract Background Hypertonic saline (HTS reduces the severity of lung injury in ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. However, the potential for HTS to modulate the resolution of lung injury is not known. We investigated the potential for hypertonic saline to modulate the evolution and resolution of oleic acid induced lung injury. Methods Adult male Sprague Dawley rats were used in all experiments. Series 1 examined the potential for HTS to reduce the severity of evolving oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 12 or hypertonic saline (HTS, n = 12, and the extent of lung injury assessed after 6 hours. Series 2 examined the potential for HTS to enhance the resolution of oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 6 or hypertonic saline (HTS, n = 6, and the extent of lung injury assessed after 6 hours. Results In Series I, HTS significantly reduced bronchoalveolar lavage (BAL neutrophil count compared to Control [61.5 ± 9.08 versus 102.6 ± 11.89 × 103 cells.ml-1]. However, there were no between group differences with regard to: A-a O2 gradient [11.9 ± 0.5 vs. 12.0 ± 0.5 KPa]; arterial PO2; static lung compliance, or histologic injury. In contrast, in Series 2, hypertonic saline significantly reduced histologic injury and reduced BAL neutrophil count [24.5 ± 5.9 versus 46.8 ± 4.4 × 103 cells.ml-1], and interleukin-6 levels [681.9 ± 190.4 versus 1365.7 ± 246.8 pg.ml-1]. Conclusion These findings demonstrate, for the first time, the potential for HTS to reduce pulmonary inflammation and enhance the resolution of oleic acid induced lung injury.

  19. Effects of Hydrogen-Rich Saline on Hepatectomy-Induced Postoperative Cognitive Dysfunction in Old Mice.

    Science.gov (United States)

    Tian, Yue; Guo, Shanbin; Zhang, Yan; Xu, Ying; Zhao, Ping; Zhao, Xiaochun

    2017-05-01

    This study aims to investigate the protective effects and underlying mechanisms of hydrogen-rich saline on the cognitive functions of elder mice with partial hepatectomy-induced postoperative cognitive dysfunction (POCD). Ninety-six old male Kunming mice were randomly divided into 4 groups (n = 24 each): control group (group C), hydrogen-rich saline group (group H), POCD group (group P), and POCD + hydrogen-rich saline group (group PH). Cognitive function was subsequently assessed using Morris water-maze (MWM) test. TNF-α and IL-1β levels were measured by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, along with NF-κB activity determined by ELISA. The morphology of hippocampal tissues were further observed by HE staining. Learning and memory abilities of mice were significantly impaired at day 10 and day 14 post-surgery, as partial hepatectomy significantly prolonged the escape latency, decreased time at the original platform quadrant and frequency of crossing in group P when compared to group C (p hydrogen-rich saline (group PH) partially rescued spatial memory and learning as it shortened escape latency and increased time and crossing frequency of original platform compared to group P (p hydrogen-rich saline. Hydrogen-rich saline can alleviate POCD via inhibiting NF-κB activity in the hippocampus and reducing inflammatory response.

  20. Transcriptional changes in oysters Crassostrea brasiliana exposed to phenanthrene at different salinities

    International Nuclear Information System (INIS)

    Zacchi, Flávia Lucena; Lima, Daína; Flores-Nunes, Fabrício de; Mattos, Jacó Joaquim; Lüchmann, Karim Hahn; Araújo de Miranda Gomes, Carlos Henrique; Bícego, Márcia Caruso; Taniguchi, Satie; Sasaki, Silvio Tarou; Dias Bainy, Afonso Celso

    2017-01-01

    Highlights: • Salinity effect on Crassostrea brasiliana exposed to phenanthrene. • Higher transcription of biotransformation genes under hyposmotic condition. • Elevated transcription of oxidative stress-related genes under hyposmotic condition. • Amino acid metabolism-related genes changes according to salinity. • Phenanthrene does not affect amino acid metabolism-related genes. - Abstract: Euryhaline animals from estuaries, such as the oyster Crassostrea brasiliana, show physiological mechanisms of adaptation to tolerate salinity changes. These ecosystems receive constant input of xenobiotics from urban areas, including polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene (PHE). In order to understand the influence of salinity on the molecular responses of C. brasiliana exposed to PHE, oysters were acclimatized to different salinities (35, 25 and 10) for 15 days and then exposed to 100 μg L"−"1 PHE for 24 h and 96 h. Control groups were kept at the same salinities without PHE. Oysters were sampled for chemical analysis and the gills were excised for mRNA quantification by qPCR. Transcript levels of different genes were measured, including some involved in oxidative stress pathways, phases I and II of the xenobiotic biotransformation systems, amino acid metabolism, fatty acid metabolism and aryl hydrocarbon receptor nuclear translocator putative gene. Higher transcript levels of Sulfotransferase-like gene (SULT-like) were observed in oysters exposed to PHE at salinity 10 compared to control (24 h and 96 h); cytochrome P450 isoforms (CYP2AU1, CYP2-like1) were more elevated in oysters exposed for 24 h and CYP2-like2 after 96 h of oysters exposed to PHE at salinity 10 compared to control. These results are probably associated to an enhanced Phase I biotransformation activity required for PHE detoxification under hyposmotic stress. Higher transcript levels of CAT-like, SOD-like, GSTm-like (96 h) and GSTΩ-like (24 h) in oysters kept at salinity

  1. Transcriptional changes in oysters Crassostrea brasiliana exposed to phenanthrene at different salinities

    Energy Technology Data Exchange (ETDEWEB)

    Zacchi, Flávia Lucena; Lima, Daína; Flores-Nunes, Fabrício de [Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry − LABCAI, Federal University Santa Catarina, Florianópolis (Brazil); Mattos, Jacó Joaquim [Aquaculture Pathology Research Center – NEPAQ, Federal University of Santa Catarina, Florianópolis (Brazil); Lüchmann, Karim Hahn [Laboratory of Biochemistry and Molecular Biology – LBBM, Fishery Engineering Department, Santa Catarina State University, Laguna (Brazil); Araújo de Miranda Gomes, Carlos Henrique [Laboratory of Marine Mollusks – LMM, Federal University of Santa Catarina, Florianópolis (Brazil); Bícego, Márcia Caruso; Taniguchi, Satie; Sasaki, Silvio Tarou [Laboratory of Marine Organic Chemistry – LABQOM, Oceanographic Institute, University of São Paulo, São Paulo (Brazil); Dias Bainy, Afonso Celso, E-mail: afonso.bainy@ufsc.br [Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry − LABCAI, Federal University Santa Catarina, Florianópolis (Brazil)

    2017-02-15

    Highlights: • Salinity effect on Crassostrea brasiliana exposed to phenanthrene. • Higher transcription of biotransformation genes under hyposmotic condition. • Elevated transcription of oxidative stress-related genes under hyposmotic condition. • Amino acid metabolism-related genes changes according to salinity. • Phenanthrene does not affect amino acid metabolism-related genes. - Abstract: Euryhaline animals from estuaries, such as the oyster Crassostrea brasiliana, show physiological mechanisms of adaptation to tolerate salinity changes. These ecosystems receive constant input of xenobiotics from urban areas, including polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene (PHE). In order to understand the influence of salinity on the molecular responses of C. brasiliana exposed to PHE, oysters were acclimatized to different salinities (35, 25 and 10) for 15 days and then exposed to 100 μg L{sup −1} PHE for 24 h and 96 h. Control groups were kept at the same salinities without PHE. Oysters were sampled for chemical analysis and the gills were excised for mRNA quantification by qPCR. Transcript levels of different genes were measured, including some involved in oxidative stress pathways, phases I and II of the xenobiotic biotransformation systems, amino acid metabolism, fatty acid metabolism and aryl hydrocarbon receptor nuclear translocator putative gene. Higher transcript levels of Sulfotransferase-like gene (SULT-like) were observed in oysters exposed to PHE at salinity 10 compared to control (24 h and 96 h); cytochrome P450 isoforms (CYP2AU1, CYP2-like1) were more elevated in oysters exposed for 24 h and CYP2-like2 after 96 h of oysters exposed to PHE at salinity 10 compared to control. These results are probably associated to an enhanced Phase I biotransformation activity required for PHE detoxification under hyposmotic stress. Higher transcript levels of CAT-like, SOD-like, GSTm-like (96 h) and GSTΩ-like (24 h) in oysters kept at

  2. How group education impacts female factory workers' behavior and readiness to receive mammography and Pap smear.

    Science.gov (United States)

    Seven, Memnun; Bahar, Mine; Akyüz, Aygül; Erdoğan, Hatice

    2015-01-01

    The workplace has been deemed a suitable location for educating many women at once about cancer screening. To determine how group education about early diagnostic methods for breast and cervical cancer effects women's behavior and readiness to receive mammography and Pap smear. This semi-interventional study was conducted at a textile factory in Istanbul, Turkey. Female workers (n= 125) were included in the study. A participant identification form and knowledge evaluation form developed for this study, along with the transtheoretical model, were used to collect data. A 45-min interactive group education was given to the participants. Upon contacting participants 3 months after group education, 15.4% (n = 11) stated that they had since received a mammogram and 9.8% (n = 7) a Pap smear. As suggested by the transtheoretical model, group education increased participants' readiness to receive cancer screening, along with their knowledge of breast and cervical cancer. Group education positively impacted women's knowledge of cancer and their readiness to receive mammography and Pap smear. Group education can potentially create awareness of cancer screening tests among women and improve their readiness to receive such tests.

  3. The diversity and abundance of bacteria and oxygenic phototrophs in saline biological desert crusts in Xinjiang, northwest China.

    Science.gov (United States)

    Li, Ke; Liu, Ruyin; Zhang, Hongxun; Yun, Juanli

    2013-07-01

    Although microorganisms, particularly oxygenic phototrophs, are known as the major players in the biogeochemical cycles of elements in desert soil ecosystems and have received extensive attention, still little is known about the effects of salinity on the composition and abundances of microbial community in desert soils. In this study, the diversity and abundance of bacteria and oxygenic phototrophs in biological desert crusts from Xinjiang province, which were under different salinity conditions, were investigated by using clone library and quantitative PCR (qPCR). The 16S rRNA gene phylogenetic analysis showed that cyanobacteria, mainly Microcoleus vagnitus of the order Oscillatoriales, were predominant in the low saline crusts, while other phototrophs, such as diatom, were the main microorganism group responsible for the oxygenic photosynthesis in the high saline crusts. Furthermore, the higher salt content in crusts may stimulate the growth of other bacteria, including Deinococcus-Thermus, Bacteroidetes, and some subdivisions of Proteobacteria (β-, γ-, and δ-Proteobacteria). The cpcBA-IGS gene analysis revealed the existence of novel M. vagnitus strains in this area. The qPCR results showed that the abundance of oxygenic phototrophs was significantly higher under lower saline condition than that in the higher saline crusts, suggesting that the higher salinity in desert crusts could suppress the numbers of total bacteria and phototrophic bacteria but did highly improve the diversity of salt-tolerant bacteria.

  4. Effect of Low-Dose (Single-Dose Magnesium Sulfate on Postoperative Analgesia in Hysterectomy Patients Receiving Balanced General Anesthesia

    Directory of Open Access Journals (Sweden)

    Arman Taheri

    2015-01-01

    Full Text Available Background and Aim. Aparallel, randomized, double blinded, placebo-controlled trial study was designed to assess the efficacy of single low dose of intravenous magnesium sulfate on post-total abdominal hysterectomy (TAH pain relief under balanced general anesthesia. Subject and Methods. Forty women undergoing TAH surgery were assigned to two magnesium sulfate (N=20 and normal saline (N=20 groups randomly. The magnesium group received magnesium sulfate 50 mg·kg−1 in 100 mL of normal saline solution i.v as single-dose, just 15 minutes before induction of anesthesia whereas patients in control group received 100 mL of 0.9% sodium chloride solution at the same time. The same balanced general anesthesia was induced for two groups. Pethidine consumption was recorded over 24 hours precisely as postoperative analgesic. Pain score was evaluated with Numeric Rating Scale (NRS at 0, 6, 12, and 24 hours after the surgeries. Results. Postoperative pain score was lower in magnesium group at 6, 12, and 24 hours after the operations significantly (P<0.05. Pethidine requirement was significantly lower in magnesium group throughout 24 hours after the surgeries (P=0.0001. Conclusion. Single dose of magnesium sulfate during balanced general anesthesia could be considered as effective and safe method to reduce postoperative pain and opioid consumption after TAH.

  5. 40 CFR 35.4040 - How many groups can receive a TAG at one Superfund site?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false How many groups can receive a TAG at one Superfund site? 35.4040 Section 35.4040 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Eligible? § 35.4040 How many groups can receive a TAG at one Superfund site? (a) Only one TAG may be...

  6. Perioperative antimicrobial prophylaxis in neurosurgery: clinical trial of systemic flomoxef administration and saline containing gentamicin for irrigation.

    Science.gov (United States)

    Yamamoto, M; Jimbo, M; Ide, M; Tanaka, N; Umebara, Y; Hagiwara, S

    1996-06-01

    The efficacy of a new protocol consisting of a prophylactic antibiotic regimen of peri- and postoperative intravenous administration of flomoxef and irrigation of the operative field with saline containing gentamicin was assessed by comparing infection rates in two consecutive series of patients who underwent neurosurgical procedures. Group A received postoperative flomoxef administration, with saline containing no antibiotics for irrigation, from July 1988 to December 1989. Group B received the new protocol from January 1990 to December 1991. For further evaluation, this protocol was continued in most patients who underwent surgery from January 1992 through December 1993 (Group C). Only adult or adolescent patients who underwent clean neurosurgical procedures were included. The number of patients and procedures in each group were: 76 patients (97 procedures) in Group A, 103 (133) in Group B, and 107 (137) in Group C. There were no significant differences between Groups A and B in age, sex, clinical category, coexistent disease, clinical outcome, surgical procedures, general anesthesia, emergency operation, steroid administration, and the timing (season), duration, and frequency of surgery. Meningitis developed in three patients and subcutaneous infection in one in Group A. None of the patients in Group B experienced postoperative infection. This difference in infection rates (4.1% vs. 0%) was statistically significant (p = 0.0305). Furthermore, no postoperative infections developed in the Group C patients. The most appropriate interval for multiple dose administration was determined by analyzing intraoperative time-related changes in the serum flomoxef concentration during surgery in 21 recent patients. Serum flomoxef concentrations fell below therapeutic levels (3.0 micrograms/ml) by the 6th post-administration hour in 70% of patients. We conclude that this antibiotic regimen significantly reduces the postoperative infection rate following neurosurgical

  7. Saline agriculture: A technology for economic utilization and improvement of saline environments (abstract)

    International Nuclear Information System (INIS)

    Aslam, Z.; Malik, K.A.; Khurshid, S.J.; Awan, A.R.; Akram, M.; Hashmi, Z.; Ali, Y.; Gulnaz, A.; Hussain, M.; Hussain, F.

    2005-01-01

    Aquaculture on their farms. In the cotton growing areas, farmers are also being trained on non-pesticidal control of cotton pests. For effective training of farmers on Saline Agriculture issues, they have been organized into 'Saline Agriculture Farmer Associations (SAFA)'. Regular 'Community Meetings', skill development training courses and Farmer Field Schools are being arranged for these groups. Printed material in Urdu and English on new technologies is also being published regularly for the benefit of project farmers, extension workers and other interested persons, elsewhere. Visible improvements in the project area with time clearly indicate that the Saline Agriculture Farmer Participatory Development Project in Pakistan is an elegant model to demonstrate how science can help in effecting change in life of millions of farmers in a few years, if their full participation is ensured. (author)

  8. Effect of fluid loading with normal saline and 6% hydroxyethyl starch on stroke volume variability and left ventricular volume

    Directory of Open Access Journals (Sweden)

    Kanda H

    2015-09-01

    Full Text Available Hirotsugu Kanda,1 Yuji Hirasaki,2 Takafumi Iida,1 Megumi Kanao,1 Yuki Toyama,1 Takayuki Kunisawa,1 Hiroshi Iwasaki,11Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Asahikawa, 2Department of Anatomy, The Jikei University Graduate School of Medicine, Tokyo, JapanPurpose: The aim of this clinical trial was to investigate changes in stroke volume variability (SVV and left ventricular end-diastolic volume (LVEDV after a fluid bolus of crystalloid or colloid using real-time three-dimensional transesophageal echocardiography (3D-TEE and the Vigileo-FloTrac™ system.Materials and methods: After obtaining Institutional Review Board approval, and informed consent from the research participants, 22 patients undergoing scheduled peripheral vascular bypass surgery were enrolled in the study. The patients were randomly assigned to receive 500 mL of hydroxyethyl starch (HES; HES group, n=11 or normal saline (Saline group, n=11 for fluid replacement therapy. SVV was measured using the Vigileo-FloTrac system. LVEDV, stroke volume, and cardiac output were measured by 3D-TEE. The measurements were performed over 30 minutes before and after the fluid bolus in both groups.Results: SVV significantly decreased after fluid bolus in both groups (HES group, 14.7%±2.6% to 6.9%±2.7%, P<0.001; Saline group, 14.3%±3.9% to 8.8%±3.1%, P<0.001. LVEDV significantly increased after fluid loading in the HES group (87.1±24.0 mL to 99.9±27.2 mL, P<0.001, whereas no significant change was detected in the Saline group (88.8±17.3 mL to 91.4±17.6 mL, P>0.05. Stroke volume significantly increased after infusion in the HES group (50.6±12.5 mL to 61.6±19.1 mL, P<0.01 but not in the Saline group (51.6±13.4 mL to 54.1±12.8 mL, P>0.05. Cardiac output measured by 3D-TEE significantly increased in the HES group (3.5±1.1 L/min to 3.9±1.3 L/min, P<0.05, whereas no significant change was seen in the Saline group (3.4±1.1 L/min to 3.3±1.0 L

  9. Enhanced remediation of an oily sludge with saline water ...

    African Journals Online (AJOL)

    Enhanced remediation of an oily sludge with saline water. ... the remediation of an oily sludge, which was part of the waste stream from the improvement ... m3 of fresh water respectively while 'treatment' reactors C and D received ...

  10. Therapeutic effects of compound hypertonic saline on rats with sepsis

    Directory of Open Access Journals (Sweden)

    Fang Dong

    2014-09-01

    Full Text Available Sepsis is one of the major causes of death and is the biggest obstacle preventing improvement of the success rate in curing critical illnesses. Currently, isotonic solutions are used in fluid resuscitation technique. Several studies have shown that hypertonic saline applied in hemorrhagic shock can rapidly increase the plasma osmotic pressure, facilitate the rapid return of interstitial fluid into the blood vessels, and restore the effective circulating blood volume. Here, we established a rat model of sepsis by using the cecal ligation and puncture approach. We found that intravenous injection of hypertonic saline dextran (7.5% NaCl/6% dextran after cecal ligation and puncture can improve circulatory failure at the onset of sepsis. We found that the levels of tumor necrosis factor-α, interleukin-1β, interleukin-6 and intracellular adhesion molecule 1 levels in the lung tissue of cecal ligation and puncture rats treated with hypertonic saline dextran were significantly lower than the corresponding levels in the control group. We inferred that hypertonic saline dextran has a positive immunoregulatory effect and inhibits the overexpression of the inflammatory response in the treatment of sepsis. The percentage of neutrophils, lung myeloperoxidase activity, wet to dry weight ratio of lung tissues, histopathological changes in lung tissues, and indicators of arterial blood gas analysis was significantly better in the hypertonic saline dextran-treated group than in the other groups in this study. Hypertonic saline dextran-treated rats had significantly improved survival rates at 9 and 18 h compared to the control group. Our results suggest that hypertonic saline dextran plays a protective role in acute lung injury caused after cecal ligation and puncture. In conclusion, hypertonic/hyperoncotic solutions have beneficial therapeutic effects in the treatment of an animal model of sepsis.

  11. "FOLEY CATHETER CERVICAL RIPENING WITH EXTRAAMNIOTIC INFUSION OF SALINE OR CORTICOSTEROIDS: A DOUBLE-BLIND, RANDOMIZED CONTROLLED STUDY"

    Directory of Open Access Journals (Sweden)

    A.Sh. Zafarghandi

    2004-10-01

    Full Text Available Induction of labor is one of the most common procedures during pregnancy. Various methods for cervical ripening and labor induction have been described in the obstetrics literature; but the role of corticosteroids in the process of labor is not entirely understood. This study challenged the possible role of corticosteroids in induction of labor by extra-amniotic injection through an inflated intracervical Foley balloon catheter. This randomized trial was conducted on 44 women with a single pregnancy, intact membranes, and an unfavorable cervix. They were randomly assigned to receive either 20 mg of dexamethasone in saline solution (study group, n=22 or saline solution only (control group, n=22 administered extra-amniotically through an intracervical inflated Foley balloon catheter. Eighteen (81.8% patients in the study group and 20 (90.9% in the control group entered the active phase of labor and were delivered vaginally. The mean time intervals between induction of labor to the active phase and between induction of labor to delivery were significantly shorter in the study group compared with those of the control group (3.3±2.1 hours vs. 9±4.7 hours, P<0.01, 5.7±3.4 hours vs. 6.9±4.7 hours, P<0.01, respectively. There was no maternal or fetal complication in study or control group. The intracervical Foley balloon catheter with extra-amniotic corticosteroids was more efficient in reducing the induction-to-delivery interval for termination of midtrimester pregnancies than the same Foley catheter with saline solution only. Cervical ripening with extra-amniotic corticosteroids possesses the advantages of simplicity, low cost, and lack of systemic or serious side effects.

  12. [Diversity of uncultured actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor].

    Science.gov (United States)

    Li, Hai-yun; Niu, Shi-quan; Kong, Wei-bao; Yan, Wei-ru; Geng, Hui; Han, Cai-hong; Da, Wen-yan; Zhang, Ai-mei; Zhu, Xue-tai

    2015-09-01

    In order to more accurately understand community structure and diversity of actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor, the community structure and diversity from three kinds of soil samples (primary, secondary saline alkali soil and farmland soil) were analyzed using uncultured methods. The results showed that the 16S rDNA clone library of actinomycetales from the primary saline-alkali soil belonged to 19 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S r DNA clone library of actinomycetales from the secondary saline-alkali soil belonged to 14 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S rDNA clone library of farmland soil belonged to 7 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; Micrococcineae was the common population in the three soils, and also was the dominant population in primary saline alkali soil and farmland soil. The diversity index and rarefaction curves analysis showed that actinomycetes species richness was in order of primary saline-alkali soil > secondary saline-alkali soil > farmland soil. The dilution curves of primary saline-alkali soil and secondary saline-alkali soil were not leveled off, which indicated the actinomycetes diversity in saline-alkali soil was more enriched than the actual. The rich and diverse actinomycetes resources in saline-alkali soil from Jiuquan area of Hexi Corridor provide important data on the actinomycetes ecology distribution research, exploitation and utilization in saline-alkali soil.

  13. Spectral reflectance characteristics of soils in northeastern Brazil as influenced by salinity levels.

    Science.gov (United States)

    Pessoa, Luiz Guilherme Medeiros; Freire, Maria Betânia Galvão Dos Santos; Wilcox, Bradford Paul; Green, Colleen Heather Machado; De Araújo, Rômulo José Tolêdo; De Araújo Filho, José Coelho

    2016-11-01

    In northeastern Brazil, large swaths of once-productive soils have been severely degraded by soil salinization, but the true extent of the damage has not been assessed. Emerging remote sensing technology based on hyperspectral analysis offers one possibility for large-scale assessment, but it has been unclear to what extent the spectral properties of soils are related to salinity characteristics. The purpose of this study was to characterize the spectral properties of degraded (saline) and non-degraded agricultural soils in northeastern Brazil and determine the extent to which these properties correspond to soil salinity. We took soil samples from 78 locations within a 45,000-km 2 site in Pernambuco State. We used cluster analysis to group the soil samples on the basis of similarities in salinity and sodicity levels, and then obtained spectral data for each group. The physical properties analysis indicated a predominance of the coarse sand fraction in almost all the soil groups, and total porosity was similar for all the groups. The chemical analysis revealed different levels of degradation among the groups, ranging from non-degraded to strongly degraded conditions, as defined by the degree of salinity and sodicity. The soil properties showing the highest correlation with spectral reflectance were the exchangeable sodium percentage followed by fine sand. Differences in the reflectance curves for the various soil groups were relatively small and were not significant. These results suggest that, where soil crusts are not present, significant challenges remain for using hyperspectral remote sensing to assess soil salinity in northeastern Brazil.

  14. Estimating Leaching Requirements for Barley Growth under Saline Irrigation

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Busaidi

    2012-01-01

    Full Text Available The utilization of marginal water resources for agriculture is receiving considerable attention. The lands irrigated with saline water are required to reduce salt accumulations through leaching and/or drainage practices. A field experiment was carried out to investigate the effect of saline irrigation and leaching fraction on barley (Hordeum vulgare L. growth. For this purpose highly saline water was diluted to the salinity levels of 3, 6 and 9 dS m-1 and applied by drip irrigation at 0.0, 0.15, 0.20 and 0.25 leaching fractions (LF. The results of the experiment showed that both quantity and quality of water regulated salts distribution within the soil in the following manner: a the salts were found higher near or immediate below the soil surface; b an enhanced LF carried more salts down the soil horizon but there was no significant difference in plant yield between different treatments of leaching fractions. Salinity of water significantly impaired barley growth. The good drainage of sandy soil enhanced the leaching process and minimized the differences between leaching fractions. The increment in saline treatments (3, 6 and 9 dS m-1 added more salts and stressed plant growth. However, the conjunctive use of marginal water at proportional LF could be effective in enhancing the yield potential of crops in water-scarce areas.

  15. Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections

    International Nuclear Information System (INIS)

    Deli, Martin; Fritz, Jan; Mateiescu, Serban; Busch, Martin; Carrino, John A.; Becker, Jan; Garmer, Marietta; Grönemeyer, Dietrich

    2013-01-01

    Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 with gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 ± 9 min in the gadolinium-enhanced saline solution group and 22 ± 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.

  16. Hydrogen-rich saline protects retina against glutamate-induced excitotoxic injury in guinea pig.

    Science.gov (United States)

    Wei, Lihua; Ge, Li; Qin, Shucun; Shi, Yunzhi; Du, Changqing; Du, Hui; Liu, Liwei; Yu, Yang; Sun, Xuejun

    2012-01-01

    Molecular hydrogen (H(2)) is an efficient antioxidant that can selectively reduce hydroxyl radicals and inhibit oxidative stress-induced injuries. We investigated the protective effects and mechanism of hydrogen-rich saline in a glutamate-induced retinal injury model. Retinal excitotoxicity was induced in healthy guinea pigs by injecting glutamate into the vitreous cavity. After 30 min, hydrogen-rich saline was injected into the vitreous cavity, the peritoneal cavity or both. Seven days later, the retinal stress response was evaluated by examining the stress biomarkers, inducible nitric-oxide synthase (iNOS) and glucose-regulated protein 78 (GRP78). The impaired glutamate uptake was assessed by the expression of the excitatory amino acid transporter 1(EAAT-1). The retinal histopathological changes were investigated, focusing on the thicknesses of the entire retina and its inner layer, the number of cells in the retinal ganglion cell layer (GCL) and the ultrastructure of the retinal ganglion cells (RGCs) and glial cells. Compared with the glutamate-induced injury group, the hydrogen-rich saline treatment reduced the loss of cells in the GCL and thinning of the retina and attenuated cellular morphological damage. These improvements were greatest in animals that received H(2) injections into both the vitreous and the peritoneal cavities. The hydrogen-rich saline also inhibited the expression of glial fibrillary acidic protein (GFAP) in Müller cells, CD11b in microglia, and iNOS and GRP78 in glial cells. Moreover, the hydrogen-rich saline increased the expression of EAAT-1. In conclusion, the administration of hydrogen-rich saline through the intravitreal or/and intraperitoneal routes could reduce the retinal excitotoxic injury and promote retinal recovery. This result likely occurs by inhibiting the activation of glial cells, decreasing the production of the iNOS and GRP78 and promoting glutamate clearance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    Energy Technology Data Exchange (ETDEWEB)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-06-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC{sub 50} values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC{sub 50} obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC{sub 50}). This LC{sub 50} value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC{sub 50}. For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC{sub 50} and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC{sub 50} of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC{sub 50} values. In contrast, LC{sub 50} determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature.

  18. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    International Nuclear Information System (INIS)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-01-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC 50 values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC 50 obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC 50 ). This LC 50 value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC 50 . For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC 50 and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC 50 of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC 50 values. In contrast, LC 50 determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature

  19. Oral Hypertonic Saline Is Effective in Reversing Acute Mild-to-Moderate Symptomatic Exercise -Associated Hyponatremia.

    Science.gov (United States)

    Bridges, Eileen; Altherwi, Tawfeeq; Correa, José A; Hew-Butler, Tamara

    2018-01-23

    To determine whether oral administration of 3% hypertonic saline (HTS) is as efficacious as intravenous (IV) 3% saline in reversing symptoms of mild-to-moderate symptomatic exercise-associated hyponatremia (EAH) in athletes during and after a long-distance triathlon. Noninferiority, open-label, parallel-group, randomized control trial to IV or oral HTS. We used permuted block randomization with sealed envelopes, containing the word either "oral" or "IV." Annual long-distance triathlon (3.8-km swim, 180-km bike, and 42-km run) at Mont-Tremblant, Quebec, Canada. Twenty race finishers with mild to moderately symptomatic EAH. Age, sex, race finish time, and 9 clinical symptoms. Time from treatment to discharge. We successfully randomized 20 participants to receive either an oral (n = 11) or IV (n = 9) bolus of HTS. We performed venipuncture to measure serum sodium (Na) at presentation to the medical clinic and at time of symptom resolution after the intervention. The average time from treatment to discharge was 75.8 minutes (SD 29.7) for the IV treatment group and 50.3 minutes (SD 26.8) for the oral treatment group (t test, P = 0.02). Serum Na before and after treatment was not significantly different in both groups. There was no difference on presentation between groups in age, sex, or race finish time, both groups presented with an average of 6 symptoms. Oral HTS is effective in reversing symptoms of mild-to-moderate hyponatremia in EAH.

  20. Dryland salinity: threatening water resources in the semi-arid Western Cape

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2010-11-01

    Full Text Available associated with the mobilisation of inorganic salts from the landscape and the consequent increase in salt concentrations in receiving water bodies. Dyland salinity is not new to this area. Wheat lands in the Swartland and Overberg regions are widely known... to contain ?brak kolle? (saline scalds) where the wheat will not germinate. CAPTION: The Berg River near Velddrif. The river drains an area of approximately 9 000 km? and is an important source of water to the Boland and Cape Peninsula (source: Vernon...

  1. Nebulized hypertonic saline decreases IL-8 in sputum of patients with cystic fibrosis.

    LENUS (Irish Health Repository)

    Reeves, Emer P

    2012-02-01

    RATIONALE: Inflammation within the cystic fibrosis (CF) lung is mediated by inflammatory chemokines, such as IL-8. IL-8 is protected from proteolytic degradation in the airways by binding to glycosaminoglycans, while remaining active. Evidence that increased hypertonicity of airway secretions induced by hypertonic saline treatment alters levels of IL-8 is lacking. OBJECTIVES: To investigate the antiinflammatory effect of hypertonic saline (HTS) treatment within the CF lung by focusing on IL-8. METHODS: Degradation of IL-8 in CF lung secretions after treatment with glycosaminoglycan lyases and HTS was analyzed by Western blot analysis and ELISA. The ex vivo chemotactic activity of purified neutrophils in response to CF airway secretions was evaluated post nebulization of HTS (7% saline). MEASUREMENTS AND MAIN RESULTS: In vivo CF bronchoalveolar lavage fluid (BALF) IL-8 levels were significantly higher than the control group (P < 0.05). Digesting glycosaminoglycans in CF BALF displaced IL-8 from glycosaminoglycan matrices, rendering the chemokine susceptible to proteolytic cleavage. High sodium concentrations also liberate IL-8 in CF BALF in vitro, and in vivo in CF sputum from patients receiving aerosolized HTS, resulting in degradation of IL-8 and decreased neutrophil chemotactic efficiency. CONCLUSIONS: Glycosaminoglycans possess the ability to influence the chemokine profile of the CF lung by binding and stabilizing IL-8, which promotes neutrophil chemotaxis and activation. Nebulized hypertonic saline treatment disrupts the interaction between glycosaminoglycans and IL-8, rendering IL-8 susceptible to proteolytic degradation with subsequent decrease in neutrophil chemotaxis, thereby facilitating resolution of inflammation.

  2. Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species.

    Science.gov (United States)

    Ronkin, Dana; Seroussi, Eyal; Nitzan, Tali; Doron-Faigenboim, Adi; Cnaani, Avner

    2015-03-01

    Tilapias are a group of freshwater species, which vary in their ability to adapt to high salinity water. Osmotic regulation in fish is conducted mainly in the gills, kidney, and gastrointestinal tract (GIT). The mechanisms involved in ion and water transport through the GIT is not well-characterized, with only a few described complexes. Comparing the transcriptome of the anterior and posterior intestinal sections of a freshwater and saltwater adapted fish by deep-sequencing, we examined the salinity adaptation of two tilapia species: the high salinity-tolerant Oreochromis mossambicus (Mozambique tilapia), and the less salinity-tolerant Oreochromis niloticus (Nile tilapia). This comparative analysis revealed high similarity in gene expression response to salinity change between species in the posterior intestine and large differences in the anterior intestine. Furthermore, in the anterior intestine 68 genes were saltwater up-regulated in one species and down-regulated in the other species (47 genes up-regulated in O. niloticus and down-regulated in O. mossambicus, with 21 genes showing the reverse pattern). Gene ontology (GO) analysis showed a high proportion of transporter and ion channel function among these genes. The results of this study point to a group of genes that differed in their salinity-dependent regulation pattern in the anterior intestine as potentially having a role in the differential salinity tolerance of these two closely related species. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Science.gov (United States)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2011-01-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  4. Absolute Salinity, "Density Salinity" and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Science.gov (United States)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2010-08-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. The Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  5. Hypertonic Saline in Conjunction with High-Dose Furosemide Improves Dose-Response Curves in Worsening Refractory Congestive Heart Failure.

    Science.gov (United States)

    Paterna, Salvatore; Di Gaudio, Francesca; La Rocca, Vincenzo; Balistreri, Fabio; Greco, Massimiliano; Torres, Daniele; Lupo, Umberto; Rizzo, Giuseppina; di Pasquale, Pietro; Indelicato, Sergio; Cuttitta, Francesco; Butler, Javed; Parrinello, Gaspare

    2015-10-01

    Diuretic responsiveness in patients with chronic heart failure (CHF) is better assessed by urine production per unit diuretic dose than by the absolute urine output or diuretic dose. Diuretic resistance arises over time when the plateau rate of sodium and water excretion is reached prior to optimal fluid elimination and may be overcome when hypertonic saline solution (HSS) is added to high doses of furosemide. Forty-two consecutively hospitalized patients with refractory CHF were randomized in a 1:1:1 ratio to furosemide doses (125 mg, 250 mg, 500 mg) so that all patients received intravenous furosemide diluted in 150 ml of normal saline (0.9%) in the first step (0-24 h) and the same furosemide dose diluted in 150 ml of HSS (1.4%) in the next step (24-48 h) as to obtain 3 groups as follows: Fourteen patients receiving 125 mg (group 1), fourteen patients receiving 250 mg (group 2), and fourteen patients receiving 500 mg (group 3) of furosemide. Urine samples of all patients were collected at 30, 60, and 90 min, and 3, 4, 5, 6, 8, and 24 h after infusion. Diuresis, sodium excretion, osmolality, and furosemide concentration were evaluated for each urine sample. After randomization, 40 patients completed the study. Two patients, one in group 2 and one in group 3 dropped out. Patients in group 1 (125 mg furosemide) had a mean age of 77 ± 17 years, 43% were male, 6 (43%) had heart failure with a preserved ejection fraction (HFpEF), and 64% were in New York Heart Association (NYHA) class IV; the mean age of patients in group 2 (250 mg furosemide) was 80 ± 8.1 years, 15% were male, 5 (38%) had HFpEF, and 84% were in NYHA class IV; and the mean age of patients in group 3 (500 mg furosemide) was 73 ± 12 years, 54% were male, 6 (46%) had HFpEF, and 69% were in NYHA class IV. HSS added to furosemide increased total urine output, sodium excretion, urinary osmolality, and furosemide urine delivery in all patients and at all time points. The percentage increase was 18,14, and

  6. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Directory of Open Access Journals (Sweden)

    D. G. Wright

    2011-01-01

    Full Text Available Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models.

    First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies.

    Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol

  7. Growth performance of indigenous sheep fed Sporobolus virginicus grass hay grown in saline desert lands and irrigated with high salt content ground water.

    Science.gov (United States)

    Alhadrami, G A; Al-Shorepy, S A; Yousef, A M

    2010-12-01

    Twenty-eight indigenous ewe lambs (6 months of age and 14.4 kg body weight (BW)) were used to evaluate the effect of feeding Sporobolus grass hay (SGH) as the only source of forage on growth, and feed and water intakes. The ewe lambs were randomly and equally allocated to two treatment groups (14 lambs/group). The ewe lambs in group 1 (treatment 1) received SGH, while lambs in group 2 (treatment 2) received Rhodes grass hay (RGH) as the only source of forage. Water was available at all times for both treatment groups. Sporobolus grass was irrigated with brackish water of high salt content (20,000 ppm) and grown in saline desert lands (sabkha) in the United Arab Emirates. The average daily dry matter intake was significantly (P  .05) between the two groups at all stages. From these data, we conclude that SGH can replace Rhodes hay in sheep diet without significant effect on sheep performance.

  8. Seed flotation and germination of salt marsh plants: The effects of stratification, salinity, and/or inundation regime

    Science.gov (United States)

    Elsey-Quirk, T.; Middleton, B.A.; Proffitt, C.E.

    2009-01-01

    We examined the effects of cold stratification and salinity on seed flotation of eight salt marsh species. Four of the eight species were tested for germination success under different stratification, salinity, and flooding conditions. Species were separated into two groups, four species received wet stratification and four dry stratification and fresh seeds of all species were tested for flotation and germination. Fresh seeds of seven out of eight species had flotation times independent of salinity, six of which had average flotation times of at least 50 d. Seeds of Spartina alterniflora and Spartina patens had the shortest flotation times, averaging 24 and 26 d, respectively. Following wet stratification, the flotation time of S. alterniflora seeds in higher salinity water (15 and 36 ppt) was reduced by over 75% and germination declined by more than 90%. Wet stratification reduced the flotation time of Distichlis spicata seeds in fresh water but increased seed germination from 2 to 16% in a fluctuating inundation regime. Fresh seeds of Iva frutescens and S. alternflora were capable of germination and therefore are non-dormant during dispersal. Fresh seeds of I. frutescens had similar germination to dry stratified seeds ranging 25-30%. Salinity reduced seed germination for all species except for S. alterniflora. A fluctuating inundation regime was important for seed germination of the low marsh species and for germination following cold stratification. The conditions that resulted in seeds sinking faster were similar to the conditions that resulted in higher germination for two of four species. ?? 2009 Elsevier B.V.

  9. The Effect of Intraoperative Restricted Normal Saline during Orthotopic Liver Transplantation on Amount of Administered Sodium Bicarbonate

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Sahmeddini

    2014-05-01

    Full Text Available Background: Severe metabolic acidosis occurs during orthotopic liver transplantation (OLT particularly during the anhepatic phase. Although NaHCO3 is considered as the current standard therapy, there are numerous adverse effects. The aim of this study was to determine whether the restricted use of normal saline during anesthesia could reduce the need for NaHCO3. Methods: In this study we enrolled 75 patients with end-stage liver disease who underwent OLT from February 2010 until September 2010 at the Shiraz Organ Transplantation Center. Fluid management of two different transplant anesthetics were compared. The effect of restricted normal saline fluid was compared with non-restricted normal saline fluid on hemodynamic and acid-base parameters at three times during OLT: after the skin incision (T1, 15 min before reperfusion (T2, and 5 min after reperfusion (T3. Results: There were no significant differences in demographic characteristics of the donors and recipients (P>0.05. In the restricted normal saline group there was significantly lower central venous pressure (CVP than in the non-restricted normal saline group (P=0.002. No significant differences were noted in the other hemodynamic parameters between the two groups (P>0.05. In the non-restricted normal saline group arterial blood pH (P=0.01 and HCO3 (P=0.0001 were significantly less than the restricted normal saline group. The NaHCO3 requirement before reperfusion was significantly more than with the restricted normal saline group (P=0.001. Conclusion: Restricted normal saline administration during OLT reduced the severity of metabolic acidosis and the need for NaHCO3 during the anhepatic phase. Trial Registration Number: IRCT2013110711662N5

  10. Cuticle hydrocarbons in saline aquatic beetles

    Directory of Open Access Journals (Sweden)

    María Botella-Cruz

    2017-07-01

    Full Text Available Hydrocarbons are the principal component of insect cuticle and play an important role in maintaining water balance. Cuticular impermeability could be an adaptative response to salinity and desiccation in aquatic insects; however, cuticular hydrocarbons have been poorly explored in this group and there are no previous data on saline species. We characterized cuticular hydrocarbons of adults and larvae of two saline aquatic beetles, namely Nebrioporus baeticus (Dytiscidae and Enochrus jesusarribasi (Hydrophilidae, using a gas chromatograph coupled to a mass spectrometer. The CHC profile of adults of both species, characterized by a high abundance of branched alkanes and low of unsaturated alkenes, seems to be more similar to that of some terrestrial beetles (e.g., desert Tenebrionidae compared with other aquatic Coleoptera (freshwater Dytiscidae. Adults of E. jesusarribasi had longer chain compounds than N. baeticus, in agreement with their higher resistance to salinity and desiccation. The more permeable cuticle of larvae was characterized by a lower diversity in compounds, shorter carbon chain length and a higher proportion of unsaturated hydrocarbons compared with that of the adults. These results suggest that osmotic stress on aquatic insects could exert a selection pressure on CHC profile similar to aridity in terrestrial species.

  11. High salinity volatile phases in magmatic Ni-Cu-platinum group element deposits

    Science.gov (United States)

    Hanley, J. J.; Mungall, J. E.

    2004-12-01

    The role of "deuteric" fluids (exsolved magmatic volatile phases) in the development of Ni-Cu-PGE (platinum group element) deposits in mafic-ultramafic igneous systems is poorly understood. Although considerable field evidence demonstrates unambiguously that fluids modified most large primary Ni-Cu-PGE concentrations, models which hypothesize that fluids alone were largely responsible for the economic concentration of the base and precious metals are not widely accepted. Determination of the trace element composition of magmatic volatile phases in such ore-forming systems can offer considerable insight into the origin of potentially mineralizing fluids in such igneous environments. Laser ablation ICP-MS microanalysis allows researchers to confirm the original metal budget of magmatic volatile phases and quantify the behavior of trace ore metals in the fluid phase in the absence of well-constrained theoretical or experimental predictions of ore metal solubility. In this study, we present new evidence from major deposits (Sudbury, Ontario, Canada; Stillwater Complex, Montana, U.S.A.) that compositionally distinct magmatic brines and halide melt phases were exsolved from crystallizing residual silicate melt and trapped within high-T fluid conduits now comprised of evolved rock compositions (albite-quartz graphic granite, orthoclase-quartz granophyre). Petrographic evidence demonstrates that brines and halide melts coexisted with immiscible carbonic phases at the time of entrapment (light aliphatic hydrocarbons, CO2). Brine and halide melt inclusions are rich in Na, Fe, Mn, K, Pb, Zn, Ba, Sr, Al and Cl, and homogenize by either halite dissolution at high T ( ˜450-700° C) or by melting of the salt phase (700-800° C). LA-ICPMS analyses of single inclusions demonstrate that high salinity volatile phases contained abundant base metals (Cu, Fe, Sn, Bi) and precious metals (Pt, Pd, Au, Ag) at the time of entrapment. Notably, precious metal concentrations in the inclusions

  12. The Effects of In-Hospital Intravenous Cold Saline in Postcardiac Arrest Patients Treated with Targeted Temperature Management.

    Science.gov (United States)

    Suppogu, Nissi; Panza, Gregory A; Kilic, Sena; Gowdar, Shreyas; Kallur, Kamala R; Jayaraman, Ramya; Lundbye, Justin; Fernandez, Antonio B

    2018-03-01

    Recent data suggest that rapid infusion of intravenous (IV) cold saline for Targeted Temperature Management (TTM) after cardiac arrest is associated with higher rates of rearrest, pulmonary edema, and hypoxia, with no difference in neurologic outcomes or survival when administered by Emergency Medical Services. We sought to determine the effects of IV cold saline administration in the hospital setting in postcardiac arrest patients to achieve TTM and its effect on clinical parameters and neurologic outcomes. A cohort of 132 patients who completed TTM after cardiac arrest in a single institution was retrospectively studied. Patients who did not receive cold saline were matched by age, gender, Glasgow coma scale, downtime, and presenting rhythm to patients who received cold saline. Demographics, cardiac rearrest, diuretic use, time to target temperature, and Cerebral Performance Category (CPC) scores were recorded among other variables. Patients who received cold saline achieved target temperature sooner (280 vs. 345 minutes, p = 0.05), had lower lactate levels on day 1 (4.2 ± 3.5 mM vs. 6.0 ± 4.9 mM, p = 0.019) and day 2 (1.3 ± 2.2 mM vs. 2.2 ± 3.2 mM, p = 0.046), increased incidence of pulmonary edema (51.5% vs. 31.8%, p = 0.006), and increased diuretic utilization (63.6% vs. 42.4%, p = 0.014). There was no significant difference in cardiac rearrest, arterial oxygenation, and CPC scores (ps > 0.05). Infusion of IV cold saline is associated with shorter time to target temperature, increased incidence of pulmonary edema, and diuretic use, with no difference in cardiac rearrest, survival, and neurologic outcomes.

  13. Hyaluronic acid versus saline intra-articular injections for amelioration of chronic knee osteoarthritis: A canine model.

    Science.gov (United States)

    Pashuck, Troy D; Kuroki, Keiichi; Cook, Cristi R; Stoker, Aaron M; Cook, James L

    2016-10-01

    The objective of this study was to assess the safety and efficacy of intra-articular injections of hyaluronic acid (HA) versus saline for symptomatic treatment of osteoarthritis (OA). Twenty-five adult purpose-bred dogs underwent meniscal release of one knee. Clinical, arthroscopic, and radiographic signs of OA were confirmed in all dogs prior to treatment. Dogs were randomized into five groups: HA-1 (n = 5), HA-3 (n = 5), HA-5 (n = 5), Saline-1 (n = 5), and Saline-3 (n = 5). Each dog received intra-articular injections of the respective substance into the affected knee at the pre-determined time points. Dogs were assessed for heat, swelling, and erythema after each injection and for lameness, pain, effusion, range of motion, kinetics, radiographic OA scoring, and arthroscopic scoring prior to treatment and for 6 months after injection. Dogs were then humanely euthanatized and the knees assessed grossly and histologically. Only mild heat, swelling, and/or erythema were noted in some dogs following injection and resolved within 1 week. Dogs treated with HA-1, HA-3, and HA-5 were significantly (p injection protocols were safe, superior to saline for short-term amelioration of symptoms associated with chronic OA, and can be translated to human OA treatment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1772-1779, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. 26 CFR 1.1081-7 - Sale of stock or securities received upon exchange by members of system group.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Sale of stock or securities received upon.... Orders § 1.1081-7 Sale of stock or securities received upon exchange by members of system group. (a... which are members of the same system group consists of stock or securities issued by the corporation...

  15. Production of consistent pain by intermittent infusion of sterile 5% hypertonic saline, followed by decrease of pain with cryotherapy.

    Science.gov (United States)

    Long, Blaine C; Knight, Kenneth L; Hopkins, Ty; Parcell, Allen C; Feland, J Brent

    2012-08-01

    It is suggested that postinjury pain is difficult to examine; thus, investigators have developed experimental pain models. To minimize pain, cryotherapy (cryo) is applied, but reports on its effectiveness are limited. To investigate a pain model for the anterior knee and examine cryo in reducing the pain. Controlled laboratory study. Therapeutic modality laboratory. 30 physically active healthy male subjects who were free from any lower extremity orthopedic, neurological, cardiovascular, or endocrine pathologies. Perceived pain was measured every minute. Surface temperature was also assessed in the center of the patella and the popliteal fossa. There was a significant interaction between group and time (F68,864 = 3.0, P = .0001). At the first minute, there was no difference in pain between the 3 groups (saline/cryo = 4.80 ± 4.87 mm, saline/sham = 2.80 ± 3.55 mm, no saline/cryo = 4.00 ± 3.33 mm). During the first 5 min, pain increased from 4.80 ± 4.87 to 45.90 ± 21.17 mm in the saline/cryo group and from 2.80 ± 3.55 to 31.10 ± 20.25 mm in the saline/sham group. Pain did not change within the no-saline/cryo group, 4.00 ± 3.33 to 1.70 ± 1.70 mm. Pain for the saline/sham group remained constant for 17 min. Cryo decreased pain for 16 min in the saline/cryo group. There was no difference in preapplication surface temperature between or within each group. No change in temperature occurred within the saline/sham. Cooling and rewarming were similar in both cryo groups. Ambient temperature fluctuated less than 1°C during data collection. Intermittent infusion of sterile 5% hypertonic saline may be a useful experimental pain model in establishing a constant level of pain in a controlled laboratory setting. Cryotherapy decreased the induced anterior knee pain for 16 min.

  16. Salinity and cationic nature of irrigation water on castor bean cultivation

    Directory of Open Access Journals (Sweden)

    Geovani S. de Lima

    Full Text Available ABSTRACT This study aimed to evaluate the water relations, cell damage percentage and growth of the castor bean cv. ‘BRS Energia’ as a function of salinity and cationic nature of the water used in irrigation. The experiment was conducted in drainage lysimeters under greenhouse conditions in eutrophic Grey Argisol of sandy loam texture. Six combinations of water salinity and cations were studied (S1 - Control; S2 - Na+, S3 - Ca2+, S4 - Na+ + Ca2+; S5 - K+ and S6 - Na+ + Ca2+ + Mg2+, in a randomized block design with four replicates. In the control (S1, plants were irrigated with 0.6 dS m-1 water, whereas the other treatments received 4.5 dS m-1 water, obtained by adding different salts, all in the chloride form. Higher relative water content in the leaf blade of plants irrigated with K+-salinized water associated with leaf succulence are indicative of tolerance of the castor bean cv. ‘BRS Energia’ to salinity. Saline stress negatively affected castor bean growth, regardless of cationic nature of water. Among the ions studied, ‘BRS Energia’ castor bean was more sensitive to the presence of sodium in the irrigation water, in terms of both water relations and leaf succulence.

  17. Interactive effects of chemical and biological controls on food-web composition in saline prairie lakes.

    Science.gov (United States)

    Cooper, Ryan N; Wissel, Björn

    2012-11-27

    Salinity is restricting habitatability for many biota in prairie lakes due to limited physiological abilities to cope with increasing osmotic stress. Yet, it remains unclear how salinity effects vary among major taxonomic groups and what role other environmental parameters play in shaping food-web composition. To answer these questions, we sampled fish, zooplankton and littoral macroinvertebrates in 20 prairie lakes (Saskatchewan, Canada) characterized by large gradients in water chemistry and lake morphometry. We showed that salinity thresholds differed among major taxonomic groups, as most fishes were absent above salinities of 2 g L-1, while littoral macroinvertebrates were ubiquitous. Zooplankton occurred over the whole salinity range, but changed taxonomic composition as salinity increased. Subsequently, the complexity of fish community (diversity) was associated with large changes in invertebrate communities. The directional changes in invertebrate communities to smaller taxa indicated that complex fish assemblages resulted in higher predation pressure. Most likely, as the complexity of fish community decreased, controls of invertebrate assemblages shifted from predation to competition and ultimately to productivity in hypersaline lakes. Surprisingly, invertebrate predators did not thrive in the absence of fishes in these systems. Furthermore, the here identified salinity threshold for fishes was too low to be a result of osmotic stress. Hence, winterkill was likely an important factor eliminating fishes in low salinity lakes that had high productivity and shallow water depth. Ultimately, while salinity was crucial, intricate combinations of chemical and biological mechanisms also played a major role in controlling the assemblages of major taxonomic groups in prairie lakes.

  18. Effect of saline loading on uranium-induced acute renal failure in rats

    International Nuclear Information System (INIS)

    Hishida, A.; Yonemura, K.; Ohishi, K.; Yamada, M.; Honda, N.

    1988-01-01

    Studies were performed to examine the effect of saline loading on uranium-induced acute renal failure (ARF) in rats. Forty-eight hours after the i.v. injection of uranyl acetate (UA, 5 mg/kg), inulin clearance rate (Cin) decreased to approximately 43% of the control value in water drinking rats (P less than 0.005). Animals receiving continuous isotonic saline infusion following UA showed higher urine flow and Cin (60% of control, P less than 0.01), and lessened intratubular cast formation when compared with water-drinking ARF rats. A short-term saline infusion following UA did not attenuate the decline in Cin (43% of control). An inverse relationship was found between Cin and the number of casts (r = -0.75, P less than 0.01). Multiple regression analysis showed that standardized partial regression coefficient is statistically significant between Cin and cast formation (-0.69, P less than 0.05), but not between Cin and tubular necrosis (-0.07, P greater than 0.05). Renin depletion caused by DOCA plus saline drinking did not attenuate the decline in Cin in ARF (47% of control). No significant difference was found in urinary uranium excretion between water-drinking and saline-infused ARF rats. The findings suggest that continuous saline infusion following UA attenuates the decline in Cin in ARF rats; and that this beneficial effect of saline loading is associated with lessened cast formation rather than with suppressed renin-angiotensin activity or enhanced urinary-uranium excretion

  19. Influence of salinity and prey presence on the survival of aquatic macroinvertebrates of a freshwater marsh

    Science.gov (United States)

    Kang, Sung-Ryong; King, Sammy L.

    2012-01-01

    Salinization of coastal freshwater environments is a global issue. Increased salinity from sea level rise, storm surges, or other mechanisms is common in coastal freshwater marshes of Louisiana, USA. The effects of salinity increases on aquatic macroinvertebrates in these systems have received little attention, despite the importance of aquatic macroinvertebrates for nutrient cycling, biodiversity, and as a food source for vertebrate species. We used microcosm experiments to evaluate the effects of salinity, duration of exposure, and prey availability on the relative survival of dominant aquatic macroinvertebrates (i.e., Procambarus clarkii Girard, Cambarellus puer Hobbs, Libellulidae, Dytiscidae cybister) in a freshwater marsh of southwestern Louisiana. We hypothesized that increased salinity, absence of prey, and increased duration of exposure would decrease survival of aquatic macroinvertebrates and that crustaceans would have higher survival than aquatic insect taxon. Our first hypothesis was only partially supported as only salinity increases combined with prolonged exposure duration affected aquatic macroinvertebrate survival. Furthermore, crustaceans had higher survival than aquatic insects. Salinity stress may cause mortality when acting together with other stressful conditions.

  20. Saline-enhanced radiofrequency thermal ablation of the lung: a feasibility study in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Min; Kim, Sang Won; Li, Chun Ai; Youk, Ji Hyun; Kim, Young Kon; Jin, Zhewu; Chung, Myoung Ja [Chonbuk National University Medical School, Jeonju (Korea, Republic of); Lee, Mi Suk [Yangi Hospital, Seoul (Korea, Republic of)

    2002-12-01

    To assess the feasibility and safety of CT-guided percutaneous transthoracic radiofrequency ablation (RFA) with saline infusion of pulmonary tissue in rabbits. Twenty-eight New Zealand White rabbits were divided into two groups: an RFA group (n=10) and a saline-enhanced RFA (SRFA) group (n=18). In the RFA group, percutaneous RFA of the lung was performed under CT guidance and using a 17-gauge internally cooled electrode. In the SRFA group, 1.5 ml of 0.9% saline was infused slowly through a 21-gauge, polyteflon-coated Chiba needle prior to and during RFA. Lesion size and the healing process were studied in rabbits sacrificed at times from the day following treatment to three weeks after, and any complications were noted. In the SRFA group, the mean diameter (12.5{+-}1.6 mm) of acute RF lesions was greater than that of RFA lesions (8.5{+-}1.4 mm) (p < .05). The complications arising in 12 cases were pneumothorax (n=8), thermal injury to the chest wall (n=2), hemothorax (n=1), and lung abscess (n=1). Although procedure-related complications tended to occur more frequently in the SRFA group (55.6%) than in the RFA group (20%), the difference was not statistically significant (p .11). Saline-enhanced RFA of pulmonary tissue in rabbits produces more extensive coagulation necrosis than conventional RFA procedures, without adding substantial risk of serious complications.

  1. Groundwater salinity study in the Mekong Delta using isotope techniques

    International Nuclear Information System (INIS)

    Le Van Khoi, Nguyen Kien Chinh; Do Tien Hung

    2002-01-01

    Environmental isotopes D, 18 O and chemical composition were used for study of recharge and salinization of groundwater in the are located between Bassac and Mekong Rivers. The results showed that: (a) Pleistocene aquifers are recharged through flood plains and outcrops located at the same altitude. The sanility of groundwater in these aquifers is mostly due to dissolution of the aquifer material, (b) Pliocene and Miocene aquifers receive recharge through outcrops located at the higher altitude on the northeast extension of the Delta and Cambodia. The salinity of groundwater in the coastal region of the aquifer is attributable to sea water intrusion. There appears to be significant retention of sea water in the coastal sediment during intrusion. (Author)

  2. Effects of periodical salinity fluctuation on the growth, molting, energy homeostasis and molting-related gene expression of Litopenaeus vannamei

    Science.gov (United States)

    Zhang, Dan; Guo, Xiantao; Wang, Fang; Dong, Shuanglin

    2016-10-01

    To determine the response of Litopenaeus vannamei to periodical salinity fluctuation, a 30-day experiment was conducted in laboratory. In this experiment, two salinity fluctuation amplitudes of 4 (group S4) and 10 (group S10) were designed. The constant salinity of 30 (group S0) was used as the control. Levels of shrimp growth, molting frequency (MF), cellular energy status (ATP, ADP and AMP), as well as the expression of genes encoding molt-inhibiting hormone (MIH), crustacean hyperglycemic hormone (CHH), ecdysteroid-regulated protein (ERP), and energy-related AMP-activated protein kinase (AMPK) were determined. The results showed that periodical salinity fluctuation significantly influenced all indicators except MF which ranged from 13.3% in group S10 to15.4% in group S4. In comparison with shrimps cultured at the constant salinity of 30, those in group S4 showed a significant elevation in growth rate, food conversion efficiency, cellular energy status, ERP and MIH gene transcript abundance, and a significant reduction in CHH and AMPK transcript abundance ( P MIH and CHH gene expression when compared to the control ( P < 0.05). According to our findings, L. vannamei may be highly capable of tolerating salinity fluctuation. When ambient salinity fluctuated at approx. 4, the increased MF and energy stores in organisms may aid to promoting shrimp growth.

  3. Attenuation of pancreatitis-induced pulmonary injury by aerosolized hypertonic saline.

    LENUS (Irish Health Repository)

    Shields, C J

    2012-02-03

    BACKGROUND: The immunomodulatory effects of hypertonic saline (HTS) provide potential strategies to attenuate inappropriate inflammatory reactions. This study tested the hypothesis that administration of intratracheal aerosolized HTS modulates the development of lung injury in pancreatitis. METHODS: Pancreatitis was induced in 24 male Sprague-Dawley rats by intraperitoneal injection of 20% L-arginine (500 mg\\/100 g body weight). At 24 and 48 h, intratracheal aerosolized HTS (7.5% NaCl, 0.5 mL) was administered to 8 rats, while a further 8 received 0.5 mL of aerosolized normal saline (NS). At 72 hours, pulmonary neutrophil infiltration (myeloperoxidase activity) and endothelial permeability (bronchoalveolar lavage and wet:dry weight ratios) were assessed. In addition, histological assessment of representative lung tissue was performed by a blinded assessor. In a separate experiment, polymorphonucleocytes (PMN) were isolated from human donors, and exposed to increments of HTS. Neutrophil transmigration across an endothelial cell layer, VEGF release, and apoptosis at 1, 6, 12, 18, and 24 h were assessed. RESULTS: Histopathological lung injury scores were significantly reduced in the HTS group (4.78 +\\/- 1.43 vs. 8.64 +\\/- 0.86); p < 0.001). Pulmonary neutrophil sequestration (1.40 +\\/- 0.2) and increased endothelial permeability (6.77 +\\/- 1.14) were evident in the animals resuscitated with normal saline when compared with HTS (0.70 +\\/- 0.1 and 3.57 +\\/- 1.32), respectively; p < 0.04). HTS significantly reduced PMN transmigration (by 97.1, p = 0.002, and induced PMN apoptosis (p < 0.03). HTS did not impact significantly upon neutrophil VEGF release (p > 0.05). CONCLUSIONS: Intratracheal aerosolized HTS attenuates the neutrophil-mediated pulmonary insult subsequent to pancreatitis. This may represent a novel therapeutic strategy.

  4. Attenuation of cigarette smoke-induced airway mucus production by hydrogen-rich saline in rats.

    Directory of Open Access Journals (Sweden)

    Yunye Ning

    Full Text Available BACKGROUND: Over-production of mucus is an important pathophysiological feature in chronic airway disease such as chronic obstructive pulmonary disease (COPD and asthma. Cigarette smoking (CS is the leading cause of COPD. Oxidative stress plays a key role in CS-induced airway abnormal mucus production. Hydrogen protected cells and tissues against oxidative damage by scavenging hydroxyl radicals. In the present study we investigated the effect of hydrogen on CS-induced mucus production in rats. METHODS: Male Sprague-Dawley rats were divided into four groups: sham control, CS group, hydrogen-rich saline pretreatment group and hydrogen-rich saline control group. Lung morphology and tissue biochemical changes were determined by immunohistochemistry, Alcian Blue/periodic acid-Schiff staining, TUNEL, western blot and realtime RT-PCR. RESULTS: Hydrogen-rich saline pretreatment attenuated CS-induced mucus accumulation in the bronchiolar lumen, goblet cell hyperplasia, muc5ac over-expression and abnormal cell apoptosis in the airway epithelium as well as malondialdehyde increase in the BALF. The phosphorylation of EGFR at Tyr1068 and Nrf2 up-regulation expression in the rat lungs challenged by CS exposure were also abrogated by hydrogen-rich saline. CONCLUSION: Hydrogen-rich saline pretreatment ameliorated CS-induced airway mucus production and airway epithelium damage in rats. The protective role of hydrogen on CS-exposed rat lungs was achieved at least partly by its free radical scavenging ability. This is the first report to demonstrate that intraperitoneal administration of hydrogen-rich saline protected rat airways against CS damage and it could be promising in treating abnormal airway mucus production in COPD.

  5. Effect of salinity level on TSH and thyroid hormones of grass carp, Ctenophayngodon idella

    Directory of Open Access Journals (Sweden)

    Rahim Peyghan

    2013-09-01

    Full Text Available Thyroid hormones (T3, T4 have marked effect on body metabolism and in controlling osmoregulation activity in fish. The aim of this study was to determine the effect of water salinity changes on thyroid hormones level and thyroid-stimulating hormone (TSH of grass carp. For this purpose 120 grass carp were divided randomly in to four groups (10 fish in each group and three replicates per treatment. Three groups were held in three different salinities at concentrations of 4, 8 and 12 g L-1. The fourth group was reared in fresh water and considered as control. After three weeks blood samples were collected from the caudal peduncle vein. Then serum was separated and serum thyroid hormones and TSH were measured by LISA on Microwell plates. Our results indicated that the average of T3 levels in 4, 8 and 12 g L-1 groups were 0.43 ± 0.11, 0.22 ± 0.04 and 0.21 ± 0.04 μg dL-1, respectively. T3 levels in all experimental groups were significantly lower than those of control group (p 0.05. The level of TSH in salinities of 4 and 8 g L-1 groups was significantly higher than that of control group (p < 0.05. The results showed that increasing water salinity can have significant effect on thyroid activity by decreasing T3 and increasing T4 level in serum of grass carp in experimental condition.

  6. A study on the effect of the injected absolute ethanol and hot-saline in the normal liver of rat

    International Nuclear Information System (INIS)

    Rhim, Hyun Chul; Hong, Eun Kyung; Cho, On Koo; Song, Soon Young; Koh, Byung Hee; Seo, Heung Suk; Hahm, Chang Kok; Park, Hwon Kyum

    1995-01-01

    To compare the effect of local injection therapy with absolute ethanol and hot-saline in the normal liver of rat. An experimental study was performed with the normal liver of 52 rats. The resected livers were pathologically analyzed on three days, one week, two weeks, and four weeks after injection of 0.1 ml absolute ethanol and hot-saline. The assessment was done in view of 1) main pathologic changes on time, 2) pattern of inflammatory cell infiltration, 3) measurement of necrotic area, 4) effect on vascular and biliary tracts adjacent to necrotic area, and 5) extrahepatic peritoneal adhesion. The main pathologic changes were acute necrosis with inflammation for three days group and secondary regenerative fibrosis in all groups. The degree of necrosis was significantly more severe in absolute ethanol injection group, demonstrating larger necrotic area, than hot-saline injection group. The effect on vessels and bile ducts adjacent to the necrotic area was almost not seen in both groups. The extrahepatic peritoneal adhesion was noted in both groups, but the degree was more prominent in the absolute ethanol injection group than hot-saline injection group. Absolute ethanol is superior to hot-saline in the necrotic effect of percutaneous injection therapy. However, hot-saline could be applied in case of the borderline area between mass and adjacent normal liver or the subcapsular mass

  7. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Lampen, P.

    1992-11-01

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  8. Long-term efficacy of a double-blind, placebo-controlled, randomized study for repetitive sphenopalatine blockade with bupivacaine vs. saline with the Tx360 device for treatment of chronic migraine.

    Science.gov (United States)

    Cady, Roger K; Saper, Joel; Dexter, Kent; Cady, Ryan J; Manley, Heather R

    2015-04-01

    This study aims to determine if repetitive sphenopalatine ganglion (SPG) blockades with 0.5% bupivacaine delivered with the Tx360 device results in long-term improvement in chronic migraine (CM). The SPG is a small concentrated structure of neuronal tissue that resides within the pterygopalatine fossa in close proximity to the sphenopalatine foramen and is innervated by the maxillary division of the trigeminal nerve. In a previous article, these authors reported repetitive SPG blockades with 0.5% bupivacaine delivered by the Tx360 device, which was an effective and well-tolerated intervention to incrementally decrease baseline headache intensity of subjects with CM. This was a double-blind, parallel-arm, placebo-controlled, randomized pilot study using a novel intervention for acute treatment in CM. A total of 41 subjects were enrolled at two headache specialty clinics in the USA. Eligible subjects were between 18 and 80 years of age and had a history of CM defined by International Classification of Headache Disorders-II definition. Subjects were allowed a stable dose of migraine preventive medications that was maintained throughout the study. Following a 28-day baseline period, subjects were randomized by computer-generated lists 2:1 to receive 0.3 cc of 0.5% bupivacaine or saline, respectively, delivered with the Tx360 twice a week for 6 weeks. Secondary end-points reported in this manuscript include post-treatment measures including number of headache days and quality of life measures. The final data set included 38 subjects: 26 in the bupivacaine group and 12 in the saline group. Our primary end-point for the study, difference in numeric pain rating scale scores, was met and reported in a previous article. The supplemental secondary end-points reported in this manuscript did not reach statistical significance. When looking collectively at these end-points, trends were noticed and worthy of reporting. Subjects receiving bupivacaine reported a decrease in the

  9. Multi-regional local anesthetic infiltration during laparoscopic cholecystectomy in patients receiving prophylactic multi-modal analgesia: a randomized, double-blinded, placebo-controlled study

    DEFF Research Database (Denmark)

    Bisgaard, T; Klarskov, B; Kristiansen, V B

    1999-01-01

    undergoing elective laparoscopic cholecystectomy. In addition, all patients received multi-modal prophylactic analgesic treatment. Fifty-eight patients were randomized to receive a total of 286 mg (66 mL) ropivacaine or 66 mL saline via periportal and intraperitoneal infiltration. During the first 3...... postoperative h, the use of morphine and antiemetics was registered, and pain and nausea were rated hourly. Daily pain intensity, pain localization, and supplemental analgesic consumption were registered the first postoperative week. Ropivacaine reduced overall pain the first two hours and incisional pain...... for the first three postoperative hours (P ropivacaine group (P

  10. Intracuff buffered lidocaine versus saline or air – A comparative ...

    African Journals Online (AJOL)

    ... smoking or recently treated upper respiratory tract infections were randomly assigned into three groups (n = 25), based on the type of endotracheal tube cuff inflation, as follows: Group A (air), Group B (6 ml normal saline) and Group C (6 ml 2% lidocaine + 0.5 ml 7.5% sodium bicarbonate). A second, blinded anaesthetist, ...

