WorldWideScience

Sample records for sagittarius dwarf galaxy

  1. Bifurcation in tidal streams of Sagittarius Dwarf Galaxy: Numerical Simulations

    Science.gov (United States)

    Camargo Camargo, Y.; Casas-Miranda, R.

    2018-01-01

    We performed N-body simulations between Sagittarius dwarf galaxy and the Milky Way. The Sagittarius galaxy is modeled with two components: dark matter halo and stellar disc. The Milky Way is modeled with three components: dark matter halo, stellar disc and bulge. The goal of this work is to reproduce the bifurcations in the tidal tails and the physical properties of the Sagittarius dwarf galaxy. For it, we simulated the interaction of the progenitor of this galaxy with the Milky Way. Although bifurcations could be reproduced, the position and physical properties of Sagittarius remnant could not be obtained simultaneously.

  2. The extended structure of the dwarf irregular galaxy Sagittarius

    NARCIS (Netherlands)

    Beccari, G.; Bellazzini, M.; Fraternali, F.; Battaglia, G.; Perina, S.; Sollima, A.; Oosterloo, T. A.; Testa, V.; Galleti, S.

    2014-01-01

    We present a detailed study of the stellar and H i structure of the dwarf irregular galaxy Sagittarius. We use new deep and wide field photometry to trace the surface brightness profile of the galaxy out to ≃5.0' (corresponding to ≃1600 pc) and down to μV ≃ 30.0 mag/arcsec2, thus showing that the

  3. Massive stars in the Sagittarius Dwarf Irregular Galaxy

    Science.gov (United States)

    Garcia, Miriam

    2018-02-01

    Low metallicity massive stars hold the key to interpret numerous processes in the past Universe including re-ionization, starburst galaxies, high-redshift supernovae, and γ-ray bursts. The Sagittarius Dwarf Irregular Galaxy [SagDIG, 12+log(O/H) = 7.37] represents an important landmark in the quest for analogues accessible with 10-m class telescopes. This Letter presents low-resolution spectroscopy executed with the Gran Telescopio Canarias that confirms that SagDIG hosts massive stars. The observations unveiled three OBA-type stars and one red supergiant candidate. Pending confirmation from high-resolution follow-up studies, these could be the most metal-poor massive stars of the Local Group.

  4. APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy

    Science.gov (United States)

    Hasselquist, Sten; Shetrone, Matthew D.; Smith, Verne V.; Cunha, Katia M. L.; McWilliam, Andrew; Holtzman, Jon A.; Majewski, Steven R.; Sobeck, Jennifer; Frinchaboy, Peter M.; Roman-Lopes, Alexandre; Ivans, Inese I.; Allende-Prieto, Carlos; Placco, Vinicius M.; Lane, Richard; Zasowski, Gail; APOGEE

    2017-01-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) provides elemental abundances for C, N, O, Na, Mg, Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, and Ni. We analyze the chemical abundance patterns of these elements for ~ 350 stars belonging to the Sagittarius Dwarf Galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances and the first time C, N, P, K, V, Cr, Co, and Ni have been studied in the dwarf galaxy. For Sgr stars with [Fe/H] > -0.9, we find that Sgr is deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, which suggests that Sgr stars observed today were formed from gas that was less enriched by both Type II and Type Ia SNe. By examining the relative deficiencies of the hydrostatic (O, Mg, and Al) and explosive (Si, K, and Mn) elements , we find support that previous generations of Sgr stars were formed with a top-light IMF, lacking the most massive stars that would normally pollute the ISM with the hydrostatic elements.

  5. APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hasselquist, Sten; Holtzman, Jon [New Mexico State University, Las Cruces, NM 88003 (United States); Shetrone, Matthew [University of Texas at Austin, McDonald Observatory, Fort Davis, TX 79734 (United States); Smith, Verne; Nidever, David L. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); McWilliam, Andrew [The Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Fernández-Trincado, J. G.; Tang, Baitian [Departamento de Astronomía, Casilla 160-C, Universidad de Concepción, Concepción (Chile); Beers, Timothy C. [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Majewski, Steven R.; Anguiano, Borja [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Tissera, Patricia B. [Department of Physics, Universidad Andres Bello, 700 Fernandez Concha (Chile); Alvar, Emma Fernández; Carigi, Leticia; Delgado Inglada, Gloria [Instituto de Astronomía, Universidad Nacional Autnoma de México, Apdo. Postal 70264, Ciudad de México, 04510 (Mexico); Allende Prieto, Carlos; Battaglia, Giuseppina; García-Hernández, D. A. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Almeida, Andres [Departamento de Física, Facultad de Ciencias, Universidad de La Serena, Cisternas 1200, La Serena (Chile); Frinchaboy, Peter, E-mail: sten@nmsu.edu, E-mail: holtz@nmsu.edu, E-mail: shetrone@astro.as.utexas.edu, E-mail: vsmith@email.noao.edu [Texas Christian University, Fort Worth, TX 76129 (United States); and others

    2017-08-20

    The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] ≳ −0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.

  6. APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy

    Science.gov (United States)

    Hasselquist, Sten; Shetrone, Matthew; Smith, Verne; Holtzman, Jon; McWilliam, Andrew; Fernández-Trincado, J. G.; Beers, Timothy C.; Majewski, Steven R.; Nidever, David L.; Tang, Baitian; Tissera, Patricia B.; Fernández Alvar, Emma; Allende Prieto, Carlos; Almeida, Andres; Anguiano, Borja; Battaglia, Giuseppina; Carigi, Leticia; Delgado Inglada, Gloria; Frinchaboy, Peter; García-Hernández, D. A.; Geisler, Doug; Minniti, Dante; Placco, Vinicius M.; Schultheis, Mathias; Sobeck, Jennifer; Villanova, Sandro

    2017-08-01

    The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] ≳ -0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.

  7. Chemical abundances in the nucleus of the Sagittarius dwarf spheroidal galaxy

    Science.gov (United States)

    Mucciarelli, A.; Bellazzini, M.; Ibata, R.; Romano, D.; Chapman, S. C.; Monaco, L.

    2017-09-01

    We present iron, magnesium, calcium, and titanium abundances for 235 stars in the central region of the Sagittarius dwarf spheroidal galaxy (within 9.0' ≃ 70 pc from the centre) from medium-resolution Keck/Deep Imaging Multi-Object Spectrograph spectra. All the considered stars belong to the massive globular cluster M 54 or to the central nucleus of the galaxy (Sgr, N). In particular we provide abundances for 109 stars with [Fe/H] ≥-1.0, more than doubling the available sample of spectroscopic metallicity and α-elements abundance estimates for Sgr dSph stars in this metallicity regime. We find for the first time a metallicity gradient in the Sgr, N population, whose peak iron abundance goes from [Fe/H] =-0.38 for R ≤ 2.5' to [Fe/H] =-0.57 for 5.0 chemical patterns of the Sagittarius dwarf spheroidal as a whole with a chemical evolution model which implies that a high mass progenitor (MDM = 6 × 1010M⊙) and a significant event of mass-stripping occurred a few Gyr ago, presumably starting at the first peri-Galactic passage after infall. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A46

  8. Field #3 of the Palomar-Groningen Survey; 1, Variable stars at the edge of the Sagittarius dwarf galaxy

    NARCIS (Netherlands)

    Schultheis, M.

    1996-01-01

    Submitted to: Astron. Astrophys. Abstract: A catalogue is presented with variable (RR Lyrae, semiregular and Mira) stars located inside field #3 of the Palomar-Groningen Survey, at the outer edge of the Sagittarius dwarf galaxy. One of the semiregular variables is a carbon star, comparable with

  9. Chemistry and Kinematics of the Late-forming Dwarf Irregular Galaxies Leo A, Aquarius, and Sagittarius DIG

    Science.gov (United States)

    Kirby, Evan N.; Rizzi, Luca; Held, Enrico V.; Cohen, Judith G.; Cole, Andrew A.; Manning, Ellen M.; Skillman, Evan D.; Weisz, Daniel R.

    2017-01-01

    We present Keck/DEIMOS spectroscopy of individual stars in the relatively isolated Local Group dwarf galaxies Leo A, Aquarius, and the Sagittarius dwarf irregular galaxy. The three galaxies—but especially Leo A and Aquarius—share in common delayed star formation histories (SFHs) relative to many other isolated dwarf galaxies. The stars in all three galaxies are supported by dispersion. We found no evidence of stellar velocity structure, even for Aquarius, which has rotating H I gas. The velocity dispersions indicate that all three galaxies are dark-matter-dominated, with dark-to-baryonic mass ratios ranging from {4.4}-0.8+1.0 (SagDIG) to {9.6}-1.8+2.5 (Aquarius). Leo A and SagDIG have lower stellar metallicities than Aquarius, and they also have higher gas fractions, both of which would be expected if Aquarius were further along in its chemical evolution. The metallicity distribution of Leo A is inconsistent with a closed or leaky box model of chemical evolution, suggesting that the galaxy was pre-enriched or acquired external gas during star formation. The metallicities of stars increased steadily for all three galaxies, but possibly at different rates. The [α/Fe] ratios at a given [Fe/H] are lower than that of the Sculptor dwarf spheroidal galaxy, which indicates more extended SFHs than Sculptor, consistent with photometrically derived SFHs. Overall, the bulk kinematic and chemical properties for the late-forming dwarf galaxies do not diverge significantly from those of less delayed dwarf galaxies, including dwarf spheroidal galaxies. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  10. A 2MASS ALL-SKY VIEW OF THE SAGITTARIUS DWARF GALAXY. VII. KINEMATICS OF THE MAIN BODY OF THE SAGITTARIUS dSph

    Energy Technology Data Exchange (ETDEWEB)

    Frinchaboy, Peter M. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); Majewski, Steven R.; Patterson, Richard J. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Munoz, Ricardo R. [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Law, David R. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); Lokas, Ewa L. [Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw (Poland); Kunkel, William E. [Las Campanas Observatory, Casilla 601, La Serena (Chile); Johnston, Kathryn V., E-mail: p.frinchaboy@tcu.edu, E-mail: srm4n@vigrinia.edu, E-mail: rjp0i@vigrinia.edu, E-mail: rmunoz@das.uchile.cl, E-mail: drlaw@di.utoronto.ca, E-mail: lokas@camk.edu.pl, E-mail: kunkel@lcoeps1@lco.cl, E-mail: kvj@astro.columbia.edu [Department of Astronomy, Columbia University, New York, NY 10027 (United States)

    2012-09-01

    We have assembled a large-area spectroscopic survey of giant stars in the Sagittarius (Sgr) dwarf galaxy core. Using medium resolution (R {approx} 15,000), multifiber spectroscopy we have measured velocities of these stars, which extend up to 12 Degree-Sign from the galaxy's center (3.7 core radii or 0.4 times the King limiting radius). From these high-quality spectra we identify 1310 Sgr members out of 2296 stars surveyed, distributed across 24 different fields across the Sgr core. Additional slit spectra were obtained of stars bridging from the Sgr core to its trailing tail. Our systematic, large-area sample shows no evidence for significant rotation, a result at odds with the {approx}20 km s{sup -1} rotation required as an explanation for the bifurcation seen in the Sgr tidal stream; the observed small ({<=}4 km s{sup -1}) velocity trend primarily along the major axis is consistent with models of the projected motion of an extended body on the sky with no need for intrinsic rotation. The Sgr core is found to have a flat velocity dispersion (except for a kinematically colder center point) across its surveyed extent and into its tidal tails, a property that matches the velocity dispersion profiles measured for other Milky Way dwarf spheroidal (dSph) galaxies. We comment on the possible significance of this observed kinematical similarity for the dynamical state of the other classical Milky Way dSphs in light of the fact that Sgr is clearly a strongly tidally disrupted system.

  11. A remarkable oxygen-rich asymptotic giant branch variable in the Sagittarius Dwarf Irregular Galaxy

    Science.gov (United States)

    Whitelock, Patricia A.; Menzies, John W.; Feast, Michael W.; Marigo, Paola

    2018-01-01

    We report and discuss JHKS photometry for Sgr dIG, a very metal-deficient galaxy in the Local Group, obtained over 3.5 years with the Infrared Survey Facility in South Africa. Three large amplitude asymptotic giant branch variables are identified. One is an oxygen-rich star that has a pulsation period of 950 d, which was until recently undergoing hot bottom burning, with Mbol ∼ -6.7. It is surprising to find a variable of this sort in Sgr dIG, given their rarity in other dwarf irregulars. Despite its long period the star is relatively blue and is fainter, at all wavelengths shorter than 4.5 μm, than anticipated from period-luminosity relations that describe hot bottom burning stars. A comparison with models suggests it had a main-sequence mass Mi ∼ 5 M⊙ and that it is now near the end of its asymptotic giant branch evolution. The other two periodic variables are carbon stars with periods of 670 and 503 d (Mbol ∼ -5.7 and -5.3). They are very similar to other such stars found on the asymptotic giant branch of metal-deficient Local Group galaxies and a comparison with models suggests Mi ∼ 3 M⊙. We compare the number of asymptotic giant branch variables in Sgr dIG to those in NGC 6822 and IC 1613, and suggest that the differences may be due to the high specific star formation rate and low metallicity of Sgr dIG.

  12. The Survival of the Sagittarius Dwarf Galaxy and the Flatness of the Rotation Curve of the Galaxy

    Science.gov (United States)

    Zhao, HongSheng

    1998-06-01

    How has the ``fluffy'' Sgr dwarf galaxy survived its 10-20 pericentric passages in the halo of the Milky Way for a Hubble time? The scenario that Sgr was deflected to its current orbit by the Magellanic Clouds after a rendezvous on the north Galactic pole 2-3 Gyr ago is examined. It is shown that the conditions of the collision fix both the sense of circulation of Sgr and the Large Magellanic Cloud around the Galaxy and the slope of the Galactic rotation curve. The model argues that the two orthogonal polar circles traced by a dozen or so Galactic halo dwarf galaxies and globular clusters (LMC-SMC-Magellanic Stream-Draco-Ursa Minor along l~270deg and M54-Ter 7-Ter 8-Arp 2-NGC 2419-Pal 15 along l~0deg) are streams of tidal relics from two ancient galaxies that were captured on two intersecting polar rosette orbits by the Galaxy. Our results favor the interpretation of microlensing toward the LMC being due to source or lens stars in tidal features of the Magellanic Clouds. We discuss direct and indirect observations to test the collision scenario.

  13. Chemistry of the Sagittarius Dwarf Galaxy: A Top-light Initial Mass Function, Outflows, and the R-process

    Science.gov (United States)

    McWilliam, Andrew; Wallerstein, George; Mottini, Marta

    2013-12-01

    From chemical abundance analysis of stars in the Sagittarius dwarf spheroidal galaxy (Sgr), we conclude that the α-element deficiencies cannot be due to the Type Ia supernova (SN Ia) time-delay scenario of Tinsley. Instead, the evidence points to low [α/Fe] ratios resulting from an initial mass function (IMF) deficient in the highest mass stars. The critical evidence is the 0.4 dex deficiency of [O/Fe], [Mg/Fe], and other hydrostatic elements, contrasting with the normal trend of r-process [Eu/Fe] r with [Fe/H]. Supporting evidence comes from the hydrostatic element (O, Mg, Na, Al, Cu) [X/Fe] ratios, which are inconsistent with iron added to the Milky Way (MW) disk trends. Also, the ratio of hydrostatic to explosive (Si, Ca, Ti) element abundances suggests a relatively top-light IMF. Abundance similarities with the LMC, Fornax, and IC 1613 suggest that their α-element deficiencies also resulted from IMFs lacking the most massive SNe II. The top-light IMF, as well as the normal trend of r-process [Eu/Fe] r with [Fe/H] in Sgr, indicates that massive SNe II (gsim30 M ⊙) are not major sources of r-process elements. High [La/Y] ratios, consistent with leaky-box chemical evolution, are confirmed but ~0.3 dex larger than theoretical asymptotic giant branch (AGB) predictions. This suggests that a substantial increase in the theoretical 13C pocket in low-mass AGB stars is required. Sgr has the lowest [Rb/Zr] ratios known, consistent with pollution by low-mass (lsim2 M ⊙) AGB stars near [Fe/H] = -0.6, likely resulting from leaky-box chemical evolution. The [Cu/O] trends in Sgr and the MW suggest that Cu yields increase with both metallicity and stellar mass, as expected from Cu production by the weak s-process in massive stars. Finally, we present an updated hyperfine splitting line list, an abundance analysis of Arcturus, and further develop our error analysis formalism.

  14. Reinterpreting The Sagittarius Dwarf Tidal Debris

    Science.gov (United States)

    Newby, Matthew T.; Newberg, Heidi Jo; Thompson, Jeffery M.; Weiss, Jake

    2015-01-01

    Tidal debris from the Sagittarius dwarf galaxy (Sgr) has been used as a primary constraint in several determinations of the Milky Way Galaxy's total mass and dark matter distribution. However, the apparent "bifurcation" of both the leading and trailing tidal tails has never been satisfactorily explained. Using the powerful MilkyWay@home volunteer computing platform, we were surprised that the apparently fainter of the bifurcated tidal tails required an extremely wide stream to fit the observed stellar densities. Here, through additional analysis, we show that both the primary and secondary tidal tails of Sgr, as well as the Virgo overdensity, are all wider than previously thought, and dominate star counts in the Galactic halo. Additionally, we present evidence of a stellar "envelope" about the primary Sgr stream, which may be direct evidence for a subhalo-rich (or "lumpy") dark matter distribution. This research was supported by the NSF through grant AST 10-09670, and crowd funding from the MilkyWay@home volunteers.

  15. Painting a More Accurate Picture of the Sagittarius Dwarf Tidal Stream

    Science.gov (United States)

    Weiss, Jake; Arsenault, M.; Bechtel, T.; Desell, T.; Newberg, H. J.; Newby, M.; Thompson, J.

    2014-01-01

    We are improving the current spatial density profile for the Sagittarius dwarf tidal stream and other tidal streams in the Milky Way halo, using new color corrections to the Sloan Digital Sky Survey and a new statistical model for main sequence turnoff stars absolute magnitude distribution. Using the MilkyWay@home distributed computing platform, we implement a method of maximum likelihood to fit a model to both tidal streams and a smooth component of the halo. With this technique, we currently have one of the most accurate descriptions for part of the Sagittarius dwarf tidal stream’s spatial density profile as well as a spatial density profile for part of a second (bifurcated) stream near the Sagittarius dwarf tidal stream, whose origins are not well understood. Along with fitting the width, positions, and orientations of the previously mentioned streams, we also have found that the smooth component of the Milky Way halo is oblate. Using these results, we hope to run N-body simulations of the dwarf galaxy tidal disruption that created the tidal debris to constrain the dark matter profile of the Milky Way galaxy. This research was funded by NSF grant AST 10-09670 and the Rensselaer Center for Open Source Software (RCOS).

  16. Chemical analysis of carbon stars in the local group - l.  The small magnetic cloud and the Sagittarius Dwarf Spheroidal galaxy

    DEFF Research Database (Denmark)

    de Laverny...[], P.; Abia, C.; Dominguez, I

    2006-01-01

    Stars: abundances, stars: carbon, nuclear reactions, nucleosynthesis, abundances, galaxies: Local Group Udgivelsesdato: Feb.......Stars: abundances, stars: carbon, nuclear reactions, nucleosynthesis, abundances, galaxies: Local Group Udgivelsesdato: Feb....

  17. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    Science.gov (United States)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  18. Seeing Baby Dwarf Galaxies

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible/DSS Click on image for larger version Ultraviolet/GALEX Click on image for larger version Poster Version Click on image for larger version The unique ultraviolet vision of NASA's Galaxy Evolution Explorer reveals, for the first time, dwarf galaxies forming out of nothing more than pristine gas likely leftover from the early universe. Dwarf galaxies are relatively small collections of stars that often orbit around larger galaxies like our Milky Way. The forming dwarf galaxies shine in the far ultraviolet spectrum, rendered as blue in the call-out on the right hand side of this image. Near ultraviolet light, also obtained by the Galaxy Evolution Explorer, is displayed in green, and visible light from the blue part of the spectrum here is represented by red. The clumps (in circles) are distinctively blue, indicating they are primarily detected in far ultraviolet light. The faint blue overlay traces the outline of the Leo Ring, a huge cloud of hydrogen and helium that orbits around two massive galaxies in the constellation Leo (left panel). The cloud is thought likely to be a primordial object, an ancient remnant of material that has remained relatively unchanged since the very earliest days of the universe. Identified about 25 years ago by radio waves, the ring cannot be seen in visible light. Only a portion of the Leo Ring has been imaged in the ultraviolet, but this section contains the telltale ultraviolet signature of recent massive star formation within this ring of pristine gas. Astronomers have previously only seen dwarf galaxies form out of gas that has already been cycled through a galaxy and enriched with metals elements heavier than helium produced as stars evolve. The visible data come from the Digitized Sky Survey of the Space Telescope Science Institute in Baltimore, Md. The Leo Ring visible image (left

  19. Dwarf elliptical galaxies

    Science.gov (United States)

    Ferguson, Henry C.; Binggeli, Bruno

    1994-01-01

    Dwarf elliptical (dE) galaxies, with blue absolute magnitudes typically fainter than M(sub B) = -16, are the most numerous type of galaxy in the nearby universe. Tremendous advances have been made over the past several years in delineating the properties of both Local Group satellite dE's and the large dE populations of nearby clusters. We review some of these advances, with particular attention to how well currently availiable data can constrain (a) models for the formation of dE's, (b) the physical and evolutionary connections between different types of galaxies that overlap in the same portion of the mass-spectrum of galaxies, (c) the contribution of dE's to the galaxy luminosity functions in clusters and the field, (d) the star-forming histories of dE's and their possible contribution to faint galaxy counts, and (e) the clustering properties of dE's. In addressing these issues, we highlight the extent to which selection effects temper these constraints, and outline areas where new data would be particularly valuable.

  20. Star Formation Histories of Nearby Dwarf Galaxies

    OpenAIRE

    Grebel, Eva K.

    2000-01-01

    Properties of nearby dwarf galaxies are briefly discussed. Dwarf galaxies vary widely in their star formation histories, the ages of their subpopulations, and in their enrichment history. Furthermore, many dwarf galaxies show evidence for spatial variations in their star formation history; often in the form of very extended old populations and radial gradients in age and metallicity. Determining factors in dwarf galaxy evolution appear to be both galaxy mass and environment. We may be observi...

  1. Dwarf galaxies : Important clues to galaxy formation

    NARCIS (Netherlands)

    Tolstoy, E

    2003-01-01

    The smallest dwarf galaxies are the most straight forward objects in which to study star formation processes on a galactic scale. They are typically single cell star forming entities, and as small potentials in orbit around a much larger one they are unlikely to accrete much (if any) extraneous

  2. AGN feedback in dwarf galaxies?

    Science.gov (United States)

    Dashyan, Gohar; Silk, Joseph; Mamon, Gary A.; Dubois, Yohan; Hartwig, Tilman

    2018-02-01

    Dwarf galaxy anomalies, such as their abundance and cusp-core problems, remain a prime challenge in our understanding of galaxy formation. The inclusion of baryonic physics could potentially solve these issues, but the efficiency of stellar feedback is still controversial. We analytically explore the possibility of feedback from active galactic nuclei (AGNs) in dwarf galaxies and compare AGN and supernova (SN) feedback. We assume the presence of an intermediate-mass black hole within low-mass galaxies and standard scaling relations between the relevant physical quantities. We model the propagation and properties of the outflow and explore the critical condition for global gas ejection. Performing the same calculation for SNe, we compare the ability of AGNs and SNe to drive gas out of galaxies. We find that a critical halo mass exists below which AGN feedback can remove gas from the host halo and that the critical halo mass for an AGN is greater than the equivalent for SNe in a significant part of the parameter space, suggesting that an AGN could provide an alternative and more successful source of negative feedback than SNe, even in the most massive dwarf galaxies.

  3. Formation of dwarf ellipticals and dwarf irregular galaxies by interaction of giant galaxies under environmental influence

    OpenAIRE

    Chattopadhyay, Tanuka; Debsarma, Suma; Karmakar, Pradip; Davoust, Emmanuel

    2014-01-01

    A model is proposed for the formation of gas-rich dwarf irregular galaxies and gas-poor, rotating dwarf elliptical galaxies following the interaction between two giant galaxies as a function of space density. The formation of dwarf galaxies is considered to depend on a random variable, the tidal index theta, an environmental parameter defined by Karachentsev et al. (2004), such that for theta less than zero, the formation of dwarf irregular galaxy is assured whereas for theta greater than zer...

  4. Stars at Low Metallicity in Dwarf Galaxies

    NARCIS (Netherlands)

    Tolstoy, Eline; Battaglia, Giuseppina; Cole, Andrew; Hunt, LK; Madden, S; Schneider, R

    2008-01-01

    Dwarf galaxies offer an opportunity to understand the properties of low metallicity star formation both today and at the earliest times at the, epoch of the formation of the first stars. Here we concentrate on two galaxies in the Local Group: the dwarf irregular galaxy Leo A, which has been the

  5. A tidally distorted dwarf galaxy near NGC 4449.

    Science.gov (United States)

    Rich, R M; Collins, M L M; Black, C M; Longstaff, F A; Koch, A; Benson, A; Reitzel, D B

    2012-02-08

    NGC 4449 is a nearby Magellanic irregular starburst galaxy with a B-band absolute magnitude of -18 and a prominent, massive, intermediate-age nucleus at a distance from Earth of 3.8 megaparsecs (ref. 3). It is wreathed in an extraordinary neutral hydrogen (H I) complex, which includes rings, shells and a counter-rotating core, spanning ∼90 kiloparsecs (kpc; refs 1, 4). NGC 4449 is relatively isolated, although an interaction with its nearest known companion--the galaxy DDO 125, some 40 kpc to the south--has been proposed as being responsible for the complexity of its H I structure. Here we report the presence of a dwarf galaxy companion to NGC 4449, namely NGC 4449B. This companion has a V-band absolute magnitude of -13.4 and a half-light radius of 2.7 kpc, with a full extent of around 8 kpc. It is in a transient stage of tidal disruption, similar to that of the Sagittarius dwarf near the Milky Way. NGC 4449B exhibits a striking S-shaped morphology that has been predicted for disrupting galaxies but has hitherto been seen only in a dissolving globular cluster. We also detect an additional arc or disk ripple embedded in a two-component stellar halo, including a component extending twice as far as previously known, to about 20 kpc from the galaxy's centre.

  6. Angular Momentum of Dwarf Galaxies

    Science.gov (United States)

    Butler, Kirsty M.; Obreschkow, Danail; Oh, Se-Heon

    2017-01-01

    We present measurements of baryonic mass {M}{{b}} and specific angular momentum (sAM) {j}{{b}} in 14 rotating dwarf Irregular (dIrr) galaxies from the LITTLE THINGS sample. These measurements, based on 21 cm kinematic data from the Very Large Array and stellar mass maps from the Spitzer Space Telescope, extend previous AM measurements by more than two orders of magnitude in {M}{{b}}. The dwarf galaxies show systematically higher {j}{{b}} values than expected from the {j}{{b}}\\propto {M}{{b}}2/3 scaling of spiral galaxies, representative of a scale-free galaxy formation scenario. This offset can be explained by decreasing baryon mass fractions {f}{{M}}={M}{{b}}/{M}{dyn} (where {M}{dyn} is the dynamical mass) with decreasing {M}{{b}} (for {M}{{b}}< {10}11 {M}⊙ ). We find that the sAM of neutral atomic hydrogen (H I) alone is about 2.5 times higher than that of the stars. The M-j relation of H I is significantly steeper than that of the stars, as a direct consequence of the systematic variation of the H I fraction with {M}{{b}}.

  7. Kinematically Decoupled Cores in Dwarf (Elliptical) Galaxies

    NARCIS (Netherlands)

    Toloba, E.; Peletier, R. F.; Guhathakurta, P.; van de Ven, G.; Boissier, S.; Boselli, A.; Brok, M. d.; Falcón-Barroso, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Lisker, T.; Paudel, S.; Ryś, A.; Salo, H.

    An overview is given of what we know about the frequency of kinematically decoupled cores in dwarf elliptical galaxies. New observations show that kinematically decoupled cores happen just as often in dwarf elliptical as in ordinary early-type galaxies. This has important consequences for the

  8. Surface photometry of new nearby dwarf galaxies

    OpenAIRE

    Makarova, L. N.; Karachentsev, I. D.; Grebel, E. K.; Barsunova, O. Yu.

    2002-01-01

    We present CCD surface photometry of 16 nearby dwarf galaxies, many of which were only recently discovered. Our sample comprises both isolated galaxies and galaxies that are members of nearby galaxy groups. The observations were obtained in the Johnson B and V bands (and in some cases in Kron-Cousins I). We derive surface brightness profiles, total magnitudes, and integrated colors. For the 11 galaxies in our sample with distance estimates the absolute B magnitudes lie in the range of -10>Mb>...

  9. Metallic Winds in Dwarf Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Valdez, F.; Rodríguez-González, A.; Hernández-Martínez, L.; Esquivel, A., E-mail: fatima.robles@correo.nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, 04510, Mexico City (Mexico)

    2017-02-01

    We present results from models of galactic winds driven by energy injected from nuclear (at the galactic center) and non-nuclear starbursts. The total energy of the starburst is provided by very massive young stellar clusters, which can push the galactic interstellar medium and produce an important outflow. Such outflow can be a well or partially mixed wind, or a highly metallic wind. We have performed adiabatic 3D N -Body/Smooth Particle Hydrodynamics simulations of galactic winds using the gadget-2 code. The numerical models cover a wide range of parameters, varying the galaxy concentration index, gas fraction of the galactic disk, and radial distance of the starburst. We show that an off-center starburst in dwarf galaxies is the most effective mechanism to produce a significant loss of metals (material from the starburst itself). At the same time, a non-nuclear starburst produces a high efficiency of metal loss, in spite of having a moderate to low mass loss rate.

  10. Metals and ionizing photons from dwarf galaxies

    NARCIS (Netherlands)

    Salvadori, S.; Tolstoy, E.; Ferrara, A.; Zaroubi, S.

    We estimate the potential contribution of M <10(9)M(circle dot) dwarf galaxies to the reionization and early metal enrichment of the Milky Way environment, or circum-Galactic medium. Our approach is to use the observed properties of ancient stars ()under tilde>12 Gyr old) measured in nearby dwarf

  11. Dwarfs and Giants: Massive Stars in Little Dwarf Galaxies

    Science.gov (United States)

    Andrews, Jennifer

    2017-08-01

    Dwarf galaxies are sensitive laboratories for testing theories of star formation and for investigating possible variations of the stellar Initial Mass Function (IMF). Establishing whether the IMF, in particular the upper end of the IMF (uIMF), is invariant or dependent upon the conditions of star formation is key for interpreting the vast majority of observations on galaxy evolution, and for understanding cosmic reionization. Low-metallicity dwarf galaxies are fairly isolated systems that are ideal locales to test the uIMF. We propose to obtain STIS UV/optical spectroscopy of 8 H-alpha bright stellar clusters in 4 dwarf galaxies within 3 Mpc to accurately determine their ages, masses, extinction, metallicity, and stellar content. We will use state of the art stellar synthesis models that include massive star specific evolutionary tracks, massive star rotation, and stochasticity to test whether dwarf galaxies really do have a top-light IMF. The success of this project relies on the spectroscopic UV capability of HST/STIS to isolate young compact star clusters and break the degeneracies between reddening and age.

  12. Satellite Dwarf Galaxies in a Hierarchical Universe: The Prevalence of Dwarf-Dwarf Major Mergers

    OpenAIRE

    Deason, Alis; Wetzel, Andrew; Garrison-Kimmel, Shea

    2014-01-01

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ~10% of satellite dwarf galaxies with M_star > 10^6 M_sun that are within the host...

  13. Efficiency of Metal Mixing in Dwarf Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Yutaka [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Saitoh, Takayuki R., E-mail: yutaka.hirai@nao.ac.jp [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2017-04-01

    Metal mixing plays a critical role in the enrichment of metals in galaxies. The abundance of elements such as Mg, Fe, and Ba in metal-poor stars helps us understand the metal mixing in galaxies. However, the efficiency of metal mixing in galaxies is not yet understood. Here we report a series of N -body/smoothed particle hydrodynamics simulations of dwarf galaxies with different efficiencies of metal mixing using a turbulence-induced mixing model. We show that metal mixing apparently occurs in dwarf galaxies from Mg and Ba abundances. We find that a scaling factor for metal diffusion larger than 0.01 is necessary to reproduce the measured abundances of Ba in dwarf galaxies. This value is consistent with the value expected from turbulence theory and experiments. We also find that the timescale of metal mixing is less than 40 Myr. This timescale is shorter than the typical dynamical times of dwarf galaxies. We demonstrate that the determination of a degree of scatters of Ba abundance by the observation will help us to better constrain the efficiency of metal mixing.

  14. Tidal Dwarf Galaxies and Missing Baryons

    Directory of Open Access Journals (Sweden)

    Frederic Bournaud

    2010-01-01

    Full Text Available Tidal dwarf galaxies form during the interaction, collision, or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons,” known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this paper, “dark matter” is used to refer to the nonbaryonic matter, mostly located in large dark halos, that is, CDM in the standard paradigm, and “missing baryons” or “dark baryons” is used to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”.

  15. Harassment Origin for Kinematic Substructures in Dwarf Elliptical Galaxies?

    OpenAIRE

    Gonzalez-Garcia, A. C.; Aguerri, J. A. L.; Balcells, M.

    2005-01-01

    [EN]We have run high resolution N-body models simulating the encounter of a dwarf galaxy with a bright elliptical galaxy. The dwarf absorbs orbital angular momentum and shows counter-rotating features in the external regions of the galaxy. To explain the core-envelope kinematic decoupling observed in some dwarf galaxies in high-density environments requires nearly head-on collisions and very little dark matter bound to the dwarf. These kinematic structures appear under rather restrictive cond...

  16. Dwarf Galaxies Swimming in Tidal Tails

    Science.gov (United States)

    2005-01-01

    This false-color infrared image from NASA's Spitzer Space Telescope shows little 'dwarf galaxies' forming in the 'tails' of two larger galaxies that are colliding together. The big galaxies are at the center of the picture, while the dwarfs can be seen as red dots in the red streamers, or tidal tails. The two blue dots above the big galaxies are stars in the foreground. Galaxy mergers are common occurrences in the universe; for example, our own Milky Way galaxy will eventually smash into the nearby Andromeda galaxy. When two galaxies meet, they tend to rip each other apart, leaving a trail, called a tidal tail, of gas and dust in their wake. It is out of this galactic debris that new dwarf galaxies are born. The new Spitzer picture demonstrates that these particular dwarfs are actively forming stars. The red color indicates the presence of dust produced in star-forming regions, including organic molecules called polycyclic aromatic hydrocarbons. These carbon-containing molecules are also found on Earth, in car exhaust and on burnt toast, among other places. Here, the molecules are being heated up by the young stars, and, as a result, shine in infrared light. This image was taken by the infrared array camera on Spitzer. It is a 4-color composite of infrared light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange), and 8.0 microns (red). Starlight has been subtracted from the orange and red channels in order to enhance the dust features.

  17. Formation of dwarf galaxies in tidal tails

    Science.gov (United States)

    Barnes, Joshua E.; Hernquist, Lars

    1992-01-01

    The results are reported of numerical simulations of encounters between disk galaxies, each modeled with a central bulge, an exponential disk, and a spheroidal dark-matter halo. It is found that dwarf systems form in material drawn out during the encounter; these objects can capture large amounts of moderately enriched gas but retain little dark matter from their parents' haloes. They should therefore have lower mass-to-light ratios than galaxies formed directly by the collapse of primordial matter.

  18. Workshop on the Magellanic Clouds and other Dwarf Galaxies

    CERN Document Server

    Richtler, T; Richtler, Tom; Braun, Jochen M.

    1998-01-01

    The Workshop 'The Magellanic Clouds and Other Dwarf Galaxies' was held at the Physikzentrum Bad Honnef in January 1998. The proceedings comprise 79 contributions. About 1/3 of the 352 pages contain the following Reviews: The Violent Interstellar Medium in Dwarf Galaxies: Atomic Gas (Elias Brinks and Fabian Walter), Hot Gas in the Large Magellanic Cloud (You-Hua Chu), Astrophysics of Dwarf Galaxies: Structures and Stellar Populations (John S. Gallagher), Star-forming regions and ionized gas in irregular galaxies (Deidre A. Hunter), The Law of Star Formation in Disk Galaxies (Joachim Koeppen), Strange Dark Matters in Nearby Dwarf Galaxies (Mario Mateo), Holes and Shells in Galaxies: Observations versus Theoretical Concepts (Jan Palous), Detailed Recent Star Formation Histories of Dwarf Irregular Galaxies and Their Many Uses (Evan D. Skillman et al.), and Nearby Young Dwarf Galaxies (Trinh X. Thuan and Yuri I. Izotov). See the complete electronic version for further details.

  19. Evolution of dwarf galaxies in the Centaurus A group

    OpenAIRE

    Makarova, L.; Makarov, D.

    2007-01-01

    We consider star formation properties of dwarf galaxies in Cen A group observed within our HST/ACS projects number 9771 and 10235. We model color-magnitude diagrams of the galaxies under consideration and measure star formation rate and metallicity dependence on time. We study environmental dependence of the galaxy evolution and probable origin of the dwarf galaxies in the group.

  20. The Unexpected Past of a Dwarf Galaxy

    Science.gov (United States)

    1996-08-01

    New Light on Cannibalism in the Local Group of Galaxies The Local Group of Galaxies consists of a few large spiral galaxies - for instance the Milky Way galaxy in which we live, and the Andromeda galaxy that is visible to the unaided eye in the northern constellation of the same name - as well as two dozen much smaller galaxies of mostly irregular shape. Whereas the larger galaxies have extended halos of very old stars, no such halos have ever been seen around the smaller ones. Now, however, Dante Minniti and Albert Zijlstra [1], working at the ESO 3.5-metre New Technology Telescope (NTT), have found a large halo of old and metal-poor stars around one of the dwarf galaxies in the Local Group. This finding is quite unexpected. It revises our understanding of star formation in these galaxies and provides important information about the past evolution of galaxies [2]. Galaxy halos The Milky Way galaxy is surrounded by a large, roughly spherical halo of old stars. The diameter is about 100,000 light years and the stars therein, known as Population II stars, are among the oldest known, with ages of 10 billion years or even more. They also differ from the younger stars nearer to the main plane of the Milky Way (in which our 4.7 billion year old Sun is located) by being very metal-poor. Many of the halo stars consist almost solely of hydrogen and helium, reflecting the composition of matter in the young Universe. This halo is important for our understanding of the processes that led to the formation of the Milky Way galaxy. It is believed that many of the halo stars and those of the same type found in globular clusters existed already before the Milky Way had fully formed. Galaxy cannibalism Many astronomers suspect that galaxies evolve and gradually grow larger and heavier by practising cannibalism on their own kind. In this picture, when two galaxies collide in space, the stars and nebulae in the smaller one will disperse and soon be taken over by the larger one, which

  1. The α-element knee of the Sagittarius stream

    Science.gov (United States)

    de Boer, T. J. L.; Belokurov, V.; Beers, T. C.; Lee, Y. S.

    2014-09-01

    We employ abundances from the Sloan Digital Sky Survey (SDSS) and the Sloan Extension for Galactic Understanding and Exploration (SEGUE) to study the α-element distribution of the stellar members of the Sagittarius stream. To test the reliability of SDSS/SEGUE abundances for the study of Sagittarius, we select high-likelihood samples tracing the different components of the Milky Way, and recover known literature α-element distributions. Using selection criteria based on the spatial position, radial velocity, distance and colours of individual stars, we obtain a robust sample of Sagittarius-stream stars. The α-element distribution of the Sagittarius stream forms a narrow sequence at intermediate metallicities with a clear turn-down, consistent with the presence of an α-element `knee'. This is the first time that the α-element knee of the Sagittarius dwarf galaxy has been detected. Fitting a toy model to our data, we determine that the α-knee in Sagittarius takes place at [Fe/H]=-1.27±0.05, only slightly less metal-poor than the knee in the Milky Way. This indicates that a small number of Sagittarius-like galaxies could have contributed significantly to the build-up of the Milky Way's stellar halo system at ancient times.

  2. White dwarf-red dwarf binaries in the Galaxy

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are

  3. Dwarf elliptical galaxies with kinematically decoupled cores

    Science.gov (United States)

    De Rijcke, S.; Dejonghe, H.; Zeilinger, W. W.; Hau, G. K. T.

    2004-10-01

    We present, for the first time, photometric and kinematical evidence, obtained with FORS2 on the VLT, for the existence of kinematically decoupled cores (KDCs) in two dwarf elliptical galaxies; FS76 in the NGC 5044 group and FS373 in the NGC 3258 group. Both kinematically peculiar subcomponents rotate in the same sense as the main body of their host galaxy but betray their presence by a pronounced bump in the rotation velocity profiles at a radius of about 1''. The KDC in FS76 rotates at 10 ± 3 km s-1, with the host galaxy rotating at 15 ± 6 km s-1; the KDC in FS373 has a rotation velocity of 6 ± 2 km s-1 while the galaxy itself rotates at 20 ± 5 km s-1. FS373 has a very complex rotation velocity profile with the velocity changing sign at 1.5 Re. The velocity and velocity dispersion profiles of FS76 are asymmetric at larger radii. This could be caused by a past gravitational interaction with the giant elliptical NGC 5044, which is at a projected distance of 50 kpc. We argue that these decoupled cores are most likely not produced by mergers in a group or cluster environment because of the prohibitively large relative velocities. A plausible alternative is offered by flyby interactions between a dwarf elliptical or its disky progenitor and a massive galaxy. The tidal forces during an interaction at the relative velocities and impact parameters typical for a group environment exert a torque on the dwarf galaxy that, according to analytical estimates, transfers enough angular momentum to its stellar envelope to explain the observed peculiar kinematics.

  4. DWARF GALAXIES AND THE COSMIC WEB

    Energy Technology Data Exchange (ETDEWEB)

    Benitez-Llambay, Alejandro; Abadi, Mario G. [Observatorio Astronomico, Universidad Nacional de Cordoba, Cordoba X5000BGR (Argentina); Navarro, Julio F. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada); Gottloeber, Stefan; Steinmetz, Matthias [Leibniz Institute for Astrophysics, An der Sternwarte 16, D-14482 Potsdam (Germany); Yepes, Gustavo [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Hoffman, Yehuda [Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2013-02-01

    We use a cosmological simulation of the formation of the Local Group of Galaxies to identify a mechanism that enables the removal of baryons from low-mass halos without appealing to feedback or reionization. As the Local Group forms, matter bound to it develops a network of filaments and pancakes. This moving web of gas and dark matter drifts and sweeps a large volume, overtaking many halos in the process. The dark matter content of these halos is unaffected but their gas can be efficiently removed by ram pressure. The loss of gas is especially pronounced in low-mass halos due to their lower binding energy and has a dramatic effect on the star formation history of affected systems. This 'cosmic web stripping' may help to explain the scarcity of dwarf galaxies compared with the numerous low-mass halos expected in {Lambda}CDM and the large diversity of star formation histories and morphologies characteristic of faint galaxies. Although our results are based on a single high-resolution simulation, it is likely that the hydrodynamical interaction of dwarf galaxies with the cosmic web is a crucial ingredient so far missing from galaxy formation models.

  5. Reading the Chemical Evolution of Stellar Populations in Dwarf Galaxies

    OpenAIRE

    Hendricks, Benjamin Thomas

    2015-01-01

    In this thesis I present observations and analyses addressed to understand the individual evolution of dwarf galaxies and the interdependency with their local environment. My study focuses on the Fornax dwarf spheroidal galaxy, which is the most massive galaxy of its type in the Local Group, hosting stars with a broad range in age and metallicity. Additionally, it is the only intact dwarf spheroidal with an own globular cluster system. Therefore, it provides a superb laboratory to...