  11. High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52

    Science.gov (United States)

    Qiu, Xuan; Wang, Hongmei; Yao, Yanchen; Duan, Yong

    2017-08-01

    Although most modern dolomites occur in hypersaline environments, the effects of elevated salinity on the microbial mediation of dolomite precipitation have not been fully evaluated. Here we report results of dolomite precipitation in association with a batch culture of Haloferax volcanii DS52, a halophilic archaeon, under various salinities (from 120‰ to 360‰) and the impact of salinity on microbe-mediated dolomite formation. The mineral phases, morphology and atomic arrangement of the precipitates were analyzed by XRD, SEM and TEM, respectively. The amount of amino acids on the archaeal cell surface was quantified by HPLC/MS. The XRD analysis indicated that disordered dolomite formed successfully with the facilitation of cells harvested from cultures with relatively high salinities (200‰ and 280‰) but was not observed in association with cells harvested from cultures with lower salinity (120‰) or the lysates of cells harvested from extremely high salinity (360‰). The TEM analysis demonstrated that the crystals from cultures with a salinity of 200‰ closely matched that of dolomite. Importantly, we found that more carboxyl groups were presented on the cell surface under high salinity conditions to resist the high osmotic pressure, which may result in the subsequent promotion of dolomite formation. Our finding suggests a link between variations in the hydro-chemical conditions and the formation of dolomite via microbial metabolic activity and enhances our understanding about the mechanism of microbially mediated dolomite formation under high salinity conditions.

  12. Valuation of using saline flush technique of contrast medium on abdominal multidetector row CT scanning

    International Nuclear Information System (INIS)

    Zhao Hong; Wang Ying; He Yanli; Liu Xiaobing; Bao Shiliang; Han Mingjun

    2006-01-01

    Objective: The purpose of this study was to compare the enhancement degree of abdomen organs and vessels after different amount of contrast medium using saline flush in abdomen MDCT scanning, which aimed to not affect contrast enhancement, decreased the amount of contrast medium, and reduced the side-effect. Methods: This study group consisted of 75 patients who were referred for contrast enhanced abdominal MDCT for various reasons. Patients were allocated into three groups: injection of 100ml of contrast medium only (A group), injection of 80ml pushed with 20ml of saline solution (B group), and injection of 70ml pushed with 30ml of saline solution (C group). Attenuation values were measured from the liver, spleen, pancreas, kidney, aorta, portal vein, and inferior vena cava in 33 second and 80 second of imaging after injection contrast medium. Results: The portal venous phases of the spleen, pancreas, kidney, aorta, portal vein had statistically significant difference among groups A, B and C. Post hoc test showed statistically significant difference between A group and C group, But no statistically significant difference during the portal venous phases of the pancreas and the kidney between A group and B group. Conclusion: Using a saline flush technique after the injection contrast medium in abdominal MDCT reduced waste of contrast medium and decrease in nephrotoxicity, at the same time, it would not lose important diagnostic information and saved patients cost for the contrast medium. (authors)

  13. Effect of Different Alternate Irrigation Strategies using Saline and Non-Saline Water on Corn Yield, Salinity and Moisture Distribution in Soil Profile

    Directory of Open Access Journals (Sweden)

    Ali Reza Kiani

    2017-01-01

    Full Text Available Introduction: Lack of water and deterioration in the quality of soil and water resources are considered to be the prime cause of reduced crop yield in arid and semi-arid regions ‘More crop per drop’ by trickle irrigation, deficit irrigation, and uncommon water are the best strategies for mitigating water crises. Different irrigation management strategies are needed to increase production in different areas. In areas where sufficient water is available, a full irrigation strategy could be a suitable option, while in areas where water is limited, deficit irrigation would be an appropriate method, and finally in areas where water resources are saline, management strategies for achieving sustainable production as well as economic yields would be suitable. Maize is the third most important grain crop in the world following wheat and rice and it is the main source of nutrition for humans and animals. Because of the importance of maize in the world, increasing maize production under environmental stresses is a big challenge for agricultural scientists. Different methods of irrigation and the use of saline water that had satisfactory results for increasing agricultural production have been studied by several investigators . The main objective of this study was to establish an efficient use of limited water resources as well as to explore the possibility of replacing saline water with fresh water using different management techniques. Materials and Methods: A field experiment was conducted over two maize cropping seasons (2012–2013 in northern Iran (Gorgan Agricultural Research Station to compare different alternate irrigation scenarios using saline water on corn yield, salinity and soil moisture distribution in a randomized complete block design with three replications. Treatments were: T1 and T2 = 100 and 50 % of crop water requirement with non-saline water, respectively; T3 and T4 = variable and fixed full irrigation with saline and non-saline

  14. Patient satisfaction with postmastectomy breast reconstruction: a comparison of saline and silicone implants.

    Science.gov (United States)

    McCarthy, Colleen M; Klassen, Anne F; Cano, Stefan J; Scott, Amie; Vanlaeken, Nancy; Lennox, Peter A; Alderman, Amy K; Mehrara, Babak J; Disa, Joseph J; Cordeiro, Peter G; Pusic, Andrea L

    2010-12-15

    At a time when the safety and effectiveness of breast implants remains under close scrutiny, it is important to provide reliable and valid evidence regarding patient outcomes. In the setting of postmastectomy reconstruction, patient satisfaction and quality of life may be the most significant outcome variables when evaluating surgical success. The objective of the current study was to identify predictors of patient satisfaction with breast appearance, including implant type, in a large sample of women who underwent breast reconstruction surgery using implants. A multicenter, cross-sectional study design was used. A total of 672 women who had completed postmastectomy, implant-based reconstruction at 1 of 3 centers in North America were asked to complete the BREAST-Q (Reconstruction Module). Multivariate linear regression modeling was performed. Completed questionnaire data were available for 482 of the 672 patients. In 176 women, silicone implants were placed and in 306, saline implants were used. The multivariate model confirmed that patients' satisfaction with their breasts was significantly higher in patients with silicone implants (P = .016). The receipt of postmastectomy radiotherapy was found to have a significant, negative effect on breast satisfaction (Pimplant recipients. In addition, for women who received either silicone or saline implants, satisfaction diminished over time (P = .017). In the setting of postmastectomy reconstruction, patients who received silicone breast implants reported significantly higher satisfaction with the results of reconstruction than those who received saline implants. This information can be used to optimize shared medical decision-making by providing patients with realistic postoperative expectations. Copyright © 2010 American Cancer Society.

  15. The effect of silver nitrate, chloroformic garlic extract and normal saline in induction of sclerosing cholangitis in rabbits

    International Nuclear Information System (INIS)

    Hosseni, Seyed V.; Mohebzadeh, J.; Mehrabani, D.; Amini, M.; Kumar, Perikala V.; Bagheri, Mohammad H.; Sadjjadi, Seyed M.; Amini, A.

    2008-01-01

    Objective was to the effects of 0.5% silver nitrate, 20% chloroformic garlic extract and 0.9% normal saline in induction of sclerosing cholangitis in the bile ducts of rabbits. During a 6-months period from April to September 2006 in Shiraz University Laboratory Animal Research Center, we selected 3 equal groups of rabbits. We injected 0.5% silver nitrate, 20% chloroformic garlic extract and 0.9% normal saline into the bile ducts of each group. The animals were euthanized and autopsied after 4 months and the liver and bile ducts were removed and studied histopathologically. Cholangiography was undertaken to evaluate the presence and extent of any sclerosing cholangitis. Animals showed sclerosing cholangitis in silver nitrate group (7 [58%]), one (8%) in chloroformic garlic extract group and one (7%) in normal saline group. The difference between silver nitrate and chloroformic garlic extract groups were statistically significant and similar results were noticed between chloroformic garlic extract and normal saline groups. Twenty percent of chloroformic garlic extract had fewer complications such as sclerosing cholangitis, compared to other materials. (author)

  16. Changes in microbial diversity in industrial wastewater evaporation ponds following artificial salination.

    Science.gov (United States)

    Ben-Dov, Eitan; Shapiro, Orr H; Gruber, Ronen; Brenner, Asher; Kushmaro, Ariel

    2008-11-01

    The salinity of industrial wastewater evaporation ponds was artificially increased from 3-7% to 12-16% (w/v), in an attempt to reduce the activity of sulfate-reducing bacteria (SRB) and subsequent emission of H2S. To investigate the changes in bacterial diversity in general, and SRB in particular, following this salination, two sets of universal primers targeting the 16S rRNA gene and the functional apsA [adenosine-5'-phosphosulfate (APS) reductase alpha-subunit] gene of SRB were used. Phylogenetic analysis indicated that Proteobacteria was the most dominant phylum both before and after salination (with 52% and 68%, respectively), whereas Firmicutes was the second most dominant phylum before (39%) and after (19%) salination. Sequences belonging to Bacteroidetes, Spirochaetes and Actinobacteria were also found. Several groups of SRB from Proteobacteria and Firmicutes were also found to inhabit this saline environment. Comparison of bacterial diversity before and after salination of the ponds revealed both a shift in community composition and an increase in microbial diversity following salination. The share of SRB in the 16S rRNA gene was reduced following salination, consistent with the reduction of H2S emissions. However, the community composition, as shown by apsA gene analysis, was not markedly affected.

  17. Feasibility of saline infusion on the liver surface during radiofrequency ablation of subcapsuIar hepatic tumor: an experimentaI study

    International Nuclear Information System (INIS)

    Lee, Young Rang; Kim, Young Sun; Rhim, Hyun Chul; Seo, Heung Suk; Cho, On Koo; Koh, Byung Hee; Kim, Yong Soo; Kim, Sung Kyu; Paik, Seung Sam

    2004-01-01

    The purpose of the study was to evaluate the feasibility of infusion of normal saline onto the surface of the liver capsule for minimizing thermal injury of the adjacent organs during radiofrequency ablation of subcapsular hepatic tumor in an ex-vivo porcine model. We used porcine small bowel with it's serosal surface spread onto the porcine liver as an experiment model. The puncturing electrode was inserted into a 6 Fr introducer sheath, and the introducer sheath was connected to the infusion pump for creating a saline flow over the liver surface. A total of 15 ablations were divided into the control group (n=5), intermittent saline infusion group (n=5) and continuous saline infusion (n=5) group. The ablations were done during 3 minutes, and the infusion was set at 2 ml/min and stopped every 30 seconds in the intermittent saline infusion group. After the ablation, we measured the size of the ablated lesion on the surface of bowel and liver, and we also measured the depth of hepatic lesion. Ablated areas of bowel and liver surface in the control group, intermittent saline infusion group and continuous infusion group were 210.7±89.1 mm 2 , 74.6±27.2 mm 2 and 35.8±43.4 mm 2 , respectively, and 312.6±73.6 mm 2 , 228.4±110.5 mm 2 , and 80.9±55.1 mm 2 , respectively. In contrast to the broad base of the ablated area on the surface of the liver in the control group, the shapes of the lesions became narrower approaching to the liver surface in all cases of the continuous saline infusion group, and the shapes of the lesions were broad based in 3 cases and narrow based in 2 cases of the intermittent saline infusion group. Continuous infusion of normaI saline onto the surface of the liver during radiofrequency ablation of subcapsular hepatic tumor is a feasible method for minimizing thermal injury of the adjacent organs. Further exploration of the optimal parameters or techniques to maximize the hepatic ablation and simultaneously to minimize the thermal injury of

  18. Effect of salinity level on TSH and thyroid hormones of grass carp, Ctenophayngodon idella

    OpenAIRE

    Peyghan, Rahim; Enayati, Ala; Sabzevarizadeh, Mostafa

    2013-01-01

    Thyroid hormones (T3, T4) have marked effect on body metabolism and in controlling osmoregulation activity in fish. The aim of this study was to determine the effect of water salinity changes on thyroid hormones level and thyroid-stimulating hormone (TSH) of grass carp. For this purpose 120 grass carp were divided randomly in to four groups (10 fish in each group and three replicates per treatment). Three groups were held in three different salinities at concentrations of 4, 8 and 12 g L-1. T...

  19. Transcriptome profiling and digital gene expression analysis of genes associated with salinity resistance in peanut

    Directory of Open Access Journals (Sweden)

    Jiongming Sui

    2018-03-01

    Full Text Available Background: Soil salinity can significantly reduce crop production, but the molecular mechanism of salinity tolerance in peanut is poorly understood. A mutant (S1 with higher salinity resistance than its mutagenic parent HY22 (S3 was obtained. Transcriptome sequencing and digital gene expression (DGE analysis were performed with leaves of S1 and S3 before and after plants were irrigated with 250 mM NaCl. Results: A total of 107,725 comprehensive transcripts were assembled into 67,738 unigenes using TIGR Gene Indices clustering tools (TGICL. All unigenes were searched against the euKaryotic Ortholog Groups (KOG, gene ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG databases, and these unigenes were assigned to 26 functional KOG categories, 56 GO terms, 32 KEGG groups, respectively. In total 112 differentially expressed genes (DEGs between S1 and S3 after salinity stress were screened, among them, 86 were responsive to salinity stress in S1 and/or S3. These 86 DEGs included genes that encoded the following kinds of proteins that are known to be involved in resistance to salinity stress: late embryogenesis abundant proteins (LEAs, major intrinsic proteins (MIPs or aquaporins, metallothioneins (MTs, lipid transfer protein (LTP, calcineurin B-like protein-interacting protein kinases (CIPKs, 9-cis-epoxycarotenoid dioxygenase (NCED and oleosins, etc. Of these 86 DEGs, 18 could not be matched with known proteins. Conclusion: The results from this study will be useful for further research on the mechanism of salinity resistance and will provide a useful gene resource for the variety breeding of salinity resistance in peanut. Keywords: Digital gene expression, Gene, Mutant, NaCl, Peanut (Arachis hypogaea L., RNA-seq, Salinity stress, Salinity tolerance, Soil salinity, Transcripts, Unigenes

  20. Finding a solution: Heparinised saline versus normal saline in the maintenance of invasive arterial lines in intensive care.

    Science.gov (United States)

    Everson, Matthew; Webber, Lucy; Penfold, Chris; Shah, Sanjoy; Freshwater-Turner, Dan

    2016-11-01

    We assessed the impact of heparinised saline versus 0.9% normal saline on arterial line patency. Maintaining the patency of arterial lines is essential for obtaining accurate physiological measurements, enabling blood sampling and minimising line replacement. Use of heparinised saline is associated with risks such as thrombocytopenia, haemorrhage and mis-selection. Historical studies draw variable conclusions but suggest that normal saline is at least as effective at maintaining line patency, although recent evidence has questioned this. We conducted a prospective analysis of the use of heparinised saline versus normal saline on unselected patients in the intensive care of our hospital. Data concerning duration of 471 lines insertion and reason for removal was collected. We found a higher risk of blockage for lines flushed with normal saline compared with heparinised saline (RR = 2.15, 95% CI 1.392-3.32, p  ≤ 0.001). Of the 56 lines which blocked initially (19 heparinised saline and 37 normal saline lines), 16 were replaced with new lines; 5 heparinised saline lines and 11 normal saline lines were reinserted; 5 of these lines subsequently blocked again, 3 of which were flushed with normal saline. Our study demonstrates a clinically important reduction in arterial line longevity due to blockages when flushed with normal saline compared to heparinised saline. We have determined that these excess blockages have a significant clinical impact with further lines being inserted after blockage, resulting in increased risks to patients, wasted time and cost of resources. Our findings suggest that the current UK guidance favouring normal saline flushes should be reviewed.

  1. Plasma antioxidant capacity, sexual and thyroid hormones levels, sperm quantity and quality parameters in stressed male rats received nano-particle of selenium

    Directory of Open Access Journals (Sweden)

    M Rezaeian-Tabrizi

    2017-01-01

    Full Text Available Objective: To evaluate the effects of nano-particle of selenium (nSe on plasma antioxidant capacity, sexual and thyroid hormones and spermatogenesis in male rats exposed to oxidative stress.Methods: Forty rats were randomly divided into four treatments with ten replicates. Treatment groups were: C, the control group received normal saline as gavage and injection (i.p.; OS, received tert-butyl hydroperoxide (0.2 mmol/kg body weight for inducing oxidative stress; nSe, received nSe (0.3 mg/kg body weight as gavage, and OS+nSe, received tert-butyl hydroperoxide and nSe. All groups were treated for 28 d and administrations were done each 48 h.Results: Oxidative stress decreased and gavage of nSe to stressed rats increased the antioxidant capacity and activities (P0.05 between rats exposed to oxidative stress and those in the control group for sperm quantity and quality. Gavage of nSe to stressed rats had no effect (P>0.05 on the sperm parameters, except increased viability and progressive percentages.Conclusions: Nano-particle of Selenium administration in stressed rats could ameliorate the negative effects of oxidative stress on the antioxidant capacity and activities, but not on the quantity and quality parameters of sperm.

  2. Transition from confined to phreatic conditions as the factor controlling salinization and change in redox state, Upper subaquifer of the Judea Group, Israel

    Science.gov (United States)

    Gavrieli, Ittai; Burg, Avi; Guttman, Joseph

    2002-08-01

    An increase in salinity and change from oxic to anoxic conditions are observed in the Upper subaquifer of the Judea Group in the Kefar Uriyya pumping field at the western foothills of the Judea Mountains, Israel. Hydrogeological data indicate that the change, which occurs over a distance of only a few kilometers, coincides with a transition from confined to phreatic conditions in the aquifer. The deterioration in the water quality is explained as a result of seepage of more saline, organic-rich water from above, into the phreatic "roofed" part of the aquifer. The latter is derived from the bituminous chalky rocks of the Mount Scopus Group, which confine the aquifer in its southeastern part. In this confined part, water in perched horizons within the Mount Scopus Group cannot leak down and flow westward while leaching organic matter and accumulating salts. However, upon reaching the transition area from confined to phreatic conditions, seepage to the Judea Upper subaquifer is possible, thereby allowing it to be defined as a leaky aquifer. The incoming organic matter consumes the dissolved oxygen and allows bacterial sulfate reduction. The latter accounts for the H2S in the aquifer, as indicated by sulfur isotopic analyses of coexisting sulfate and sulfide. Thus, from an aquifer management point of view, in order to maintain the high quality of the water in the confined southeastern part of the Kefar Uriyya field, care should be taken not to draw the confined-roofed transition area further east by over pumping.

  3. Tolerance for salinity and morphoagronomic characterization of rice mutants obtained by radioinduction

    International Nuclear Information System (INIS)

    Gonzalez, L.M.; Ramirez Fernandez, R.; Perez Talavera, S.

    1997-01-01

    Tolerance for salinity, agroindustrial efficiency, and resistance to diseases were appraised in a group of rice mutants obtained by means of mutation radioinduction, starting from the J-112 variety. Results show significant differences in the analyzed characteristics of radio mutants, and differences between those radio mutans and the donating variety. Radio mutants RM-12, RM-41, and RM-42, besides standing out for their high tolerance for salinity, boasted the highest agroindustrial efficiency and a good behaviour against the main plagues and diseases, which makes of them likely candidates for new varieties in the production from areas affected by salinity

  4. The association between self-image and defence mechanisms in a group of adolescent patients receiving psychiatric treatment

    OpenAIRE

    Bartosz Treger; Feliks Matusiak; Maciej Pilecki; Monika Rogoż

    2015-01-01

    Objectives The aim of the study was to explore the relationship between various areas of self-image and defence mechanisms in adolescents. The study included a division into groups according to whether or not they were receiving psychiatric treatment. Methods Data were obtained from two groups: a clinical group (30 persons), consisting of adolescent patients of the Adolescent Inpatient Ward of the Child and Adolescent Psychiatry Clinic and a control group (40 persons), adolescents a...

  5. Short-term salinity tolerance of northern pike, Esox lucius , fry, related to temperature and size

    DEFF Research Database (Denmark)

    Jacobsen, Lene; Skov, Christian; Koed, Anders

    2007-01-01

    The short-term tolerances of northern pike, Esox lucius L., fry reared in a freshwater hatchery, to salinity were examined in the laboratory. Survival of two size groups of pike fry (mean length 21 +/- 2 mm SD and 37 +/- 4 mm SD) was examined over 72- to 96-h periods at 9-14 ppt salinity in combi......The short-term tolerances of northern pike, Esox lucius L., fry reared in a freshwater hatchery, to salinity were examined in the laboratory. Survival of two size groups of pike fry (mean length 21 +/- 2 mm SD and 37 +/- 4 mm SD) was examined over 72- to 96-h periods at 9-14 ppt salinity...... in combination with temperatures of 10, 14 and 18 degrees C. A parametric survival model found a significant correlation between survival of pike fry and temperature and salinity, respectively. L(C)50 values after 72 h were between 11.2 and 12.2 ppt, being lowest at 10 degrees C. Pike fry did not survive more...

  6. Water Use Efficiency in Saline Soils under Cotton Cultivation in the Tarim River Basin

    Directory of Open Access Journals (Sweden)

    Xiaoning Zhao

    2015-06-01

    Full Text Available The Tarim River Basin, the largest area of Chinese cotton production, is receiving increased attention because of serious environmental problems. At two experimental stations (Korla and Aksu, we studied the influence of salinity on cotton yield. Soil chemical and physical properties, soil water content, soil total suction and matric suction, cotton yield and water use efficiency under plastic mulched drip irrigation in different saline soils was measured during cotton growth season. The salinity (mS·cm−1 were 17–25 (low at Aksu and Korla, 29–50 (middle at Aksu and 52–62 (high at Aksu for ECe (Electrical conductivity measured in saturation-paste extract of soil over the 100 cm soil profile. The soil water characteristic curves in different saline soils showed that the soil water content (15%–23% at top 40 cm soil, lower total suction power (below 3500 kPa and lower matric suction (below 30 kPa in low saline soil at Korla had the highest water use efficiency (10 kg·ha−1·mm−1 and highest irrigation water use efficiency (12 kg·ha−1·mm−1 and highest yield (6.64 t·ha−1. Higher water content below 30 cm in high saline soil increased the salinity risk and led to lower yield (2.39 t·ha−1. Compared to low saline soils at Aksu, the low saline soil at Korla saved 110 mm irrigation and 103 mm total water to reach 1 t·ha−1 yield and increased water use efficiency by 5 kg·ha−1·mm−1 and 7 kg·ha−1·mm−1 for water use efficiency (WUE and irrigation water use efficiency (IWUE respectively.

  7. Irrigation solutions in open fractures of the lower extremities: evaluation of isotonic saline and distilled water.

    Science.gov (United States)

    Olufemi, Olukemi Temiloluwa; Adeyeye, Adeolu Ikechukwu

    2017-01-01

    Open fractures are widely considered as orthopaedic emergencies requiring immediate intervention. The initial management of these injuries usually affects the ultimate outcome because open fractures may be associated with significant morbidity. Wound irrigation forms one of the pivotal principles in the treatment of open fractures. The choice of irrigation fluid has since been a source of debate. This study aimed to evaluate and compare the effects of isotonic saline and distilled water as irrigation solutions in the management of open fractures of the lower extremities. Wound infection and wound healing rates using both solutions were evaluated. This was a prospective hospital-based study of 109 patients who presented to the Accident and Emergency department with open lower limb fractures. Approval was sought and obtained from the Ethics Committee of the Hospital. Patients were randomized into either the isotonic saline (NS) or the distilled water (DW) group using a simple ballot technique. Twelve patients were lost to follow-up, while 97 patients were available until conclusion of the study. There were 50 patients in the isotonic saline group and 47 patients in the distilled water group. Forty-one (42.3%) of the patients were in the young and economically productive strata of the population. There was a male preponderance with a 1.7:1 male-to-female ratio. The wound infection rate was 34% in the distilled water group and 44% in the isotonic saline group (p = 0.315). The mean time ± SD to wound healing was 2.7 ± 1.5 weeks in the distilled water group and 3.1 ± 1.8 weeks in the isotonic saline group (p = 0.389). It was concluded from this study that the use of distilled water compares favourably with isotonic saline as an irrigation solution in open fractures of the lower extremities. © The Authors, published by EDP Sciences, 2017.

  8. Irrigation solutions in open fractures of the lower extremities: evaluation of isotonic saline and distilled water

    Directory of Open Access Journals (Sweden)

    Olufemi Olukemi Temiloluwa

    2017-01-01

    Full Text Available Introduction: Open fractures are widely considered as orthopaedic emergencies requiring immediate intervention. The initial management of these injuries usually affects the ultimate outcome because open fractures may be associated with significant morbidity. Wound irrigation forms one of the pivotal principles in the treatment of open fractures. The choice of irrigation fluid has since been a source of debate. This study aimed to evaluate and compare the effects of isotonic saline and distilled water as irrigation solutions in the management of open fractures of the lower extremities. Wound infection and wound healing rates using both solutions were evaluated. Methods: This was a prospective hospital-based study of 109 patients who presented to the Accident and Emergency department with open lower limb fractures. Approval was sought and obtained from the Ethics Committee of the Hospital. Patients were randomized into either the isotonic saline (NS or the distilled water (DW group using a simple ballot technique. Twelve patients were lost to follow-up, while 97 patients were available until conclusion of the study. There were 50 patients in the isotonic saline group and 47 patients in the distilled water group. Results: Forty-one (42.3% of the patients were in the young and economically productive strata of the population. There was a male preponderance with a 1.7:1 male-to-female ratio. The wound infection rate was 34% in the distilled water group and 44% in the isotonic saline group (p = 0.315. The mean time ± SD to wound healing was 2.7 ± 1.5 weeks in the distilled water group and 3.1 ± 1.8 weeks in the isotonic saline group (p = 0.389. Conclusions: It was concluded from this study that the use of distilled water compares favourably with isotonic saline as an irrigation solution in open fractures of the lower extremities.

  9. Investigation of Lake Water Salinity by Using Four-Band Salinity Algorithm on WorldView-2 Satellite Image for a Saline Industrial Lake

    Science.gov (United States)

    Budakoǧlu, Murat; Karaman, Muhittin; Damla Uça Avcı, Z.; Kumral, Mustafa; Geredeli (Yılmaz), Serpil

    2014-05-01

    Salinity of a lake is an important characteristic since, these are potentially industrial lakes and the degree of salinity can significantly be used for determination of mineral resources and for the production management. In the literature, there are many studies of using satellite data for salinity related lake studies such as determination of salinity distribution and detection of potential freshwater sources in less salt concentrated regions. As the study area Lake Acigol, located in Denizli (Turkey) was selected. With it's saline environment, it's the major sodium sulphate production resource of Turkey. In this study, remote sensing data and data from a field study was used and correlated. Remote sensing is an efficient tool to monitor and analyze lake properties by using it complementary to field data. Worldview-2 satellite data was used in this study which consists of 8 bands. At the same time with the satellite data acquisition, a field study was conducted to collect the salinity values in 17 points of the laker with using YSI 556 Multiparametre for measurements. The values were measured as salinity amount in grams per kilogram solution and obtained as ppt unit. It was observed that the values vary from 34 ppt - 40.1 ppt and the average is 38.056 ppt. In Thalassic serie, the lake was in mixoeuhaline state in the time of issue. As a first step, ATCOR correction was performed on satellite image for atmospheric correction. There were some clouds on the lake field, hence it was decided to continue the study by using the 12 sampling points which were clear on the image. Then, for each sampling point, a spectral value was obtained by calculating the average at a 11*11 neighborhood. The relation between the spectral reflectance values and the salinity was investigated. The 4-band algorithm, which was used for determination of chlorophyll-a distribution in highly turbid coastal environment by Wei (2012) was applied. Salinity α (Λi-1 / Λj-1) * (Λk-1 / Λm-1) (i

  10. Impacts of irrigation regimes with saline water on carrot productivity and soil salinity

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2012-01-01

    Full Text Available A three-year study was conducted to evaluate the effects of different irrigation regimes with saline water on soil salinity, yield and water productivity of carrot as a fall-winter crop under actual commercial-farming conditions in the arid region of Tunisia. Carrot was grown on a sandy soil and surface-irrigated with a water having an ECi of 3.6 dS/m. For the three years, a complete randomized block design with four replicates was used to evaluate five irrigation regimes. Four irrigation methods were based on the use of soil water balance (SWB to estimate irrigation amounts and timing while the fifth consisted of using traditional farmers practices. SWB methods consisted in replacement of cumulated ETc when readily available water is depleted with levels of 100% (FI-100, 80% (DI-80 and 60% (DI-60. FI-100 was considered as full irrigation while DI-80 and DI-60 were considered as deficit irrigation regimes. Regulated deficit irrigation regime where 40% reduction is applied only during ripening stage (FI-DI60 was also used. Farmer method (Farmer consisted in giving fixed amounts of water (25 mm every 7 days from planting till harvest. Results on carrot production and soil salinization are globally consistent between the three-year experiments and shows significant difference between irrigation regimes. Higher soil salinity in the root zone is observed at harvest under DI-60 (3.1, 3.4, 3.9 dS/m, respectively, for the three years and farmer irrigation (3.3, 3.6, 3.9 dS/m treatments compared to FI-100 treatment (2.3, 2.6 and 3.1 dS/m. Relatively low ECe values were also observed under FI-DI60 and DI-80 treatments with respectively (2.7, 3, 3.5 dS/m and (2.5, 2.9, 3.3 dS/m. ECe values under the different irrigation treatments were generally lower than or equal to the EC of irrigation water used. Rainfall received during fall and/or winter periods (57, 26 and 29 mm, respectively, during the three years contributed probably to leaching soluble

  11. Infusion of hypertonic saline before elective hysterectomy: effects on cytokines and stress hormones

    DEFF Research Database (Denmark)

    Kølsen-Petersen, Jens Aage; Bendtzen, Klaus; Tønnesen, Else Kirstine

    2008-01-01

    with the other groups (Peffect on the postoperative concentration of selected plasma cytokines and the hormonal stress......BACKGROUND: Infusion of hypertonic saline provides early haemodynamic benefits and may affect the immune system. It is unknown if infusion of hypertonic saline affects plasma cytokines and stress hormones after surgery. METHODS: Sixty-two women undergoing abdominal hysterectomy were randomized...

  12. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    Science.gov (United States)

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    In 1974, the Colorado River Basin Salinity Control Act was passed into law. This law was enacted to address concerns regarding the salinity content of the Colorado River. The law authorized various construction projects in selected areas or 'units' of the Colorado River Basin intended to reduce the salinity load in the Colorado River. One such area was the Grand Valley Salinity Control Unit in western Colorado. The U. S. Geological Survey has done extensive studies and research in the Grand Valley Salinity Control Unit that provide information to aid the U.S. Bureau of Reclamation and the Natural Resources Conservation Service in determining where salinity-control work may provide the best results, and to what extent salinity-control work was effective in reducing salinity concentrations and loads in the Colorado River. Previous studies have indicated that salinity concentrations and loads have been decreasing downstream from the Grand Valley Salinity Control Unit, and that the decreases are likely the result of salinity control work in these areas. Several of these reports; however, also document decreasing salinity loads upstream from the Grand Valley Salinity Control Unit. This finding was important because only a small amount of salinity-control work was being done in areas upstream from the Grand Valley Salinity Control Unit at the time the findings were reported (late 1990?s). As a result of those previous findings, the U.S. Bureau of Reclamation entered into a cooperative agreement with the U.S. Geological Survey to investigate salinity trends in selected areas bracketing the Grand Valley Salinity Control Unit and regions upstream from the Grand Valley Salinity Control Unit. The results of the study indicate that salinity loads were decreasing upstream from the Grand Valley Salinity Control Unit from 1986 through 2003, but the rates of decrease have slowed during the last 10 years. The average rate of decrease in salinity load upstream from the Grand Valley

  13. The effects of saline water consumption on the ultrasonographic and histopathological appearance of the kidney and liver in Barki sheep.

    Science.gov (United States)

    Ghanem, Mohamed; Zeineldin, Mohamed; Eissa, Attia; El Ebissy, Eman; Mohammed, Rasha; Abdelraof, Yassein

    2018-03-14

    The objective of this study was to evaluate the impact of varying degrees of water salinity on the ultrasonographical and histopathological appearance of the liver and kidneys in Barki sheep. Thirty Barki sheep (initial weight, 29.48 ± 0.81 kg) were allocated into three groups (n=10 per group) based on the type of drinking water for 9 months: the tap water (TW) group (350 ppm total dissolved solids [TDS]); the moderate saline water (MSW) group (4557 ppm TDS); and the high saline water (HSW) group (8934 ppm TDS). After 9 months, the body weight was significantly decreased in sheep subjected to MSW (P=0.0347) and HSW (P=0.0424). Alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, urea, and creatinine were significantly increased (Pinfiltration and vacuolar changes of hepatocytes in both MSW and HSW groups. In conclusion, water salinity negatively affects the body weight, liver and kidney appearance of Barki sheep and thus sheep production.

  14. The extent of variation in salinity tolerance of the minicore collection of finger millet (Eleusine coracana L. Gaertn.) germplasm.

    Science.gov (United States)

    Krishnamurthy, Lakshmanan; Upadhyaya, Hari Deo; Purushothaman, Ramamoorthy; Gowda, Cholenahalli Lakkegowda Laxmipathi; Kashiwagi, Junichi; Dwivedi, Sangam Lal; Singh, Sube; Vadez, Vincent

    2014-10-01

    Finger millet (Eleusine coracana L. Gaertn.) ranks third in production among the dry land cereals. It is widely cultivated in Africa and South Asia where soil salinization is a major production constraint. It is a potential crop for salt affected soils. To identify salt tolerant germplasm, the minicore finger millet germplasm (n=80) was screened for grain yield performance in a soil saturated with NaCl solution of 100 or 125mM. Genotype effect was significant for most traits, while salinity×genotype interaction was significant only in one year. Salinity delayed phenology, marginally reduced shoot biomass and grain yield. There was a large range of genotypic variation in grain yield under salinity and other traits. The yield loss was higher in accessions with prolific growth and yield potential was associated with saline yields. Based on saline yields, accessions were grouped in to four groups and the top tolerant group had 22 accessions with IE 4797 remaining at the top. Salinity had no adverse impact on grain yield of five accessions. Root anatomy in selected genotype of pearl and finger millet showed presence of porous cortex and well fortified endodermis in finger millet that can exclude Na(+) and enhance N absorption. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Empirical tools for simulating salinity in the estuaries in Everglades National Park, Florida

    Science.gov (United States)

    Marshall, F. E.; Smith, D. T.; Nickerson, D. M.

    2011-12-01

    Salinity in a shallow estuary is affected by upland freshwater inputs (surface runoff, stream/canal flows, groundwater), atmospheric processes (precipitation, evaporation), marine connectivity, and wind patterns. In Everglades National Park (ENP) in South Florida, the unique Everglades ecosystem exists as an interconnected system of fresh, brackish, and salt water marshes, mangroves, and open water. For this effort a coastal aquifer conceptual model of the Everglades hydrologic system was used with traditional correlation and regression hydrologic techniques to create a series of multiple linear regression (MLR) salinity models from observed hydrologic, marine, and weather data. The 37 ENP MLR salinity models cover most of the estuarine areas of ENP and produce daily salinity simulations that are capable of estimating 65-80% of the daily variability in salinity depending upon the model. The Root Mean Squared Error is typically about 2-4 salinity units, and there is little bias in the predictions. However, the absolute error of a model prediction in the nearshore embayments and the mangrove zone of Florida Bay may be relatively large for a particular daily simulation during the seasonal transitions. Comparisons show that the models group regionally by similar independent variables and salinity regimes. The MLR salinity models have approximately the same expected range of simulation accuracy and error as higher spatial resolution salinity models.

  16. Saline agriculture in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2011-03-01

    Full Text Available Salinization is increasingly affecting world's agricultural land causing serious yield loss and soil degradation. Understanding how we could improve crop productivity in salinized environments is therefore critical to meet the challenging goal of feeding 9.3 billion people by 2050. Our comprehension of fundamental physiological mechanisms in plant salt stress adaptation has greatly advanced over the last decades. However, many of these mechanisms have been linked to salt tolerance in simplified experimental systems whereas they have been rarely functionally proven in real agricultural contexts. In-depth analyses of specific crop-salinity interactions could reveal important aspects of plant salt stress adaptation as well as novel physiological/agronomic targets to improve salinity tolerance. These include the developmental role of root vs. shoot systems respect to water-ion homeostasis, morphological vs. metabolic contributions to stress adaptation, developmental processes vs. seasonal soil salinity evolution, residual effects of saline irrigation in non-irrigated crops, critical parameters of salt tolerance in soil-less systems and controlled environments, response to multiple stresses. Finally, beneficial effects of salinization on qualitative parameters such as stress-induced accumulation of high nutritional value secondary metabolites should be considered, also. In this short review we attempted to highlight the multifaceted nature of salinity in Mediterranean agricultural systems by summarizing most experimental activity carried out at the Department of Agricultural Engineering and Agronomy of University of Naples Federico II in the last few years.

  17. Infiltration with lidocaine and adrenaline instead of normal saline does not improve the septoplasty procedure.

    Science.gov (United States)

    Gungor, Volkan; Baklaci, Deniz; Kum, Rauf Oguzhan; Yilmaz, Yavuz Fuat; Ozcan, Muge; Unal, Adnan

    2016-08-01

    The aim of this study was to determine whether infiltration of local anesthetics with adrenaline improved septoplasty procedure when compared to normal saline. Eight-two patients undergoing septoplasty were randomized into two groups. In group 1, septal mucoperichondrium was infiltrated with lidocaine with adrenaline, and normal saline was used in group 2. Presence of intra-operative septal mucosal injuries, the amount of bleeding, arterial blood pressure, operation time as well as the quality of the surgical field and the convenience of finding the correct surgical plane as determined by the surgeon using a 5-point scale were compared between two groups. There were no significant differences for the amount of blood loss, mean arterial pressure, operation time, or scores for convenience of finding the correct surgical plane between the two groups. There was no significant difference for intra-operative simple (P = 0.631) and total (simple+severe) (P = 0.649) septal mucoperichondrial injuries between groups 1 and 2, either. However, severe mucoperichondrial injury rate was higher in the patients infiltrated with lidocaine and adrenaline (P = 0.026), and the quality of the surgical field was worse in the patients injected with normal saline (P = 0.0179). Infiltration of septal mucoperichondrium with lidocaine and adrenaline instead of normal saline was not advantageous in terms of objective parameters tested, including bleeding amount and duration of surgery as well as the of the total mucosal injury rate in septoplasty procedure.

  18. Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau.

    Science.gov (United States)

    Liu, Yongqin; Priscu, John C; Xiong, Jinbo; Conrad, Ralf; Vick-Majors, Trista; Chu, Haiyan; Hou, Juzhi

    2016-03-01

    Archaeal communities and the factors regulating their diversity in high altitude lakes are poorly understood. Here, we provide the first high-throughput sequencing study of Archaea from Tibetan Plateau lake sediments. We analyzed twenty lake sediments from the world's highest and largest plateau and found diverse archaeal assemblages that clustered into groups dominated by methanogenic Euryarchaeota, Crenarchaeota and Halobacteria/mixed euryarchaeal phylotypes. Statistical analysis inferred that salinity was the major driver of community composition, and that archaeal diversity increased with salinity. Sediments with the highest salinities were mostly dominated by Halobacteria. Crenarchaeota dominated at intermediate salinities, and methanogens were present in all lake sediments, albeit most abundant at low salinities. The distribution patterns of the three functional types of methanogens (hydrogenotrophic, acetotrophic and methylotrophic) were also related to changes in salinity. Our results show that salinity is a key factor controlling archaeal community diversity and composition in lake sediments on a spatial scale that spans nearly 2000 km on the Tibetan Plateau. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. N2-fixation in fababean (vicia faba l.) grown in saline and non saline conditions using 15N tracer technique

    International Nuclear Information System (INIS)

    Khalifa, Kh.; Kurdali, F.

    2002-09-01

    A pot experiment was conducted to study the performance of growing fababean and barley under saline conditions, in terms of, dry matter yield, total nitrogen and, percentages and amount of N derived from soil, fertilizer and atmosphere using 15 N isotope dilution method. Three saline treatments were performed: First, plants were grown in saline soil and irrigated with saline water (Ws Ss), Second, Plants were grown in saline soil and irrigated with saline water (Ws Ss); and Third, Plants grown in non saline soil and irrigated with saline water (Ws Sn). Furthermore, a control treatment was performed by using non-saline soil and non-saline water (Wn Sn). The different salinity treatments reduced plant growth and the reduction was more pronounced in fababean than in barley. However, under conditions of either saline soil-soft irrigation water or non saline soil-salty irrigation water, the relative growth reduction did not exceed 50% of the control; whereas, a significant negative effect was obtained when plants were grown under completely saline conditions of both soil and irrigation water. Percentage of N 2 -fixed (% Ndfa) was not negatively affected by saline conditions. However, our results clearly demonstrated that the effect of salinity in fababean was more evident on plant growth than on N 2 -fixing activity. Further studies are needed to obtain more salt tolerant faba bean genotypes in terms of growth and yield. This could be simultaneously improve yield and N 2 -fixation under sever saline conditions. (author)

  20. Salinity-induced changes in the morphology and major mineral nutrient composition of purslane (Portulaca oleracea L.) accessions.

    Science.gov (United States)

    Alam, Md Amirul; Juraimi, Abdul Shukor; Rafii, M Y; Hamid, Azizah Abdul; Aslani, Farzad; Hakim, M A

    2016-04-18

    This study was undertaken to determine the effects of varied salinity regimes on the morphological traits (plant height, number of leaves, number of flowers, fresh and dry weight) and major mineral composition of 13 selected purslane accessions. Most of the morphological traits measured were reduced at varied salinity levels (0.0, 8, 16, 24 and 32 dS m(-1)), but plant height was found to increase in Ac1 at 16 dS m(-1) salinity, and Ac13 was the most affected accession. The highest reductions in the number of leaves and number of flowers were recorded in Ac13 at 32 dS m(-1) salinity compared to the control. The highest fresh and dry weight reductions were noted in Ac8 and Ac6, respectively, at 32 dS m(-1) salinity, whereas the highest increase in both fresh and dry weight was recorded in Ac9 at 24 dS m(-1) salinity compared to the control. In contrast, at lower salinity levels, all of the measured mineral levels were found to increase and later decrease with increasing salinity, but the performance of different accessions was different depending on the salinity level. A dendrogram was also constructed by UPGMA based on the morphological traits and mineral compositions, in which the 13 accessions were grouped into 5 clusters, indicating greater diversity among them. A three-dimensional principal component analysis also confirmed the output of grouping from cluster analysis.

  1. Comparison of heparinized saline and 0.9% sodium chloride for maintaining peripheral intravenous catheter patency in dogs.

    Science.gov (United States)

    Ueda, Yu; Odunayo, Adesola; Mann, F A

    2013-01-01

    To determine whether heparinized saline would be more effective in maintaining the patency of peripheral IV catheters in dogs compared to 0.9% sodium chloride. Prospective blinded randomized study. University Veterinary Teaching Hospital. Thirty healthy purpose bred dogs, intended for use in the junior surgery laboratory, were utilized. The dogs were randomized into 1 of 3 groups, 2 treatment groups and a control group. An 18-Ga cephalic catheter was placed in the cephalic vein of each dog. Each dog in the treatment group had their catheter flushed with either 10 IU/mL heparinized saline or 0.9% sodium chloride every 6 hours for 42 hours. The dogs in the control group did not have their catheters flushed until the end of the study period. Immediately prior to flushing catheters, each catheter was evaluated for patency by aspiration of blood and the catheter site was evaluated for phlebitis. All dogs in the heparinized saline and 0.9% sodium chloride group had catheters that flushed easily at each evaluation point. More dogs in the saline group had catheters from which blood could not be aspirated, but there was no significant difference between these groups. All dogs in the control group had catheters that flushed easily at the end of the assigned 6 hour interval except in 1 dog. Phlebitis was not detected in any dog. Flushes of 0.9% sodium chloride were found to be as effective as 10 IU/mL heparinized saline flushes in maintaining patency of 18-Ga peripheral venous catheters in dogs for up to 42 hours. For peripheral catheters placed with the intention of performing serial blood draws, heparinized flushes may be warranted. © Veterinary Emergency and Critical Care Society 2013.

  2. A randomized controlled trial of foley catheter, extra-amniotic saline infusion and prostaglandin e2 suppository for labor induction.

    Directory of Open Access Journals (Sweden)

    Mandana Mansour Ghanaie

    2013-06-01

    Full Text Available The aim of this study is to further compare the efficacy of PGE2 suppository, the intracervical foley catheter and extra-amniotic saline infusion in nulliparous women referred for labor induction.Totally 368 nulliparous women with a Bishop score ≤ 4 with singleton gestation, vertex presentation and intact membrane referred for labor induction were randomly assigned to 3 groups; Foley catheter alone, Extra-amniotic saline infusion (EASI and PGE2 suppository. All women received concurrent dilute oxytocine infusion. The change in the Bishop Score, labor progress, various labor endpoints and outcomes of labor were assessed.From 363 women studied after exclusion of 5, 119 were assigned to EASI, 121 to Foley and 118 to PGE2. Patients' demographics did not differ significantly between three groups nor did indication for induction (P = 0.0001. The EASI group had a significant improvement in Bishop Score 6 hours after induction. The mean time to active phase was 357±135min for EASI,457±178 for Foley and 609±238 min for PGE2 group respectively (P < 0.05.rate of spontaneous rupture of membranes was higher in the EASI group (P = 0.0001 and the mean time from the start of induction up to spontaneous rupture of membranes in the EASI group was shorter than other group(P < 0.05. The mean time to vaginal delivery was 14.8±6.1 in EASI group,11.4±4.8 in Foley and 18.9±6.4 in PGE2 group(P < 0.05.there were no differences in Apgar scores, mean neonatal birth weight and neonatal morbidity.Our study showed that pre-induction cervical ripening by EASI with concurrent oxytocin is better than Foley and PGE2 in Bishop score and various labor end point and outcomes.

  3. Life in the salinity gradient: Discovering mechanisms behind a new biodiversity pattern

    Science.gov (United States)

    Telesh, Irena; Schubert, Hendrik; Skarlato, Sergei

    2013-12-01

    A recently discovered paradoxical maximum of planktonic protistan species in the salinity gradient of the Baltic Sea revealed an inverse trend of species number/salinity relation in comparison to the previously accepted species-minimum model for macrozoobenthos. Here, we review long-term data on organisms of different size classes and ecological groups to show that eukaryotic and prokaryotic microbes in plankton demonstrate a maximum species richness in the challenging zone of the critical salinity 5-8, where the large-bodied bottom dwellers (macrozoobenthos, macroalgae and aquatic higher plants) experience large-scale salinity stress which leads to an impoverished diversity. We propose a new conceptual model to explain why the diversity of small, fast-developing, rapidly evolving unicellular plankton organisms benefits from relative vacancy of brackish-water ecological niches and impaired competitiveness therein. The ecotone theory, Hutchinson's Ecological Niche Concept, species-area relationships and the Intermediate Disturbance Hypothesis are considered as a theoretical framework for understanding extinctions, speciation and variations in the evolution rates of different aquatic species in ecosystems with the pronounced salinity gradient.

  4. Serum osmolality and ions, and gill Na+/K+-ATPase of spottedtail goby Synechogobius ommaturus (R. in response to acute salinity changes

    Directory of Open Access Journals (Sweden)

    Chun Shui

    2018-03-01

    Full Text Available This study was carried out to determine the effects of abrupt salinity change on osmoregulatory ability of the spottedtail goby Synechogobius ommaturus. 720 juvenile fish (65.3 ± 11.8 g were transferred to 200 L tanks (with 40 juveniles in each tank, in which salinities were abruptly changed from 10 to 20, 30, 40, 50 and freshwater. Survival rate, serum osmolality, electrolytes (Na+, Cl−, and K+ and gill Na+/K+-ATPase (NKA activity were assessed successively in 528 h. Results showed serum osmolality, ion concentrations and gill Na+/K+-ATPase activity increased significantly when fish were transferred to salinity 40 and 50 and all fish in these groups died by the end of the experiment. Serum osmolality, Na+, Cl− and K+ in fish transferred to a salinity of 20, 30 and freshwater were not affected and no mortality was detected. Compared with the control group, a significantly decrease of NKA activity happened in the freshwater group, but the activity in 20 and 30 groups was not affected significantly. The results indicated that S. ommaturus could adapt rapidly and maintain homeostasis in a wide range of salinities (from freshwater to salinity 30 and this species may be suitable for aquaculture in estuarine and coastal areas where rapid salinity fluctuations commonly occur. Keywords: Osmolality, Gill, Na+/K+-ATPase, Synechogobius ommaturus

  5. Reduction in sodium content of local anesthetics for peripheral nerve blocks: a comparative evaluation of saline with 5% dextrose--a randomized controlled double-blind study.

    Science.gov (United States)

    Dhir, Shalini; Tureanu, Luminita; Bouzari, Amir; Masood, Amna; Francispragasam, Mario; Ganapathy, Sugantha

    2012-06-01

    Commercially available local anesthetic drugs when diluted with normal saline have high sodium content. High perineural sodium concentration has been implicated in antagonizing the analgesic effects of local anesthetics by preventing and/or delaying neural blockade. Five percent dextrose is not known to cause any short- or long-term injury when injected around neural tissue. In this study, we prospectively compared and evaluated block characteristics when local anesthetic drug was diluted with these 2 different agents. Patients scheduled for upper limb surgery were randomly assigned to receive axillary brachial plexus block with 0.5% ropivacaine (1% diluted with either 5% dextrose or normal saline). Motor and sensory block were tested every 5 minutes for 30 minutes. Postoperatively, a telephone interview was conducted after 24 hours and 7 days along with surgical follow-up at days 3, 10, and/or 14 to 28 days to document side effects, patient satisfaction, and time for block resolution. Any nerve deficits were followed until resolution. The primary outcome was time to onset of sensory nerve block. Five hundred fifty patients were recruited for this study. The mean time to complete sensory block was 18.3 ± 6.1 minutes in the dextrose group and 22.5 ± 6.4 minutes in the saline group (P dextrose provides earlier onset of axillary brachial plexus block with ropivacaine.

  6. A global algorithm for estimating Absolute Salinity

    Science.gov (United States)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  7. Estimates of matter yield and N-uptake in sorghum grown on saline and non-saline soils manured with dhaincha (sesbania aculeata) plant residues utilizing 15N tracer techniques

    International Nuclear Information System (INIS)

    Kurdali, F.

    2002-11-01

    Pot experiments were conducted to study the effect of manuring with three types of plant residues (roots, shoots or roots plus shoots) of Dhaincha (Sesbania aculeata Pers.) on the yield and N-uptake of Sorghum bicolor grown in saline and non-saline soils. For measuring various sources of N-uptake, two isotopic dilution techniques were utilized by adding to these soils either 15 N-labelled inorganic N-fertilizer (indirect method) or 15 N-labelled sesbania leaves (direct method). For the indirect method, both soils manured with each type of sesbania residue, received four split applications of 15 N-labelled ammonium sulphate. Results indicated that each type of sesbania residue, applied as a green manure, resulted in significant increases in both dry matter yield and N-uptake of sorghum as compared with the un manured control. Moreover, sesbania residues decreased the harmful effect of salinity on plant growth. Percentages of N derived from residues (%Ndfr) in sorghum grown in non saline soil ranged between 3.9 and 33%; whereas, in saline soil, the observed values ranged between 4.9 and 19.8%. N recoveries in sorghum grown in non saline soil were 61, 45 and 37% of the total amount contained in the sesbania root, shoot and root plus shoot; whereas, values in sorghum grown in saline soils were 48, 14,8 and 15.7%, respectively. The beneficial effects of sesbania residues have been attributed not only to the additional N availability to the plants, but also to its effects on the enhancement of soil N uptake. Percentages and amounts of Ndfr calculated using the indirect method were not significantly different from those obtained by the direct method indicating that the indirect method used herein is feasible and simple for measuring N release from organic residues. It is suggested that the use of Sesbania aculeata residues, particularly the shoots, as a green manure, can provide a substantial portion of total N in sorghum. Moreover, the use of sesbania green manure in

  8. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    Science.gov (United States)

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  9. Effect of saline conditions on the maturation process of Clementine clemenules fruits on two different rootstocks

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, J. M.; Gomez-Gomez, A.; Perez-Perez, J. G.; Botia, P.

    2010-07-01

    The production of mandarins is important in the Mediterranean area, where the continued use of saline water reduces fruit yield and modifies fruit quality. Grafted trees of Clemenules mandarin scion on Carrizo citrange and Cleopatra mandarin rootstocks, two of the most common citrus rootstocks employed in this area, were irrigated with two saline treatments (control and 30 mM NaCl). The fruit quality was studied through the last two months before the fruit harvest. Salinity reduced both the fruit number and the mean fruit weight on Carrizo trees whereas no fruit weight reduction was observed on Cleopatra. The decrease of fruit weight on Carrizo trees is probably due to the lower water content and consequently the lower juice percentage. Although the saline treatment produced significant differences in some fruit quality variables (shape and thickness indices) throughout the maturation process, they were minimal at the harvest time. Total soluble solids (TSS) were significantly higher in fruits from the saline treatments, probably due to a passive dehydration. It is also possible that de novo synthesis of sugars occurred, since fruits from Cleopatra trees receiving the saline treatment had similar water contents but higher TSS than control fruits. The external fruit colour indicated that the saline treatment accelerated the maturation process; however, the maturity index showed that the high acidity of these fruits delayed the internal maturation with respect to the control fruits. (Author) 41 refs.

  10. Physiological Responses to Salinity Vary with Proximity to the Ocean in a Coastal Amphibian.

    Science.gov (United States)

    Hopkins, Gareth R; Brodie, Edmund D; Neuman-Lee, Lorin A; Mohammadi, Shabnam; Brusch, George A; Hopkins, Zoë M; French, Susannah S

    2016-01-01

    Freshwater organisms are increasingly exposed to elevated salinity in their habitats, presenting physiological challenges to homeostasis. Amphibians are particularly vulnerable to osmotic stress and yet are often subject to high salinity in a variety of inland and coastal environments around the world. Here, we examine the physiological responses to elevated salinity of rough-skinned newts (Taricha granulosa) inhabiting a coastal stream on the Pacific coast of North America and compare the physiological responses to salinity stress of newts living in close proximity to the ocean with those of newts living farther upstream. Although elevated salinity significantly affected the osmotic (body weight, plasma osmolality), stress (corticosterone), and immune (bactericidal ability) responses of newts, animals found closer to the ocean were generally less reactive to salt stress than those found farther upstream. Our results provide possible evidence for some physiological tolerance in this species to elevated salinity in coastal environments. As freshwater environments become increasingly saline and more stressful, understanding the physiological tolerances of vulnerable groups such as amphibians will become increasingly important to our understanding of their abilities to respond, to adapt, and, ultimately, to survive.

  11. CO{sub 2} storage in saline aquifers; Stockage du CO{sub 2} dans les aquiferes salins

    Energy Technology Data Exchange (ETDEWEB)

    Bentham, M.; Kirby, G. [British Geological Survey (BGS), Kingsley Dunham Centre, Keyworth, Nottingham (United Kingdom)

    2005-06-01

    Saline aquifers represent a promising way for CO{sub 2} sequestration. Storage capacities of saline aquifers are very important around the world. The Sleipner site in the North Sea is currently the single case world-wide of CO{sub 2} storage in a saline aquifer. A general review is given on the specific risks for CO{sub 2} storage in saline aquifer. The regional distribution of CO{sub 2} storage potential is presented. Finally, the knowledge gaps and the future research in this field are defined. (authors)

  12. Renal structure and function evaluation of rats from dams that received increased sodium intake during pregnancy and lactation submitted or not to 5/6 nephrectomy.

    Science.gov (United States)

    Marin, Evelyn Cristina Santana; Balbi, Ana Paula Coelho; Francescato, Heloísa Della Coletta; Alves da Silva, Cleonice Giovanini; Costa, Roberto Silva; Coimbra, Terezila M

    2008-01-01

    Adult rats submitted to perinatal salt overload presented renin-angiotensin system (RAS) functional disturbances. The RAS contributes to the renal development and renal damage in a 5/6 nephrectomy model. The aim of the present study was to analyze the renal structure and function of offspring from dams that received a high-salt intake during pregnancy and lactation. We also evaluated the influence of the prenatal high-salt intake on the evolution of 5/6 nephrectomy in adult rats. A total of 111 sixty-day-old rat pups from dams that received saline or water during pregnancy and lactation were submitted to 5/6 nephrectomy (nephrectomized) or to a sham operation (sham). The animals were killed 120 days after surgery, and the kidneys were removed for immunohistochemical and histological analysis. Systolic blood pressure (SBP), albuminuria, and glomerular filtration rate (GFR) were evaluated. Increased SBP, albuminuria, and decreased GFR were observed in the rats from dams submitted to high-sodium intake before surgery. However, there was no difference in these parameters between the groups after the 5/6 nephrectomy. The scores for tubulointerstitial lesions and glomerulosclerosis were higher in the rats from the sham saline group compared to the same age control rats, but there was no difference in the histological findings between the groups of nephrectomized rats. In conclusion, our data showed that the high-salt intake during pregnancy and lactation in rats leads to structural changes in the kidney of adult offspring. However, the progression of the renal lesions after 5/6 nephrectomy was similar in both groups.

  13. A global algorithm for estimating Absolute Salinity

    Directory of Open Access Journals (Sweden)

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  14. Effectiveness of a publicly-funded demonstration program to promote management of dryland salinity.

    Science.gov (United States)

    Robertson, M J; Measham, T G; Batchelor, G; George, R; Kingwell, R; Hosking, K

    2009-07-01

    Community and catchment-based approaches to salinity management continue to attract interest in Australia. In one such approach, Catchment Demonstration Initiative (CDI) projects were established by the Western Australian (WA) Government in 2000 for targeted investment in large-scale catchment-based demonstrations of integrated salinity management practices. The aim was to promote a process for technically-informed salinity management by landholders. This paper offers an evaluation of the effectiveness of one CDI project in the central wheatbelt of WA, covering issues including: its role in fostering adoption of salinity management options, the role of research and the technical requirements for design and implementation of on-ground works, the role of monitoring and evaluation, the identification and measurement of public and private benefits, comparison and identification of the place and value of plant-based and engineering-based options, reliance on social processes and impacts of constraints on capacity, management of governance and administration requirements and an appreciation of the value of group-based approaches. A number of factors may reduce the effectiveness of CDI-type approaches in facilitating landholder action to address salinity, many of these are socially-based. Such approaches can create considerable demands on landholders, can be expensive (because of the planning and accountability required) on the basis of dollars per hectare impacted, and can be difficult to garner ownership from all involved. An additional problem could be that few community groups would have the capacity to run such programs and disseminate the new knowledge so that the CDI-type projects can impact outside the focus catchment. In common with many publicly-funded approaches to salinity, we found that direct benefits on public assets are smaller than planned and that results from science-based requirements of monitoring and evaluation have long lead times, causing farmers

  15. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    International Nuclear Information System (INIS)

    Gustafsson, Bo G.

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m 3 /s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say ±1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m 3 /s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the shoreline

  16. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Bo G. [Oceanus Havsundersoekningar, Goeteborg (Sweden)

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m{sup 3}/s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say {+-}1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m{sup 3}/s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the

  17. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  18. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  19. 40 CFR 230.25 - Salinity gradients.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Salinity gradients. 230.25 Section 230.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity...

  20. Evidence for Upward Flow of Saline Water from Depth into the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    Science.gov (United States)

    Larsen, D.; Paul, J.

    2017-12-01

    Groundwater salinization is occurring in the Mississippi River Valley Alluvial (MRVA) aquifer in southeastern Arkansas (SE AR). Water samples from the MRVA aquifer in Chicot and Desha counties have yielded elevated Cl-concentrations with some as high as 1,639 mg/L. Considering that the MRVA aquifer is the principle source of irrigation water for the agricultural economy of SE AR, salinization needs to be addressed to ensure the sustainability of crop, groundwater, and soil resources in the area. The origin of elevated salinity in MRVA aquifer was investigated using spatial and factor analysis of historical water quality data, and sampling and tracer analysis of groundwater from irrigation, municipal, and flowing industrial wells in SE AR. Spatial analysis of Cl- data in relation to soil type, geomorphic features and sand-blow density indicate that the Cl- anomalies are more closely related to the sand-blow density than soil data, suggesting an underlying tectonic control for the distribution of salinity. Factor analysis of historical geochemical data from the MRVA and underlying Sparta aquifer shows dilute and saline groups, with saline groups weighted positively with Cl- or Na+ and Cl-. Tracer data suggest a component of evaporatively evolved crustal water of pre-modern age has mixed with younger, fresher meteoric sources in SE AR to create the saline conditions in the MRVA aquifer. Stable hydrogen and oxygen values of waters sampled from the Tertiary Sparta and MRVA aquifers deviate from the global and local meteoric water lines along an evaporative trend (slope=4.4) and mixing line with Eocene Wilcox Group groundwaters. Ca2+ and Cl- contents vary with Br- along mixing trends between dilute MRVA water and Jurassic Smackover Formation pore fluids in southern AR. Increasing Cl- content with C-14 age in MRVA aquifer groundwater suggests that the older waters are more saline. Helium isotope ratios decrease with He gas content for more saline water, consistent with

  1. Impacts of Salinity and Oxygen on Particle-Associated Microbial Communities in the Broadkill River, Lewes DE

    Directory of Open Access Journals (Sweden)

    Kristin M. Yoshimura

    2018-03-01

    Full Text Available Particulate matter in estuarine systems hosts microbial communities that can impact biogeochemical cycles. While the bacterial community composition on suspended particles has been previously investigated, especially with regards to how salinity may structure these communities, the archaeal fraction of the microbial community has not received the same attention. Here we investigate both the bacterial and archaeal community composition on two sizes of particles along a riverine discharge gradient in the Broadkill River, DE, USA, to determine whether the archaeal community is selected by similar environmental stressors as the bacteria. We measured salinity, nutrients, and diatom abundances, and use particle size as a proxy for oxygen concentrations. We show that salinity is a strong environmental factor that controls both bacterial and archaeal community composition and oxygen is an additional factor, impacting archaea more than bacteria.

  2. A comparison of sputum induction methods: ultrasonic vs compressed-air nebulizer and hypertonic vs isotonic saline inhalation.

    Science.gov (United States)

    Loh, L C; Eg, K P; Puspanathan, P; Tang, S P; Yip, K S; Vijayasingham, P; Thayaparan, T; Kumar, S

    2004-03-01

    Airway inflammation can be demonstrated by the modem method of sputum induction using ultrasonic nebulizer and hypertonic saline. We studied whether compressed-air nebulizer and isotonic saline which are commonly available and cost less, are as effective in inducing sputum in normal adult subjects as the above mentioned tools. Sixteen subjects underwent weekly sputum induction in the following manner: ultrasonic nebulizer (Medix Sonix 2000, Clement Clarke, UK) using hypertonic saline, ultrasonic nebulizer using isotonic saline, compressed-air nebulizer (BestNeb, Taiwan) using hypertonic saline, and compressed-air nebulizer using isotonic saline. Overall, the use of an ultrasonic nebulizer and hypertonic saline yielded significantly higher total sputum cell counts and a higher percentage of cell viability than compressed-air nebulizers and isotonic saline. With the latter, there was a trend towards squamous cell contaminations. The proportion of various sputum cell types was not significantly different between the groups, and the reproducibility in sputum macrophages and neutrophils was high (Intraclass correlation coefficient, r [95%CI]: 0.65 [0.30-0.91] and 0.58 [0.22-0.89], p compressed-air nebulizers and isotonic saline. We conclude that in normal subjects, although both nebulizers and saline types can induce sputum with reproducible cellular profile, ultrasonic nebulizers and hypertonic saline are more effective but less well tolerated.

  3. Effect of salinity on biomass yield and physiological and stem-root anatomical characteristics of purslane (Portulaca oleracea L.) accessions.

    Science.gov (United States)

    Alam, Md Amirul; Juraimi, Abdul Shukor; Rafii, M Y; Abdul Hamid, Azizah

    2015-01-01

    13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32 dS m(-1). Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant (P < 0.05) reduction in all measured parameters and the highest salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16 dS m(-1) salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8 dS m(-1) salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA) has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession.

  4. Effect of Salinity on Biomass Yield and Physiological and Stem-Root Anatomical Characteristics of Purslane (Portulaca oleracea L. Accessions

    Directory of Open Access Journals (Sweden)

    Md. Amirul Alam

    2015-01-01

    Full Text Available 13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32 dS m−1. Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant (P<0.05 reduction in all measured parameters and the highest salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16 dS m−1 salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8 dS m−1 salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession.

  5. Perbandingan Pengaruh Pemberian Granisetron 1 mg Intravena dengan Plasebo (Salin untuk Mencegah Kejadian Menggigil Pascaanestesi Spinal pada Seksio Sesarea

    Directory of Open Access Journals (Sweden)

    Heru Wishnu Manunggal

    2014-08-01

    Full Text Available Post anesthesia shivering is one of the complications that often occur in anesthetic action. The purpose of this study was to assess the administration of intravenous granisetron 1 mg in reducing the incidence of shivering in patients undergoing caesarean section with spinal anesthesia. Clinical research methods in double-blind randomized controlled 38 patients who underwent seksios esarea at Dr. Hasan Sadikin Hospital Bandung during April–September 2011, aged 20–35 years overall status American Society of Anesthesia (ASA II physical and random into two groups: the group that received granisetron 1 mg intravenously or saline prior to spinal anesthesia with bupivacaine 12.5 mg. Incidence of shivering recorded by degrees 0–4. The results showed statistically significant patient characteristic data and core body temperature did not differ between the two groups. Shivering less in granisetron group (21.1% than the placebo group (52.6% with statistically significant results (p<0.05.The conclusions of this study indicate that administration of granisetron 1 mg intravenously before spinal anesthesia in Caesarean section reduces the incidence of shivering postanesthesia

  6. Electrocapillary Phenomena at Edible Oil/Saline Interfaces.

    Science.gov (United States)

    Nishimura, Satoshi; Ohzono, Takuya; Shoji, Kohei; Yagihara, Shin; Hayashi, Masafumi; Tanaka, Hisao

    2017-03-01

    Interfacial tension between edible oil and saline was measured under applied electric fields to understand the electrocapillary phenomena at the edible oil/saline interfaces. The electric responses of saline droplets in edible oil were also observed microscopically to examine the relationship between the electrocapillary phenomena and interfacial polarization. When sodium oleate (SO) was added to edible oil (SO-oil), the interfacial tension between SO-oil and saline decreased. However, no decrease was observed for additive-free oil or oleic acid (OA)-added oil (OA-oil). Microscopic observations suggested that the magnitude of interfacial polarization increased in the order of additive-free oil oil oil. The difference in electrocapillary phenomena between OA- and SO-oils was closely related to the polarization magnitude. In the case of SO-oil, the decrease in interfacial tension was remarkably larger for saline (pH 5.4~5.6) than that for phosphate-buffered saline (PBS, pH 7.2~7.4). However, no difference was observed between the electric responses of PBS and saline droplets in SO-oil. The difference in electrocapillary phenomena for PBS and saline could not be simply explained in terms of polarization magnitude. The ratio of ionized and non-ionized OA at the interfaces changed with the saline pH, possibly leading to the above difference.

  7. Comparison between the intravenous and caudal routes of sufentanil in children undergoing orchidopexy and further evaluation of the association of caudal adrenaline and neostigmine

    Directory of Open Access Journals (Sweden)

    Gabriela Rocha Lauretti

    2014-01-01

    Full Text Available Background: The aim of this study was to compare the intravenous (IV and caudal routes of administration of sufentanil for children undergoing orchidopexy and also to evaluate the effects on addition of caudal adrenaline and neostigmine. Materials and Methods: Sixty patients scheduled for orchidopexy were divided into the following groups: 1 Group IVSu received IV 0.5 μg/kg sufentanil and caudal saline; 2 Group CSu received caudal 0.5 μg/kg sufentanil and IV saline; 3 Group CSuAdr received caudal sufentanil plus adrenaline 5 μg/ml (1:200,000 and IV saline; 4 Group CSuNeo received caudal sufentanil plus neostigmine, and IV saline; and 5 Group CSuNeoAdr received caudal sufentanil plus neostigmine plus adrenaline, and IV saline. Heart rate and mean blood pressure >15% was treated with increasing isoflurane concentration. Consumption of isoflurane, side effects, quality of sleep, time to first administration of analgesic, and number of doses of 24-h rescue analgesic were recorded. Results: Groups were demographically similar. Isoflurane consumption showed the following association: Group IVSu = Group CSuNeo = Group CSuNeoAdr Group CSuNeo = Group CSuNeoAdr (P < 0.005. Incidence of adverse effects was similar among groups. Conclusion: Caudal sufentanil alone was no better than when administered in the IV route, and would just be justified by the association of neostigmine, but not adrenaline. Neostigmine association resulted in better perioperative analgesia.

  8. The impact of normal saline on the incidence of exposure keratopathy in patients hospitalized in intensive care units

    Directory of Open Access Journals (Sweden)

    Zohreh Davoodabady

    2018-01-01

    Full Text Available Background: Patients in the intensive care unit (ICU have impaired ocular protective mechanisms that lead to an increased risk of ocular surface diseases including exposure keratopathy (EK. This study was designed to evaluate the effect of normal saline (NS on the incidence and severity of EK in critically ill patients. Materials and Methods: This single-blind randomized controlled trial was conducted on 50 patients admitted to ICUs. The participants were selected through purposive sampling. One eye of each patient, randomly was allocated to intervention group (standard care with NS and the other eye to control group (standard care. In each patient, one eye (control group randomly received standard care and the other eye (intervention group received NS every 6 h in addition to standard care. The presence and severity of keratopathy was assessed daily until day 7 of hospitalization using fluorescein and an ophthalmoscope with cobalt blue filter. Chi-square test was used for statistical analysis in SPSS software. Results: Before the study ( first day there were no statistically significant differences in the incidence and severity of EK between groups. Although, the incidence and severity of EK after the study (7th day was higher in the intervention group compared to the control group, their differences were not statistically significant. Although, the incidence and severity of EK, from the 1st day until the 7th, increased within both groups, this increase was statistically significant only in the intervention (NS group. Conclusions: The use of NS as eye care in patients hospitalized in ICUs can increase the incidence and severity of EK and is not recommended.

  9. Last Glacial Maximum Salinity Reconstruction

    Science.gov (United States)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  10. Ontogenetic optimal temperature and salinity envelops of the copepod Eurytemora affinis in the Seine estuary (France)

    Science.gov (United States)

    Dur, Gaël; Souissi, Sami

    2018-01-01

    Temperature and salinity are important factors shaping the habitats of estuarine ectotherms. Their respective effect varies along the life history moments of species with a complex life cycle. Estuarine species, particularly those living in the salinity gradient, are concerned by habitat changes that can reduce their fitness. Consequently, efforts to define the importance of those two environmental variables on developmental stages are required to enable forecasting estuarine species' future distributions. The present study focuses on the main component of the Seine estuary's zooplankton, i.e. the calanoid copepod Eurytemora affinis, and aims: (i) to establish the role of temperature and salinity in designing the habitat of E. affinis within the Seine estuary; and (ii) to model the habitat of three groups of E. affinis defined through the life cycle as follows: all larval instars (N1-N6), the first to fourth juvenile instars (C1-C4), and the pre-adult and adults instars (C5-Adults). For this purpose, data from intensive field studies of zooplankton sampling during 2002-2010 were used. The fine-scale data, i.e., every 10-20 min, on density and abiotic conditions (salinity, temperature) provided inputs for the computation. We established regions in salinity-temperature space where the three groups of developmental instars exhibit higher densities. The computed habitats differ between developmental groups. In general, the preferendum of salinity increases with ontogeny. The optima of temperature are rather constant between developmental stages (∼14 °C). Our model can be used to determine E. affinis functional habitat (i.e., the spatial relation with structuring factors), to carry out retrospective analysis, and to test future distributions. The present study also emphasizes the need of data from appropriate sampling strategies to conduct habitat definition.

  11. 15N Isotopic Study on Decomposition of Organic Residues Incorporated into Alluvial and Sandy Saline Soils

    International Nuclear Information System (INIS)

    El-Kholi, A. F.; Galal, Y. G. M.

    2004-01-01

    Incubation experiment was conducted to study the effect of the nitrogenous fertilizer on the decomposition and mineralization of organic residues (soybean powdered forage) as well as the release of the soil inorganic nitrogen. This technique was carried out using two types of soils, one is alluvial and the other is saline sandy soil collected from Fayoum governorate. Soybean forage has an organic carbon 23.1%, total N 1.6% and C/N ratio 14.4. Regarding the effect of incubation period on the two soil samples, the evolved NH 4 -N was generally reached its highest peak after 30-45 days, in the presence of either the added 15 No3-fertilizer solely or in combination with soybean forage. Reversible trend was occurred with regard to the evolved No3-N. The highest peak of evolved No3-N recorded in unfertilized control, as compared to 15 No3-N treatment, at 30 day incubation period indicated that the addition of labeled mineral fertilizer had appreciably enhanced the immobilization process. Net nitrification revealed that it was the highest in unfertilized control soil where it was significantly decreased in the treated two soil samples. Gross mineralization as affected by the addition of soybean forage in combination with labeled mineral fertilizer had been promoted by 75% in the alluvial soil and by 18% in the sandy saline soil, as compared with the soil samples received 15 No3-fertilizer only. Gross immobilization, in soil samples received 15 No3-fertilizer plus soybean forage had surpassed those received 15 No3-fertilizer only by 16% in the alluvial soil and by 25% in the sandy saline soil. (Authors)

  12. Hyaluronic acid improves "pleasantness" and tolerability of nebulized hypertonic saline in a cohort of patients with cystic fibrosis.

    Science.gov (United States)

    Buonpensiero, Paolo; De Gregorio, Fabiola; Sepe, Angela; Di Pasqua, Antonio; Ferri, Pasqualina; Siano, Maria; Terlizzi, Vito; Raia, Valeria

    2010-11-01

    Inhaled hypertonic saline improves lung function and decreases pulmonary exacerbations in people with cystic fibrosis. However, side effects such as cough, narrowing of airways and saltiness cause intolerance of the therapy in 8% of patients. The aim of our study was to compare the effect of an inhaled solution of hyaluronic acid and hypertonic saline with hypertonic solution alone on safety and tolerability. A total of 20 patients with cystic fibrosis aged 6 years and over received a single treatment regimen of 7% hypertonic saline solution or hypertonic solution with 0.1% hyaluronate for 2 days nonconsecutively after a washout period in an open crossover study. Cough, throat irritation, and salty taste were evaluated by a modified ordinal score for assessing tolerability; "pleasantness" was evaluated by a five-level, Likert-type scale. Forced expiratory volume in 1 second was registered before and after the end of the saline inhalations. All 20 patients (nine males, 11 females, mean age 13 years, range 8.9-17.7) completed the study. The inhaled solution of 0.1% hyaluronic acid and hypertonic saline significantly improved tolerability and pleasantness compared to hypertonic saline alone. No major adverse effects were observed. No difference was documented in pulmonary function tests between the two treatments. Hyaluronic acid combined with hypertonic saline solution may contribute to improved adherence to hypertonic saline therapy. Further clinical trials are needed to confirm our findings. Considering the extraordinary versatility of hyaluronic acid in biological reactions, perspective studies could define its applicability to halting progression of lung disease in cystic fibrosis.

  13. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrão, Sónia

    2016-10-06

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments.

  14. Sympathetic responses during saline infusion into the veins of an occluded limb.

    Science.gov (United States)

    Cui, Jian; McQuillan, Patrick; Moradkhan, Raman; Pagana, Charles; Sinoway, Lawrence I

    2009-07-15

    Animal studies have shown that the increased intravenous pressure stimulates the group III and IV muscle afferent fibres, and in turn induce cardiovascular responses. However, this pathway of autonomic regulation has not been examined in humans. The aim of this study was to examine the hypothesis that infusion of saline into the venous circulation of an arterially occluded vascular bed evokes sympathetic activation in healthy individuals. Blood pressure, heart rate, and muscle sympathetic nerve activity (MSNA) responses were assessed in 19 young healthy subjects during local infusion of 40 ml saline into a forearm vein in the circulatory arrested condition. From baseline (11.8 +/- 1.2 bursts min(-1)), MSNA increased significantly during the saline infusion (22.5 +/- 2.6 bursts min(-1), P Blood pressure also increased significantly during the saline infusion. Three control trials were performed during separate visits. The results from the control trial show that the observed MSNA and blood pressure responses were not due to muscle ischaemia. The present data show that saline infusion into the venous circulation of an arterially occluded vascular bed induces sympathetic activation and an increase in blood pressure. We speculate that the infusion under such conditions stimulates the afferent endings near the vessels, and evokes the sympathetic activation.

  15. Effects of salinity fluctuation frequency on the osmolarity, Na+-K+-ATPase activity and HSP70 expression in juvenile chinese shrimp, Fenneropenaeus chinensis

    Science.gov (United States)

    Ding, Sen; Wang, Fang; Sun, Hao; Guo, Biao; Dong, Shuanglin

    2009-03-01

    Experiments were conducted to examine the effects of salinity fluctuation frequency on the osmolarity, Na+-K+-ATPase activity and HSP70 of Chinese shrimp Fenneropenaeus chinensis with initial wet body weight of 1.460 g ± 0.091 g. The salinity in the control group (D0) was 28 throughout the experiment, whereas treatments D2, D4, D6 and D8 were subjected to different salinity fluctuation frequencies of 2, 4, 6 and 8 d, respectively. The salinity in treatments D2, D4, D6 and D8 was kept at 28 for 2, 4, 6 and 8 d, respectively, decreased abruptly to salinity 24, lasted for another 2 d, and then was raised to its initial value 28. This was a complete salinity fluctuation cycle that afterwards repeated itself. After 32 days, the osmolarity in treatments D2, D4, D6 and D8 was significantly lower than that in treatment D0 ( P<0.05). There were significant differences in both muscle and eyestalks HSP70 expression among groups. The HSP70 expressions in muscle and eyestalks in group D4 were 61.4% and 57.0% higher, respectively, than that in the control group D0 ( P<0.05). There were, however, no significant differences in gill or hepatopancreas Na+-K+-ATPase activity between the treatments and the control.

  16. Microstrip Patch Sensor for Salinity Determination.

    Science.gov (United States)

    Lee, Kibae; Hassan, Arshad; Lee, Chong Hyun; Bae, Jinho

    2017-12-18

    In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS), and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under -20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of -35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF) tunable sensors for salinity determination.

  17. Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary

    International Nuclear Information System (INIS)

    Sadat-Noori, Mahmood; Santos, Isaac R.; Tait, Douglas R.; Maher, Damien T.

    2016-01-01

    The role of groundwater in transporting nutrients to coastal aquatic systems has recently received considerable attention. However, the relative importance of fresh versus saline groundwater-derived nutrient inputs to estuaries and how these groundwater pathways may alter surface water N:P ratios remains poorly constrained. We performed detailed time series measurements of nutrients in a tidal estuary (Hat Head, NSW, Australia) and used radium to quantify the contribution of fresh and saline groundwater to total surface water estuarine exports under contrasting hydrological conditions (wet and dry season). Tidally integrated nutrient fluxes showed that the estuary was a source of nutrients to the coastal waters. Dissolved inorganic nitrogen (DIN) export was 7-fold higher than the average global areal flux rate for rivers likely due to the small catchment size, surrounding wetlands and high groundwater inputs. Fresh groundwater discharge was dominant in the wet season accounting for up to 45% of total dissolved nitrogen (TDN) and 48% of total dissolved phosphorus (TDP) estuarine exports. In the dry season, fresh and saline groundwater accounted for 21 and 33% of TDN export, respectively. The combined fresh and saline groundwater fluxes of NO_3, PO_4, NH_4, DON, DOP, TDN and TDP were estimated to account for 66, 58, 55, 31, 21, 53 and 47% of surface water exports, respectively. Groundwater-derived nitrogen inputs to the estuary were responsible for a change in the surface water N:P ratio from typical N-limiting conditions to P-limiting as predicted by previous studies. This shows the importance of both fresh and saline groundwater as a source of nutrients for coastal productivity and nutrient budgets of coastal waters. - Highlights: • Groundwater TDN and TDP fluxes account for 53 and 47% of surface water exports. • The estuary DIN export was 7-fold higher than the average global areal flux. • Fresh GW nutrient input dominated the wet season and saline GW the

  18. Hurricane-induced failure of low salinity wetlands

    Science.gov (United States)

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  19. Multi-detector row CT of the head and neck: comparison of different volumes of contrast material with and without a saline chaser

    International Nuclear Information System (INIS)

    Yoon, Dae Young; You, Su Yeon; Choi, Chul Soon; Chang, Suk Ki; Yun, Eun Joo; Seo, Young Lan; Park, Sang Joon; Lee, Yu-Jin; Moon, Jeung Hee; Rho, Young-Soo; Kim, Jin-Hwan

    2006-01-01

    The aim of this study was to determine the effect of different volumes of contrast material with and without a saline chaser on tissue enhancement in multidetector row CT (MDCT) of the head and neck. In a blind prospective fashion, 120 patients were randomized into the following four groups: group 1, 80 ml contrast material administered at a flow rate of 2.0 ml/s; group 2, 80 ml followed by 40 ml saline at 2.0 ml/s; group 3, 60 ml at 1.5 ml/s; and group 4, 60 ml followed by 30 ml saline at 1.5 ml/s. The attenuation values of the carotid artery, internal jugular vein, and muscle were measured at an interval of 1.5 s in each patient. The degree of perivenous artifacts was subjectively assessed. Mean attenuation values in the carotid artery and internal jugular vein were significantly higher in groups 1 and 2 than in groups 3 and 4. The width of the diagnostic window (both carotid and jugular enhancement >150 HU) were significantly longer in groups 1 and 2 than in groups 3 and 4. The addition of a saline chaser did not result in improved vascular enhancement or a wider diagnostic window, but reduced perivenous artifacts, compared with using contrast material alone. Reduction of contrast material from 80 to 60 ml results in insufficient enhancement of neck vessels. In addition, the benefit of a saline chaser technique is not obvious except for its ability to reduce perivenous artifacts. (orig.)

  20. Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots

    Directory of Open Access Journals (Sweden)

    Honghong eWu

    2015-02-01

    Full Text Available Salinity stress tolerance is a physiologically complex trait that is conferred by the large array of interacting mechanisms. Among these, vacuolar Na+ sequestration has always been considered as one of the key components differentiating between sensitive and tolerant species and genotypes. However, vacuolar Na+ sequestration has been rarely considered in the context of the tissue-specific expression and regulation of appropriate transporters contributing to Na+ removal from the cytosol. In this work, six bread wheat varieties contrasting in their salinity tolerance (three tolerant and three sensitive were used to understand the essentiality of vacuolar Na+ sequestration between functionally different root tissues, and link it with the overall salinity stress tolerance in this species. Roots of 4-d old wheat seedlings were treated with 100 mM NaCl for 3 days, and then Na+ distribution between cytosol and vacuole was quantified by CoroNa Green fluorescent dye imaging. Our major observations were as follows: 1 salinity stress tolerance correlated positively with vacuolar Na+ sequestration ability in the mature root zone but not in the root apex; 2 Contrary to expectations, cytosolic Na+ levels in root meristem were significantly higher in salt tolerant than sensitive group, while vacuolar Na+ levels showed an opposite trend. These results are interpreted as meristem cells playing a role of the salt sensor; 3 No significant difference in the vacuolar Na+ sequestration ability was found between sensitive and tolerant group in either transition or elongation zones; 4 The overall Na+ accumulation was highest in the elongation zone, suggesting its role in osmotic adjustment and turgor maintenance required to drive root expansion growth. Overall, the reported results suggest high tissue-specificity of Na+ uptake, signalling, and sequestration in wheat root. The implications of these findings for plant breeding for salinity stress tolerance are discussed.

  1. Effect of adductor canal block on pain in patients with severe pain after total knee arthroplasty

    DEFF Research Database (Denmark)

    Grevstad, Jens Ulrik; Mathiesen, Ole; Lind, T

    2014-01-01

    the patients had received a comprehensive multimodal analgesic regimen. Group A received an ACB with ropivacaine 0.75%, 30 ml at time 0 and isotonic saline after 45 min. Group B received an ACB with isotonic saline at time 0 and ropivacaine 0.75%, 30 ml after 45 min. RESULTS: A 32-mm difference in VAS pain...

  2. Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought.

    Science.gov (United States)

    Mark Ibekwe, A; Ors, Selda; Ferreira, Jorge F S; Liu, Xuan; Suarez, Donald L

    2017-02-01

    Salinity is a common problem under irrigated agriculture, especially in low rainfall and high evaporative demand areas of southwestern United States and other semi-arid regions around the world. However, studies on salinity effects on soil microbial communities are relatively few while the effects of irrigation-induced salinity on soil chemical and physical properties and plant growth are well documented. In this study, we examined the effects of salinity, temperature, and temporal variability on soil and rhizosphere microbial communities in sand tanks irrigated with prepared solutions designed to simulate saline wastewater. Three sets of experiments with spinach (Spinacia oleracea L., cv. Racoon) were conducted under saline water during different time periods (early winter, late spring, and early summer). Bacterial 16S V4 rDNA region was amplified utilizing fusion primers designed against the surrounding conserved regions using MiSeq® Illumina sequencing platform. Across the two sample types, bacteria were relatively dominant among three phyla-the Proteobacteria, Cyanobacteria, and Bacteroidetes-accounted for 77.1% of taxa detected in the rhizosphere, while Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 55.1% of taxa detected in soil. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, community structure, and specific bacterial groups in soil and rhizosphere samples. Permutational analysis of variance (PERMANOVA) analysis showed that soil temperature (P=0.001), rhizosphere temperature (P=0.001), rhizosphere salinity (P=0.032), and evapotranspiration (P=0.002) significantly affected beta diversity of soil and rhizosphere microbial communities. Furthermore, salinity had marginal effects (P=0.078) on soil beta diversity. However, temporal variability differentially affected rhizosphere microbial communities irrigated with saline wastewater. Therefore, microbial communities in

  3. Experimentally derived salinity tolerance of hatchling Burmese pythons (Python molurus bivittatus) from the Everglades, Florida (USA)

    Science.gov (United States)

    Hart, Kristen M.; Schofield, Pamela J.; Gregoire, Denise R.

    2012-01-01

    In a laboratory setting, we tested the ability of 24 non-native, wild-caught hatchling Burmese pythons (Python molurus bivittatus) collected in the Florida Everglades to survive when given water containing salt to drink. After a one-month acclimation period in the laboratory, we grouped snakes into three treatments, giving them access to water that was fresh (salinity of 0, control), brackish (salinity of 10), or full-strength sea water (salinity of 35). Hatchlings survived about one month at the highest marine salinity and about five months at the brackish-water salinity; no control animals perished during the experiment. These results are indicative of a "worst-case scenario", as in the laboratory we denied access to alternate fresh-water sources that may be accessible in the wild (e.g., through rainfall). Therefore, our results may underestimate the potential of hatchling pythons to persist in saline habitats in the wild. Because of the effect of different salinity regimes on survival, predictions of ultimate geographic expansion by non-native Burmese pythons that consider salt water as barriers to dispersal for pythons may warrant re-evaluation, especially under global climate change and associated sea-level-rise scenarios.

  4. Saline-enhanced hepatic radiofrequency ablation using a perfused-cooled electrode: comparison of dual probe bipolar mode with monopolar and single probe bipolar modes

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Han, Joon Koo; Kim, Se Hyung; Lee, Jae Young; Kim, Dae Jin; Lee, Min Woo; Cho, Gyung Goo; Han, Chang Jin; Choi, Byung Ihn

    2004-01-01

    To determine whether saline-enhanced dual probe bipolar radiofrequency ablation (RFA) using perfused-cooled electrodes shows better in-vitro efficiency than monopolar or single probe bipolar RFA in creating larger coagulation necrosis. RF was applied to excised bovine livers in both bipolar and monopolar modes using a 200W generator (CC-3; Radionics) and the perfused-cooled electrodes for 10 mins. After placing single or double perfused-cooled electrodes in the explanted liver, 30 ablation zones were created at three different regimens: group A; saline-enhanced monopolar RFA, group B; saline-enhanced single probe bipolar RFA, and group C; saline-enhanced dual probe bipolar RFA. During RFA, we measured the tissue temperature at 15mm from the electrode. The dimensions of the ablation zones and changes in the impedance currents and liver temperature during RFA were then compared between the groups. The mean current values were higher for monopolar mode (group A) than for the bipolar modes (group B and C): 1550 ± 25 mA in group A, 764 ±189 mA in group B and 819 ± 98 mA in group C(ρ 3 in group A, 23.7 ±3.8 cm 3 in group B, and 34.2 ± 5.1 cm 3 in group C(ρ 0.05). The temperature at 15 mm from the electrode was higher in group C than in the other groups: 70 ± 18 .deg. C in group A, 59 ± 23 .deg. C in group B and 96 ± 16 .deg. C in group C (ρ < 0.05). Saline-enhanced bipolar RFA using dual perfused-cooled electrodes increases the dimension of the ablation zone more efficiently than monopolar RFA or single probe bipolar RFA

  5. Estuarine turbidity, flushing, salinity, and circulation

    Science.gov (United States)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  6. Microstrip Patch Sensor for Salinity Determination

    Directory of Open Access Journals (Sweden)

    Kibae Lee

    2017-12-01

    Full Text Available In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS, and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under −20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of −35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF tunable sensors for salinity determination.

  7. Salinity tolerance of the South African endemic amphipod ...

    African Journals Online (AJOL)

    Salinities were prepared using natural seawater and synthetic sea salt. Grandidierella lignorum tolerated all salinities, but showed highest survival at salinities of 7–42. Salinity tolerance was modified by temperature, with highest survival occurring between 10 and 25 °C. These represent the range of conditions at which ...

  8. NOAA Average Annual Salinity (3-Zone)

    Data.gov (United States)

    California Natural Resource Agency — The 3-Zone Average Annual Salinity Digital Geography is a digital spatial framework developed using geographic information system (GIS) technology. These salinity...

  9. Salinity: Electrical conductivity and total dissolved solids

    Science.gov (United States)

    The measurement of soil salinity is a quantification of the total salts present in the liquid portion of the soil. Soil salinity is important in agriculture because salinity reduces crop yields by reducing the osmotic potential making it more difficult for the plant to extract water, by causing spe...

  10. SALINE WATER RESOURCES IN CLUJ-NAPOCA SURROUNDINGS

    Directory of Open Access Journals (Sweden)

    B. CZELLECZ

    2016-03-01

    Full Text Available Saline waters are usually researched in those places where it is used for balneotherapy or other industrial purposes. The aim of this study is to describe the saline water sources from less known areas, as they are an important natural mineral water resource. Twenty nine water samples were analyzed from Cojocna-Pata-Sopor region, thirteen of them can be considered saline waters. The visited locations are 21, 15 and 3 km far from Cluj-Napoca. Highly concentrated springs are to be found in the old mine area from Pata village and in the slough from Cojocna. Beside the well known saline lakes from Cojocna, five other saline lakes were identified; most of them are having artificial origin.

  11. Cyclone, Salinity Intrusion and Adaptation and Coping Measures in Coastal Bangladesh

    Directory of Open Access Journals (Sweden)

    Sebak Kumar Saha

    2017-06-01

    Full Text Available Although households in the coastal areas of Bangladesh undertake various adaptation and coping measures to minimise their vulnerability to cyclone hazards and salinity intrusion, these autonomous measures have received little attention in the past. However, the Government of Bangladesh has recently emphasised the importance of understanding these measures so that necessary interventions to make households more resilient to natural hazards and the adverse impacts of climate change can be introduced. This paper, based on secondary sources, explores adaptation and coping measures that households in the coastal areas of Bangladesh undertake to minimise their vulnerability to cyclone hazards and salinity intrusion. This paper shows that many of the adaptation and coping measures contribute to making households less vulnerable and more resilient to cyclone hazards and salinity intrusion, although some coping measures do the opposite as they reduce households’ adaptive capacities instead of improving them. This paper argues that the adaptation and coping measures that contribute to reducing households’ vulnerability to natural hazards need to be supported and guided by the government and NGOs to make them more effective. Additionally, measures that make households more vulnerable also need to be addressed by the government and NGOs, as most of these measures are related to and constrained by both poverty, and because the households have little or no access to economic opportunities.

  12. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. STUDY ON COMPARISON OF THE EFFECT OF TOPICAL INSULIN WITH NORMAL SALINE DRESSING IN HEALING OF DIABETIC FOOT ULCERS

    Directory of Open Access Journals (Sweden)

    Chinnam Venkata Reddy

    2017-05-01

    Full Text Available BACKGROUND Numerous topical medication and gels are promoted for ulcer care and healing. Relatively, few have proved to be more efficacious than saline wet-to-dry dressings. The present study was aimed to compare the effect of topical insulin and normal saline dressing in healing of diabetic foot ulcers. MATERIALS AND METHODS The present two-year hospital-based randomised-controlled trial was conducted in the Department of General Surgery, Rangaraya Medical College, Kakinada, from April 2015 to March 2017. A total of 60 patients with diabetic foot ulcers were studied. Based on the envelop method, patients were divided into two groups of 30 patients each that is group A (topical insulin and group B (normal saline. RESULTS In this males (66.67% in group A and 83.33% in group B outnumbered females in both the groups with male-to-female ratio of 2:1 in group A and 4:1 in group B. The mean age in group A was 52.00 ± 11.00 years, and in group B, it was 57.00 ± 9.80 years (p=1.000. Among patients with group A, significant reduction of mean ulcer area was observed (307.23 ± 169.87 mm2 with higher mean percentage reduction (35.19 ± 19.00 percent, whereas in group B, the mean percentage reduction was significantly less (18.82 ± 4.06 percent with less reduction of mean final ulcer area (149.90 ± 64.45 mm2 (p<0.001. CONCLUSION Overall, topical insulin dressing provided favourable outcome in patients with diabetic foot ulcer by significant reduction in wound area when compared to normal saline dressing and it had positive role in reducing the wound infection if present.

  14. Species Sorting of Benthic Invertebrates in a Salinity Gradient - Importance of Dispersal Limitation.

    Directory of Open Access Journals (Sweden)

    Alf B Josefson

    Full Text Available The relative importance of environment and dispersal related processes for community assembly has attracted great interest over recent decades, but few empirical studies from the marine/estuarine realm have examined the possible effects of these two types of factors in the same system. Importance of these processes was investigated in a hypothetical metacommunity of benthic invertebrates in 16 micro-tidal estuaries connected to the same open sea area. The estuaries differed in size and connectivity to the open sea and represented a salinity gradient across the estuaries. The Elements of Metacommunity Structure (EMS approach on estuary scale was complemented with a mechanistic variance partitioning approach on sample scale to disentangle effects of factors affecting assembly of three trait groups of species with different dispersivity. A quasi-Clementsian pattern was observed for all three traits, a likely response to some latent gradient. The primary axis in the pattern was most strongly related to gradients in estuary salinity and estuary entrance width and correlation with richness indicated nestedness only in the matrix of the most dispersive trait group. In the variance partitioning approach measures of turnover and nestedness between paired samples each from different estuaries were related to environmental distance in different gradients. Distance between estuaries was unimportant suggesting importance of factors characterizing the estuaries. While the high dispersive species mainly were sorted in the salinity gradient, apparently according to their tolerance ranges towards salinity, the two less dispersive traits were additionally affected by estuary entrance width and possibly also area. The results exemplify a mechanism of community assembly in the marine realm where the niche factor salinity in conjunction with differential dispersal structure invertebrates in a metacommunity of connected estuaries, and support the idea that dispersive

  15. Species Sorting of Benthic Invertebrates in a Salinity Gradient - Importance of Dispersal Limitation.

    Science.gov (United States)

    Josefson, Alf B

    2016-01-01

    The relative importance of environment and dispersal related processes for community assembly has attracted great interest over recent decades, but few empirical studies from the marine/estuarine realm have examined the possible effects of these two types of factors in the same system. Importance of these processes was investigated in a hypothetical metacommunity of benthic invertebrates in 16 micro-tidal estuaries connected to the same open sea area. The estuaries differed in size and connectivity to the open sea and represented a salinity gradient across the estuaries. The Elements of Metacommunity Structure (EMS) approach on estuary scale was complemented with a mechanistic variance partitioning approach on sample scale to disentangle effects of factors affecting assembly of three trait groups of species with different dispersivity. A quasi-Clementsian pattern was observed for all three traits, a likely response to some latent gradient. The primary axis in the pattern was most strongly related to gradients in estuary salinity and estuary entrance width and correlation with richness indicated nestedness only in the matrix of the most dispersive trait group. In the variance partitioning approach measures of turnover and nestedness between paired samples each from different estuaries were related to environmental distance in different gradients. Distance between estuaries was unimportant suggesting importance of factors characterizing the estuaries. While the high dispersive species mainly were sorted in the salinity gradient, apparently according to their tolerance ranges towards salinity, the two less dispersive traits were additionally affected by estuary entrance width and possibly also area. The results exemplify a mechanism of community assembly in the marine realm where the niche factor salinity in conjunction with differential dispersal structure invertebrates in a metacommunity of connected estuaries, and support the idea that dispersive species are more

  16. The efficacy of normal saline irrigation to prevent surgical site infection

    International Nuclear Information System (INIS)

    Ashraf, V.; Awan, A.S.

    2015-01-01

    The efficacy of normal saline irrigation to prevent surgical site Infection The aim of the study was to evaluate the efficacy of normal saline irrigations to prevent surgical site infection (SSI). Study Design: A comparative study. Place and Duration of Study: The study was conducted at surgery and gynecology Dept CMH Chunian from 1st Jan 2012 to 1st Nov 2012. Patients and Methods: Two hundred clean surgical and gynecological cases were included in the study. Hundred cases which were randomly selected had their wound washed with warm normal saline for 60 sec and then mopped dry with clean swabs. Subcuticular Stitches were applied to all the 200 cases. The surgical wounds were examined on 3rd post operative day and then finally on 15th post operative day. Patients with wound infection developed pain at the operation site and fever on third post operative day. Wounds were examined for swelling, redness, discharge and stitch abscess. Routine investigations were done as per protocol. Wound swabs were taken for culture and sensitivity. Results: The study was carried out on 200 clean cases (general and gynecological). They were 130 females and 70 males. The 100 cases whose wounds were washed with normal saline only 1 patient developed wound infection while in the other group who did not had saline irrigations 8 patients out of 100 developed wound infection. The commonest infective organisms were staphylococcus aureus and the other organisms were streptococcus pyogenes, proteus, Klaebsiella, E coli and pseudomonas. No MRSA was detected. Conclusion: In our study washing the wound with warm normal saline for 60 seconds resulted in the wound being infection free. Wound infection is associated with delayed wound healing, prolonged hospital stay and increased economic pressure on the patient and on the state. (author)

  17. Biochar mitigates salinity stress in potato

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Andersen, M.N.; Liu, Fulai

    2015-01-01

    capability of biochar. Results indicated that biochar was capable to ameliorate salinity stress by adsorbing Na+. Increasing salinity level resulted in significant reductions of shoot biomass, root length and volume, tuber yield, photosynthetic rate (An), stomatal conductance (gs), midday leaf water......A pot experiment was conducted in a climate-controlled greenhouse to investigate the growth, physiology and yield of potato in response to salinity stress under biochar amendment. It was hypothesized that addition of biochar may improve plant growth and yield by mitigating the negative effect...... potential, but increased abscisic acid (ABA) concentration in both leaf and xylem sap. At each salinity level, incorporation of biochar increased shoot biomass, root length and volume, tuber yield, An, gs, midday leaf water potential, and decreased ABA concentration in the leaf and xylem sap as compared...

  18. Investigation of Soil Salinity to Distinguish Boundary Line between ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Investigation of Soil Salinity to Distinguish Boundary Line between Saline and ... Setting 4 dSm-1 as the limit between saline and non-saline soils in kriging algorithms resulted in a .... number of sample points within the search window,.

  19. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrã o, Só nia; Schmö ckel, S. M.; Tester, Mark A.

    2016-01-01

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making

  20. The feasibility of inducing mild therapeutic hypothermia after cardiac resuscitation using iced saline infusion via an intraosseous needle.

    Science.gov (United States)

    Mader, Timothy J; Walterscheid, Joshua K; Kellogg, Adam R; Lodding, Cynthia C

    2010-01-01

    This study was done, using a swine model of prolonged ventricular fibrillation out-of-hospital cardiac arrest, to determine the feasibility of inducing therapeutic hypothermia after successful resuscitation by giving an intraosseous infusion of iced saline. This study was IACUC approved. Liter bags of normal saline, after being refrigerated for at least 24h, were placed in an ice filled cooler. Female Yorkshire swine weighing between 27 and 35 kg were sedated and instrumented under general anesthesia. A temperature probe was inserted 10 cm into the esophagus. Ventricular fibrillation was electrically induced and allowed to continue untreated for 10 min. Animals were randomized to one of two resuscitation schemes for the primary study (N=53). One group had central intravenous access for drug delivery and the other had an intraosseous needle inserted into the proximal tibia for drug administration. Animals in which spontaneous circulation was restored were immediately cooled, for this secondary study, by means of a rapid, pump-assisted infusion of 1L of iced saline either through the intraosseous needle (n=8), the central access (n=6), or a peripheral intravenous catheter (n=7) in a systematic, non-randomized fashion. Room, animal, and saline temperatures were recorded at initiation and upon completion of infusion. The data were analyzed descriptively using Stata SE v8.1 for Macintosh. The baseline characteristics of all three groups were mathematically the same. The average ambient room temperature during the experimental sessions was 25.5 degrees C (SD=1.3 degrees C). There were no statistically significant differences between the three groups with regard to saline temperature, rate of infusion, or decrease in core body temperature. The decrease in core temperature for the intraosseous group was 2.8 degrees C (95% CI=1.8, 3.8) over the infusion period. Mild therapeutic hypothermia can be effectively induced in swine after successful resuscitation of prolonged

  1. Salinity Alters the Polyisoprenoid Alcohol Content and Composition of Both Salt-Secreting and Non–Salt-Secreting Mangrove Seedlings

    Directory of Open Access Journals (Sweden)

    Mohammad Basyuni

    2017-10-01

    Full Text Available The effects of salinity on the polyisoprenoid alcohol content and composition of the salt-secreting mangrove species Avicennia marina and Sonneratia alba and the non–salt-secreting species Bruguiera gymnorrhiza and Kandelia obovata were studied. The seedlings of mangroves were grown for 5 months under 0% and 3% salt concentrations. The occurrence, content, and distribution of four mangrove seedlings were analyzed by two-dimensional thin layer chromatography. The structural groups of the polyprenols and dolichols in the leaves and roots were classified into two types (I and II. In type I, dolichols predominated over polyprenols (more than 90%, whereas in type II, the occurrence of both polyprenols and dolichols was observed. Polyprenols were not detected in the leaves of A. marina and B. gymnorrhiza under 0% salt (control, but were detected in small amounts in K. obovata leaves; however, significant amounts were found in the 3% salinity group. This finding in A. marina, B. gymnorrhiza, and K. obovata leaves implies a change to the structural group: under 0% salt concentrations, the groups are classified as type I, but become type II under 3% salt concentrations. The occurrence of ficaprenol (C50–55 was found only in the leaves of the non–salt-secreting species B. gymnorrhiza and K. obovata under 3% salinity and not in the salt-secreting species A. marina or S. alba. It is noteworthy that the polyisoprenoid type in the roots of the four species showed no change under salinity; the two salt-secreting species A. marina and S. alba contained type I under 0% and 3% salt concentrations. On the other hand, type II polyisoprenoids were identified in the non–salt-secreting species B. gymnorrhiza and K. obovata under 0% and 3% salinity conditions. This finding suggested that polyisoprenoids play a protective role against salinity in the mangrove leaves of both salt-secreting and non–salt-secreting species.

  2. Influence of salinity and water content on soil microorganisms

    Directory of Open Access Journals (Sweden)

    Nan Yan

    2015-12-01

    Full Text Available Salinization is one of the most serious land degradation problems facing world. Salinity results in poor plant growth and low soil microbial activity due to osmotic stress and toxic ions. Soil microorganisms play a pivotal role in soils through mineralization of organic matter into plant available nutrients. Therefore it is important to maintain high microbial activity in soils. Salinity tolerant soil microbes counteract osmotic stress by synthesizing osmolytes which allows them to maintain their cell turgor and metabolism. Osmotic potential is a function of the salt concentration in the soil solution and therefore affected by both salinity (measured as electrical conductivity at a certain water content and soil water content. Soil salinity and water content vary in time and space. Understanding the effect of changes in salinity and water content on soil microorganisms is important for crop production, sustainable land use and rehabilitation of saline soils. In this review, the effects of soil salinity and water content on microbes are discussed to guide future research into management of saline soils.

  3. Changes of hypertonic saline-induced masseter muscle pain characteristics, by an infusion of the serotonin receptor type 3 antagonist granisetron.

    Science.gov (United States)

    Christidis, Nikolaos; Ioannidou, Kiriaki; Milosevic, Milena; Segerdahl, Märta; Ernberg, Malin

    2008-10-01

    This study aimed to investigate whether granisetron reduces masseter muscle pain and allodynia induced by hypertonic saline. Fifteen healthy women and 15 age-matched healthy men participated in this randomized, placebo-controlled, double-blinded study. They first received bilateral injections of hypertonic saline into the masseter muscles (internal control). The evoked pain intensity and the pressure-pain threshold (PPT) were recorded during 30 minutes. Granisetron was then injected on one side and placebo (normal saline) on the contralateral side. Two minutes thereafter, the hypertonic saline injections were repeated. Pain and PPT were again recorded. The first injection of hypertonic saline induced pain of similar intensity, duration, and pain area on both sides, but with larger pain area in the women (P = .017). The PPT did not change significantly. The second injection of hypertonic saline induced considerably less pain (62.5%), of shorter duration (44.1%), and of smaller area (77.4%) on the side pretreated with granisetron (P = .005). The PPT was increased on the granisetron side in the men (P = .002). The results of this study show that local injection of a single dose of granisetron attenuates masseter muscle pain induced by hypertonic saline. This article presents the changes of hypertonic saline-induced masseter muscle pain characteristics by infusion of granisetron. It appears that the pain-inducing effect in this experimental pain model is partly due to activation of 5-HT3-receptors. Hence, the results indicate that granisetron might offer a new treatment approach for localized myofascial pain.

  4. ( Phaseolus vulgaris L. ) seedlings to salinity stress

    African Journals Online (AJOL)

    The effect of salinity stress on five cultivars of common bean: Bassbeer, Beladi, Giza 3, HRS 516 and RO21 were evaluated on a sand/peat medium with different salinity levels (0, 50 and 100 mM NaCl) applied 3 weeks after germination for duration of 10 days. Salinity had adverse effects not only on the biomass yield and ...

  5. Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary

    Energy Technology Data Exchange (ETDEWEB)

    Sadat-Noori, Mahmood, E-mail: mahmood.sadat-noori@scu.edu.au [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia); Santos, Isaac R. [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); Tait, Douglas R. [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia); Maher, Damien T. [School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia)

    2016-10-01

    The role of groundwater in transporting nutrients to coastal aquatic systems has recently received considerable attention. However, the relative importance of fresh versus saline groundwater-derived nutrient inputs to estuaries and how these groundwater pathways may alter surface water N:P ratios remains poorly constrained. We performed detailed time series measurements of nutrients in a tidal estuary (Hat Head, NSW, Australia) and used radium to quantify the contribution of fresh and saline groundwater to total surface water estuarine exports under contrasting hydrological conditions (wet and dry season). Tidally integrated nutrient fluxes showed that the estuary was a source of nutrients to the coastal waters. Dissolved inorganic nitrogen (DIN) export was 7-fold higher than the average global areal flux rate for rivers likely due to the small catchment size, surrounding wetlands and high groundwater inputs. Fresh groundwater discharge was dominant in the wet season accounting for up to 45% of total dissolved nitrogen (TDN) and 48% of total dissolved phosphorus (TDP) estuarine exports. In the dry season, fresh and saline groundwater accounted for 21 and 33% of TDN export, respectively. The combined fresh and saline groundwater fluxes of NO{sub 3}, PO{sub 4}, NH{sub 4}, DON, DOP, TDN and TDP were estimated to account for 66, 58, 55, 31, 21, 53 and 47% of surface water exports, respectively. Groundwater-derived nitrogen inputs to the estuary were responsible for a change in the surface water N:P ratio from typical N-limiting conditions to P-limiting as predicted by previous studies. This shows the importance of both fresh and saline groundwater as a source of nutrients for coastal productivity and nutrient budgets of coastal waters. - Highlights: • Groundwater TDN and TDP fluxes account for 53 and 47% of surface water exports. • The estuary DIN export was 7-fold higher than the average global areal flux. • Fresh GW nutrient input dominated the wet season and

  6. Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimens.

    Science.gov (United States)

    Gómez-Caravaca, Ana María; Iafelice, Giovanna; Lavini, Antonella; Pulvento, Cataldo; Caboni, Maria Fiorenza; Marconi, Emanuele

    2012-05-09

    Quinoa is a pseudocereal from South America that has received increased interest around the world because it is a good source of different nutrients and rich in antioxidant compounds. Thus, this study has focused on the effects of different agronomic variables, such as irrigation and salinity, on the phenolic and saponin profiles of quinoa. It was observed that irrigation with 25% of full water restitution, with and without the addition of salt, was associated with increases in free phenolic compounds of 23.16 and 26.27%, respectively. In contrast, bound phenolic compounds were not affected by environmental stresses. Saponins decreased if samples were exposed to drought and saline regimens. In situations of severe water deficit, the saponins content decreased 45%, and 50% when a salt stress was added. The results suggest that irrigation and salinity may regulate the production of bioactive compounds in quinoa, influencing its nutritional and industrial values.

  7. Larval tolerance to salinity in three species of Australian anuran: an indication of saline specialisation in Litoria aurea.

    Directory of Open Access Journals (Sweden)

    Brian D Kearney

    Full Text Available Recent anthropogenic influences on freshwater habitats are forcing anuran populations to rapidly adapt to high magnitude changes in environmental conditions or face local extinction. We examined the effects of ecologically relevant elevated salinity levels on larval growth, metamorphosis and survival of three species of Australian anuran; the spotted marsh frog (Limnodynastes tasmaniensis, the painted burrowing frog (Neobatrachus sudelli and the green and golden bell frog (Litoria aurea, in order to better understand the responses of these animals to environmental change. Elevated salinity (16% seawater negatively impacted on the survival of L. tasmaniensis (35% survival and N sudelli (0% survival, while reduced salinity had a negative impact on L. aurea. (16% seawater: 85% survival; 0.4% seawater: 35% survival. L. aurea tadpoles survived in salinities much higher than previously reported for this species, indicating the potential for inter-populations differences in salinity tolerance. In L. tasmaniensis and L. aurea, development to metamorphosis was fastest in low and high salinity treatments suggesting it is advantageous for tadpoles to invest energy in development in both highly favourable and developmentally challenging environments. We propose that this response might either maximise potential lifetime fecundity when tadpoles experience favourable environments, or, facilitate a more rapid escape from pond environments where there is a reduced probability of survival.

  8. Salinity management in southern Italy irrigation areas

    Directory of Open Access Journals (Sweden)

    Massimo Monteleone

    Full Text Available After a synthetic review of the most worrisome pressures applied over soils and waters, general criterions and normative principles that have to lead the technical intervention on soil and water protection are accounted, both with respect to farm activity and land planning. The salinity problem is faced, then, through the analysis of the nature and origin of saline soil and of the complex quantitative relationships able to interpret the accumulation and leaching of soil salts. Having specified the theoretical bases of salinity, the related technical features are then considered in order to define a proper management of soil and waters. Particular relevance is assigned to the irrigation and leaching techniques as well as, more briefly, to other agronomic interventions in order to guarantee the most effective salinity control. Another relevant technical facet of salinity control, although quite often neglected or retained of secondary importance in comparison to irrigation, is the drainage and disposal of leached water. The increased sensibility on the environmental impacts that the disposal of these waters can produce has raised today the level of attention on these procedures that are disciplined by norms of law and, therefore, require appropriate techniques of intervention. Finally, after the different scale orders involved in the management of salinity are defined (from the field and farm level up to the land and basin, the fundamental elements in order to work out a risk analysis and an action program are illustrated; some indications about the most up to date salinity monitoring and mapping methods are also provided, considering their great importance to continuously check the possible broadening of salinization and to carefully maintain its control.

  9. Experiencing maternity care: the care received and perceptions of women from different ethnic groups

    Science.gov (United States)

    2013-01-01

    Background According to the Office for National Statistics, approximately a quarter of women giving birth in England and Wales are from minority ethnic groups. Previous work has indicated that these women have poorer pregnancy outcomes than White women and poorer experience of maternity care, sometimes encountering stereotyping and racism. The aims of this study were to examine service use and perceptions of care in ethnic minority women from different groups compared to White women. Methods Secondary analysis of data from a survey of women in 2010 was undertaken. The questionnaire asked about women’s experience of care during pregnancy, labour and birth, and the postnatal period, as well as demographic factors. Ethnicity was grouped into eight categories: White, Mixed, Indian, Pakistani, Bangladeshi, Black Caribbean, Black African, and Other ethnicity. Results A total of 24,319 women completed the survey. Compared to White women, women from minority ethnic groups were more likely to be younger, multiparous and without a partner. They tended to access antenatal care later in pregnancy, have fewer antenatal checks, fewer ultrasound scans and less screening. They were less likely to receive pain relief in labour and, Black African women in particular, were more likely to deliver by emergency caesarean section. Postnatally, women from minority ethnic groups had longer lengths of hospital stay and were more likely to breastfeed but they had fewer home visits from midwives. Throughout their maternity care, women from minority ethnic groups were less likely to feel spoken to so they could understand, to be treated with kindness, to be sufficiently involved in decisions and to have confidence and trust in the staff. Conclusion Women in all minority ethnic groups had a poorer experience of maternity services than White women. That this was still the case following publication of a number of national policy documents and local initiatives is a cause for concern. PMID

  10. Experiencing maternity care: the care received and perceptions of women from different ethnic groups.

    Science.gov (United States)

    Henderson, Jane; Gao, Haiyan; Redshaw, Maggie

    2013-10-22

    According to the Office for National Statistics, approximately a quarter of women giving birth in England and Wales are from minority ethnic groups. Previous work has indicated that these women have poorer pregnancy outcomes than White women and poorer experience of maternity care, sometimes encountering stereotyping and racism. The aims of this study were to examine service use and perceptions of care in ethnic minority women from different groups compared to White women. Secondary analysis of data from a survey of women in 2010 was undertaken. The questionnaire asked about women's experience of care during pregnancy, labour and birth, and the postnatal period, as well as demographic factors. Ethnicity was grouped into eight categories: White, Mixed, Indian, Pakistani, Bangladeshi, Black Caribbean, Black African, and Other ethnicity. A total of 24,319 women completed the survey. Compared to White women, women from minority ethnic groups were more likely to be younger, multiparous and without a partner. They tended to access antenatal care later in pregnancy, have fewer antenatal checks, fewer ultrasound scans and less screening. They were less likely to receive pain relief in labour and, Black African women in particular, were more likely to deliver by emergency caesarean section. Postnatally, women from minority ethnic groups had longer lengths of hospital stay and were more likely to breastfeed but they had fewer home visits from midwives. Throughout their maternity care, women from minority ethnic groups were less likely to feel spoken to so they could understand, to be treated with kindness, to be sufficiently involved in decisions and to have confidence and trust in the staff. Women in all minority ethnic groups had a poorer experience of maternity services than White women. That this was still the case following publication of a number of national policy documents and local initiatives is a cause for concern.

  11. Geochemical processes controlling water salinization in an irrigated basin in Spain: Identification of natural and anthropogenic influence

    Energy Technology Data Exchange (ETDEWEB)

    Merchán, D., E-mail: d.merchan@igme.es [Geological Survey of Spain — IGME, C/Manuel Lasala 44 9B, 50006 Zaragoza (Spain); Auqué, L.F.; Acero, P.; Gimeno, M.J. [University of Zaragoza — Department of Earth Sciences (Geochemical Modelling Group), C/Pedro Cerbuna 12, 50009 Zaragoza (Spain); Causapé, J. [Geological Survey of Spain — IGME, C/Manuel Lasala 44 9B, 50006 Zaragoza (Spain)

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. - Highlights: • Salinization in Lerma Basin was controlled by the dissolution of soluble salts. • Water salinization and nitrate pollution were found to be independent processes. • High NO{sub 3}, fresh groundwater evolved to lower NO{sub 3}, higher salinity surface water. • Inverse and direct geochemical modeling confirmed the hypotheses. • Salinization was a natural ongoing process

  12. Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities

    International Nuclear Information System (INIS)

    Allen, D.E.; Strazisar, B.R.; Soong, Y.; Hedges, S.W.

    2005-01-01

    The ultimate capacity of saline formations to sequester carbon dioxide by solubility and mineral trapping must be determined by simulating sequestration with geochemical models. These models, however, are only as reliable as the data and reaction scheme on which they are based. Several models have been used to make estimates of carbon dioxide solubility and mineral formation as a function of pressure and fluid composition. Intercomparison of modeling results indicates that failure to adjust all equilibrium constants to account for elevated carbon dioxide pressures results in significant errors in both solubility and mineral formation estimates. Absence of experimental data at high carbon dioxide pressures and high salinities make verification of model results difficult. Results indicate standalone solubility models that do not take mineral reactions into account will underestimate the total capacity of aquifers to sequester carbon dioxide in the long term through enhanced solubility and mineral trapping mechanisms. Overall, it is difficult to confidently predict the ultimate sequestration capacity of deep saline aquifers using geochemical models. (author)

  13. Evaluation of salinity stress on morphophysiological traits of four salin tolarant wheat cultivars

    Directory of Open Access Journals (Sweden)

    leila yadelerloo

    2009-06-01

    Full Text Available For assessment the effects of salinity on morphophysiological traits of wheat an experiment with four caltivars (Karchia, Sorkh tokhm, Sholeh and Roshan and one line (1-66-22 in four salt concentrations(0, 60, 120, and 180 mM NaCl, were conducted by factorial analysis in a completely randomized design with three replications. The rate of leaf area were measured in four stages. In booting stage, relative chlorophyll content (SPAD meter, and in pollination phase the rate of Na+ and K+ iones in four leaves(up to down were assessed and finally stem length and total dry matter were measured. Results showed that salinity reduced leaf area, total dry matter stem length of plants and relative chlorophyll content. With increasing of salinity the rate of Na+ were increased but the rate of K+ iones were decreased. Also the salt exclusion was observed at nodes of stem that of 1-66-22 was spot form.

  14. SMAP Salinity Artifacts Associated With Presence of Rain

    Science.gov (United States)

    Jacob, M. M.; Santos-Garcia, A.; Jones, L.

    2016-02-01

    The Soil Moisture Active Passive (SMAP) satellite carries an L-band radiometer, which measures sea surface salinity (SSS) over a swath of 1000 km @ 40 km resolution. SMAP can extend the Aquarius (AQ) salinity data record with improved temporal/spatial sampling. Previous studies [see references] have demonstrated significant differences between satellite and in-situ salinity measurements during rain. In the presence of precipitation, salinity stratification exists near the sea surface, which nullifies the presumption of a well-mixed salinity. In general, these salinity gradients last only a few hours and the upper layer becomes slightly fresher in salinity. This paper describes the Rain Impact Model (RIM) that simulates the effects of rain accumulation on the SSS [Santos-Garcia et al., 2014] applied to SMAP. This model incorporates rainfall information for the previous 24 hours to the measurement sample (in this case SMAP) and uses as initialization the Hybrid Coordinate Ocean Model (HYCOM) data. Given the better resolution of SMAP, the goal of this paper is to continue the analysis previously done with AQ to better understand the effects of the instantaneous and accumulated rain on the salinity measurements. Boutin, J., N. Martin, G. Reverdin, X. Yin, and F. Gaillard (2013), Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain, Ocean Sci., 9(1), 183-192, doi:10.5194/os-9-183-2013. Santos-Garcia, A., M. Jacob, L. Jones, W. Asher, Y. Hejazin, H. Ebrahimi, and M. Rabolli (2014), Investigation of rain effects on Aquarius Sea Surface Salinity measurements, J. Geophys. Res. Oceans, 119, 7605-7624, doi:10.1002/2014JC010137. Tang, W., S.H Yueh, A. Hayashi, A.G. Fore, W.L. Jones, A. Santos-Garcia, and M.M. Jacob, (2015), Rain-Induced Near Surface Salinity Stratification and Rain Roughness Correction for Aquarius SSS Retrieval, in Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 8(99), 1-11, doi: 10.1109/JSTARS.2015.2463768.

  15. Salinity tolerance of Picochlorum atomus and the use of salinity for contamination control by the freshwater cyanobacterium Pseudanabaena limnetica.

    Directory of Open Access Journals (Sweden)

    Nicolas von Alvensleben

    Full Text Available Microalgae are ideal candidates for waste-gas and -water remediation. However, salinity often varies between different sites. A cosmopolitan microalga with large salinity tolerance and consistent biochemical profiles would be ideal for standardised cultivation across various remediation sites. The aims of this study were to determine the effects of salinity on Picochlorum atomus growth, biomass productivity, nutrient uptake and biochemical profiles. To determine if target end-products could be manipulated, the effects of 4-day nutrient limitation were also determined. Culture salinity had no effect on growth, biomass productivity, phosphate, nitrate and total nitrogen uptake at 2, 8, 18, 28 and 36 ppt. 11 ppt, however, initiated a significantly higher total nitrogen uptake. While salinity had only minor effects on biochemical composition, nutrient depletion was a major driver for changes in biomass quality, leading to significant increases in total lipid, fatty acid and carbohydrate quantities. Fatty acid composition was also significantly affected by nutrient depletion, with an increased proportion of saturated and mono-unsaturated fatty acids. Having established that P. atomus is a euryhaline microalga, the effects of culture salinity on the development of the freshwater cyanobacterial contaminant Pseudanabaena limnetica were determined. Salinity at 28 and 36 ppt significantly inhibited establishment of P. limnetica in P. atomus cultures. In conclusion, P. atomus can be deployed for bioremediation at sites with highly variable salinities without effects on end-product potential. Nutrient status critically affected biochemical profiles--an important consideration for end-product development by microalgal industries. 28 and 36 ppt slow the establishment of the freshwater cyanobacterium P. limnetica, allowing for harvest of low contaminant containing biomass.

  16. Genome interrogation for novel salinity tolerant Arabidopsis mutants.

    Science.gov (United States)

    van Tol, Niels; Pinas, Johan; Schat, Henk; Hooykaas, Paul J J; van der Zaal, Bert J

    2016-12-01

    Soil salinity is becoming an increasingly large problem in agriculture. In this study, we have investigated whether a capacity to withstand salinity can be induced in the salinity sensitive plant species Arabidopsis thaliana, and whether it can be maintained in subsequent generations. To this end, we have used zinc finger artificial transcription factor (ZF-ATFs) mediated genome interrogation. Already within a relatively small collection Arabidopsis lines expressing ZF-ATFs, we found 41 lines that were tolerant to 100 mM NaCl. Furthermore, ZF-ATF encoding gene constructs rescued from the most strongly salinity tolerant lines were indeed found to act as dominant and heritable agents for salinity tolerance. Altogether, our data provide evidence that a silent capacity to withstand normally lethal levels of salinity exists in Arabidopsis and can be evoked relatively easily by in trans acting transcription factors like ZF-ATFs. © 2016 John Wiley & Sons Ltd.

  17. Monitoring the Impact of Climate Change on Soil Salinity in Agricultural Areas Using Ground and Satellite Sensors

    Science.gov (United States)

    Corwin, D. L.; Scudiero, E.

    2017-12-01

    Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California's San Joaquin Valley (SJV), or areas receiving above average rainfall for a decade or more, such as Minnesota's Red River Valley (RRV). Climate change has impacted water availability with an under or over abundance, which subsequently has impacted soil salinity levels in the root zone primarily from the upward movement of salts from shallow water tables. Inventorying and monitoring the impact of climate change on soil salinity is crucial to evaluate the extent of the problem, to recognize trends, and to formulate state-wide and field-scale irrigation, drainage, and crop management strategies that will sustain the agricultural productivity of the SJV and RRV. Over the past 3 decades, Corwin and colleagues at the U.S. Salinity Laboratory have developed proximal sensor (i.e., electrical resistivity and electromagnetic induction) and remote imagery (i.e., MODIS and Landsat 7) methodologies for assessing soil salinity at multiple scales: field (0.5 ha to 3 km2), landscape (3 to 10 km2), and regional (10 to 105 km2) scales. The purpose of this presentation is to provide an overview of these scale-dependent salinity assessment technologies. Case studies for SJV and RRV are presented to demonstrate at multiple scales the utility of these approaches in assessing soil salinity changes due to management-induced changes and to changes in climate patterns, and in providing site-specific irrigation management information for salinity control. Decision makers in state and federal agencies, irrigation and drainage district managers, soil and water resource managers, producers, agriculture consultants, extension specialists, and Natural Resource Conservation Service field staff are the beneficiaries of this information.

  18. Geochemical processes controlling water salinization in an irrigated basin in Spain: identification of natural and anthropogenic influence.

    Science.gov (United States)

    Merchán, D; Auqué, L F; Acero, P; Gimeno, M J; Causapé, J

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The density-salinity relation of standard seawater

    Science.gov (United States)

    Schmidt, Hannes; Seitz, Steffen; Hassel, Egon; Wolf, Henning

    2018-01-01

    The determination of salinity by means of electrical conductivity relies on stable salt proportions in the North Atlantic Ocean, because standard seawater, which is required for salinometer calibration, is produced from water of the North Atlantic. To verify the long-term stability of the standard seawater composition, it was proposed to perform measurements of the standard seawater density. Since the density is sensitive to all salt components, a density measurement can detect any change in the composition. A conversion of the density values to salinity can be performed by means of a density-salinity relation. To use such a relation with a target uncertainty in salinity comparable to that in salinity obtained from conductivity measurements, a density measurement with an uncertainty of 2 g m-3 is mandatory. We present a new density-salinity relation based on such accurate density measurements. The substitution measurement method used is described and density corrections for uniform isotopic and chemical compositions are reported. The comparison of densities calculated using the new relation with those calculated using the present reference equations of state TEOS-10 suggests that the density accuracy of TEOS-10 (as well as that of EOS-80) has been overestimated, as the accuracy of some of its underlying density measurements had been overestimated. The new density-salinity relation may be used to verify the stable composition of standard seawater by means of routine density measurements.

  20. Use of microwave remote sensing in salinity estimation

    International Nuclear Information System (INIS)

    Singh, R.P.; Kumar, V.; Srivastav, S.K.

    1990-01-01

    Soil-moisture interaction and the consequent liberation of ions causes the salinity of waters. The salinity of river, lake, ocean and ground water changes due to seepage and surface runoff. We have studied the feasibility of using microwave remote sensing for the estimation of salinity by carrying out numerical calculations to study the microwave remote sensing responses of various models representative of river, lake and ocean water. The results show the dependence of microwave remote sensing responses on the salinity and surface temperature of water. The results presented in this paper will be useful in the selection of microwave sensor parameters and in the accurate estimation of salinity from microwave remote sensing data

  1. Metabolic and hemodynamic effects of saline infusion to maintain volemia on temporary abdominal aortic occlusion

    Directory of Open Access Journals (Sweden)

    Fábio Ferreira Amorim

    2002-10-01

    Full Text Available OBJECTIVE: To analyze hemodynamic and metabolic effects of saline solution infusion in the maintenance of blood volume in ischemia-reperfusion syndrome during temporary abdominal aortic occlusion in dogs. METHODS: We studied 20 dogs divided into 2 groups: the ischemia-reperfusion group (IRG, n=10 and the ischemia-reperfusion group with saline solution infusion aiming at maintaining mean pulmonary arterial wedge pressure between 10 and 20 mmHg (IRG-SS, n=10. All animals were anesthetized with sodium thiopental and maintained on spontaneous ventilation. Occlusion of the supraceliac aorta was obtained with inflation of a Fogarty catheter inserted through the femoral artery. After 60 minutes of ischemia, the balloon was deflated, and the animals were observed for another 60 minutes of reperfusion. RESULTS: IRG-SS dogs did not have hemodynamic instability after aortic unclamping, and the mean systemic blood pressure and heart rate were maintained. However, acidosis worsened, which was documented by a greater reduction of arterial pH that occurred especially due to the absence of a respiratory response to metabolic acidosis that was greater with the adoption of this procedure. CONCLUSION: Saline solution infusion to maintain blood volume avoided hemodynamic instability after aortic unclamping. This procedure, however, caused worsening in metabolic acidosis in this experimental model.

  2. Soil salinity under deficit drip irrigation of potato and millet in in an arid environment

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2017-06-01

    received rainfall. For millet experiments, salinity was lowest under emitters and highest midway to the margin of wetted bands and higher soil salinity was maintained in the root zone with deficit irrigation treatments than full irrigation. Millet and potato yields were highest under Full treatment. Yields decreased almost linearly when applied water was reduced. However, reduction in quality was significantly important for DI60 and DI40. The analysis outcome of the crops sensitivity to salt indicated respectively for autumn, winter and spring potato and millet crops that thresholds are close to the value calculated from published salt tolerance data (1.9, 1.55, 1.85 vs. 1.7 dS/m for potato and 3.46 vs. 3.65 dS/m for millet but the slopes are considerably steeper (34, 54, 47 vs. 12%; 17 vs. 6.7%, apparently because of the combined effect of salinity and water stresses. The results provide information’s to farmers for formulating improved planning regarding irrigation management practices. The results support the practicality of using the full irrigation (100% of ETc methodology to optimize irrigation with saline water for potato and millet production and to control soil salinity. Under situations of water shortage, the deficit irrigation strategy (DI80 and DI60 is recommended as a tool to schedule irrigation of potato and millet crops in arid regions of Tunisia.

  3. Degree of mucosal coating on double contrast barium enema : comparison of distilled water and normal saline as a suspension

    International Nuclear Information System (INIS)

    Seo, Tae Seok; Lee, Dong Ho; Ko, Young Tae; Lim, Joo Won; Han, Tae Il; Kim, Hyoung Jung

    1997-01-01

    To evaluate the degree of mucosal coating on double contrast barium enema (DCBE), using barium suspension made with distilled water or normal saline Between June 1 and July 30, 1996, fifty-four patients prospectively underwent DCBE using 83% w/v(weight-to-volume) of barium suspension (room temperature, 24 deg C), which was made with 1,200mL of distilled water (Group 1;29cases) and normal saline (Group 2;25cases) per 1Kg of Solotop (Taejoon Pharmacy, Seoul, Korea). Bowel preparation and examination methods were the same in both groups, and four projections(erect view, supine view, both decubitus views) were taken. The mucosal coating was graded as excellent, good, ordinary, or poor by three radiologists working independently, and scored from 3 to 0. Significance was analyzed by t-test. Mean grading scores were 2.33±0.70 in group 1 and 1.56±0.99 in group 2 (P<0.003). When barium suspension made with distilled water was used, the degree of mucosal coating on DCBE was better than when the suspension was made with normal saline

  4. Communication received from the Permanent Mission of the Netherlands on behalf of the Member States of the Nuclear Suppliers Group

    International Nuclear Information System (INIS)

    2000-01-01

    The document reproduces the text of the updated version of the paper entitled 'The Nuclear Suppliers Group: Its origins, role and activities' received by the Director General of IAEA on 4 April 2000, as attachment to a letter from the Permanent Mission of the Netherlands to the Agency on behalf of the Member States of the 'Nuclear Suppliers Group (NSG)'

  5. Species Sorting of Benthic Invertebrates in a Salinity Gradient – Importance of Dispersal Limitation

    Science.gov (United States)

    Josefson, Alf B.

    2016-01-01

    The relative importance of environment and dispersal related processes for community assembly has attracted great interest over recent decades, but few empirical studies from the marine/estuarine realm have examined the possible effects of these two types of factors in the same system. Importance of these processes was investigated in a hypothetical metacommunity of benthic invertebrates in 16 micro-tidal estuaries connected to the same open sea area. The estuaries differed in size and connectivity to the open sea and represented a salinity gradient across the estuaries. The Elements of Metacommunity Structure (EMS) approach on estuary scale was complemented with a mechanistic variance partitioning approach on sample scale to disentangle effects of factors affecting assembly of three trait groups of species with different dispersivity. A quasi-Clementsian pattern was observed for all three traits, a likely response to some latent gradient. The primary axis in the pattern was most strongly related to gradients in estuary salinity and estuary entrance width and correlation with richness indicated nestedness only in the matrix of the most dispersive trait group. In the variance partitioning approach measures of turnover and nestedness between paired samples each from different estuaries were related to environmental distance in different gradients. Distance between estuaries was unimportant suggesting importance of factors characterizing the estuaries. While the high dispersive species mainly were sorted in the salinity gradient, apparently according to their tolerance ranges towards salinity, the two less dispersive traits were additionally affected by estuary entrance width and possibly also area. The results exemplify a mechanism of community assembly in the marine realm where the niche factor salinity in conjunction with differential dispersal structure invertebrates in a metacommunity of connected estuaries, and support the idea that dispersive species are more

  6. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  7. Dwarfism of blue mussels in the low saline Baltic Sea — growth to the lower salinity limit

    DEFF Research Database (Denmark)

    Riisgård, Hans Ulrik; Larsen, Poul Scheel; Turja, Raisa

    2014-01-01

    Mussels within the Baltic Mytilus edulis × M. trossulus hybrid zone have adapted to the low salinities in the Baltic Sea which, however, results in slow-growing dwarfed mussels. To get a better understanding of the nature of dwarfism, we studied the ability of M. trossulus to feed and grow at low...... to become negative below 4.5 psu. We suggest that reduced ability to produce shell material at extremely low salinity may explain dwarfism of mussels in the Baltic Sea. Reduced bio-calcification at low salinity, however, may impede shell growth, but not somatic growth, and this may at first result...

  8. Effects of Hypertonic Saline Solution on Clinical Parameters, Serum Electrolytes and Plasma Volume in the Treatment of Haemorrhagic Septicaemia in Buffaloes

    Directory of Open Access Journals (Sweden)

    M. Arif Zafar*, G. Muhammad, Zafar Iqbal1 and M. Riaz2

    2010-04-01

    Full Text Available This study was conducted to determine the efficacy of hypertonic saline solution (HSS along with antibiotic (ceftiofur HCl and non-steroidal anti-inflammatory drug (ketoprofen in the treatment of haemorrhagic septicaemia in buffaloes. For this purpose, 50 buffaloes suffering from haemorrhagic septicaemia were randomly divided in two equal groups A and B. Group A served as control and was treated with ceftiofur HCl (IM and ketoprofen (IV @ 6 and 2 mg/Kg BW, respectively, for five days. Buffaloes of group B were administered with rapid intravenous infusion of hypertonic saline solution (7.5% NaCl @ 4 ml/Kg BW once in combination with ceftiofur HCl and ketoprofen. Animals were monitored for 24 hours after initiation of treatment. Clinical parameters, serum electrolytes, plasma volume and survival index were recorded at different intervals after treatment. Survival rate (80% in group B was significantly higher (P<0.05 than 48% in group A. The heart rate and respiration rate recovered more effectively in the buffaloes administered with treatment protocol B. Plasma volume was 98% which was almost normal within 24 hours after the infusion of hypertonic saline solution to the animals of group B. It was concluded from the study that hypertonic saline solution as an adjunct to antibiotic and a non-steroidal anti-inflammatory drug more efficiently improved respiration and heart rates and effectively restored plasma volume in resuscitating the buffaloes from haemorrhagic septicaemia than the conventional treatment.

  9. Plant Proteinase Inhibitor BbCI Modulates Lung Inflammatory Responses and Mechanic and Remodeling Alterations Induced by Elastase in Mice

    OpenAIRE

    Almeida-Reis, Rafael; Theodoro-Junior, Osmar A.; Oliveira, Bruno T. M.; Oliva, Leandro V.; Toledo-Arruda, Alessandra C.; Bonturi, Camila R.; Brito, Marlon V.; Lopes, Fernanda D. T. Q. S.; Prado, Carla M.; Florencio, Ariana C.; Martins, Mílton A.; Owen, Caroline A.; Leick, Edna A.; Oliva, Maria L. V.; Tibério, Iolanda F. L. C.

    2017-01-01

    Background. Proteinases play a key role in emphysema. Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a serine-cysteine proteinase inhibitor. We evaluated BbCI treatment in elastase-induced pulmonary alterations. Methods.??C57BL/6 mice received intratracheal elastase (ELA group) or saline (SAL group). One group of mice was treated with BbCI (days 1, 15, and 21 after elastase instillation, ELABC group). Controls received saline and BbCI (SALBC group). After 28 days, we evaluated respirator...

  10. Hydrochemical Characteristics and Formation of the Saline or Salty Springs in Eastern Sichuan Basin of China

    Science.gov (United States)

    Zhou, X.

    2017-12-01

    Saline or salty springs provide important information on the hydrogeochemical processes and hydrology within subsurface aquifers. More than 20 saline and salty springs occur in the core of anticlines in the eastern Sichuan Basin in southwestern China where the Lower and Middle Triassic carbonates outcrop. Water samples of 8 saline and salty springs (including one saline hot spring) were collected for analyses of the major and minor constituents, trace elements and stable oxygen and hydrogen isotopes. The TDS of the springs range from 4 to 83 g/L, and they are mainly of Cl-Na type. Sr, Ba and Li are the predominant trace elements. The δ2H and δ18O of the water samples indicate that they are of meteoric origin. The source of salinity of the springs originates from dissolution of minerals in the carbonates, including halite, gypsum, calcite and dolomite. The formation mechanism of the springs is that groundwater receives recharge from infiltration of precipitation, undergoes shallow or deep circulation in the core of the anticline and incongruent dissolution of the salt-bearing carbonates occurs, and emerges in the river valley in the form of springs with relatively high TDS. The 8 springs can be classified into 4 springs of shallow groundwater circulation and 4 springs of deep groundwater circulation according to the depth of groundwater circulation, 7 springs of normal temperature and 1 hot spring according to temperature. There are also 2 up-flow springs: the carbonate aquifers are overlain by relatively impervious sandstone and shale, groundwater may flows up to the ground surface through the local portion of the overlying aquiclude where fractures were relatively well developed, and emerges as an up-flow spring. Knowledge of the hydrochemical characteristics and the geneses of the saline and salty springs are of important significance for the utilization and preservation of the springs.

  11. Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing.

    Science.gov (United States)

    Rahman, Hifzur; Jagadeeshselvam, N; Valarmathi, R; Sachin, B; Sasikala, R; Senthil, N; Sudhakar, D; Robin, S; Muthurajan, Raveendran

    2014-07-01

    Finger millet (Eleusine coracana L.) is a hardy cereal known for its superior level of tolerance against drought, salinity, diseases and its nutritional properties. In this study, attempts were made to unravel the physiological and molecular basis of salinity tolerance in two contrasting finger millet genotypes viz., CO 12 and Trichy 1. Physiological studies revealed that the tolerant genotype Trichy 1 had lower Na(+) to K(+) ratio in leaves and shoots, higher growth rate (osmotic tolerance) and ability to accumulate higher amount of total soluble sugar in leaves under salinity stress. We sequenced the salinity responsive leaf transcriptome of contrasting finger millet genotypes using IonProton platform and generated 27.91 million reads. Mapping and annotation of finger millet transcripts against rice gene models led to the identification of salinity responsive genes and genotype specific responses. Several functional groups of genes like transporters, transcription factors, genes involved in cell signaling, osmotic homeostasis and biosynthesis of compatible solutes were found to be highly up-regulated in the tolerant Trichy 1. Salinity stress inhibited photosynthetic capacity and photosynthesis related genes in the susceptible genotype CO 12. Several genes involved in cell growth and differentiation were found to be up-regulated in both the genotypes but more specifically in tolerant genotype. Genes involved in flavonoid biosynthesis were found to be down-regulated specifically in the salinity tolerant Trichy 1. This study provides a genome-wide transcriptional analysis of two finger millet genotypes differing in their level of salinity tolerance during a gradually progressing salinity stress under greenhouse conditions.