  6. Tidal dwarf galaxies in cosmological simulations

    Science.gov (United States)

    Ploeckinger, Sylvia; Sharma, Kuldeep; Schaye, Joop; Crain, Robert A.; Schaller, Matthieu; Barber, Christopher

    2018-02-01

    The formation and evolution of gravitationally bound, star forming substructures in tidal tails of interacting galaxies, called tidal dwarf galaxies (TDG), has been studied, until now, only in idealized simulations of individual pairs of interacting galaxies for pre-determined orbits, mass ratios and gas fractions. Here, we present the first identification of TDG candidates in fully cosmological simulations, specifically the high-resolution simulations of the EAGLE suite. The finite resolution of the simulation limits their ability to predict the exact formation rate and survival time-scale of TDGs, but we show that gravitationally bound baryonic structures in tidal arms already form in current state-of-the-art cosmological simulations. In this case, the orbital parameter, disc orientations as well as stellar and gas masses and the specific angular momentum of the TDG forming galaxies are a direct consequence of cosmic structure formation. We identify TDG candidates in a wide range of environments, such as multiple galaxy mergers, clumpy high-redshift (up to z = 2) galaxies, high-speed encounters and tidal interactions with gas-poor galaxies. We present selection methods, the properties of the identified TDG candidates and a road map for more quantitative analyses using future high-resolution simulations.

  7. Dwarf Galaxies in the Chandra COSMOS Legacy Survey

    Science.gov (United States)

    Civano, Francesca Maria; Mezcua, Mar; Fabbiano, Giuseppina; Marchesi, Stefano; Suh, Hyewon; Volonteri, Marta; cyrille

    2018-01-01

    The existence of intermediate mass black holes (100 7. While detecting these seed black holes in the young Universe is observationally challenging, the nuclei of local dwarf galaxies are among the best places where to look for them as these galaxies resemble in mass and metallicity the first galaxies and they have not significantly grown through merger and accretion processes. We present a sample of 40 AGN in dwarf galaxies (107 Legacy survey. Once the star formation contribution to the X-ray emission is subtracted, the AGN luminosities of the 40 dwarf galaxies are in the range L(0.5-10 keV)~1039 - 1044 erg/s. With 12 sources at z > 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. One of the dwarf galaxies is the least massive galaxy (M* = 6.6x107 Msun) found so far to host an active BH. We also present for the first time the evolution of the AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7, finding that it decreases with X-ray luminosity and stellar mass. Unlike massive galaxies, the AGN fraction is found to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies.

  8. Dwarf Galaxies in Voids: Dark Matter Halos and Gas Cooling

    Directory of Open Access Journals (Sweden)

    Matthias Hoeft

    2010-01-01

    Full Text Available Galaxy surveys have shown that luminous galaxies are mainly distributed in large filaments and galaxy clusters. The remaining large volumes are virtually devoid of luminous galaxies. This is in concordance with the formation of the large-scale structure in the universe as derived from cosmological simulations. However, the numerical results indicate that cosmological voids are abundantly populated with dark matter haloes which may in principle host dwarf galaxies. Observational efforts have in contrast revealed that voids are apparently devoid of dwarf galaxies. We investigate the formation of dwarf galaxies in voids by hydrodynamical cosmological simulations. Due to the cosmic ultraviolet background radiation low-mass haloes show generally a reduced baryon fraction. We determine the characteristic mass below which dwarf galaxies are baryon deficient. We show that the circular velocity below which the accretion of baryons is suppressed is approximately 40 kms−1. The suppressed baryon accretion is caused by the photo-heating due to the UV background. We set up a spherical halo model and show that the effective equation of the state of the gas in the periphery of dwarf galaxies determines the characteristic mass. This implies that any process which heats the gas around dwarf galaxies increases the characteristic mass and thus reduces the number of observable dwarf galaxies.

  9. Resonant stripping as the origin of dwarf spheroidal galaxies

    Science.gov (United States)

    D'Onghia, Elena; Besla, Gurtina; Cox, Thomas J.; Hernquist, Lars

    2009-07-01

    Dwarf spheroidal galaxies are the most dark-matter-dominated systems in the nearby Universe and their origin is one of the outstanding puzzles of how galaxies form. Dwarf spheroidals are poor in gas and stars, making them unusually faint, and those known as ultra-faint dwarfs have by far the lowest measured stellar content of any galaxy. Previous theories require that dwarf spheroidals orbit near giant galaxies like the Milky Way, but some dwarfs have been observed in the outskirts of the Local Group. Here we report simulations of encounters between dwarf disk galaxies and somewhat larger objects. We find that the encounters excite a process, which we term `resonant stripping', that transforms them into dwarf spheroidals. This effect is distinct from other mechanisms proposed to form dwarf spheroidals, including mergers, galaxy-galaxy harassment, or tidal and ram pressure stripping, because it is driven by gravitational resonances. It may account for some of the observed properties of dwarf spheroidals in the Local Group. Within this framework, dwarf spheroidals should form and interact in pairs, leaving detectable long stellar streams and tails.

  10. Dwarf galaxy mass estimators versus cosmological simulations

    Science.gov (United States)

    González-Samaniego, Alejandro; Bullock, James S.; Boylan-Kolchin, Michael; Fitts, Alex; Elbert, Oliver D.; Hopkins, Philip F.; Kereš, Dušan; Faucher-Giguère, Claude-André

    2017-12-01

    We use a suite of high-resolution cosmological dwarf galaxy simulations to test the accuracy of commonly used mass estimators from Walker et al. (2009) and Wolf et al. (2010), both of which depend on the observed line-of-sight velocity dispersion and the 2D half-light radius of the galaxy, Re. The simulations are part of the Feedback in Realistic Environments (FIRE) project and include 12 systems with stellar masses spanning 105-107 M⊙ that have structural and kinematic properties similar to those of observed dispersion-supported dwarfs. Both estimators are found to be quite accurate: M_Wolf/M_true = 0.98^{+0.19}_{-0.12} and M_Walker/M_true =1.07^{+0.21}_{-0.15}, with errors reflecting the 68 per cent range over all simulations. The excellent performance of these estimators is remarkable given that they each assume spherical symmetry, a supposition that is broken in our simulated galaxies. Though our dwarfs have negligible rotation support, their 3D stellar distributions are flattened, with short-to-long axis ratios c/a ≃ 0.4-0.7. The median accuracy of the estimators shows no trend with asphericity. Our simulated galaxies have sphericalized stellar profiles in 3D that follow a nearly universal form, one that transitions from a core at small radius to a steep fall-off ∝r-4.2 at large r; they are well fit by Sérsic profiles in projection. We find that the most important empirical quantity affecting mass estimator accuracy is Re. Determining Re by an analytic fit to the surface density profile produces a better estimated mass than if the half-light radius is determined via direct summation.

  11. A Chemical Confirmation of the Faint Boötes II Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Koch, Andreas; Rich, R. Michael

    2014-10-01

    We present a chemical abundance study of the brightest confirmed member star of the ultra-faint dwarf galaxy Boötes II from Keck/HIRES high-resolution spectroscopy at moderate signal-to-noise ratios. At [Fe/H] = -2.93 ± 0.03(stat.) ± 0.17(sys.), this star chemically resembles metal-poor halo field stars and the signatures of other faint dwarf spheroidal galaxies at the same metallicities in that it shows enhanced [α/Fe] ratios, Solar Fe-peak element abundances, and low upper limits on the neutron-capture element Ba. Moreover, this star shows no chemical peculiarities in any of the eight elements we were able to measure. This implies that the chemical outliers found in other systems remain outliers pertaining to the unusual enrichment histories of the respective environments, while Boo II appears to have experienced an enrichment history typical of its very low mass. We also re-calibrated previous measurements of the galaxy's metallicity from the calcium triplet (CaT) and find a much lower value than reported before. The resulting broad metallicity spread, in excess of one dex, the very metal-poor mean, and the chemical abundance patterns of the present star imply that Boötes II is a low-mass, old, metal-poor dwarf galaxy and not an overdensity associated with the Sagittarius Stream as has been previously suggested based on its sky position and kinematics. The low, mean CaT metallicity of -2.7 dex falls right on the luminosity-metallicity relation delineated over four orders of magnitude from the more luminous to the faintest galaxies. Thus Boötes II's chemical enrichment appears representative of the galaxy's original mass, while tidal stripping and other mass loss mechanisms were probably not significant as for other low-mass satellites.

  12. The RSA survey of dwarf galaxies, 1: Optical photometry

    Science.gov (United States)

    Vader, J. Patricia; Chaboyer, Brian

    1994-01-01

    We present detailed surface photometry, based on broad B-band charge coupled device (CCD) images, of about 80 dwarf galaxies. Our sample represents approximately 10% of all dwarf galaxies identified in the vicinity of Revised Shapley-Ames (RSA) galaxies on high resolution blue photographic plates, referred to as the RSA survey of dwarf galaxies. We derive global properties and radial surface brightness profiles, and examine the morphologies. The radial surface brightness profiles of dwarf galaxies, whether early or late type, display the same varieties in shape and complexity as those of classical giant galaxies. Only a few are well described by a pure r(exp 1/4) law. Exponential profiles prevail. Features typical of giant disk galaxies, such as exponential profiles with a central depression, lenses, and even, in one case (IC 2041), a relatively prominent bulge are also found in dwarf galaxies. Our data suggest that the central region evolves from being bulge-like, with an r(exp 1/4) law profile, in bright galaxies to a lens-like structure in dwarf galaxies. We prove detailed surface photometry to be a helpful if not always sufficient tool in investigating the structure of dwarf galaxies. In many cases kinematic information is needed to complete the picture. We find the shapes of the surface brightness profiles to be loosely associated with morphological type. Our sample contains several new galaxies with properties intermediate between those of giant and dwarf ellipticals (but no M32-like objects). This shows that such intermediate galaxies exist so that at least a fraction of early-type dwarf ellipticals is structurally related to early-type giants instead of belonging to a totally unrelated, disjunct family. This supports an origin of early-type dwarf galaxies as originally more massive systems that acquired their current morphology as a result of substantial, presumable supernova-driven, mass loss. On the other hand, several early-type dwarfs in our sample are

  13. Star formation in blue compact dwarf Galaxies

    Science.gov (United States)

    Ramya, S.; Prabhu, T. P.; Sahu, D. K.

    Blue compact dwarf galaxies (BCDGs) are dwarfs undergoing current burst of star formation (SF). In our work, we determine the ages of the underlying old stellar population to be ˜4 Gyr that is dominating the mass of the galaxy, underlying the current burst of SF. An intermediate population of ˜500 Myr which dominates the stellar light from the galaxy is also detected. The burst of SF at the present epoch spans ˜10 Myr as estimated from various age estimators like Hα, diagnostic diagrams and colour-colour diagrams. BCDGs undergo a burst of SF for a longer duration (of about a few 100 Myr to a Gyr) followed by a short/long quiescence. The amount of column density of localized neutral hydrogen required for the current burst to occur seems to be 10^{21} cm^{-2}. This could be the threshold required for SF. Radio continuum emission reveals that the emission is coincident with the star forming regions. The star formation rates (SFR) estimated from Hα match well with the SFR estimated using non-thermal radio emission for individual star forming regions, but are ˜6-7 times less as compared to the SFR calculated from far-IR (FIR) emission.

  14. GLOBAL H I KINEMATICS IN DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Stilp, Adrienne M.; Dalcanton, Julianne J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Warren, Steven R.; Skillman, Evan [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); Ott, Juergen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Koribalski, Baerbel [Australia Telescope National Facility, CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia)

    2013-03-10

    H I line widths are typically interpreted as a measure of interstellar medium turbulence, which is potentially driven by star formation (SF). In an effort to better understand the possible connections between line widths and SF, we have characterized H I kinematics in a sample of nearby dwarf galaxies by co-adding line-of-sight spectra after removing the rotational velocity to produce average global H I line profiles. These ''superprofiles'' are composed of a central narrow peak ({approx}6-10 km s{sup -1}) with higher-velocity wings to either side that contain {approx}10%-15% of the total flux. The superprofiles are all very similar, indicating a universal global H I profile for dwarf galaxies. We compare characteristics of the superprofiles to various galaxy properties, such as mass and measures of SF, with the assumption that the superprofile represents a turbulent peak with energetic wings to either side. We use these quantities to derive average scale heights for the sample galaxies. When comparing to physical properties, we find that the velocity dispersion of the central peak is correlated with ({Sigma}{sub HI}). The fraction of mass and characteristic velocity of the high-velocity wings are correlated with measures of SF, consistent with the picture that SF drives surrounding H I to higher velocities. While gravitational instabilities provide too little energy, the SF in the sample galaxies does provide enough energy through supernovae, with realistic estimates of the coupling efficiency, to produce the observed superprofiles.

  15. Chemical Abundances of Metal-poor stars in Dwarf Galaxies

    NARCIS (Netherlands)

    Venn, Kim A.; Jablonka, Pascale; Hill, Vanessa; Starkenburg, Else; Lemasle, Bertrand; Shetrone, Matthew; Irwin, Mike; Norris, John; Yong, David; Gilmore, Gerry; Salvadori, Stephania; Skuladottir, Asa; Tolstoy, Eline; Bragaglia, A.; Arnaboldi, M.; Rejkuba, M.; Romano, D.

    2016-01-01

    Stars in low-mass dwarf galaxies show a larger range in their chemical properties than those in the Milky Way halo. The slower star formation efficiency make dwarf galaxies ideal systems for testing nucleosynthetic yields. Not only are alpha-poor stars found at lower metallicities, and a higher

  16. A search for LSB dwarf galaxies in various environments

    OpenAIRE

    Roberts, Sarah; Davies, Jonathan; Sabatini, Sabina

    2003-01-01

    The varying dwarf galaxy populations in different environments poses a problem for Cold Dark Matter (CDM) hierarchical clustering models. In this paper we present results from a survey conducted in different environments to search for low surface brightness (LSB) dwarf galaxies.

  17. Morphology of Dwarf Galaxies in Isolated Satellite Systems

    Science.gov (United States)

    Ann, Hong Bae

    2017-08-01

    The environmental dependence of the morphology of dwarf galaxies in isolated satellite systems is analyzed to understand the origin of the dwarf galaxy morphology using the visually classified morphological types of 5836 local galaxies with z ≲ 0.01. We consider six sub-types of dwarf galaxies, dS0, dE, dE_{bc}, dSph, dE_{blue}, and dI, of which the first four sub-types are considered as early-type and the last two as late-type. The environmental parameters we consider are the projected distance from the host galaxy (r_{p}), local and global background densities, and the host morphology. The spatial distributions of dwarf satellites of early-type galaxies are much different from those of dwarf satellites of late-type galaxies, suggesting the host morphology combined with r_{p} plays a decisive role on the morphology of the dwarf satellite galaxies. The local and global background densities play no significant role on the morphology of dwarfs in the satellite systems hosted by early-type galaxies. However, in the satellite system hosted by late-type galaxies, the global background densities of dE and dSph satellites are significantly different from those of dE_{bc}, dE_{blue}, and dI satellites. The blue-cored dwarf satellites (dE_{bc}) of early-type galaxies are likely to be located at r_{p} > 0.3 Mpc to keep their cold gas from the ram pressure stripping by the hot corona of early-type galaxies. The spatial distribution of dE_{bc} satellites of early-type galaxies and their global background densities suggest that their cold gas is intergalactic material accreted before they fall into the satellite systems.

  18. The small-scale clustering properties of dwarf galaxies

    Science.gov (United States)

    Vader, J. P.; Sandage, Allan

    1991-01-01

    Two results on the small-scale clustering properties of dwarf galaxies are reported, which were identified in the vicinity of early-type Shapley-Ames galaxies on high-resolution photographic plates. The first result indicates that dwarf galaxies display the same trend of stronger clustering toward earlier morphological type on small scales as their giant counterparts on larger scales. It is suggested that early-type dwarfs can be used as dynamical probes of dark halos around early-type giant galaxies and as tracers of the dynamical evolution of such halos in dense environments. The second result pertains to the trend of increasing early-type dwarf frequency per early-type giant with environment richness previously established for rich groups. It is found that a minimum value of isolated early-type galaxies is approximately 0.25, as compared to a maximum of approximately 8 in rich environments like the Virgo Cluster.

  19. Simulating Supernovae Driven Outflows in Dwarf Galaxies

    Science.gov (United States)

    Rodriguez, Jaimee-Ian

    2018-01-01

    Galactic outflows, or winds, prove to be a necessary input for galactic simulations to produce results comparable to observation, for it solves issues caused by what previous literature dubbed the “angular momentum catastrophe.” While it is known that the nature of outflows depends on the nature of the Interstellar Medium (ISM), the mechanisms behind outflows are still not completely understood. We investigate the driving force behind galactic outflows and the factors that influence their behavior, hypothesizing that supernovae within the galaxy drive these winds. We study isolated, high-resolution, smooth particle hydrodynamic simulations, focusing specifically on dwarf galaxies due to their shallow potential wells, which allow for more significant outflows. We find that outflows follow star formation (and associated supernovae) suggesting the causal relationship between the two. Furthermore, simulations with higher diffusivity differ little in star formation rate, but show significantly lower outflow rates, suggesting that environmental factors that have little effect on regulating star formation can greatly influence outflows, and so efficient outflows can be driven by a constant rate of supernovae, depending on ISM behavior. We are currently analyzing disk morphology and ambient density in order to comprehend the effect of supernovae on the immediate interstellar gas. By attaining greater understanding of the origin of galactic outflows, we will be able to not only improve the accuracy of simulations, we will also be able to gain greater insight into galactic formation and evolution, as outflows and resultant inflows may be vital to the regulation of galaxies throughout their lifetimes.

  20. Star Formation History of Dwarf Galaxies in Cosmological Hydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Kentaro Nagamine

    2010-01-01

    Full Text Available We examine the past and current work on the star formation (SF histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandable if we consider the numerical and resolution effects. It remains a challenge to simulate the episodic nature of SF history in dwarf galaxies at late times within the cosmological context of a cold dark matter model. More work is needed to solve the mysteries of SF history of dwarf galaxies employing large-scale hydrodynamic simulations on the next generation of supercomputers.

  1. A class of compact dwarf galaxies from disruptive processes in galaxy clusters.

    Science.gov (United States)

    Drinkwater, M J; Gregg, M D; Hilker, M; Bekki, K; Couch, W J; Ferguson, H C; Jones, J B; Phillipps, S

    2003-05-29

    Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.

  2. An observer's guide to the (Local Group) dwarf galaxies: predictions for their own dwarf satellite populations

    Science.gov (United States)

    Dooley, Gregory A.; Peter, Annika H. G.; Yang, Tianyi; Willman, Beth; Griffen, Brendan F.; Frebel, Anna

    2017-11-01

    A recent surge in the discovery of new ultrafaint dwarf satellites of the Milky Way has inspired the idea of searching for faint satellites, 103 M⊙ field galaxies in the Local Group. Such satellites would be subject to weaker environmental influences than Milky Way satellites, and could lead to new insights on low-mass galaxy formation. In this paper, we predict the number of luminous satellites expected around field dwarf galaxies by applying several abundance-matching models and a reionization model to the dark-matter only Caterpillar simulation suite. For three of the four abundance-matching models used, we find a >99 per cent chance that at least one satellite with stellar mass M* > 105 M⊙ exists around the combined five Local Group field dwarf galaxies with the largest stellar mass. When considering satellites with M* > 104 M⊙, we predict a combined 5-25 satellites for the five largest field dwarfs, and 10-50 for the whole Local Group field dwarf population. Because of the relatively small number of predicted dwarfs, and their extended spatial distribution, a large fraction each Local Group dwarf's virial volume will need to be surveyed to guarantee discoveries. We compute the predicted number of satellites in a given field of view of specific Local Group galaxies, as a function of minimum satellite luminosity, and explicitly obtain such values for the Solitary Local dwarfs survey. Uncertainties in abundance-matching and reionization models are large, implying that comprehensive searches could lead to refinements of both models.

  3. Dissecting Early-type Dwarf Galaxies into Their Multiple Components

    NARCIS (Netherlands)

    Janz, J.; Laurikainen, E.; Lisker, T.; Salo, H.; Peletier, R. F.; Niemi, S. -M.; den Brok, M.; Toloba, E.; Falcon-Barroso, J.; Boselli, A.; Hensler, G.

    2012-01-01

    Early-type dwarf galaxies, once believed to be simple systems, have recently been shown to exhibit an intriguing diversity in structure and stellar content. To analyze this further, we started the SMAKCED project (Stellar content, MAss and Kinematics of Cluster Early-type Dwarfs,

  4. The dwarf spheroidal galaxies around the milky way

    NARCIS (Netherlands)

    Tolstoy, E.; Battaglia, G.; Helmi, A.; Irwin, M. J.; Hill, V.; Vallenari, A; Tantalo, R; Portinari, L; Moretti, A

    2007-01-01

    We review the progress of ESO/WFI Imaging and VLT/FLAMES spectroscopy of large numbers of individual stars in nearby dwarf spheroidal galaxies by the Dwarf Abundances and Radial-velocities Team (DART). These observations have allowed us to show that neither the kinematics nor the abundance nor the

  5. Carbon-enhanced metal-poor stars in dwarf galaxies

    NARCIS (Netherlands)

    Salvadori, Stefania; Skúladóttir, Ása; Tolstoy, Eline

    2015-01-01

    We investigate the frequency and origin of carbon-enhanced metal-poor (CEMP) stars in Local Group dwarf galaxies by means of a statistical, data-calibrated cosmological model for the hierarchical build-up of the Milky Way and its dwarf satellites. The model self-consistently explains the variation

  6. Galaxies on Top of Quasars: Probing Dwarf Galaxies in the SDSS

    Science.gov (United States)

    Straka, Lorrie; York, D. G.; Noterdaeme, P.; Srianand, R.; Bowen, D. V.; Khare, P.; Bishof, M.; Whichard, Z.; Kulkarni, V. P.