  12. Salinity anomaly as a trigger for ENSO events.

    Science.gov (United States)

    Zhu, Jieshun; Huang, Bohua; Zhang, Rong-Hua; Hu, Zeng-Zhen; Kumar, Arun; Balmaseda, Magdalena A; Marx, Lawrence; Kinter, James L

    2014-10-29

    According to the classical theories of ENSO, subsurface anomalies in ocean thermal structure are precursors for ENSO events and their initial specification is essential for skillful ENSO forecast. Although ocean salinity in the tropical Pacific (particularly in the western Pacific warm pool) can vary in response to El Niño events, its effect on ENSO evolution and forecasts of ENSO has been less explored. Here we present evidence that, in addition to the passive response, salinity variability may also play an active role in ENSO evolution, and thus important in forecasting El Niño events. By comparing two forecast experiments in which the interannually variability of salinity in the ocean initial states is either included or excluded, the salinity variability is shown to be essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate salinity observations with large-scale spatial coverage.

  13. Oceanographic profile temperature and salinity measurements collected using bottle from the STEFAN MALYGIN and SAMOED in the Arctic in 1931 (NODC Accession 0001090)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, and meteorology data received at NODC on 05/02/03 by Igor Smolyar from the personal library of Dr. Aleksey Zuyev, Murmansk Branch of the...

  14. Oceanographic profile temperature, salinity, oxygen, nutrients, and plankton measurements collected using bottle from the Parizeau in the North Pacific Ocean (NODC Accession 0002242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, oxygen and other profile data received at NODC on 09/09/04 by Sydney Levitus from the Institute of Ocean Sciences (Sidney, B.C.), digitized...

  15. Verrerie de Passavant-la-Rochère/faïencerie de Salins

    OpenAIRE

    Barbe, Noël

    2007-01-01

    Le travail du verre est présent dès le Moyen Age à Passavant-la-Rochère. A Salins, la production céramique date du début du xviiie siècle. Sur chacun de ces sites subsiste une unité de production représentant par ailleurs la dernière activité de ce type dans la région administrative constituée par la Franche-Comté. La verrerie de Passavant-la-Rochère est une entreprise familiale employant 250 ouvriers. La faïencerie de Salins est aujourd'hui intégrée au groupe Sarreguemines-Digoin dont elle c...

  16. Furfural and its biochar improve the general properties of a saline soil

    Science.gov (United States)

    Wu, Y.; Xu, G.; Shao, H. B.

    2014-07-01

    Organic materials (e.g., furfural residue) are generally believed to improve the physical and chemical properties of saline soils with low fertility. Recently, biochar has been received more attention as a possible measure to improve the carbon balance and improve soil quality in some degraded soils. However, little is known about their different amelioration of a sandy saline soil. In this study, 56 d incubation experiment was conducted to evaluate the influence of furfural and its biochar on the properties of saline soil. The results showed that both furfural and biochar greatly reduced pH, increased soil organic carbon (SOC) content and cation exchange capacity (CEC), and enhanced the available phosphorus (P) in the soil. Furfural is more efficient than biochar in reducing pH: 5% furfural lowered the soil pH by 0.5-0.8 (soil pH: 8.3-8.6), while 5% biochar decreased by 0.25-0.4 due to the loss of acidity in pyrolysis process. With respect to available P, furfural addition at a rate of 5% increased available P content by 4-6 times in comparison to 2-5 times with biochar application. In reducing soil exchangeable sodium percentage (ESP), biochar is slightly superior to furfural because soil ESP reduced by 51% and 43% with 5% furfural and 5% biochar at the end of incubation. In addition, no significant differences were observed between furfural and biochar about their capacity to retain N, P in leaching solution and to increase CEC in soil. These facts may be caused by the relatively short incubation time. In general, furfural and biochar exhibited a different effect depending on the property: furfural was more effective in decreasing pH and increasing available P, whereas biochar played a more important role in increasing SOC and reducing ESP of saline soil.

  17. Impact of highly saline wetland ecosystem on floral diversity of the Cholistan desert

    International Nuclear Information System (INIS)

    Gill, A.H.; Ahmad, K.S.; Habib, S.; Ahmad, S.A.; Nawaz, T.; Ahmad, F.

    2012-01-01

    The impact of highly saline wetland ecosystem created under Salinity Control and Reclamation Project (SCARP) on floral diversity was investigated in the arid environments of Cholistan Desert. Species richness, diversity indices and evenness indices were worked out to look at the distance at which the salt water has altered the native vegetation. Four sites including SCARP ponds of different ages (S1, S2, S3 and S4), and a reference site (SR) were selected for vegetation studies and data were recorded by 1 x 1 m quadrats, which were laid on permanent transect lines. Salt water showed great influence on ecological parameters of the native vegetation up to 40 m. Multivariate (cluster) analysis showed close clustering of highly salt tolerant species, Aeluropus lagopoides, Tamarix dioica and Suaeda fruticosa in one group, and relatively less tolerant Crotalaria burhia, Cyperus conglomeratus, Indigofera argentea, Haloxylon salicornicum, Haloxylon stocksii, Neurada procumbens and Salsola baryosma in second group. Moderately salt tolerant Aristida adscensionis, Lasiurus scindicus and Sporobolus iocladus were clustered in a separate group. (author)

  18. Investigations in Marine Chemistry: Salinity II.

    Science.gov (United States)

    Schlenker, Richard M.

    Presented is a science activity in which the student investigates methods of calibration of a simple conductivity meter via a hands-on inquiry technique. Conductivity is mathematically compared to salinity using a point slope formula and graphical techniques. Sample solutions of unknown salinity are provided so that the students can sharpen their…

  19. Do intravenous N-acetylcysteine and sodium bicarbonate prevent high osmolal contrast-induced acute kidney injury? A randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Antonio Jose Inda-Filho

    Full Text Available N-acetylcysteine (NAC or sodium bicarbonate (NaHCO3, singly or combined, inconsistently prevent patients exposed to radiographic contrast media from developing contrast-induced acute kidney injury (CI-AKI.We asked whether intravenous isotonic saline and either NaHCO3 in 5% dextrose or else a high dose of NAC in 5% dextrose prevent CI-AKI in outpatients exposed to high-osmolal iodinated contrast medium more than does saline alone.This completed prospective, parallel, superiority, open-label, controlled, computer-randomized, single-center, Brazilian trial (NCT01612013 hydrated 500 adult outpatients (214 at high risk of developing CI-AKI exposed to ioxitalamate during elective coronary angiography and ventriculography. From 1 hour before through 6 hours after exposure, 126 patients (group 1 received a high dose of NAC and saline, 125 (group 2 received NaHCO3 and saline, 124 (group 3 received both treatments, and 125 (group 4 received only saline.Groups were similar with respect to age, gender, weight, pre-existing renal dysfunction, hypertension, medication, and baseline serum creatinine and serum cystatin C, but diabetes mellitus was significantly less prevalent in group 1. CI-AKI incidence 72 hours after exposure to contrast medium was 51.4% (257/500, measured as serum creatinine > (baseline+0.3 mg/dL and/or serum cystatin C > (1.1 · baseline, and 7.6% (38/500, measured as both serum creatinine and serum cystatin C > (baseline+0.3 mg/dL or > (1.25 · baseline. CI-AKI incidence measured less sensitively was similar among groups. Measured more sensitively, incidence in group 1 was significantly (p<0.05 lower than in groups 2 and 3 but not group 4; adjustment for confounding by infused volume equalized incidence in groups 1 and 3.We found no evidence that intravenous isotonic saline and either NaHCO3 or else a high dose of NAC prevent CI-AKI in outpatients exposed to high osmolal iodinated contrast medium more than does saline alone

  20. Dose finding study of granisetron in patients receiving high-dose cisplatin chemotherapy. The Granisetron Study Group.

    Science.gov (United States)

    Riviere, A.

    1994-01-01

    The efficacy and safety of three different doses of granisetron (2 micrograms kg-1, group A; 10 micrograms kg-1, group B; 40 micrograms kg-1, group C) were compared in a randomised, double-blind study of 157 patients due to receive high-dose cisplatin therapy (mean dose > 97 mg m-2). In each group, up to two 3 mg rescue doses of granisetron were allowed if more than mild nausea or vomiting occurred. In group A 30.8%, in group B 61.5% and in group C 67.9% of patients were complete responders (i.e. no vomiting or nothing worse than mild nausea) during the first 24 h. These differences are significant between groups A and B, and A and C. There were no statistically significant differences in any efficacy variable between the 10 micrograms kg-1 and 40 micrograms kg-1 groups, although in each case the trend favoured the higher dose. Additional rescue doses resulted in resolved or improved symptoms in 95.3% for the first rescue dose and 93.3% for the second. Over the 7 days of the study, 82.7%, 82.7% and 86.8% of patients in groups A, B and C respectively were treated with granisetron alone. Headache was the most common side-effect, reported by 9.6% of patients; the majority of headaches were mild. There was no difference between the treatment groups regarding the adverse event rate. We concluded that prophylactic doses of 10 or 40 micrograms kg-1 lead to a safe and satisfactory degree of control of nausea and vomiting induced by high-dose cisplatin. PMID:8180032

  1. Influence of salinity and cadmium on the survival and ...

    African Journals Online (AJOL)

    osmoregulated at salinities between 5 and 25 and osmoconformed at salinities greater than 25. Chiromantes eulimene followed a hyper-hypo-osmoregulatory strategy; it hyper-regulated in salinities from 0 up to isosmotic conditions at about 28 (c.

  2. Population specific salinity tolerance in eelgrass (Zostera marina)

    DEFF Research Database (Denmark)

    Salo, Tiina Elina; Pedersen, Morten Foldager; Boström, Christoffer

    2014-01-01

    and that the lowsaline population is better adapted to hyposaline conditions. Despite the long-term adaptation of the low saline population to stable, low salinity, these plants were still able to function normally in high salinities, indicating remarkable plasticity. The results further suggest that altered salinity...

  3. Salinity information in coral δ18O records

    Science.gov (United States)

    Conroy, J. L.; Thompson, D. M.; Dassié, E. P.; Stevenson, S.; Konecky, B. L.; DeLong, K. L.; Sayani, H. R.; Emile-Geay, J.; Partin, J. W.; Abram, N. J.; Martrat, B.

    2017-12-01

    Coral oxygen isotopic ratios (δ18O) are typically utilized to reconstruct sea surface temperature (SST), or SST-based El Niño-Southern Oscillation metrics (e.g., NIÑO3.4), despite the influence of both SST and the oxygen isotopic composition of seawater (δ18Osw) on coral δ18O. The ideal way to isolate past δ18Osw variations is to develop independent and univariate SST and δ18Osw responders, for instance, via paired coral δ18O and Sr/Ca analyses. Nonetheless, many coral δ18O records without paired Sr/Ca records already exist in the paleoclimatic literature, and these may be able to provide some insight into past δ18Osw and salinity changes due to the nature of the significant positive relationship between instrumental salinity and δ18Osw. Here we use coral δ18O records from the new PAGES Iso2k database to assess the regions in which coral δ18O has the greatest potential to provide salinity information based on the strength of the relationship between instrumental salinity and coral δ18O values. We find from annual pseudocoral similations that corals in the western tropical Pacific share a substantial fraction of their variance with δ18Osw rather than SST. In contrast, in the Indian Ocean and eastern tropical Pacific it is SST that predominantly explains coral δ18O variance. In agreement with this variance decomposition, we find that coral δ18O time series from the western tropical Pacific are significantly correlated with mid to late 20th century salinity. However, variations in the strength of the δ18Osw-salinity relationship across the western tropical Pacific will likely have a significant influence on coral δ18O-based salinity reconstructions. Additionally, in some cases a strong, negative correlation between SST and δ18Osw might not allow their influences to be adequately separated in coral δ18O records without the use of coupled Sr/Ca estimates of the temperature contribution. Overall, we find a range of modern salinity and SST

  4. The effectiveness of dispersants under various temperature and salinity regimes

    International Nuclear Information System (INIS)

    Fingas, M.; Fieldhouse, B.; Wang, Z.; Environment Canada, Ottawa, ON

    2005-01-01

    A series of tests were conducted to determine the effectiveness of dispersants in Arctic waters where salinity and temperature interactions play a critical role. In particular, Corexit 9500 was tested on Alaska North Slope oil at different temperatures and salinity using the ASTM standard test and variations of this test. Results were compared to the only historically reported test in which both temperature and salinity were changed over a range of values. This series of tests demonstrated that there is an interaction between salinity, temperature and dispersant effectiveness. It was shown that conventional and currently available dispersants are nearly ineffective at 0 salinity. Dispersant effectiveness peaks at 20 to 40 units of salinity, depending on the type of dispersant. Corexit is less sensitive to salinity, while Corexit 9527 is more sensitive to salinity. There is a smooth gradient of effectiveness with salinity both as the salinity rises to a peak point of effectiveness and as it exceeds this value. Results from the 2 field trials in fresh water suggest that laboratory tests correctly conclude that the effectiveness of dispersants is very low in freshwater. The study also examined several analytical factors such as the total petroleum hydrocarbon (TPH) versus relative petroleum hydrocarbon (RPH) methods, specific versus general calibration curves, and automatic versus manual baseline placement. The analytical variations of effectiveness by RPH or TPH methods do not affect the fundamental relationship between salinity and temperature. 6 refs., 6 tabs., 8 figs

  5. The Immediate and Delayed Post-Debridement Effects on Tissue Bacterial Wound Counts of Hypochlorous Acid Versus Saline Irrigation in Chronic Wounds.

    Science.gov (United States)

    Hiebert, John M; Robson, Martin C

    2016-01-01

    Introduction: Wound debridement is considered essential in chronic wound management. Hypochlorous acid has been shown to be an effective agent in reducing wound bacterial counts in open wounds. Ultrasound-enabled wound debridement is an effective and efficient method of debridement. This study compared ultrasound irrigation with hypochlorous acid versus saline irrigation for wound debridement on pre- and postoperative wounds and determined regrowth of bacteria over 1 week period of time. Finally, the outcome of definitive wound closure of the clinically clean-appearing wounds was recorded. Methods: Seventeen consenting adult patients with chronic open wounds were randomly selected for study. The patients were randomly divided into the hypochlorous acid irrigation or saline irrigation group. All patients provided pre- and postoperative tissue samples for qualitative and quantitative bacteriology. For the time (7 days) between the debridement procedure and the definitive closure procedure, the wounds were dressed with a silver-impregnated dressing and a hydroconductive dressing. Results : Both types of irrigation in the ultrasonic system initially lowered the bacterial counts by 4 to 6 logs. However, by the time of definitive closure, the saline-irrigated wounds had bacterial counts back up to 10 5 whereas the hypochlorous acid-irrigated wounds remained at 10 2 or fewer. More than 80% of patients in the saline group had postoperative closure failure compared with 25% of patients in the hypochlorous acid group. Conclusions: Hypochlorous acid irrigation with ultrasound debridement reduced bacterial growth in chronic open wounds more efficiently than saline alone. Postoperative wound closure outcomes suggest a remarkable reduction in wound complications after wound debridement using hypochlorous acid irrigation with ultrasound versus saline alone.

  6. Abacus to determine soils salinity in presence of saline groundwater in arid zones case of the region of Ouargla

    Science.gov (United States)

    Fergougui, Myriam Marie El; Benyamina, Hind; Boutoutaou, Djamel

    2018-05-01

    In order to remedy the limit of salt intake to the soil surface, it is necessary to study the causes of the soil salinity and find the origin of these salts. The arid areas in the region of Ouargla lie on excessively mineralized groundwater whose level is near the soil surface (0 - 1.5 m). The topography and absence of a reliable drainage system led to the rise of the groundwater beside the arid climatic conditions contributed to the salinization and hydromorphy of the soils. The progress and stabilization of cultures yields in these areas can only occur if the groundwater is maintained (drained) to a depth of 1.6 m. The results of works done to the determination of soil salinity depend mainly on the groundwater's salinity, its depth and the climate.

  7. Decline of the world's saline lakes

    Science.gov (United States)

    Wayne A. Wurtsbaugh; Craig Miller; Sarah E. Null; R. Justin DeRose; Peter Wilcock; Maura Hahnenberger; Frank Howe; Johnnie Moore

    2017-01-01

    Many of the world’s saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and...

  8. Salinity controls on plant transpiration and soil water balance

    Science.gov (United States)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  9. The Comparison of Micromorphological properties of Saline – Sodic and Nonsaline-Nonsodic Soils around the Urmia Lake

    Directory of Open Access Journals (Sweden)

    S. chakherloo

    2015-06-01

    Full Text Available In order to comparision of the micromorphic properties of saline-sodic and nonsaline-nonsodic soils in the west of Urmia Lake, four soil profiles (2profile in saline-sodic soils and 2profiles in nonsaline-nonsodic soils were investigated. These profiles were described and sampled using standard methods. soil samples were used for physico chemical analysis and undisturbed and oriented samples were used for thin section preparation. Thin sections were studied using polarizing microscope in PPL and XPL lights. Thin sections studies showed that saline-sodic soils are structure less (apedal, and their voids are mostly vughs and channel and as a result, their, nonsaline-nonsodic soils are pedal with compound packing voids, vughs and planar voids and as a result, The b.fabric in these to group of soils is crystallitic. In saline sodic soils pedofeatures are illuvial clay coatings, salt accumulations including coatings and infillings of halite in channel and vughs. These pedofeatures were not seen in nonsaline-nonsodic soils. Organic coatings were seen as black colored films on peds and in some cases mixed with groundmass of saline-sodic soils.Calcium carbonate accumulations as nodules and coatings and nodules and coatings of iron and Mn oxides were seen in both saline-sodic and nonsaline-nonsodic soils.

  10. Time-dependence of salinity in monsoonal estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    Vijith, V.; Sundar, D.; Shetye, S.R.

    processes (diffusion, gravity current formation, impact of tidal asymmetries, etc.) is balanced by salinity-egress induced by runoff. Here we point out that the salinity field of the estuaries that are located on the coasts of the Indian subcontinent...

  11. [Neonatal Semax and saline injections induce open-field behavior changes in mice of different genotypes].

    Science.gov (United States)

    Shilova, O B; Markina, N V; Perepelkina, O V; Gichenok, I V; Korochkin, L I; Poletaeva, I I

    2004-01-01

    DBA/2, CBA mice, and their F1 hybrids (first series) and 101/HY and C3H mice (second series) were injected as neonates (2-7 days of life) with Semax (sc., 7 microg per animal). Semax is a peptide analogue of ACHT4-10 fragment which is resistant to degradation. The common feature of remote effects of both Semax and saline injections was the set of changes in the open-field behavior in adult (2.5- to 3-month-old) animals as compared to intact mice. Unexpectedly, the neonatal saline injections induced many changes in adult behavior, part of these effects being genotype-dependent. The most conspicuous shifts (genotype-dependent increase or decline) in freezing, grooming and rearing scores were displayed by DBA/2 and C3H mice, whereas the hole-poke frequencies were significantly changed in CBA and C3H mice. Squares crossed in the center of arena and rearing number were significantly increased in saline group of DBA/2 mice, whereas in Semax-injected DBA/2 group they were approximately equal to the level of intact mice. This means that the remote effects of noxious stimulation (injections of saline) were in some ways "compensated" as the result of concomitant peptide effect. At the same time, the numbers of freezing and grooming episodes were also increased in these groups. Because exploratory behavior and manifestations of anxiety increased or decreased simultaneously, it proves to be difficult to ascribe these changes to behavioral modulation along the "novelty seeking--anxiety" axis. In mice of other genotypes, changes in the same indices of the open-field behavior were revealed, but these changes were different in their direction. It was suggested that the complex patterns of postnatal behavior was the result of neonatal injections modulating subsequent brain development.

  12. High salinity conveys thermotolerance in the coral model Aiptasia

    KAUST Repository

    Gegner, Hagen M.

    2017-12-15

    The endosymbiosis between dinoflagellate algae of the genus Symbiodinium and stony corals provides the foundation of coral reef ecosystems. Coral bleaching, the expulsion of endosymbionts from the coral host tissue as a consequence of heat or light stress, poses a threat to reef ecosystem functioning on a global scale. Hence, a better understanding of the factors contributing to heat stress susceptibility and tolerance is needed. In this regard, some of the most thermotolerant corals also live in particularly saline habitats, but possible effects of high salinity on thermotolerance in corals are anecdotal. Here we test the hypothesis that high salinity may lead to increased thermotolerance. We conducted a heat stress experiment at low, intermediate, and high salinities using a set of host-endosymbiont combinations of the coral model Aiptasia. As expected, all host-endosymbiont combinations showed reduced photosynthetic efficiency and endosymbiont loss during heat stress, but the severity of bleaching was significantly reduced with increasing salinities for one of the host-endosymbiont combinations. Our results show that higher salinities can convey increased thermotolerance in Aiptasia, although this effect seems to be dependent on the particular host strain and/or associated symbiont type. This finding may help explain the extraordinarily high thermotolerance of corals in high salinity environments such as the Red Sea and the Persian/Arabian Gulf and provides novel insight regarding factors that contribute to thermotolerance. Since our results are based on a salinity effect in symbiotic sea anemones, it remains to be determined whether this salinity effect can also be observed in stony corals.

  13. High salinity conveys thermotolerance in the coral model Aiptasia

    KAUST Repository

    Gegner, Hagen M.; Ziegler, Maren; Radecker, Nils; Buitrago Lopez, Carol; Aranda, Manuel; Voolstra, Christian R.

    2017-01-01

    The endosymbiosis between dinoflagellate algae of the genus Symbiodinium and stony corals provides the foundation of coral reef ecosystems. Coral bleaching, the expulsion of endosymbionts from the coral host tissue as a consequence of heat or light stress, poses a threat to reef ecosystem functioning on a global scale. Hence, a better understanding of the factors contributing to heat stress susceptibility and tolerance is needed. In this regard, some of the most thermotolerant corals also live in particularly saline habitats, but possible effects of high salinity on thermotolerance in corals are anecdotal. Here we test the hypothesis that high salinity may lead to increased thermotolerance. We conducted a heat stress experiment at low, intermediate, and high salinities using a set of host-endosymbiont combinations of the coral model Aiptasia. As expected, all host-endosymbiont combinations showed reduced photosynthetic efficiency and endosymbiont loss during heat stress, but the severity of bleaching was significantly reduced with increasing salinities for one of the host-endosymbiont combinations. Our results show that higher salinities can convey increased thermotolerance in Aiptasia, although this effect seems to be dependent on the particular host strain and/or associated symbiont type. This finding may help explain the extraordinarily high thermotolerance of corals in high salinity environments such as the Red Sea and the Persian/Arabian Gulf and provides novel insight regarding factors that contribute to thermotolerance. Since our results are based on a salinity effect in symbiotic sea anemones, it remains to be determined whether this salinity effect can also be observed in stony corals.

  14. Estimation of salinity power potential in India

    Digital Repository Service at National Institute of Oceanography (India)

    Das, V.K.; RamaRaju, D.V.

    Salinity gradient as a source of energy has much potential, but this has been recognized only recently. The energy density of this source is equivalent to about 250 m water head for a salinity difference of 35 ppt. This source exists...

  15. Shallow rainwater lenses in deltaic areas with saline seepage

    NARCIS (Netherlands)

    Louw, de P.G.B.; Eeman, S.; Siemon, B.; `Voortman, B.R.; Gunnink, J.; Baaren, E.S.; Oude Essink, G.H.P.

    2011-01-01

    In deltaic areas with saline seepage, freshwater availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence and

  16. Shallow rainwater lenses in deltaic areas with saline seepage

    NARCIS (Netherlands)

    De Louw, Perry G.B.; Eeman, Sara; Siemon, Bernhard; Voortman, Bernard R.; Gunnink, Jan; Van Baaren, Esther S.; Oude Essink, Gualbert

    2011-01-01

    In deltaic areas with saline seepage, fresh water availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence

  17. Modelling the salinization of a coastal lagoon-aquifer system

    Science.gov (United States)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer salinization from a saltwater wedge intruding from the sea is often not representative of the actual aquifer’s salinization mechanisms.

  18. Effects of temperature and salinity on survival, growth and DNA methylation of juvenile Pacific abalone, Haliotis discus hannai Ino

    Science.gov (United States)

    Kong, Ning; Liu, Xiao; Li, Junyuan; Mu, Wendan; Lian, Jianwu; Xue, Yanjie; Li, Qi

    2017-09-01

    Temperature and salinity are two of the most potent abiotic factors influencing marine mollusks. In this study, we investigated the individual and combined effects of temperature and salinity on the survival and growth of juvenile Pacific abalone, Haliotis discus hannai Ino, and also examined the DNA methylation alteration that may underpin the phenotypic variation of abalone exposed to different rearing conditions. The single-factor data showed that the suitable ranges of temperature and salinity were 16-28°C at a constant salinity of 32, and 24-40 at a constant temperature of 20°C, respectively. The two-factor data indicated that both survival and growth were significantly affected by temperature, salinity and their interaction. The optimal temperature-salinity combination for juveniles was 23-25°C and 30-36. To explore environment-induced DNA methylation alteration, the methylation-sensitive amplified polymorphism (MSAP) technique was used to analyze the genomic methylation profiles of abalone reared in optimal and adverse conditions. Neither temperature nor salinity induced evident changes in the global methylation level, but 67 and 63 differentially methylated loci were identified in temperature and salinity treatments, respectively. The between-group eigen analysis also showed that both temperature and salinity could induce epigenetic differentiation in H. discus hannai Ino. The results of our study provide optimal rearing conditions for juvenile H. discus hannai Ino, and represent the first step toward revealing the epigenetic regulatory mechanism of abalone in response to thermal and salt stresses.

  19. Coagulation processes of kaolinite and montmorillonite in calm, saline water

    Science.gov (United States)

    Zhang, Jin-Feng; Zhang, Qing-He; Maa, Jerome P.-Y.

    2018-03-01

    A three dimensional numerical model for simulating the coagulation processes of colloids has been performed by monitoring the time evolution of particle number concentration, the size distribution of aggregates, the averaged settling velocity, the collision frequency, and the collision efficiency in quiescent water with selected salinities. This model directly simulates all interaction forces between particles based on the lattice Boltzmann method (LBM) and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and thus, can reveal the collision and coagulation processes of colloidal suspensions. Although using perfect spherical particles in the modeling, the results were compared with those for kaolinite and montmorillonite suspensions to demonstrate the capability of simulating the responses of these particles with highly irregular shape. The averaged settling velocity of kaolinite aggregates in quiescent saline water reached a maximum of 0.16 mm/s when the salinity increasing to about 3, and then, exhibited little dependence on salinity thereafter. Model simulations results (by choosing specific values that represent kaolinite's characteristics) indicate a similar trend: rapid decrease of the particle number concentration (i.e., rapidly flocculated, and thus, settling velocity also increases rapidly) when salinity increases from 0 to 2, and then, only increased slightly when salinity was further increased from 5 to 20. The collision frequency for kaolinite only decreases slightly with increasing salinity because that the fluid density and viscosity increase slightly in sea water. It suggests that the collision efficiency for kaolinite rises rapidly at low salinities and levels off at high salinity. For montmorillonite, the settling velocity of aggregates in quiescent saline water continuedly increases to 0.022 mm/s over the whole salinity range 0-20, and the collision efficiency for montmorillonite rises with increasing salinities.

  20. The association between self-image and defence mechanisms in a group of adolescent patients receiving psychiatric treatment.

    Science.gov (United States)

    Treger, Bartosz; Matusiak, Feliks; Pilecki, Maciej; Rogoż, Monika

    2015-01-01

    The aim of the study was to explore the relationship between various areas of self-image and defence mechanisms in adolescents. The study included a division into groups according to whether or not they were receiving psychiatric treatment. Data were obtained from two groups: a clinical group (30 persons), consisting of adolescent patients of the Adolescent Inpatient Ward of the Child and Adolescent Psychiatry Clinic and a control group (40 persons), adolescents attending upper secondary school. The Defence Style Questionnaire DSQ-40 and the Offer Self Image Questionnaire were used in the study. Results showed no differences, in the maturity levels of the defence mechanisms, between the two groups. Subjects from the clinical group had a significantly lower self-image of themselves than subjects from the control group.. In both groups, the use of mature defence mechanisms was accompanied by a positive self-image, while the use of less mature defence mechanisms was associated with a lower self-image. Comparison of the groups revealed different relationships between the aspects of self-image and used defence mechanisms, in particular the mechanism of projection. Number of significant correlations was greater in the clinical group. In the context of lower self-image, the study revealed the importance of such defence mechanisms as projection, acting out, somatization or schizoid fantasies. The obtained results seem to confirm a hypothesis that the assessment of the maturity of defence mechanisms in the period of adolescence is less clear and clinically useful.

  1. Effect of acute salinity stress on ion homeostasis, Na+/K+-ATPase and histological structure in sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Geng, Chenfan; Tian, Yi; Shang, Yanpeng; Wang, Liqiang; Jiang, Yanan; Chang, Yaqing

    2016-01-01

    Sea cucumbers ( Apostichopus japonicus ) are an imperiled fauna exposed to a variety of environmental condition such as salinity and studies are urgently needed to assess their effects to guide aquaculture efforts. The effects of acute salinity stress on coelomic fluid osmotic pressure, ion concentrations, the activity of Na + /K + -ATPase in respiratory trees and the histological variations were measured to evaluate the salinity tolerance of sea cucumbers. Significant correlations in osmotic pressure were observed between coelomic fluid and ambient environmental salinity. In coelomic fluid, Na + concentration was observed fluctuated during salinity 18 psu and the inflection point presented at the 6 h. The Na + /K + -ATPase activity in respiratory trees indicated the "U-shaped" fluctuant change and the change trend was opposite with the Na + concentration. The ions (K + , Cl - ) concentration decreased and showed the same tendency at salinity 40 psu with salinity 18 psu. The total coelomocytes counts and phagocytosis of coelomic fluid Na + /K + -ATPase activity indicated fluctuating changes under different salinity stress. Histological variation revealed a negative relation between decreasing salt concentration and tissue integrity. Tissue damages were significantly observed in intestines, muscles and tube feet under low salinity environment (18, 23 and 27 psu). The connective tissue in intestines of A. japonicus exposed to 18 and 23 psu damaged and partly separated from the mucosal epithelium. The significant variations occurred in tube feet, which presented the swelling in connective tissue and a fracture in longitudinal muscles under low salinity (18 psu). The morphological change of tube feet showed the shrinkage of connective tissue under high salinity (40 psu). The amount of infusoria in the respiratory trees decreased or even disappeared in salinity treatment groups (18 and 23 psu). The results inferred that osmoconformity and ionoregulation were

  2. Evaluation of the pharmacokinetics and cardiotoxicity of doxorubicin in rat receiving nilotinib

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhi-yong [Department of Pharmacy, Affiliated Sixth People' s Hospital, Shanghai Jiao Tong University, 200233 Shanghai (China); School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai (China); Wan, Li-li; Yang, Quan-jun; Han, Yong-long; Li, Yan; Yu, Qi [Department of Pharmacy, Affiliated Sixth People' s Hospital, Shanghai Jiao Tong University, 200233 Shanghai (China); Guo, Cheng, E-mail: guochengphd@yahoo.com.cn [Department of Pharmacy, Affiliated Sixth People' s Hospital, Shanghai Jiao Tong University, 200233 Shanghai (China); School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai (China); Li, Xiao, E-mail: lixiao3326@yahoo.com.cn [Department of Hematology, Affiliated Sixth people' s Hospital, Shanghai Jiao Tong University, 200233 Shanghai (China)

    2013-10-01

    Doxorubicin (DOX) is a potent chemotherapy drug with a narrow therapeutic window. Nilotinib, a small-molecule Bcr-Abl tyrosine kinase inhibitor, was reported to reverse multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) transmembrane transporters. The present study aimed to investigate nilotinib's affection on the steady-state pharmacokinetics, disposition and cardiotoxicity of DOX. A total of 24 male Sprague–Dawley rats were randomized into four groups (6 in each) and received the following regimens: saline, intravenous DOX (5 mg/kg) alone, and DOX co-administrated with either 20 or 40 mg/kg nilotinib. Blood was withdrawn at 12 time points till 72 h after DOX injection and the concentrations of DOX and its metabolite doxorubicinol (DOXol) in serum and cardiac tissue were assayed by LC–MS–MS method. To determine the cardiotoxicity, the following parameters were investigated: creatine kinase, lactate dehydrogenase, malondialdehyde, and superoxide dismutase. Histopathological examination of heart section was carried out to evaluate the extent of cardiotoxicity after treatments. The results showed that pretreatment of 40 mg/kg nilotinib increased the AUC{sub 0–t} and C{sub max} of DOX and DOXol. However, their accumulation in cardiac tissue was significantly decreased when compared with the group that received DOX alone. In addition, biochemical and histopathological results showed that 40 mg/kg nilotinib reduced the cardiotoxicity induced by DOX administration. In conclusion, co-administration of nilotinib increased serum exposure, but significantly decreased the accumulation of DOX in cardiac tissue. Consistent with in vitro profile, oral dose of 40 mg/kg nilotinib significantly decreased the cardiotoxicity of DOX in rat by enhancing P-gp activity in the heart.

  3. Evaluation of the pharmacokinetics and cardiotoxicity of doxorubicin in rat receiving nilotinib

    International Nuclear Information System (INIS)

    Zhou, Zhi-yong; Wan, Li-li; Yang, Quan-jun; Han, Yong-long; Li, Yan; Yu, Qi; Guo, Cheng; Li, Xiao

    2013-01-01

    Doxorubicin (DOX) is a potent chemotherapy drug with a narrow therapeutic window. Nilotinib, a small-molecule Bcr-Abl tyrosine kinase inhibitor, was reported to reverse multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) transmembrane transporters. The present study aimed to investigate nilotinib's affection on the steady-state pharmacokinetics, disposition and cardiotoxicity of DOX. A total of 24 male Sprague–Dawley rats were randomized into four groups (6 in each) and received the following regimens: saline, intravenous DOX (5 mg/kg) alone, and DOX co-administrated with either 20 or 40 mg/kg nilotinib. Blood was withdrawn at 12 time points till 72 h after DOX injection and the concentrations of DOX and its metabolite doxorubicinol (DOXol) in serum and cardiac tissue were assayed by LC–MS–MS method. To determine the cardiotoxicity, the following parameters were investigated: creatine kinase, lactate dehydrogenase, malondialdehyde, and superoxide dismutase. Histopathological examination of heart section was carried out to evaluate the extent of cardiotoxicity after treatments. The results showed that pretreatment of 40 mg/kg nilotinib increased the AUC 0–t and C max of DOX and DOXol. However, their accumulation in cardiac tissue was significantly decreased when compared with the group that received DOX alone. In addition, biochemical and histopathological results showed that 40 mg/kg nilotinib reduced the cardiotoxicity induced by DOX administration. In conclusion, co-administration of nilotinib increased serum exposure, but significantly decreased the accumulation of DOX in cardiac tissue. Consistent with in vitro profile, oral dose of 40 mg/kg nilotinib significantly decreased the cardiotoxicity of DOX in rat by enhancing P-gp activity in the heart

  4. Salinity and resource management in the Hunter Valley

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Cooke, R.; Simons, M. [RA Creelman & Associates (Australia)

    1995-08-01

    If excess water salinity is to be managed in the Hunter Valley, its causes and behaviour must be understood. Although Hunter Valley hydrology, hydrogeology and hydrogeochemistry require further study, there is now enough information available to begin the development of both temporal and spatial models as valley management tools. Currently the Department of Water Resources is developing a model known as Integrated Water Quality and Quantity Model (IQQM). IQQM which includes a salinity module is essentially a surface water simulation model. It wll enable testing of alternate management and operation policies such as the salinity property rights trading scheme recently introduced by the EPA to manage salt release from coal mines and power stations. An overview is presented of the progress made to date on the salinity module for IQQM, and an outline is given of the geological and hydrogeochemical concepts that have been assembled to support the salinity module of IQQM. 17 refs., 3 figs., 1 tab.

  5. A literature review of the variation of dispersant effectiveness and salinity

    International Nuclear Information System (INIS)

    Fingas, M.

    2005-01-01

    Surfactants have varying solubilities in water and varying actions toward oil and water. This paper presents a summary of the effects of water salinity on chemical dispersion. Literature reveals that effectiveness testing with salinity variations shows a consistent decrease in effectiveness at lower salinities and a decrease after a maximum salinity is reached between 20 to 40 units of salinity. In waters with 0 salinity, conventional and currently available dispersants have a very low effectiveness or are sometimes even completely ineffective, a fact which is consistent in surfactant literature. Dispersant effectiveness peaks in waters with a salinity ranging from 20 to 40. Corexit 9500 appears to be less sensitive to salinity, but still peaks at about 35. There is a relatively smooth gradient of effectiveness with salinity both as the salinity rises to a peak point of effectiveness and after it exceeds this value. The curves for this salinity effect appear to be Gaussian. While there is some evidence for a temperature-salinity interaction as noted in the data, there is not enough data to make solid conclusions. Recent data is almost exclusively measured using Corexit 9527 and Corexit 9500. Since these have the same surfactant packages, there is a concern that the results may be more relevant to these formulations than to all possible formulations. Observations on 2 field trials in freshwater appear to indicate that the laboratory tests were correct in concluding very low dispersant effectiveness in freshwater. There were few studies on the biological effects of varying salinity and given oil exposure. It was concluded that the findings in the dispersant literature reviewed here are in agreement with those in the theoretical and basic surfactant literature. The effect of ionic strength and salinity on both hydrophilic-lipophilic balance and stability is the reason for the decreased effectiveness noted at low salinities and the same decrease at high salinities

  6. The comparison of exit-site care with normal saline and povidone-iodine in preventing exit-site infection and peritonitis in children on chronic peritoneal dialysis treatment

    Directory of Open Access Journals (Sweden)

    Onder Yavascan

    2011-01-01

    Full Text Available Peritonitis and catheter exit- site infections (ESI are important causes of hospitalization and catheter loss in patients undergoing chronic peritoneal dialysis (CPD. The frequency of infection can be reduced by scrupulous exit- site care with or without topical antiseptics. There are no studies showing any benefit in the use of povidone-iodine or normal saline for care of exit- sites in long- term CPD patients. In this study, we aimed to determine the potential effectiveness of the application of povidone-iodine or normal saline at the catheter exit- site in preventing ESI and peritonitis in children on CPD. A total of 98 patients treated with either povidone-iodine or normal saline were included in this study. Group I (34 patients used povidone-iodine and group II (64 patients simply cleansed the exit- site with normal saline (0.9% NaCl. Dressings were changed 2 to 3 times in a week. The total cumulative follow- up time was 3233 patient- months. ESIs occurred in 10 (29.4% of 34 patients using povidone-iodine and in 10 (15.6% of 64 patients using normal saline. The frequency of ESI was significantly high in group I (povidone-iodine patients. The mean rate of ESI was 1 episode/60.8 patient- months for group I versus 1 episode/144 patient- months for group II (P 0.05. In conclusion, exit- site care with normal saline is an effective strategy in reducing the incidence of ESI in children on CPD. It can thus significantly reduce morbidity, catheter loss, and the need to transfer patients on peritoneal dialysis to hemodialysis.

  7. Effect of Nitrogen and Triple Super Phosphate Levels on Physiological Characteristics of Kochia scoparia in Salinity Stress

    Directory of Open Access Journals (Sweden)

    saeed khaninejad

    2014-09-01

    Full Text Available Decreasing yield and forage quality in saline water irrigating conditions, is one of the problems of forage production. Therefore, using the chemical fertilizers can be considered as a useful solution. This study was conducted to assess the effects of different levels of phosphorus and nitrogen fertilizers with saline water on physiological characteristics of Kochia, through a split plot factorial experiments with three replications .The main experimental units consisted of the levels of salinity of irrigating water, 5.2 and 16.5 dS m-1, and the subsidiary experimental units consisted of three nitrogen levels in form of 46%N (0, 100, 200 kg ha-1 and three phosphorus levels in form of triple super phosphate (0, 75, 150 kg ha-1, arranged in factorial form in experimental units. Results showed that the effect of salinity on studied physiological properties was not significant. Green area index (GAI and membrane stability index (MSI were significantly increased with using nitrogen fertilizers on 5.2 dS/m salinity level to control group ,while phosphorus did not affect on them. In all properties, fertilizers application on 16.5 dS/m salinity level not only had no considerable effect on stress tolerance, but also increased the harmful effects of salinity. GAI had a high correlation (0.71 with dry forage yield related to the studied factors. Generally, 75 kg Triple Super Phosphate fertilizer from 100 kg Urea improved studied physiological properties without side effects.

  8. Multislice CT of the liver. Effects of contrast material pushed with saline solution on hepatic enhancement

    International Nuclear Information System (INIS)

    Sekiguchi, Ryuzo; Hayashi, Takayuki; Tsukamoto, Tatsuaki; Kuroki, Yoshinori; Nasu, Katsuhiro; Murakami, Koji; Nawano, Shigeru

    2004-01-01

    The purpose of this study was to evaluate the usefulness of a method of power injection of contrast material pushed with saline solution for hepatic multislice CT using a dual-head power injector. One hundred twenty-one patients who underwent multislice CT to detect liver metastases were divided into two groups, depending on the protocol of contrast material administration: 100 mL of non-ionic contrast material (370 mgI/mL) or 100 mL of the same contrast material pushed with 30 mL of saline solution. Both contrast material and saline solution were administered at a rate of 2.5 mL/sec using a dual-head power injector. Attenuation values for the two protocols were obtained from the liver, portal vein, and descending aorta. Hepatic enhancement above 50 Hounsfield unit (HU), which is needed for the diagnosis of liver metastases, was achieved in 76.5% of patients given 100 mL of contrast material and 92.5% of those given 100 mL of contrast material pushed with a 30 mL saline solution. In contingency-table analysis, the CT attenuation value of liver categorized as less than 50 HU or more than 50 HU, showed a good relation between the categorized group and the protocol (p=0.0437). In patients with a body weight of 50 kg or more, 100 mL of contrast material pushed with saline solution provided significantly better CT attenuation values in the liver (p=0.0113), portal vein (p=0.0094), and descending aorta (p=0.0394) than those provided by the injection of 100 mL of contrast material alone. When contrast material pushed with saline solution was used, CT attenuation values in the liver were significantly increased, especially in patients with a body weight of 50 kg or more. This technique will provide a decrease in the volume of contrast material administered and a potential decrease in the side effects of contrast material. (author)

  9. Salinity-dependent limitation of photosynthesis and oxygen exchange in microbial mats

    DEFF Research Database (Denmark)

    Garcia-Pichel, F.; Kühl, Michael; Nübel, U.

    1999-01-01

    was specific for each community and in accordance with optimal performance at the respective salinity of origin. This pattern was lost after long-term exposure to varying salinities when responses to salinity were found to approach a general pattern of decreasing photosynthesis and oxygen exchange capacity...... with increasing salinity. Exhaustive measurements of oxygen export in the light, oxygen consumption in the dark and gross photosynthesis indicated that a salinity-dependent limitation of all three parameters occurred. Maximal values for all three parameters decreased exponentially with increasing salinity...

  10. SALINITY TOLERANCE OF SEVERAL RICE GENOTYPES AT SEEDLING STAGE

    Directory of Open Access Journals (Sweden)

    Heni Safitri

    2018-01-01

    Full Text Available Salinity is one of the most serious problems in rice cultivation. Salinity drastically reduced plant growth and yield, especially at seedling stage. Several rice genotypes have been produced, but their tolerance to salinity has not yet been evaluated. The study aimed to evaluate salinity tolerance of rice genotypes at seedling stage. The glasshouse experiment was conducted at Cimanggu Experimental Station, Bogor, from April to May 2013. Thirteen rice genotypes and two check varieties, namely Pokkali (salt tolerant and IR29 (salt sensitive were tested at seedling stage. The experiment was arranged in a randomized complete block design with three replications and two factors, namely the levels of NaCl (0 and 120 mM and 13 genotypes of rice. Rice seedlings were grown in the nutrient culture (hydroponic supplemented with NaCl at different levels. The growth and salinity injury levels of the genotypes were recorded periodically. The results showed that salinity level of 120 mM NaCl reduced seedling growth of all rice genotypes, but the tolerant ones were survived after 14 days or until the sensitive check variety died. Based on the visual injury symptoms on the leaves, five genotypes, i.e. Dendang, Inpara 5, Inpari 29, IR77674-3B-8-2-2-14-4-AJY2, and IR81493-BBB-6-B- 2-1-2 were tolerant to 120 mM salinity level, while Inpara 4 was comparable to salt sensitive IR29. Hence, Inpara 4 could be used as a salinity sensitive genotype for future research of testing tolerant variety. Further evaluation is needed to confirm their salinity tolerance under field conditions. 

  11. Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses.

    Science.gov (United States)

    Yu, Ying; Wu, Guangwen; Yuan, Hongmei; Cheng, Lili; Zhao, Dongsheng; Huang, Wengong; Zhang, Shuquan; Zhang, Liguo; Chen, Hongyu; Zhang, Jian; Guan, Fengzhi

    2016-05-27

    MicroRNAs (miRNAs) play a critical role in responses to biotic and abiotic stress and have been characterized in a large number of plant species. Although flax (Linum usitatissimum L.) is one of the most important fiber and oil crops worldwide, no reports have been published describing flax miRNAs (Lus-miRNAs) induced in response to saline, alkaline, and saline-alkaline stresses. In this work, combined small RNA and degradome deep sequencing was used to analyze flax libraries constructed after alkaline-salt stress (AS2), neutral salt stress (NSS), alkaline stress (AS), and the non-stressed control (CK). From the CK, AS, AS2, and NSS libraries, a total of 118, 119, 122, and 120 known Lus-miRNAs and 233, 213, 211, and 212 novel Lus-miRNAs were isolated, respectively. After assessment of differential expression profiles, 17 known Lus-miRNAs and 36 novel Lus-miRNAs were selected and used to predict putative target genes. Gene ontology term enrichment analysis revealed target genes that were involved in responses to stimuli, including signaling and catalytic activity. Eight Lus-miRNAs were selected for analysis using qRT-PCR to confirm the accuracy and reliability of the miRNA-seq results. The qRT-PCR results showed that changes in stress-induced expression profiles of these miRNAs mirrored expression trends observed using miRNA-seq. Degradome sequencing and transcriptome profiling showed that expression of 29 miRNA-target pairs displayed inverse expression patterns under saline, alkaline, and saline-alkaline stresses. From the target prediction analysis, the miR398a-targeted gene codes for a copper/zinc superoxide dismutase, and the miR530 has been shown to explicitly target WRKY family transcription factors, which suggesting that these two micRNAs and their targets may significant involve in the saline, alkaline, and saline-alkaline stress response in flax. Identification and characterization of flax miRNAs, their target genes, functional annotations, and gene

  12. Sodium kinetics in hypertonic saline abortion

    International Nuclear Information System (INIS)

    Telfer, N.; Ballard, C.S.; McKee, D.R.

    1975-01-01

    The sodium kinetics of hypertonic saline abortions have been followed by measuring the radioactivity and the sodium concentrations in amniotic fluid, maternal plasma, urine, the foetus and placenta after intrauterine installation of 20% hypertonic saline labelled with 22 Na in order to determine the reason for abortion of a dead foetus in 24 to 48 hours, and reasons for sodium reactions. There is dilution of the 300 ml of amniotic fluid to a maximum of 1.5 to 2.0 litres in an exponential fashion, by the influx of mainly maternal water, slowing after 8 hours. There is an exponential type of increase in plasma radioactivity, also slowing after 8 hours. However, equilibration is never reached, the specific activity of the amniotic fluid remaining 10 times that of the plasma, and the sodium concentration 3 times that of the plasma. The urine equilibrates with the plasma, and about 3% of the administered dose is lost in 22 hours. The largest foetus and placenta picked up the least radioactivity. Thus, a more mature foetus may be protected to some degree against the hypertonic saline action; this has been observed clinically. Hyperkaliaemia was found in all four subjects, and hypoglycaemia occurred sporadically. These were not accompanied by any symptoms. Factors associated with expulsion of the dead foetus are dehydration and decreased circulation associated with fibrinoid necrosis of the placenta, which may also account for cessation of equilibration between maternal plasma and amniotic fluid. Although no saline reactions occurred, the role of extrauterine deposition of hypertonic saline, as shown in one subject, might be considered. (author)

  13. Comparison of Radiofrequency Ablation with Saturated Saline Preinjection and Renal Artery Occlusion: In Vivo Study in Canine Kidneys Preinjection and Renal Artery Occlusion: In Vivo Study in Canine Kidneys

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Byung Seok; Ahn, Moon Sang [Chungnam National University Hospital, Daejeon (Korea, Republic of); Park, Mi Hyun [Dept. of Radiology, Dankook University Hospital, Cheonan (Korea, Republic of); Jeon, Gyeong Sik [Dept. of Radiology, CHA Bundang Medical Center, CHA University College of Medicine, Seongnam (Korea, Republic of); Lee, Byung Mo [Dept. of Surgery, Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of); Lee, Ki Chang [Dept. of Veterinary Radiology, Chonbuk National University College of VeterinaryMedicine, Seoul (Korea, Republic of); Kim, Ho Jun [Dept. of Radiology, Konyang University Hospital, Daejeon (Korea, Republic of); Ohm, Joon Young [Dept. of Radiology, Bucheon St. Mary Hospital, The Catholic University of Korea College of Medicine, Bucheon (Korea, Republic of)

    2012-04-15

    To compare the ablation zone after radiofrequency ablation (RFA) with saturated saline preinjection and renal artery occlusion in canine kidneys. RFA was induced in the kidneys of six mongrel dogs. A total of 24 ablation zones were induced using a 1-cm tip internally cooled needle electrode in three groups: RFA (Control group), RFA with 0.5 mL saturated saline preinjection (SS group), and RFA with renal artery occlusion by atraumatic vascular clamp (Occlusion group). Ablation zone diameters were measured along transverse and longitudinal sections of the needle axis, and volumes were calculated. Temperature, applied voltage, current, and impedance during RFA were recorded automatically. The RFA zone volume was the largest in the SS group (1.33 {+-} 0.34 cm{sup 3}), followed by the Occlusion group (1.07 {+-} 0.38 cm{sup 3}) and then the Control group (0.62 {+-} 0.09 cm{sup 3}). Volumes for the SS and Occlusion groups were significantly larger than those for the Control group (p = 0.001, p = 0.012). There was no significant difference in volumes between the SS and Occlusion groups (p = 0.178). Saturated saline preinjection is as effective as renal arterial occlusion for expanding the ablation zone. RFA with saturated saline preinjection could help to treat large renal tumors.

  14. Comparison of Radiofrequency Ablation with Saturated Saline Preinjection and Renal Artery Occlusion: In Vivo Study in Canine Kidneys Preinjection and Renal Artery Occlusion: In Vivo Study in Canine Kidneys

    International Nuclear Information System (INIS)

    Shin, Byung Seok; Ahn, Moon Sang; Park, Mi Hyun; Jeon, Gyeong Sik; Lee, Byung Mo; Lee, Ki Chang; Kim, Ho Jun; Ohm, Joon Young

    2012-01-01

    To compare the ablation zone after radiofrequency ablation (RFA) with saturated saline preinjection and renal artery occlusion in canine kidneys. RFA was induced in the kidneys of six mongrel dogs. A total of 24 ablation zones were induced using a 1-cm tip internally cooled needle electrode in three groups: RFA (Control group), RFA with 0.5 mL saturated saline preinjection (SS group), and RFA with renal artery occlusion by atraumatic vascular clamp (Occlusion group). Ablation zone diameters were measured along transverse and longitudinal sections of the needle axis, and volumes were calculated. Temperature, applied voltage, current, and impedance during RFA were recorded automatically. The RFA zone volume was the largest in the SS group (1.33 ± 0.34 cm 3 ), followed by the Occlusion group (1.07 ± 0.38 cm 3 ) and then the Control group (0.62 ± 0.09 cm 3 ). Volumes for the SS and Occlusion groups were significantly larger than those for the Control group (p = 0.001, p = 0.012). There was no significant difference in volumes between the SS and Occlusion groups (p = 0.178). Saturated saline preinjection is as effective as renal arterial occlusion for expanding the ablation zone. RFA with saturated saline preinjection could help to treat large renal tumors.

  15. Intravenous dextrose for children with gastroenteritis and dehydration: a double-blind randomized controlled trial.

    Science.gov (United States)

    Levy, Jason A; Bachur, Richard G; Monuteaux, Michael C; Waltzman, Mark

    2013-03-01

    We seek to determine whether an initial intravenous bolus of 5% dextrose in normal saline solution compared with normal saline solution will lead to a lower proportion of hospitalized patients and a greater reduction in serum ketone levels in children with gastroenteritis and dehydration. We enrolled children aged 6 months to 6 years in a double-blind, randomized controlled trial of patients presenting to a pediatric emergency department. Subjects were randomized to receive a 20 mL/kg infusion of either 5% dextrose in normal saline solution or normal saline solution. Serum ketone levels were measured before and at 1- and 2-hour intervals after the initial study fluid bolus administration. Primary outcome was the proportion of children hospitalized. Secondary outcome was change in serum ketone levels over time. One hundred eighty-eight children were enrolled. The proportion of children hospitalized did not differ between groups (35% in the 5% dextrose in normal saline solution group versus 44% in the normal saline solution group; risk difference 9%; 95% confidence interval [CI] -5% to 22%). Compared with children who received normal saline solution, those who received 5% dextrose in normal saline solution had a greater reduction in mean serum ketone levels at both 1 hour (mean Δ 1.2 versus 0.1 mmol/L; mean difference 1.1 mmol/L; 95% CI 0.4 to 1.9 mmol/L) and 2 hours (mean Δ 1.9 versus 0.3 mmol/L; mean difference 1.6 mmol/L; 95% CI 0.9 to 2.3 mmol/L). Administration of a dextrose-containing bolus compared with normal saline did not lead to a lower rate of hospitalization for children with gastroenteritis and dehydration. There was, however, a greater reduction in serum ketone levels in patients who received 5% dextrose in normal saline solution. Copyright © 2012. Published by Mosby, Inc.

  16. Salinidade, sodicidade e propriedades microbiológicas de Argissolo cultivado com erva-sal e irrigado com rejeito salino Salinity, sodicity and microbiological properties of an Ultisol cultivated with saltbush and irrigated with saline effluents

    Directory of Open Access Journals (Sweden)

    Célia Maria Maganhotto de Souza Silva

    2008-10-01

    enzymes, beta-glucosidase, protease, L-asparaginase and L-glutaminase. The addition of salts affected the physical and chemical properties of the soils irrigated with saline effluents, with a tendency to salinization and sodification. The salinity affected the microbiological properties of irrigated soil, but the cultivation with the halophyte improved the production of the studied enzymes. A. nummularia cultivation in areas that received saline effluents from irrigation improves soil fertility and microbiological properties, but does not prevent salinity.

  17. Salinity Adaptation and the Contribution of Parental Environmental Effects in Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Ken S Moriuchi

    Full Text Available High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within

  18. Unwinding after high salinity stress: Pea DNA helicase 45 over- expression in tobacco confers high salinity tolerance without affecting yield (abstract)

    International Nuclear Information System (INIS)

    Tuteja, N.

    2005-01-01

    Soil salinity is an increasing threat for agriculture and is a major factor in reducing plant productivity; therefore, it is necessary to obtain salinity-tolerant varieties. A typical characteristic of soil salinity is the induction of multiple stress- inducible genes. Some of the genes encoding osmolytes, ion channels or enzymes are able to confer salinity-tolerant phenotypes when transferred to sensitive plants. As salinity stress affects the cellular gene-expression machinery, it is evident that molecules involved in nucleic acid processing including helicases, are likely to be affected as well. DNA helicases unwind duplex DNA and are involved in replication, repair, recombination and transcription while RNA helicases unfold the secondary structures in RNA and are involved in transcription, ribosome biogenesis and translation initiation. We have earlier reported the isolation of a pea DNA helicase 45 (PDH45) that exhibits striking homology with eIF-4A (Plant J. 24:219-230,2000). Here we report that PDH45 mRNA is induced in pea seedlings in response to high salt and its over- expression driven by a constitutive CAMV-355-promoter in tobacco plants confers salinity tolerance, thus suggesting a new pathway for manipulating stress tolerance in crop plants. The T0 transgenic plants showed high-levels of PDH45 protein in normal and stress conditions, as compared to wild type (WT) plants. The T0 transgenics also showed tolerance to high salinity as tested by a leaf disc senescence assay. The T1 transgenics were able to grow to maturity and set normal viable seeds under continuous salinity stress, without any reduction in plant yield, in terms of seed weight. Measurement of Na/sup +/ ions in different parts of the plant showed higher accumulation in the old leaves and negligible in seeds of T1 transgenic lines as compared with the WT plants. The possible mechanism of salinity tolerance will be discussed. Over-expression of PDH45 provides a possible example of the

  19. Mapping the Salinity Gradient in a Microfluidic Device with Schlieren Imaging

    Directory of Open Access Journals (Sweden)

    Chen-li Sun

    2015-05-01

    Full Text Available This work presents the use of the schlieren imaging to quantify the salinity gradients in a microfluidic device. By partially blocking the back focal plane of the objective lens, the schlieren microscope produces an image with patterns that correspond to spatial derivative of refractive index in the specimen. Since salinity variation leads to change in refractive index, the fluid mixing of an aqueous salt solution of a known concentration and water in a T-microchannel is used to establish the relation between salinity gradients and grayscale readouts. This relation is then employed to map the salinity gradients in the target microfluidic device from the grayscale readouts of the corresponding micro-schlieren image. For saline solution with salinity close to that of the seawater, the grayscale readouts vary linearly with the salinity gradient, and the regression line is independent of the flow condition and the salinity of the injected solution. It is shown that the schlieren technique is well suited to quantify the salinity gradients in microfluidic devices, for it provides a spatially resolved, non-invasive, full-field measurement.

  20. The salinity effect in a mixed layer ocean model

    Science.gov (United States)

    Miller, J. R.

    1976-01-01

    A model of the thermally mixed layer in the upper ocean as developed by Kraus and Turner and extended by Denman is further extended to investigate the effects of salinity. In the tropical and subtropical Atlantic Ocean rapid increases in salinity occur at the bottom of a uniformly mixed surface layer. The most significant effects produced by the inclusion of salinity are the reduction of the deepening rate and the corresponding change in the heating characteristics of the mixed layer. If the net surface heating is positive, but small, salinity effects must be included to determine whether the mixed layer temperature will increase or decrease. Precipitation over tropical oceans leads to the development of a shallow stable layer accompanied by a decrease in the temperature and salinity at the sea surface.

  1. Isotopic evidence for identifying the mechanism of salinization of groundwater in Bacolod City,Negros Occidental

    International Nuclear Information System (INIS)

    Castaneda, Soledad S.; Almoneda, Rosalinda V.; Sucgang, Raymond J.; Desengano, Daisy; Lim, Fatima

    2008-01-01

    Saline water is easily identified by measurement of the conductivity of the ionic species in the water. In groundwater, it is important to identify the mechanism of salinization for proper management of the resource. Salinization may come from: a) leaching of salts by percolating water, b) intrusion of modern saltwater bodies of connate water, and c) concentration of dissolved salts due to evaporation. The salinity and isotopic concentrations of 18 O, 2 H, and 3 H of the water sources were used to assess the processes which lead to the salinization of groundwater in Bacolod City, Negros Occidental. The isotopic composition of deep groundwater, river water, and springs cluster along the LMWL with δ 18 O ranging from -7.9 ''promille'' to -6.5 ''promille'' and δ 2 H ranging from -52.6 ''promille'' to -39.1''promille''. Two isotopically distinct groups of deep groundwater were deleated; the higher elevation wells yielding isotopically depleted waters while the lowland wells yielding relatively enriched water with higher conductivity. The shallow coastal wells exhibited more enriched isotope values with δ 18 O values from 6.10 ''promille''-5.61''promille'' and δ 2 H from -43.1''promille'' to -38.8''promille'' and highest conductivity. The relative enrichment in the isotopic composition of the deep groundwater in the lowland and the shallow groundwater along the coast is attributed to saltwater intrusion. The process of salinization in these waters is differentiated based on the relationship between their isotopic compositions and the chlorine concentrations. The high salinity of the isotopically enriched and old deep groundwater inland is attributed to mixing with connate water. On the other hand , mixing with modern sea water is evident in the deep and shallow coastal wells. (author)

  2. Remote sensing of drought and salinity stressed turfgrass

    Science.gov (United States)

    Ikemura, Yoshiaki

    The ability to detect early signs of stress in turfgrass stands using a rapid, inexpensive, and nondestructive method would be a valuable management tool. Studies were conducted to determine if digital image analysis and spectroradiometric readings obtained from drought- and salinity-stressed turfgrasses accurately reflected the varying degrees of stress and correlated strongly with visual ratings, relative water content (RWC) and leaf osmolality, standard methods for measuring stress in plants. Greenhouse drought and salinity experiments were conducted on hybrid bluegrass [Poa arachnifera (Torn.) x pratensis (L.)] cv. Reveille and bermudagrass [Cynodon dactylon (L.)] cv. Princess 77. Increasing drought and salinity stress led to decreased RWC, increased leaf osmolality, and decreased visual ratings for both species. Percent green cover and hue values obtained from digital image analysis, and Normalized Difference Vegetation Index (NDVI), calculated from spectroradiometric readings, were moderately to highly correlated with visual ratings, RWC, and leaf osmolality. Similarly, in a field validation study conducted on hybrid bluegrass, spectral reflectance ratios were moderately to highly correlated with visual ratings. In addition, percent green cover obtained from digital image analysis was strongly correlated with most of the spectral ratios, particularly the ratio of fluorescence peaks (r = -0.88 to -0.99), modified triangular vegetation index (MTVI) (r = 0.82 to 0.98), and NDVI (r = 0.84 to 0.99), suggesting that spectral reflectance and digital image analysis are equally effective at detecting changes in color brought on by stress. The two methods differed in their ability to distinguish between drought salinity stress. Hue values obtained from digital image analysis responded differently to increasing drought stress than to increasing salinity stress. Whereas the onset of drought stress was reflected by increased hue values followed by a decrease in values as

  3. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    International Nuclear Information System (INIS)

    Hassanli, M.; Ebrahimian, H.

    2016-01-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  4. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    Energy Technology Data Exchange (ETDEWEB)

    Hassanli, M.; Ebrahimian, H.

    2016-07-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  5. Freshwater salinization syndrome on a continental scale.

    Science.gov (United States)

    Kaushal, Sujay S; Likens, Gene E; Pace, Michael L; Utz, Ryan M; Haq, Shahan; Gorman, Julia; Grese, Melissa

    2018-01-23

    Salt pollution and human-accelerated weathering are shifting the chemical composition of major ions in fresh water and increasing salinization and alkalinization across North America. We propose a concept, the freshwater salinization syndrome, which links salinization and alkalinization processes. This syndrome manifests as concurrent trends in specific conductance, pH, alkalinity, and base cations. Although individual trends can vary in strength, changes in salinization and alkalinization have affected 37% and 90%, respectively, of the drainage area of the contiguous United States over the past century. Across 232 United States Geological Survey (USGS) monitoring sites, 66% of stream and river sites showed a statistical increase in pH, which often began decades before acid rain regulations. The syndrome is most prominent in the densely populated eastern and midwestern United States, where salinity and alkalinity have increased most rapidly. The syndrome is caused by salt pollution (e.g., road deicers, irrigation runoff, sewage, potash), accelerated weathering and soil cation exchange, mining and resource extraction, and the presence of easily weathered minerals used in agriculture (lime) and urbanization (concrete). Increasing salts with strong bases and carbonates elevate acid neutralizing capacity and pH, and increasing sodium from salt pollution eventually displaces base cations on soil exchange sites, which further increases pH and alkalinization. Symptoms of the syndrome can include: infrastructure corrosion, contaminant mobilization, and variations in coastal ocean acidification caused by increasingly alkaline river inputs. Unless regulated and managed, the freshwater salinization syndrome can have significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity. Copyright © 2018 the Author(s). Published by PNAS.

  6. The effect of salinity on some endocommensalic ciliates from shipworms

    Digital Repository Service at National Institute of Oceanography (India)

    Santhakumari, V.

    . Seasonal incidence and relative abundance of these ciliates showed that they were more abundant during the low saline than the high saline periods. Eventhough these ciliates can endure higher salinities through gradual acclimatization of their habitat...

  7. Development of a coastal drought index using salinity data

    Science.gov (United States)

    Conrads, Paul; Darby, Lisa S.

    2017-01-01

    A critical aspect of the uniqueness of coastal drought is the effects on the salinity dynamics of creeks, rivers, and estuaries. The location of the freshwater–saltwater interface along the coast is an important factor in the ecological and socioeconomic dynamics of coastal communities. Salinity is a critical response variable that integrates hydrologic and coastal dynamics including sea level, tides, winds, precipitation, streamflow, and tropical storms. The position of the interface determines the composition of freshwater and saltwater aquatic communities as well as the freshwater availability for water intakes. Many definitions of drought have been proposed, with most describing a decline in precipitation having negative impacts on the water supply. Indices have been developed incorporating data such as rainfall, streamflow, soil moisture, and groundwater levels. These water-availability drought indices were developed for upland areas and may not be ideal for characterizing coastal drought. The availability of real-time and historical salinity datasets provides an opportunity for the development of a salinity-based coastal drought index. An approach similar to the standardized precipitation index (SPI) was modified and applied to salinity data obtained from sites in South Carolina and Georgia. Using the SPI approach, the index becomes a coastal salinity index (CSI) that characterizes coastal salinity conditions with respect to drought periods of higher-saline conditions and wet periods of higher-freshwater conditions. Evaluation of the CSI indicates that it provides additional coastal response information as compared to the SPI and the Palmer hydrologic drought index, and the CSI can be used for different estuary types and for comparison of conditions along coastlines.

  8. Intramuscular versus ultrasound-guided intratenosynovial glucocorticoid injection for tenosynovitis in patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Ammitzbøll-Danielsen, Mads; Østergaard, Mikkel; Fana, Viktoria

    2017-01-01

    and tenosynovitis were randomised into two double-blind groups: (A) 'intramuscular group', receiving intramuscular injection of betamethasone and US-guided intratenosynovial isotonic saline injection and (B) 'intratenosynovial group' receiving saline intramuscularly and US-guided intratenosynovial betamethasone......% (2/24) versus 44% (11/25), that is, difference of ?36pp (?58pp to ?13pp), p=0.003. Most US, clinical and patient-reported scores improved more in the 'intratenosynovial group' at all follow-up visits. Conclusions In this randomised double-blind clinical trial, patients with RA and tenosynovitis...

  9. Oceanographic profile temperature and salinity measurements collected using bottles from the KORABLESTROITEL and TUNETS in the Arctic and Coastal N Atlantic in 1948 (NODC Accession 0001089)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, Salinity and meteorology data digitized at NODC on 05/02/03, received by Igor Smolyar, from the personal library papers of Dr. Aleksey Zuyev, Murmansk...

  10. Penaeid Shrimp Salinity Gradient Tank Study 2005-2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We designed an experimental gradient tank to examine salinity preferences of juvenile brown shrimp and white shrimp. Although no strong pattern of salinity avoidance...

  11. Management of saline soils in Israel

    International Nuclear Information System (INIS)

    Rawitz, E.

    1983-01-01

    The main soil salinity problem in Israel is the danger of gradual salinization as a result of excessively efficient water management. Aquifer management is aimed at preventing flow of groundwater into the ocean, causing a creeping salinization at a rate of about 2 ppm per year. Successful efforts to improve irrigation efficiency brought with them the danger of salt accumulation in the soil. A ten-year monitoring programme carried out by the Irrigation Extension Service at 250 sampling sites showed that appreciable salt accumulation indeed occurred during the rainless irrigation season. However, where annual rainfall is more than about 350 mm this salt accumulation is adequately leached out of the root zone by the winter rains. Soil salinity in the autumn is typically two to three times that in the spring, a level which does not affect yields adversely. In the drier regions of the country long-term increasing soil salinity has been observed, and leaching is required. This is generally accomplished during the pre-irrigation given in the spring, whose size is determined by the rainfall amount of the preceding winter. The increasing need to utilize brackish groundwater and recycled sewage effluent requires special measures, which have so far been successful. In particular, drip irrigation with its high average soil-water potential regime and partial wetting of the soil volume has achieved high yields under adverse conditions. However, the long-term trend of water-quality deterioration is unavoidable under present conditions, and will eventually necessitate either major changes in agricultural patterns or the provision of desalinated water for dilution of the irrigation water. (author)

  12. Types, harms and improvement of saline soil in Songnen Plain

    Science.gov (United States)

    Wang, Zhengjun; Zhuang, Jingjing; Zhao, Anping; Li, Xinxin

    2018-03-01

    Saline soil is an extremely difficult and modified soil, widely distributed around the world. According to UN-UNESCO and FAO, the world’s saline soil area is about 9.54×108hm2, and there is a growing trend, every year in 1.0×106-1.5×106hm2 speed growth, the effective utilization of land resources to the world is the most serious threat. The total area of saline-alkali land in China is about 9.91×107hm2, including the Songnen Plain, which is called one of the three major saline soil concentrations in the world. The Songnen plain is an important grain producing area in China, and the saline soil occupies most of the Songnen plain, so it is of great significance to study the saline soil and improvement in Songnen plain.