    2013-07-01

    Absorption lines from galaxies at intervening redshifts in quasar spectra are sensitive probes of metals and gas that are otherwise invisible due to distance or low surface brightness. However, in order to determine the environments these absorption lines arise in, we must detect these galaxies in emission as well. Galaxies on top of quasars (GOTOQs) are low-z galaxies found intervening with background quasars in the SDSS. These galaxies have been flagged for their narrow galactic emission lines present in quasar spectra in the SDSS. Typically, the low-z nature of these galaxies allows them to be easily detected in SDSS imaging. However, a number of GOTOQs (about 10%), despite being detected in spectral emission, are NOT seen in SDSS imaging. This implies that these may be dark galaxies, dwarf galaxies, or similarly low surface brightness galaxies. Additionally, about 25% of those detected in imaging are dwarf galaxies according to their L* values. Dwarf galaxies have long been underrepresented in observations compared to theory and are known to have large extents in dark matter. Given their prevalence here in our sample we must ask what role they play in quasar absorption line systems (QSOALS). Recent detections of 21-cm galaxies with few stars imply that aborted star formation in dark matter sub halos may produce QSOALS. Thus, this sub sample of galaxies offers a unique technique for probing dark and dwarf galaxies. The sample and its properties will be discussed, including star formation rates and dust estimates, as well as prospects for the future.

  7. Dusty Dwarfs Galaxies Occulting A Bright Background Spiral

    Science.gov (United States)

    Holwerda, Benne

    2017-08-01

    The role of dust in shaping the spectral energy distributions of low mass disk galaxies remains poorly understood. Recent results from the Herschel Space Observatory imply that dwarf galaxies contain large amounts of cool (T 20K) dust, coupled with very modest optical extinctions. These seemingly contradictory conclusions may be resolved if dwarfs harbor a variety of dust geometries, e.g., dust at larger galactocentric radii or in quiescent dark clumps. We propose HST observations of six truly occulting dwarf galaxies drawn from the Galaxy Zoo catalog of silhouetted galaxy pairs. Confirmed, true occulting dwarfs are rare as most low-mass disks in overlap are either close satellites or do not have a confirmed redshift. Dwarf occulters are the key to determining the spatial extent of dust, the small scale structure introduced by turbulence, and the prevailing dust attenuation law. The recent spectroscopic confirmation of bona-fide low mass occulting dwarfs offers an opportunity to map dust in these with HST. What is the role of dust in the SED of these dwarf disk galaxies? With shorter feedback scales, how does star-formation affect their morphology and dust composition, as revealed from their attenuation curve? The resolution of HST allows us to map the dust disks down to the fine scale structure of molecular clouds and multi-wavelength imaging maps the attenuation curve and hence dust composition in these disks. We therefore ask for 2 orbits on each of 6 dwarf galaxies in F275W, F475W, F606W, F814W and F125W to map dust from UV to NIR to constrain the attenuation curve.

  8. An observer's guide to the (Local Group) dwarf galaxies: predictions for their own dwarf satellite populations

    Science.gov (United States)

    Dooley, Gregory A.; Peter, Annika H. G.; Yang, Tianyi; Willman, Beth; Griffen, Brendan F.; Frebel, Anna

    2017-11-01

    A recent surge in the discovery of new ultrafaint dwarf satellites of the Milky Way has inspired the idea of searching for faint satellites, 103 M⊙ satellites would be subject to weaker environmental influences than Milky Way satellites, and could lead to new insights on low-mass galaxy formation. In this paper, we predict the number of luminous satellites expected around field dwarf galaxies by applying several abundance-matching models and a reionization model to the dark-matter only Caterpillar simulation suite. For three of the four abundance-matching models used, we find a >99 per cent chance that at least one satellite with stellar mass M* > 105 M⊙ exists around the combined five Local Group field dwarf galaxies with the largest stellar mass. When considering satellites with M* > 104 M⊙, we predict a combined 5-25 satellites for the five largest field dwarfs, and 10-50 for the whole Local Group field dwarf population. Because of the relatively small number of predicted dwarfs, and their extended spatial distribution, a large fraction each Local Group dwarf's virial volume will need to be surveyed to guarantee discoveries. We compute the predicted number of satellites in a given field of view of specific Local Group galaxies, as a function of minimum satellite luminosity, and explicitly obtain such values for the Solitary Local dwarfs survey. Uncertainties in abundance-matching and reionization models are large, implying that comprehensive searches could lead to refinements of both models.

  9. DISSECTING EARLY-TYPE DWARF GALAXIES INTO THEIR MULTIPLE COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Janz, J.; Laurikainen, E.; Salo, H. [Division of Astronomy, Department of Physics, University of Oulu, P.O. Box 3000, FI-90014 Oulun Yliopisto (Finland); Lisker, T. [Astronomisches Rechen-Institut, Zentrum fuer Astronomie der Universitaet Heidelberg, Moenchhofstrasse 12-14, D-69120 Heidelberg (Germany); Peletier, R. F.; Den Brok, M. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen (Netherlands); Niemi, S.-M. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, CB 3255, Phillips Hall, Chapel Hill, NC 27599-3255 (United States); Toloba, E. [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Falcon-Barroso, J. [Instituto de Astrofisica de Canarias, Via Lactea s/n, La Laguna, Tenerife (Spain); Boselli, A. [Laboratoire d' Astrophysique de Marseille, UMR 6110 CNRS, 36 rue F. Joliot-Curie, F-13388 Marseille (France); Hensler, G., E-mail: jjanz@ari.uni-heidelberg.de [Institute of Astronomy, University of Vienna, Tuerkenschanzstrasse 17, 1180 Vienna (Austria)

    2012-02-15

    Early-type dwarf galaxies, once believed to be simple systems, have recently been shown to exhibit an intriguing diversity in structure and stellar content. To analyze this further, we started the SMAKCED project (Stellar content, MAss and Kinematics of Cluster Early-type Dwarfs, http://www.smakced.net) and obtained deep H-band images for 101 early-type dwarf galaxies in the Virgo Cluster in a brightness range of -19 mag {<=} M{sub r} {<=} -16 mag, typically reaching a signal-to-noise ratio of 1 per pixel of {approx}0.''25 at surface brightnesses {approx}22.5 mag arcsec{sup -2} in the H band. Here we present the first results of decomposing their two-dimensional light distributions. This is the first study dedicated to early-type dwarf galaxies using the two-dimensional multi-component decomposition approach, which has been proven to be important for giant galaxies. Armed with this new technique, we find more structural components than previous studies: only a quarter of the galaxies fall into the simplest group, namely, those represented by a single Sersic function, optionally with a nucleus. Furthermore, we find a bar fraction of 18%. We also detect a similar fraction of lenses which appear as shallow structures with sharp outer edges. Galaxies with bars and lenses are found to be more concentrated toward the Virgo galaxy center than the other sample galaxies.

  10. The mass content of the Sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Battaglia, G.; Helmi, A.; Tolstoy, E.; Irwin, M.; Andersen, J; BlandHawthorn, J; Nordstrom, B

    2009-01-01

    We present a new determination of the mass content of the Sculptor dwarf spheroidal galaxy, based on a novel approach which takes into account the two distinct stellar populations present in this galaxy. This method helps to partially break the well-known mass-anisotropy degeneracy present in the

  11. Dark influences: imprints of dark satellites on dwarf galaxies

    NARCIS (Netherlands)

    Starkenburg, T. K.; Helmi, A.

    Context. In the context of the current Λ cold dark matter cosmological model small dark matter halos are abundant and satellites of dwarf galaxies are expected to be predominantly dark. Since low mass galaxies have smaller baryon fractions, interactions with these satellites may leave particularly

  12. Dark Satellites and the Morphology of Dwarf Galaxies

    NARCIS (Netherlands)

    Helmi, Amina; Sales, L. V.; Starkenburg, E.; Starkenburg, T. K.; Vera Ciro, C.; De Lucia, G.; Li, Y. -S.

    2012-01-01

    One of the strongest predictions of the Delta CDM cosmological model is the presence of dark satellites orbiting all types of galaxies. We focus here on the dynamical effects of such satellites on disky dwarf galaxies, and demonstrate that these encounters can be dramatic. Although mergers with

  13. Gas, Stars, and Star Formation in Alfalfa Dwarf Galaxies

    Science.gov (United States)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and Hi components of 229 low H i mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H i masses dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M* approximately less than10(exp 8)M(sub 0) is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper Hi mass limit yields the selection of a sample with lower gas fractions for their M* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H i depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that Hi disks are more extended than stellar ones.

  14. Multimessenger Signatures of Massive Black Holes in Dwarf Galaxies

    Science.gov (United States)

    Bellovary, Jillian; Cleary, Colleen; Tremmel, Michael; Munshi, Ferah

    2018-01-01

    Inspired by the recent discovery of several nearby dwarf galaxies hosting active galactic nuclei, we present results from a series of cosmological hydrodynamic simulations focusing on dwarf galaxies which host supermassive black holes (SMBHs). Cosmological simulations are a vital tool for predicting SMBH populations and merger events which will eventually be observed by LISA. Dwarf galaxies are the most numerous in the universe, so even though the occupation fraction of SMBHs in dwarfs is less than unity, their contribution to the gravitational wave background could be non-negligible. We find that electromagnetic signatures from SMBH accretion are not common among most SMBH-hosting dwarfs, but the gravitational wave signatures can be substantial. The most common mass ratio for SMBH mergers in low-mass galaxy environments is ~1:20, which is an unexplored region of gravitational waveform parameter space. We discuss the occupation fraction of SMBHs in low-mass galaxies as well as differences in field and satellite populations, providing clues to search for and characterize these elusive giants lurking in the dwarfs.

  15. Interacting galaxy NGC4656 and its unusual dwarf companion

    Science.gov (United States)

    Zasov, Anatoly V.; Saburova, Anna S.; Egorov, Oleg V.; Uklein, Roman I.

    2017-08-01

    We studied the nearby edge-on galaxy NGC4656 and its dwarf low surface brightness companion with the enhanced UV brightness, NGC4656UV, belonging to the interacting system NGC4631/56. Regular photometric structure and relatively big size of NGC4656UV allows us to consider this dwarf galaxy as a separate group member rather than a tidal dwarf. Spectral long-slit observations were used to obtain the kinematical parameters and gas-phase metallicity of NGC4656UV and NGC4656. Our rough estimate of the total dynamical mass of NGC4656UV allowed us to conclude that this galaxy is the dark-matter dominated LSB dwarf or ultradiffuse galaxy. Young stellar population of NGC4656UV, as well as strong local non-circular gas motions in NGC4656 and the low oxygen gas abundance in the region of this galaxy adjacent to its dwarf companion, give evidence in favour of the accretion of metal-poor gas on to the discs of both galaxies.

  16. Far-infrared line images of dwarf galaxies

    Science.gov (United States)

    Poglitsch, A.; Geis, N.; Herrmann, F.; Madden, S. C.; Stacey, G. J.; Townes, C. H.; Genzel, R.

    1993-01-01

    Irregular dwarf galaxies are about ten times more widespread in the universe than regular spiral galaxies. They are characterized by a relatively low metallicity, i.e., lower abundance of the heavier elements (metals) with respect to hydrogen than in the solar neighborhood. These heavier elements in the form of molecules, atoms, or ions, which have radiative transitions in the infrared play a decisive role in the energy balance of the ISM and thereby for the formation of stars. Dwarf galaxies are thus model cases for the physical conditions in the early phase of the universe. Large Magellanic Cloud: 30 Doradus. The two nearest dwarf galaxies are the Magellanic clouds at a distance approximately 50 kpc. The LMC contains 30 Dor, a region with young, extremely massive stars which strongly interact with the surrounding ISM on account of their stellar winds and intense UV radiation. 30 Dor is the brightest object in the LMC at almost all wavelengths.

  17. Marvel-ous Dwarfs: Results from Four Heroically Large Simulated Volumes of Dwarf Galaxies

    Science.gov (United States)

    Munshi, Ferah; Brooks, Alyson; Weisz, Daniel; Bellovary, Jillian; Christensen, Charlotte

    2018-01-01

    We present results from high resolution, fully cosmological simulations of cosmic sheets that contain many dwarf galaxies. Together, they create the largest collection of simulated dwarf galaxies to date, with z=0 stellar masses comparable to the LMC or smaller. In total, we have simulated almost 100 luminous dwarf galaxies, forming a sample of simulated dwarfs which span a wide range of physical (stellar and halo mass) and evolutionary properties (merger history). We show how they can be calibrated against a wealth of observations of nearby galaxies including star formation histories, HI masses and kinematics, as well as stellar metallicities. We present preliminary results answering the following key questions: What is the slope of the stellar mass function at extremely low masses? Do halos with HI and no stars exist? What is the scatter in the stellar to halo mass relationship as a function of dwarf mass? What drives the scatter? With this large suite, we are beginning to statistically characterize dwarf galaxies and identify the types and numbers of outliers to expect.

  18. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    Science.gov (United States)

    Wheeler, Coral Rose

    We study dwarf satellite galaxy quenching using observations from the Geha et al. (2012) NSA/SDSS catalog together with CDM cosmological simulations to facilitate selection and interpretation. We show that fewer than 30% of dwarfs (M* ˜ 108.5-9.5 Msun ) identified as satellites within massive host halos (M host ˜ 1012.5-14 Msun) are quenched. We conclude that whatever the action triggering environmental quenching of dwarf satellites, the process must be highly inefficient. We investigate a series of simple, one-parameter quenching models in order to understand what is required to explain the low quenched fraction and conclude that either the quenching timescale is very long (> 9.5 Gyr, a "slow starvation" scenario) or that the environmental trigger is not well matched to accretion within the virial volume. We further present FIRE/Gizmo hydrodynamic zoom-in simulations of isolated dark matter halos, two each at the mass of classical dwarf galaxies (Mvir ˜ 1010 Msun) and ultra-faint galaxies (Mvir ˜ 10 9 Msun). The resulting central galaxies lie on an extrapolated abundance matching relation from M* ˜ 106 to 104 Msun without a break. Our dwarfs with M* ˜ 106 Msun each have 1-2 well-resolved satellites with M* = 3 - 200 x 103 Msun. Even our isolated ultra-faint galaxies have star-forming subhalos. We combine our results with the ELVIS simulations to show that targeting the ˜ 50 kpc regions around nearby isolated dwarfs could increase the chances of discovering ultra-faint galaxies by ˜35% compared to random pointings. The well-resolved ultra-faint galaxies in our simulations (M * ˜ 3 - 30 x 103 Msun) form within Mpeak ˜ 0.5 - 3 x 109 Msun halos. Each has a uniformly ancient stellar population (> 10 Gyr) owing to reionization-related quenching. More massive systems, in contrast, all have late-time star formation. Our results suggest that Mhalo ˜ 5 x 109 Msun is a probable dividing line between halos hosting reionization "fossils" and those hosting dwarfs

  19. Unveiling the Secret of a Virgo Dwarf Galaxy

    Science.gov (United States)

    2000-05-01

    Dwarf galaxies may not be as impressive in appearance as their larger brethren, but they are at least as interesting from a scientific point of view. And sometimes they may have hidden properties that will only be found by means of careful observations, probing the signals of their stars at the faintest level. Such as the entirely unexpected, well developed spiral structure within an otherwise seemingly normal dwarf elliptical galaxy! This is the surprise result of a new study by a team of astronomers [1], headed by Helmut Jerjen from the Australian National University (Canberra) who obtained detailed observations with the ESO Very Large Telescope (VLT) of the dwarf galaxy IC 3328 in the Virgo Cluster of Galaxies, some 50 million light-years away. Dwarf galaxies Dwarf galaxies are present in all major clusters of galaxies and dominate by numbers in the universe. They may contain a few (tens of) millions of stars, as compared to galaxies of normal size with hundreds of billions of stars. About two dozen dwarf galaxies are known in the "Local Group" of galaxies of which the Milky Way galaxy in which we live is also a member. The Large and Small Magellanic Clouds are some of the best known dwarf galaxies - they are of the irregular type - while NGC 147 and NGC 205, two companions to the great Andromeda Galaxy, are of the elliptical type. Dwarf elliptical galaxies are characterized by their smooth appearance. From various studies, it is known that they are tri-axial ellipsoids of different degrees of elongation. Some are almost spherical while others are more pancake- or cigar-shaped. Like the elliptical galaxies of normal size, dwarf ellipticals are almost pure aggregates of stars. In contrast, spiral galaxies also contain clouds of gas and dust. The visible mass of spiral galaxies is in a rotating disk. Dwarf ellipticals generally keep their form because of the random motions of their stars. VLT observations of dwarf elliptical galaxies Using the FORS1 multi

  20. Large-scale environmental dependence of chemical abundances in dwarf galaxies and implications for connecting star formation and halo mass

    OpenAIRE

    Douglass, Kelly A.; Vogeley, Michael S.; Cen, Renyue

    2017-01-01

    We study how the void environment affects the chemical evolution of galaxies in the universe by comparing the oxygen and nitrogen abundances of dwarf galaxies in voids with dwarf galaxies in denser regions. Using spectroscopic observations from SDSS DR7, we estimate the oxygen and nitrogen abundances of 993 void dwarf galaxies and 759 dwarf galaxies in denser regions. We use the Direct Te method for calculating the gas-phase chemical abundances in the dwarf galaxies because it is best suited ...

  1. Two channels for the formation of compact dwarf galaxies in clusters of galaxies

    Science.gov (United States)

    Martinović, Nemanja; Micic, Miroslav

    2017-10-01

    We have identified two channels for the formation of compact dwarf galaxies in the Illustris simulation by reconstructing mass and distance histories of candidates located in the vicinity of the simulation's most massive cluster galaxies. One channel is tidal stripping of Milky Way-mass galaxies that form outside of clusters and eventually sink into them, spiralling in towards central massive objects. The second channel of formation is an in situ formation (in reference to the parent cluster) of dwarf mass galaxies, with negligible evolution and limited change in stellar mass. We find 19 compact dwarf galaxies at the centres of 14 clusters, consistent with observations: 30 per cent of these have an external origin while 70 per cent are formed in situ.

  2. Cosmology: Photons from dwarf galaxy zap hydrogen

    Science.gov (United States)

    Erb, Dawn K.

    2016-01-01

    The detection of photons sufficiently energetic to ionize neutral hydrogen, coming from a compact, star-forming galaxy, offers clues to how the first generation of galaxies may have reionized hydrogen gas in the early Universe. See Letter p.178

  3. The Metallicity of Void Dwarf Galaxies

    NARCIS (Netherlands)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the

  4. Exploring Properties of HI Clouds in Dwarf Irregular Galaxies

    Science.gov (United States)

    Berger, Clara; Hunter, Deidre Ann

    2018-01-01

    Dwarf Irregular galaxies form stars and maintain exponential stellar disks at extremely low gas densities. One proposed method of maintaining such regular outer disks is scattering stars off of HI clouds. In order to understand the processes present in dwarf irregular stellar disks, we present a survey of atomic hydrogen clouds in and around a subset of representative galaxies from the LITTLE THINGS survey. We apply a cloud identification program to the 21 cm HI line emission cubes and extract masses, radii, surface densities, and distances from the center of the galaxy in the plane of the galaxy of each cloud. Our data show a wide range of clouds characterized by low surface densities but varied in mass and size. The number of clouds found and the mass of the most massive cloud show no correlation to integrated star forming rates or luminosity in these galaxies. However, they will be used as input for models of stars scattering off of HI clouds to better understand the regular stellar disks in dwarf Irregular galaxies.We acknowledge support from the National Science Foundation grant AST-1461200 to Northern Arizona University for Research Experiences for Undergraduates summer internships.

  5. Serendipitous discovery of a faint dwarf galaxy near a Local Volume dwarf

    Science.gov (United States)

    Makarova, L. N.; Makarov, D. I.; Antipova, A. V.; Karachentsev, I. D.; Tully, R. B.

    2018-03-01

    A faint dwarf irregular galaxy has been discovered in the HST/ACS field of LV J1157+5638. The galaxy is resolved into individual stars, including the brightest magnitude of the red giant branch. The dwarf is very likely a physical satellite of LV J1157+5638. The distance modulus of LV J1157+5638 using the tip of the red giant branch (TRGB) distance indicator is 29.82 ± 0.09 mag (D = 9.22 ± 0.38 Mpc). The TRGB distance modulus of LV J1157+5638 sat is 29.76 ± 0.11 mag (D = 8.95 ± 0.42 Mpc). The distances to the two galaxies are consistent within the uncertainties. The projected separation between them is only 3.9 kpc. LV J1157+5638 has a total absolute V magnitude of -13.26 ± 0.10 and linear Holmberg diameter of 1.36 kpc, whereas its faint satellite LV J1157+5638 sat has MV = -9.38 ± 0.13 mag and Holmberg diameter of 0.37 kpc. Such a faint dwarf was discovered for the first time beyond the nearest 4 Mpc from us. The presence of main-sequence stars in both galaxies unambiguously indicates the classification of the objects as dwarf irregulars with recent or ongoing star formation events in both galaxies.

  6. The Horizontal Branch of the Sculptor Dwarf galaxy

    NARCIS (Netherlands)

    Salaris, Maurizio; de Boer, Thomas; Tolstoy, Eline; Fiorentino, Giuliana; Cassisi, Santi

    2013-01-01

    We have performed the first detailed simulation of the horizontal branch of the Sculptor dwarf spheroidal galaxy by means of synthetic modelling techniques, taking consistently into account the star formation history and metallicity evolution as determined from the main sequence and red giant branch

  7. Fast radio burst tied to distant dwarf galaxy (Image 2)

    National Science Foundation

    2017-06-07

    Full Text Available Radio telescope at Arecibo only localized the fast radio burst to the area inside the two circles in this image, but the Very Large Array was able to pinpoint it as a dwarf galaxy within the square (shown at intersection of cross hairs in enlarged box)

  8. The dynamical and chemical evolution of dwarf spheroidal galaxies

    NARCIS (Netherlands)

    Revaz, Y.; Jablonka, P.; Sawala, T.; Hill, V.; Letarte, B.; Irwin, M.; Battaglia, G.; Helmi, A.; Shetrone, M. D.; Tolstoy, E.; Venn, K. A.