  13. Decline of the world's saline lakes

    Science.gov (United States)

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  14. The role of GABAB receptors in morphine self-administration

    Directory of Open Access Journals (Sweden)

    Effat Ramshini

    2013-01-01

    Full Text Available Background: There is only little information about the effects of GABA receptors agonist and antagonist on morphine self-administration. Present study was designed to assess role of GABAB receptors in the regulation of morphine-reinforced self-administration. Methods: This study was performed in four groups of rats: (1 Saline group, which received saline in the self-administration session. (2 Morphine group, which received morphine in saline solution in the self-administration session. (3 Baclofen + Morphine group, which received both baclofen 20 min before self- administration test and morphine in the self-administration session. (4 Phaclofen + Morphine group, which received both phaclofen 20 min before self- administration test and morphine in the self-administration session. The number of lever pressing and self-infusion were recorded. Results: Morphine significantly increased the number of active lever pressing dose dependently in self-administration session in comparative with saline group. Administration of baclofen, 20 min before morphine self-administration produced significant decrease in the initiation of morphine self-administration during all session. Conversely, pre-treatment of phaclofen increased the number of active lever pressing and self-infusion in this test. Conclusion: Our results indicated a short-term treatment by baclofen, reduced morphine-maintenance response in a dose-dependent manner, suggesting that GABAB receptor agonists could be useful for reversing the neuroadaptations related to opiates.

  15. Scottish saline lagoons: Impacts and challenges of climate change

    Science.gov (United States)

    Angus, Stewart

    2017-11-01

    The majority of Scotland's saline lagoons are located on the low-lying coastlines of the Western Isles and the northern archipelagos of Orkney and Shetland, where recorded annual relative sea level rise rates are among the highest in Scotland. The sediment-impounded lagoons of Orkney and Shetland will either lose their impoundment and become incorporated in marine coastal waters, or become increasingly saline, as relative sea levels rise. The rock-basin lagoons of the Western Isles will retain their restricted exchange with the sea but will also become more saline with rising sea level. Specialist lagoonal organisms tend to have wide salinity tolerances but may succumb to competition from marine counterparts. In all areas, there are sufficient fresh-water inland water bodies with potential to be captured as lagoons to compensate for loss of extent and number, but the specialist lagoon biota tend to have limited dispersal powers. It is thus possible that they will be unable to transfer to their analogue sites before existing lagoons become fully marine, giving conservation managers the problem of deciding on management options: leave natural processes to operate without interference, manage the saline inflow to maintain the current salinity regime, or translocate lagoon organisms perceived as threatened by rising salinities. Timing of conversion and capture is unpredictable due to local topography and complications caused by variable stratification.

  16. Role of proline to induce salinity tolerance in Sunflower (helianthus annusl.)

    International Nuclear Information System (INIS)

    Iqbal, A.; Iftikhar, I.I.; Nawaz, H.; Nawaz, M.

    2014-01-01

    The potted experiment was conducted to determine the exogenous role of proline to induce salinity tolerance in sunflower (Helianthus annus L.). Salinity levels (0, 60 and 120 mmol) were created according to the saturation percentage of soil. Different levels (0, 30, 60 mmol) of proline were applied as a foliar spray on sunflower under saline and non saline conditions. Application of proline as a foliar spray ameliorated the toxic effects of salinity on growth, physiological and biochemical attributes of sunflower. Among different levels of proline, 60 mmol was found to be the most effective in ameliorating the toxic effects of salinity on sunflower. (author)

  17. Saline water irrigation of quinoa and chickpea

    DEFF Research Database (Denmark)

    Hirich, A.; Jelloul, A.; Choukr-Allah, R.

    2014-01-01

    A pot experiment was conducted in the south of Morocco to evaluate the response of chickpea and quinoa to different irrigation water salinity treatments (1, 4, 7 and 10 dS m-1 for chickpea and 1, 10, 20 and 30 dS m-1 for quinoa). Increasing salinity affected significantly (P

  18. Determination of the Optimum Concentration and Time of Salicylic Acid Foliar Application for Improving Barley Growth under Non-Saline and Saline Conditions

    Directory of Open Access Journals (Sweden)

    GH. Ranjbar

    2017-02-01

    Full Text Available In a 2yrs field study the effect of concentration and time of salicylic acid (SA foliar application on growth of barley under non-saline and saline (2 and 12 dS m-1 of NaCl, respectively conditions was evaluated in National Salinity Research Center of Iran, Yazd, central Iran during 2012-2014 growing seasons. The treatments of SA (11 treatments included without SA and SA foliar application at 0.0, 0.35, 0.70, 1.05, 1.40 and 1.75 mM applied at tillering + stem elongation + ear emergence or stem elongation + ear emergence. Salt stress led to significant decreases in seed yield and yield components; however, grain yield of barley plants were considerably increased when subjected to SA. This positive impact of SA was due probably to its effect on grain number. Average of grain yield in 0.0, 0.35, 0.70, 1.05, 1.40 and 1.75 mM SA concentrations were 496.1, 539.7, 538.5, 553.8, 517.4 and 501.3 g m-2 under non-saline and 189.2, 212.5, 219.1, 206.9, 200.3 and 182.3 g m-2 under saline conditions, respectively. Considering the negative correlation between sodium concentration in shoot and grain yield, modulating role of exogenous SA on adverse effect of salinity might be related to a SA-induced lowered Na+ concentration in such organs. The appropriate treatment seems to be SA foliar application at 1.05 mM for non-saline and 0.70 mM for saline conditions applied at stem elongation + ear emergence, as they increased grain yield by 16.6% and 18.6%, respectively. The result of this study revealed that higher concentration or frequency of SA application could be associated with negative impacts on barley.

  19. Hypertonic saline for cystic fibrosis: worth its salt?

    Science.gov (United States)

    Goralski, Jennifer L; Donaldson, Scott H

    2014-06-01

    Airway dehydration in cystic fibrosis (CF) leads to chronic inflammation, ongoing infection and progressive lung disease. Restoration of airway hydration by inhalation of an osmotic agent (hypertonic saline) has been shown to be safe, effective and well-tolerated in adults with CF. Although the safety of hypertonic saline in infants and young children with CF has also been established, recent studies have reported inconclusive evidence about its efficacy. In this editorial, we discuss the evidence behind hypertonic saline use for adults, children and infants with CF.

  20. Effect of water regime and salinity on artichoke yield

    Directory of Open Access Journals (Sweden)

    Francesca Boari

    2012-03-01

    Full Text Available This work focuses on the effects of different salinity and water inputs on the yield of artichoke Violetto di Provenza. Two years of experimental works had been carried out in a site in Southern Italy characterized by semi-arid climate and deep loam soil. Three salinity levels of irrigation water (S0, S1 and S2 with electrical conductivity (ECw of 0.5, 5 and 10 dS m-1, respectively, were combined with three water regimes (W1, W2 and W3 corresponding in that order to 20 40 and 60% of available water depletion. The overall results of the salinity tolerance are in agreement with those from the literature. However, an higher tolerance to salinity was demonstrated when crop was watered more frequently (at 20% of available water depletion and a lower one when crop watering was performed less frequently (at 60% of available water depletion. The increase of salinity level reduced marketable yield (from 12.9 to 8.8 Mg ha-1, total heads (from 125,100 to 94,700 n ha-1 and heads mean weight (from 99.9 to 94.6 g, while increased heads dry matter (from 161.8 to 193.6 g kg-1 f.w. and reduced edible parte percentage of heads (from 35.2 to 33.2 %. Watering regimes, as average of the salinity levels, affected total heads marketable yield (115,350 n ha-1 and 11.4 Mg ha-1 for W1 and W2, 105,900 n ha-1 and 10 Mg ha-1 for W3. In addition, different watering regimes affected the secondary heads yield for which it was reduced by 3% of mean weight. The effect of different watering regimes changed with various salinity levels. In condition of moderate salinity (S1, maximum water depletion fraction to preserve heads number and weight yield was 40 and 20% of total soil available water, respectively. However, with high salinity (S2, maximum water depletion fraction to keep unchanged heads number and weight yield was 20% for both. The level of soil salinity at beginning of the crop cycle favoured the incidence of head atrophy in the main heads produced in the second year.

  1. Nonlinear dynamics and synchronization of saline oscillator’s model

    International Nuclear Information System (INIS)

    Fokou Kenfack, W.; Siewe Siewe, M.; Kofane, T.C.

    2016-01-01

    Highlights: • A model of saline oscillator is derived and tested through numerical simulations. • Interaction between globally coupled saline oscillators is modeled. • Dependence of coupling coefficients on physical parameters is brought out. • Synchronization behaviors are studied using the model equations. - Abstract: The Okamura model equation of saline oscillator is refined into a non-autonomous ordinary differential equation whose coefficients are related to physical parameters of the system. The dependence of the oscillatory period and amplitude on remarkable physical parameters are computed and compared to experimental results in order to test the model. We also model globally coupled saline oscillators and bring out the dependence of coupling coefficients on physical parameters of the system. We then study the synchronization behaviors of coupled saline oscillators by the mean of numerical simulations carried out on the model equations. These simulations agree with previously reported experimental results.

  2. Implications of salinity pollution hotspots on agricultural production

    Science.gov (United States)

    Floerke, Martina; Fink, Julia; Malsy, Marcus; Voelker, Jeanette; Alcamo, Joseph

    2016-04-01

    Salinity pollution can have many negative impacts on water resources used for drinking, irrigation, and industrial purposes. Elevated concentrations of salinity in irrigation water can lead to decreased crop production or crop death and, thus, causing an economic problem. Overall, salinity pollution is a global problem but tends to be more severe in arid and semi-arid regions where the dilution capacity of rivers and lakes is lower and the use of irrigation higher. Particularly in these regions agricultural production is exposed to high salinity of irrigation water as insufficient water quality further reduces the available freshwater resources. According to the FAO, irrigated agriculture contributes about 40 percent of the total food production globally, and therefore, high salinity pollution poses a major concern for food production and food security. We use the WaterGAP3 modeling framework to simulate hydrological, water use, and water quality conditions on a global scale for the time period 1990 to 2010. The modeling framework is applied to simulate total dissolved solids (TDS) loadings and in-stream concentrations from different point and diffuse sources to get an insight on potential environmental impacts as well as risks to agricultural food production. The model was tested and calibrated against observed data from GEMStat and literature sources. Although global in scope, the focus of this study is on developing countries, i.e., in Africa, Asia, and Latin America, as these are most threatened by salinity pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use are examined, indicating limitations to crop production. Our results show that elevated salinity concentrations in surface waters mainly occur in peak irrigation regions as irrigated agriculture is not only the most relevant water use sector contributing to water abstractions, but also the dominant source of salinity pollution. Additionally

  3. Influence of temperature and salinity on hydrodynamic forces

    Directory of Open Access Journals (Sweden)

    A. Escobar

    2016-12-01

    Full Text Available The purpose of this study is to introduce an innovative approach to offshore engineering so as to take variations in sea temperature and salinity into account in the calculation of hydrodynamic forces. With this in mind, a thorough critical analysis of the influence of sea temperature and salinity on hydrodynamic forces on piles like those used nowadays in offshore wind farms will be carried out. This influence on hydrodynamic forces occurs through a change in water density and viscosity due to temperature and salinity variation. Therefore, the aim here is to observe whether models currently used to estimate wave forces on piles are valid for different ranges of sea temperature and salinity apart from observing the limit when diffraction or nonlinear effects arise combining both effects with the magnitude of the pile diameter. Hence, specific software has been developed to simulate equations in fluid mechanics taking into account nonlinear and diffraction effects. This software enables wave produced forces on a cylinder supported on the sea bed to be calculated. The study includes observations on the calculation model's sensitivity as to a variation in the cylinder's diameter, on the one hand and, on the other, as to temperature and salinity variation. This software will enable an iterative calculation to be made for finding out the shape the pressure wave caused when a wave passes over will have for different pile diameters and water with different temperature and salinity.

  4. Different expression patterns of renal Na+/K+-ATPase α-isoform-like proteins between tilapia and milkfish following salinity challenges.

    Science.gov (United States)

    Yang, Wen-Kai; Chung, Chang-Hung; Cheng, Hui Chen; Tang, Cheng-Hao; Lee, Tsung-Han

    2016-12-01

    Euryhaline teleosts can survive in a broad range of salinity via alteration of the molecular mechanisms in certain osmoregulatory organs, including in the gill and kidney. Among these mechanisms, Na + /K + -ATPase (NKA) plays a crucial role in triggering ion-transporting systems. The switch of NKA isoforms in euryhaline fish gills substantially contributes to salinity adaptation. However, there is little information about switches in the kidneys of euryhaline teleosts. Therefore, the responses of the renal NKA α-isoform protein switch to salinity challenge in euryhaline tilapia (Oreochromis mossambicus) and milkfish (Chanos chanos) with different salinity preferences were examined and compared in this study. Immunohistochemical staining in tilapia kidneys revealed the localization of NKA in renal tubules rather than in the glomeruli, similar to our previous findings in milkfish kidneys. Protein abundance in the renal NKA pan α-subunit-like, α1-, and α3-isoform-like proteins in seawater-acclimated tilapia was significantly higher than in the freshwater group, whereas the α2-isoform-like protein exhibited the opposite pattern of expression. In the milkfish, higher protein abundance in the renal NKA pan α-subunit-like and α1-isoform-like proteins was found in freshwater-acclimated fish, whereas no difference was found in the protein abundance of α2- and α3-isoform-like proteins between groups. These findings suggested that switches for renal NKA α-isoforms, especially the α1-isoform, were involved in renal osmoregulatory mechanisms of euryhaline teleosts. Moreover, differences in regulatory responses of the renal NKA α-subunit to salinity acclimation between tilapia and milkfish revealed that divergent mechanisms for maintaining osmotic balance might be employed by euryhaline teleosts with different salinity preferences. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A comparison of 500 prefilled textured saline breast implants versus 500 standard textured saline breast implants: is there a difference in deflation rates?

    Science.gov (United States)

    Stevens, W Grant; Hirsch, Elliot M; Stoker, David A; Cohen, Robert

    2006-06-01

    This study provides the first large-volume (1000 implant) comparison of the deflation rates of Poly Implant Prosthesis prefilled textured saline breast implants versus a control group of Mentor Siltex textured saline implants. A consecutive series of 500 Poly Implant Prosthesis prefilled textured saline breast implants was compared with a consecutive series of 500 Mentor Siltex breast implants. Each breast implant was evaluated for a 4-year period, and the annual deflation rate (number of deflations during a given year divided by the total number of implants) and cumulative deflation rate (cumulative total of deflations through a given year divided by the total number of implants) were recorded. Statistical significance was calculated using the Fisher's exact test at year 1 and the chi-square analysis at years 2 through 4. The cumulative deflation rates of the Poly Implant Prosthesis implants was as follows: year 1, 1.2 percent; year 2, 5.6 percent; year 3, 11.4 percent; and year 4, 15.4 percent. The cumulative deflation rates of the Mentor implants was: year 1, 0.2 percent; year 2, 0.6 percent; year 3, 1.6 percent; and year 4, 4.4 percent. At year 1, the difference between deflation rates was not statistically significant (Fisher's exact test, p > 0.05). However, at year 2 (chi-square, 13.29; p deflation rates of Poly Implant Prosthesis prefilled textured saline breast implants and Mentor Siltex breast implants at year 2, year 3, and year 4. After 4 years, the 15.56 percent cumulative deflation rate of Poly Implant Prosthesis implants was over 3.5 times higher than the 4.31 percent deflation rate of the Mentor Siltex implants. There may be several factors contributing to the higher deflation rate seen in Poly Implant Prosthesis implants, including possible in vitro deflation before implantation and silicone shell curing technique. Nevertheless, this statistically significant deflation difference must be taken into account when balancing the risks and benefits of

  6. Survival and growth of invasive Indo-Pacific lionfish at low salinities

    Science.gov (United States)

    Schofield, Pamela J.; Huge, Dane H.; Rezek, Troy C.; Slone, Daniel H.; Morris, James A.

    2015-01-01

    Invasive Indo-Pacific lionfish [Pterois volitans (Linnaeus, 1758) and P. miles (Bennett, 1828)] are now established throughout the Western North Atlantic. Several studies have documented negative effects of lionfish on marine fauna including significant changes to reef fish community composition. Established populations of lionfish have been documented in several estuaries, and there is concern that the species may invade other low-salinity environments where they could potentially affect native fauna. To gain a better understanding of their low-salinity tolerance, we exposed lionfish to four salinities [5, 10, 20 and 34 (control)]. No lionfish mortality was observed at salinities of 34, 20 or 10, but all fish died at salinity = 5 within 12 days. Lionfish survived for at least a month at a salinity of 10 and an average of about a week at 5. Fish started the experiment at an average mass of 127.9 g, which increased at a rate of 0.55 g per day while they were alive, regardless of salinity treatment. Our research indicated lionfish can survive salinities down to 5 for short periods and thus may penetrate and persist in a variety of estuarine habitats. Further study is needed on effects of salinity levels on early life stages (eggs, larvae).

  7. Salinity stress and some physiological relationships in Kochia (Kochia scoparia

    Directory of Open Access Journals (Sweden)

    Jafar Nabati

    2018-06-01

    Full Text Available Introduction Soil salinity is one of the major abiotic stresses affecting plant growth and production. It is estimated that approximately half of the irrigated lands of Iran are affected by salinity and much of the agricultural lands of Iran especially in the central regions are susceptible to salinity. According to the development of saline soils and water resources, utilization of halophytes as alternatives for cultivation in saline conditions could be a suitable strategy to crop production. In addition to understanding the physiological salinity tolerance pathways, studying such crops could help to plant breeding and transferring these useful traits to crop species and also domestication of these plants. Materials and methods This experiment was conducted in 2009-2010 in Salinity Research Station of faculty of agriculture, Ferdowsi University of Mashhad as split-plot based on Complete Randomized Block Design with three replications. Salinity as the main plot had two levels of 5.2 and 16.5 dSm-1 and five kochia ecotypes including Birjand, Urmia, Borujerd, Esfahan and Sabzevar were allocated as sub-plot. Seedlings were irrigated with saline water having electrical conductivity (EC of 5.2 dSm-1 until the full establishment and thereafter salinity stress was imposed with saline water having EC=16.5 dSm-1. Physiological and biochemical traits were measured in the youngest fully expanded leaf at the beginning of the anthesis and shoot biomass at the end of the growth season. Data analysis was performed using Minitab 16 and means were compared by LSD test at a significance level of 0.05. Results and Discussion Results indicated that biomass was increased in Birjand, Isfahan and Urmia ecotypes as salinity level increased while it was decreased in Sabzevar and Boroujerd ecotypes. A reduction of 34, 31, 11 and 29 percentage and an increase of 4 percentage in seed yield was seen in Sabzevar, Birjand, Boroujerd, Urmia and Isfahan, respectively. Harvest

  8. Response of stream invertebrates to short-term salinization: A mesocosm approach

    International Nuclear Information System (INIS)

    Cañedo-Argüelles, Miguel; Grantham, Theodore E.; Perrée, Isabelle; Rieradevall, Maria; Céspedes-Sánchez, Raquel; Prat, Narcís

    2012-01-01

    Salinization is a major and growing threat to freshwater ecosystems, yet its effects on aquatic invertebrates have been poorly described at a community-level. Here we use a controlled experimental setting to evaluate short-term stream community responses to salinization, under conditions designed to replicate the duration (72 h) and intensity (up to 5 mS cm −1 ) of salinity pulses common to Mediterranean rivers subjected to mining pollution during runoff events. There was a significant overall effect, but differences between individual treatments and the control were only significant for the highest salinity treatment. The community response to salinization was characterized by a decline in total invertebrate density, taxon richness and diversity, an increase in invertebrate drift and loss of the most sensitive taxa. The findings indicate that short-term salinity increases have a significant impact on the stream invertebrate community, but concentrations of 5 mS cm −1 are needed to produce a significant ecological response. - Highlights: ► Short-term salinization has a significant impact on the aquatic invertebrates. ► A significant short-term ecological response is registered at 5 mS cm −1 . ► Salinization causes a decline in invertebrate density, richness and diversity. ► Biotic quality indices decline with increasing salinity and exposure time. - Short-term salinization in a stream mesocosm caused a significant response in the aquatic invertebrate community and led to declines in biological quality indices.

  9. Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density

    DEFF Research Database (Denmark)

    Shabala, Sergey; Hariadi, Yuda; Jacobsen, Sven-Erik

    2013-01-01

    old seedlings. Six weeks after the treatment commenced, leaf sap Na and K content and osmolality, stomatal density, chlorophyll fluorescence characteristics, and xylem sap Na and K composition were measured. Responses to salinity differed greatly among the varieties. All cultivars had substantially...... increased K+ concentrations in the leaf sap, but the most tolerant cultivars had lower xylem Na+ content at the time of sampling. Most tolerant cultivars had lowest leaf sap osmolality. All varieties reduced stomata density when grown under saline conditions. All varieties clustered into two groups...... to the xylem, and reduced stomata density are important physiological traits contributing to genotypic differences in salinity tolerance in quinoa, a halophyte species from Chenopodium family....

  10. Constructed wetlands for saline wastewater treatment: A review

    Science.gov (United States)

    Saline wastewater originating from sources such as agriculture, aquaculture, and many industrial sectors usually contains high levels of salts and other contaminants, which can adversely affect both aquatic and terrestrial ecosystems. Therefore, the treatment of saline wastewater (removal of both sa...

  11. Physiological performance of the soybean crosses in salinity stress

    Science.gov (United States)

    Wibowo, F.; Armaniar

    2018-02-01

    Plants grown in saline soils will experience salinity stress. Salinity stresses, one of which causes oxidative stress, that cause an imbalance in the production ROS compounds (Reactive Oxygen Species), antioxidants and chlorophyll. Where the reaction of this compound can affect plant growth and plant production. This study aims to inform performance and action gene to soybean physiological character that potential to tolerant from salinity soil that characterized by the presence of SOD and POD antioxidant compounds and chlorophyll. This research used a destructive analysis from crossbred (AxN) and (GxN). A = Anjasmoro varieties and G = Grobogan varieties as female elders and N = Grobogan varieties as male elders (N1, N2, N3, N4, N5) that have been through the stage of saline soil selection. Research result can be concluded that GxN cross is more potential for Inheritance of the offspring. This can be seen from the observed skewness of character SOD, POD compounds, Chlorophyll a and chlorophyll b.

  12. Differential toxicity and influence of salinity on acute toxicity of ...

    African Journals Online (AJOL)

    Differential toxicity and influence of salinity on acute toxicity of copper sulphate and lead nitrate against Oreochromis niloticus. KA Bawa-Allah, F Osuala, J Effiong. Abstract. This study investigated the salinity-tolerance of Oreochromis niloticus and the influence of salinity changes on the acute toxicities of copper sulphate ...

  13. Physico-chemical conditions for plankton in Lake Timsah, a saline lake on the Suez Canal

    Science.gov (United States)

    El-Serehy, H. A. H.; Sleigh, M. A.

    1992-02-01

    Lake Timsah receives high salinity water from the Suez Canal, mainly from the south, and freshwater from a Nile canal and other sources, producing a salinity stratification with surface salinities of 20-40‰ and over 40‰ in deeper water. Water temperature at a depth of 50-70 cm fell to below 20 °C in winter and rose to above 30 °C in summer; oxygen concentration at the same depth ranged between 6-10 mg l -1 and the pH was 8·1-8·3, and at mid-day this water was supersaturated with oxygen through 6-8 months of the year. The main chemical nutrients reached their highest levels in winter (December-February) and their lowest levels in summer (May-August), silicate varying between 1-7 μ M, phosphate between 0·1 and 0·8 μ M and nitrate between 4-10 μ M; nitrite varied in a more complex manner, usually between 0·25 and 0·4 μ M. The atomic ratio of N/P was generally well above the Redfield ratio level, except for a few months in midwinter. These nutrient concentrations are high in comparison with those of unpolluted seas of the region, but are typical of the more eutrophic coastal waters in most parts of the world.

  14. Productive use of saline lands

    International Nuclear Information System (INIS)

    2003-01-01

    Water is essential for life, and not least for agricultural activity. It interacts with solar energy to determine the climate of the globe, and its interaction with carbon dioxide inside a plant results in photosynthesis on which depends survival of all life. Much of the water available to man is used for agriculture and yet its usage has not been well managed. One result has been the build up of soil salinity. The Department of Technical Co-operation is sponsoring a programme, with technical support from the Department of Research and Isotopes, to make more productive use of salt-affected land and to limit future build up of salinity. (IAEA)

  15. Moving Forward on Remote Sensing of Soil Salinity at Regional Scale

    Directory of Open Access Journals (Sweden)

    Elia Scudiero

    2016-10-01

    Full Text Available Soil salinity undermines global agriculture by reducing crop yield and impairing soil quality. Irrigation management can help control salinity levels within the soil root-zone. To best manage water and soil resources, accurate regional-scale inventories of soil salinity are needed. The past decade has seen several successful applications of soil salinity remote sensing. Two salinity remote sensing approaches exist: direct assessment based on analysis of surface soil reflectance (the most popular approach, and indirect assessment of root-zone (e.g., 0-1 m soil salinity based on analysis of crop canopy reflectance. In this perspective paper, we call on researchers and funding agencies to pay greater attention to the indirect approach because it is better suited for surveying agriculturally important lands. A joint effort between agricultural producers, irrigation specialists, environmental scientists, and policy makers is needed to better manage saline agricultural soils, especially because of projected future water scarcity in arid and semi-arid irrigated areas. The remote sensing community should focus on providing the best tools for mapping and monitoring salinity in such areas, which are of vital relevance to global food production.

  16. Salinity controls on Na incorporation in Red Sea planktonic foraminifera

    Science.gov (United States)

    Mezger, E. M.; de Nooijer, L. J.; Boer, W.; Brummer, G. J. A.; Reichart, G. J.

    2016-12-01

    Whereas several well-established proxies are available for reconstructing past temperatures, salinity remains challenging to assess. Reconstructions based on the combination of (in)organic temperature proxies and foraminiferal stable oxygen isotopes result in relatively large uncertainties, which may be reduced by application of a direct salinity proxy. Cultured benthic and planktonic foraminifera showed that Na incorporation in foraminiferal shell calcite provides a potential independent proxy for salinity. Here we present the first field calibration of such a potential proxy. Living planktonic foraminiferal specimens from the Red Sea surface waters were collected and analyzed for their Na/Ca content using laser ablation quadrupole inductively coupled plasma mass spectrometry. Using the Red Sea as a natural laboratory, the calibration covers a broad range of salinities over a steep gradient within the same water mass. For both Globigerinoides ruber and Globigerinoides sacculifer calcite Na/Ca increases with salinity, albeit with a relatively large intraspecimen and interspecimen variability. The field-based calibration is similar for both species from a salinity of 36.8 up to 39.6, while values for G. sacculifer deviate from this trend in the northernmost transect. It is hypothesized that the foraminifera in the northernmost part of the Red Sea are (partly) expatriated and hence should be excluded from the Na/Ca-salinity calibration. Incorporation of Na in foraminiferal calcite therefore provides a potential proxy for salinity, although species-specific calibrations are still required and more research on the effect of temperature is needed.

  17. Salinity Effects on Germination Properties ofPurslane (Portulaca oleracea L.

    Directory of Open Access Journals (Sweden)

    m Kafi

    2011-02-01

    Full Text Available Abstract In order to study seed germination and seedling growth responses of purslane to different levels of salinity, an experiment was conducted in a completely randomized desgin with six levels of salinity (0, 7, 14, 21, 28 and 35 dS/m using NaCl and five replications. Persentage and rate of germination, length and dry weight of radicle and plumule were measured, and ratio radicle to plumule length, mean germination time and seedling vigor index were calculated. The results showed that up to 28 dS/m salinity did not impose any significant different in germination percentage compared with control, but in 35 dS/m salinity it decreased to 19%. germination rate did not show any significant different up to 14 dS/m in comparison with control but beyond this level it significantly decreased with increasing salt stress. Mean germination time up to 21 dS/m did not have significant different in comparison with control, but increased with increasing salinity significantly. Length, fresh and dry weight of radicle and plumule, and seedling vigor index significantly decreased by increasing salinity. Ratio of radicle to plumule length decreased with increasing salt concentration, but there were not significant different among salt levels. According to the results, the germination stage of purslane is remarkably resistant to elevated levels of salinity and it seems that by exerting proper management in farms, it could be established in saline environments. Keywords: Plumule, Radicle, Seedlings of purslane

  18. Seasonal pattern of anthropogenic salinization in temperate forested headwater streams.

    Science.gov (United States)

    Timpano, Anthony J; Zipper, Carl E; Soucek, David J; Schoenholtz, Stephen H

    2018-04-15

    Salinization of freshwaters by human activities is of growing concern globally. Consequences of salt pollution include adverse effects to aquatic biodiversity, ecosystem function, human health, and ecosystem services. In headwater streams of the temperate forests of eastern USA, elevated specific conductance (SC), a surrogate measurement for the major dissolved ions composing salinity, has been linked to decreased diversity of aquatic insects. However, such linkages have typically been based on limited numbers of SC measurements that do not quantify intra-annual variation. Effective management of salinization requires tools to accurately monitor and predict salinity while accounting for temporal variability. Toward that end, high-frequency SC data were collected within the central Appalachian coalfield over 4 years at 25 forested headwater streams spanning a gradient of salinity. A sinusoidal periodic function was used to model the annual cycle of SC, averaged across years and streams. The resultant model revealed that, on average, salinity deviated approximately ±20% from annual mean levels across all years and streams, with minimum SC occurring in late winter and peak SC occurring in late summer. The pattern was evident in headwater streams influenced by surface coal mining, unmined headwater reference streams with low salinity, and larger-order salinized rivers draining the study area. The pattern was strongly responsive to varying seasonal dilution as driven by catchment evapotranspiration, an effect that was amplified slightly in unmined catchments with greater relative forest cover. Evaluation of alternative sampling intervals indicated that discrete sampling can approximate the model performance afforded by high-frequency data but model error increases rapidly as discrete sampling intervals exceed 30 days. This study demonstrates that intra-annual variation of salinity in temperate forested headwater streams of Appalachia USA follows a natural seasonal

  19. Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise.

    Science.gov (United States)

    Agha, Mickey; Ennen, Joshua R; Bower, Deborah S; Nowakowski, A Justin; Sweat, Sarah C; Todd, Brian D

    2018-03-25

    The projected rise in global mean sea levels places many freshwater turtle species at risk of saltwater intrusion into freshwater habitats. Freshwater turtles are disproportionately more threatened than other taxa; thus, understanding the role of salinity in determining their contemporary distribution and evolution should be a research priority. Freshwater turtles are a slowly evolving lineage; however, they can adapt physiologically or behaviourally to various levels of salinity and, therefore, temporarily occur in marine or brackish environments. Here, we provide the first comprehensive global review on freshwater turtle use and tolerance of brackish water ecosystems. We link together current knowledge of geographic occurrence, salinity tolerance, phylogenetic relationships, and physiological and behavioural mechanisms to generate a baseline understanding of the response of freshwater turtles to changing saline environments. We also review the potential origins of salinity tolerance in freshwater turtles. Finally, we integrate 2100 sea level rise (SLR) projections, species distribution maps, literature gathered on brackish water use, and a phylogeny to predict the exposure of freshwater turtles to projected SLR globally. From our synthesis of published literature and available data, we build a framework for spatial and phylogenetic conservation prioritization of coastal freshwater turtles. Based on our literature review, 70 species (∼30% of coastal freshwater turtle species) from 10 of the 11 freshwater turtle families have been reported in brackish water ecosystems. Most anecdotal records, observations, and descriptions do not imply long-term salinity tolerance among freshwater turtles. Rather, experiments show that some species exhibit potential for adaptation and plasticity in physiological, behavioural, and life-history traits that enable them to endure varying periods (e.g. days or months) and levels of saltwater exposure. Species that specialize on

  20. Soil salinization in different natural zones of intermontane depressions in Tuva

    Science.gov (United States)

    Chernousenko, G. I.; Kurbatskaya, S. S.

    2017-11-01

    Soil salinization features in semidesert, dry steppe, and chernozemic steppe zones within intermontane depressions in the central part of the Tuva Republic are discussed. Chernozems, chestnut soils, and brown desert-steppe soils of these zones are usually nonsaline. However, salinization of these zonal soils is possible in the case of the presence of salt-bearing parent materials (usually, the derivatives of Devonian deposits). In different natural zones of the intermontane depressions, salt-affected soils are mainly allocated to endorheic lake basins, where they are formed in places of discharge of mineral groundwater, and to river valleys. The composition and content of salts in the natural waters are dictated by the local hydrogeological conditions. The total content of dissolved solids in lake water varies from 1 to 370 g/L; the water is usually of the sulfate-chloride or chloride-sulfate salinity type; in some cases, soda-sulfate water is present. Soil salinity around the lakes is usually of the chloride-sulfate-sodium type; gypsum is often present in the profiles. Chloride salinization rarely predominates in this part of Tuva, because chlorides are easily leached off from the mainly coarse-textured soils. In some cases, the predominance of magnesium over sodium is observed in the composition of dissolved salts, which may be indicative of the cryogenic transformation of soil salts. Soda-saline soils are present in all the considered natural zones on minor areas. It is hardly possible to make unambiguous statements about the dominance of the particular type of salinity in the given natural zones. Zonal salinity patterns are weakly expressed in salinization of hydromorphic soils. However, a tendency for more frequent occurrence of soda-saline soils in steppe landscapes and chloride-sulfate salinization (often, with participation of gypsum) in the dry steppe and semidesert landscapes is observed.

  1. Remote Sensing Soil Salinity Map for the San Joaquin Vally, California

    Science.gov (United States)

    Scudiero, E.; Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.

    2015-12-01

    Soil salinization is a major natural hazard to worldwide agriculture. We present a remote imagery approach that maps salinity within a range (i.e., salinities less than 20 dS m-1, when measured as the electrical conductivity of the soil saturation extract), accuracy, and resolution most relevant to agriculture. A case study is presented for the western San Joaquin Valley (WSJV), California, USA (~870,000 ha of farmland) using multi-year Landsat 7 ETM+ canopy reflectance and the Canopy Response Salinity Index (CRSI). Highly detailed salinity maps for 22 fields (542 ha) established from apparent soil electrical conductivity directed sampling were used as ground-truth (sampled in 2013), totaling over 5000 pixels (30×30 m) with salinity values in the range of 0 to 35.2 dS m-1. Multi-year maximum values of CRSI were used to model soil salinity. In addition, soil type, elevation, meteorological data, and crop type were evaluated as covariates. The fitted model (R2=0.73) was validated: i) with a spatial k-folds (i.e., leave-one-field-out) cross-validation (R2=0.61), ii) versus salinity data from three independent fields (sampled in 2013 and 2014), and iii) by determining the accuracy of the qualitative classification of white crusted land as extremely-saline soils. The effect of land use change is evaluated over 2396 ha in the Broadview Water District from a comparison of salinity mapped in 1991 with salinity predicted in 2013 from the fitted model. From 1991 to 2013 salinity increased significantly over the selected study site, bringing attention to potential negative effects on soil quality of shifting from irrigated agriculture to fallow-land. This is cause for concern since over the 3 years of California's drought (2010-2013) the fallow land in the WSJV increased from 12.7% to 21.6%, due to drastic reduction in water allocations to farmers.

  2. Salinity ranges of some southern African fish species occurring in ...

    African Journals Online (AJOL)

    The recorded salinity ranges of 96 fish species occurring in southern African estuaries are documented. Factors influen- cing the tolerance of fishes to low and high salinity regimes are discussed, with most species tolerant of low rather than high salinity conditions. This is important since most systems are subject to periodic ...

  3. Bacteriophage Infectivity Against Pseudomonas aeruginosa in Saline Conditions

    KAUST Repository

    Scarascia, Giantommaso; Yap, Scott A.; Kaksonen, Anna H.; Hong, Pei-Ying

    2018-01-01

    at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6–9. Planktonic P

  4. Effects of hydrogen-rich saline on endotoxin-induced uveitis

    Directory of Open Access Journals (Sweden)

    Wei-ming Yan

    2017-01-01

    Full Text Available The therapeutic effects of hydrogen-rich saline (HRS have been reported for a wide range of diseases mainly via selectively reducing the amount of reactive oxygen species. Oxidative stress plays an important role in the pathogenesis of uveitis and endotoxin-induced uveitis (EIU. In this study, we investigated whether HRS can mitigate EIU in rats. Sprague-Dawley rats were randomly divided into Norm group, Model group, HRS group, dexamethasone (DEX group, and rats in the latter three groups were injected with equal amount of lipopolysaccharide (LPS to induce EIU of different severities (by 1 mg/kg of LPS, or 1/8 mg/kg of LPS. Rats in HRS group were injected with HRS intraperitoneally at three different modes to purse an ameliorating effect of EIU (10 mL/kg of HRS immediately after injection of 1 mg/kg of LPS, 20 mL/kg of HRS once a day for 1 week before injection of 1 mg/kg of LPS and at 0, 0.5, 1, 2, 6, 8, 12 hours after LPS administration, or 20 mL/kg of HRS once a day for 1 week before injection of 1/8 mg/kg of LPS, and at 0, 0.5, 1, 2, 6, 8, 12, 24 hours and once a day for 3 weeks after LPS administration. Rats of DEX group were injected with 1 mL/kg of DEX solution intraperitoneally immediately after LPS administration. Rats in Norm and Model groups did not receive any treatment. All rats were examined under slit lamp microscope and graded according to the clinical signs of uveitis. Electroretinogram, quantitative analysis of protein in aqueous humor (AqH and histological examination of iris and ciliary body were also carried out. Our results showed that HRS did not obviously ameliorate the signs of uveitis under slit lamp examination and the inflammatory cells infiltration around iris and cilliary body of EIU induced by 1 mg/kg or 1/8 mg/kg of LPS (P > 0.05, while DEX significantly reduced the inflammation reflected by the above two indicators (P 0.05, while DEX had an obvious therapeutic effect (P < 0.05. However, HRS exerted an inhibition

  5. Potential Use of Halophytes to Remediate Saline Soils

    Directory of Open Access Journals (Sweden)

    Mirza Hasanuzzaman

    2014-01-01

    Full Text Available Salinity is one of the rising problems causing tremendous yield losses in many regions of the world especially in arid and semiarid regions. To maximize crop productivity, these areas should be brought under utilization where there are options for removing salinity or using the salt-tolerant crops. Use of salt-tolerant crops does not remove the salt and hence halophytes that have capacity to accumulate and exclude the salt can be an effective way. Methods for salt removal include agronomic practices or phytoremediation. The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems. Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level. Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well. This review focuses on the special adaptive features of halophytic plants under saline condition and the possible ways to utilize these plants to remediate salinity.

  6. Towards a theory of ecotone resilience: coastal vegetation on a salinity gradient.

    Science.gov (United States)

    Jiang, Jiang; Gao, Daozhou; DeAngelis, Donald L

    2012-08-01

    Ecotones represent locations where vegetation change is likely to occur as a result of climate and other environmental changes. Using a model of an ecotone vulnerable to such future changes, we estimated the resilience of the ecotone to disturbances. The specific ecotone is that between two different vegetation types, salinity-tolerant and salinity-intolerant, along a gradient in groundwater salinity. In the case studied, each vegetation type, through soil feedback loops, promoted local soil salinity levels that favor itself in competition with the other type. Bifurcation analysis was used to study the system of equations for the two vegetation types and soil salinity. Alternative stable equilibria, one for salinity-tolerant and one for salinity intolerant vegetation, were shown to exist over a region of the groundwater salinity gradient, bounded by two bifurcation points. This region was shown to depend sensitively on parameters such as the rate of upward infiltration of salinity from groundwater into the soil due to evaporation. We showed also that increasing diffusion rates of vegetation can lead to shrinkage of the range between the two bifurcation points. Sharp ecotones are typical of salt-tolerant vegetation (mangroves) near the coastline and salt-intolerant vegetation inland, even though the underlying elevation and groundwater salinity change very gradually. A disturbance such as an input of salinity to the soil from a storm surge could upset this stable boundary, leading to a regime shift of salinity-tolerant vegetation inland. We showed, however, that, for our model as least, a simple pulse disturbance would not be sufficient; the salinity would have to be held at a high level, as a 'press', for some time. The approach used here should be generalizable to study the resilience of a variety of ecotones to disturbances. Published by Elsevier Inc.

  7. Effect of increase in salinity on ANAMMOX-UASB reactor stability.

    Science.gov (United States)

    Xing, Hui; Wang, Han; Fang, Fang; Li, Kai; Liu, Lianwei; Chen, Youpeng; Guo, Jinsong

    2017-05-01

    The effect of salinity on the anaerobic ammonium oxidation (ANAMMOX) process in a UASB reactor was investigated by analysing ammonium, nitrite, nitrate and TN concentrations, and TN removal efficiency. Extracellular polymeric substances (EPSs) and specific ANAMMOX activity (SAA) were evaluated. Results showed the effluent deteriorated after salinity was increased from 8 to 13 g/L and from 13 to 18 g/L, and TN removal efficiency decreased from 80% to 30% and 80% to 50%, respectively. However, ANAMMOX performance recovered and TN removal efficiency increased to 80% after 40 days when the influent concentrations of [Formula: see text] and [Formula: see text] were 200 mg/L and salinity levels were at 13 and 18 g/L, respectively. The amount of EPSs decreased from 58.9 to 37.1 mg/g volatile suspended solids (VSS) when the reactor was shocked by salinity of 13 g/L, and then increased to 57.2 mg/g VSS when the reactor recovered and ran stably at 13 g/L. The amount of EPSs decreased from 57.2 to 49.1 mg/g VSS when the reactor was shocked by salinity of 18 g/L, and then increased to 60.7 mg/g VSS when the reactor recovered and ran stably at 18 g/L. The amount of EPS and the amounts of polysaccharide, protein and humus showed no evident difference when the reactor recovered from different levels of salinity shocks. Batch tests showed salinity shock load from 8 to 38 g/L inhibited the SAA. However, when the reactor recovered from salinity shocks, SAA was higher compared to that when the reactor was subjected to the same level of salinity shock.

  8. Parameter Identification for Salinity in a Quasilinear Thermodynamic System of Sea Ice

    OpenAIRE

    Wei Lv; Xiaojiao Li; Enmin Feng

    2014-01-01

    This study is intended to provide a parameter identification method to determine salinity of sea ice by temperature and salinity observations. A quasilinear thermodynamic system of sea ice with unknown salinity is described and its property is proved. Then, a parameter identification model is established and the existence of its optimal solution is discussed. The salinity profile is calculated by the temperature and salinity data, which were measured at Nella Fjord around Zhongshan Station, A...

  9. Isotonic saline nasal irrigation in clinical practice: a literature review

    Directory of Open Access Journals (Sweden)

    Sabrina Costa Lima

    Full Text Available Abstract Introduction: Nasal instillation of saline solution has been used as part of the treatment of patients with upper respiratory tract diseases. Despite its use for a number of years, factors such as the amount of saline solution to be used, degree of salinity, method and frequency of application have yet to be fully explained. Objective: Review the reported outcomes of saline nasal irrigation in adults with allergic rhinitis, acute or chronic sinusitis and after functional endoscopic sinus surgery (FESS, and provide evidence to assist physiotherapists in decision making in clinical practice. Methods: A search was conducted of the Pubmed and Cochrane Library databases between 2007 and 2014. A combination of the following descriptors was used as a search strategy: nasal irrigation, nasal lavage, rhinitis, sinusitis, saline, saline solution. Results: Eight clinical trials were included, analyzed according to participant diagnosis. Conclusion: The evidence found was heterogeneous, but contributed to elucidating uncertainties regarding the use of nasal lavage in the clinical practice of physical therapy, such as the protocols used.

  10. Problems of irrigated agriculture in saline groundwater areas: farmers' perceptions

    International Nuclear Information System (INIS)

    Ahmad, S.; Yasin, M.; Ahmad, M.M.; Hussain, Z.; Khan, Z.; Akbar, G.

    2005-01-01

    A research study was conducted using participatory interactive dialogue in the brackish groundwater area of Mona SCARP-II, Bhalwal district Sargodha, Pakistan. The Participatory Rural Appraisal (PRA) was conducted in thirteen villages to identify macro- and micro-level issues related to irrigated agriculture in saline groundwater areas. SCARP tube wells have been abandoned or few have been handed over to farmers' organizations. Groundwater in the Indus basin contributes around 35% to the total water available for agriculture. Water quality of 60% area of the Indus basin is marginal to brackish. Minimum land holding of cultivated land in the elected villages varied from 0.10 to 4 ha. The maximum land holding of cultivated area in selected villages varied for 6 to 50 ha. However, the average size of farm was around 4 ha. The average salt-affected area per household was 17% of the total cultivated area. The salt-affected lands in 8 villages out of 13 were barren, where mainly rice crop is grown during kharif season. About 67% farms had access to conjunctive use of water, as water from both canal and private tube wells is available. In addition, 10% farms were having tube well water only. Therefore, 77% farms are having access to the groundwater. According to the farmers' perceptions, 100% villages have fresh groundwater to a depth of 7.5 m and 62% villages had depth ranging from 15-30 m. Furthermore, in all thirteen selected villages, groundwater quality beyond 30 m depth was brackish. Laboratory analysis confirmed the farmer's perception that groundwater quality is a function of depth. About 92% farmers groups indicated that non-availability and high price of inputs was a major problem. The second major issue was related to the shortage of canal water supplies and 77% villages are facing this problem. Moreover, 31% farmers' groups of selected villages indicated that water logging and salinity are the major concerns affecting agricultural productivity. This figure is

  11. Wetland Flow and Salinity Budgets and Elements of a Decision Support System toward Implementation of Real-Time Seasonal Wetland Salinity Management

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.; Ortega, R.; Rahilly, P.; Johnson, C.B.

    2011-12-17

    The project has provided science-based tools for the long-term management of salinity in drainage discharges from wetlands to the San Joaquin River. The results of the project are being used to develop best management practices (BMP) and a decision support system to assist wetland managers adjust the timing of salt loads delivered to the San Joaquin River during spring drawdown. Adaptive drainage management scheduling has the potential to improve environmental compliance with salinity objectives in the Lower San Joaquin River by reducing the frequency of violation of Vernalis salinity standards, especially in dry and critically dry years. The paired approach to project implementation whereby adaptively managed and traditional practices were monitored in a side-by-side fashion has provided a quantitative measure of the impacts of the project on the timing of salt loading to the San Joaquin River. The most significant accomplishments of the project has been the technology transfer to wetland biologists, ditch tenders and water managers within the Grasslands Ecological Area. This “learning by doing” has build local community capacity within the Grassland Water District and California Department of Fish and Game providing these institutions with new capability to assess and effectively manage salinity within their wetlands while simultaneously providing benefits to salinity management of the San Joaquin River.

  12. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia.

    Science.gov (United States)

    Hamamura, Natsuko; Itai, Takaaki; Liu, Yitai; Reysenbach, Anna-Louise; Damdinsuren, Narantuya; Inskeep, William P

    2014-10-01

    Microbial arsenic transformation pathways associated with a saline lake located in northern Mongolia were examined using molecular biological and culturing approaches. Bacterial 16S rRNA gene sequences recovered from saline lake sediments and soils were affiliated with haloalkaliphiles, including Bacillus and Halomonas spp. Diverse sequences of arsenate respiratory reductase (arrA) and a new group of arsenite oxidase (arxA) genes were also identified. Pure cultures of arsenate-reducing Nitrincola strain and anaerobic arsenite-oxidizing Halomonas strain were isolated. The chemoorganotrophic Halomonas strain contains arxA gene similar to that of a chemoautotrophic arsenite-oxidizing Alkalilimnicola ehrlichii strain MLHE-1. These results revealed the diversity of arsenic transformation pathways associated with a geographically distinct saline system and the potential contribution of arx-dependent arsenite oxidation by heterotrophic bacteria.

  13. Functional tradeoffs underpin salinity-driven divergence in microbial community composition.

    Directory of Open Access Journals (Sweden)

    Chris L Dupont

    Full Text Available Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.

  14. Submesoscale-selective compensation of fronts in a salinity-stratified ocean.

    Science.gov (United States)

    Spiro Jaeger, Gualtiero; Mahadevan, Amala

    2018-02-01

    Salinity, rather than temperature, is the leading influence on density in some regions of the world's upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity.

  15. Microbial Fuel Cells under Extreme Salinity

    Science.gov (United States)

    Monzon del Olmo, Oihane

    I developed a Microbial Fuel Cell (MFC) that unprecedentedly works (i.e., produces electricity) under extreme salinity (≈ 100 g/L NaCl). Many industries, such as oil and gas extraction, generate hypersaline wastewaters with high organic strength, accounting for about 5% of worldwide generated effluents, which represent a major challenge for pollution control and resource recovery. This study assesses the potential for microbial fuel cells (MFCs) to treat such wastewaters and generate electricity under extreme saline conditions. Specifically, the focus is on the feasibility to treat hypersaline wastewater generated by the emerging unconventional oil and gas industry (hydraulic fracturing) and so, with mean salinity of 100 g/L NaCl (3-fold higher than sea water). The success of this novel technology strongly depends on finding a competent and resilient microbial community that can degrade the waste under extreme saline conditions and be able to use the anode as their terminal electron acceptor (exoelectrogenic capability). I demonstrated that MFCs can produce electricity at extremely high salinity (up to 250 g/l NaCl) with a power production of 71mW/m2. Pyrosequencing analysis of the anode population showed the predominance of Halanaerobium spp. (85%), which has been found in shale formations and oil reservoirs. Promoting Quorum sensing (QS, cell to cell communication between bacteria to control gene expression) was used as strategy to increase the attachment of bacteria to the anode and thus improve the MFC performance. Results show that the power output can be bolstered by adding 100nM of quinolone signal with an increase in power density of 30%, for the first time showing QS in Halanaerobium extremophiles. To make this technology closer to market applications, experiments with real wastewaters were also carried out. A sample of produced wastewater from Barnet Shale, Texas (86 g/L NaCl) produced electricity when fed in an MFC, leading to my discovery of another

  16. Stochastic modeling of soil salinity

    Science.gov (United States)

    Suweis, S.; Porporato, A. M.; Daly, E.; van der Zee, S.; Maritan, A.; Rinaldo, A.

    2010-12-01

    A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The equations for the probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equations to a single stochastic differential equation (generalized Langevin equation) driven by multiplicative Poisson noise. Generalized Langevin equations with multiplicative white Poisson noise pose the usual Ito (I) or Stratonovich (S) prescription dilemma. Different interpretations lead to different results and then choosing between the I and S prescriptions is crucial to describe correctly the dynamics of the model systems. We show how this choice can be determined by physical information about the timescales involved in the process. We also show that when the multiplicative noise is at most linear in the random variable one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We then apply these results to the generalized Langevin equation that drives the salt mass dynamics. The stationary analytical solutions for the probability density functions of salt mass and concentration provide insight on the interplay of the main soil, plant and climate parameters responsible for long term soil salinization. In particular, they show the existence of two distinct regimes, one where the mean salt mass remains nearly constant (or decreases) with increasing rainfall frequency, and another where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in longterm soil salinization trends, with significant consequences, e.g. for climate change impacts on rain fed agriculture.

  17. Communication received from the Permanent Mission of the Netherlands on behalf of the Member States of the Nuclear Suppliers Group

    International Nuclear Information System (INIS)

    2000-01-01

    The Director General has received a letter dated 4 April 2000 from the Permanent Mission of the Netherlands to the Agency on behalf of Member States of the 'Nuclear Suppliers Group' (NSG). Attached to this letter is an updated version of a paper entitled 'The Nuclear Suppliers Group: Its Origins, Roles and Activities'. The original version of the paper was issued as INFCIRC/539 on 15 September 1997. In the light of the wish expressed at the end of the letter, the revised version of the paper, attached hereto, is being circulated to Member States of the IAEA as INFCIRC/539/Rev.1

  18. First service pregnancy rates following post-AI use of HCG in Ovsynch and Heatsynch programmes in lactating dairy cows.

    Science.gov (United States)

    Shabankareh, H Karami; Zandi, M; Ganjali, M

    2010-08-01

    Lactating dairy cows (n = 667) at random stages of the oestrous cycle were assigned to either ovsynch (O, n = 228), heatsynch (H, n = 252) or control (C, n = 187) groups. Cows in O and H groups received 100 microg of GnRH agonist, i.m. (day 0) starting at 44 +/- 3 days in milk (DIM), and 500 microg of cloprostenol, i.m. (day 7). In O group, cows received 100 microg of GnRH (day 9) and were artificially inseminated without oestrus detection 16-20 h later. In H group, cows received 1 mg oestradiol benzoate (EB) i.m., 24 h after the cloprostenol injection and were artificially inseminated without oestrus detection 48-52 h after the EB injection. Cows in C group were inseminated at natural oestrus. On the day of artificial insemination (AI), cows in all groups were assigned to subgroups as follows: human Chorionic Gonadotrophin (O-hCG) (n = 112), O-saline (n = 116), H-hCG (n = 123), H-saline (n = 129), C-hCG (n = 94) and C-saline (n = 93) subgroups. Cows in hCG and saline subgroups received 3000 IU hCG i.m. and or 10 ml saline at day 5 post-AI (day 15), respectively. Pregnancy status was assessed by palpation per rectum at days 40 to 45 after AI. The logistic regression model using just main effects of season (summer and winter), parity (primiparous and pluriparous), method(1) (O, H and C) and method(2) (hCG and saline) showed that all factors, except method(1), were significant. Significant effects of season (p days after AI significantly improved pregnancy rates in those cows that were treated with the H protocol compared with saline treatments (41.5% vs 24.8%; p < 0.01). O and H were more effective in primiparous than in pluriparous cows (46.1% vs 29.9%; p < 0.1 and 43.6% vs 24.6%; p < 0.01). First service pregnancy rates were higher in primiparous hCG-treated than in pluriparous hCG-treated cows (57.9% vs 32.3%; p < 0.01). The pregnancy rate was higher for the hCG-treated cows compared with saline-treated cows during warm period (37.9% vs 23.6%; p < 0.001).

  19. The Temperature and Salinity Variabilities at Cisadane Estuary

    Directory of Open Access Journals (Sweden)

    Hadikusumah

    2008-11-01

    Full Text Available The study was conducted at Cisadane Estuary at 18 oceanographic station in Transition Monsoon Season I, East Monsoon Season, and Transition Monsoon Season II from 2003 to 2005. The area of the study was located at the longitude of 106.58° - 106.70° E and the latitude of 5.96° - 6.02°S. The measurements of temperature, salinity, tubidity and light transmision used CTD (Conductivity, Temperature and Depth Model SBE-19. The result shows that the temperature and salinity vertical profil variabilities at Cisadane Estuary underwent a change in the influence of Transition Monsoon Season I, East Monsoon Season, and Transition Monsoon Season II, for example it was obtained the leg time of the maximum salinity of Transition Monsoon Season II as the same as that of East Monsoon Season. Based on the horizontal and vertical distribution pattern analysis of the interaction between low salinity fresh water of Cisadane River and high salinity sea water of Java Sea, it was also influenced by the season variability and tide. The surface layer was much more influenced by the low salinity and the heat of sunray (seasonal variability with the weaker intensity to the lower layer. The change of the heat energy by the increase of seasonal temperature occurred in September 2003 to May 2004 ((ΔE = 600.6 ⋅ 105 Joule, July to November 2005 (ΔE = 84.9 Joule. The decrease of the heat energy occurred in June to September 2003 ((-267.6 ⋅ 105, May ke October 2004 (ΔE = 189.3 ⋅ 105 Joule and October 2004 to July 2005 (ΔE = -215.4 ⋅ 105 Joule.

  20. Paleoenvironmental and paleohydrochemical conditions of dolomite formation within a saline wetland in arid northwest Australia

    Science.gov (United States)

    Mather, Caroline C.; Skrzypek, Grzegorz; Dogramaci, Shawan; Grierson, Pauline F.

    2018-04-01

    Groundwater dolocrete occurring within the Fortescue Marsh, a large inland wetland in the Pilbara region of northwest Australia, has been investigated to provide paleoenvironmental and paleohydrological records and further the understanding of low temperature dolomite formation in terrestrial settings over the Quaternary Period. Two major phases of groundwater dolocrete formation are apparent from the presence of two distinct units of dolocrete, based on differences in depth, δ18O values and mineral composition. Group 1 (G1) occurs at depth 20-65 m b.g.l. (below ground level) and contains stoichiometric dolomite with δ18O values of -4.02-0.71‰. Group 2 (G2) is shallower (0-23 m b.g.l.), occurring close to the current groundwater level, and contains Ca-rich dolomite ± secondary calcite with a comparatively lower range of δ18O values (-7.74 and -6.03‰). Modelled δ18O values of paleogroundwater from which older G1 dolomite precipitated indicated highly saline source water, which had similar stable oxygen isotope compositions to relatively old brine groundwater within the Marsh, developed under a different hydroclimatic regime. The higher δ18O values suggest highly evaporitic conditions occurred at the Marsh, which may have been a playa lake to saline mud flat environment. In contrast, G2 dolomite precipitated from comparatively fresher water, and modelled δ18O values suggested formation from mixing between inflowing fresher groundwater with saline-brine groundwater within the Marsh. The δ18O values of the calcite indicates formation from brackish to saline groundwater, which suggests this process may be associated with coeval gypsum dissolution. In contrast to the modern hydrology of the Marsh, which is surface water dependent and driven by a flood and drought regime, past conditions conducive to dolomite precipitation suggest a groundwater dependent system, where shallow groundwaters were influenced by intensive evaporation.

  1. Lateral femoral cutaneous nerve block after total hip arthroplasty

    DEFF Research Database (Denmark)

    Thybo, K H; Mathiesen, O; Dahl, J B

    2016-01-01

    in this prospective, randomised, blinded, placebo-controlled trial. Group A received an LFCN block with 8 ml of 0.75% ropivacaine followed after 45 min by an additional LFCN block with 8 ml of saline. Group B received an LFCN block with 8 ml of saline followed after 45 min by an additional LFCN block with 8 ml of 0.......75% ropivacaine. RESULTS: We found a difference of 17 mm (95% CI, 4-31 mm; P

  2. Facebook usage among those who have received treatment for an eating disorder in a group setting.

    Science.gov (United States)

    Saffran, Kristina; Fitzsimmons-Craft, Ellen E; Kass, Andrea E; Wilfley, Denise E; Taylor, Craig Barr; Trockel, Mickey

    2016-08-01

    This study explored Facebook use among individuals with a history of receiving treatment for an eating disorder (ED) in a group setting (e.g., inpatient, residential, outpatient group), focusing primarily on comparisons individuals make about their bodies, eating, or exercise to those of their peers from treatment on Facebook and the relation between these comparisons and ED pathology. Individuals (N = 415; mean age 28.15 years ± 8.41; 98.1% female) who self-reported receipt of ED treatment in a group setting were recruited via e-mail and social media to complete an online survey. Participants reported having an average of 10-19 Facebook friends from treatment and spending up to 30 min per day interacting on Facebook with individuals from treatment or ED-related organizations. More comparison to treatment peers on Facebook was associated with greater ED psychopathology and ED-related impairment. Conversely, positive interaction with treatment peers on Facebook was associated with lower ED psychopathology and ED-related impairment. Individuals who had been in treatment longer, more times, and more recently had more Facebook friends from treatment and ED-related organizations as well as spent more time in ED groups' pages on Facebook. Few participants (19.5%) reported that a therapist asked about the impact of Facebook on pathology. Interactions on Facebook could affect patients' recovery and potential for relapse. It may be helpful for treatment providers to discuss Facebook use and its potential benefits and drawbacks with patients preparing for discharge from group treatment. © 2016 Wiley Periodicals, Inc. (Int J Eat Disord 2016; 49:764-777). © 2016 Wiley Periodicals, Inc.

  3. The chicken or the egg? Adaptation to desiccation and salinity tolerance in a lineage of water beetles.

    Science.gov (United States)

    Pallarés, Susana; Arribas, Paula; Bilton, David T; Millán, Andrés; Velasco, Josefa; Ribera, Ignacio

    2017-10-01

    Transitions from fresh to saline habitats are restricted to a handful of insect lineages, as the colonization of saline waters requires specialized mechanisms to deal with osmotic stress. Previous studies have suggested that tolerance to salinity and desiccation could be mechanistically and evolutionarily linked, but the temporal sequence of these adaptations is not well established for individual lineages. We combined molecular, physiological and ecological data to explore the evolution of desiccation resistance, hyporegulation ability (i.e., the ability to osmoregulate in hyperosmotic media) and habitat transitions in the water beetle genus Enochrus subgenus Lumetus (Hydrophilidae). We tested whether enhanced desiccation resistance evolved before increases in hyporegulation ability or vice versa, or whether the two mechanisms evolved in parallel. The most recent ancestor of Lumetus was inferred to have high desiccation resistance and moderate hyporegulation ability. There were repeated shifts between habitats with differing levels of salinity in the radiation of the group, those to the most saline habitats generally occurring more rapidly than those to less saline ones. Significant and accelerated changes in hyporegulation ability evolved in parallel with smaller and more progressive increases in desiccation resistance across the phylogeny, associated with the colonization of meso- and hypersaline waters during global aridification events. All species with high hyporegulation ability were also desiccation-resistant, but not vice versa. Overall, results are consistent with the hypothesis that desiccation resistance mechanisms evolved first and provided the physiological basis for the development of hyporegulation ability, allowing these insects to colonize and diversify across meso- and hypersaline habitats. © 2017 John Wiley & Sons Ltd.

  4. Seasonal variations of the upper ocean salinity stratification in the Tropics

    Science.gov (United States)

    Maes, Christophe; O'Kane, Terence J.

    2014-03-01

    In comparison to the deep ocean, the upper mixed layer is a region typically characterized by substantial vertical gradients in water properties. Within the Tropics, the rich variability in the vertical shapes and forms that these structures can assume through variation in the atmospheric forcing results in a differential effect in terms of the temperature and salinity stratification. Rather than focusing on the strong halocline above the thermocline, commonly referred to as the salinity barrier layer, the present study takes into account the respective thermal and saline dependencies in the Brunt-Väisälä frequency (N2) in order to isolate the specific role of the salinity stratification in the layers above the main pycnocline. We examine daily vertical profiles of temperature and salinity from an ocean reanalysis over the period 2001-2007. We find significant seasonal variations in the Brunt-Väisälä frequency profiles are limited to the upper 300 m depth. Based on this, we determine the ocean salinity stratification (OSS) to be defined as the stabilizing effect (positive values) due to the haline part of N2 averaged over the upper 300 m. In many regions of the tropics, the OSS contributes 40-50% to N2 as compared to the thermal stratification and, in some specific regions, exceeds it for a few months of the seasonal cycle. Away from the tropics, for example, near the centers of action of the subtropical gyres, there are regions characterized by the permanent absence of OSS. In other regions previously characterized with salinity barrier layers, the OSS obviously shares some common variations; however, we show that where temperature and salinity are mixed over the same depth, the salinity stratification can be significant. In addition, relationships between the OSS and the sea surface salinity are shown to be well defined and quasilinear in the tropics, providing some indication that in the future, analyses that consider both satellite surface salinity

  5. Assessing Salinity in Cotton and Tomato Plants by Using Reflectance Spectroscopy

    Science.gov (United States)

    Goldshleger, Naftaly

    2016-04-01

    Irrigated lands in semi-arid and arid areas are subjected to salinization processes. An example of this phenomenon is the Jezreel Valley in northern Israel where soil salinity has increased over the years. The increase in soil salinity results in the deterioration of the soil structure and crops damage. In this experiment we quantified the relation between the chemical and spectral features of cotton and tomato plants and their mutual relationship to soil salinity. The experiment was carried out as part of ongoing research aiming to detect and monitor saline soils and vegetation by combining different remote sensing methods. The aim of this study was to use vegetation reflectance measurements to predict foliar Cl and Na concentration and assess salinity in the soil and in vegetation by their reflectance measurements. The model developed for determining concentrations of chlorine and sodium in tomato and cotton produced good results ( R2 = 0.92 for sodium and 0.85 for chlorine in tomato and R2 = 0.84 for sodium and 0.82 for chlorine in cotton). Lately, we extend the method to calculate vegetation salinity, by doing correlation between the reflectance slopes of the tested crops CL and Na from two research areas. The developed model produced a good results for all the data (R2=0.74) Our method can be implemented to assess vegetation salinity ahead of planting, and developed as a generic tool for broader use for agriculture in semi-arid regions. In our opinion these results show the possibility of monitoring for a threshold level of salinity in tomato and cotton leaves so remedial action can be taken in time to prevent crop damage. Our results strongly suggest that future imaging spectroscopy remote sensing measurements collected by airborne and satellite platforms could measure the salinity of soil and vegetation over larger areas. These results can be the first steps for generic a model which includes more vegetation for salinity measurements.

  6. Synoptic monthly gridded Global Temperature and Salinity Profile Programme (GTSPP) water temperature and salinity from January 1990 to December 2009 (NCEI Accession 0138647)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The synoptic gridded Global Temperature and Salinity Profile Programme (SG-GTSPP) provides world ocean 3D gridded temperature and salinity data in monthly increment...

  7. Do Acartia tonsa (Dana) eggs regulate their volume and osmolality as salinity changes?

    DEFF Research Database (Denmark)

    Hansen, Benni Winding; Drillet, Guillaume; Pedersen, Morten Foldager

    2012-01-01

    Subitaneous eggs from an euryhaline calanoid copepod Acartia tonsa were challenged by changes in salinity within the range from full strength salinity, down to zero and up to >70 psu. Egg volume changed immediately, increasing from 2.8 × 105 μm3 at full strength salinity (35 psu) to 3.8 × 105 μm3...... at 0 psu and back to its initial volume when gradually being returned to full strength salinity. Egg osmolality followed the molality of the surrounding water when challenged within a salinity range from 2 to 50 psu. Egg respiration was not affected when eggs kept at 35 psu was exposed to low salinity...... (2 psu). These results suggest that eggs are unable to regulate their volume or osmolality when challenged with changes in salinity. Gradual changes in salinity from 35 to 2 psu and back did not harm the eggs (embryos), since the hatching success remained unaffected by such changes in salinity...

  8. The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula.

    Science.gov (United States)

    Friesen, Maren L; von Wettberg, Eric J B; Badri, Mounawer; Moriuchi, Ken S; Barhoumi, Fathi; Chang, Peter L; Cuellar-Ortiz, Sonia; Cordeiro, Matilde A; Vu, Wendy T; Arraouadi, Soumaya; Djébali, Naceur; Zribi, Kais; Badri, Yazid; Porter, Stephanie S; Aouani, Mohammed Elarbi; Cook, Douglas R; Strauss, Sharon Y; Nuzhdin, Sergey V

    2014-12-22

    As our world becomes warmer, agriculture is increasingly impacted by rising soil salinity and understanding plant adaptation to salt stress can help enable effective crop breeding. Salt tolerance is a complex plant phenotype and we know little about the pathways utilized by naturally tolerant plants. Legumes are important species in agricultural and natural ecosystems, since they engage in symbiotic nitrogen-fixation, but are especially vulnerable to salinity stress. Our studies of the model legume Medicago truncatula in field and greenhouse settings demonstrate that Tunisian populations are locally adapted to saline soils at the metapopulation level and that saline origin genotypes are less impacted by salt than non-saline origin genotypes; these populations thus likely contain adaptively diverged alleles. Whole genome resequencing of 39 wild accessions reveals ongoing migration and candidate genomic regions that assort non-randomly with soil salinity. Consistent with natural selection acting at these sites, saline alleles are typically rare in the range-wide species' gene pool and are also typically derived relative to the sister species M. littoralis. Candidate regions for adaptation contain genes that regulate physiological acclimation to salt stress, such as abscisic acid and jasmonic acid signaling, including a novel salt-tolerance candidate orthologous to the uncharacterized gene AtCIPK21. Unexpectedly, these regions also contain biotic stress genes and flowering time pathway genes. We show that flowering time is differentiated between saline and non-saline populations and may allow salt stress escape. This work nominates multiple potential pathways of adaptation to naturally stressful environments in a model legume. These candidates point to the importance of both tolerance and avoidance in natural legume populations. We have uncovered several promising targets that could be used to breed for enhanced salt tolerance in crop legumes to enhance food security

  9. Estimating salinity stress in sugarcane fields with spaceborne hyperspectral vegetation indices

    Science.gov (United States)

    Hamzeh, S.; Naseri, A. A.; AlaviPanah, S. K.; Mojaradi, B.; Bartholomeus, H. M.; Clevers, J. G. P. W.; Behzad, M.

    2013-04-01

    The presence of salt in the soil profile negatively affects the growth and development of vegetation. As a result, the spectral reflectance of vegetation canopies varies for different salinity levels. This research was conducted to (1) investigate the capability of satellite-based hyperspectral vegetation indices (VIs) for estimating soil salinity in agricultural fields, (2) evaluate the performance of 21 existing VIs and (3) develop new VIs based on a combination of wavelengths sensitive for multiple stresses and find the best one for estimating soil salinity. For this purpose a Hyperion image of September 2, 2010, and data on soil salinity at 108 locations in sugarcane (Saccharum officina L.) fields were used. Results show that soil salinity could well be estimated by some of these VIs. Indices related to chlorophyll absorption bands or based on a combination of chlorophyll and water absorption bands had the highest correlation with soil salinity. In contrast, indices that are only based on water absorption bands had low to medium correlations, while indices that use only visible bands did not perform well. From the investigated indices the optimized soil-adjusted vegetation index (OSAVI) had the strongest relationship (R2 = 0.69) with soil salinity for the training data, but it did not perform well in the validation phase. The validation procedure showed that the new salinity and water stress indices (SWSI) implemented in this study (SWSI-1, SWSI-2, SWSI-3) and the Vogelmann red edge index yielded the best results for estimating soil salinity for independent fields with root mean square errors of 1.14, 1.15, 1.17 and 1.15 dS/m, respectively. Our results show that soil salinity could be estimated by satellite-based hyperspectral VIs, but validation of obtained models for independent data is essential for selecting the best model.

  10. Adopting adequate leaching requirement for practical response models of basil to salinity

    Science.gov (United States)

    Babazadeh, Hossein; Tabrizi, Mahdi Sarai; Darvishi, Hossein Hassanpour

    2016-07-01

    Several mathematical models are being used for assessing plant response to salinity of the root zone. Objectives of this study included quantifying the yield salinity threshold value of basil plants to irrigation water salinity and investigating the possibilities of using irrigation water salinity instead of saturated extract salinity in the available mathematical models for estimating yield. To achieve the above objectives, an extensive greenhouse experiment was conducted with 13 irrigation water salinity levels, namely 1.175 dS m-1 (control treatment) and 1.8 to 10 dS m-1. The result indicated that, among these models, the modified discount model (one of the most famous root water uptake model which is based on statistics) produced more accurate results in simulating the basil yield reduction function using irrigation water salinities. Overall the statistical model of Steppuhn et al. on the modified discount model and the math-empirical model of van Genuchten and Hoffman provided the best results. In general, all of the statistical models produced very similar results and their results were better than math-empirical models. It was also concluded that if enough leaching was present, there was no significant difference between the soil salinity saturated extract models and the models using irrigation water salinity.

  11. Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress

    KAUST Repository

    Pires, Inês S.

    2015-07-22

    Increase in soil salinity levels is becoming a major cause of crop yield losses worldwide. Rice (Oryza sativa) is the most salt-sensitive cereal crop, and many studies have focused on rice salinity tolerance, but a global understanding of this crop\\'s response to salinity is still lacking. We systematically analyzed phenotypic data previously collected for 56 rice genotypes to assess the extent to which rice uses three known salinity tolerance mechanisms: shoot-ion independent tolerance (or osmotic tolerance), ion exclusion, and tissue tolerance. In general, our analyses of different phenotypic traits agree with results of previous rice salinity tolerance studies. However, we also established that the three salinity tolerance mechanisms mentioned earlier appear among rice genotypes and that none of them is predominant. Against the pervasive view in the literature that the K+/Na+ ratio is the most important trait in salinity tolerance, we found that the K+ concentration was not significantly affected by salt stress in rice, which puts in question the importance of K+/Na+ when analyzing rice salt stress response. Not only do our results contribute to improve our global understanding of salt stress response in an important crop, but we also use our results together with an extensive literature research to highlight some issues commonly observed in salinity stress tolerance studies and to propose solutions for future experiments.

  12. Hypertonic saline in treatment of pulmonary disease in cystic fibrosis.

    LENUS (Irish Health Repository)

    Reeves, Emer P

    2012-01-01

    The pathogenesis of lung disease in cystic fibrosis is characterised by decreased airway surface liquid volume and subsequent failure of normal mucociliary clearance. Mucus within the cystic fibrosis airways is enriched in negatively charged matrices composed of DNA released from colonizing bacteria or inflammatory cells, as well as F-actin and elevated concentrations of anionic glycosaminoglycans. Therapies acting against airway mucus in cystic fibrosis include aerosolized hypertonic saline. It has been shown that hypertonic saline possesses mucolytic properties and aids mucociliary clearance by restoring the liquid layer lining the airways. However, recent clinical and bench-top studies are beginning to broaden our view on the beneficial effects of hypertonic saline, which now extend to include anti-infective as well as anti-inflammatory properties. This review aims to discuss the described therapeutic benefits of hypertonic saline and specifically to identify novel models of hypertonic saline action independent of airway hydration.

  13. Improvement of Salinity Stress Tolerance in Rice: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Thi My Linh Hoang

    2016-10-01

    Full Text Available Rice (Oryza sativa L. is an important staple crop that feeds more than one half of the world’s population and is the model system for monocotyledonous plants. However, rice is very sensitive to salinity and is the most salt sensitive cereal crop with a threshold of 3 dSm−1 for most cultivated varieties. Despite many attempts using different strategies to improve salinity tolerance in rice, the achievements so far are quite modest. This review aims to discuss challenges that hinder the improvement of salinity stress tolerance in rice as well as potential opportunities for enhancing salinity stress tolerance in this important crop.

  14. [Using a modified remote sensing imagery for interpreting changes in cultivated saline-alkali land].

    Science.gov (United States)

    Gao, Hui; Liu, Hui-tao; Liu, Hong-juan; Liu, Jin-tong

    2015-04-01

    This paper developed a new interpretation symbol system for grading and classifying saline-alkali land, using Huanghua, a cosatal city in Hebei Province as a case. The system was developed by inverting remote sensing images from 1992 to 2011 based on site investigation, plant cover characteristics and features of remote sensing images. Combining this interpretation symbol system with supervising classification method, the information on arable land was obtained for the coastal saline-alkali ecosystem of Huanghua City, and the saline-alkali land area, changes in intensity of salinity-alkalinity and spatial distribution from 1992 to 2011 were analyzed. The results showed that salinization of arable land in Huanghua City alleviated from 1992 to 2011. The severely and moderately saline-alkali land area decreased in 2011 compared with 1992, while the non/slightly saline land area increased. The moderately saline-alkali land in southeast transformed to non/slightly saline-alkaline, while the severely saline-alkali land in west of the city far from the coastal zone became moderately saline-alkaline. The center of gravity (CG) of severely and non/slightly saline-alkali land moved closer the coastline, while that of the moderately saline-alkali land moved from southwest coastal line to northwest. Factors influencing changes in arable land within the saline-alkali ecosystem of Huanghua City were climate, hydrology and human activities.

  15. Groundwater Salinity Simulation of a Subsurface Reservoir in Taiwan

    Science.gov (United States)

    Fang, H. T.

    2015-12-01

    The subsurface reservoir is located in Chi-Ken Basin, Pescadores (a group islands located at western part of Taiwan). There is no river in these remote islands and thus the freshwater supply is relied on the subsurface reservoir. The basin area of the subsurface reservoir is 2.14 km2 , discharge of groundwater is 1.27×106m3 , annual planning water supplies is 7.9×105m3 , which include for domestic agricultural usage. The annual average temperature is 23.3oC, average moisture is 80~85%, annual average rainfall is 913 mm, but ET rate is 1975mm. As there is no single river in the basin; the major recharge of groundwater is by infiltration. Chi-Ken reservoir is the first subsurface reservoir in Taiwan. Originally, the water quality of the reservoir is good. The reservoir has had the salinity problem since 1991 and it became more and more serious from 1992 until 1994. Possible reason of the salinity problem was the shortage of rainfall or the leakage of the subsurface barrier which caused the seawater intrusion. The present study aimed to determine the leakage position of subsurface barrier that caused the salinity problem. In order to perform the simulation for different possible leakage position of the subsurface reservoir, a Groundwater Modeling System (GMS) is used to define soils layer data, hydro-geological parameters, initial conditions, boundary conditions and the generation of three dimension meshes. A three dimension FEMWATER(Yeh , 1996) numerical model was adopted to find the possible leakage position of the subsurface barrier and location of seawater intrusion by comparing the simulation of different possible leakage with the observations. 1.By assuming the leakage position in the bottom of barrier, the simulated numerical result matched the observation better than the other assumed leakage positions. It showed that the most possible leakage position was at the bottom of the barrier. 2.The research applied three dimension FEMWATER and GMS as an interface

  16. Salinization mechanisms in semi-arid regions

    International Nuclear Information System (INIS)

    Santiago, M.M.F.

    1984-01-01

    During a period of three years the basins of the Pereira de Miranda and Caxitore dams, located in the crystalline rock area of Ceara, Brazil, were studied in order to determine the mechanisms of salinization of their waters. Isotope methods ( 18 O/ 16 O) and hidrochemistry (determination of the of the maior ions) were applied to surface, underground and rain water in this study. An isotope model was designed and applied to the determination of evaporation and percolation of dams in semi-arid zones during the dry season. The results are compared to those from a conventional chemical model. As causes of salinization of the water in the dams, the contributions of the rain itself and the lixiviation of the soil are quantified. An interaction between the dams and the underground water is imperceptible. The salinization of the underground water is attributed to recharge of the aquifer with rain water from the surface runoff followed by evaporation of the water rising, due to capilarity, in a one-directional flow to the surface. (Author) [pt

  17. Influence of net freshwater supply on salinity in Florida Bay

    Science.gov (United States)

    Nuttle, William K.; Fourqurean, James W.; Cosby, Bernard J.; Zieman, Joseph C.; Robblee, Michael B.

    2000-01-01

    An annual water budget for Florida Bay, the large, seasonally hypersaline estuary in the Everglades National Park, was constructed using physically based models and long‐term (31 years) data on salinity, hydrology, and climate. Effects of seasonal and interannual variations of the net freshwater supply (runoff plus rainfall minus evaporation) on salinity variation within the bay were also examined. Particular attention was paid to the effects of runoff, which are the focus of ambitious plans to restore and conserve the Florida Bay ecosystem. From 1965 to 1995 the annual runoff from the Everglades into the bay was less than one tenth of the annual direct rainfall onto the bay, while estimated annual evaporation slightly exceeded annual rainfall. The average net freshwater supply to the bay over a year was thus approximately zero, and interannual variations in salinity appeared to be affected primarily by interannual fluctuations in rainfall. At the annual scale, runoff apparently had little effect on the bay as a whole during this period. On a seasonal basis, variations in rainfall, evaporation, and runoff were not in phase, and the net freshwater supply to the bay varied between positive and negative values, contributing to a strong seasonal pattern in salinity, especially in regions of the bay relatively isolated from exchanges with the Gulf of Mexico and Atlantic Ocean. Changes in runoff could have a greater effect on salinity in the bay if the seasonal patterns of rainfall and evaporation and the timing of the runoff are considered. One model was also used to simulate spatial and temporal patterns of salinity responses expected to result from changes in net freshwater supply. Simulations in which runoff was increased by a factor of 2 (but with no change in spatial pattern) indicated that increased runoff will lower salinity values in eastern Florida Bay, increase the variability of salinity in the South Region, but have little effect on salinity in the Central

  18. Evaluation of wheat genotypes for salinity tolerance using physiological indices as screening tool

    International Nuclear Information System (INIS)

    Zafar, S.; Niaz, M.; Kausar, A.

    2015-01-01

    Salinity is a major threat to world food security, to ensure future food needs of an increasing world population, development of salt tolerant crop varieties are necessary. Effective screening techniques for salinity tolerance would be beneficial in developing high yielding and salt tolerant wheat varieties. In the present study, an attempt for rapid screening of wheat genotypes for salt tolerance was made. Twenty wheat genotypes were evaluated for salinity tolerance under laboratory/green-house conditions using different physiological indices like germination stress tolerance index (GSI), shoot length stress tolerance index (SLSI), root length stress tolerance index (RLSI) , shoot dry biomass stress tolerance index (SDSI). The data was pooled together to different multivariate techniques including correlation and cluster analysis to assess the diversity for salt tolerance in wheat genotypes. Highly significant and positive correlations were found between GSI, SDWSI and RDWSI. Cluster analysis classified 20 genotypes into three divergent groups. The members of first cluster (Abadgharr, Bhakkar-2000, Chakwal-86, Kiran-95, LU-26-S, Margalla-99, Marvi Pak-81, Sarsabaz) exhibited adequate degree of salt tolerance on the basis of various physiological stress tolerance indices, whereas, cluster-2 included genotypes (Bhattai, Pasban-90, Shafaq-2006, Soghat-90) with medium level of salt tolerance and cluster-3 consisted of wheat genotypes (Inqilab-91, Iqbal-2000, Kohistan-97, PARI-73, Punjab-90, Sehar-2006 and Uqab-6) with lower level of salt tolerance and did not perform upto the mark. On the basis of results and scores obtained, indicated that physiological indices can be used as a selection tool for salinity tolerance in wheat. (author)

  19. Effect of salinity stress on antioxidative enzyme activities in tomato cultured in vitro

    International Nuclear Information System (INIS)

    Srineing, K.; Saisavoey, T.; Karnchanatat, A.

    2015-01-01

    Under inappropriate environments, plants responses by changing their metabolisms to maintain homeostasis that acclimation abilities are different among species and varieties. Saline tolerance tomato is an alternative way to overcome saline soil condition of some areas in Thailand. This study aims to select one or some saline tolerance tomato varieties from mostly used commercial ones. Six tomato variety seeds (Pethlanna, Puangphaka, Seeda, Beefeater, Seeda chompoo and TE VF 1-3-4) were grown by tissue culture technique in MS medium and MS medium supplied with 0, 5, 10, 25 and 50 mM NaCl. The Puangphaka variety was selected since it could grow in all tests NaCl concentrations with best germination time compared to the others cultivar seeds and exhibited 80-90% growth compared to control group. The seedlings were further cultivated in the same medium for 7, 14 and 21 days before they were conducted to determine stem and root superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities as well as amount of chlorophyll. It was found that the SOD, CAT and GPx exhibited increase and decrease trends nearly the same pattern in salinity responses but with different activity levels. Inhibition of nutrient uptake could also be seen from the results. The maximum activities were 5, 0.18, 0.08, 2 and 3 U/mg protein for stem SOD, stem CAT, root CAT, stem GPx and root GPx, respectively. Furthermore, the chlorophyll A and B levels were decrease slightly except for the 21 days plants which presented considerable decrease. (author)

  20. The effect of salinity on the growth, morphology and physiology of ...

    African Journals Online (AJOL)

    The salinity of water and soil decreases the growth and yield of agricultural products. Salinity affects many physiological and morphological processes of plant by influencing soil solution osmotic potential and ion absorption and accumulation of minerals. To evaluate the effect of salinity on some physiological and ...

  1. PENGARUH PERBAIKAN TANAH SALIN TERHADAP KARAKTER FISIOLOGIS Calopogonium mucunoides

    Directory of Open Access Journals (Sweden)

    F Kusmiyati

    2015-06-01

    Full Text Available Peralihan fungsi lahan pertanian menjadi wilayah pemukimam dan industri menyebabkan semakinberkurangnya lahan pertanian.Hal tersebut menyebabkan pengembangan pertanian perlu diarahkan padalahan-lahan marginal seperti tanah salin.Tanah salin adalah tanah yang mengandung garam terlarut netraldalam jumlah tertentu yang berpengaruh buruk terhadap pertumbuhan dan produksi tanaman.Penelitian yangdilaksanakan bertujuan mengkaji pengaruh perbaikan tanah salin secara kimia dan biologi terhadap karakterfisiologis Calopogonium mucunoides. Rancangan yang digunakan adalah rancangan acak lengkap dengan 3ulangan. Perbaikan tanah salin dilakukan melalui penambahan gipsum (P1, pupuk kandang (P2, abu sekampadi (P3, tanaman halofita (P4, gipsum dan pupuk kandang (P5, gipsum dan abu sekam padi (P6, gipsumdantanamanhalofita (P7, pupuk kandang dan abu sekam padi (P8, pupuk kandang dan tanaman halofita(P9, abusekam padi dan tanaman halofita (P10 dan tanpa penambahan sebagai kontrol (P0. Parameter yangdiamati adalah kandungan klorofil a, kandungan klorofil b, kandungan total klorofil, aktivitas nitrat reduktase,luas daun dan laju fotosintesis.Data yang diperoleh dianalisis dengan sidik ragam dan uji lanjut dengan ujiwilayah ganda Duncan. Hasil penelitian menunjukkan kandungan klorofil a, klorofil b, total klorofil, aktivitasnitrat reduktase dan laju fotosintesis calopo berbeda nyata (P<0,05 lebih tinggi pada perlakuan perbaikantanah salin dibandingkan kontrol. Kandungan klorofil a, klorofil b dan total klorofil calopo pada perlakuankombinasi pupuk kandang dan abu sekam padi serta kombinasi gipsum dan pupuk kandang berbeda nyata(P<0,05 lebih tinggi dibandingkan perlakuan lainnya. Aktivitas nitrat reduktase dan laju fotosintesis calopopada perlakuan kombinasi pupuk kandang dan abu sekam padi serta perlakuan pupuk kandang berbeda nyata(P<0,05 lebih tinggi daripada perlakuan lainnya. Simpulan adalah perbaikan tanah salin dengan penambahankombinasi pupuk kandang dan abu

  2. Facebook Usage Amongst Those Who Have Received Treatment for an Eating Disorder in a Group Setting

    Science.gov (United States)

    Saffran, Kristina; Fitzsimmons-Craft, Ellen E.; Kass, Andrea E.; Wilfley, Denise E.; Taylor, C. Barr; Trockel, Mickey

    2017-01-01

    Objective This study explored Facebook use among individuals with a history of receiving treatment for an eating disorder (ED) in a group setting (e.g., inpatient, residential, outpatient group), focusing primarily on comparisons individuals make about their bodies, eating, or exercise to those of their peers from treatment on Facebook and the relation between these comparisons and ED pathology. Method Individuals (N = 415; mean age 28.15 years ± 8.41; 98.1% female) who self-reported receipt of ED treatment in a group setting were recruited via email and social media to complete an online survey. Results Participants reported having an average of 10–19 Facebook friends from treatment and spending up to 30 minutes per day interacting on Facebook with individuals from treatment or ED-related organizations. More comparison to treatment peers on Facebook was associated with greater ED psychopathology and ED-related impairment. Conversely, positive interaction with treatment peers on Facebook was associated with lower ED psychopathology and ED-related impairment. Individuals who had been in treatment longer, more times, and more recently had more Facebook friends from treatment and ED-related organizations as well as spent more time in ED groups’ pages on Facebook. Few participants (19.5%) reported that a therapist asked about the impact of Facebook on pathology. Discussion Interactions on Facebook could affect patients’ recovery and potential for relapse. It may be helpful for treatment providers to discuss Facebook use and its potential benefits and drawbacks with patients preparing for discharge from group treatment. PMID:27302908

  3. Salinity and temperature variations around Peninsula Malaysia coastal waters

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak; Jeremy Andy Anak Dominic; Nazrul Hizam Yusof; Mohd Rafaei Murtadza

    2004-01-01

    Vertical profiles of salinity and temperature were measured at several offshore stations along east and west coast of Peninsula Malaysia coastal waters. The measurements which covered South China Sea and Straits of Malacca were made during sampling cruises for Marine Database Project for Peninsula Malaysia, and during an IAEA regional training course for Marine Pollution Project. The results show that the water temperature is highest at the surface and minimum at bottom, while the salinity is lowest at the surface and highest at the bottom. In Malacca Straits, the highest surface water temperature was 30.6 degree C and the lowest bottom water temperature was 20.4 degree C, recorded at a station located in Andaman Sea. The same station also recorded the highest surface and bottom salinity i.e. 31.3 ppt and 34.4 ppt, respectively. For South China Sea, the maximum surface water temperature was 30.4 degree C and the minimum bottom temperature was 25.9 degree C, while the highest surface salinity was 33.2 ppt and the highest bottom salinity was 34.1 ppt. The water in South China Sea also showed some degrees of stratifications with thermocline zones located between 10-40 m water depths. In Malacca Straits, stronger thermocline develops at higher latitude, while at lower latitude the water is more readily mixed. Beside the spatial variations, the seawater temperature and salinity around Peninsula Malaysia also subjected to temporal variation as seawater. (Author)

  4. Morphological responses of forage sorghums to salinity and ...

    African Journals Online (AJOL)

    The response of forage sorghum [Sorghum bicolor (L.) Moench] varieties to salinity and irrigation frequency were studied from December 2007 to December 2009. Two forage sorghum varieties (Speedfeed and KFS4) were grown under salinity levels of 0, 5, 10 and 15 dS m-1 and irrigated when the leaf water potential ...

  5. Optimizing silicon application to improve salinity tolerance in wheat

    Directory of Open Access Journals (Sweden)

    A. Ali

    2009-05-01

    Full Text Available Salinity often suppresses the wheat performance. As wheat is designated as silicon (Si accumulator, hence Si application may alleviate the salinity induced damages. With the objective to combat the salinity stress in wheat by Si application (0, 50, 100, 150 and 200 mg L-1 using calcium silicate, an experiment was conducted on two contrasting wheat genotypes (salt sensitive; Auqab-2000 and salt tolerant; SARC-5 in salinized (10 dS m-1 and non-salinized (2 dS m-1 solutions. Plants were harvested 32 days after transplanting and evaluation was done on the basis of different morphological and analytical characters. Silicon supplementation into the solution culture improved wheat growth and K+/Na+ with reduced Na+ and enhanced K+ uptake. Concomitant improvement in shoot growth was observed; nonetheless the root growth remained unaffected by Si application. Better results were obtained with 150 and 200 mg L-1 of Si which were found almost equally effective. It was concluded that SARC-5 is better than Auqab-2000 against salt stress and Si inclusion into the solution medium is beneficial for wheat and can improve the crop growth both under optimal and salt stressful conditions.

  6. Surface Energy Balance of Fresh and Saline Waters: AquaSEBS

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelrady

    2016-07-01

    Full Text Available Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System model for large water bodies and add the effect of water salinity to the evaporation rate. Firstly, SEBS is modified for fresh-water whereby new parameterizations of the water heat flux and sensible heat flux are suggested. This is achieved by adapting the roughness heights for momentum and heat transfer. Secondly, a salinity correction factor is integrated into the adapted model. Eddy covariance measurements over Lake IJsselmeer (The Netherlands are carried out and used to estimate the roughness heights for momentum (~0.0002 m and heat transfer (~0.0001 m. Application of these values over the Victoria and Tana lakes (freshwater in Africa showed that the calculated latent heat fluxes agree well with the measurements. The root mean-square of relative-errors (rRMSE is about 4.1% for Lake Victoria and 4.7%, for Lake Tana. Verification with ECMWF data showed that the salinity reduced the evaporation at varying levels by up to 27% in the Great Salt Lake and by 1% for open ocean. Our results show the importance of salinity to the evaporation rate and the suitability of the adapted-SEBS model (AquaSEBS for fresh and saline waters.

  7. Quantifying salinity and season effects on eastern oyster clearance and oxygen consumption rates

    Science.gov (United States)

    Casas, S.M.; Lavaud, Romain; LaPeyre, Megan K.; Comeau, L. A.; Filgueira, R.; LaPeyre, Jerome F.

    2018-01-01

    There are few data on Crassostrea virginica physiological rates across the range of salinities and temperatures to which they are regularly exposed, and this limits the applicability of growth and production models using these data. The objectives of this study were to quantify, in winter (17 °C) and summer (27 °C), the clearance and oxygen consumption rates of C. virginica from Louisiana across a range of salinities typical of the region (3, 6, 9, 15 and 25). Salinity and season (temperature and reproduction) affected C. virginica physiology differently; salinity impacted clearance rates with reduced feeding rates at low salinities, while season had a strong effect on respiration rates. Highest clearance rates were found at salinities of 9–25, with reductions ranging from 50 to 80 and 90 to 95% at salinities of 6 and 3, respectively. Oxygen consumption rates in summer were four times higher than in winter. Oxygen consumption rates were within a narrow range and similar among salinities in winter, but varied greatly among individuals and salinities in summer. This likely reflected varying stages of gonad development. Valve movements measured at the five salinities indicated oysters were open 50–60% of the time in the 6–25 salinity range and ~ 30% at a salinity of 3. Reduced opening periods, concomitant with narrower valve gap amplitudes, are in accord with the limited feeding at the lowest salinity (3). These data indicate the need for increased focus on experimental determination of optimal ranges and thresholds to better quantify oyster population responses to environmental changes.

  8. Saline lakes of the glaciated Northern Great Plains

    Science.gov (United States)

    Mushet, David M.

    2011-01-01

    Unless you have flown over the region or seen aerial photographs, it is hard to grasp the scale of the millions of lakes and wetlands that dot the prairie landscape of the glaciated Northern Great Plains (Figure 1). This region of abundant aquatic habitats within a grassland matrix provides for the needs of a wide diversity of wildlife species and has appropriately been deemed the "duck factory of North America." While the sheer number of lakes and wetlands within this area of the Northern Great Plains can be truly awe-inspiring, their diversity in terms of the chemical composition of their water adds an equally important component supporting biotic diversity and productivity. Water within these lakes and wetlands can range from extremely fresh with salinities approaching that of rainwater to hypersaline with salinity ten times greater than that of seawater. Additionally, while variation in salinity among these water bodies can be great, the ionic composition of lakes and wetlands with similar salinities can vary markedly, influencing the overall spatial and temporal diversity of the region's biota.

  9. Features of acid-saline systems of Southern Australia

    International Nuclear Information System (INIS)

    Dickson, Bruce L.; Giblin, Angela M.

    2009-01-01

    The discovery of layered, SO 4 -rich sediments on the Meridiani Planum on Mars has focused attention on understanding the formation of acid-saline lakes. Many salt lakes have formed in southern Australia where regional groundwaters are characterized by acidity and high salinity and show features that might be expected in the Meridiani sediments. Many (but not all) of the acid-saline Australian groundwaters are found where underlying Tertiary sediments are sulfide-rich. When waters from the formations come to the surface or interact with oxidised meteoric water, acid groundwaters result. In this paper examples of such waters around Lake Tyrrell, Victoria, and Lake Dey-Dey, South Australia, are reviewed. The acid-saline groundwaters typically have dissolved solids of 30-60 g/L and pH commonly 4 and MgSO 4 ) or differential separation of elements with differing solubility (K, Na, Ti, Cr). Thus, it is considered unlikely that groundwaters or evaporative salt-lake systems, as found on earth, were involved. Instead, these features point to a water-poor system with local alteration and very little mobilization of elements

  10. Genomic arrangement of salinity tolerance QTLs in salmonids: A comparative analysis of Atlantic salmon (Salmo salar with Arctic charr (Salvelinus alpinus and rainbow trout (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Norman Joseph D

    2012-08-01

    Full Text Available Abstract Background Quantitative trait locus (QTL studies show that variation in salinity tolerance in Arctic charr and rainbow trout has a genetic basis, even though both these species have low to moderate salinity tolerance capacities. QTL were observed to localize to homologous linkage group segments within putative chromosomal regions possessing multiple candidate genes. We compared salinity tolerance QTL in rainbow trout and Arctic charr to those detected in a higher salinity tolerant species, Atlantic salmon. The highly derived karyotype of Atlantic salmon allows for the assessment of whether disparity in salinity tolerance in salmonids is associated with differences in genetic architecture. To facilitate these comparisons, we examined the genomic synteny patterns of key candidate genes in the other model teleost fishes that have experienced three whole-genome duplication (3R events which preceded a fourth (4R whole genome duplication event common to all salmonid species. Results Nine linkage groups contained chromosome-wide significant QTL (AS-2, -4p, -4q, -5, -9, -12p, -12q, -14q -17q, -22, and −23, while a single genome-wide significant QTL was located on AS-4q. Salmonid genomes shared the greatest marker homology with the genome of three-spined stickleback. All linkage group arms in Atlantic salmon were syntenic with at least one stickleback chromosome, while 18 arms had multiple affinities. Arm fusions in Atlantic salmon were often between multiple regions bearing salinity tolerance QTL. Nine linkage groups in Arctic charr and six linkage group arms in rainbow trout currently have no synteny alignments with stickleback chromosomes, while eight rainbow trout linkage group arms were syntenic with multiple stickleback chromosomes. Rearrangements in the stickleback lineage involving fusions of ancestral arm segments could account for the 21 chromosome pairs observed in the stickleback karyotype. Conclusions Salinity tolerance in

  11. Changes in plasma melatonin levels and pineal organ melatonin synthesis following acclimation of rainbow trout (Oncorhynchus mykiss) to different water salinities.

    Science.gov (United States)

    López-Patiño, Marcos A; Rodríguez-Illamola, Arnau; Gesto, Manuel; Soengas, José L; Míguez, Jesús M

    2011-03-15

    Melatonin has been suggested to play a role in fish osmoregulation, and in salmonids has been related to the timing of adaptive mechanisms during smolting. It has been described that acclimation to different environmental salinities alters levels of circulating melatonin in a number of fish species, including rainbow trout. However, nothing is known regarding salinity effects on melatonin synthesis in the pineal organ, which is the main source of rhythmically produced and secreted melatonin in blood. In the present study we have evaluated, in rainbow trout, the effects of acclimation to different salinities on day and night plasma melatonin values and pineal organ melatonin synthesis. Groups of freshwater (FW)-adapted rainbow trout were placed in tanks with four different levels of water salinity (FW, 6, 12, 18 p.p.t.; parts per thousand) and maintained for 6 h or 5 days. Melatonin content in plasma and pineal organs, as well as the pineal content of serotonin (5-HT) and its main oxidative metabolite (5-hydroxyindole-3-acetic acid; 5-HIAA) were measured by high performance liquid chromatography. In addition, day-night changes in pineal organ arylalkylamine N-acetyltransferase (AANAT2) activity and aanat2 gene expression were studied. Plasma osmolalities were found to be higher in rainbow trout exposed to all salinity levels compared with the control FW groups. A salinity-dependent increase in melatonin content was found in both plasma and pineal organs. This effect was observed during the night, and was related to an increase in aanat2 mRNA abundance and AANAT2 enzyme activity, both of which also occurred during the day. Also, the levels of indoles (5-HT, 5-HIAA) in the pineal organ were negatively affected by increasing water salinity, which seems to be related to the higher recruitment of 5-HT as a substrate for the increased melatonin synthesis. A stimulatory effect of salinity on pineal aanat2 mRNA expression was also identified. These results indicate that

  12. Hypertonic Saline in Treatment of Pulmonary Disease in Cystic Fibrosis

    Directory of Open Access Journals (Sweden)

    Emer P. Reeves

    2012-01-01

    Full Text Available The pathogenesis of lung disease in cystic fibrosis is characterised by decreased airway surface liquid volume and subsequent failure of normal mucociliary clearance. Mucus within the cystic fibrosis airways is enriched in negatively charged matrices composed of DNA released from colonizing bacteria or inflammatory cells, as well as F-actin and elevated concentrations of anionic glycosaminoglycans. Therapies acting against airway mucus in cystic fibrosis include aerosolized hypertonic saline. It has been shown that hypertonic saline possesses mucolytic properties and aids mucociliary clearance by restoring the liquid layer lining the airways. However, recent clinical and bench-top studies are beginning to broaden our view on the beneficial effects of hypertonic saline, which now extend to include anti-infective as well as anti-inflammatory properties. This review aims to discuss the described therapeutic benefits of hypertonic saline and specifically to identify novel models of hypertonic saline action independent of airway hydration.

  13. Seed Priming to Overcome Salinity Stress in Persian Cultivars of Alfalfa (Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Ali SEPEHRI

    2015-03-01

    Full Text Available In order to investigate the effect of hydro-priming on seed germination with distilled water on germination of five Alfalfa cultivars under salinity stress, an experiment was conducted as a factorial experiment based on a completely randomized design with three replications. Seven levels of hydro-priming and salinity of NaCl including prime and non-salinity, prime and 50 mM salinity, prime and 100 mM salinity, prime and 150 mM salinity, prime and 200 mM salinity, prime and 250 mM salinity and without prime and salinity and five alfalfa varieties, including ‘Hamedani’, ‘Isfahani’, ‘Bami’, ‘Yazdi’ and ‘Ghareh Yonjeh’ were used. The results showed that the main effect of prime, salinity and cultivars and their interaction in all studied traits were significantly affected at the 5% probability level. Priming treatments in non-salinity of all cultivars were the highest. In all cultivars, final germination percentage, length and weight of radicle, plumule and seedling, germination rate and time, relative radicle elongation, vigor index and stress index, were significantly improved in response to priming in salinity levels of 50-200 mM, compared to control. Radicle produced higher length and weight than the plumule in hydro- priming and salinity treatments. ‘Hamedani’ cultivar in most of studied characteristics had a better response than others. The lowest response to salinity stress and priming was observed in ‘Yazdi’ cultivar.

  14. Model Prediction of Secondary Soil Salinization in the Keriya Oasis, Northwest China

    Directory of Open Access Journals (Sweden)

    Jumeniyaz Seydehmet

    2018-02-01

    Full Text Available Significant anthropogenic and biophysical changes have caused fluctuations in the soil salinization area of the Keriya Oasis in China. The Driver-Pressure-State-Impact-Response (DPSIR sustainability framework and Bayesian networks (BNs were used to integrate information from anthropogenic and natural systems to model the trend of secondary soil salinization. The developed model predicted that light salinization (vegetation coverage of around 15–20%, soil salt 5–10 g/kg of the ecotone will increase in the near term but decelerate slightly in the future, and that farmland salinization will decrease in the near term. This trend is expected to accelerate in the future. Both trends are attributed to decreased water logging, increased groundwater exploitation, and decreased ratio of evaporation/precipitation. In contrast, severe salinization (vegetation coverage of around 2%, soil salt ≥20 g/kg of the ecotone will increase in the near term. This trend will accelerate in the future because decreased river flow will reduce the flushing of severely salinized soil crust. Anthropogenic factors have negative impacts and natural causes have positive impacts on light salinization of ecotones. In situations involving severe farmland salinization, anthropogenic factors have persistent negative impacts.

  15. Oxidative stress responses in gills of tilapia (Oreochromis niloticus) at different salinities

    Science.gov (United States)

    Handayani, Kiki Syaputri; Novianty, Zahra; Saputri, Miftahul Rohmah; Irawan, Bambang; Soegianto, Agoes

    2017-08-01

    The objective of present study is to evaluate the impact of different salinities on the levels of CAT, GSH and MDA of the gills of Nile tilapia (Oreochromis niloticus). Nile tilapia was treated by exposure to salinities concentration 0 ‰, 5 ‰ and 10 ‰. Research models were weakened and sacrificed, then took the left and right sides of the gills. The result of gills homogenity was centrifuged for supernatan, then supernatan was proceed with testing levels of CAT, GSH and MDA by ELISA assay methods. The levels of CAT in gills were significantly higher at 10 ‰ than at 5 ‰ and 0 ‰. The levels of GSH in gills were significantly higher at 0 ‰ than 5 ‰. The levels of GSH in gills at 5 ‰ and 10 ‰ salinities were not significantly different. The levels of MDA in gills at salinity 10 ‰ and 5 ‰ were higher than in control gills at 0 ‰ salinities. This occurs because the salinity of 10 ‰ salinity was optimal for live of fish tilapia. In conclusion, salinity impact the increasing of CAT, GSH, and MDA levels in gills of Nile tilapia.

  16. Desertification, salinization, and biotic homogenization in a dryland river ecosystem

    Science.gov (United States)

    Miyazono, S.; Patino, Reynaldo; Taylor, C.M.

    2015-01-01

    This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamfiow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was > 2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and

  17. Hypertonic saline enhances host response to bacterial challenge by augmenting receptor-independent neutrophil intracellular superoxide formation.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    OBJECTIVE: This study sought to determine whether hypertonic saline (HTS) infusion modulates the host response to bacterial challenge. METHODS: Sepsis was induced in 30 Balb-C mice by intraperitoneal injection of Escherichia coli (5 x 107 organisms per animal). In 10 mice, resuscitation was performed at 0 and 24 hours with a 4 mL\\/kg bolus of HTS (7.5% NaCl), 10 animals received 4 mL\\/kg of normal saline (0.9% NaCl), and the remaining animals received 30 mL\\/kg of normal saline. Samples of blood, spleen, and lung were cultured at 8 and 36 hours. Polymorphonucleocytes were incubated in isotonic or hypertonic medium before culture with E. coli. Phagocytosis was assessed by flow cytometry, whereas intracellular bacterial killing was measured after inhibition of phagocytosis with cytochalasin B. Intracellular formation of free radicals was assessed by the molecular probe CM-H(2)DCFDA. Mitogen-activated protein (MAP) kinase p38 and ERK-1 phosphorylation, and nuclear factor kappa B (NFkappaB) activation were determined. Data are represented as means (SEM), and an analysis of variance test was performed to gauge statistical significance. RESULTS: Significantly reduced bacterial culture was observed in the animals resuscitated with HTS when compared with their NS counterparts, in blood (51.8 +\\/- 4.3 vs. 82.0 +\\/- 3.3 and 78.4 +\\/- 4.8, P = 0.005), lung (40.0 +\\/- 4.1 vs. 93.2 +\\/- 2.1 and 80.9 +\\/- 4.7, P = 0.002), and spleen (56.4 +\\/- 3.8 vs. 85.4 +\\/- 4.2 and 90.1 +\\/- 5.9, P = 0.05). Intracellular killing of bacteria increased markedly (P = 0.026) and superoxide generation was enhanced upon exposure to HTS (775.78 +\\/- 23.6 vs. 696.57 +\\/- 42.2, P = 0.017) despite inhibition of MAP kinase and NFkappaB activation. CONCLUSIONS: HTS significantly enhances intracellular killing of bacteria while attenuating receptor-mediated activation of proinflammatory cascades.

  18. Communication received from the permanent mission of Australia on behalf of the Member States of the nuclear suppliers group

    International Nuclear Information System (INIS)

    1997-01-01

    The document reproduces the text of a letter dated 13 August 1997 received by the Director General of the IAEA from the Permanent Mission of Australia to the Agency on behalf of the Member States of the 'Nuclear Suppliers Group (NSG)'. Attached to this letter was a paper entitled 'The Nuclear Suppliers Group: Its origins, role and activities'. The purpose of the letter and the attached paper was to provide detailed background to the origins of guidelines that govern the export of items exclusively for nuclear use and the export of nuclear related dual-use items and technologies. These guidelines were published by the Agency in documents INFCIRC/254/Rev.3/Part 1 and INFCIRC/254/Rev.2/Part 2/Mod.1

  19. Salinity Trends within the Upper Layers of the Subpolar North Atlantic

    Science.gov (United States)

    Tesdal, J. E.; Abernathey, R.; Goes, J. I.; Gordon, A. L.; Haine, T. W. N.

    2017-12-01

    Examination of a range of salinity products collectively suggest widespread freshening of the North Atlantic from the mid-2000 to the present. Monthly salinity fields reveal negative trends that differ in magnitude and significance between western and eastern regions of the North Atlantic. These differences can be attributed to the large negative interannual excursions in salinity in the western subpolar gyre and the Labrador Sea, which are not apparent in the central or eastern subpolar gyre. This study demonstrates that temporal trends in salinity in the northwest (including the Labrador Sea) are subject to mechanisms that are distinct from those responsible for the salinity trends in central and eastern North Atlantic. In the western subpolar gyre a negative correlation between near surface salinity and the circulation strength of the subpolar gyre suggests that negative salinity anomalies are connected to an intensification of the subpolar gyre, which is causing increased flux of freshwater from the East Greenland Current and subsequent transport into the Labrador Sea during the melting season. Analyses of sea surface wind fields suggest that the strength of the subpolar gyre is linked to the North Atlantic Oscillation and Arctic Oscillation-driven changes in wind stress curl in the eastern subpolar gyre. If this trend of decreasing salinity continues, it has the potential to enhance water column stratification, reduce vertical fluxes of nutrients and cause a decline in biological production and carbon export in the North Atlantic Ocean.

  20. Soil Salinity Mapping in Everglades National Park Using Remote Sensing Techniques

    Science.gov (United States)

    Su, H.; Khadim, F. K.; Blankenship, J.; Sobhan, K.

    2017-12-01

    The South Florida Everglades is a vast subtropical wetland with a globally unique hydrology and ecology, and it is designated as an International Biosphere Reserve and a Wetland of International Importance. Everglades National Park (ENP) is a hydro-ecologically enriched wetland with varying salinity contents, which is a concern for terrestrial ecosystem balance and sustainability. As such, in this study, time series soil salinity mapping was carried out for the ENP area. The mapping first entailed a maximum likelihood classification of seven land cover classes for the ENP area—namely mangrove forest, mangrove scrub, low-density forest, sawgrass, prairies and marshes, barren lands with woodland hammock and water—for the years 1996, 2000, 2006, 2010 and 2015. The classifications for 1996-2010 yielded accuracies of 82%-94%, and the 2015 classification was supported through ground truthing. Afterwards, electric conductivity (EC) tolerance thresholds for each vegetation class were established,which yielded soil salinity maps comprising four soil salinity classes—i.e., the non- (EC = 0 2 dS/m), low- (EC = 2 4 dS/m), moderate- (EC = 4 8 dS/m) and high-saline (EC = >8 dS/m) areas. The soil salinity maps visualized the spatial distribution of soil salinity with no significant temporal variations. The innovative approach of "land cover identification to salinity estimation" used in the study is pragmatic and application oriented, and the study upshots are also useful, considering the diversifying ecological context of the ENP area.

  1. Ontogeny of salinity tolerance and evidence for seawater-entry preparation in juvenile green sturgeon, Acipenser medirostris.

    Science.gov (United States)

    Allen, Peter J; McEnroe, Maryann; Forostyan, Tetyana; Cole, Stephanie; Nicholl, Mary M; Hodge, Brian; Cech, Joseph J

    2011-12-01

    We measured the ontogeny of salinity tolerance and the preparatory hypo-osmoregulatory physiological changes for seawater entry in green sturgeon (Acipenser medirostris), an anadromous species occurring along the Pacific Coast of North America. Salinity tolerance was measured every 2 weeks starting in 40-day post-hatch (dph) juveniles and was repeated until 100% survival at 34‰ was achieved. Fish were subjected to step increases in salinity (5‰ 12 h(-1)) that culminated in a 72-h exposure to a target salinity, and treatment groups (0, 15, 20, 25, 30, 34‰; and abrupt exposure to 34‰) were adjusted as fish developed. After 100% survival was achieved (134 dph), a second experiment tested two sizes of fish for 28-day seawater (33‰) tolerance, and gill and gastrointestinal tract tissues were sampled. Their salinity tolerance increased and plasma osmolality decreased with increasing size and age, and electron microscopy revealed three types of mitochondria-rich cells: one in fresh water and two in seawater. In addition, fish held on a natural photoperiod in fresh water at 19°C showed peaks in cortisol, thyroid hormones and gill and pyloric ceca Na(+), K(+)-ATPase activities at body sizes associated with seawater tolerance. Therefore, salinity tolerance in green sturgeon increases during ontogeny (e.g., as these juveniles may move down estuaries to the ocean) with increases in body size. Also, physiological and morphological changes associated with seawater readiness increased in freshwater-reared juveniles and peaked at their seawater-tolerant ages and body sizes. Their seawater-ready body size also matched that described for swimming performance decreases, presumably associated with downstream movements. Therefore, juvenile green sturgeon develop structures and physiological changes appropriate for seawater entry while growing in fresh water, indicating that hypo-osmoregulatory changes may proceed by multiple routes in sturgeons.

  2. The effects of acute salinity challenges on osmoregulation in Mozambique tilapia reared in a tidally changing salinity.

    Science.gov (United States)

    Moorman, Benjamin P; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2015-03-01

    This study characterizes the differences in osmoregulatory capacity among Mozambique tilapia, Oreochromis mossambicus, reared in freshwater (FW), in seawater (SW) or under tidally driven changes in salinity. This was addressed through the use of an abrupt exposure to a change in salinity. We measured changes in: (1) plasma osmolality and prolactin (PRL) levels; (2) pituitary expression of prolactin (PRL) and its receptors, PRLR1 and PRLR2; (3) branchial expression of PRLR1, PRLR2, Na(+)/Cl(-) co-transporter (NCC), Na(+)/K(+)/2Cl(-) co-transporter (NKCC), α1a and α1b isoforms of Na(+)/K(+)-ATPase (NKA), cystic fibrosis transmembrane conductance regulator (CFTR), aquaporin 3 (AQP3) and Na(+)/H(+) exchanger 3 (NHE3). Mozambique tilapia reared in a tidal environment successfully adapted to SW while fish reared in FW did not survive a transfer to SW beyond the 6 h sampling. With the exception of CFTR, the change in the expression of ion pumps, transporters and channels was more gradual in fish transferred from tidally changing salinities to SW than in fish transferred from FW to SW. Upon transfer to SW, the increase in CFTR expression was more robust in tidal fish than in FW fish. Tidal and SW fish successfully adapted when transferred to FW. These results suggest that Mozambique tilapia reared in a tidally changing salinity, a condition that more closely represents their natural history, gain an adaptive advantage compared with fish reared in FW when facing a hyperosmotic challenge. © 2015. Published by The Company of Biologists Ltd.

  3. Organic carbon source and salinity shape sediment bacterial composition in two China marginal seas and their major tributaries.

    Science.gov (United States)

    Wang, Kai; Zou, Li; Lu, Xinxin; Mou, Xiaozhen

    2018-08-15

    Marginal sea sediments receive organic substrates of different origins, but whether and to what extent sediment microbial communities are reflective of the different sources of organic substrates remain unclear. To address these questions, sediment samples were collected in two connected China marginal seas, i.e., Bohai Sea and Yellow Sea, and their two major tributaries (Yellow River and Liao River). Sediment bacterial community composition (BCC) was examined using 16S rRNA gene pyrosequencing. In addition, physicochemical variables that describe environmental conditions and sediment features were measured. Our results revealed that BCCs changed with salinity and organic carbon (OC) content. Members of Gaiellaceae and Comamonadaceae showed a rapid decrease as salinity and phytoplankton-derived OC increased, while Piscirickettsiaceae and Desulfobulbaceae exhibited an opposite distribution pattern. Differences of riverine vs. marginal sea sediment BCCs could be mostly explained by salinity. However, within the marginal seas, sediment BCC variations were mainly explained by OC-related variables, including terrestrial-derived fatty acids (Terr_FA), phytoplankton-derived polyunsaturated fatty acids (Phyto_PUFA), stable carbon isotopes (δ 13 C), and carbon to nitrogen ratio (C/N). In addition to environmental variables, network analysis suggested that interactions among individual bacterial taxa might be important in shaping sediment BCCs in the studied areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Characterization of soil salinization in typical estuarine area of the Jiaozhou Bay, China

    Science.gov (United States)

    Li, Qifei; Xi, Min; Wang, Qinggai; Kong, Fanlong; Li, Yue

    2018-02-01

    In this study, the characteristics of soil salinization and the effects of main land use/land cover and other factors in typical estuarine area of the Jiaozhou Bay are investigated. Soil samples were collected in the parallel coastal zone, vertical coastal zone and longitudinal profile depth in the area to determine the soil salt content. The correlation analysis and principal component analysis are used to address the general characteristics of soil salinization in the study area. In the horizontal direction, there are moderate salinization, severe salinization and saline soil state. The farther from the sea (within 1.1 km), the lower the soil salinization degree. In the direction of longitudinal profile depth, there are severe salinization and saline soil state, and the soil salt content is accumulated in the surface and bottom. The Na+ and Cl- are the dominant cation and anion, respectively, the distributions of which are consistent with that of salt content. All the salinization indexes, except for soil pH, are of moderate/strong variability. The invasion of Spartina alterniflora results in the increase of soil salt content and salinization degree, the effects of which are mainly determined by the physiological characteristics and the growth years. The degree of soil salinization increased significantly in the aquaculture ponds, which is mainly caused by the use of chemicals. The correlation between soil salt content and Na+, Cl- is particularly significant. From the results of principal component analysis, Na+, Cl-, Ca2+, Mg2+ and SO42- could be used as main diagnostic factors for salinization in typical estuarine area of the Jiaozhou Bay. The effects of NaCl and sulfate on salt content further affect the degree of salinization in the estuarine area.

  5. Characterization and crop production efficiency of diazotrophic bacterial isolates from coastal saline soils.

    Science.gov (United States)

    Barua, Shilajit; Tripathi, Sudipta; Chakraborty, Ashis; Ghosh, Sagarmoy; Chakrabarti, Kalyan

    2012-01-20

    Use of eco-friendly area specific salt tolerant bioinoculants is better alternatives to chemical fertilizer for sustainable agriculture in coastal saline soils. We isolated diverse groups of diazotrophic bacteria from coastal saline soils of different forest and agricultural lands in the Sundarbans, West Bengal, India, to study their effect on crop productivity in saline soils. Phenotypic, biochemical and molecular identifications of the isolates were performed. The isolates produced indole acetic acid, phosphatase, and solubilized insoluble phosphates. Sequence analysis of 16S rDNA identified the SUND_BDU1 strain as Agrobacterium and the strains SUND_LM2, Can4 and Can6 belonging to the genus Bacillus. The ARA activity, dinitrogen fixation and presence of nifH genes indicated they were diazotrophs. Field trials with these strains as bioinoculants were carried out during 2007-2009, with rice during August-December followed by Lady's finger during April-June. Microplots, amended with FYM inoculated with four bioinoculants individually were compared against sole FYM (5 t ha(-1)) and a sole chemical fertilizer (60:30:30 kg ha(-1) NPK) treated plot. The strain Can6 was by far the best performer in respect of yield attributes and productivity of studied crops. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Evolution of Planetary Ice-Ocean Systems: Effects of Salinity

    Science.gov (United States)

    Allu Peddinti, D.; McNamara, A. K.

    2015-12-01

    Planetary oceanography is enjoying renewed attention thanks to not only the detection of several exoplanetary ocean worlds but also due to the expanding family of ocean worlds within our own star system. Our solar system is now believed to host about nine ocean worlds including Earth, some dwarf planets and few moons of Jupiter and Saturn. Amongst them, Europa, like Earth is thought to have an ice Ih-liquid water system. However, the thickness of the Europan ice-ocean system is much larger than that of the Earth. The evolution of this system would determine the individual thicknesses of the ice shell and the ocean. In turn, these thicknesses can alter the course of evolution of the system. In a pure H2O system, the thickness of the ice shell would govern if heat loss occurs entirely by conduction or if the shell begins to convect as it attains a threshold thickness. This switch between conduction-convection regimes could determine the longevity of the subsurface ocean and hence define the astrobiological potential of the planetary body at any given time. In reality, however, the system is not pure water ice. The detected induced magnetic field infers a saline ocean layer. Salts are expected to act as an anti-freeze allowing a subsurface ocean to persist over long periods but the amount of salts would determine the extent of that effect. In our current study, we use geodynamic models to examine the effect of salinity on the evolution of ice-ocean system. An initial ocean with different salinities is allowed to evolve. The effect of salinity on thickness of the two layers at any time is examined. We also track how salinity controls the switch between conductive-convective modes. The study shows that for a given time period, larger salinities can maintain a thick vigorously convecting ocean while the smaller salinities behave similar to a pure H2O system leading to a thick convecting ice-shell. A range of salinities identified can potentially predict the current state

  7. Soil Moisture Ocean Salinity (SMOS) salinity data validation over Malaysia coastal water

    International Nuclear Information System (INIS)

    Reba, M N M; Rosli, A Z; Rahim, N A

    2014-01-01

    The study of sea surface salinity (SSS) plays an important role in the marine ecosystem, estimation of global ocean circulation and observation of fisheries, aquaculture, coral reef and sea grass habitats. The new challenge of SSS estimation is to exploit the ocean surface brightness temperature (Tb) observed by the Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) onboard the Soil Moisture Ocean Salinity (SMOS) satellite that is specifically designed to provide the best retrieval of ocean salinity and soil moisture using the L band of 1.4 GHz radiometer. Tb observed by radiometer is basically a function of the dielectric constant, sea surface temperature (SST), wind speed (U), incidence angle, polarization and SSS. Though, the SSS estimation is an ill-posed inversion problem as the relationship between the Tb and SSS is non-linear function. Objective of this study is to validate the SMOS SSS estimates with the ground-truth over the Malaysia coastal water. The LM iteratively determines the SSS of SMOS by the reduction of the sum of squared errors between Tb SMOS and Tb simulation (using in-situ) based on the updated geophysical triplet in the direction of the minimum of the cost function. The minimum cost function is compared to the desired threshold at each iteration and this recursive least square process updates the SST, U and SSS until the cost function converged. The designed LM's non-linear inversion algorithm simultaneously estimates SST, U and SSS and thus, map of SSS over Malaysia coastal water is produced from the regression model and accuracy assessment between the SMOS and in-situ retrieved SSS. This study found a good agreement in the validation with R square of 0.9 and the RMSE of 0.4. It is concluded that the non-linear inversion method is effective and practical to extract SMOS SSS, U and SST simultaneously

  8. Does increased salinity influence the competitive outcome of two producer species?

    Science.gov (United States)

    Venâncio, C; Anselmo, E; Soares, A; Lopes, I

    2017-02-01

    Within the context of global climate changes, it is expected that low-lying coastal freshwater ecosystems will face seawater intrusion with concomitant increase in salinity levels. Increased salinity may provoke disruption of competitive relationships among freshwater species. However, species may be capable of acclimating to salinity, which, in turn, may influence the resilience of ecosystems. Accordingly, this work aimed at assessing the effects of multigenerational exposure to low levels of salinity in the competitive outcome of two species of green microalgae: Raphidocelis subcapitata and Chlorella vulgaris. To attain this, three specific objectives were delineated: (1) compare the toxicity of natural seawater (SW) and NaCl (as a surrogate of SW) to the two microalgae, (2) determine the capacity of the two microalgae species to acclimate to low salinity levels, and (3) assess the influence of exposure to low salinity levels in the competitive outcome of the two microalgae. Results revealed SW to be slightly less toxic than NaCl for the two microalgae. The EC 25,72 h for growth rate was 4.63 and 10.3 mS cm -1 for R. subcapitata and 6.94 and 15.4 mS cm -1 for C. vulgaris, respectively for NaCl and SW. Both algae were capable of acclimating to low levels of salinity, but C. vulgaris seemed to acclimate faster than R. subcapitata. When exposed in competition, under control conditions, the growth rates of C. vulgaris were lower than those of R. subcapitata. However, C. vulgaris was capable of acquiring competitive advantage equaling or surpassing the growth rate of R. subcapitata with the addition of NaCl or SW, respectively. The multigenerational exposure to low levels of salinity influenced the competitive outcome of the two algae both under control and salinity exposure. These results suggest that long-term exposure to low salinity stress can cause shifts in structure of algae communities and, therefore, should not be neglected since algae are at the basis

  9. Salinity Effects on Photosynthesis, Carbon Allocation, and Nitrogen Assimilation in the Red Alga, Gelidium coulteri.

    Science.gov (United States)

    Macler, B A

    1988-11-01

    The long-term effects of altered salinities on the physiology of the intertidal red alga Gelidium coulteri Harv. were assessed. Plants were transfered from 30 grams per liter salinity to media with salinities from 0 to 50 grams per liter. Growth rate, agar, photosynthesis, respiration, and various metabolites were quantified after 5 days and 5 weeks adaptation. After 5 days, growth rates were lower for plants at all altered salinities. Growth rates recovered from these values with 5 weeks adaptation, except for salinities of 10 grams per liter and below, where tissues bleached and died. Photosynthetic O(2) evolution was lower than control values at both higher and lower salinities after 5 days and did not change over time. Carbon fixation at the altered salinities was unchanged after 5 days, but decreased below 25 grams per liter and above 40 grams per liter after 5 weeks. Respiration increased at lower salinities. Phycobili-protein and chlorophyll were lower for all altered salinities after 5 days. These decreases continued at lower salinities, then were stable after 5 weeks. Chlorophyll recovered over time at higher salinities. Decreases in protein at lower salinities were quantitatively attributable to phycobili-protein loss. Total N levels and C:N ratios were nearly constant across all salinities tested. Carbon flow into glutamate and aspartate decreased with both decreasing and increasing salinities. Glycine, serine, and glycolate levels increased with both increasing and decreasing salinity, indicating a stimulation of photorespiration. The cell wall component agar increased with decreasing salinity, although biosynthesis was inhibited at both higher and lower salinities. The storage compound floridoside increased with increasing salinity. The evidence suggests stress responses to altered salinities that directly affected photosynthesis, respiration, and nitrogen assimilation and indirectly affected photosynthate flow. At low salinities, respiration and

  10. Effect of peritoneal cavity lavage with 0.9% and 3.0% saline solution in the lung and spleen of gerbils with induced peritonitis.

    Science.gov (United States)

    Nunes, Vinícius Rodrigues Taranto; Barbuto, Rafael Calvão; Vidigal, Paula Vieira Teixeira; Pena, Guilherme Nogueira; Rocha, Silvia Lunardi; de Siqueira, Lucas Tourinho; Caliari, Marcelo Vidigal; de Araujo, Ivana Duval

    2014-04-01

    Peritoneal cavity lavage is used widely in the treatment of peritonitis. Nonetheless, some studies question its rationale and prove it to be deleterious to the mesothelium. The present study aims to determine whether 0.9% and 3.0% saline lavage of the peritoneal cavity have an effect on the early systemic inflammatory response, namely, in the lung injury and splenic cellularity of gerbils with induced peritonitis. Thirty-four male gerbils were divided into four groups: Control (n=9), submitted to laparotomy at time zero, re-laparotomy after 2 h, and sacrificed after a total of 6 h from start; untreated (n=8), submitted to peritonitis induction through cecal ligation and puncture (CLP) at time zero, re-laparotomy intended for drying of abdominal cavity and resection of the ischemic cecum after 2 h, and sacrifice after a total of 6 h from start; saline (n=8), submitted to peritonitis induction through CLP at time zero, re-laparotomy intended for warm 0.9% saline lavage of the abdominal cavity and resection of the ischemic cecum after 2 h, and sacrificed after a total of 6 h from start; and hypertonic (n=9), submitted to peritonitis induction through CLP at time zero, re-laparotomy intended for warm hypertonic saline (3.0%) lavage of the abdominal cavity and resection of the ischemic cecum after 2 h, and sacrificed after a total of 6 h from start. After sacrifice, we collected the left lung and the spleen for morphometric analysis. In the both the saline and hypertonic groups, there was significant decrease in the mean nuclei count in the lungs, compared with the untreated group (p0.05). The present study demonstrated that the peritoneal lavage with large volumes of warm 0.9% and 3.0% saline has a beneficial effect on the early systemic inflammatory response in infected animals, modulating and reducing the lung injury but having no effect on splenic cell count.

  11. Genotypic variation for salinity tolerance in Cenchrus ciliaris L

    Directory of Open Access Journals (Sweden)

    M. Iftikhar Hussain

    2016-07-01

    Full Text Available Scarcity of irrigation water and increasing soil salinization has threatened the sustainability of forage production in arid and semi-arid region around the globe. Introduction of salt-tolerant perennial species is a promising alternative to overcome forage deficit to meet future livestock needs in salt-affected areas. This study presents the results of a salinity tolerance screening trial which was carried out in plastic pots buried in the open field for 160 buffelgrass (Cenchrus ciliaris L. accessions for three consecutive years (2003-2005. The plastic pots were filled with sand, organic, and peat moss mix and were irrigated with four different quality water (EC 0, 10, 15, and 20 dS m-1. The results indicate that the average annual dry weights (DW were in the range from 122.5 – 148.9 g pot-1 in control; 96.4 – 133.8 g pot-1 at 10 dS m-1; 65.6 – 80.4 g pot-1 at 15 dS m-1, and 55.4- 65.6 g pot-1 at 20 dS m-1. The highest DW (148.9 g pot-1 was found with accession 49 and the lowest with accession 23. Principle component analysis shows that PC-1 contributed 81.8 % of the total variability, while PC-2 depicted 11.7% of the total variation among C. ciliaris accessions for DW. Hierarchical cluster analysis revealed that a number of accessions collected from diverse regions could be grouped into a single cluster. Accessions 3, 133, 159, 30, 23, 142, 141, 95, 49, 129, 124, and 127 were stable, salt tolerant, and produced good dry biomass yield. These accessions demonstrate sufficient salinity tolerance potential for promotion in marginal land and arid regions to enhance farm productivity and reduce rural poverty.

  12. Influence of osmolarity of contrast medium and saline flush on computed tomography angiography: Comparison of monomeric and dimeric iodinated contrast media with different iodine concentrations at an identical iodine delivery rate

    International Nuclear Information System (INIS)

    Kishimoto, Miori; Doi, Shoko; Shimizu, Junichiro; Lee, Ki-Ja; Iwasaki, Toshiroh; Miyake, Yoh-Ichi; Yamada, Kazutaka

    2010-01-01

    Purpose: To evaluate the influence of osmolarity of iodinated contrast media and saline flush on the contrast effect in thoracic computed tomography angiography (CTA) at an identical iodine delivery rate (IDR). Materials and methods: Seven beagles were used in a cross-over experiment. The contrast media used were iohexol 350 mgI/ml (IOH350; osmolarity 844 mmol/kg) and iodixanol 320 mgI/ml (IDX320; osmolarity 290 mmol/kg). Each contrast medium was administered to groups with and without saline flush at 40.0 mgI/kg/s for all experiments. Dynamic CT scanning was performed at the ninth thoracic vertebra level. The peak value, area under the curve (AUC), and time to peak (TTP) were calculated from the time attenuation curves of the pulmonary artery and aorta. Results: There was no significant difference between IOH350 and IDX320 with or without saline flush in the peak values for the pulmonary artery and aorta. AUC was significantly higher in groups with saline flush for both contrast media and arteries (p < 0.05) with no significant difference between contrast media. TTP was significantly longer in groups with saline flush than without saline flush for both contrast media and arteries (p < 0.05), with no significant difference between contrast media. Conclusions: There were no significant differences in the contrast effects of monomeric IOH350 and dimeric IDX320 in thoracic CTA when used at an identical IDR. Moreover, saline flush prolonged the peak duration at 600 mgI/kg.

  13. Effects of maropitant, acepromazine, and electroacupuncture on vomiting associated with administration of morphine in dogs.

    Science.gov (United States)

    Koh, Ronald B; Isaza, Natalie; Xie, Huisheng; Cooke, Kirsten; Robertson, Sheilah A

    2014-04-01

    To evaluate effects of maropitant, acepromazine, and electroacupuncture on morphine-related signs of nausea and vomiting in dogs and assess sedative effects of the treatments. Randomized controlled clinical trial. 222 dogs. Dogs received 1 of 6 treatments: injection of saline (0.9% NaCl) solution, maropitant citrate, or acepromazine maleate or electroacupuncture treatment at 1 acupoint, 5 acupoints, or a sham acupoint. Morphine was administered after 20 minutes of electroacupuncture treatment or 20 minutes after injectable treatment. Vomiting and retching events and signs of nausea and sedation were recorded. Incidence of vomiting and retching was significantly lower in the maropitant (14/37 [37.8%]) group than in the saline solution (28/37 [75.7%]) and sham-acupoint electroacupuncture (32/37 [86.5%]) groups. The number of vomiting and retching events in the maropitant (21), acepromazine (38), 1-acupoint (35), and 5-acupoint (34) groups was significantly lower than in the saline solution (88) and sham-acupoint electroacupuncture (109) groups. Incidence of signs of nausea was significantly lower in the acepromazine group (3/37 [8.1%]) than in the sham-acupoint group (15/37 [40.5%]). Mean nausea scores for the saline solution, maropitant, and sham-acupoint electroacupuncture groups increased significantly after morphine administration, whereas those for the acepromazine, 1-acupoint electroacupuncture, and 5-acupoint electroacupuncture groups did not. Mean sedation scores after morphine administration were significantly higher in dogs that received acepromazine than in dogs that received saline solution, maropitant, and sham-acupoint electroacupuncture treatment. Maropitant treatment was associated with a lower incidence of vomiting and retching, compared with control treatments, and acepromazine and electroacupuncture appeared to prevent an increase in severity of nausea following morphine administration in dogs.

  14. Efeitos da lixiviação e salinidade da água sobre um solo salinizado cultivado com beterraba Effects of leaching and water salinity on a saline soil cultivated with sugar beet

    Directory of Open Access Journals (Sweden)

    Paulo A. Ferreira

    2006-09-01

    with the decrease in the leaching depth. At the end of the crop cycle, the highest salinity in the soil profile corresponded to treatments receiving both the lowest leaching depths and water salinities. The total sugar beet productivity and the yield of the roots with diameters larger than 3, 4, 5, 6 and 7 cm were not affected by the salinity levels of the irrigation water nor the leaching depths.

  15. The role of osmolality in saline fluid nebulization after tracheostomy: time for changing?

    Science.gov (United States)

    Wen, Zunjia; Wu, Chao; Cui, Feifei; Zhang, Haiying; Mei, Binbin; Shen, Meifen

    2016-12-09

    Saline fluid nebulization is highly recommend to combat the complications following tracheostomy, yet the understandings on the role of osmolality in saline solution for nebulization remain unclear. To investigate the biological changes in the early stage after tracheostomy, to verify the efficacy of saline fluid nebulization and explore the potential role of osmolality of saline nebulization after tracheostomy. Sprague-Dawley rats undergone tracheostomy were taken for study model, the sputum viscosity was detected by rotational viscometer, the expressions of TNF-α, AQP4 in bronchoalveolar lavage fluid were assessed by western blot analysis, and the histological changes in endothelium were evaluated by HE staining and scanning electron microscopy (SEM). Study results revealed that tracheostomy gave rise to the increase of sputum viscosity, TNF-α and AQP4 expression, mucosa and cilia damage, yet the saline fluid nebulization could significantly decrease the changes of those indicators, besides, the hypertonic, isotonic and hypertonic saline nebulization produced different efficacy. Osmolality plays an important role in the saline fluid nebulization after tracheostomy, and 3% saline fluid nebulization seems to be more beneficial, further studies on the role of osmolality in saline fluid nebulization are warranted.

  16. Growth and root development of four mangrove seedlings under varying salinity

    Science.gov (United States)

    Basyuni, M.; Keliat, D. A.; Lubis, M. U.; Manalu, N. B.; Syuhada, A.; Wati, R.; Yunasfi

    2018-03-01

    This present study describes four mangrove seedlings namely Bruguiera cylindrica, B. sexangula, Ceriops tagal, and Rhizophora apiculata in response to salinity with particular emphasis to root development. The seedlings of four mangroves were grown for 5 months in 0%, 0.5%, 1.5%, 2.0% and 3.0% salt concentration. Salinity significantly decreased the growth (diameter and plant height) of all mangrove seedlings. Root developments were observed from the tap and lateral root. The number, length and diameter of both roots-typed of B. cylindrica, B. sexangula and C. tagal seedlings significantly decreased with increasing salt concentration with optimum development at 0.5% salinity. By contrast, the number, length, and diameter of tap root of R. apiculata seedlings were significantly enhanced by salt with maximal stimulation at 0.5%, and this increase was attenuated by increasing salinity. On the other hand, lateral root development of R. apiculata significantly thrived up to 1.5% salinity then decreasing with the increasing salinity. The different response of root development suggested valuable information for mangrove rehabilitation in North Sumatra and their adaption to withstand salt stress.

  17. Matching soil salinization and cropping systems in communally managed irrigation schemes

    Science.gov (United States)

    Malota, Mphatso; Mchenga, Joshua

    2018-03-01

    Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.

  18. Golden alga presence and abundance are inversely related to salinity in a high-salinity river ecosystem, Pecos River, USA

    Science.gov (United States)

    Israël, Natascha M.D.; VanLandeghem, Matthew M.; Denny, Shawn; Ingle, John; Patino, Reynaldo

    2014-01-01

    Prymnesium parvum (golden alga, GA) is a toxigenic harmful alga native to marine ecosystems that has also affected brackish inland waters. The first toxic bloom of GA in the western hemisphere occurred in the Pecos River, one of the saltiest rivers in North America. Environmental factors (water quality) associated with GA occurrence in this basin, however, have not been examined. Water quality and GA presence and abundance were determined at eight sites in the Pecos River basin with or without prior history of toxic blooms. Sampling was conducted monthly from January 2012 to July 2013. Specific conductance (salinity) varied spatiotemporally between 4408 and 73,786 mS/cm. Results of graphical, principal component (PCA), and zero-inflated Poisson (ZIP) regression analyses indicated that the incidence and abundance of GA are reduced as salinity increases spatiotemporally. LOWESS regression and correlation analyses of archived data for specific conductance and GA abundance at one of the study sites retrospectively confirmed the negative association between these variables. Results of PCA also suggested that at <15,000 mS/cm, GA was present at a relatively wide range of nutrient (nitrogen and phosphorus) concentrations whereas at higher salinity, GA was observed only at mid-to-high nutrient levels. Generally consistent with earlier studies, results of ZIP regression indicated that GA presence is positively associated with organic phosphorus and in samples where GA is present, GA abundance is positively associated with organic nitrogen and negatively associated with inorganic nitrogen. This is the first report of an inverse relation between salinity and GA presence and abundance in riverine waters and of interaction effects of salinity and nutrients in the field. These observations contribute to a more complete understanding of environmental conditions that influence GA distribution in inland waters.

  19. Salinity effects on radiation utilization characteristics of Kochia (Kochia Scoparia L. Schrad.)

    International Nuclear Information System (INIS)

    Jami Al-Ahmadi, M.; Kafi, M.; Nassiri Mahalati, M.