    We present a large sample of fully self-consistent hydrodynamical Nbody/Tree-SPH simulations of isolated dwarf spheroidal galaxies (dSphs). It has enabled us to identify the key physical parameters and mechanisms at the origin of the observed variety in the Local Group dSph properties. The initial

  9. Sulphur, zinc and carbon in the Sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Skúladóttir, Ása

    2016-01-01

    The Sculptor dwarf spheroidal galaxy is a Milky Way satellite with predominantly old stellar population, and therefore the ideal target to study early chemical evolution. The chemical abundances of photospheres of stars reveal the composition of their birth environment; studying stars of different

  10. Chemical Evolution of Mn in Three Dwarf Spheroidal Galaxies

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Based on an improved model, more reasonable nucleosyn-thesis and explosion rate of SNeIa and CCSNe, we studied Mn evolution for three local dwarf spheroidal galaxies (dSphs), considering the detailed SNe yield and explosion rates for different types of progenitors. The results can explain the main ...

  11. Dwarf Galaxies from Deep Fields to the Near Field

    Science.gov (United States)

    Boylan-Kolchin, Michael

    2017-08-01

    We propose to use cosmological hydrodynamical simulations - both zoom-in and large-volume - to study the connections between the faintest observable galaxies in the high-redshift Universe and dwarf galaxies locally.Studies of the likely descendants of very faint HUDF / Frontier Field galaxies will provide a powerful complement to direct observations at z 8 for investigating the physical processes in the high-redshift Universe and, in connection with properties of low-mass galaxies in the nearby Universe, will produce strong constraints on reionization scenarios and dark matter models. Understanding the relationship between high-redshift and local galaxy populations through simulations requires an accurate knowledge of the links between galaxy populations at cosmic dawn and those locally. All existing results on this topic either suffer from poor statistics or are unable to resolve the hosts of Frontier Field galaxies, however. Our program will address this shortcoming by combining a series of zoom-in hydrodynamical simulations with the next generation of large-volume hydrodynamical simulations of the galaxy population from the Illustris project.HST has made unique and invaluable contributions to surveys of galaxies at high redshifts and to detailed, resolved-star studies of individual galaxies in the very nearby Universe. Our study will help cement links between these two HST legacies. We will quantify the relationships between faint populations at low and high redshifts, characterize the merger histories of dwarf galaxies (both forward and backward in time), and test the validity of various popular models such as abundance matching based on UV luminosity functions.

  12. Gas and Dust Properties in Dwarf Irregular Galaxies

    Science.gov (United States)

    Jones, A. P.; Madden, S. C.; Colgan, S. W. J.; Geis, N.; Haas, M.; Maloney, P.; Nikola, T.; Poglitsch, A.

    1997-01-01

    We present a study of the 158 (micron)meter [C II] fine structure emission line from a sample of 11 low metallicity irregular galaxies using the NASA Kuiper Airborne Observatory (KAO). Our preliminary results demonstrate that the ratio of the 158 (micron)meter [C II] emission to the CO-12(1 yields 0) emission ranges from 6,000 to 46,000. These ratios are significantly enhanced relative to clouds within the Galaxy and to normal metallicity galaxies, which typically have values in the range 2,000 to 6,300. We also find that the [C II] emission in dwarf irregular galaxies can be up to 5% of the far-infrared (FIR) emission, a higher fraction of the FIR than in normal metallicity galaxies. We discuss these results for the dwarf irregular galaxies and compare them to those observed in normal metallicity galaxies. The enhanced 158 (micron)meter [C II] emission relative to CO-12(1 yields 0) emission can be understood in terms of the increased penetration depth of ultraviolet (UV) photons into the clouds in low metallicity environments.

  13. The Globular Cluster Systems of Local Group Dwarf Galaxies

    Science.gov (United States)

    Ferguson, Annette

    2017-08-01

    We propose to obtain deep ACS and WFC3 imaging of 26 globular clusters (GCs) lying in three Local Group dwarf galaxies - NGC 147, NGC 185 and NGC 6822. These three galaxies possess the richest dwarf galaxy GC systems known within the Local Group and our sample represents their entire GC populations. We will characterize, in unprecedented detail, the properties of the GCs in these low mass systems and construct a reference dataset against which to compare the properties of suspected accreted families of GCs in the M31 and Milky Way halos. Our deep imaging will allow us to derive the properties of the constituent stellar populations (e.g. metallicities, HB morphologies) of the GCs, as well as their structural parameters and line-of-sight distances, and quantify the variation within and between GC systems in galaxies of the dE and dIrr classes. In addition, our imaging will facilitate the construction of deep colour-magnitude diagrams for a wide swathe of the field populations in these dwarf galaxies, from which we will extract detailed star formation histories. This will enable us to analyse spatial variations in their stellar mass assembly histories (complementing previous deep single field studies of these systems) and quantitatively compare the history of star formation as traced by field stars and GCs.

  14. New Ultra-Compact Dwarf Galaxies in Clusters

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    How do ultra-compact dwarf galaxies (UCDs) galaxies that are especially small and dense form and evolve? Scientists have recently examined distant galaxy clusters, searching for more UCDs to help us answer this question.Origins of DwarfsIn recent years we have discovered a growing sample of small, very dense galaxies. Galaxies that are tens to hundreds of light-years across, with masses between a million and a billion solar masses, fall into category of ultra-compact dwarfs (UCDs).An example of an unresolved compact object from the authors survey that is likely an ultra-compact dwarf galaxy. [Adapted from Zhang Bell 2017]How do these dense and compact galaxies form? Two possibilities are commonly suggested:An initially larger galaxy was tidally stripped during interactions with other galaxies in a cluster, leaving behind only its small, dense core as a UCD.UCDs formed as compact galaxies at very early cosmic times. The ones living in a massive dark matter halo may have been able to remain compact over time, evolving into the objectswe see today.To better understand which of these formation scenarios applies to which galaxies, we need a larger sample size! Our census of UCDs is fairly limited and because theyare small and dim, most of the ones weve discovered are in the nearby universe. To build a good sample, we need to find UCDs at higher redshifts as well.A New SampleIn a recent study, two scientists from University of Michigan have demonstrated how we might find more UCDs. Yuanyuan Zhang (also affiliated with Fermilab) and Eric Bell used the Cluster Lensing and Supernova Survey with Hubble (CLASH) to search 17 galaxy clusters at intermediate redshifts of 0.2 z 0.6, looking for unresolved objects that might be UCDs.The mass and size distributions of the UCD candidates reported in this study, in the context of previously known nuclear star clusters, globular clusters (GCs), UCDs, compact elliptical galaxies (cEs), and dwarf galaxies. [Zhang Bell 2017]Zhang and

  15. Gas-rich dwarf galaxies in dense and sparse environments

    Science.gov (United States)

    Hoffman, G. Lyle

    1993-01-01

    Dwarf irregular galaxies (generically labelled Im for the present purposes) pose an enigma to students of galaxy evolution. In nearby groups and the Virgo cluster, Im galaxies are at least as abundant as spiral galaxies, and their low surface brightnesses and high gas-to-stars ratios suggest that (at least in the stochastic self-propagating star formation scenario) there should be significant numbers of HI clouds with masses approaching 10(exp 8) solar mass which have undergone very little or no star formation. To date, however, no clouds with so little star formation that they would not be recognized as Im galaxies on high-quality photographic plates have been identified. There have been suggestions that such dwarfs may be tidally disrupted in regions of high galactic density, but may be prevalent in low density regions. We offer data from three parallel programs relevant to this issue. (1) A large number of Im galaxies throughout the Local Supercluster have been mapped in the HI spectral line using the Arecibo Radiotelescope, and we can establish the frequency with which HI disks much more extended than their optically visible portions are found. (2) Our extensive mapping of spiral and dwarf galaxies in the Virgo cluster allows us to set stringent limits on the density of star-free Hi clouds in that cluster. (3) We have conducted a sampling of the void in the distribution of galaxies toward the super galactic pole, optimized for finding low-mass HI clouds at redshifts out to approximately 2000 km/s.

  16. NGC 5291: Implications for the Formation of Dwarf Galaxies

    Science.gov (United States)

    Malphrus, Benjamin K.; Simpson, Caroline E.; Gottesman, S. T.; Hawarden, Timothy G.

    1997-01-01

    The possible formation and evolution of dwarf irregular galaxies from material derived from perturbed evolved galaxies is addressed via an H I study of a likely example, the peculiar system NGC 5291. This system, located in the western outskirts of the cluster Abell 3574, contains the lenticular galaxy NGC 5291 which is in close proximity to a disturbed companion and is flanked by an extensive complex of numerous knots extending roughly 4 min north and 4 min south of the galaxy. In an initial optical and radio study, Longmore et al. (1979, MNRAS, 188, 285) showed that these knots have the spectra of vigorous star-forming regions, and suggested that some may in fact be young dwarf irregular galaxies. High resolution 21-cm line observations taken with the VLA are presented here and reveal that the H I distribution associated with this system encompasses not only the entire N-S complex of optical knots, but also forms an incomplete ring or tail that extends approximately 3 min to the west. The H I associated with NGC 5291 itself shows a high velocity range; the Seashell is not detected. The formation mechanism for this unusual system is unclear and two models - a large, low-luminosity ram-swept disk, and a ram-swept interaction-are discussed. The H I in the system contains numerous concentrations, mostly along the N-S arc of the star-forming complexes, which generally coincide with one or more optical knots; the larger H I features contain several x 10(exp 9) solar mass of gas. Each of the knots is compared to a set of criteria designed to determine if these objects are bound against their own internal kinetic energy and are tidally stable relative to the host galaxy. An analysis of the properties of the H I concentrations surrounding the optical star-forming complexes indicates that at least the largest of these is a bound system; it also possesses a stellar component. It is suggested that this object is a genuinely young dwarf irregular galaxy that has evolved from

  17. The Full-fledged Dwarf Irregular Galaxy Leo A

    Science.gov (United States)

    Vansevičius, Vladas; Arimoto, Nobuo; Hasegawa, Takashi; Ikuta, Chisato; Jablonka, Pascale; Narbutis, Donatas; Ohta, Kouji; Stonkutė, Rima; Tamura, Naoyuki; Vansevičius, Valdas; Yamada, Yoshihiko

    2004-08-01

    We have studied Leo A, an isolated and extremely gas-rich dwarf irregular galaxy of very low stellar mass and metallicity. Ages of the stellar populations in Leo A range from ~10 Myr to ~10 Gyr. Here we report the discovery of an old stellar halo and a sharp stellar edge. We also find that the distribution of stars extends beyond the gaseous envelope of the galaxy. Therefore, by its structure as well as stellar and gaseous content, Leo A is found to resemble massive disk galaxies. This implies that galaxies of very low stellar mass are also able to develop complex structures, challenging contemporary understanding of galaxy evolution. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  18. Dwarf Galaxies in the Local Group

    NARCIS (Netherlands)

    Tolstoy, Eline; Bruzual, GA; Charlot, S

    2010-01-01

    Within the Local Universe galaxies can be studied in great detail star by star. The Color-Magnitude Diagram synthesis analysis method is well established as the most accurate way to determine the detailed star formation history of galaxies going back to the earliest times. This approach received a

  19. The Evolution of Nearby Dwarf Galaxies

    NARCIS (Netherlands)

    Tolstoy, E.; Koleva, M; Prugniel, P; Vauglin,

    Within the Local Universe galaxies can be studied in great detail star by star. The Colour-Magnitude Diagram synthesis analysis method is well established as the most accurate way to determine the detailed star formation history of galaxies going back to the earliest times. This approach has

  20. The Blue Compact Dwarf Galaxy IZw18

    NARCIS (Netherlands)

    Musella, I.; Marconi, M.; Fiorentino, G.; Clementini, G.; Aloisi, A.; Annibali, F.; Contreras, R.; Saha, A.; Tosi, M.; van der Marel, R. P.

    2012-01-01

    We present the results obtained for the Blue compact galaxy IZw18 on the basis of ACS HST data obtained from our group. In particular, we discuss the stellar population and the variable stars content of this galaxy to get information about its star formation history and distance.

  1. Discovery of Diffuse Dwarf Galaxy Candidates around M101

    Science.gov (United States)

    Bennet, P.; Sand, D. J.; Crnojević, D.; Spekkens, K.; Zaritsky, D.; Karunakaran, A.

    2017-11-01

    We have conducted a search of a 9 deg2 region of the Canada-France-Hawaii-Telescope Legacy Survey around the Milky Way analog M101 (D ˜ 7 Mpc), in order to look for previously unknown low-surface-brightness galaxies. This search has uncovered 38 new low-surface-brightness dwarf candidates, and confirmed 11 previously reported galaxies, all with central surface brightness μ(g, 0) > 23 mag arcsec-2, potentially extending the satellite luminosity function for the M101 group by ˜1.2 mag. The search was conducted using an algorithm that nearly automates the detection of diffuse dwarf galaxies. The candidates’ small sizes and low surface brightnesses mean that the faintest of these objects would likely be missed by traditional visual or computer detection techniques. The dwarf galaxy candidates span a range of -7.1 ≥ M g ≥ -10.2 and half-light radii of 118-540 pc at the distance of M101, and they are well fit by simple Sérsic surface brightness profiles. These properties are consistent with dwarfs in the Local Group, and to match the Local Group luminosity function, ˜10-20 of these candidates should be satellites of M101. Association with a massive host is supported by the lack of detected star formation and the overdensity of candidates around M101 compared to the field. The spatial distribution of the dwarf candidates is highly asymmetric, and concentrated to the northeast of M101, therefore distance measurements will be required to determine if these are genuine members of the M101 group.

  2. Spectroscopy of dwarf elliptical galaxies in the Fornax cluster

    Science.gov (United States)

    Held, Enrico V.; Mould, Jeremy R.

    1994-01-01

    We present the results of spectroscopic observations of 10 nucleated dwarf elliptical galaxies (dE's) in the Fornax cluster. The blue spectra of Fornax dE galaxies indicate a wide range of metallicities at a given luminosity, similar to those of intermediate to metal-rich globular clusters. Metal abundances derived in this paper are well correlated with optical colors and agree with previous spectroscopic results. A discrepancy with metallicities inferred from infrared colors is evident; possible causes include an intermediate age population and dilution of spectral features by a blue light excess. Dwarf ellipticals exhibit a wide variation of hydrogen line strength which points to a complex star formation history. Prominent Balmer absorption lines are the signature of a young stellar population in the nuclei of some (but not all) dE's, while moderately strong Balmer lines in relatively metal-rich dE's are more consistent with an extended main sequence. In a few metal-poor dE galaxies, the hydrogen lines are consisent with, or perhaps weaker than, those found in Galactic globulars of similar metallicity. In the limited magnitude range of this sample, there is no apparent correlation of metallicity either with effective and central surface brightness, or with total and nuclear magnitudes. The velocity distribution of the Fornax dwarfs is flatter than that of brighter galaxies at the 75% confidence level, possibly indicating a difference in the kinematics of the two samples.

  3. Galactic Building Blocks: Dwarf Galaxies Near and Far

    Science.gov (United States)

    Lipnicky, Andrew; Chakrabarti, Sukanya

    2017-01-01

    The work I have done during my thesis has consisted of both observational and theoretical projects involving dwarf galaxies and Cold Dark Matter (CDM) sub-structure both around the Milky Way and in redshift z˜0.1 galaxies. The dwarf galaxies around the Milky Way are distributed in a so-called vast polar structure (VPOS) that may be in conflict with ΛCDM simulations. For this project, we seek to investigate two key questions to determine if the VPOS poses a serious challenge to the ΛCDM paradigm on galactic scales. First, we ask which dwarf galaxy satellites drive the fit to the VPOS and create planar structure. Second, we ask if the VPOS remains coherent as a function of time. Using the measured HST proper motions and associated uncertainties, we integrate the orbits of the classical Milky Way satellites backwards in time and find that for the mean of the measured HST proper motions, the VPOS deteriorates in less than a dynamical time and resembles an isotropic structure. We also explore the effect of the uncertainties on the HST proper motions on the coherence of the VPOS as a function of time. We find that nine of the eleven classical dwarfs have reliable proper motions; for these nine, the VPOS also deteriorates in less than a dynamical time, indicating that the VPOS is not a dynamically stable structure. I will also briefly discuss the observational work that I have done during my thesis, including HI observations of lensed spiral galaxies to constrain CDM sub-structure.

  4. The dwarf galaxy population of nearby galaxy clusters

    NARCIS (Netherlands)

    Lisker, Thorsten; Wittmann, Carolin; Pak, Mina; Janz, Joachim; Bialas, Daniel; Peletier, Reynier; Grebel, Eva; Falcon Barroso, Jesus; Toloba, Elisa; Smakced Collaboration, Focus Collaboration

    The Fornax, Virgo, Ursa Major and Perseus galaxy clusters all have very different characteristics, in terms of their density, mass, and large-scale environment. We can regard these clusters as laboratories for studying environmental influence on galaxy evolution, using the sensitive low-mass

  5. Formation of massive clouds and dwarf galaxies during tidal encounters

    Science.gov (United States)

    Kaufman, Michele; Elmegreen, Bruce G.; Thomasson, Magnus; Elmegreen, Debra M.

    1993-01-01

    Gerola et al. (1983) propose that isolated dwarf galaxies can form during galaxy interactions. As evidence of this process, Mirabel et al. (1991) find 10(exp 9) solar mass clouds and star formation complexes at the outer ends of the tidal arms in the Antennae and Superantennae galaxies. We describe observations of HI clouds with mass greater than 10(exp 8) solar mass in the interacting galaxy pair IC 2163/NGC 2207. This pair is important because we believe it represents an early stage in the formation of giant clouds during an encounter. We use a gravitational instability model to explain why the observed clouds are so massive and discuss a two-dimensional N-body simulation of an encounter that produces giant clouds.

  6. Metal diffusion in smoothed particle hydrodynamics simulations of dwarf galaxies

    OpenAIRE

    Williamson, David John; Martel, Hugo; Kawata, Daisuke

    2016-01-01

    We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows, and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths, by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by var...

  7. Dwarf Galaxies, MOND, and Relativistic Gravitation

    Directory of Open Access Journals (Sweden)

    Arthur Kosowsky

    2010-01-01

    Certain limits of these theories can also give the accelerating expansion of the Universe. The standard dark matter cosmology boasts numerous manifest triumphs; however, alternatives should also be pursued as long as outstanding observational issues remain unresolved, including the empirical successes of MOND on galaxy scales and the phenomenology of dark energy.

  8. HERSCHEL SPECTROSCOPIC OBSERVATIONS OF LITTLE THINGS DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Cigan, Phil; Young, Lisa [Physics Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Cormier, Diane [Institut für Theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Lebouteiller, Vianney; Madden, Suzanne [Laboratoire AIM, CEA/DSM—CNRS—Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Hunter, Deidre [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Brinks, Elias [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom); Elmegreen, Bruce [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Hts., NY 10598 (United States); Schruba, Andreas [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Heesen, Volker, E-mail: pcigan@alumni.nmt.edu [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Collaboration: LITTLE THINGS Team

    2016-01-15

    We present far-infrared (FIR) spectral line observations of five galaxies from the Little Things sample: DDO 69, DDO 70, DDO 75, DDO 155, and WLM. While most studies of dwarfs focus on bright systems or starbursts due to observational constraints, our data extend the observed parameter space into the regime of low surface brightness dwarf galaxies with low metallicities and moderate star formation rates. Our targets were observed with Herschel at the [C ii] 158 μm, [O i] 63 μm, [O iii] 88 μm, and [N ii] 122 μm emission lines using the PACS Spectrometer. These high-resolution maps allow us for the first time to study the FIR properties of these systems on the scales of larger star-forming complexes. The spatial resolution in our maps, in combination with star formation tracers, allows us to identify separate photodissociation regions (PDRs) in some of the regions we observed. Our systems have widespread [C ii] emission that is bright relative to continuum, averaging near 0.5% of the total infrared (TIR) budget—higher than in solar-metallicity galaxies of other types. [N ii] is weak, suggesting that the [C ii] emission in our galaxies comes mostly from PDRs instead of the diffuse ionized interstellar medium (ISM). These systems exhibit efficient cooling at low dust temperatures, as shown by ([O i]+[C ii])/TIR in relation to 60 μm/100 μm, and low [O i]/[C ii] ratios which indicate that [C ii] is the dominant coolant of the ISM. We observe [O iii]/[C ii] ratios in our galaxies that are lower than those published for other dwarfs, but similar to levels noted in spirals.

  9. A vast, thin plane of corotating dwarf galaxies orbiting the Andromeda galaxy.

    Science.gov (United States)

    Ibata, Rodrigo A; Lewis, Geraint F; Conn, Anthony R; Irwin, Michael J; McConnachie, Alan W; Chapman, Scott C; Collins, Michelle L; Fardal, Mark; Ferguson, Annette M N; Ibata, Neil G; Mackey, A Dougal; Martin, Nicolas F; Navarro, Julio; Rich, R Michael; Valls-Gabaud, David; Widrow, Lawrence M

    2013-01-03

    Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. It has previously been suspected that dwarf galaxies may not be isotropically distributed around our Galaxy, because several are correlated with streams of H I emission, and may form coplanar groups. These suspicions are supported by recent analyses. It has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence of a planar subgroup of satellites in the Andromeda galaxy (M 31), comprising about half of the population. The structure is at least 400 kiloparsecs in diameter, but also extremely thin, with a perpendicular scatter of less than 14.1 kiloparsecs. Radial velocity measurements reveal that the satellites in this structure have the same sense of rotation about their host. This shows conclusively that substantial numbers of dwarf satellite galaxies share the same dynamical orbital properties and direction of angular momentum. Intriguingly, the plane we identify is approximately aligned with the pole of the Milky Way's disk and with the vector between the Milky Way and Andromeda.