    2008-01-01

    In order to evaluate light extinction coefficient and radiation use efficiency of Kochia scoparia in response to saline stress, a study was performed at Birjand, South Khorasan, using three levels of salinity in irrigation water (1.5, 8.6 and 28.2 dSm-1) with three replications. Several measurements were conducted during growth season to calculate radiation fraction passed through plant canopy, and also leaf area index (LAI) and total dry matter (TDM). Light extinction coefficient calculated with correcting fraction of plant light absorption for whole day, and using dry matter accumulation, radiation use efficiency obtained in each different salinity level. The results showed that light extinction coefficient of Kochia was equal to 0.59 for solar noon and 0.75 for whole day. The radiation absorption of kochia rose as LAI increased, and 95% of radiation was absorbed at LAI equal to 4 to 5. LAI and total dry matter accumulation were highest in moderate salinity level. In general, increase in salinity caused a delay in early season development, and accelerated plant maturity at late season. This caused plant canopies at the highest salinity reached to maximum light absorption later in growth season. Increase of salinity from 1.5 to 8.6 dSm-1 was responsible for little increase in RUE from 2.4 to 2.5 g per MJ absorbed PAR; however, it reduced with further increase in salinity. Thus, it seems that moderate salinity levels stimulate growth and dry matter accumulation of kochia and cause kochia canopy convert the absorbed radiation to dry matter more effectively. Key words: Kochia scoparia, Salinity, Light extension coefficient, Radiation use efficiency, Leaf Area Index

  20. Fluid hydration to prevent post-ERCP pancreatitis in average- to high-risk patients receiving prophylactic rectal NSAIDs (FLUYT trial): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Smeets, Xavier J N M; da Costa, David W; Fockens, Paul; Mulder, Chris J J; Timmer, Robin; Kievit, Wietske; Zegers, Marieke; Bruno, Marco J; Besselink, Marc G H; Vleggaar, Frank P; van der Hulst, Rene W M; Poen, Alexander C; Heine, Gerbrand D N; Venneman, Niels G; Kolkman, Jeroen J; Baak, Lubbertus C; Römkens, Tessa E H; van Dijk, Sven M; Hallensleben, Nora D L; van de Vrie, Wim; Seerden, Tom C J; Tan, Adriaan C I T L; Voorburg, Annet M C J; Poley, Jan-Werner; Witteman, Ben J; Bhalla, Abha; Hadithi, Muhammed; Thijs, Willem J; Schwartz, Matthijs P; Vrolijk, Jan Maarten; Verdonk, Robert C; van Delft, Foke; Keulemans, Yolande; van Goor, Harry; Drenth, Joost P H; van Geenen, Erwin J M

    2018-04-02

    Post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP) is the most common complication of ERCP and may run a severe course. Evidence suggests that vigorous periprocedural hydration can prevent PEP, but studies to date have significant methodological drawbacks. Importantly, evidence for its added value in patients already receiving prophylactic rectal non-steroidal anti-inflammatory drugs (NSAIDs) is lacking and the cost-effectiveness of the approach has not been investigated. We hypothesize that combination therapy of rectal NSAIDs and periprocedural hydration would significantly lower the incidence of post-ERCP pancreatitis compared to rectal NSAIDs alone in moderate- to high-risk patients undergoing ERCP. The FLUYT trial is a multicenter, parallel group, open label, superiority randomized controlled trial. A total of 826 moderate- to high-risk patients undergoing ERCP that receive prophylactic rectal NSAIDs will be randomized to a control group (no fluids or normal saline with a maximum of 1.5 mL/kg/h and 3 L/24 h) or intervention group (lactated Ringer's solution with 20 mL/kg over 60 min at start of ERCP, followed by 3 mL/kg/h for 8 h thereafter). The primary endpoint is the incidence of post-ERCP pancreatitis. Secondary endpoints include PEP severity, hydration-related complications, and cost-effectiveness. The FLUYT trial design, including hydration schedule, fluid type, and sample size, maximize its power of identifying a potential difference in post-ERCP pancreatitis incidence in patients receiving prophylactic rectal NSAIDs. EudraCT: 2015-000829-37 . Registered on 18 February 2015. 13659155 . Registered on 18 May 2015.

  1. Influence of NaCl salinity on growth analysis of strawberry cv. Camarosa

    Directory of Open Access Journals (Sweden)

    H. Mirdehghan

    2011-12-01

    Full Text Available In order to study of salinity effect on growth analysis of strawberry, a greenhouse experiment was conducted in Vali-e-Asr University of Rafsanjan in 2010. This study was carried out RCBD design with 4 replications to determine the influence of salinity (30, 60, 90 Mmol and control with distilled water on strawberry growth analysis. Results indicated that relative growth rate (RGR, crop growth rate (CGR, leaf area ratio (LAR and dry matter accumulation were decreased with increasing salinity. The lowest RGR, CGR and LAR were observed in 90 Mmol NaCl salinity. Results also indicated that maximum dry matter accumulations were observed in 1050, 1200 and 1400 degree days in 30, 60 and 90 Mmol NaCl salinity, respectively. Water salinity more than 30 Mmol NaCl L-1 will decreased fresh fruit yield more than 50 percent in hydroponics strawberry production. Dry mass partitioning in NaCl-stressed plants was in favor of crown and petioles and at expense of root, stem and leaf whereas leaf, stem and root DM progressively declined with an increase in salinity.

  2. Saline water intrusion toward groundwater: Issues and its control

    Directory of Open Access Journals (Sweden)

    Purnama S

    2012-10-01

    Full Text Available Nowadays, saline water pollution has been gaining its importance as the major issue around the world, especially in the urban coastal area. Saline water pollution has major impact on human life and livelihood. It ́s mainly a result from static fossil water and the dynamics of sea water intrusion. The problem of saline water pollution caused by seawater intrusion has been increasing since the beginning of urban population. The problem of sea water intrusion in the urban coastal area must be anticipated as soon as possible especially in the urban areas developed in coastal zones,. This review article aims to; (i analyze the distribution of saline water pollution on urban coastal area in Indonesia and (ii analyze some methods in controlling saline water pollution, especially due to seawater intrusion in urban coastal area. The strength and weakness of each method have been compared, including (a applying different pumping patterns, (b artificial recharge, (c extraction barrier, (d injection barrier and (e subsurface barrier. The best method has been selected considering its possible development in coastal areas of developing countries. The review is based considering the location of Semarang coastal area, Indonesia. The results have shown that artificial recharge and extraction barrier are the most suitable methods to be applied in the area.

  3. The plasma membrane transport systems and adaptation to salinity.

    Science.gov (United States)

    Mansour, Mohamed Magdy F

    2014-11-15

    Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Physiological and Biochemical Responses of Lavandula angustifolia to Salinity Under Mineral Foliar Application

    Science.gov (United States)

    Chrysargyris, Antonios; Michailidi, Evgenia; Tzortzakis, Nikos

    2018-01-01

    Saline water has been proposed as a solution to partially cover plant water demands due to scarcity of irrigation water in hot arid areas. Lavender (Lavandula angustifolia Mill.) plants were grown hydroponically under salinity (0–25–50–100 mM NaCl). The overcome of salinity stress was examined by K, Zn, and Si foliar application for the plant physiological and biochemical characteristics. The present study indicated that high (100 mM NaCl) salinity decreased plant growth, content of phenolics and antioxidant status and essential oil (EO) yield, while low-moderate salinity levels maintained the volatile oil profile in lavender. The integrated foliar application of K and Zn lighten the presumable detrimental effects of salinity in terms of fresh biomass, antioxidant capacity, and EO yield. Moderate salinity stress along with balanced concentration of K though foliar application changed the primary metabolites pathways in favor of major volatile oil constituents biosynthesis and therefore lavender plant has the potential for cultivation under prevalent semi-saline conditions. Zn and Si application, had lesser effects on the content of EO constituents, even though altered salinity induced changings. Our results have demonstrated that lavender growth/development and EO production may be affected by saline levels, whereas mechanisms for alteration of induced stress are of great significance considering the importance of the oil composition, as well. PMID:29731759

  5. Spatiotemporal Distribution of Soil Moisture and Salinity in the Taklimakan Desert Highway Shelterbelt

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2015-08-01

    Full Text Available Salinization and secondary salinization often appear after irrigation with saline water. The Taklimakan Desert Highway Shelterbelt has been irrigated with saline ground water for more than ten years; however, soil salinity in the shelterbelt has not been evaluated. The objective of this study was to analyze the spatial and temporal distribution of soil moisture and salinity in the shelterbelt system. Using a non-uniform grid method, soil samples were collected every two days during one ten-day irrigation cycle in July 2014 and one day in spring, summer, and autumn. The results indicated that soil moisture declined linearly with time during the irrigation cycle. Soil moisture was greatest in the southern and eastern sections of the study area. In contrast to soil moisture, soil electrical conductivity increased from 2 to 6 days after irrigation, and then gradually decreased from 6 to 8 days after irrigation. Soil moisture was the greatest in spring and the least in summer. In contrast, soil salinity increased from spring to autumn. Long time drip-irrigation with saline groundwater increased soil salinity slightly. The soil salt content was closely associated with soil texture. The current soil salt content did not affect plant growth, however, the soil in the shelterbelt should be continuously monitored to prevent salinization in the future.

  6. Mechanisms of Mixed-Layer Salinity Seasonal Variability in the Indian Ocean

    Science.gov (United States)

    Köhler, Julia; Serra, Nuno; Bryan, Frank O.; Johnson, Benjamin K.; Stammer, Detlef

    2018-01-01

    Based on a joint analysis of an ensemble mean of satellite sea surface salinity retrievals and the output of a high-resolution numerical ocean circulation simulation, physical processes are identified that control seasonal variations of mixed-layer salinity (MLS) in the Indian Ocean, a basin where salinity changes dominate changes in density. In the northern and near-equatorial Indian Ocean, annual salinity changes are mainly driven by respective changes of the horizontal advection. South of the equatorial region, between 45°E and 90°E, where evaporation minus precipitation has a strong seasonal cycle, surface freshwater fluxes control the seasonal MLS changes. The influence of entrainment on the salinity variance is enhanced in mid-ocean upwelling regions but remains small. The model and observational results reveal that vertical diffusion plays a major role in precipitation and river runoff dominated regions balancing the surface freshwater flux. Vertical diffusion is important as well in regions where the advection of low salinity leads to strong gradients across the mixed-layer base. There, vertical diffusion explains a large percentage of annual MLS variance. The simulation further reveals that (1) high-frequency small-scale eddy processes primarily determine the salinity tendency in coastal regions (in particular in the Bay of Bengal) and (2) shear horizontal advection, brought about by changes in the vertical structure of the mixed layer, acts against mean horizontal advection in the equatorial salinity frontal regions. Observing those latter features with the existing observational components remains a future challenge.

  7. Cellulolytic activity of some cellulose-decomposing fungi in salinized soils

    Directory of Open Access Journals (Sweden)

    R. A. Badran

    2014-08-01

    Full Text Available Maximum evolution of CO2 was marked in control soil inoculated by tested fungi but its rate decreased with the increasing salinity. The period of 10 days was most suitable for cellulose degradation by A. niger and P. chrysoecnum and 15 days by A. flavus and C. globosum in control soil. High salinity levels affected greatly the cellulolylic activities of tesled fungi. Carbon content of saline soils increased white the nitrogen content decreased.

  8. Screening of recombinant inbred lines for salinity tolerance in bread ...

    African Journals Online (AJOL)

    Jane

    2011-10-05

    Oct 5, 2011 ... 2Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran ... indexes for screening bread wheat genotypes for salinity tolerance. ... published on screening methods in salinity tolerance in.

  9. Effects of salinity on trace elements in otoliths of Masu salmon

    International Nuclear Information System (INIS)

    Nagata, Yoshihisa; Arai, Nobuaki; Sakamoto, Wataru; Tago, Yasuhiko; Yoshida, Koji

    1997-01-01

    PIXE was adopted for analysis of trace elements in otoliths of Masu salmon Oncorhynchus masou masou to examine relationship between trace elements and environmental salinity. The otoliths were removed from salmon juveniles reared in four values of salinity and wild ones. The otolith Sr concentrations of reared individuals are positively related to salinity and there is significant difference between freshwater and seawater. The otoliths of smolts contain more Sr than those of parrs. It seems that the Sr concentrations in otoliths of Masu salmon reflect salinity where they had stayed and show the migration pattern. (author)

  10. Evaluation of bread wheat genotypes for salinity tolerance under ...

    African Journals Online (AJOL)

    In two consecutive seasons (2007-08 and 2008-09), field experiments were conducted at Soil Salinity Research Institute, Pindi Bhattian and Biosaline Agricultural Research Station, Pakka Aana, Pakistan. During 2007-08, 103 wheat landrace genotypes were evaluated for salinity tolerance. During 2008-09, 47 selected ...

  11. Enhanced remediation of an oily sludge with saline water

    African Journals Online (AJOL)

    UFUOMA

    biodegradation of oily sludge by hydrocarbon utilizing bacteria (Bacillus subtilis) at salinity (NaCl ... petroleum waste. In recent times, several literatures have shown that bioremediation has high potentials for restoring polluted media with least negative impact on the ..... salinity, bacterial consortium is highly stable in immo-.

  12. The Effect of Hydroalcoholic Extract of Glycyrrhizaglabra L. (licorice Root on Serum Level of Glucose, Triglyceride and Cholesterol in Polycystic Ovary Syndrome Induced by Letrozole in Rats

    Directory of Open Access Journals (Sweden)

    F Barazesh

    2016-05-01

    Full Text Available Background & aim: Polycystic ovary syndrome (PCOS is the most common endocrine disorder which effects 15.6 %  of women in Iran. Licorice (Glycyrrhizaglabra L. has phytoestrogenic and anti-diabetic effects. The aim of this study was to investigate the effects of hydro-alcoholic Licorice root extract on blood sugar, triglycerides and cholesterol in the rats with PCOS. Methods: In the present experimental study, 50 female puber Sprague dawley (180±20 gr rats with regular sexual cycle were entered in the study.  Studied groups included: first, the Normal group, receiving carrier (normal saline (2 ml/kg daily orally for 21 days. Then, the letrozole group which received letrozole (1 mg/kg dissolved in normal saline (2 ml/kg for 21 days and then normal saline (2 ml/kg daily orally for 30 days. The last groups, Treatment groups 1 and 2, which received letrozole (1 mg/kg dissolved in normal saline (2 ml/kg for 21 days then hydroalcoholic extract of Licorice root (200 and 400 mg/kg dissolved in normal saline (2 ml/kg daily, orally for 30 days respectively. To conclude, blood samples were collected from the heart and also the serum level of blood sugar, triglyceride and cholesterol was measured. The data were analyzed using one-way ANOVA (p< 0.05. Results: The mean serum level of blood sugar increased in the Letrozole group compared to the normal group and decreased in the treatment groups compared to Letrozole group (p< 0.05. No statistically significant differences were seen in mean of serum level of triglyceride and cholesterol between all groups. Conclusion: The licoricecan extract improved the adverse side-effects caused by diabetese in polycystic ovary syndrome However, its effect on dyslipidemia in patients requiring further investigations.

  13. Shallow rainwater lenses in deltaic areas with saline seepage

    Directory of Open Access Journals (Sweden)

    P. G. B. de Louw

    2011-12-01

    Full Text Available In deltaic areas with saline seepage, freshwater availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence and size. Our findings are based on different types of field measurements and detailed numerical groundwater models applied in the south-western delta of the Netherlands. By combining the applied techniques we could extrapolate measurements at point scale (groundwater sampling, temperature and electrical soil conductivity (TEC-probe measurements, electrical cone penetration tests (ECPT to field scale (continuous vertical electrical soundings (CVES, electromagnetic survey with EM31, and even to regional scale using helicopter-borne electromagnetic measurements (HEM. The measurements show a gradual mixing zone between infiltrating fresh rainwater and upward flowing saline groundwater. The mixing zone is best characterized by the depth of the centre of the mixing zone Dmix, where the salinity is half that of seepage water, and the bottom of the mixing zone Bmix, with a salinity equal to that of the seepage water (Cl-conc. 10 to 16 g l−1. Dmix is found at very shallow depth in the confining top layer, on average at 1.7 m below ground level (b.g.l., while Bmix lies about 2.5 m b.g.l. The model results show that the constantly alternating upward and downward flow at low velocities in the confining layer is the main mechanism of mixing between rainwater and saline seepage and determines the position and extent of the mixing zone (Dmix and Bmix. Recharge, seepage flux, and drainage depth are the controlling factors.

  14. Management scenarios for the Jordan River salinity crisis

    Science.gov (United States)

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U.

    2005-01-01

    Recent geochemical and hydrological findings show that the water quality of the base flow of the Lower Jordan River, between the Sea of Galilee and the Dead Sea, is dependent upon the ratio between surface water flow and groundwater discharge. Using water quality data, mass-balance calculations, and actual flow-rate measurements, possible management scenarios for the Lower Jordan River and their potential affects on its salinity are investigated. The predicted scenarios reveal that implementation of some elements of the Israel-Jordan peace treaty will have negative effects on the Jordan River water salinity. It is predicted that removal of sewage effluents dumped into the river (???13 MCM/a) will significantly reduce the river water's flow and increase the relative proportion of the saline groundwater flux into the river. Under this scenario, the Cl content of the river at its southern point (Abdalla Bridge) will rise to almost 7000 mg/L during the summer. In contrast, removal of all the saline water (16.5 MCM/a) that is artificially discharged into the Lower Jordan River will significantly reduce its Cl concentration, to levels of 650-2600 and 3000-3500 mg/L in the northern and southern areas of the Lower Jordan River, respectively. However, because the removal of either the sewage effluents or the saline water will decrease the river's discharge to a level that could potentially cause river desiccation during the summer months, other water sources must be allocated to preserve in-stream flow needs and hence the river's ecosystem. ?? 2005 Elsevier Ltd. All rights reserved.

  15. World Ocean Atlas 2005, Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2005 (WOA05) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity, dissolved oxygen, Apparent Oxygen...

  16. Aquifer composition and the tendency toward scale-deposit formation during reverse osmosis desalination - Examples from saline ground water in New Mexico, USA

    Science.gov (United States)

    Huff, G.F.

    2006-01-01

    Desalination is expected to make a substantial contribution to water supply in the United States by 2020. Currently, reverse osmosis is one of the most cost effective and widely used desalination technologies. The tendency to form scale deposits during reverse osmosis is an important factor in determining the suitability of input waters for use in desalination. The tendency toward scale formation of samples of saline ground water from selected geologic units in New Mexico was assessed using simulated evaporation. All saline water samples showed a strong tendency to form CaCO3 scale deposits. Saline ground water samples from the Yeso Formation and the San Andres Limestone showed relatively stronger tendencies to form CaSO4 2H2O scale deposits and relatively weaker tendencies to form SiO2(a) scale deposits than saline ground water samples from the Rio Grande alluvium. Tendencies toward scale formation in saline ground water samples from the Dockum Group were highly variable. The tendencies toward scale formation of saline waters from the Yeso Formation, San Andres Limestone, and Rio Grande alluvium appear to correlate with the mineralogical composition of the geologic units, suggesting that scale-forming tendencies are governed by aquifer composition and water-rock interaction. ?? 2006 Elsevier B.V. All rights reserved.

  17. Predictive spatial modelling for mapping soil salinity at continental scale

    Science.gov (United States)

    Bui, Elisabeth; Wilford, John; de Caritat, Patrice

    2017-04-01

    Soil salinity is a serious limitation to agriculture and one of the main causes of land degradation. Soil is considered saline if its electrical conductivity (EC) is > 4 dS/m. Maps of saline soil distribution are essential for appropriate land development. Previous attempts to map soil salinity over extensive areas have relied on satellite imagery, aerial electromagnetic (EM) and/or proximally sensed EM data; other environmental (climate, topographic, geologic or soil) datasets are generally not used. Having successfully modelled and mapped calcium carbonate distribution over the 0-80 cm depth in Australian soils using machine learning with point samples from the National Geochemical Survey of Australia (NGSA), we took a similar approach to map soil salinity at 90-m resolution over the continent. The input data were the EC1:5 measurements on the randomly sampled trees were built using the training data. The results were good with an average internal correlation (r) of 0.88 between predicted and measured logEC1:5 (training data), an average external correlation of 0.48 (test subset), and a Lin's concordance correlation coefficient (which evaluates the 1:1 fit) of 0.61. Therefore, the rules derived were mapped and the mean prediction for each 90-m pixel was used for the final logEC1:5 map. This is the most detailed picture of soil salinity over Australia since the 2001 National Land and Water Resources Audit and is generally consistent with it. Our map will be useful as a baseline salinity map circa 2008, when the NGSA samples were collected, for future State of the Environment reports.

  18. How Does Salinity Shape Bacterial and Fungal Microbiomes of Alnus glutinosa Roots?

    Science.gov (United States)

    Thiem, Dominika; Gołębiewski, Marcin; Hulisz, Piotr; Piernik, Agnieszka; Hrynkiewicz, Katarzyna

    2018-01-01

    Black alder (Alnus glutinosa Gaertn.) belongs to dual mycorrhizal trees, forming ectomycorrhizal (EM) and arbuscular (AM) root structures, as well as represents actinorrhizal plants that associate with nitrogen-fixing actinomycete Frankia sp. We hypothesized that the unique ternary structure of symbionts can influence community structure of other plant-associated microorganisms (bacterial and fungal endophytes), particularly under seasonally changing salinity in A. glutinosa roots. In our study we analyzed black alder root bacterial and fungal microbiome present at two forest test sites (saline and non-saline) in two different seasons (spring and fall). The dominant type of root microsymbionts of alder were ectomycorrhizal fungi, whose distribution depended on site (salinity): Tomentella, Lactarius, and Phialocephala were more abundant at the saline site. Mortierella and Naucoria (representatives of saprotrophs or endophytes) displayed the opposite tendency. Arbuscular mycorrhizal fungi belonged to Glomeromycota (orders Paraglomales and Glomales), however, they represented less than 1% of all identified fungi. Bacterial community structure depended on test site but not on season. Sequences affiliated with Rhodanobacter, Granulicella, and Sphingomonas dominated at the saline site, while Bradyrhizobium and Rhizobium were more abundant at the non-saline site. Moreover, genus Frankia was observed only at the saline site. In conclusion, bacterial and fungal community structure of alder root microsymbionts and endophytes depends on five soil chemical parameters: salinity, phosphorus, pH, saturation percentage (SP) as well as total organic carbon (TOC), and seasonality does not appear to be an important factor shaping microbial communities. Ectomycorrhizal fungi are the most abundant symbionts of mature alders growing in saline soils. However, specific distribution of nitrogen-fixing Frankia (forming root nodules) and association of arbuscular fungi at early stages of

  19. Dynamics of rainwater lenses on upward seeping saline groundwater

    NARCIS (Netherlands)

    Eeman, Sara

    2017-01-01

    Fresh water is generally a limited resource in coastal areas which are often densely populated. In low-lying areas, groundwater is mostly saline and both agriculture and freshwater nature depend on a thin lens of rainwater that is formed by precipitation surplus on top of saline, upward seeping

  20. Symbiotic nitrogen fixation in legumes: Perspectives for saline agriculture

    NARCIS (Netherlands)

    Bruning, B.; Rozema, J.

    2013-01-01

    Saline agriculture provides a solution for at least two environmental and social problems. It allows us to return to agricultural production areas that have been lost as a consequence of salinization and it can save valuable fresh water by using brackish or salt water to irrigate arable lands. Sea

  1. Cadmium tolerance and phytoremediation potential of acacia (Acacia nilotica L.) under salinity stress.

    Science.gov (United States)

    Shabir, Rahat; Abbas, Ghulam; Saqib, Muhammad; Shahid, Muhammad; Shah, Ghulam Mustafa; Akram, Muhammad; Niazi, Nabeel Khan; Naeem, Muhammad Asif; Hussain, Munawar; Ashraf, Farah

    2018-06-07

    In this study, we explored the effect of salinity on cadmium (Cd) tolerance and phytoremediation potential of Acacia nilotica. Two-month-old uniform plants of A. nilotica were grown in pots contaminated with various levels of Cd (0, 5, 10, and 15 mg kg -1 ), NaCl (0%, 0.5%, 1.0% (hereafter referred as salinity), and all possible combinations of Cd + salinity for a period of six months. Results showed that shoot and root growth, biomass, tissue water content and chlorophyll (chl a, chl b, and total chl a+b) contents decreased more in response to salinity and combination of Cd + salinity compared to Cd alone. Shoot and root K concentrations significantly decreased with increasing soil Cd levels, whereas Na and Cl concentrations were not affected significantly. Shoot and root Cd concentrations, bioconcentration factor (BCF) and translocation factor (TF) increased with increasing soil Cd and Cd + salinity levels. At low level of salinity (0.5%), shoot and root Cd uptake enhanced, while it decreased at high level of salinity (1.0%). Due to Cd tolerance, high shoot biomass and shoot Cd uptake, this tree species has some potential for phytoremediation of Cd from the metal contaminated saline and nonsaline soils.

  2. QTLs for seedling traits under salinity stress in hexaploid wheat

    OpenAIRE

    Ren, Yongzhe; Xu, Yanhua; Teng, Wan; Li, Bin; Lin, Tongbao

    2018-01-01

    ABSTRACT: Soil salinity limits agricultural production and is a major obstacle for increasing crop yield. Common wheat is one of the most important crops with allohexaploid characteristic and a highly complex genome. QTL mapping is a useful way to identify genes for quantitative traits such as salinity tolerance in hexaploid wheat. In the present study, a hydroponic trial was carried out to identify quantitative trait loci (QTLs) associated with salinity tolerance of wheat under 150mM NaCl co...

  3. Influence of salinity and water regime on tomato for processing

    Directory of Open Access Journals (Sweden)

    Vito Cantore

    2012-03-01

    Full Text Available The effects of salinity and watering regime on tomato crop are reported. The trials have been carried out over two years in Southern Italy on a deep loam soil. Three saline levels of irrigation water (with electrical conductivity of 0.5, 5 and 10 dS m-1, three watering regimes (at 20, 40 and 60% of available water depletion, and two cultivars (HLY19 and Perfectpeel were compared. The overall results related to the salinity tolerance are in agreement with those from the literature indicating that water salinity reduced marketable yield by 55% in respect to the control treatments. The irrigation regimes that provided higher total and marketable yield were at 40 and 60% of available water depletion (on average, 90.5 and 58.1 Mg ha-1 against 85.3 and 55.5 Mg ha-1 of the 20% available water depletion. Saline and irrigation treatments did not affect sunburned fruits, while affected incidence of fruits with blossom-end rot. The former disease appeared more dramatically in saline treatments (+28% in respect to the control, and occurred mainly in HLY19. The disease incidence was by 52% lower in W2 respect to the W1 and W3. Fruit firmness was higher in S0, whereas it was not affected by irrigation regimes. Total soluble solids and dry matter content of tomato fruits were increased by salinity, whereas it was not affected by irrigation regimes and cultivars. The pH and the titratable acidity remained unchanged between the years, the cultivar and the saline and irrigation treatments. Similarly to the last parameters, the fruit ascorbic acid content remained unchanged in relation to the treatments, but it was higher in HLY19. The recommended thresholds of easily available water to preserve total and marketable yield were at 40 and 60%, respectively. Watering more frequently, instead, on the soil type of the trial, probably caused water-logging and root hypoxia affecting negatively yield.

  4. Linking water and carbon cycles through salinity observed from space

    Science.gov (United States)

    Xie, X.; Liu, W. T.

    2017-12-01

    The association of ocean surface salinity in global hydrological cycle and climate change has been traditionally studied through the examination of its tendency and advection as manifestation of ocean's heat and water fluxes with the atmosphere. The variability of surface heat and water fluxes are linked to top of atmosphere radiation, whose imbalance is the main cause of global warming. Besides the link of salinity to greenhouse warming through water balance, this study will focus on the effect of changing salinity on carbon dioxide flux between the ocean and the atmosphere. We have built statistical models to estimate the partial pressure of carbon dioxide (pCO2) and ocean acidification (in terms of total alkalinity and pH) using spacebased data. PCO2 is a critical parameter governing ocean as source and sink of the accumulated greenhouse gas in the atmosphere. The exchange also causes ocean acidification, which is detrimental to marine lives and ecology. Before we had sufficient spacebased salinity measurements coincident with in situ pCO2 measurement, we trained our statistical models to use satellite sea surface temperature and chlorophyll, with one model using salinity climatology and the other without. We found significant differences between the two models in regions of strong water input through river discharge and surface water flux. The pCO2 output follows the seasonal salinity advection of the Amazon outflow. The seasonal salinity advection between Bay of Bengal and Arabian Sea are followed by change of pCO2 and total alkalinity. At shorter time scales, the signatures of rain associated with intraseasonal organized convection of summer monsoon can be detected. We have observed distribution agreement of among pCO2, surface salinity, and surface water flux for variation from a few days to a few years under the Pacific ITCZ; the agreement varies slightly with season and longitudes and the reason is under study.

  5. Desertification, salinization, and biotic homogenization in a dryland river ecosystem.

    Science.gov (United States)

    Miyazono, Seiji; Patiño, Reynaldo; Taylor, Christopher M

    2015-04-01

    This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamflow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was>2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and

  6. Effects of salinity and salinity-induced augmented bioactive compounds in purslane (Portulaca oleracea L.) for possible economical use.

    Science.gov (United States)

    Amirul Alam, Md; Juraimi, A S; Rafii, M Y; Hamid, A A; Aslani, F; Alam, M Z

    2015-02-15

    Dry matter (DM), total phenolics, flavonoids, carotenoid contents, and antioxidant activity of 12 purslane accessions were investigated against five levels of salinity (0, 8, 16, 24 and 32dSm(-1)). In untreated plants, the DM contents ranged between 8.0-23.4g/pot; total phenolics contents (TPC) between 0.96-9.12mgGAEg(-1)DW; total flavonoid contents (TFC) between 0.15-1.44mgREg(-1)DW; and total carotenoid contents (TCC) between 0.52BCEg(-1)DW. While FRAP activity ranged from 8.64-104.21mgTEg(-1)DW (about 12-fold) and DPPH activity between 2.50-3.30mgmL(-1) IC50 value. Different levels of salinity treatment resulted in 8-35% increases in TPC; about 35% increase in TFC; and 18-35% increases in FRAP activity. Purslane accessions Ac4, Ac5, Ac6 and Ac8 possessed potentials for salinity-induced augmented production of bioactive compounds which in turn can be harnessed for possible human health benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Global Temperature and Salinity Profile Programme (GTSPP) Data, 1985-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Temperature-Salinity Profile Programme (GTSPP) develops and maintains a global ocean temperature and salinity resource with data that are both up-to-date...

  8. Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress – A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Murugesan Chandrasekaran

    2016-08-01

    Full Text Available A wide range of C3 and C4 plant species could acclimatize and grow under the impact of salinity stress. Symbiotic relationship between plant roots and arbuscular mycorrhizal fungi (AMF are widespread and are well known to ameliorate the influence of salinity stress on agro-ecosystem. In the present study, we sought to understand the phenomenon of variability on AMF symbiotic relationship on saline stress amelioration in C3 and C4 plants. Thus, the objective was to compare varied mycorrhizal symbiotic relationship between C3 and C4 plants in saline conditions. To accomplish the above mentioned objective, we conducted a random effects models meta-analysis across 60 published studies. An effect size was calculated as the difference in mycorrhizal responses between the AMF inoculated plants and its corresponding control under saline conditions. Responses were compared between (i identity of AMF species and AMF inoculation, (ii identity of host plants (C3 vs. C4 and plant functional groups, (iii soil texture and level of salinity and (iv experimental condition (greenhouse vs. field. Results indicate that both C3 and C4 plants under saline condition responded positively to AMF inoculation, thereby overcoming the predicted effects of symbiotic efficiency. Although C3 and C4 plants showed positive effects under low (EC8 ds/m saline conditions, C3 plants showed significant effects for mycorrhizal inoculation over C4 plants. Among the plant types, C4 annual and perennial plants, C4 herbs and C4 dicot had a significant effect over other counterparts. Between single and mixed AMF inoculants, single inoculants Rhizophagus intraradices had a positive effect on C3 plants whereas Funneliformis mosseae had a positive effect on C4 plants than other species. In all of the observed studies, mycorrhizal inoculation showed positive effects on shoot, root and total biomass, and in nitrogen, phosphorous and potassium (K uptake. However, it showed negative effects in

  9. Strategy of metabolic phenotype modulation in Portunus trituberculatus exposed to low salinity.

    Science.gov (United States)

    Ye, Yangfang; An, Yanpeng; Li, Ronghua; Mu, Changkao; Wang, Chunlin

    2014-04-16

    Extreme low salinity influences normal crab growth, morphogenesis, and production. Some individuals of swimming crab Portunus trituberculatus have, however, an inherent ability to adapt to such a salinity fluctuation. This study investigated the dynamic metabolite alterations of two P. trituberculatus strains, namely, a wild one and a screened (low-salinity tolerant) one in response to low-salinity challenge by combined use of NMR spectroscopy and high-throughput data analysis. The dominant metabolites in crab muscle were found to comprise amino acids, sugars, carboxylic acids, betaine, trimethylamine-N-oxide, 2-pyridinemethanol, trigonelline, and nucleotides. These results further showed that the strategy of metabolic modulation of P. trituberculatus after low-salinity stimulus includes osmotic rebalancing, enhanced gluconeogenesis from amino acids, and energy accumulation. These metabolic adaptations were manifested in the accumulation of trimethylamine-N-oxide, ATP, 2-pyridinemethanol, and trigonelline and in the depletion of the amino acid pool as well as in the fluctuation of inosine levels. This lends support to the fact that the low-salinity training accelerates the responses of crabs to low-salinity stress. These findings provide a comprehensive insight into the mechanisms of metabolic modulation in P. trituberculatus in response to low salinity. This work highlights the approach of NMR-based metabonomics in conjunction with multivariate data analysis and univariate data analysis in understanding the strategy of metabolic phenotype modulation against stressors.

  10. Acute extracellular fluid volume changes increase ileocolonic resistance to saline flow in anesthetized dogs

    Directory of Open Access Journals (Sweden)

    Santiago Jr. A.T.

    1997-01-01

    Full Text Available We determined the effect of acute extracellular fluid volume changes on saline flow through 4 gut segments (ileocolonic, ileal, ileocolonic sphincter and proximal colon, perfused at constant pressure in anesthetized dogs. Two different experimental protocols were used: hypervolemia (iv saline infusion, 0.9% NaCl, 20 ml/min, volume up to 5% body weight and controlled hemorrhage (up to a 50% drop in mean arterial pressure. Mean ileocolonic flow (N = 6 was gradually and significantly decreased during the expansion (17.1%, P<0.05 and expanded (44.9%, P<0.05 periods while mean ileal flow (N = 7 was significantly decreased only during the expanded period (38%, P<0.05. Mean colonic flow (N = 7 was decreased during expansion (12%, P<0.05 but returned to control levels during the expanded period. Mean ileocolonic sphincter flow (N = 6 was not significantly modified. Mean ileocolonic flow (N = 10 was also decreased after hemorrhage (retracted period by 17% (P<0.05, but saline flow was not modified in the other separate circuits (N = 6, 5 and 4 for ileal, ileocolonic sphincter and colonic groups, respectively. The expansion effect was blocked by atropine (0.5 mg/kg, iv both on the ileocolonic (N = 6 and ileal (N = 5 circuits. Acute extracellular fluid volume retraction and expansion increased the lower gastrointestinal resistances to saline flow. These effects, which could physiologically decrease the liquid volume being supplied to the colon, are possible mechanisms activated to acutely balance liquid volume deficit and excess.

  11. Lung perfusion in hemorrhagic shock of rats. The effects of resuscitation with whole blood, saline or hes 6%

    Energy Technology Data Exchange (ETDEWEB)

    Turhanoglu, S.; Kaya, S.; Kararmaz, A.; Turhanoglu, A.D. [Dicle Univ., Diyarbakir (Turkey). Medical School

    2001-12-01

    This study was undertaken to determine the effects of various resuscitation regimens on lung perfusion following resuscitation from hemorrhagic shock. Fourty male Sprague-Dawley rats (250-300 g) were used. The rats were divided randomly into four groups (n=10 for each) and were sedated with intramuscular ketamine (100 mg/kg). We measured blood pressure, rectal temperature and lung perfusion using radioscintigraphy with a technetium colloid indicator. The systolic blood pressure was decreased 75% by removing blood via v. jugularis in the first three groups and group 4 was accepted as the control group, and blood volume was not diminished. Then the first three groups were resuscitated with autologous blood containing 125 units heparine/ml in group 1, saline in group 2, and hydroxyethyl starch (HES) 6% in group 3. After the correction of hypovolemia, all animals were injected 100 Bg (0.1 cc) technetium 99m macroaggregated albumin ({sup 99m}Tc MAA) via penil vein. After injection of {sup 99m}Tc MAA, 3 minutes fixed images were detected by a {gamma} camera in posterior position at 15 minutes and 5 hours. {sup 99m}Tc MMA ''wash out'' rate in lung was determined quantitatively at 5 hours. Compared to a control group, lung perfusion was decreased significantly in groups resuscitated with saline, and HES 6% while perfusion was restored with autologous blood. We conclude that heparinized autologous blood saved lung capillary circulation in hemorrhagic shock in rats. (author)

  12. Lung perfusion in hemorrhagic shock of rats. The effects of resuscitation with whole blood, saline or hes 6%

    International Nuclear Information System (INIS)

    Turhanoglu, S.; Kaya, S.; Kararmaz, A.; Turhanoglu, A.D.

    2001-01-01

    This study was undertaken to determine the effects of various resuscitation regimens on lung perfusion following resuscitation from hemorrhagic shock. Fourty male Sprague-Dawley rats (250-300 g) were used. The rats were divided randomly into four groups (n=10 for each) and were sedated with intramuscular ketamine (100 mg/kg). We measured blood pressure, rectal temperature and lung perfusion using radioscintigraphy with a technetium colloid indicator. The systolic blood pressure was decreased 75% by removing blood via v. jugularis in the first three groups and group 4 was accepted as the control group, and blood volume was not diminished. Then the first three groups were resuscitated with autologous blood containing 125 units heparine/ml in group 1, saline in group 2, and hydroxyethyl starch (HES) 6% in group 3. After the correction of hypovolemia, all animals were injected 100 Bg (0.1 cc) technetium 99m macroaggregated albumin ( 99m Tc MAA) via penil vein. After injection of 99m Tc MAA, 3 minutes fixed images were detected by a γ camera in posterior position at 15 minutes and 5 hours. 99m Tc MMA ''wash out'' rate in lung was determined quantitatively at 5 hours. Compared to a control group, lung perfusion was decreased significantly in groups resuscitated with saline, and HES 6% while perfusion was restored with autologous blood. We conclude that heparinized autologous blood saved lung capillary circulation in hemorrhagic shock in rats. (author)

  13. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.

    Science.gov (United States)

    Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L

    2007-07-01

    The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to

  14. Utilization of saline water and land: Reclaiming lost resources

    International Nuclear Information System (INIS)

    Naqvi, Mujtaba

    2001-01-01

    There is an abundance of saline water on the globe. Large tracts of land are arid and/or salt-affected, and a large number of plant species are known to be salt-tolerant. It would seem obvious that salt tolerant plants (halophytes) have a role in utilizing the two wasted resources, saline water and wastelands. We will briefly describe how these resources can be fruitfully utilized and how the IAEA has helped several countries to demonstrate the possibility of cultivating salt tolerant plant species on arid saline wastelands for economic and environmental benefit. After some brief introductory remarks we will discuss the results of the project

  15. The structural modification of cassava starch using a saline water pretreatment

    Directory of Open Access Journals (Sweden)

    Hanny Frans SANGIAN

    2018-04-01

    Full Text Available Abstract The cassava has been modified successfully by using the saline water, which was abundantly available on the planet. The biomass was submerged in saline waters that salt concentrations were altered at 0, 3.5 percent (seawater and 10 percent (w/w and were kept 5 days. After recovery by washing steps, the treated solids were characterized by using XRD (X-ray diffraction , FTIR (Fourier transform infra-red, and SEM (Scanning electron microscopic. The results showed that the XRD pattern of saline water pretreatment decreased significantly. The biggest decrease of X-ray intensity occurred at around 18o. Meanwhile, the fingerprint of FTIR revealed the transmittance intensity of infra-red ray of saline water treated solid inclined for all wave constant numbers, suggesting that many hydrogen bonds were disconnected. Those findings also were enhanced by SEM pictures that showed the change of surface morphology of treated biomass. It was indicative that cassava structure was modified becoming more textured after employing saline water pretreatment. This work is an innovative finding to gradually substitute commercial ionic liquids that are very expensive with saline water for biomass pretreatment.

  16. Transport of Astyanax altiparanae Garutti and Britski, 2000 in saline water

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Salaro

    2015-08-01

    Full Text Available Two experiments were performed. The first aimed to assess the tolerance of fingerlings Astyanax altiparanae to water salinity. Fish were exposed to salinity of 0, 3, 6, 9, 12 or 15 g NaCl L-1 for 96 hours. The fish mortality was 0%, in the levels of 0, 3 and 6 g L-1; 75% in the level of 9 g L-1and 100% at 12 and 15 g L-1 of common salt. The second experiment aimed to assess the parameters of water quality, mortality and blood glucose during transport. For this, A. altiparanae were stored in plastic bags at 22, 30 and 37 g of fish L-1 stocking densities and salinity of 0, 3, 6 and 9 g L-1, for. Fish showed similar mortality levels in the different salinities and stocking densities. The increase in fish density reduced the dissolved oxygen levels and salinity decreased the pH. The blood glucose levels were higher in those fish with 0 g L-1 salinity and higher stocking densities. The addition of salt to the water reduces the stress responses of A. altiparanae during transport.

  17. Species-specific and transgenerational responses to increasing salinity in sympatric freshwater gastropods

    Science.gov (United States)

    Suski, Jamie G.; Salice, Christopher J.; Patino, Reynaldo

    2012-01-01

    Freshwater salinization is a global concern partly attributable to anthropogenic salt contamination. The authors examined the effects of increased salinity (as NaCl, 250-4,000 µS/cm, specific conductance) on two sympatric freshwater gastropods (Helisoma trivolvis and Physa pomillia). Life stage sensitivities were determined by exposing naive eggs or naive juveniles (through adulthood and reproduction). Additionally, progeny eggs from the juvenile-adult exposures were maintained at their respective parental salinities to examine transgenerational effects. Naive H. trivolvis eggs experienced delayed development at specific conductance > 250 µS/cm; reduced survivorship and reproduction were also seen in juvenile H. trivolvis at 4,000 µS/cm. Survival and growth of P. pomilia were not affected by increased salinity following egg or juvenile exposures. Interestingly, the progeny of H. trivolvis exposed to higher salinity may have gained tolerance to increased salinity whereas P. pomilia progeny may have experienced negative transgenerational effects. The present study demonstrates that freshwater snail species vary in their tolerance to salinization and also highlights the importance of multigenerational studies, as stressor impacts may not be readily apparent from shorter term exposures.

  18. Nutritional value and chemical composition of Cichorium spinosum L. under saline conditions

    OpenAIRE

    Petropoulos, Spyridon Α.; Vasilios, Antoniadis; Efi, Levizou; Fernandes, Ângela; Barros, Lillian; Ferreira, Isabel C.F.R.

    2016-01-01

    Soil salinity is an ever‐growing problem that hinders vegetable cultivation in many areas within the Mediterranean basin. Cichorium spinosum is native to the Mediterranean basin and is usually found in coastal areas and plateaus. In the present study, C. spinosum plants were grown under saline conditions (1.8, 4 and 8 dS/m), in order to evaluate the effect of salinity on their nutritional value and chemical composition. From the results it was observed that high salinity levels...

  19. Responses of free radical metabolism to air exposure or salinity stress, in crabs (Callinectes danae and C. ornatus) with different estuarine distributions.

    Science.gov (United States)

    Freire, Carolina A; Togni, Valéria G; Hermes-Lima, Marcelo

    2011-10-01

    The swimming crabs Callinectes danae and C. ornatus are found in bays and estuaries, but C. danae is more abundant in lower salinities, while C. ornatus remains restricted to areas of higher salinity. Experimental crabs of both species were submitted to: air exposure (Ae, 3h), reimmersion in 33‰ (control) sea water (SW) (Ri, 1h) following air exposure; hyposaline (Ho, 10‰ for 2h) or hypersaline (He, 40‰ for 2h) SW, then return to control 33‰ SW (RHo and RHe, for 1h). Hemolymph was sampled for osmolality and chloride determinations. Activity of antioxidant enzymes [glutathione peroxidase (GPX), catalase, glutathione-S-transferase] and levels of carbonyl proteins and lipid peroxidation (TBARS) were evaluated in hepatopancreas, muscle, anterior and posterior gills. In Ho groups, hemolymph concentrations were lower in both species, compared to He groups. C. danae displayed higher control activities of GPX (hepatopancreas and muscle) and catalase (all four tissues) than C. ornatus. C. ornatus presented increased activities of catalase and GPX in Ae, Ri, and He groups. Increased TBARS was seen in C. ornatus tissues (He group). The more euryhaline species displayed higher constitutive activities of antioxidant enzymes, and the less euryhaline species exhibited activation of these enzymes when exposed to air or hyper-salinity. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Effect of Vetiver Grass on Reduction of Soil Salinity and Some Minerals

    Directory of Open Access Journals (Sweden)

    Masoud Noshadi

    2017-02-01

    Full Text Available Introduction: Soil salinity is one of the major limitations of agriculture in the warm and dry regions. Soil sodification also damages soil structure and reduce soil permeability. Therefore, control of soil salinity and sodium is very important. Vetiver grass has unique characteristics that can be useful in phytoremediation. Materials and Methods: This research was conducted to investigate the effects of irrigation with different salinities on vetiver grass and the effects of this plant on the control of soil salinity and soil reclamation.The experimental design was randomized complete block design. Irrigation water salinities were 0.68(blank, 2, 4, 6, 8 and 10 dS/m, respectively, which artificially were constructed using sodium chloride and calcium chloride. At first, vetiver was transplanted and then moved to the farm. The amount of soil moisture was measured by the neutron probe. Irrigation depth was applied to refill soil water deficit up to field capacity. To evaluate the soil salinity in above salinity treatments, soil was sampled in each plot from 0-30, 30-60 and 60-90 cm depths and for each layer, electrical conductivity of saturated extract (ECe, sodium, potassium and chloride concentrations was measured .To measure the sodium, potassium and chloride concentrations in the leaves and roots of vetiver plant, samples were dried in oven. The dried samples were powdered and passed through the sieve (No. 200 and they were reduced to ash in 250 ◦C. 5 ml HCl was added to one gram of the ash, and after passing through filter paper, the volume of sample was brought to 50 ml by boiled distilled water. After preparing plant samples, the sodium, potassium and chloride concentrations were measured by Flame Photometer. Reults and discussion: The results showed that the vetiver grass was able to decrease soil salinity at different salinity levels except highest water salinity (10 dS/m and prevented salt accumulation in the soil. However, in the

  1. Protective Effects of Hydrogen-Rich Saline Against Lipopolysaccharide-Induced Alveolar Epithelial-to-Mesenchymal Transition and Pulmonary Fibrosis.

    Science.gov (United States)

    Dong, Wen-Wen; Zhang, Yun-Qian; Zhu, Xiao-Yan; Mao, Yan-Fei; Sun, Xue-Jun; Liu, Yu-Jian; Jiang, Lai

    2017-05-19

    BACKGROUND Fibrotic change is one of the important reasons for the poor prognosis of patients with acute respiratory distress syndrome (ARDS). The present study investigated the effects of hydrogen-rich saline, a selective hydroxyl radical scavenger, on lipopolysaccharide (LPS)-induced pulmonary fibrosis. MATERIAL AND METHODS Male ICR mice were divided randomly into 5 groups: Control, LPS-treated plus vehicle treatment, and LPS-treated plus hydrogen-rich saline (2.5, 5, or 10 ml/kg) treatment. Twenty-eight days later, fibrosis was assessed by determination of collagen deposition, hydroxyproline, and type I collagen levels. Development of epithelial-to-mesenchymal transition (EMT) was identified by examining protein expressions of E-cadherin and α-smooth muscle actin (α-SMA). Transforming growth factor (TGF)-β1 content, total antioxidant capacity (T-AOC), malondialdehyde (MDA) content, catalase (CAT), and superoxide dismutase (SOD) activity were determined. RESULTS Mice exhibited increases in collagen deposition, hydroxyproline, type I collagen contents, and TGF-β1 production in lung tissues after LPS treatment. LPS-induced lung fibrosis was associated with increased expression of α-SMA, as well as decreased expression of E-cadherin. In addition, LPS treatment increased MDA levels but decreased T-AOC, CAT, and SOD activities in lung tissues, indicating that LPS induced pulmonary oxidative stress. Hydrogen-rich saline treatment at doses of 2.5, 5, or 10 ml/kg significantly attenuated LPS-induced pulmonary fibrosis. LPS-induced loss of E-cadherin in lung tissues was largely reversed, whereas the acquisition of α-SMA was dramatically decreased by hydrogen-rich saline treatment. In addition, hydrogen-rich saline treatment significantly attenuated LPS-induced oxidative stress. CONCLUSIONS Hydrogen-rich saline may protect against LPS-induced EMT and pulmonary fibrosis through suppressing oxidative stress.

  2. Infusion of hypertonic saline before elective hysterectomy: effects on cytokines and stress hormones

    DEFF Research Database (Denmark)

    Kolsen-Petersen, J A; Bendtzen, K; Tonnesen, E

    2008-01-01

    Infusion of hypertonic saline provides early haemodynamic benefits and may affect the immune system. It is unknown if infusion of hypertonic saline affects plasma cytokines and stress hormones after surgery.......Infusion of hypertonic saline provides early haemodynamic benefits and may affect the immune system. It is unknown if infusion of hypertonic saline affects plasma cytokines and stress hormones after surgery....

  3. Community structure of grassland ground-dwelling arthropods along increasing soil salinities.

    Science.gov (United States)

    Pan, Chengchen; Feng, Qi; Liu, Jiliang; Li, Yulin; Li, Yuqiang; Yu, Xiaoya

    2018-03-01

    Ground-dwelling arthropod communities are influenced by numerous biotic and abiotic factors. Little is known, however, about the relative importance of vegetation structure and abiotic environmental factors on the patterns of ground-dwelling arthropod community across a wide range of soil salinities. Here, a field survey was conducted to assess the driving forces controlling ground-dwelling arthropod community in the salinized grasslands in the Hexi Corridor, Gansu Province, China. The data were analyzed by variance partitioning with canonical correspondence analysis (CCA). We found that vegetation structure and edaphic factors were at least of similar importance to the pattern of the whole ground-dwelling arthropod community. However, when all collected ground-dwelling arthropods were categorized into three trophic guilds (predators, herbivores, and decomposers), as these groups use different food sources, their populations were controlled by different driving forces. Predators and decomposers were mainly determined by biotic factors such as vegetation cover and aboveground plant biomass and herbivores by plant density and vegetation cover. Abiotic factors were also major determinants for the variation occurring in these guilds, with predators strongly affected by soil electrical conductivity (EC) and the content of fine particles (silt + clay, CS), herbivores by soil N:P, EC, and CS, and decomposers by soil EC and organic matter content (SOM). Since plant cover, density, and aboveground biomass can indicate resource availability, which are mainly constrained by soil N:P, EC, CS, and SOM, we consider that the ground-dwelling arthropod community in the salinized grasslands was mainly influenced by resource availability.

  4. Sustainable management of coastal saline soils in the Saloum river ...

    African Journals Online (AJOL)

    conductivity, pH, water soluble cations and anions) were analysed to estimate the salinity level at each .... (floodplain, low terrace), saline soils are now .... Apart from having a high salt content, ..... permeability and thereby promotes continuous.

  5. Influence of temperature and salinity on heavy metal uptake by submersed plants

    Energy Technology Data Exchange (ETDEWEB)

    Fritioff, A. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden)]. E-mail: fritioff@botan.su.se; Kautsky, L. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden); Greger, M. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden)

    2005-01-01

    Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 deg. C in combination with salinities of 0, 0.5, and 5%o. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants. - Metal concentrations increase with increasing temperature and decreasing salinity in two aquatic plants.

  6. Influence of temperature and salinity on heavy metal uptake by submersed plants

    International Nuclear Information System (INIS)

    Fritioff, A.; Kautsky, L.; Greger, M.

    2005-01-01

    Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 deg. C in combination with salinities of 0, 0.5, and 5%o. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants. - Metal concentrations increase with increasing temperature and decreasing salinity in two aquatic plants

  7. Thermodynamics of saline and fresh water mixing in estuaries

    Science.gov (United States)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2018-03-01

    The mixing of saline and fresh water is a process of energy dissipation. The freshwater flow that enters an estuary from the river contains potential energy with respect to the saline ocean water. This potential energy is able to perform work. Looking from the ocean to the river, there is a gradual transition from saline to fresh water and an associated rise in the water level in accordance with the increase in potential energy. Alluvial estuaries are systems that are free to adjust dissipation processes to the energy sources that drive them, primarily the kinetic energy of the tide and the potential energy of the river flow and to a minor extent the energy in wind and waves. Mixing is the process that dissipates the potential energy of the fresh water. The maximum power (MP) concept assumes that this dissipation takes place at maximum power, whereby the different mixing mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with respect to the dispersion coefficient that reflects the combined mixing processes. The resulting equation is an additional differential equation that can be solved in combination with the advection-dispersion equation, requiring only two boundary conditions for the salinity and the dispersion. The new equation has been confronted with 52 salinity distributions observed in 23 estuaries in different parts of the world and performs very well.

  8. The effect of salinity and moisture stress on pea plant

    International Nuclear Information System (INIS)

    Abdalla, A.Abd-El Ghany

    1985-01-01

    Four experiments were carried out in the green house in Inchas, Atomic Energy Establishment, to study the effect os salinity and moisture stress on pea plants. Salinity experiments were conducted in 1981/1982, 1982/1983 and 1983/1984 seasons to study the effect of NaCl and/or CaC l 2 as single or mixed salts and radiation combined with salinity. Water stress studies were conducted in 1983/1984 growing season to investigate the effect of soil moisture stress on growth, yield and water use efficiency

  9. Mining and Analysis of SNP in Response to Salinity Stress in Upland Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Wang, Xiaoge; Lu, Xuke; Wang, Junjuan; Wang, Delong; Yin, Zujun; Fan, Weili; Wang, Shuai; Ye, Wuwei

    2016-01-01

    Salinity stress is a major abiotic factor that affects crop output, and as a pioneer crop in saline and alkaline land, salt tolerance study of cotton is particularly important. In our experiment, four salt-tolerance varieties with different salt tolerance indexes including CRI35 (65.04%), Kanghuanwei164 (56.19%), Zhong9807 (55.20%) and CRI44 (50.50%), as well as four salt-sensitive cotton varieties including Hengmian3 (48.21%), GK50 (40.20%), Xinyan96-48 (34.90%), ZhongS9612 (24.80%) were used as the materials. These materials were divided into salt-tolerant group (ST) and salt-sensitive group (SS). Illumina Cotton SNP 70K Chip was used to detect SNP in different cotton varieties. SNPv (SNP variation of the same seedling pre- and after- salt stress) in different varieties were screened; polymorphic SNP and SNPr (SNP related to salt tolerance) were obtained. Annotation and analysis of these SNPs showed that (1) the induction efficiency of salinity stress on SNPv of cotton materials with different salt tolerance index was different, in which the induction efficiency on salt-sensitive materials was significantly higher than that on salt-tolerant materials. The induction of salt stress on SNPv was obviously biased. (2) SNPv induced by salt stress may be related to the methylation changes under salt stress. (3) SNPr may influence salt tolerance of plants by affecting the expression of salt-tolerance related genes.

  10. Salinization may attack you from behind: upconing and related long-term downstream salinization in the Amsterdam Water Supply Dunes (Invited)

    Science.gov (United States)

    Olsthoorn, T.

    2010-12-01

    Groundwater from the Amsterdam Water Supply Dunes (GE: 52.35°N 4.55°E) has been used for the drinking water supply of Amsterdam since 1853. During the first half of the 20th century, severe intrusion and upconing occurred, with many of the wells turning brackish or saline. Already in 1903, the hydrologist/director of the Amsterdam Water Supply, Pennink, predicted this, based on his unique sand-box modeling, which he published in 1915 in the form of a large-size hard-bound book in four languages showing detailed black and white photographs of his tests. This book is now on the web: http://www.citg.tudelft.nl/live/pagina.jsp?id=68e12562-a4d2-489a-b82e-deca5dd32c42&lang=en Pennink devoted much of his work on saltwater upconing below wells, which he so feared. He simulated simultaneous flow of fresh and salt water, using milk to represent the saltwater having about the same density. With our current modeling tools, we can simulate his experiments, allowing to better understand his setup and even to verify our code. Pennink took interest in the way these cones form and in the point at which the salt water enters the screen. Surprizing, at least to many, is that this entry point is not necessarily the screen bottom. Measurements of the salinity distribution in salinized wells in the Amsterdam Water Supply Dune area confirmed this thirty years later when salinzation was severely occurring. The curved cone shape under ambient flow conditions provides part of the explanation why a short-term shut down of a well almost immediately diminishes salt concentrations, but salinization downstream of the wells in case with substantial lateral groundwater flow is not affected. Downstream salinization due to extraction was clearly shown in Pennink's experiments. However, the phenomenon seems still largely unknown or ignored. Downstream salinization also affects downstream heads for years after extraction has stopped. The presentation demonstrates and explains these local and more

  11. Report on the consultants meeting on identification of crop species/cultivars for drought and salinity tolerance for sustained crop yields by using nuclear techniques, in particular the carbon isotope discrimination

    International Nuclear Information System (INIS)

    2001-01-01

    A Consultants Meeting on Identification of Crop Species/Cultivars for Drought and Salinity Tolerance for Sustained Crop Yields by Using Nuclear Techniques, in Particular the Carbon Isotope Discrimination. was held in Vienna at the IAEA Headquarters from 12-16 November 2001. This meeting was conducted in conjunction with a Group Meeting on Novel Approaches for Improving Crop Tolerance to Salinity and Drought. Five consultants from Australia, Mexico, Pakistan, UK and the USA and one representative from FAO attended the Consultant Meeting and nine participants from Australia, Canada, China, Germany, India, Israel, Pakistan, South Africa and the USA attended the Group Meeting. First two days of the meeting consisted of five technical sessions during which the participants presented papers on various approaches for improving crop tolerance to salinity and drought and the role of nuclear techniques in identification of plants tolerant to the above abiotic stresses. After the presentations, two working groups were formed: one consisting of the participants of the Consultants Meeting and the other the participants of the Group Meeting. The consultants proposed various strategies for using the carbon isotope discrimination technique as a selection tool for identifying higher yielding crop genotypes especially in wheat and rice cropping systems under drought and saline conditions. A proposal was formulated to address the above issues in a framework of a CRP. The participants of the Group Meeting reviewed conventional and molecular approaches for improving crop tolerance to salinity and drought and research priorities were identified for future work on crop productivity improvement under the above stress factors. Recommendations of both working groups were presented at the final session of the meeting. This report provides the details of the proposal formulated by the consultants. Refs

  12. Heart Rate Variability Responses of Individuals With and Without Saline-Induced Obstructive Sleep Apnea.

    Science.gov (United States)

    Vena, Daniel; Bradley, T Douglas; Millar, Philip J; Floras, John S; Rubianto, Jonathan; Gavrilovic, Bojan; Perger, Elisa; Yadollahi, Azadeh

    2018-03-30

    Postoperative development of obstructive sleep apnea (OSA) has been attributed to the fluid overloaded state of patients during the postoperative period. In this context, alterations in cardiac autonomic regulation caused by OSA may explain the increased postoperative risk for adverse cardiovascular events. This study tests the hypothesis that individuals with fluid overload-induced OSA will experience autonomic dysregulation, compared to those without fluid overload-induced OSA. Twenty-one normotensive, nonobese (mean body mass index 24.5 kg/m2) males (mean age 37 years) underwent a sleep study. Participants were randomly assigned to infusion with saline during sleep either at the minimum rate (control) or as a bolus of 22 mL/kg body weight (intervention). Participants were blinded to the intervention and crossed over to the other study arm after 1 week. Measures of heart rate variability were calculated from electrocardiography recordings presaline and postsaline infusion in the intervention arm. Heart rate variability measures computed were: standard deviation of the RR interval; root mean square of successive differences; low-frequency, high-frequency, and total power; and the ratio of low-frequency to high-frequency power. Although presaline infusion values were similar, postsaline infusion values of the standard deviation of the RR interval and high-frequency power were lower in the group whose apnea-hypopnea index increased in response to saline infusion, compared to the group whose apnea-hypopnea index did not increase in response to saline infusion ( P variability, consistent with vagal withdrawal. Future work should explore autonomic dysregulation in the postoperative period and its association with adverse events. Copyright © 2018 American Academy of Sleep Medicine. All rights reserved.

  13. Salinity guidelines for irrigation: Case studies from Water Research ...

    African Journals Online (AJOL)

    Salinity guidelines for irrigation: Case studies from Water Research Commission projects along the Lower Vaal, Riet, Berg and Breede Rivers. ... It is suggested that a more dynamic approach be used for managing salinity under irrigation at farm level, i.e. the use of models. Amongst others, future research should focus on ...

  14. Responses of three tomato cultivars to sea water salinity 1. Effect of ...

    African Journals Online (AJOL)

    The effect of sea water salinity (1500, 2500 and 3500 ppm) on the growth of tomato (Lycopersicon esculentum) cultivars (Trust, Grace and Plitz) was studied. The sea water salinity delayed seed germination and reduced germination percentage especially with increasing salinity level. Chlorophyll b content was higher than ...

  15. Intrusion of low-salinity water into the Yellow Sea Interior in 2012

    Science.gov (United States)

    Oh, Kyung-Hee; Lee, Joon-Ho; Lee, Seok; Pang, Ig-Chan

    2014-12-01

    Abnormally low-salinity water was detected in the surface layer of the central region of the Yellow Sea in August 2012. The presence of such low-salinity water in the Yellow Sea interior has never been reported previously. To understand the origin of this low-salinity water, oceanographic and wind data were analyzed, and the circulation of the surface layer was also examined in the Yellow and East China Seas using a numerical ocean model. The results confirmed that typhoons caused the low-salinity water. Two consecutive typhoons passed from east to west across the East China Sea, around the Changjiang Bank in early August 2012. Strong easterly and southeasterly winds created by the typhoons in the Yellow and East China Seas drove the low-salinity water to the north along the coast of China and northeastward toward the central region of the Yellow Sea, respectively. Usually, the northward drifting of Changjiang Diluted Water along the coast of China ends around the Jiangsu coast, where the drifting is blocked and is turned by the offshore Eulerian residual current. Therefore, the Changjiang Diluted Water does not intrude more into the Yellow Sea interior. However, in 2012, the low-salinity water drifted up to the Shandong Peninsula along the coast of China, and formed massive low-salinity water in the Yellow Sea interior combining with the other low-salinity water extended toward the central region of the Yellow Sea directly from the Changjiang Bank. Thus, the typhoons play a key role in the appearance of abnormally low-salinity water in the Yellow Sea interior and it means that the Yellow Sea ecosystem could be significantly influenced by the Changjiang Diluted Water.

  16. Salinity Effects on Photosynthesis, Carbon Allocation, and Nitrogen Assimilation in the Red Alga, Gelidium coulteri1

    Science.gov (United States)

    Macler, Bruce A.

    1988-01-01

    The long-term effects of altered salinities on the physiology of the intertidal red alga Gelidium coulteri Harv. were assessed. Plants were transfered from 30 grams per liter salinity to media with salinities from 0 to 50 grams per liter. Growth rate, agar, photosynthesis, respiration, and various metabolites were quantified after 5 days and 5 weeks adaptation. After 5 days, growth rates were lower for plants at all altered salinities. Growth rates recovered from these values with 5 weeks adaptation, except for salinities of 10 grams per liter and below, where tissues bleached and died. Photosynthetic O2 evolution was lower than control values at both higher and lower salinities after 5 days and did not change over time. Carbon fixation at the altered salinities was unchanged after 5 days, but decreased below 25 grams per liter and above 40 grams per liter after 5 weeks. Respiration increased at lower salinities. Phycobili-protein and chlorophyll were lower for all altered salinities after 5 days. These decreases continued at lower salinities, then were stable after 5 weeks. Chlorophyll recovered over time at higher salinities. Decreases in protein at lower salinities were quantitatively attributable to phycobili-protein loss. Total N levels and C:N ratios were nearly constant across all salinities tested. Carbon flow into glutamate and aspartate decreased with both decreasing and increasing salinities. Glycine, serine, and glycolate levels increased with both increasing and decreasing salinity, indicating a stimulation of photorespiration. The cell wall component agar increased with decreasing salinity, although biosynthesis was inhibited at both higher and lower salinities. The storage compound floridoside increased with increasing salinity. The evidence suggests stress responses to altered salinities that directly affected photosynthesis, respiration, and nitrogen assimilation and indirectly affected photosynthate flow. At low salinities, respiration and

  17. The effects of intratendinous and retrocalcaneal intrabursal injections of corticosteroid on the biomechanical properties of rabbit Achilles tendons.

    Science.gov (United States)

    Hugate, Ronald; Pennypacker, Jason; Saunders, Marnie; Juliano, Paul

    2004-04-01

    The use of corticosteroid injections in the treatment of retrocalcaneal bursitis is controversial. We assessed the effects of corticosteroid injections, both within the tendon substance and into the retrocalcaneal bursa, on the biomechanical properties of rabbit Achilles tendons. The systemic effects of bilateral corticosteroid injections were also studied. The rabbits were divided into three treatment groups. The rabbits in Group I received injections of corticosteroid into the Achilles tendon on the left side and injections of normal saline solution into the Achilles tendon on the right, those in Group II received injections of corticosteroid into the retrocalcaneal bursa on the left side and injections of saline solution into the Achilles tendon on the right, and those in Group III received injections of corticosteroid into the Achilles tendon on the left side and injections of corticosteroid into the retrocalcaneal bursa on the right. These injections were given weekly for three weeks. At four weeks after the final injection, the tendons were harvested and were tested biomechanically to determine failure load, midsubstance strain and total strain, modulus of elasticity, failure stress, and total energy absorbed. The site of failure was also documented. The groups were compared according to the location of the injections, the type of injection (steroid or saline solution), and the total systemic load of steroid. Specimens from limbs that had received intratendinous injections of corticosteroid showed significantly decreased failure stress compared with those from limbs that had received intratendinous injections of saline solution (p = 0.008). Specimens from limbs that had received intrabursal injections of corticosteroid demonstrated significantly decreased failure stress (p = 0.05), significantly decreased total energy absorbed (p = 0.017), and significantly increased total strain (p = 0.049) compared with specimens from limbs that had received intratendinous

  18. Three-dimensional simulation of flow, salinity, sediment, and radionuclide movements in the Hudson River estuary

    International Nuclear Information System (INIS)

    Onishi, Y.; Trent, D.S.

    1985-04-01

    The three-dimensional, finite difference model, FLESCOT simulates time-varying movements of flow, turbulent kinetic energy, salinity, water temperature, sediment, and contaminants in estuarine, coastal, and ocean waters. The model was applied to a 106-km (66-mi) reach of the Hudson River estuary in New York between Chelsea and the mouth of the river. It predicted the time-varying, three-dimensional distributions of tidal flow, salinity, three separate groups of sediments (i.e., sand, silt, and clay), and a radionuclide ( 137 Cs) in both dissolved and particulate (those sorbed by sediments) forms for over 40 days. The model also calculated riverbed elevation changes caused by sediment deposition and bed erosion, bed sediment size distribution and armoring, and distributions of the particulate 137 Cs sorbed by sand, silt, and clay in the bed

  19. The effect of reflexology upon spasticity and function among children with cerebral palsy who received physiotherapy: Three group randomised trial.