  10. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    Science.gov (United States)

    Wheeler, Coral Rose

    2016-06-01

    The high dark matter content and the shallow potential wells of low mass galaxies (10^3 Msun 10 Gyr), having had their star formation shut down by reionization. Additionally, we show that the kinematics and ellipticities of isolated simulated dwarf centrals are consistent with observed dSphs satellites without the need for harassment from a massive host. We further show that most (but not all) observed *isolated* dIrrs in the Local Volume also have dispersion-supported stellar populations, contradicting the previous view that these objects are rotating. Finally, we investigate the stellar age gradients in dwarfs — showing that early mergers and strong feedback can create an inverted gradient, with the older stars occupying larger galactocentric radii.These results offer an interesting direction in testing models that attempt to solve dark matter problems via explosive feedback episodes. Can the same models that create large cores in simulated dwarfs preserve the mild stellar rotation that is seen in a minority of isolated dIrrs? Can the bursty star formation that created a dark matter core also match observed stellar gradients in low mass galaxies? Comparisons between our simulations and observed dwarfs should provide an important benchmark for this question going forward.

  11. VLT/UVES abundances in four nearby dwarf spheroidal galaxies. II. Implications for understanding galaxy evolution

    NARCIS (Netherlands)

    Tolstoy, E; Venn, KA; Shetrone, M; Primas, F; Hill, [No Value; Kaufer, A; Szeifert, T

    We have used the Ultraviolet Visual-Echelle Spectrograph (UVES) on Kueyen (UT2) of the Very Large Telescope to take spectra of 15 individual red giant stars in the centers of four nearby dwarf spheroidal galaxies (dSph's) : Sculptor, Fornax, Carina, and Leo I. We measure the abundance variations of

  12. Dwarf galaxies and the cosmic web

    OpenAIRE

    Benítez-Llambay, Alejandro; Navarro, Julio F.; Abadi, Mario G.; Gottlöber, Stefan; Yepes, Gustavo; Hoffman, Yehuda; Steinmetz, Matthias

    2013-01-01

    The Astrophysical Journal Letters 763.2 (2013): L41 reproduced by permission of the AAS We use a cosmological simulation of the formation of the Local Group of Galaxies to identify a mechanism that enables the removal of baryons from low-mass halos without appealing to feedback or reionization. As the Local Group forms, matter bound to it develops a network of filaments and pancakes. This moving web of gas and dark matter drifts and sweeps a large volume, overtaking many halos in the proce...

  13. The horizontal branch of the Sculptor dwarf galaxy

    Science.gov (United States)

    Salaris, Maurizio; de Boer, Thomas; Tolstoy, Eline; Fiorentino, Giuliana; Cassisi, Santi

    2013-11-01

    We have performed the first detailed simulation of the horizontal branch (HB) of the Sculptor dwarf spheroidal galaxy by means of synthetic modelling techniques, taking consistently into account the star formation history and metallicity evolution as determined from the main sequence and red giant branch spectroscopic observations. The only free parameter in the whole analysis is the integrated mass loss of red giant branch stars. This is the first time that synthetic HB models, consistent with the complex star formation history of a galaxy, are calculated and matched to the observed HB. We find that the metallicity range covered by the star formation history, as constrained by the red giant branch spectroscopy, plus a simple mass loss law, enable us to cover both the full magnitude and colour range of HB stars. In addition, the number count distribution along the observed HB can be also reproduced provided that the red giant branch mass loss is mildly metallicity dependent, with a very small dispersion at fixed metallicity. The magnitude, metallicity and period distribution of the RR Lyrae stars are also well reproduced. There is no excess of bright objects that require enhanced-He models. The lack of signatures of enhanced-He stars along the HB is consistent with the lack of the O-Na anticorrelation observed in Sculptor and other dwarf galaxies, and confirms the intrinsic difference between Local Group dwarf galaxies and globular cluster populations. We also compare the brightness of the observed red giant branch bump with the synthetic counterpart, and find a discrepancy. The theoretical bump is brighter than the observed one, which is similar to what is observed in Galactic globular clusters.

  14. Dark Matter Searches with Cherenkov Telescopes: Nearby Dwarf Galaxies or Local Galaxy Clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Conde, Miguel A.; /KIPAC, Menlo Park /SLAC /IAC, La Laguna /Laguna U., Tenerife; Cannoni, Mirco; /Huelva U.; Zandanel, Fabio; /IAA, Granada; Gomez, Mario E.; /Huelva U.; Prada, Francisco; /IAA, Granada

    2012-06-06

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  15. Bars in dark matter-dominated dwarf galaxy discs

    Science.gov (United States)

    Marasco, A.; Oman, K. A.; Navarro, J. F.; Frenk, C. S.; Oosterloo, T.

    2018-02-01

    We study the shape and kinematics of simulated dwarf galaxy discs in the APOSTLE suite of ΛCDM cosmological hydrodynamical simulations. We find that a large fraction of these gas-rich, star-forming discs show weak bars in their stellar component, despite being dark matter-dominated systems. The bar pattern shape and orientation reflect the ellipticity of the dark matter potential, and its rotation is locked to the slow figure rotation of the triaxial dark halo. The bar-like nature of the potential induces non-circular motions in the gas component, including strong bisymmetric flows that can be readily seen as m = 3 harmonic perturbations in the H I line-of-sight velocity fields. Similar bisymmetric flows are seen in many galaxies of the THINGS and LITTLE THINGS surveys, although on average their amplitudes are a factor of ˜2 weaker than in our simulated discs. Our results indicate that bar-like patterns may arise even when baryons are not dominant, and that they are common enough to warrant careful consideration when analyzing the gas kinematics of dwarf galaxy discs.

  16. CALIBRATING UV STAR FORMATION RATES FOR DWARF GALAXIES FROM STARBIRDS

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Mitchell, Noah P. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street, S.E., Minneapolis, MN 55455 (United States); Dolphin, Andrew E., E-mail: kmcquinn@astro.umn.edu [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States)

    2015-08-01

    Integrating our knowledge of star formation (SF) traced by observations at different wavelengths is essential for correctly interpreting and comparing SF activity in a variety of systems and environments. This study compares extinction corrected integrated ultraviolet (UV) emission from resolved galaxies with color–magnitude diagram (CMD) based star formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The data sets are from the panchromatic Starburst Irregular Dwarf Survey and include deep legacy GALEX UV imaging, Hubble Space Telescope optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near-UV fluxes predicted from the CMD-based SFRs—using four different models—agree with the measured, extinction corrected, integrated near-UV fluxes from GALEX images, but the far-UV (FUV) predicted fluxes do not. Furthermore, we find a systematic deviation between the SFRs based on integrated FUV luminosities and existing scaling relations, and the SFRs based on the resolved stellar populations. This offset is not driven by different SF timescales, variations in SFRs, UV attenuation, nor stochastic effects. This first comparison between CMD-based SFRs and an integrated FUV emission SFR indicator suggests that the most likely cause of the discrepancy is the theoretical FUV–SFR calibration from stellar evolutionary libraries and/or stellar atmospheric models. We present an empirical calibration of the FUV-based SFR relation for dwarf galaxies, with uncertainties, which is ∼53% larger than previous relations.

  17. Globular Clusters Indicate That Ultra-diffuse Galaxies Are Dwarfs

    Science.gov (United States)

    Beasley, Michael A.; Trujillo, Ignacio

    2016-10-01

    We present an analysis of archival HST/ACS imaging in the F475W (g 475), F606W (V 606), and F814W (I 814) bands of the globular cluster (GC) system of a large (3.4 kpc effective radius) ultra-diffuse galaxy (DF17) believed to be located in the Coma Cluster of galaxies. We detect 11 GCs down to the 5σ completeness limit of the imaging (I 814 = 27 mag). Correcting for background and our detection limits yields a total population of GCs in this galaxy of 27 ± 5 and a V-band specific frequency S N = 28 ± 5. Based on comparisons to the GC systems of local galaxies, we show that both the absolute number and the colors of the GC system of DF17 are consistent with the GC system of a dark-matter-dominated dwarf galaxy with virial mass ˜9.0 × 1010 M ⊙ and a dark-to-stellar mass ratio M vir/M star ˜ 1000. Based on the stellar mass growth of the Milky Way, we show that DF17 cannot be understood as a failed Milky-Way-like system, but is more similar to quenched Large-Magellanic-Cloud-like systems. We find that the mean color of the GC population, g 475-I 814 = 0.91 ± 0.05 mag, coincides with the peak of the color distribution of intracluster GCs and is also similar to those of the blue GCs in the outer regions of massive galaxies. We suggest that both the intracluster GC population in Coma and the blue peak in the GC populations of massive galaxies may be fed—at least in part—by the disrupted equivalents of systems such as DF17.

  18. DGSAT: Dwarf Galaxy Survey with Amateur Telescopes. I. Discovery of low surface brightness systems around nearby spiral galaxies

    Science.gov (United States)

    Javanmardi, B.; Martinez-Delgado, D.; Kroupa, P.; Henkel, C.; Crawford, K.; Teuwen, K.; Gabany, R. J.; Hanson, M.; Chonis, T. S.; Neyer, F.

    2016-04-01

    Context. We introduce the Dwarf Galaxy Survey with Amateur Telescopes (DGSAT) project and report the discovery of eleven low surface brightness (LSB) galaxies in the fields of the nearby galaxies NGC 2683, NGC 3628, NGC 4594 (M 104), NGC 4631, NGC 5457 (M 101), and NGC 7814. Aims: The DGSAT project aims to use the potential of small-sized telescopes to probe LSB features around large galaxies and to increase the sample size of the dwarf satellite galaxies in the Local Volume. Methods: Using long exposure images, fields of the target spiral galaxies are explored for extended LSB objects. After identifying dwarf galaxy candidates, their observed properties are extracted by fitting models to their light profiles. Results: We find three, one, three, one, one, and two new LSB galaxies in the fields of NGC 2683, 3628, 4594, 4631, 5457, and 7814, respectively. In addition to the newly found galaxies, we analyse the structural properties of nine already known galaxies. All of these 20 dwarf galaxy candidates have effective surface brightnesses in the range 25.3 ≲ μe ≲ 28.8 mag arcsec-2 and are fit with Sersic profiles with indices n ≲ 1. Assuming that they are in the vicinity of the above mentioned massive galaxies, their r-band absolute magnitudes, their effective radii, and their luminosities are in the ranges -15.6 ≲ Mr ≲ -7.8, 160 pc ≲ Re ≲ 4.1 kpc, and 0.1 × 106 ≲ (L/L⊙)r ≲ 127 × 106, respectively. To determine whether these LSB galaxies are indeed satellites of the above mentioned massive galaxies, their distances need to be determined via further observations. Conclusions: Using small telescopes, we are readily able to detect LSB galaxies with similar properties to the known dwarf galaxies of the Local Group.

  19. The Carina dwarf spheroidal galaxy - How dark is it?

    Science.gov (United States)

    Mateo, Mario; Olszewski, Edward W.; Pryor, Carlton; Welch, Douglas L.; Fischer, Philippe

    1993-01-01

    Precise radial velocities obtained with a photon-counting echelle spectrograph for a sample of 17 red giants in the Carina dwarf spheroidal galaxy are presented. The calculation of the systemic velocity and central velocity dispersion of Carina is described, the existing data constraining the structural parameters of Carina are reviewed, and an estimate of the central surface brightness of the galaxy is derived. These data are used to estimate the central mass density of Carina, as well as central and global mass-to-light ratios. It is concluded that the inferred mass densities and mass-density limits for all acceptable models imply the presence of a significant DM component in Carina. DM properties of all well-studied dSph systems are summarized and compared.

  20. Star formation rate in Holmberg IX dwarf galaxy

    Directory of Open Access Journals (Sweden)

    Anđelić M.M.

    2011-01-01

    Full Text Available In this paper we use previously determined Hα fluxes for dwarf galaxy Holmberg IX (Arbutina et al. 2009 to calculate star formation rate (SFR in this galaxy. We discuss possible contaminations of Hα flux and, for the first time, we take into account optical emission from supernova remnants (SNRs as a possible source of contamination of Hα flux. Derived SFR for Holmberg IX is 3:4 x 10-4M.yr-1. Our value is lower then in previous studies, due to luminous shock-heated source M&H 9-10, possible hypernova remnant, which we excluded from the total Hα flux in our calculation of SFR.

  1. Dwarfs and Giants in the local flows of galaxies.

    Science.gov (United States)

    Chernin, A. D.; Emelyanov, N. V.; Karachentsev, I. D.

    We use recent Hubble Space Telescope data on nearby dwarf and giant galaxies to study the dynamical structure and evolutionary trends of the local expansion flows of galaxies. It is found that antigravity of dark energy dominates the force field of the flows and makes them expand with acceleration. It also cools the flows and introduces to them the nearly linear velocity-distance relation with the time-rate close to the global Hubble's factor. There are grounds to expect that this is the universal physical regularity that is common not only for the nearby flows we studied here, but also for all the expansion flows of various spatial scales from the 1 Mpc scale and up to the scale of the global cosmological expansion.

  2. Extended Schmidt law holds for faint dwarf irregular galaxies

    Science.gov (United States)

    Roychowdhury, Sambit; Chengalur, Jayaram N.; Shi, Yong

    2017-12-01

    Context. The extended Schmidt law (ESL) is a variant of the Schmidt which relates the surface densities of gas and star formation, with the surface density of stellar mass added as an extra parameter. Although ESL has been shown to be valid for a wide range of galaxy properties, its validity in low-metallicity galaxies has not been comprehensively tested. This is important because metallicity affects the crucial atomic-to-molecular transition step in the process of conversion of gas to stars. Aims: We empirically investigate for the first time whether low metallicity faint dwarf irregular galaxies (dIrrs) from the local universe follow the ESL. Here we consider the "global" law where surface densities are averaged over the galactic discs. dIrrs are unique not only because they are at the lowest end of mass and star formation scales for galaxies, but also because they are metal-poor compared to the general population of galaxies. Methods: Our sample is drawn from the Faint Irregular Galaxy GMRT Survey (FIGGS) which is the largest survey of atomic hydrogen in such galaxies. The gas surface densities are determined using their atomic hydrogen content. The star formation rates are calculated using GALEX far ultraviolet fluxes after correcting for dust extinction, whereas the stellar surface densities are calculated using Spitzer 3.6 μm fluxes. The surface densities are calculated over the stellar discs defined by the 3.6 μm images. Results: We find dIrrs indeed follow the ESL. The mean deviation of the FIGGS galaxies from the relation is 0.01 dex, with a scatter around the relation of less than half that seen in the original relation. In comparison, we also show that the FIGGS galaxies are much more deviant when compared to the "canonical" Kennicutt-Schmidt relation. Conclusions: Our results help strengthen the universality of the ESL, especially for galaxies with low metallicities. We suggest that models of star formation in which feedback from previous generations

  3. Testing Galaxy Evolution in Unexplored Environments: the First Faint Dwarf Satellites of Local Volume LMC Analogs

    Science.gov (United States)

    Carlin, Jeffrey

    2017-08-01

    We propose to use four HST/ACS orbits to obtain follow-up imaging and resolved photometry of two candidate dwarf galaxies in the halos of Local Volume LMC analogs, which have been discovered as part of our ground-based MADCASH survey: MADCASH-1, which is a satellite of NGC 2403 (D = 3.2 Mpc), and MADCASH-2, near NGC 4214 (D = 2.9 Mpc). These are the faintest dwarf satellites known around host galaxies of Large Magellanic Cloud stellar mass outside the Local Group. We will measure accurate TRGB distances to confirm their associations with their host galaxies, derive their structural parameters, and assess their stellar populations. These two dwarf galaxies, the first of their kind around LMC analogs, are vital probes of dwarf evolution in different environments. Both of these MADCASH dwarfs are at luminosities intermediate between the classical Milky Way dwarf galaxies and the ultra-faint dwarfs. The proposed observations will resolve individual stars in these systems of small angular size, allowing us to quantify the relative presence of ancient stellar populations and younger, more metal-enriched stars, and to measure their physical properties. We will compare these to the Milky Way classical and ultra-faint dwarfs to place these systems in a broader context and assess similarities or differences between these dwarfs around dwarfs and Local Group satellites.

  4. On The Missing Dwarf Problem In Clusters And Around The Nearby Galaxy M33

    Science.gov (United States)

    Keenan, Olivia Charlotte

    2017-08-01

    This thesis explores possible solutions to the dwarf galaxy problem. This is a discrepancy between the number of dwarf galaxies we observe, and the number predicted from cosmological computer simulations. Simulations predict around ten times more dwarf galaxy satellites than are currently observed. I have investigated two possible solutions: dark galaxies and the low surface brightness universe. Dark galaxies are dark matter halos which contain gas, but few or no stars, hence are optically dark. As part of the Arecibo Galaxy Environment Survey I surveyed the neutral hydrogen gas around the nearby galaxy M33. I found 32 gas clouds, 11 of which are new detections. Amongst these there was one particularly interesting cloud. AGESM33-32 is ring shaped and larger than M33 itself, if at the same distance. It has a velocity width which is similar to the velocity dispersion of gas in a disk galaxy, as well as having a clear velocity gradient across it which may be due to rotation. The fact that it also currently has no observed associated stars means it is a dark galaxy candidate. Optically, dwarf galaxies may be out there, but too faint for us to detect. This means that with newer, deeper, images we may be able to unveil a large, low surface brightness, population of dwarf galaxies. However, the question remains as to how these can be distinguished from background galaxies. I have used Next Generation Virgo Survey (NGVS) data to carry out photometry on 852 Virgo galaxies in four bands. I also measured the photometric properties of galaxies on a background (non-cluster) NGVS frame. I discovered that a combination of colour, magnitude and surface brightness information could be used to identify cluster dwarf galaxies from background field galaxies. The most effective method is to use the surface brightness-magnitude relation.

  5. EXTREME EMISSION-LINE GALAXIES IN CANDELS: BROADBAND-SELECTED, STARBURSTING DWARF GALAXIES AT z > 1

    Energy Technology Data Exchange (ETDEWEB)

    Van der Wel, A.; Rix, H.-W.; Jahnke, K. [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Straughn, A. N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Finkelstein, S. L.; Salmon, B. W. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Koekemoer, A. M.; Ferguson, H. C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Weiner, B. J. [Steward Observatory, 933 N. Cherry St., University of Arizona, Tucson, AZ 85721 (United States); Wuyts, S. [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Bell, E. F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Faber, S. M.; Trump, J. R.; Koo, D. C. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Scarlata, C. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church St. S.E. Minneapolis, MN 55455 (United States); Hathi, N. P. [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Dunlop, J. S. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Newman, J. A. [Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); De Mello, D. F., E-mail: vdwel@mpia.de [Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); and others

    2011-12-01

    We identify an abundant population of extreme emission-line galaxies (EELGs) at redshift z {approx} 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). Sixty-nine EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broadband magnitudes. Supported by spectroscopic confirmation of strong [O III] emission lines-with rest-frame equivalent widths {approx}1000 A-in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with {approx}10{sup 8} M{sub Sun} in stellar mass, undergoing an enormous starburst phase with M{sub *}/ M-dot{sub *} of only {approx}15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the comoving number density (3.7 Multiplication-Sign 10{sup -4} Mpc{sup -3}) can produce in {approx}4 Gyr much of the stellar mass density that is presently contained in 10{sup 8}-10{sup 9} M{sub Sun} dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  6. Metal Diffusion in Smoothed Particle Hydrodynamics Simulations of Dwarf Galaxies

    Science.gov (United States)

    Williamson, David; Martel, Hugo; Kawata, Daisuke

    2016-05-01

    We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by varying whether the speed of sound is included as a velocity term. Stronger diffusion produces a tighter [O/Fe]-[Fe/H] distribution in the gas and cuts off the gas metallicity distribution function at lower metallicities. Diffusion suppresses the formation of low-metallicity stars, even with weak diffusion, and also strips metals from enriched outflows. This produces a remarkably tight correlation between “metal mass-loading” (mean metal outflow rate divided by mean metal production rate) and the strength of diffusion, even when the diffusion coefficient is calculated in different ways. The effectiveness of outflows at removing metals from dwarf galaxies and the metal distribution of the gas is thus dependent on the strength of diffusion. By contrast, we show that the metallicities of stars are not strongly dependent on the strength of diffusion, provided that some diffusion is present.

  7. Zinc abundances in the Sculptor dwarf spheroidal galaxy

    Science.gov (United States)

    Skúladóttir, Á.; Tolstoy, E.; Salvadori, S.; Hill, V.; Pettini, M.

    2017-10-01

    From ESO VLT/FLAMES/GIRAFFE spectra, abundance measurements of Zn have been made in ≈100 individual red giant branch (RGB) stars in the Sculptor dwarf spheroidal galaxy. This is the largest sample of individual Zn abundance measurements within a stellar system beyond the Milky Way. In the observed metallicity range, -2.7 ≤ [Fe/H] ≤ -0.9, the general trend of Zn abundances in Sculptor is similar to that of α-elements. That is, super-solar abundance ratios of [Zn/Fe] at low metallicities, which decrease with increasing [Fe/H], eventually reaching subsolar values. However, at the higher metallicities in Sculptor, [Fe/H] ≳ -1.8, we find a significant scatter, -0.8 ≲ [Zn/Fe] ≲ +0.4, which is not seen in any α-element. Our results are consistent with previous observations of a limited number of stars in Sculptor and in other dwarf galaxies. These results suggest that zinc has a complex nucleosynthetic origin, behaving neither completely like an α- nor an iron-peak element. Based on observations made with ESO/VLT/FLAMES at the La Silla Paranal observatory under program ID 092.B-0194(A).Tables 2-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A71

  8. The Stellar and Gaseous Contents of the Orion Dwarf Galaxy

    Science.gov (United States)

    Cannon, John M.; Haynes, Korey; Most, Hans; Salzer, John J.; Haugland, Kaitlin; Scudder, Jillian; Sugden, Arthur; Weindling, Jacob

    2010-06-01

    We present new Kitt Peak National Observatory 0.9 m optical and Very Large Array H I spectral line observations of the Orion dwarf galaxy. This nearby (D ~= 5.4 Mpc), intermediate-mass (M dynsime 1.1 × 1010 M sun) dwarf displays a wealth of structure in its neutral interstellar medium, including three prominent "hole/depression" features in the inner H I disk. We explore the rich gas kinematics, where solid-body rotation dominates and the rotation curve is flat out to the observed edge of the H I disk (~6.8 kpc). The Orion dwarf contains a substantial fraction of dark matter throughout its disk: comparing the 4.7 × 108 M sun of detected neutral gas with estimates of the stellar mass from optical and near-infrared imaging (3.7 × 108 M sun) implies a mass-to-light ratio sime13. New Hα observations show only modest-strength current star formation (SF; ~0.04 M sun yr-1) this SF rate is consistent with our 1.4 GHz radio continuum non-detection.

  9. The Molecular Interstellar Medium of Dwarf Galaxies on Kiloparsec Scales: A New Survey for CO in Northern, IRAS-detected Dwarf Galaxies

    Science.gov (United States)

    Leroy, A.; Bolatto, A. D.; Simon, J. D.; Blitz, L.

    2005-06-01

    We present a new survey for CO in dwarf galaxies using the ARO Kitt Peak 12 m telescope. This survey consists of observations of the central regions of 121 northern dwarfs with IRAS detections and no known CO emission. We detect CO in 28 of these galaxies and marginally detect another 16, increasing by about 50% the number of such galaxies known to have significant CO emission. The galaxies we detect are comparable in stellar and dynamical mass to the Large Magellanic Cloud, although somewhat brighter in CO and fainter in the far-IR. Within dwarfs, we find that the CO luminosity LCO is most strongly correlated with the K-band and the far-infrared luminosities. There are also strong correlations with the radio continuum (RC) and B-band luminosities and linear diameter. Conversely, we find that far-IR dust temperature is a poor predictor of CO emission within the dwarfs alone, although a good predictor of normalized CO content among a larger sample of galaxies. We suggest that LCO and LK correlate well because the stellar component of a galaxy dominates the midplane gravitational field and thus sets the pressure and density of the atomic gas, which control the formation of H2 from H I. We compare our sample with more massive galaxies and find that dwarfs and large galaxies obey the same relationship between CO and the 1.4 GHz RC surface brightness. This relationship is well described by a Schmidt law with ΣRC~Σ1.3CO. Therefore, dwarf galaxies and large spirals exhibit the same relationship between molecular gas and star formation rate (SFR). We find that this result is robust to moderate changes in the RC-to-SFR and CO-to-H2 conversion factors. Our data appear to be inconsistent with large (order of magnitude) variations in the CO-to-H2 conversion factor in the star-forming molecular gas.

  10. Anomalous evolution of the dwarf galaxy HIPASS J1321-31

    NARCIS (Netherlands)

    Pritzl, BJ; Knezek, PM; Gallagher, JS; Grossi, M; Disney, MJ; Minchin, RF; Freeman, KC; Tolstoy, E; Saha, A

    2003-01-01

    We present Hubble Space Telescope/WFPC2 observations of the dwarf galaxy HIPASS J1321-31. This unusual galaxy lies in the direction of the Centaurus A group of galaxies and has a color-magnitude diagram with a distinctive red plume of luminous stars. This feature could arise from (1) a red giant

  11. Homogeneous Photometry VI: Variable Stars in the Leo I Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Stetson, Peter B.; Fiorentino, Giuliana; Bono, Giuseppe; Bernard, Edouard J.; Monelli, Matteo; Iannicola, Giacinto; Gallart, Carme; Ferraro, Ivan

    2014-07-01

    We have characterized the pulsation properties of 164 candidate RR Lyrae variables (RRLs) and 55 candidate Anomalous and/or short-period Cepheids in Leo I dwarf spheroidal galaxy. On the basis of its RRLs Leo I is confirmed to be an Oosterhoff-intermediate type galaxy, like several other dwarfs. We show that in their pulsation properties, the RRLs representing the oldest stellar population in the galaxy are not significantly different from those of five other nearby, isolated dwarf spheroidal galaxies. A similar result is obtained when comparing them to RR Lyrae stars in recently discovered ultra-faint dwarf galaxies. We are able to compare the period distributions and period-amplitude relations for a statistically significant sample of ab type RR Lyrae stars in dwarf galaxies (~1300stars) with those in the Galactic halo field (~14,000stars) and globular clusters (~1000stars). Field RRLs show a significant change in their period distribution when moving from the inner (dG14kpc) halo regions. This suggests that the halo formed from (at least) two dissimilar progenitors or types of progenitor. Considered together, the RRLs in classical dwarf spheroidal and ultra-faint dwarf galaxies-as observed today-do not appear to follow the well defined pulsation properties shown by those in either the inner or the outer Galactic halo, nor do they have the same properties as RRLs in globular clusters. In particular, the samples of fundamental-mode RRLs in dwarfs seem to lack High Amplitudes and Short Periods ("HASP":AV>1.0mag and P <0.48d) when compared with those observed in the Galactic halo field and globular clusters. The observed properties of RRLs do not support the idea that currently existing classical dwarf spheroidal and ultra-faint dwarf galaxies are surviving representative examples of the original building blocks of the Galactic halo.

  12. Is the dark halo of our Galaxy spherical?

    NARCIS (Netherlands)

    Helmi, A

    2004-01-01

    It has been recently claimed that the confined structure of the debris from the Sagittarius dwarf implies that the dark matter halo of our Galaxy should be nearly spherical, in strong contrast with predictions from cold dark matter simulations, where dark haloes are found to have typical density

  13. A STAR FORMATION LAW FOR DWARF IRREGULAR GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G. [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Hunter, Deidre A., E-mail: bge@us.ibm.com, E-mail: dah@lowell.edu [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, Arizona 86001 (United States)

    2015-06-01

    The radial profiles of gas, stars, and far-ultraviolet radiation in 20 dwarf Irregular galaxies are converted to stability parameters and scale heights for a test of the importance of two-dimensional (2D) instabilities in promoting star formation. A detailed model of this instability involving gaseous and stellar fluids with self-consistent thicknesses and energy dissipation on a perturbation crossing time gives the unstable growth rates. We find that all locations are effectively stable to 2D perturbations, mostly because the disks are thick. We then consider the average volume densities in the midplanes, evaluated from the observed H i surface densities and calculated scale heights. The radial profiles of the star-formation rates are equal to about 1% of the H i surface densities divided by the free fall times at the average midplane densities. This 1% resembles the efficiency per unit free fall time commonly found in other cases. There is a further variation of this efficiency with radius in all of our galaxies, following the exponential disk with a scale length equal to about twice the stellar mass scale length. This additional variation is modeled by the molecular fraction in a diffuse medium using radiative transfer solutions for galaxies with the observed dimensions and properties of our sample. We conclude that star formation is activated by a combination of three-dimensional gaseous gravitational processes and molecule formation. Implications for outer disk structure and formation are discussed.

  14. Constraining the Stellar Populations and Star Formation Histories of Blue Compact Dwarf Galaxies with SED Fits

    Energy Technology Data Exchange (ETDEWEB)

    Janowiecki, Steven [International Center for Radio Astronomy Research, M468, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 (Australia); Salzer, John J.; Zee, Liese van [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Rosenberg, Jessica L. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Skillman, Evan, E-mail: steven.janowiecki@uwa.edu.au [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street, SE Minneapolis, MN, 55455 (United States)

    2017-02-10

    We discuss and test possible evolutionary connections between blue compact dwarf galaxies (BCDs) and other types of dwarf galaxies. BCDs provide ideal laboratories to study intense star formation episodes in low-mass dwarf galaxies, and have sometimes been considered a short-lived evolutionary stage between types of dwarf galaxies. To test these connections, we consider a sample of BCDs as well as a comparison sample of nearby galaxies from the Local Volume Legacy (LVL) survey for context. We fit the multi-wavelength spectral energy distributions (SED, far-ultra-violet to far-infrared) of each galaxy with a grid of theoretical models to determine their stellar masses and star formation properties. We compare our results for BCDs with the LVL galaxies to put BCDs in the context of normal galaxy evolution. The SED fits demonstrate that the star formation events currently underway in BCDs are at the extreme of the continuum of normal dwarf galaxies, both in terms of the relative mass involved and in the relative increase over previous star formation rates. Today’s BCDs are distinctive objects in a state of extreme star formation that is rapidly transforming them. This study also suggests ways to identify former BCDs whose star formation episodes have since faded.

  15. Unbiased constraints on ultralight axion mass from dwarf spheroidal galaxies

    Science.gov (United States)

    González-Morales, Alma X.; Marsh, David J. E.; Peñarrubia, Jorge; Ureña-López, Luis A.

    2017-12-01

    It has been suggested that the internal dynamics of dwarf spheroidal galaxies (dSphs) can be used to test whether or not ultralight axions with ma ˜ 10-22 eV are a preferred dark matter candidate. However, comparisons to theoretical predictions tend to be inconclusive for the simple reason that while most cosmological models consider only dark matter, one observes only baryons. Here, we use realistic kinematic mock data catalogues of Milky Way (MW) dSph's to show that the `mass-anisotropy degeneracy' in the Jeans equations leads to biased bounds on the axion mass in galaxies with unknown dark matter halo profiles. In galaxies with multiple chemodynamical components, this bias can be partly removed by modelling the mass enclosed within each subpopulation. However, analysis of the mock data reveals that the least-biased constraints on the axion mass result from fitting the luminosity-averaged velocity dispersion of the individual chemodynamical components directly. Applying our analysis to two dSph's with reported stellar subcomponents, Fornax and Sculptor, and assuming that the halo profile has not been acted on by baryons, yields core radii rc > 1.5 and 1.2 kpc, respectively, and ma < 0.4 × 10-22 eV at 97.5 per cent confidence. These bounds are in tension with the number of observed satellites derived from simple (but conservative) estimates of the subhalo mass function in MW-like galaxies. We discuss how baryonic feedback might affect our results, and the impact of such a small axion mass on the growth of structures in the Universe.

  16. The spatial distribution of dwarf galaxies in the CfA slice of the universe

    Science.gov (United States)

    Thuan, Trinh X.; Gott, J. Richard, III; Schneider, Stephen E.

    1987-01-01

    A complete (with the the exception of one) redshift sample of 58 galaxies in the Nilson catalog classified as dwarf, irregular, or Magellanic irregular is used to investigate the large-scale clustering properties of these low-surface brightness galaxies in the CfA slice of the universe (alpha in the range of 8-17 h, delta in the range of 26.5-32.5 deg). It is found that the low-surface brightness dwarf galaxies also lie on the structures delineated by the high-surface brightness normal galaxies and that they do not fill in the voids. This is inconsistent with a class of biased galaxy formation theories which predict that dwarf galaxies should be present everywhere, including the voids.

  17. Sommerfeld-enhanced J -factors for dwarf spheroidal galaxies

    Science.gov (United States)

    Boddy, Kimberly K.; Kumar, Jason; Strigari, Louis E.; Wang, Mei-Yu

    2017-06-01

    For models in which dark matter annihilation is Sommerfeld-enhanced, the annihilation cross section increases at low relative velocities. Dwarf spheroidal galaxies (dSphs) have low characteristic dark matter particle velocities and are thus ideal candidates to study such models. In this paper, we model the dark matter phase space of dSphs as isotropic and spherically symmetric and determine the J factors for several of the most important targets for indirect dark matter searches. For Navarro-Frenk-White density profiles, we quantify the scatter in the J factor arising from the astrophysical uncertainty in the dark matter potential. We show that, in Sommerfeld-enhanced models, the ordering of the most promising dSphs may be different relative to the standard case of velocity-independent cross sections. This result can have important implications for derived upper limits on the annihilation cross section, or on possible signals, from dSphs.

  18. Stellar Clusters Forming in the Blue Dwarf Galaxy NGC 5253

    Science.gov (United States)

    2004-11-01

    Star formation is one of the most basic phenomena in the Universe. Inside stars, primordial material from the Big Bang is processed into heavier elements that we observe today. In the extended atmospheres of certain types of stars, these elements combine into more complex systems like molecules and dust grains, the building blocks for new planets, stars and galaxies and, ultimately, for life. Violent star-forming processes let otherwise dull galaxies shine in the darkness of deep space and make them visible to us over large distances. Star formation begins with the collapse of the densest parts of interstellar clouds, regions that are characterized by comparatively high concentration of molecular gas and dust like the Orion complex (ESO PR Photo 20/04) and the Galactic Centre region (ESO Press Release 26/03). Since this gas and dust are products of earlier star formation, there must have been an early epoch when they did not yet exist. But how did the first stars then form? Indeed, to describe and explain "primordial star formation" - without molecular gas and dust - is a major challenge in modern Astrophysics. A particular class of relatively small galaxies, known as "Blue Dwarf Galaxies", possibly provide nearby and contemporary examples of what may have occurred in the early Universe during the formation of the first stars. These galaxies are poor in dust and heavier elements. They contain interstellar clouds which, in some cases, appear to be quite similar to those primordial clouds from which the first stars were formed. And yet, despite the relative lack of the dust and molecular gas that form the basic ingredients for star formation as we know it from the Milky Way, those Blue Dwarf Galaxies sometimes harbour very active star-forming regions. Thus, by studying those areas, we may hope to better understand the star-forming processes in the early Universe. Very active star formation in NGC 5253 NGC 5253 is one of the nearest of the known Blue Dwarf Galaxies

  19. Ejection of Supernova-Enriched Gas From Dwarf Disk Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Fragile, P C; Murray, S D; Lin, D C

    2004-06-15

    We examine the efficiency with which supernova-enriched gas may be ejected from dwarf disk galaxies, using a methodology previously employed to study the self-enrichment efficiency of dwarf spheroidal systems. Unlike previous studies that focused on highly concentrated starbursts, in the current work we consider discrete supernova events spread throughout various fractions of the disk. We model disk systems having gas masses of 10{sup 8} and 10{sup 9} M{sub {circle_dot}} with supernova rates of 30, 300, and 3000 Myr{sup -1}. The supernova events are confined to the midplane of the disk, but distributed over radii of 0, 30, and 80% of the disk radius, consistent with expectations for Type II supernovae. In agreement with earlier studies, we find that the enriched material from supernovae is largely lost when the supernovae are concentrated near the nucleus, as expected for a starburst event. In contrast, we find the loss of enriched material to be much less efficient (as low as 21%) when the supernovae occur over even a relatively small fraction of the disk. The difference is due to the ability of the system to relax following supernova events that occur over more extended regions. Larger physical separations also reduce the likelihood of supernovae going off within low-density ''chimneys'' swept out by previous supernovae. We also find that, for the most distributed systems, significant metal loss is more likely to be accompanied by significant mass loss. A comparison with theoretical predications indicates that, when undergoing self-regulated star formation, galaxies in the mass range considered shall efficiently retain the products of Type II supernovae.

  20. THE DEARTH OF NEUTRAL HYDROGEN IN GALACTIC DWARF SPHEROIDAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Spekkens, Kristine; Urbancic, Natasha [Department of Physics, Royal Military College of Canada, P.O. Box 17000, Station Forces, Kingston, Ontario K7K 7B4 (Canada); Mason, Brian S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Willman, Beth [Haverford College, 370 Lancaster Avenue, Haverford, PA 19041 (United States); Aguirre, James E., E-mail: kristine.spekkens@rmc.ca [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States)

    2014-11-01

    We present new upper limits on the neutral hydrogen (H I) content within the stellar half-light ellipses of 15 Galactic dwarf spheroidal galaxies (dSphs), derived from pointed observations with the Green Bank Telescope (GBT) as well as Arecibo L-band Fast ALFA survey and Galactic All-Sky Survey data. All of the limits M{sub H} {sub I}{sup lim} are more stringent than previously reported values, and those from the GBT improve upon constraints in the literature by a median factor of 23. Normalizing by V-band luminosity L{sub V} and dynamical mass M {sub dyn}, we find M{sub H} {sub I}{sup lim}/L{sub V}∼10{sup −3} M{sub ⊙}/L{sub ⊙} and M{sub H} {sub I}{sup lim}/M{sub dyn}∼5×10{sup −5}, irrespective of location in the Galactic halo. Comparing these relative H I contents to those of the Local Group and nearby neighbor dwarfs compiled by McConnachie, we find that the Galactic dSphs are extremely gas-poor. Our H I upper limits therefore provide the clearest picture yet of the environmental dependence of the H I content in Local Volume dwarfs. If ram pressure stripping explains the dearth of H I in these systems, then orbits in a relatively massive Milky Way are favored for the outer halo dSph Leo I, while Leo II and Canes Venatici I have had a pericentric passage in the past. For Draco and Ursa Minor, the interstellar medium mass that should accumulate through stellar mass loss in between pericentric passages exceeds M{sub H} {sub I}{sup lim} by a factor of ∼30. In Ursa Minor, this implies that either this material is not in the atomic phase, or that another mechanism clears the recycled gas on shorter timescales.

  1. The Westerbork HI survey of spiral and irregular galaxies - I. HI imaging of late-type dwarf galaxies

    NARCIS (Netherlands)

    Swaters, RA; Van Albada, TS; van der Hulst, JM; Sancisi, R

    Neutral hydrogen observations with the Westerbork Synthesis Radio Telescope are presented for a sample of 73 late-type dwarf galaxies. These observations are part of the WHISP project (Westerbork Hi Survey of Spiral and Irregular Galaxies). Here we present Hi maps, velocity fields, global profiles

  2. VizieR Online Data Catalog: Spectroscopy obs. of LeoA, Aqr & Sgr dwarf gal. (Kirby+, 2017)

    Science.gov (United States)

    Kirby, E. N.; Rizzi, L.; Held, E. V.; Cohen, J. G.; Cole, A. A.; Manning, E. M.; Skillman, E. D.; Weisz, D. R.

    2017-05-01

    Kirby+ (2014, J/MNRAS/439/1015) already published some Keck/DEIMOS spectroscopy of stars in Leo A and Aquarius. We obtained additional DEIMOS spectra of individual stars in those galaxies, as well as Sagittarius dwarf irregular galaxy (SagDIG). We observed the three galaxies with DEIMOS over several nights in 2013 and 2014. We set the central wavelength to 7800Å with a resolving power of R~7000. (3 data files).

  3. RASS-SDSS Galaxy cluster survey. IV. A ubiquitous dwarf galaxy population in clusters

    Science.gov (United States)

    Popesso, P.; Biviano, A.; Böhringer, H.; Romaniello, M.

    2006-01-01

    We analyze the Luminosity Functions (LFs) of a subsample of 69 clusters from the RASS-SDSS galaxy cluster catalog. When calculated within the cluster physical sizes, given by r200 or r500, all the cluster LFs appear to have the same shape, well fitted by a composite of two Schechter functions with a marked upturn and a steepening at the faint-end. Previously reported cluster-to-cluster variations of the LF faint-end slope are due to the use of a metric cluster aperture for computing the LF of clusters of different masses. We determine the composite LF for early- and late-type galaxies, where the typing is based on the galaxy u-r colors. The late-type LF is well fitted by a single Schechter function with a steep slope (α=-2.0 in the r band, within r200). The early-type LF instead cannot be fitted by a single Schechter function, and a composite of two Schechter functions is needed. The faint-end upturn of the global cluster LF is due to the early-type cluster galaxies. The shape of the bright-end tail of the early-type LF does not seem to depend upon the local galaxy density or the distance from the cluster center. The late-type LF shows a significant variation only very near the cluster center. On the other hand, the faint-end tail of the early-type LF shows a significant and continuous variation with the environment. We provide evidence that the process responsible for creating the excess population of dwarf early type galaxies in clusters is a threshold process that occurs when the density exceeds ˜ 500 times the critical density of the Universe. We interpret our results in the context of the "harassment" scenario, where faint early-type cluster galaxies are predicted to be the descendants of tidally-stripped late-type galaxies.

  4. The Fate of Dwarf Galaxies in Clusters and the Origin of Intracluster ...

    Indian Academy of Sciences (India)

    body algorithm combined with a subgrid treatment of physical processes such as mergers, tidal disruption, and galaxy harassment. Using this algorithm, we have performed a total of 148 simulations. Our main results are: destruction of dwarf ...

  5. Feedback by Massive Black Holes in Gas-rich Dwarf Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Silk, Joseph [Institut d’Astrophysique, UMR 7095 CNRS, Université Pierre et Marie Curie, 98bis Blvd Arago, F-75014 Paris (France); AIM-Paris-Saclay, CEA/DSM/IRFU, CNRS, Univ Paris 7, F-91191, Gif-sur-Yvette (France); Department of Physics and Astronomy, The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Beecroft Institute of Particle Astrophysics and Cosmology, Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom)

    2017-04-10

    Could there be intermediate-mass black holes in essentially all old dwarf galaxies? I argue that current observations of active galactic nuclei in dwarfs allow such a radical hypothesis that provides early feedback during the epoch of galaxy formation and potentially provides a unifying explanation for many, if not all, of the dwarf galaxy anomalies, such as the abundance, core-cusp, “too-big-to-fail,” ultra-faint, and baryon-fraction issues. I describe the supporting arguments, which are largely circumstantial, and discuss a number of tests. There is no strong motivation for modifying the nature of cold dark matter in order to explain any of the dwarf galaxy “problems.”.

  6. Tidal Dwarf Galaxies: Disc Formation at \\(z\\simeq0\\

    Directory of Open Access Journals (Sweden)

    Federico Lelli

    2015-11-01

    Full Text Available Collisional debris around interacting and post-interacting galaxies often display condensations of gas and young stars that can potentially form gravitationally bound objects: Tidal Dwarf Galaxies (TDGs. We summarise recent results on TDGs, which are originally published in Lelli et al. (2015, A&A.We study a sample of six TDGs around three different interacting systems, using high-resolution HI observations from the Very Large Array. We find that the HI emission associated to TDGs can be described by rotating disc models. These discs, however, would have undergone less than one orbit since the time of the TDG formation, raising the question of whether they are in dynamical equilibrium. Assuming that TDGs are in dynamical equilibrium, we find that the ratio of dynamical mass to baryonic mass is consistent with one, implying that TDGs are devoid of dark matter. This is in line with the results of numerical simulations where tidal forces effectively segregate dark matter in the halo from baryonic matter in the disc, which ends up forming tidal tails and TDGs.