    Science.gov (United States)

    Özkan, Filiz; Zincir, Handan

    2017-08-01

    To assess the effectiveness of reflexology method upon spasticity and function among children with cerebral palsy who received physiotherapy. A three group, randomised trial with blinded evaluator. Randomization was made sealed and opaque envelopes. 45 children with cerebral palsy who were trained at a Special Education and Rehabilitation Centre. In the reflexology and placebo group; a 20min reflexology was performed twice a week in a total 24 sessions. In the control group; no intervention was done. Before and after the implementation; measurements of the participants were obtained. The data were collected using Gross Motor Function Measure, Modified Ashworth Scale (MAS), Modified Tardieu Scale, Pediatric Functional Independence Scale, Pediatric Quality of Life Scale (PedsQL) and demographic data. A total of 45 children completed the study. The groups were homogeneous at baseline. Between right MAS Gastrocnemius muscle was a difference and right and left Soleus muscles was significant among the groups (p0.05). Reflexology with physiotherapy reduced spasticity in legs, improved gross motor functions, decreased dependency but led to no change in quality of life. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Using Modified Remote Sensing Imagery to Interpret Changes in Cultivated Land under Saline-Alkali Conditions

    Directory of Open Access Journals (Sweden)

    Hui Gao

    2016-07-01

    Full Text Available Managing the rapidly changing saline-alkali land under cultivation in the coastal areas of China is important not only for mitigating the negative impacts of such land on the environment, but also for ensuring long-term sustainability of agriculture. In this light, setting up rapid monitoring systems to assist decision-making in developing sustainable management plans is therefore an absolute necessity. In this study, we developed a new interpretation system where symbols are used to grade and classify saline-alkali lands in space and time, based on the characteristics of plant cover and features of remote sensing images. The system was used in combination with the maximum likelihood supervised classification to analyze the changes in cultivated lands under saline-alkali conditions in Huanghua City. The analysis revealed changes in the area and spatial distribution of cultivated under saline-alkali conditions in the region. The total area of saline-alkali land was 139,588.8 ha in 1992 and 134,477.5 ha in 2011. Compared with 1992, severely and moderately saline-alkali land areas decreased in 2011. However, non/slightly saline land areas increased over that in 1992. The results showed that the salinization rate of arable lands in Huanghua City decreased from 1992 to 2011. The moderately saline-alkali land southeast of the city transformed into non/slightly saline-alkaline. Then, severely saline-alkali land far from the coastal zone west of the city became moderately saline-alkaline. Spatial changes in cultivated saline-alkali lands in Huanghua City were such that the centers of gravity (CG of severely and non/slightly saline-alkali land moved closer the coastline, while that of the moderately saline-alkali land moved from southwest coastal line to northwest. Factors influencing changes in cultivated lands in the saline-alkali ecosystem included climate, hydrology and human activity. Thus, studies are required to further explore these factors in

  1. Vulnerability and Risk of Agro-ecosystems Facing Increased Salinity Intrusion in the Mekong Delta, Viet Nam

    Science.gov (United States)

    Renaud, F.; Sebesvari, Z.; Nguyen, M. T.; Hagenlocher, M.

    2016-12-01

    The Vietnamese portion of the Mekong Delta increasingly suffers from salinity intrusion in its freshwater system, as exemplified by the historically high salinity levels recorded during the 2016 dry season. Although this exceptional situation was linked to the El Niño phenomena, many factors contribute to an increasing salinization of coastal areas. Salinity intrusion is a natural process in this tidal area but its extent is increasing and projected to worsen due to increased demand for water, diversion/storage of water flows in the Mekong river and its tributaries, land subsidence linked to groundwater over-abstraction, changes in land use and water management in coastal areas, and sea level rise. The Mekong Delta remains predominantly an agricultural landscape which contributes the majority of the rice, aquaculture, and fruit production of the country. These systems will need to be adapted to increased salinity levels. We will present results from two research projects, DeltAdapt and DELTAS, which were designed to allow understanding of, respectively (1) the main drivers of change of agro-ecosystems in coastal areas of the delta and (2) the relative vulnerabilities and risks deltaic social-ecological systems face with respect to various environmental hazards. We used the Global Delta Vulnerability Index developed within the DELTAS project to characterize the vulnerabilities and risks faced by coastal provinces of the delta with respect to salinity intrusion. The analysis allows us to understand which social, economic, and ecological variables index explain the relative vulnerability of the provinces. In addition, drivers of change (e.g. policy, economic, social, environmental) of coastal agro-ecosystems were systematically analyzed through 80 interviews and 7 focus group discussions in the provinces of Kien Giang and Soc Trang within the DeltAdapt project. This was combined with the analysis of Vietnamese policies to determine which are the important drivers of

  2. Structure and composition of oligohaline marsh plant communities exposed to salinity pulses

    Science.gov (United States)

    Howard, R.J.; Mendelssohn, I.A.

    2000-01-01

    The response of two oligohaline marsh macrophyte communities to pulses of increased salinity was studied over a single growing season in a greenhouse experiment. The plant communities were allowed a recovery period in freshwater following the pulse events. The experimental treatments included: (1) salinity influx rate (rate of salinity increase from 0 to 12 gl-1); (2) duration of exposure to elevated salinity; and (3) water depth. The communities both included Sagittaria lancifolia L.; the codominant species were Eleocharis palustris (L.) Roemer and J.A. Schultes in community 1 and Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller in community 2. Effects of the treatments on sediment chemical characteristics (salinity, pH, redox potential, and sulfide and ammonium concentrations) and plant community attributes (aboveground and belowground biomass, stem density, leaf tissue nutrients, and species richness) were examined. The treatment effects often interacted to influence sediment and plant communities characteristics following recovery in fresh water. Salinity influx rate per se, however, had little effect on the abiotic or biotic response variables; significant influx effects were found when the 0 gl-1 (zero influx) treatment was compared to the 12 gl-1 treatments, regardless of the rate salinity was raised. A salinity level of 12 gl-1 had negative effects on plant community structure and composition; these effects were usually associated with 3 months of salinity exposure. Water depth often interacted with exposure duration, but increased water depth did independently decrease the values of some community response measures. Community 1 was affected more than community 2 in the most extreme salinity treatment (3 months exposure/15-cm water depth). Although species richness in both communities was reduced, structural changes were more dramatic in community 1. Biomass and stem density were reduced in community 1 overall and in both dominant species

  3. Germination responses of limonium insigne (coss.) kuntze to salinity and temperature

    International Nuclear Information System (INIS)

    Isabel, C.; Fernandez, D.; Luque, E.G.; Mercado, F.G.

    2015-01-01

    Limonium insigne (Plumbaginaceae) is a perennial halophyte endemic to the SE of the Iberian Peninsula. Experiments were conducted to determine the effects of different salinities (0, 100, 200 and 400 mM NaCl) on the seed germination of L. insigne under different temperature regimes (20/10, 25/15, 30/20 and 35/25 degree C), both in a 14 h light and 10 h dark photoperiod. Seed germination of L. insigne was affected significantly by salinity levels, temperature and their interaction. Maximum germination was observed in the least saline media (100 mM NaCl) and distilled water (0 mM NaCl) at 20/10 degree C temperature. No seeds germinated at concentrations higher than 200 mM NaCl at the highest temperature (35/25 degree C). The increase in salinity delayed the beginning and ending of germination, reduced final germination percentage and increased mean time to germination. The rate of germination decreased with an increase in salinity and temperature. (author)

  4. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae; Logan, Bruce E.

    2013-01-01

    Highly saline solutions were examined as alternatives to chemical buffers in microbial fuel cells (MFCs). The performance of two-chamber MFCs with different concentrations of saline solutions in the cathode chamber was compared to those with a buffered catholyte (50mM PBS). The use of a NaCl catholyte improved the CE to 43-60% (28% with no membrane) due to a reduction in oxygen transfer into the anolyte. The saline catholyte also reduced the membrane and solution resistance to 23Ω (41Ω without a membrane). The maximum power density of 491mW/m2 (240mM NaCl) was only 17% less than the MFC with 50mM PBS. The decrease in power output with highest salinity was due to reduced proton transfer due to the ion exchange membrane, and pH changes in the two solutions. These results show that MFC performance can be improved by using a saline catholyte without pH control. © 2013 Elsevier Ltd.

  5. Responses to ozone pollution of alfalfa exposed to increasing salinity levels

    International Nuclear Information System (INIS)

    Maggio, Albino; Chiaranda, Fabrizio Quaglietta; Cefariello, Roberto; Fagnano, Massimo

    2009-01-01

    Stomatal closure and biosynthesis of antioxidant molecules are two fundamental components of the physiological machinery that lead to stress adaptation during plant's exposure to salinity. Since high stomatal resistance may also contribute in counteracting O 3 damages, we hypothesized that soil salinization may increase O 3 tolerance of crops. An experiment was performed with alfalfa grown in filtered (AOT40 = 0 in both years) and non-filtered (AOT40 = 9.7 in 2005 and 6.9 ppm h in 2006) open-top chambers. Alfalfa yield was reduced by O 3 (-33%) only in plants irrigated with salt-free water, while the increasing levels of soil salinity until 1.06 dS m -1 reduced both stomatal conductance and plant O 3 uptake, thus linearly reducing O 3 effects on yield. Therefore a reliable flux-based model for assessing the effects of O 3 on crop yield should take into account soil salinity. - Moderate saline stress can reduce ozone uptake and yield losses in alfalfa plants.

  6. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae

    2013-03-01

    Highly saline solutions were examined as alternatives to chemical buffers in microbial fuel cells (MFCs). The performance of two-chamber MFCs with different concentrations of saline solutions in the cathode chamber was compared to those with a buffered catholyte (50mM PBS). The use of a NaCl catholyte improved the CE to 43-60% (28% with no membrane) due to a reduction in oxygen transfer into the anolyte. The saline catholyte also reduced the membrane and solution resistance to 23Ω (41Ω without a membrane). The maximum power density of 491mW/m2 (240mM NaCl) was only 17% less than the MFC with 50mM PBS. The decrease in power output with highest salinity was due to reduced proton transfer due to the ion exchange membrane, and pH changes in the two solutions. These results show that MFC performance can be improved by using a saline catholyte without pH control. © 2013 Elsevier Ltd.

  7. Effects of temperature and salinity on light scattering by water

    Science.gov (United States)

    Zhang, Xiaodong; Hu, Lianbo

    2010-04-01

    A theoretical model on light scattering by water was developed from the thermodynamic principles and was used to evaluate the effects of temperature and salinity. The results agreed with the measurements by Morel within 1%. The scattering increases with salinity in a non-linear manner and the empirical linear model underestimate the scattering by seawater for S < 40 psu. Seawater also exhibits an 'anomalous' scattering behavior with a minimum occurring at 24.64 °C for pure water and this minimum increases with the salinity, reaching 27.49 °C at 40 psu.

  8. Aquarius and Remote Sensing of Sea Surface Salinity from Space

    Science.gov (United States)

    LeVine, David M.; Lagerloef, G. S. E.; Torrusio, S.

    2012-01-01

    Aquarius is an L-band radiometer and scatterometer instrument combination designed to map the salinity field at the surface of the ocean from space. The instrument is designed to provide global salinity maps on a monthly basis with a spatial resolution of 150 km and an accuracy of 0.2 psu. The science objective is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This data will promote understanding of ocean circulation and its role in the global water cycle and climate.

  9. Identification of Proteins Involved in Salinity Tolerance in Salicornia bigelovii

    KAUST Repository

    Salazar Moya, Octavio Ruben

    2017-01-01

    by providing a genome, transcriptomes, and organellar proteomes, contributing to salinity tolerance research overall. We identified a set of candidate genes for salinity tolerance with the aim of shedding some light on the mechanisms by which this plant thrives

  10. Effects of salinity and flooding on seedlings of cabbage palm (Sabal palmetto).

    Science.gov (United States)

    Perry, L; Williams, K

    1996-03-01

    Sabal palmetto (Walt.) Lodd. ex Schultes (cabbage palm) dominates the coastal limit of many forests in North Florida and Georgia, United States. Changes in saltwater flooding due to sea level rise have been credicted with pushing the coastal limit of cabbage palms inland, eliminating regeneration before causing death of mature trees. Localized freshwater discharge along the coast causes different forest stands to experience tidal flooding with waters that differ in salinity. To elucidate the effect of such variation on regeneration failure under tidal flooding, we examined relative effects of flooding and salinity on the performance of cabbage palm seedlings. We examined the relationship between seedling establishment and degree of tidal inundation in the field, compared the ability of seedlings to withstand tidal flooding at two coastal sites that differed in tidal water salinity, and investigated the physiological responses of cabbage palm seedlings to salinity and flooding in a factorial greenhouse experiment. Seedling survival was inversely correlated with depth and frequency of tidal flooding. Survival of seedlings at a coastal site flooded by waters low in salinity [c. 3 parts per thousand (ppt)] was greater than that at a site flooded by waters higher in salinity (up to 23 ppt). Greenhouse experiments revealed that leaves of seedlings in pots flushed twice daily with salt solutions of 0 ppt and 8 ppt exhibited little difference in midmorning net CO 2 assimilation rates; those flushed with solutions of 15 ppt and 22 ppt, in contrast, had such low rates that they could not be detected. Net CO 2 assimilation rates also declined with increasing salinity for seedlings in pots that were continuously inundated. Continuous root zone inundation appeared to ameliorate effects of salinity on photosynthesis, presumably due to increased salt concentrations and possibly water deficits in periodically flushed pots. Such problems associated with periodic flushing by salt

  11. Triple test cross analysis for salinity tolerance in wheat

    International Nuclear Information System (INIS)

    Zafar, M.; Khan, A.S.; Chowdhry, M.A.

    2008-01-01

    Triple test cross analysis applied to study additive, dominance and epistatic components of genetic variation for five seedling traits namely shoot length, fresh shoot weight, root length, fresh root weight and root shoot ratio at two salinity levels 0 (control) and 10 dSm/sup -1/ in wheat. The results revealed that the epistatic component is an important element for salinity tolerance at seedling stage in wheat. Both additive and dominance gene effects were involved in the inheritance of shoot length, fresh shoot weight, root length fresh root weight and root shoot ratio Complete dominance was indicated for shoot length, fresh root weight and root/shoot ratio and partial dominance was observed for other traits at control and over dominance was observed for shoot length, fresh shoot weight and root/shoot ratio, complete dominance for fresh root weight and partial dominance for root length at 10 dSm/sup -1/ salinity level. Significant epitasis was observed for all the traits except shoot length at both the salinity treatments. (author)

  12. The effect of salinity levels on the structure of zooplankton communities

    Directory of Open Access Journals (Sweden)

    Paturej Ewa

    2015-01-01

    Full Text Available The objective of this study was to determine the qualitative and quantitative structure of zooplankton communities in the Vistula Lagoon and to establish whether zooplankton abundance and biodiversity are affected by salinity levels. Samples for biological analyses were collected in the summer (June-September of 2007-2011 at eleven sampling sites. Statistical analysis revealed a significant correlation between salinity levels and the number of species (r= -0.2020, abundance (r= 0.1967 and biomass (r= 0.3139 of zooplankton. No significant correlations were found between salinity and the biodiversity of zooplankton. The results of the study suggest that salinity affects the abundance and structure, but not the diversity of zooplankton communities in the Vistula Lagoon.

  13. Variable Saline Concentrations for Initial Resuscitation Following Polytrauma

    Science.gov (United States)

    2017-02-22

    AFRL-SA-WP-TR-2017-0008 Variable Saline Concentrations for Initial Resuscitation Following Polytrauma Dr. Michael Goodman...Following Polytrauma 5a. CONTRACT NUMBER FA8650-10-2-6140 5b. GRANT NUMBER FA8650-14-2-6B29 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Michael...established. We investigated the utility of standard variable saline concentrations (0.9%, 3%, 23.4%) in a murine polytrauma model of traumatic brain injury

  14. Attenuated nicotine‐like effects of varenicline but not other nicotinic ACh receptor agonists in monkeys receiving nicotine daily

    Science.gov (United States)

    Cunningham, Colin S; Moerke, Megan J; Javors, Martin A; Carroll, F Ivy

    2016-01-01

    Background and Purpose Chronic treatment can differentially impact the effects of pharmacologically related drugs that differ in receptor selectivity and efficacy. Experimental Approach The impact of daily nicotine treatment on the effects of nicotinic ACh receptor (nAChR) agonists was examined in two groups of rhesus monkeys discriminating nicotine (1.78 mg·kg−1 base weight) from saline. One group received additional nicotine treatment post‐session (1.78 mg·kg−1 administered five times daily, each dose 2 h apart; i.e. Daily group), and the second group did not (Intermittent group). Key Results Daily repeated nicotine treatment produced a time‐related increase in saliva cotinine. There was no significant difference in the ED50 values of the nicotine discriminative stimulus between the Daily and Intermittent group. Mecamylamine antagonized the effects of nicotine, whereas dihydro‐β‐erythroidine did not. Midazolam produced 0% nicotine‐lever responding. The nAChR agonists epibatidine, RTI‐36, cytisine and varenicline produced >96% nicotine‐lever responding in the Intermittent group. The respective maximum effects in the Daily group were 100, 72, 59 and 28%, which shows that the ability of varenicline to produce nicotine‐like responding was selectively decreased in the Daily as compared with the Intermittent group. When combined with nicotine, both varenicline and cytisine increased the potency of nicotine to produce discriminative stimulus effects. Conclusion and Implications Nicotine treatment has a greater impact on the sensitivity to the effects of varenicline as compared with some other nAChR agonists. Collectively, these results strongly suggest that varenicline differs from nicotine in its selectivity for multiple nAChR subtypes. PMID:27667659

  15. Assessment of Polyacrylamide Based Co-Polymers Enhanced by Functional Group Modifications with Regards to Salinity and Hardness

    Directory of Open Access Journals (Sweden)

    Saeed Akbari

    2017-11-01

    Full Text Available This research aims to test four new polymers for their stability under high salinity/high hardness conditions for their possible use in polymer flooding to improve oil recovery from hydrocarbon reservoirs. The four sulfonated based polyacrylamide co-polymers were FLOCOMB C7035; SUPERPUSHER SAV55; THERMOASSOCIATIF; and AN132 VHM which are basically sulfonated polyacrylamide copolymers of AM (acrylamide with AMPS (2-Acrylamido-2-Methylpropane Sulfonate. AN132 VHM has a molecular weight of 9–11 million Daltons with 32 mol % degree of sulfonation. SUPERPUSHER SAV55 mainly has about 35 mol % sulfonation degree and a molecular weight of 9–11 million Daltons. FLOCOMB C7035, in addition, has undergone post-hydrolysis step to increase polydispersity and molecular weight above 18 million Daltons but it has a sulfonation degree much lower than 32 mol %. THERMOASSOCIATIF has a molecular weight lower than 12 million Daltons and a medium sulfonation degree of around 32 mol %, and also contains LCST (lower critical solution temperature type block, which is responsible for its thermoassociative characteristics. This paper discusses the rheological behavior of these polymers in aqueous solutions (100–4500 ppm with NaCl (0.1–10 wt % measured at 25 °C. The effect of hardness was investigated by preparing a CaCl2-NaCl solution of same ionic strength as the 5 wt % of NaCl. In summary, it can be concluded that the rheological behavior of the newly modified co-polymers was in general agreement to the existing polymers, except that THERMOASSOCIATIF polymers showed unique behavior, which could possibly make them a better candidate for enhanced oil recovery (EOR application in high salinity conditions. The other three polymers, on the other hand, are better candidates for EOR applications in reservoirs containing high divalent ions. These results are expected to be helpful in selecting and screening the polymers for an EOR application.

  16. Simulating the Response of Estuarine Salinity to Natural and Anthropogenic Controls

    Directory of Open Access Journals (Sweden)

    Vladimir A. Paramygin

    2016-11-01

    Full Text Available The response of salinity in Apalachicola Bay, Florida to changes in water management alternatives and storm and sea level rise is studied using an integrated high-resolution hydrodynamic modeling system based on Curvilinear-grid Hydrodynamics in 3D (CH3D, an oyster population model, and probability analysis. The model uses input from river inflow, ocean and atmospheric forcing and is verified with long-term water level and salinity data, including data from the 2004 hurricane season when four hurricanes impacted the system. Strong freshwater flow from the Apalachicola River and good connectivity of the bay to the ocean allow the estuary to restore normal salinity conditions within a few days after the passage of a hurricane. Various scenarios are analyzed; some based on observed data and others using altered freshwater inflow. For observed flow, simulated salinity agrees well with the observed values. In scenarios that reflect increased water demand (~1% upstream of the Apalachicola River, the model results show slightly (less than 5% increased salinity inside the Bay. A worst-case sea-level rise (~1 m by 2100 could increase the bay salinity by up to 20%. A hypothesis that a Sumatra gauge may not fully represent the flow into Apalachicola Bay was tested and appears to be substantiated.

  17. Ringers lactate vs Normal saline for children with acute diarrhea and severe dehydration- a double blind randomized controlled trial.

    Science.gov (United States)

    Mahajan, Vidushi; Sajan, Shiv Saini; Sharma, Amit; Kaur, Jasbinder

    2012-12-01

    WHO recommends Ringers lactate (RL) and Normal Saline (NS) for rapid intravenous rehydration in childhood diarrhea and severe dehydration. We compared these two fluids for improvement in pH over baseline during rapid intravenous rehydration in children with acute diarrhea. Double-blind randomized controlled trial Pediatric emergency facilities at a tertiary-care referral hospital. Children with acute diarrhea and severe dehydration received either RL (RL-group) or NS (NS-group), 100 mL/kg over three or six hours. Children were reassessed after three or six hours. Rapid rehydration was repeated if severe dehydration persisted. Blood gas was done at baseline and repeated after signs of severe dehydration disappeared. Primary outcome was change in pH from baseline. Secondary outcomes included changes in serum electrolytes, bicarbonate levels, and base-deficit from baseline; mortality, duration of hospital stay, and fluids requirement. Twenty two children, 11 each were randomized to the two study groups. At primary end point (disappearance of signs of severe dehydration), the improvement in pH from baseline was not significant in RL-group [from 7.17 (0.11) to 7.28 (0.09)] as compared to NS-group [7.09 (0.11) to 7.21 (0.09)], P=0.17 (after adjusting for baseline serum Na/ Cl). Among this limited sample size, children in RL group required less fluids [median 310 vs 530 mL/kg, P=0.01] and had shorter median hospital stay [38 vs 51 hours, P=0.03]. There was no difference in improvement in pH over baseline between RL and NS among children with acute diarrhea and severe dehydration.

  18. Practical salinity management for leachate irrigation to poplar trees.

    Science.gov (United States)

    Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F

    2012-01-01

    Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a

  19. Acid-base and hemodynamic status of patients with intraoperative hemorrhage using two solution types: Crystalloid Ringer lactate and 1.3% sodium bicarbonate in half-normal saline solution.

    Science.gov (United States)

    Hashemi, Sayed Jalal; Heidari, Sayed Morteza; Yaraghi, Ahmad; Seirafi, Reza

    2016-01-01

    Intraoperative hemorrhage is one of the problems during surgery and, if it happens in a high volume without an immediate action to control, it can be fatal. Nowadays, various injectable solutions are used. The aim of this study was to compare the acid-base and hemodynamic status of the patient using two solutions, Ringer lactate and 1.3% sodium bicarbonate, in half saline solution. This clinical trial was performed at the Al-Zahra Hospital in 2013 on 66 patients who were randomly selected and put in two studied groups at the onset of hemorrhage. For the first group, crystalloid Ringer lactate solution and for the second group, 1.3% sodium bicarbonate in half-normal saline solution was used. Electrocardiogram, heart rate, O2 saturation non-invasive blood pressure and end-tidal CO2 were monitored. The arterial blood gas, blood electrolytes, glucose and blood urea nitrogen were measured before serum and blood injection. After the infusion of solutions and before blood transfusions, another sample was sent for measurement of blood parameters. Data were analyzed using SPSS software. The mean arterial pressure was significantly higher in the second group than in the first group at some times after the infusion of solutions. pHh levels, base excess, bicarbonate, sodium, strong ion differences and osmolarity were significantly greater and potassium and chloride were significantly lower in the second group than in the first group after the infusion of solutions. 1.3% sodium bicarbonate in half-normal saline solution can lead to a proper correction of hemodynamic instability. By maintaining hemodynamic status, osmolarity and electrolytes as well as better balance of acid-base, 1.3% sodium bicarbonate solution in half-normal saline solution can be more effective than Ringer lactate solution during intraoperative bleeding.

  20. Salinity Remote Sensing and the Study of the Global Water Cycle

    Science.gov (United States)

    Lagerloef, G. S. E.; LeVine, David M.; Chao, Y.; Colomb, F. Raul; Font, J.

    2007-01-01

    The SMOS and AquariusISAC-D satellite missions will begin a new era to map the global sea surface salinity (SSS) field and its variability from space within the next twothree years. They will provide critical data needed to study the interactions between the ocean circulation, global water cycle and climate. Key scientific issues to address are (1) mapping large expanses of the ocean where conventional SSS data do not yet exist, (2) understanding the seasonal and interannual SSS variations and the link to precipitation, evaporation and sea-ice patterns, (3) links between SSS and variations in the oceanic overturning circulation, (4) air-sea coupling processes in the tropics that influence El Nino, and (4) closing the marine freshwater budget. There is a growing body of oceanographic evidence in the form of salinity trends that portend significant changes in the hydrologic cycle. Over the past several decades, highlatitude oceans have become fresher while the subtropical oceans have become saltier. This change is slowly spreading into the subsurface ocean layers and may be affecting the strength of the ocean's therrnohaline overturning circulation. Salinity is directly linked to the ocean dynamics through the density distribution, and provides an important signature of the global water cycle. The distribution and variation of oceanic salinity is therefore attracting increasing scientific attention due to the relationship to the global water cycle and its influence on circulation, mixing, and climate processes. The oceans dominate the water cycle by providing 86% of global surface evaporation (E) and receiving 78% of global precipitation (P). Regional differences in E-P, land runoff, and the melting or freezing of ice affect the salinity of surface water. Direct observations of E-P over the ocean have large uncertainty, with discrepancies between the various state-of-the-art precipitation analyses of a factor of two or more in many regions. Quantifying the climatic

  1. A prospective randomized trial of two solutions for intrapartum amnioinfusion: effects on fetal electrolytes, osmolality, and acid-base status.

    Science.gov (United States)

    Pressman, E K; Blakemore, K J

    1996-10-01

    Our purpose was to compare the effects of intrapartum amnioinfusion with normal saline solution versus lactated Ringer's solution plus physiologic glucose on neonatal electrolytes and acid-base balance. Patients undergoing amnioinfusion for obstetric indications were randomized to receive normal saline solution or lactated Ringer's solution plus physiologic glucose at standardized amnioinfusion rates. Data were collected prospectively on maternal demographics, course of labor, and maternal and neonatal outcome. Arterial cord blood was obtained for analysis of electrolytes, glucose, osmolality, lactic acid, and blood gases. Control subjects with normal fetal heart rate patterns, and clear amniotic fluid not receiving amnioinfusion were studied concurrently. Data were collected on 59 patients (21 normal saline solution, 18 lactated Ringer's solution plus physiologic glucose, and 20 controls). Maternal demographics, course of labor, and neonatal outcome were similar in all three groups. Cesarean sections were performed more often in the amnioinfusion groups (33.3% for normal saline solution, 38.9% for lactated Ringer's solution plus physiologic glucose) than in the control group (5.0%), p amnioinfusion with either solution. Intrapartum amnioinfusion with normal saline solution or lactated Ringer's solution plus physiologic glucose has no effect on neonatal electrolytes or acid-base balance.

  2. Site condition, structure, and growth of baldcypress along tidal/non-tidal salinity gradients

    Science.gov (United States)

    Krauss, K.W.; Duberstein, J.A.; Doyle, T.W.; Conner, W.H.; Day, Richard H.; Inabinette, L.W.; Whitbeck, J.L.

    2009-01-01

    This report documents changes in forest structure and growth potential of dominant trees in salt-impacted tidal and non-tidal baldcypress wetlands of the southeastern United States. We inventoried basal area and tree height, and monitored incremental growth (in basal area) of codominant baldcypress (Taxodium distichum) trees monthly, for over four years, to examine the inter-relationships among growth, site fertility, and soil physico-chemical characteristics. We found that salinity, soil total nitrogen (TN), flood duration, and flood frequency affected forest structure and growth the greatest. While mean annual site salinity ranged from 0.1 to 3.4 ppt, sites with salinity concentrations of 1.3 ppt or greater supported a basal area of less than 40 m2/ha. Where salinity was < 0.7 ppt, basal area was as high as 87 m2/ha. Stand height was also negatively affected by higher salinity. However, salinity related only to soil TN concentrations or to the relative balance between soil TN and total phosphorus (TP), which reached a maximum concentration between 1.2 and 2.0 ppt salinity. As estuarine influence shifts inland with sea-level rise, forest growth may become more strongly linked to salinity, not only due to salt effects but also as a consequence of site nitrogen imbalance.

  3. Variations in peak nasal inspiratory flow among healthy students after using saline solutions.

    Science.gov (United States)

    Olbrich Neto, Jaime; Olbrich, Sandra Regina Leite Rosa; Mori, Natália Leite Rosa; Oliveira, Ana Elisa de; Corrente, José Eduardo

    2016-01-01

    Nasal hygiene with saline solutions has been shown to relieve congestion, reduce the thickening of the mucus and keep nasal cavity clean and moist. Evaluating whether saline solutions improve nasal inspiratory flow among healthy children. Students between 8 and 11 years of age underwent 6 procedures with saline solutions at different concentrations. The peak nasal inspiratory flow was measured before and 30 min after each procedure. Statistical analysis was performed by means of t test, analysis of variance, and Tukey's test, considering p<0.05. We evaluated 124 children at all stages. There were differences on the way a same concentration was used. There was no difference between 0.9% saline solution and 3% saline solution by using a syringe. The 3% saline solution had higher averages of peak nasal inspiratory flow, but it was not significantly higher than the 0.9% saline solution. It is important to offer various options to patients. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  4. Effects of salinity on the uptake of radionuclides by Fucus vesiculosus L

    International Nuclear Information System (INIS)

    Carlson, L.; Erlandsson, B.

    1991-01-01

    Laboratory experiments were performed to study the effects of salinity on the uptake of radionuclides in Fucus vesiculosus L.: one experiment with algae and seawater from three localities off the Swedish west and south coasts and one experiment with algae taken from one locality and then exposed to seawaters of different salinities. Both experiments showed the greatest difference for uptake of 137 Cs. For algae and seawater from the same localities, the authors found approximately 2.5 and 4 times higher activity concentrations at 8 per mille relative to 15 and 24 per mille, respectively. For 54 Mn and 65 Zn, no differences in uptake were observed between 13 and 24 per mill. In the algae from a single locality exposed to seawaters of different salinities, uptake was similar for the first few days, beyond which the algae in the medium salinity water showed the highest uptake for 54 Mn, 65 Zn and 60 Co. There are thus differences in radionuclide accumulation in F. vesiculosus from areas of different salinity regimes and in algae grown at different salinities. (author)

  5. Using growth-based methods to determine direct effects of salinity on soil microbial communities

    Science.gov (United States)

    Rath, Kristin; Rousk, Johannes

    2015-04-01

    Soil salinization is a widespread agricultural problem and increasing salt concentrations in soils have been found to be correlated with decreased microbial activity. A central challenge in microbial ecology is to link environmental factors, such as salinity, to responses in the soil microbial community. That is, it can be difficult to distinguish direct from indirect effects. In order to determine direct salinity effects on the community we employed the ecotoxicological concept of Pollution-Induced Community Tolerance (PICT). This concept is built on the assumption that if salinity had an ecologically relevant effect on the community, it should have selected for more tolerant species and strains, resulting in an overall higher community tolerance to salt in communities from saline soils. Growth-based measures, such as the 3H-leucine incorporation into bacterial protein , provide sensitive tools to estimate community tolerance. They can also provide high temporal resolution in tracking changes in tolerance over time. In our study we used growth-based methods to investigate: i) at what levels of salt exposure and over which time scales salt tolerance can be induced in a non-saline soil, and (ii) if communities from high salinity sites have higher tolerance to salt exposure along natural salinity gradients. In the first part of the study, we exposed a non-saline soil to a range of salinities and monitored the development of community tolerance over time. We found that community tolerance to intermediate salinities up to around 30 mg NaCl per g soil can be induced at relatively short time scales of a few days, providing evidence that microbial communities can adapt rapidly to changes in environmental conditions. In the second part of the study we used soil samples originating from natural salinity gradients encompassing a wide range of salinity levels, with electrical conductivities ranging from 0.1 dS/m to >10 dS/m. We assessed community tolerance to salt by

  6. Electronic warfare receivers and receiving systems

    CERN Document Server

    Poisel, Richard A

    2014-01-01

    Receivers systems are considered the core of electronic warfare (EW) intercept systems. Without them, the fundamental purpose of such systems is null and void. This book considers the major elements that make up receiver systems and the receivers that go in them.This resource provides system design engineers with techniques for design and development of EW receivers for modern modulations (spread spectrum) in addition to receivers for older, common modulation formats. Each major module in these receivers is considered in detail. Design information is included as well as performance tradeoffs o

  7. Curcumin administration suppress acetylcholinesterase gene expression in cadmium treated rats.

    Science.gov (United States)

    Akinyemi, Ayodele Jacob; Oboh, Ganiyu; Fadaka, Adewale Oluwaseun; Olatunji, Babawale Peter; Akomolafe, Seun

    2017-09-01

    Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes have been reported to exert anticholinesterase potential with limited information on how they regulate acetylcholinesterase (AChE) gene expression. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) activity and their mRNA gene expression level in cadmium (Cd)-treated rats. Furthermore, in vitro effect of different concentrations of curcumin (1-5μg/mL) on rat cerebral cortex AChE activity was assessed. Animals were divided into six groups (n=6): group 1 serve as control (without Cd) and receive saline/vehicle, group 2 receive saline plus curcumin at 25mg/kg, group 3 receive saline plus curcumin 50mg/kg, group 4 receive Cd plus vehicle, group 5 receive Cd plus curcumin at 25mg/kg and group 6 receive Cd plus curcumin at 50mg/kg. Rats received Cd (2.5mg/kg) and curcumin (25 and 50mg/kg, respectively) by oral gavage for 7days. Acetylcholinesterase activity was measured by Ellman's method and AChE expression was carried out by a quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) assay. We observed that acute administration of Cd increased acetylcholinesterase activity and in addition caused a significant (Pcurcumin inhibited AChE activity and alters AChE mRNA levels when compared to Cd-treated group. In addition, curcumin inhibits rat cerebral cortex AChE activity in vitro. In conclusion, curcumin exhibit anti-acetylcholinesterase activity and suppressed AChE mRNA gene expression level in Cd exposed rats, thus providing some biochemical and molecular evidence on the therapeutic effect of this turmeric-derived compound in treating neurological disorders including Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Simulation of simultaneously obtaining ocean temperature and salinity using dual-wavelength Brillouin lidar

    International Nuclear Information System (INIS)

    Yu, Yin; Ma, Yong; Li, Hao; Huang, Jun; Fang, Yu; Liang, Kun; Zhou, Bo

    2014-01-01

    A method for simultaneously obtaining the ocean temperature and salinity based on dual-wavelength Brillouin lidar is proposed in this letter. On the basis of the relationships between the temperature and salinity and the Brillouin shifts, a retrieval model for retrieving the temperature and salinity is established. By using the retrieval model, the ocean temperature and salinity can be simultaneously obtained through the Brillouin shifts. Simulation based on dual-wavelength Brillouin lidar is also carried out for verification of the accuracy of the retrieval model. Results show that the errors of the retrieval model for temperature and salinity are ±0.27 °C and ±0.33‰. (letter)

  9. Effectiveness of inorganic and organic mulching for soil salinity and sodicity control in a grapevine orchard drip-irrigated with moderately saline waters

    Directory of Open Access Journals (Sweden)

    Ramón Aragüés

    2014-05-01

    Full Text Available Soil mulching is a sensible strategy to reduce evaporation, accelerate crop development, reduce erosion and assist in weed control, but its efficiency for soil salinity control is not as well documented. The benefits of inorganic (plastic and organic (grapevine pruning residues mulching for soil salinity and sodicity control were quantified in a grapevine orchard (cultivars ‘Autumn’ Royal and ‘Crimson’ drip-irrigated with moderately saline waters. Soil samples were taken at the beginning and end of the 2008 and 2009 irrigation seasons in six vines of each cultivar and mulching treatment. Soil saturation extract electrical conductivity (ECe, chloride (Cle and sodium adsorption ratio (SARe values increased in all treatments of both grapevines along the irrigation seasons, but the increases were much lower in the mulched than in the bare soils due to reduced evaporation losses and concomitant decreases in salt evapo-concentration. The absolute salinity and sodicity daily increases in ‘Autumn’ and ‘Crimson’ 2008 and in ‘Crimson’ 2009 were on the average 44% lower in the plastic and 76% lower in the organic mulched soils than in the bare soil. The greater efficiency of the organic than the plastic mulch in ‘Crimson’ 2009 was attributed to the leaching of salts by a precipitation of 104 mm that infiltrated the organic mulch but was intercepted by the plastic mulch. Although further work is needed to substantiate these results, the conclusion is that the plastic mulch and, particularly, the organic mulch were more efficient than the bare soil for soil salinity and sodicity control.

  10. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Marco Antonio Russo

    2009-12-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  11. Salinity-Dependent Adhesion Response Properties of Aluminosilicate (K-Feldspar) Surfaces

    DEFF Research Database (Denmark)

    Lorenz, Bärbel; Ceccato, Marcel; Andersson, Martin Peter

    2017-01-01

    is composed predominantly of quartz with some clay, but feldspar grains are often also present. While the wettability of quartz and clay surfaces has been thoroughly investigated, little is known about the adhesion properties of feldspar. We explored the interaction of model oil compounds, molecules...... in well sorted sandstone. Adhesion forces, measured with the chemical force mapping (CFM) mode of atomic force microscopy (AFM), showed a low salinity effect on the fresh feldspar surfaces. Adhesion force, measured with -COO(H)-functionalized tips, was 60% lower in artificial low salinity seawater (LS......, ∼1500 ppm total dissolved solids) than in the high salinity solution, artificial seawater (HS, ASW, ∼35 600 ppm). Adhesion with the -CH3 tips was as much as 30% lower in LS than in HS. Density functional theory calculations indicated that the low salinity response resulted from expansion of the electric...

  12. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Vito Sardo

    2011-02-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  13. Gulf-Wide Information System, Environmental Sensitivity Index Salinity, Geographic NAD83, LDWF (2001) [esi_salinity_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains Environmental Sensitivity Index (ESI) salinity data of coastal Louisiana. The ESI is a classification and ranking system, which characterizes...

  14. Genetically modified plants for salinity stress tolerance (abstract)

    International Nuclear Information System (INIS)

    Sopory, S.K.; Singia-Pareek, S.I.; Kumar, S.; Rajgopal, D.; Aggarwal, P.; Kumar, D.; Reddy, K.M.

    2005-01-01

    Several recent reports have indicated that the area under salinity is on the increase and currently very few genotypes of important crop plants are available for cultivation under these conditions. In this regard, identification of novel stress responsive genes and transgenic approach offers an important strategy to develop salt tolerant plants. Using an efficient PCR-based cDNA subtraction method a large number of genes upregulated under salinity and dehydration stress have been identified also in rice and Pennisetum. Functional analysis of some of these genes is being done using transgenic approach. Earlier, we reported on the role of one of the stress regulated genes, glyoxalse I in conferring salinity tolerance. We now show that by manipulating the expression of both the genes of the glyoxalse pathway, glyoxalse I and II together, the ability of the double transgenic plants to tolerate salinity stress is greatly enhanced as compared to the single transgenic plants harbouring either the glyoxalse I or glyoxalse II. The cDNA for glyoxalse II was cloned from rice and mobilized into pCAMBIA vector having hptII gene as the selection marker. The seedlings of the T1 generation transgenic plants survived better under high salinity compared to the wild type plants; the double transgenics had higher limits of tolerance as compared to the lines transformed with single gene. A similar trend was seen even when plants were grown in pots under glass house conditions and raised to maturity under the continued presence of NaCl. In this, the transgenic plants were able to grow, flower and set seeds. The overexpression of glyoxalse pathway was also found to confer stress tolerance in rice. We have also isolated a gene encoding vacuolar sodium/proton antiporter from Pennisetum and over expressed in Brassica juncea and rice. The transgenic plants were able to tolerate salinity stress. Our work along with many others' indicates the potential of transgenic technology in developing

  15. Enhancement of the thrombolytic efficacy of prourokinase by lys-plasminogen in a dog model of arterial thrombosis.

    Science.gov (United States)

    Badylak, S F; Voytik, S L; Henkin, J; Burke, S E; Sasahara, A A; Simmons, A

    1991-05-01

    Current findings suggest that the efficacy of thrombolytic therapy may be limited by the availability of active forms of plasminogen at the thrombus site. The purpose of this study was to determine if the systemic administration of 0.5 mg kg-1 glu-plasminogen (glu-plg) or 0.5 mg kg-1 lys-plasminogen (lys-plg) could safely increase the efficacy of a single intravenous bolus injection of 50,000 U kg-1 prourokinase (proUK) in a dog model of arterial thrombosis. Thrombolysis was measured by monitoring the continuous decrement of 125I-gamma emissions from a radiolabeled thrombus. Reflow was evaluated by direct visual examination. Forty dogs (mean wt 10.3 +/- 2 kg) were randomly sorted into 4 groups of 10 each. The dogs in each group were given either saline plus saline, saline plus proUK, glu-plg plus proUK, or lys-plg plus proUK 60 minutes after formation of an occlusive arterial thrombus. Ninety minutes after drug administration the dogs receiving saline plus proUK, glu-plg plus proUK, and the lys-plg plus proUK showed greater thrombolysis (41%, 43%, and 66%, respectively) than the control (saline plus saline) group (15%, P less than 0.01). The lys-plg plus proUK treatment caused greater lysis than the saline plus proUK or the glu-plg plus proUK treatment (P less than 0.05). All of the dogs (10/10) receiving lys-plg plus proUK had patent vessels at the end of the 90 minute monitoring period, whereas only 4/10 and 5/10 vessels were patent in the saline plus proUK and glu-plg plus proUK groups, respectively. None of the dogs in the saline plus saline group had patent vessels. No significant changes were observed in the various coagulation parameters tested for any of the 4 treatment groups. The results show that lys-plg can safely increase the thrombolytic efficacy of proUK.

  16. The effects of salinity in the soil water balance: A Budyko's approach

    Science.gov (United States)

    Perri, S.; Viola, F.; Molini, A.

    2017-12-01

    Soil degradation and water scarcity pose important constraints on productivity and development of arid and semi-arid countries. Among the main causes of loss of soil fertility, aridification and soil salinization are deeply connected threats enhanced by climate change. Assessing water availability is fundamental for a large number of applications especially in arid regions. An approach often adopted to estimate the long-term rainfall partitioning into evapotranspiration and runoff is the Budyko's curve. However, the classical Budyko framework might not be able to properly reproduce the water balance in salt affected basins, especially under elevated soil salinization conditions. Salinity is a limiting factor for plant transpiration (as well as growth) affecting both short and long term soil moisture dynamics and ultimately the hydrologic balance. Soluble salts cause a reduction of soil water potential similar to the one arising from droughts, although plant adaptations to soil salinity show extremely different traits and can vary from species to species. In a similar context, the salt-tolerance plants are expected to control the amount of soil moisture lost to transpiration in saline soils, also because salinity reduces evaporation. We propose a simple framework to include the effects of salinization on the surface energy and water balance within a simple Budyko approach. By introducing the effects of salinity in the stochastic water balance we are able to include the influence of vegetation type (i.e. in terms of salt-tolerance) on evapotranspiration-runoff partitioning under different climatic conditions. The water balance components are thus compared to data obtained from arid salt-affected regions.

  17. Intravenous but not perineural clonidine prolongs postoperative analgesia after psoas compartment block with 0.5% levobupivacaine for hip fracture surgery.

    LENUS (Irish Health Repository)

    Mannion, Stephen

    2012-02-03

    We evaluated the systemic and local effects of clonidine as an analgesic adjunct to psoas compartment block (PCB) with levobupivacaine. In a randomized, prospective, double-blind trial, 36 patients requiring hip fracture surgery received PCB and general anesthesia. Patients were randomized into three groups. Each patient received PCB with 0.4 mL\\/kg of levobupivacaine 0.5%. The control group (group L) received IV saline, the systemic clonidine group (group IC) received IV clonidine 1 mug\\/kg, and the peripheral clonidine group (group C) received IV saline and PCB with clonidine 1 microg\\/kg. The interval from time of completion of block injection to first supplementary analgesic administration was longer in group IC compared with group L (mean +\\/- sd, 13.4 +\\/- 6.1 versus 7.3 +\\/- 3.6 h; P = 0.03). There was no difference between group C and group L (10.3 +\\/- 5.9 versus 7.3 +\\/- 3.6 h; P > 0.05). The groups were similar in terms of 24 h cumulative morphine and acetaminophen consumption. There were no significant differences among groups regarding postoperative adverse effects (bradycardia, hypotension, sedation, and nausea). We conclude that IV but not perineural clonidine (1 microg\\/kg) prolongs analgesia after PCB without increasing the incidence of adverse effects.

  18. Irrigation and drainage in agriculture: a salinity and environmental perspective

    NARCIS (Netherlands)

    Zee, van der S.E.A.T.M.; Stofberg, S.F.; Yang, X.; Liu, Y.; Islam, M.N.; Hu, Yin Fei

    2017-01-01

    Whereas irrigation and drainage are intended to address the shortage and surplus of soil water, respectively, an important aspect to address is also the management of salinity. Plants have a limited tolerance for soil water salinity, and despite significant gaps in our practical knowledge, an

  19. Formation and spreading of Arabian Sea high-salinity water mass

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Prasad, T.G.

    The formation and seasonal spreading of the Arabian Sea High-Salinity Water (ASHSW) mass were studied based on the monthly mean climatology of temperature and salinity in the Arabian Sea, north of the equator and west of 80 degrees E, on a 2 degrees...

  20. Effects of salinity on growth and metabolism in blue tilapia ...

    African Journals Online (AJOL)

    Blood samples were taken to analyse plasma sodium, chloride, potassium, total protein and triglycerides. Liver and muscle samples were collected for HSI and moisture values. Plasma sodium chloride increased in parallel with salinity rise. Total protein and triglycerides significantly reduced as salinity increased. Glucose ...

  1. Case study on combined CO₂ sequestration and low-salinity water production potential in a shallow saline aquifer in Qatar.

    Science.gov (United States)

    Ahmed, Tausif Khizar; Nasrabadi, Hadi

    2012-10-30

    CO₂ is one of the byproducts of natural gas production in Qatar. The high rate of natural gas production from Qatar's North Field (world's largest non-associated gas field) has led to the production of significant amounts of CO₂. The release of CO₂ into the atmosphere may be harmful from the perspective of global warming. In this work, we study the CO₂ sequestration potential in Qatar's Aruma aquifer. The Aruma aquifer is a saline aquifer in the southwest of Qatar. It occupies an area of approximately 1985 km₂ on land (16% of Qatar's total area). We have developed a compositional model for CO₂ sequestration in the Aruma aquifer on the basis of available log and flow test data. We suggest water production at some distance from the CO₂ injection wells as a possible way to control the pore pressure. This method increases the potential for safe sequestration of CO₂ in the aquifer without losing integrity of the caprock and without any CO₂ leakage. The water produced from this aquifer is considerably less saline than seawater and could be a good water source for the desalination process, which is currently the main source of water in Qatar. The outcome of the desalination process is water with higher salinity than the seawater that is currently discharged into the sea. This discharge can have negative long-term environmental effects. The water produced from the Aruma aquifer is considerably less saline than seawater and can be a partial solution to this problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Simulation of salinity effects on past, present, and future soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Smith, Pete; Marschner, Petra; Gottschalk, Pia; Baldock, Jeff; Verma, Vipan; Setia, Deepika; Smith, Jo

    2012-02-07

    Soil organic carbon (SOC) models are used to predict changes in SOC stocks and carbon dioxide (CO(2)) emissions from soils, and have been successfully validated for non-saline soils. However, SOC models have not been developed to simulate SOC turnover in saline soils. Due to the large extent of salt-affected areas in the world, it is important to correctly predict SOC dynamics in salt-affected soils. To close this knowledge gap, we modified the Rothamsted Carbon Model (RothC) to simulate SOC turnover in salt-affected soils, using data from non-salt-affected and salt-affected soils in two agricultural regions in India (120 soils) and in Australia (160 soils). Recently we developed a decomposition rate modifier based on an incubation study of a subset of these soils. In the present study, we introduce a new method to estimate the past losses of SOC due to salinity and show how salinity affects future SOC stocks on a regional scale. Because salinity decreases decomposition rates, simulations using the decomposition rate modifier for salinity suggest an accumulation of SOC. However, if the plant inputs are also adjusted to reflect reduced plant growth under saline conditions, the simulations show a significant loss of soil carbon in the past due to salinization, with a higher average loss of SOC in Australian soils (55 t C ha(-1)) than in Indian soils (31 t C ha(-1)). There was a significant negative correlation (p < 0.05) between SOC loss and osmotic potential. Simulations of future SOC stocks with the decomposition rate modifier and the plant input modifier indicate a greater decrease in SOC in saline than in non-saline soils under future climate. The simulations of past losses of SOC due to salinity were repeated using either measured charcoal-C or the inert organic matter predicted by the Falloon et al. equation to determine how much deviation from the Falloon et al. equation affects the amount of plant inputs generated by the model for the soils used in this study

  3. Study of groundwater salinization in Chaj Doab using environmental isotopes

    International Nuclear Information System (INIS)

    Hussain, S.D.; Sajjid, M.I.; Akram, W.; Ahmad, M.; Rafiq, M.

    1991-09-01

    Environmental isotopes and chemical composition of water have been used to study the origin of groundwater salinity in Chaj Doab. Three important possible processes of salinization i.e. enrichment of salt content of water by evaopration, mixing with connate marine water and dissolution of salts from soil sediments have been investigated. No evidence for mixing with connate maine water could be found. The process of evaporation too does not seem to apply any significant role in salinization of groundwater. The dissolution of salts from soil sediments appears as dominant mechanism for increasing the salt content of water in this area. (author)

  4. Remote Sensing of Salinity: The Dielectric Constant of Sea Water

    Science.gov (United States)

    LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.

    2011-01-01

    Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.

  5. Effect of salinity changes on the bacterial diversity, photosynthesis and oxygen consumption of cyanobacterial mats from an intertidal flat of the Arabian Gulf.

    Science.gov (United States)

    Abed, Raeid M M; Kohls, Katharina; de Beer, Dirk

    2007-06-01

    The effects of salinity fluctuation on bacterial diversity, rates of gross photosynthesis (GP) and oxygen consumption in the light (OCL) and in the dark (OCD) were investigated in three submerged cyanobacterial mats from a transect on an intertidal flat. The transect ran 1 km inland from the low water mark along an increasingly extreme habitat with respect to salinity. The response of GP, OCL and OCD in each sample to various salinities (65 per thousand, 100 per thousand, 150 per thousand and 200 per thousand) were compared. The obtained sequences and the number of unique operational taxonomic units showed clear differences in the mats' bacterial composition. While cyanobacteria decreased from the lower to the upper tidal mat, other bacterial groups such as Chloroflexus and Cytophaga/Flavobacteria/Bacteriodetes showed an opposite pattern with the highest dominance in the middle and upper tidal mats respectively. Gross photosynthesis and OCL at the ambient salinities of the mats decreased from the lower to the upper tidal zone. All mats, regardless of their tidal location, exhibited a decrease in areal GP, OCL and OCD rates at salinities > 100 per thousand. The extent of inhibition of these processes at higher salinities suggests an increase in salt adaptation of the mats microorganisms with distance from the low water line. We conclude that the resilience of microbial mats towards different salinity regimes on intertidal flats is accompanied by adjustment of the diversity and function of their microbial communities.

  6. Effects of deficit drip-irrigation scheduling regimes with saline water on pepper yield, water productivity and soil salinity under arid conditions of Tunisia

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2012-12-01

    Full Text Available A two-year study was carried out in order to assess the effects of different irrigation scheduling regimes with saline water on soil salinity, yield and water productivity of pepper under actual commercial-farming conditions in the arid region of Tunisia. Pepper was grown on a sandy soil and drip-irrigated with water having an ECi of 3.6 dS/m. Irrigation treatments consisted in water replacements of accumulated ETc at levels of 100% (FI, full irrigation, 80% (DI-80, 60% (DI-60, when the readily available water in the control treatment (FI is depleted, deficit irrigation during ripening stage (FI-MDI60 and farmer method corresponding to irrigation practices implemented by the local farmers (FM. Results on pepper yield and soil salinity are globally consistent between the two-year experiments and shows significant difference between irrigation regimes. Higher soil salinity was maintained over the two seasons, 2008 and 2009, with DI-60 and FM treatments than FI. FI-MDI60 and DI-80 treatments resulted also in low ECe values. Highest yields for both years were obtained under FI (22.3 and 24.4 t/ha although we didn’t find significant differences with the regulated deficit irrigation treatment (FI-DI60. However, the DI-80 and DI-60 treatments caused significant reductions in pepper yields through a reduction in fruits number/m² and average fruit weight in comparison with FI treatment. The FM increased soil salinity and caused significant reductions in yield with 14 to 43%, 12 to 39% more irrigation water use than FI, FI-MDI60 and DI-80 treatments, respectively, in 2008 and 2009. Yields for all irrigation treatments were higher in the second year compared to the first year. Water productivity (WP values reflected this difference and varied between 2.31 and 5.49 kg/m3. The WP was found to vary significantly among treatments, where the highest and the lowest values were observed for DI-60 treatment and FM, respectively. FI treatment provides

  7. Growth and Physiological Responses of Phaseolus Species to Salinity Stress

    Directory of Open Access Journals (Sweden)

    J. S. Bayuelo-Jiménez

    2012-01-01

    Full Text Available This paper reports the changes on growth, photosynthesis, water relations, soluble carbohydrate, and ion accumulation, for two salt-tolerant and two salt-sensitive Phaseolus species grown under increasing salinity (0, 60 and 90 mM NaCl. After 20 days exposure to salt, biomass was reduced in all species to a similar extent (about 56%, with the effect of salinity on relative growth rate (RGR confined largely to the first week. RGR of salt-tolerant species was reduced by salinity due to leaf area ratio (LAR reduction rather than a decline in photosynthetic capacity, whereas unit leaf rate and LAR were the key factors in determining RGR on salt-sensitive species. Photosynthetic rate and stomatal conductance decreased gradually with salinity, showing significant reductions only in salt-sensitive species at the highest salt level. There was little difference between species in the effect of salinity on water relations, as indicated by their positive turgor. Osmotic adjustment occurred in all species and depended on higher K+, Na+, and Cl− accumulation. Despite some changes in soluble carbohydrate accumulation induced by salt stress, no consistent contributions in osmotic adjustment could be found in this study. Therefore, we suggest that tolerance to salt stress is largely unrelated to carbohydrate accumulation in Phaseolus species.

  8. Evaluation of Sugar Beet (Beta vulgaris L. Genotypes for Their Trait Associations under Saline Conditions

    Directory of Open Access Journals (Sweden)

    B Bashiri

    2015-08-01

    Full Text Available To evaluate sugar-beet genotypes for their trait associations, two separate RCBD experiments with three replications were conducted both under non-saline (normal and saline conditions at the Agricultural Research of Miandoab. Analysis of variance of the data collected showed that there were significant differences among genotypes for all traits studied under non-saline condition. But, differences of genotypes under saline condition were significant only for root yield, root potassium content, sugar extraction coefficient, impure and pure (white sugar yields. Salinity stress, in this study, reduced root potassium content, root yield, sugar extraction coefficient, impure and pure (white sugar yields. Mean comparisons of genotypes indicated that root yield of all genotypes, under non-saline condition, were higher than those of under saline one. As whole, genotypes number 1 and 2 produced higher root yields, impure and pure sugar yields respectively, under both saline and non-saline conditions. Based on the results obtained it was revealed that regression coefficients for the traits under study were significant. Step-wise regression and path coefficient analyses also indicated that traits like root yield, pure sugar and root nitrogen contents highly affected white sugar yield under non-saline conditions.

  9. A Geology-Based Estimate of Connate Water Salinity Distribution

    Science.gov (United States)

    2014-09-01

    poses serious environmental concerns if connate water is mobilized into shallow aquifers or surface water systems. Estimating the distribution of...groundwater flow and salinity transport near the Herbert Hoover Dike (HHD) surrounding Lake Okeechobee in Florida . The simulations were conducted using the...on the geologic configuration at equilibrium, and the horizontal salinity distribution is strongly linked to aquifer connectivity because

  10. Episodic Salinization of Urban Rivers: Potential Impacts on Carbon, Cation, and Nutrient Fluxes

    Science.gov (United States)

    Haq, S.; Kaushal, S.

    2017-12-01

    Human dominated watersheds are subjected to an array of salt inputs (e.g. road salts), and in urban areas, infrastructure and impervious surfaces quickly drain applied road salts into the river channel. As a result, many streams experience episodic salinization over the course of hours to days following a snow event (e.g. road salt pulse), and long-term salinization over the course of seasons to decades. Salinization of streams can release contaminants (e.g. heavy metals), reduce biodiversity, and degrade drinking water quality. We investigated the water quality effects of episodic salinization in urban streams. Sediment and streamwater were incubated from twelve sites in the Baltimore-Washington Metropolitan Area under a range of sodium chloride treatments in a lab environment to mimic a vertical stream column with a sediment-water interface undergoing episodic salinization, and to characterize relationships between experimental salinization and nutrient/cation fluxes. Eight sites (Baltimore) exhibit a land use gradient and are routinely monitored within the Baltimore Ecosystem Study LTER project, and four sites (Washington DC) are suburban and offer a contrasting lithology and physiographic province. Our research suggests that salinization can mobilize total dissolved nitrogen, soluble reactive phosphorous, and base cations; potentially due to coupled biotic-abiotic processes, such as ion exchange, rapid nitrification, pH changes, and chloride-organic matter dispersal. The impact of salinization on dissolved inorganic and organic carbon varied between sites, potentially due to sediment composition, organic matter content, and ambient water quality. We contrasted the experimental results with measurements of salinization (specific conductance) and nutrients (nitrate) from real-time sensors operated by the US Geological Survey that encompass the same watersheds as our experimental sites. Sensor data was analyzed to provide insight on the timescales of salinity

  11. Seagrass proliferation precedes mortality during hypo-salinity events: a stress-induced morphometric response.

    Directory of Open Access Journals (Sweden)

    Catherine J Collier

    Full Text Available Halophytes, such as seagrasses, predominantly form habitats in coastal and estuarine areas. These habitats can be seasonally exposed to hypo-salinity events during watershed runoff exposing them to dramatic salinity shifts and osmotic shock. The manifestation of this osmotic shock on seagrass morphology and phenology was tested in three Indo-Pacific seagrass species, Halophila ovalis, Halodule uninervis and Zostera muelleri, to hypo-salinity ranging from 3 to 36 PSU at 3 PSU increments for 10 weeks. All three species had broad salinity tolerance but demonstrated a moderate hypo-salinity stress response--analogous to a stress induced morphometric response (SIMR. Shoot proliferation occurred at salinities <30 PSU, with the largest increases, up to 400% increase in shoot density, occurring at the sub-lethal salinities <15 PSU, with the specific salinity associated with peak shoot density being variable among species. Resources were not diverted away from leaf growth or shoot development to support the new shoot production. However, at sub-lethal salinities where shoots proliferated, flowering was severely reduced for H. ovalis, the only species to flower during this experiment, demonstrating a diversion of resources away from sexual reproduction to support the investment in new shoots. This SIMR response preceded mortality, which occurred at 3 PSU for H. ovalis and 6 PSU for H. uninervis, while complete mortality was not reached for Z. muelleri. This is the first study to identify a SIMR in seagrasses, being detectable due to the fine resolution of salinity treatments tested. The detection of SIMR demonstrates the need for caution in interpreting in-situ changes in shoot density as shoot proliferation could be interpreted as a healthy or positive plant response to environmental conditions, when in fact it could signal pre-mortality stress.

  12. Effects of temperature and salinity on the development of the amphipod crustacean Eogammarus sinensis

    Science.gov (United States)

    Xue, Suyan; Fang, Jianguang; Zhang, Jihong; Jiang, Zengjie; Mao, Yuze; Zhao, Fazhen

    2013-09-01

    The amphipod crustacean Eogammarus sinensis has useful features that make it suitable for use in the aquaculture of fish and large decapod crustaceans. In this study, we investigated the effects of temperature and salinity on the development, fecundity, survival, and growth rate of E. sinensis. The results show that temperature significantly affected E. sinensis development, but salinity. As temperature increased, the duration of E. sinensis embryonic development decreased. Fecundity was affected significantly by temperature and the combination of temperature and salinity, but by salinity alone. In addition, high temperatures accelerated E. sinensis juvenile growth rates, whereas high salinity reduced it. Therefore, our data suggest that E. sinensis tolerates a wide range of salinities and that temperature has more significant effects than salinity on the embryonic development, fecundity, and growth of E. sinensis. Our results shall be useful for mass production of this species for use in aquaculture.

  13. Effects of imidacloprid on soil microbial communities in different saline soils.

    Science.gov (United States)

    Zhang, Qingming; Xue, Changhui; Wang, Caixia

    2015-12-01

    The effects of imidacloprid in the soil environment are a worldwide concern. However, the impact of imidacloprid on soil microorganisms under salt stress is almost unknown. Therefore, an indoor incubation test was performed, and the denaturing gradient gel electrophoresis (DGGE) approach was used to determine the response of different saline soil bacterial and fungal community structures to the presence of imidacloprid (0.4, 2, 10 mg kg(-1)). The results showed that the soil bacterial diversity slightly declined with increasing imidacloprid concentration in soils with low salinity. In moderately saline soils, a new band in the DGGE profile suggested that imidacloprid could improve the soil bacterial diversity to some degree. An analysis of variance indicated that the measured soil bacterial diversity parameters were significantly affected by dose and incubation time. Compared with the control, the soil fungal community structure showed no obvious changes in low and moderately saline soils treated with imidacloprid. The results of these observations provide a basic understanding of the potential ecological effects of imidacloprid on different microorganisms in saline soils.

  14. Responses to ozone pollution of alfalfa exposed to increasing salinity levels

    Energy Technology Data Exchange (ETDEWEB)

    Maggio, Albino; Chiaranda, Fabrizio Quaglietta; Cefariello, Roberto [DIAAT, Naples University Federico II, via Universita 100, 80055 Portici (Italy); Fagnano, Massimo, E-mail: fagnano@unina.i [DIAAT, Naples University Federico II, via Universita 100, 80055 Portici (Italy)

    2009-05-15

    Stomatal closure and biosynthesis of antioxidant molecules are two fundamental components of the physiological machinery that lead to stress adaptation during plant's exposure to salinity. Since high stomatal resistance may also contribute in counteracting O{sub 3} damages, we hypothesized that soil salinization may increase O{sub 3} tolerance of crops. An experiment was performed with alfalfa grown in filtered (AOT40 = 0 in both years) and non-filtered (AOT40 = 9.7 in 2005 and 6.9 ppm h in 2006) open-top chambers. Alfalfa yield was reduced by O{sub 3} (-33%) only in plants irrigated with salt-free water, while the increasing levels of soil salinity until 1.06 dS m{sup -1} reduced both stomatal conductance and plant O{sub 3} uptake, thus linearly reducing O{sub 3} effects on yield. Therefore a reliable flux-based model for assessing the effects of O{sub 3} on crop yield should take into account soil salinity. - Moderate saline stress can reduce ozone uptake and yield losses in alfalfa plants.

  15. Effect of Adductor Canal Block Versus Femoral Nerve Block on Quadriceps Strength, Mobilization, and Pain After Total Knee Arthroplasty

    DEFF Research Database (Denmark)

    Grevstad, Jens Ulrik; Mathiesen, Ole; Valentiner, Laura Risted Staun

    2015-01-01

    strength. METHODS: We included 50 TKA patients with severe movement-related pain; defined as having visual analog scale pain score of greater than 60 mm during active flexion of the knee. The ACB group received an ACB with ropivacaine 0.2% 30 mL and a femoral nerve block (FNB) with 30 mL saline. The FNB...... group received an ACB with 30 mL saline and an FNB with ropivacaine 0.2% 30 mL. We compared the effect of the ACB versus FNB on maximum voluntary isometric contraction of the quadriceps muscle relative to a postoperative baseline value. Secondary end points were differences between groups in ability...

  16. Desiccation-crack-induced salinization in deep clay sediment

    Directory of Open Access Journals (Sweden)

    S. Baram

    2013-04-01

    Full Text Available A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water content and on the chemical and isotopic composition of the sediment and pore water in it. The isotopic composition of water stable isotopes (δ18O and δ2H in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ~ 3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl− concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a desiccation-crack-induced salinization (DCIS conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.

  17. Hemolymph chemistry and histopathological changes in Pacific oysters (Crassostrea gigas) in response to low salinity stress.

    Science.gov (United States)

    Knowles, Graeme; Handlinger, Judith; Jones, Brian; Moltschaniwskyj, Natalie

    2014-09-01

    This study described seasonal differences in the histopathological and hemolymph chemistry changes in different family lines of Pacific oysters, Crassostrea gigas, in response to the stress of an abrupt change to low salinity, and mechanical grading. The most significant changes in pallial cavity salinity, hemolymph chemistry and histopathological findings occurred in summer at low salinity. In summer (water temperature 18°C) at low salinity, 9 (25.7% of full salinity), the mean pallial cavity salinity in oysters at day 3 was 19.8±1.6 (SE) and day 10 was 22.8±1.6 (SE) lower than oysters at salinity 35. Associated with this fall in pallial cavity salinity, mean hemolymph sodium for oysters at salinity 9 on day 3 and 10 were 297.2mmol/L±20(SE) and 350.4mmol/L±21.3(SE) lower than oysters at salinity 35. Similarly mean hemolymph potassium in oysters held at salinity 9 at day 3 and 10 were 5.6mmol/L±0.6(SE) and 7.9mmol/L±0.6 (SE) lower than oysters at salinity 35. These oysters at low salinity had expanded intercellular spaces and significant intracytoplasmic vacuolation distending the cytoplasm of epithelial cells in the alimentary tract and kidney and hemocyte infiltrate (diapedesis) within the alimentary tract wall. In contrast, in winter (water temperature 8°C) oyster mean pallial cavity salinity only fell at day 10 and this was by 6.0±0.6 (SE) compared to that of oysters at salinity 35. There were limited histopathological changes (expanded intercellular spaces and moderate intracytoplasmic vacuolation of renal epithelial cells) in these oysters at day 10 in low salinity. Mechanical grading and family line did not influence the oyster response to sudden low salinity. These findings provide additional information for interpretation of non-lethal, histopathological changes associated with temperature and salinity variation. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. [Assessment of nociceptive suppression in laparoscopic postoperative status: prospective, randomized and comparative study with a control group].

    Science.gov (United States)

    Jaime, A; Hernández-Favela, P; Zamora, R; Nava, E; Barroso, G; Kably, A

    2001-08-01

    In recent years endoscopic surgery has became a highly demanded procedure because it is an easy method for diagnosis and treatment in gynecological field. Post-operative pain is considered as a condition in the morbidity status. The objective of this study was to evaluate the nociceptive suppression in laparoscopic surgery. A prospective randomized trial was performed in order to evaluate this condition. A total of 45 patients were included. Three groups were randomized using two different anesthetics applied in the cult-de-sac and uterine-bladder union. Group A (n-15) received bupivacaine, group B (n = 15) ropivacaine and group C (control) saline solution was instilled. The pain was scored using the visual analog scale as same as blood pressure and heart rate in a 15 minute intervals in the recovery room. For study design there were no differences in age, weight, height and body mass index (EMI). The surgical and anesthetic times were similar among groups. However there were significant differences when pain was evaluated. For a less toxic effects and good preventive analgesia we recommend to use ropivacaine in the postoperative status.

  19. Comparison of Attitudes Toward Death Between University Students Who Receive Nursing Education and Who Receive Religious Education.

    Science.gov (United States)

    Bakan, Ayse Berivan; Arli, Senay Karadag

    2018-03-22

    This study aims to compare attitudes toward death between university students who receive nursing education and who receive religious education. This study is cross-sectional in nature. It was conducted with the participation of 197 university students in a university located in the Eastern part of Turkey between June and August, 2017. Data were collected using the socio-demographic form and Turkish form of Death Attitudes Profile-Revised. Of all the students participating in the study, 52.8% received nursing education and 47.2% received religious education. It was found that majority of both groups had no education about death, or found the education they received insufficient. Besides, no significant differences were found between the students who received nursing education and who received religious education in terms of their attitudes toward death (p > 0.05). Results showed that students who received nursing education and who received religious education had similar attitudes toward death. In conclusion, the education given to students about the religious or health aspects of death in accordance with the curriculum seemed to have no effects on students' developing positive attitudes toward death.

  20. Thoracic epidural anesthesia attenuates hemorrhagic-induced splanchnic hypo-perfusion in post-resuscitation experimental hemorrhagic shock

    Directory of Open Access Journals (Sweden)

    Amir S Madjid

    2008-06-01

    Full Text Available The purpose of present study was to assess the effects of thoracic epidural anesthesia on splanchnic perfusion, bacterial translocation and histopathologic changes in experimental hemorrhagic shock in short-tailed macaques (Macaca nemestrina. Sixteen Macaca nemestrinas were randomly assigned to one of two groups i.e. the lidocaine group (n = 8, receiving general anesthesia plus lidocaine thoracic epidural anesthesia; and the saline group (n = 8, receiving general anesthesia alone as control. Hemorrhagic shock was induced by withdrawing blood gradually to a mean arterial pressure (MAP of 40 mm Hg, and maintained for 60 minutes. Animals were then resuscitated with their own blood and ringer lactate solution (RL. After resuscitation, epidural lidocaine 2% was given in the lidocaine group and saline in the control group. Resuscitation that was performed after one hour hemorrhagic shock, with hemodynamic variables and urine output returned to normal, revealed there was no improvement of splanchnic perfusion. PgCO2, P(g-aCO2, and pHi remained in critical value and tended to deteriorate in the saline group. Contrast to saline group, splanchnic perfusion in lidocaine group tended to improve. This condition was supported by the finding of less bacterial translocation and better histopathologic changes in lidocaine thoracic epidural anesthesia group than in saline group. This study concludes that lidocaine thoracic epidural anesthesia attenuates splachnic hypoperfusion in post-resuscitation hemorrhagic shock in Macaca nemestrina. (Med J Indones 2008; 17: 73-81Keywords: thoracic epidural anesthesia, lidocaine, hemorrhagic shock, splanchnic hypoperfusion, bacterial translocation