  7. The Galaxy's Eating Habits

    Science.gov (United States)

    Putman, M. E.; Thom, C.; Gibson, B. K.; Staveley-Smith, L.

    2004-06-01

    The possibility of a gaseous halo stream which was stripped from the Sagittarius dwarf galaxy is presented. The total mass of the neutral hydrogen along the orbit of the Sgr dwarf in the direction of the Galactic Anti-Center is 4 - 10 × 106 M⊙ (at 36 kpc, the distance to the stellar debris in this region). Both the stellar and gaseous components have negative velocities in this part of the sky, but the gaseous component extends to higher negative velocities. We suggest this gaseous stream was stripped from the main body of the dwarf 0.2 - 0.3 Gyr ago during its current orbit after a passage through a diffuse edge of the Galactic disk with a density > 10-4 cm-3. The gas would then represent the dwarf's last source of star formation fuel and explains how the galaxy was forming stars 0.5-2 Gyr ago.

  8. Model-independent constraints on dark matter annihilation in dwarf spheroidal galaxies

    OpenAIRE

    Boddy, Kimberly; Kumar, Jason; Marfatia, Danny; Sandick, Pearl

    2018-01-01

    We present a general, model-independent formalism for determining bounds on the production of photons in dwarf spheroidal galaxies via dark matter annihilation, applicable to any set of assumptions about dark matter particle physics or astrophysics. As an illustration, we analyze gamma-ray data from the Fermi Large Area Telescope to constrain a variety of nonstandard dark matter models, several of which have not previously been studied in the context of dwarf galaxy searches.

  9. A Near-infrared Census of the Multicomponent Stellar Structure of Early-type Dwarf Galaxies in the Virgo Cluster

    NARCIS (Netherlands)

    Janz, J.; Laurikainen, E.; Lisker, T.; Salo, H.; Peletier, R. F.; Niemi, S.-M.; Toloba, E.; Hensler, G.; Falcón-Barroso, J.; Boselli, A.; den Brok, M.; Hansson, K. S. A.; Meyer, H. T.; Ryś, A.; Paudel, S.

    The fraction of star-forming to quiescent dwarf galaxies varies from almost infinity in the field to zero in the centers of rich galaxy clusters. What is causing this pronounced morphology-density relation? What do quiescent dwarf galaxies look like when studied in detail, and what conclusions can

  10. VCC 2062: an old tidal dwarf galaxy in the Virgo cluster?

    Science.gov (United States)

    Duc, P.-A.; Braine, J.; Lisenfeld, U.; Brinks, E.; Boquien, M.

    2007-11-01

    Context: Numerical simulations predict the existence of old Tidal Dwarf Galaxies (TDGs) that would have survived several Gyr after the collision lying at their origin. Such survivors, which would by now have become independent relaxed galaxies, would be ideal laboratories, if nearby enough, to tackle a number of topical issues, including the distribution of Dark Matter in and around galaxies. However finding old dwarf galaxies with a confirmed tidal origin is an observational challenge. Aims: A dwarf galaxy in the nearby Virgo Cluster, VCC 2062, exhibits several unusual properties that are typical of a galaxy made out of recycled material. We discuss whether it may indeed be a TDG. Methods: We analysed multi-wavelength observations of VCC 2062, including a CO map acquired with the IRAM 30 m dish, an optical spectrum of its HII regions, GALEX ultraviolet and archival broad-band and narrow-band optical images as well as a VLA HI datacube, originally obtained as part of the VIVA project. Results: VCC 2062 appears to be the optical, low surface brightness counterpart of a kinematically detached, rotating condensation that formed within an HI tail apparently physically linked to the disturbed galaxy NGC 4694. In contrast to its faint optical luminosity, VCC 2062 is characterised by strong CO emission and a high oxygen abundance more typical of spiral disks. Its dynamical mass however, is that of a dwarf galaxy. Conclusions: VCC 2062 was most likely formed within a pre-enriched gaseous structure expelled from a larger galaxy as a result of a tidal interaction. The natural provider for the gaseous tail is NGC 4694 or rather a former companion which subsequently has been accreted by the massive galaxy. According to that scenario, VCC 2062 has been formed by a past tidal encounter. Since its parent galaxies have most probably already totally merged, it qualifies as an old Tidal Dwarf Galaxy.

  11. DETERMINING THE LARGE-SCALE ENVIRONMENTAL DEPENDENCE OF GAS-PHASE METALLICITY IN DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, Kelly A.; Vogeley, Michael S., E-mail: kelly.a.douglass@drexel.edu [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States)

    2017-01-10

    We study how the cosmic environment affects galaxy evolution in the universe by comparing the metallicities of dwarf galaxies in voids with dwarf galaxies in more dense regions. Ratios of the fluxes of emission lines, particularly those of the forbidden [O iii] and [S ii] transitions, provide estimates of a region’s electron temperature and number density. From these two quantities and the emission line fluxes [O ii] λ 3727, [O iii] λ 4363, and [O iii] λλ 4959, 5007, we estimate the abundance of oxygen with the direct T{sub e}  method. We estimate the metallicity of 42 blue, star-forming void dwarf galaxies and 89 blue, star-forming dwarf galaxies in more dense regions using spectroscopic observations from the Sloan Digital Sky Survey Data Release 7, as reprocessed in the MPA-JHU value-added catalog. We find very little difference between the two sets of galaxies, indicating little influence from the large-scale environment on their chemical evolution. Of particular interest are a number of extremely metal-poor dwarf galaxies that are less prevalent in voids than in the denser regions.

  12. Discovery of a group of star-forming dwarf galaxies in A1367

    NARCIS (Netherlands)

    Sakai, S; Kennicutt, RC; van der Hulst, JM; Moss, C

    2002-01-01

    We describe the properties of a remarkable group of actively star-forming dwarf galaxies and H II galaxies in the A1367 cluster, which were discovered in a large-scale Halpha imaging survey of the cluster. Approximately 30 Halpha-emitting knots were identified in a region approximately 150 kpc

  13. Dark influences II. Gas and star formation in minor mergers of dwarf galaxies with dark satellites

    NARCIS (Netherlands)

    Starkenburg, T. K.; Helmi, A.; Sales, L. V.

    2016-01-01

    Context. It has been proposed that mergers induce starbursts and lead to important morphological changes in galaxies. Most studies so far have focused on large galaxies, but dwarfs might also experience such events, since the halo mass function is scale-free in the concordance cosmological model.

  14. Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor.

    Science.gov (United States)

    Frebel, Anna; Kirby, Evan N; Simon, Joshua D

    2010-03-04

    Current cosmological models indicate that the Milky Way's stellar halo was assembled from many smaller systems. On the basis of the apparent absence of the most metal-poor stars in present-day dwarf galaxies, recent studies claimed that the true Galactic building blocks must have been vastly different from the surviving dwarfs. The discovery of an extremely iron-poor star (S1020549) in the Sculptor dwarf galaxy based on a medium-resolution spectrum cast some doubt on this conclusion. Verification of the iron-deficiency, however, and measurements of additional elements, such as the alpha-element Mg, are necessary to demonstrate that the same type of stars produced the metals found in dwarf galaxies and the Galactic halo. Only then can dwarf galaxy stars be conclusively linked to early stellar halo assembly. Here we report high-resolution spectroscopic abundances for 11 elements in S1020549, confirming its iron abundance of less than 1/4,000th that of the Sun, and showing that the overall abundance pattern follows that seen in low-metallicity halo stars, including the alpha-elements. Such chemical similarity indicates that the systems destroyed to form the halo billions of years ago were not fundamentally different from the progenitors of present-day dwarfs, and suggests that the early chemical enrichment of all galaxies may be nearly identical.

  15. The Contribution of Normal, Dim, and Dwarf Galaxies to the Local Luminosity Density.

    Science.gov (United States)

    Driver

    1999-12-01

    From the Hubble Deep Field catalog recently presented by Driver et al., we derive the local (0.3galaxies within a 326 Mpc3 volume-limited sample. The sample contains 47 galaxies which uniformly sample the underlying galaxy population within the specified redshift, magnitude, and surface brightness limits (0.3galaxies account for less than 10% of the L* population, and (3) low-luminosity low surface brightness galaxies outnumber Hubble types by a factor of approximately 1.4; however, their space density is not sufficient to explain the faint blue excess either by themselves or as faded remnants. In terms of the local luminosity density and galaxy dynamical mass budget, normal galaxies (i.e., the Hubble tuning fork) contribute 88% and 72%, respectively. This compares to 7% and 12% for dim galaxies and 5% and 16% for dwarf galaxies (within the above specified limits).

  16. VIMOS Integral Field Spectroscopy of Gaseous Nebulae in Local Group Dwarf Galaxies

    Science.gov (United States)

    Held, E. V.; Gullieuszik, M.; Saviane, I.; Sabbadin, F.; Momany, Y.; Rizzi, L.; Bresolin, F.

    The study of very metal-poor dwarf irregular (dIrr) galaxies is fundamental to test the cosmological scenarios of galaxy formation. Among Local Group galaxies, Leo A and SagDIG are probably the most metal-poor dwarfs, as suggested by estimates of their nebular abundances based on the empirical method [I. Saviane, L. Rizzi, E.V. Held, F. Bresolin, Y. Momany in Astron. Astrophys. 390, 59 (2002); E.D. Skillman, R. Terlevich, J. Melnick in Mon. Not. R. Astron. Soc. 240, 563 (1989); L. van Zee, E.D. Skillman, M.P. Haynes in Astrophys. J. 637, 269 (2006)].

  17. The same with less: the cosmic web of warm versus cold dark matter dwarf galaxies

    OpenAIRE

    Reed, Darren S.; Schneider, Aurel; Smith, Robert E.; Potter, Doug; Stadel, Joachim; Moore, Ben

    2015-01-01

    We explore fundamental properties of the distribution of low-mass dark matter haloes within the cosmic web using warm dark matter (WDM) and cold dark matter (CDM) cosmological simulations. Using self-abundance-matched mock galaxy catalogues, we show that the distribution of dwarf galaxies in a WDM universe, wherein low-mass halo formation is heavily suppressed, is nearly indistinguishable to that of a CDM universe whose low mass haloes are not seen because galaxy formation is suppressed below...

  18. Observations of the impact of starbursts on the interstellar medium in dwarf galaxies

    Science.gov (United States)

    Marlowe, Amanda T.; Heckman, Timothy M.; Wyse, Rosemary F. G.; Schommer, Robert

    1995-01-01

    Dwarf galaxies play a crucial role in our understanding of the formation and evolution of galaxies, and the concept of supernova-driven mass outflows is a vital ingredient in theories of the structure and evolution of dwarf galaxies. Despite the theoretical importance of these outflows, there is a very limited amount of direct observational evidence for their existence. We have therefore begun a detailed multi-wave-band search for outflows in dwarf (M(sub B) greater than or = -18) galaxies with extensive recent or ongoing centrally concentrated star formation. We report the first results of this search in the present paper. Observations of the ionized gas in dwarf amorphous galaxies with centrally concentrated populations of massive stars provide evidence for the large-scale expansion of their expansion of their ionized interstellar media. Fabry-Perot H alpha images reveal the presence of kiloparsec-scale 'superbubbles' and filaments which tend to be oriented along the galaxy minor axis. These structures are comparable in size to the chracteristic optical sizes of the galaxies, and dominate the morphology of the galaxies at low surface brightness in H alpha. Since expanding structure of this size and velocity are not observed in all low-mass galaxies with recent or ongoing star formation, we suggest that we are witnessing transient events that likely have a relatively low 'duty cycle' in such galaxies. That is, we argue that the particular galaxies in the present paper have had significantly elevated star formation rates over the past 10(exp 7)-10(exp 8) yr (i.e., these are starburst or young poststarburst systems). This interpretation is consistent with the optical colors and emission-line properties of these galaxies.

  19. X-RAY SOURCES IN THE DWARF SPHEROIDAL GALAXY DRACO

    Energy Technology Data Exchange (ETDEWEB)

    Sonbas, E. [University of Adiyaman, Department of Physics, 02040 Adiyaman (Turkey); Rangelov, B.; Kargaltsev, O.; Dhuga, K. S.; Hare, J.; Volkov, I., E-mail: edasonbas@yahoo.com [Department of Physics, The George Washington University, Washington, DC 20052 (United States)

    2016-04-10

    We present the spectral analysis of an 87 ks XMM-Newton observation of Draco, a nearby dwarf spheroidal galaxy. Of the approximately 35 robust X-ray source detections, we focus our attention on the brightest of these sources, for which we report X-ray and multiwavelength parameters. While most of the sources exhibit properties consistent with active galactic nuclei, few of them possess the characteristics of low-mass X-ray binaries (LMXBs) and cataclysmic variable (CVs). Our analysis places constraints on the population of X-ray sources with L{sub X} > 3 × 10{sup 33} erg s{sup −1} in Draco, suggesting that there are no actively accreting black hole and neutron star binaries. However, we find four sources that could be quiescent state LMXBs/CVs associated with Draco. We also place constraints on the central black hole luminosity and on a dark matter decay signal around 3.5 keV.

  20. A kinematic study of the Fornax dwarf spheroidal galaxy

    Science.gov (United States)

    Mateo, Mario; Olszewski, Edward; Welch, Douglas L.; Fischer, Philippe; Kunkel, William

    1991-01-01

    Precise radial velocities of 44 stars and four globular clusters located in two fields of the Fornax dwarf spheroidal galaxy are obtained on the basis of photon-counting echelle spectroscopy with a resolution of approximately 14 km/s. BV CCD photometry of the giant branch of Fornax in both fields are presented as well. A variety of kinematic and photometric criteria are used to identify 10-12 probable nonmembers in the present sample of spectroscopically observed stars. Based on the most probable members, the mean heliocentric systemic velocity of Fornax is 53.0 + or - 1.8 km/s, with no evidence of any significant rotation about the minor axis. The intrinsic velocity dispersion of the stars in Fornax's central field is 9.9 + or - 1.7 km/s, while for the outer field the velocity dispersion is 1.20 + or - 2.8 km/s. The true central velocity dispersion is not more than 1.6 km/s larger than the observed central dispersions for a number of reasonable models.

  1. A Chemical Evolution Model for the Fornax Dwarf Spheroidal Galaxy

    Directory of Open Access Journals (Sweden)

    Yuan Zhen

    2016-01-01

    Full Text Available Fornax is the brightest Milky Way (MW dwarf spheroidal galaxy and its star formation history (SFH has been derived from observations. We estimate the time evolution of its gas mass and net inflow and outflow rates from the SFH usinga simple star formation law that relates the star formation rate to the gas mass. We present a chemical evolution model on a 2D mass grid with supernovae (SNe as sources of metal enrichment. We find that a key parameter controlling the enrichment is the mass Mx of the gas to mix with the ejecta from each SN. The choice of Mx depends on the evolution of SN remnants and on the global gas dynamics. It differs between the two types of SNe involved and between the periods before and after Fornax became an MW satellite at time t = tsat. Our results indicate that due to the global gas outflow at t > tsat, part of the ejecta from each SN may directly escape from Fornax. Sample results from our model are presented and compared with data.

  2. Testing MOG, non-local gravity and MOND with rotation curves of dwarf galaxies

    Science.gov (United States)

    Zhoolideh Haghighi, M. H.; Rahvar, S.

    2017-07-01

    Modified gravity (MOG) and non-local gravity (NLG) are two alternative theories to general relativity. They are able to explain the rotation curves of spiral galaxies and clusters of galaxies without including dark matter. In the weak-field approximation, these two theories have similar forms, with an effective gravitational potential that has two components: (I) Newtonian gravity with the gravitational constant enhanced by a factor (1 + α) and (II) a Yukawa-type potential that produces a repulsive force with length-scale 1/μ. In this work, we compare the rotation curves of dwarf galaxies in the LITTLE THINGS catalogue with predictions of MOG, NLG and modified Newtonian dynamics (MOND). We find that the universal parameters of the MOG and NLG theories can fit the rotation curves of dwarf galaxies only at the expense of systematically high stellar mass-to-light ratios at 3.6 μm. For instance, in MOG, half of the galaxies have best-fitting stellar M/L ratios larger than 10. It seems that such a big stellar mass-to-light ratio is in contradiction with observations of nearby stars in the Milky Way and with stellar population synthesis models; however, the stellar mass-to-light ratio of dwarf galaxies is not observed directly by the astrophysical methods. Future observations of binary stars in the dwarf galaxies will identify M/L and consequently examine different modified gravity models.

  3. Dense cloud cores revealed by CO in the low metallicity dwarf galaxy WLM.

    Science.gov (United States)

    Rubio, Monica; Elmegreen, Bruce G; Hunter, Deidre A; Brinks, Elias; Cortés, Juan R; Cigan, Phil

    2015-09-10

    Understanding stellar birth requires observations of the clouds in which they form. These clouds are dense and self-gravitating, and in all existing observations they are molecular, with H2 the dominant species and carbon monoxide (CO) the best available tracer. When the abundances of carbon and oxygen are low compared with that of hydrogen, and the opacity from dust is also low, as in primeval galaxies and local dwarf irregular galaxies, CO forms slowly and is easily destroyed, so it is difficult for it to accumulate inside dense clouds. Here we report interferometric observations of CO clouds in the local group dwarf irregular galaxy Wolf-Lundmark-Melotte (WLM), which has a metallicity that is 13 per cent of the solar value and 50 per cent lower than the previous CO detection threshold. The clouds are tiny compared to the surrounding atomic and H2 envelopes, but they have typical densities and column densities for CO clouds in the Milky Way. The normal CO density explains why star clusters forming in dwarf irregulars have similar densities to star clusters in giant spiral galaxies. The low cloud masses suggest that these clusters will also be low mass, unless some galaxy-scale compression occurs, such as an impact from a cosmic cloud or other galaxy. If the massive metal-poor globular clusters in the halo of the Milky Way formed in dwarf galaxies, as is commonly believed, then they were probably triggered by such an impact.

  4. THE ACS LCID PROJECT: ON THE ORIGIN OF DWARF GALAXY TYPES—A MANIFESTATION OF THE HALO ASSEMBLY BIAS?

    Energy Technology Data Exchange (ETDEWEB)

    Gallart, Carme; Monelli, Matteo; Aparicio, Antonio; Battaglia, Giuseppina; Drozdovsky, Igor; Hidalgo, Sebastian L. [Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain); Mayer, Lucio [Institut für Theoretische Physik, University of Zurich, Zürich (Switzerland); Bernard, Edouard J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Cassisi, Santi [INAF-Osservatorio Astronomico di Collurania, Teramo (Italy); Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, TAS 7005 (Australia); Dolphin, Andrew E. [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States); Navarro, Julio F. [Department of Physics and Astronomy, University of Victoria, PO Box 1700, STN CSC, Victoria, BC V8W 3P6 (Canada); Salvadori, Stefania [Kapteyn Astronomical Institute, Landleven 12, NL-9747 AD Groningen (Netherlands); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN (United States); Stetson, Peter B. [Herzberg Astronomy and Astrophysics, National Research Council Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Weisz, Daniel R., E-mail: monelli@iac.es [Astronomy Department, University of Washington, Box 351580, Seattle, WA (United States)

    2015-10-01

    We discuss how knowledge of the whole evolutionary history of dwarf galaxies, including details on the early star formation events, can provide insight on the origin of the different dwarf galaxy types. We suggest that these types may be imprinted by the early conditions of formation rather than only being the result of a recent morphological transformation driven by environmental effects. We present precise star formation histories of a sample of Local Group dwarf galaxies, derived from color–magnitude diagrams reaching the oldest main-sequence turnoffs. We argue that these galaxies can be assigned to two basic types: fast dwarfs that started their evolution with a dominant and short star formation event and slow dwarfs that formed a small fraction of their stars early and have continued forming stars until the present time (or almost). These two different evolutionary paths do not map directly onto the present-day morphology (dwarf spheroidal versus dwarf irregular). Slow and fast dwarfs also differ in their inferred past location relative to the Milky Way and/or M31, which hints that slow dwarfs were generally assembled in lower-density environments than fast dwarfs. We propose that the distinction between a fast and slow dwarf galaxy primarily reflects the characteristic density of the environment where they form. At a later stage, interaction with a large host galaxy may play a role in the final gas removal and ultimate termination of star formation.

  5. DWARFS GOBBLING DWARFS: A STELLAR TIDAL STREAM AROUND NGC 4449 AND HIERARCHICAL GALAXY FORMATION ON SMALL SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Delgado, David; Rix, Hans-Walter; Maccio, Andrea V. [Max-Planck-Institut fuer Astronomy, Heidelberg (Germany); Romanowsky, Aaron J.; Arnold, Jacob A.; Brodie, Jean P. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Jay Gabany, R. [Black Bird Observatory, Mayhill, New Mexico (United States); Annibali, Francesca [Osservatorio Astronomico di Bologna, INAF, Via Ranzani 1, I-40127 Bologna (Italy); Fliri, Juergen [LERMA, CNRS UMR 8112, Observatoire de Paris, 61 Avenue de l' Observatoire, F-75014 Paris (France); Zibetti, Stefano [Dark Cosmology Centre, Niels Bohr Institute-University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Van der Marel, Roeland P.; Aloisi, Alessandra [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Chonis, Taylor S. [Department of Astronomy, University of Texas at Austin, Texas (United States); Carballo-Bello, Julio A. [Instituto de Astrofisica de Canarias, Tenerife (Spain); Gallego-Laborda, J. [Fosca Nit Observatory, Montsec Astronomical Park, Ager (Spain); Merrifield, Michael R. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2012-04-01

    A candidate diffuse stellar substructure was previously reported in the halo of the nearby dwarf starburst galaxy NGC 4449 by Karachentsev et al. We map and analyze this feature using a unique combination of deep integrated-light images from the BlackBird 0.5 m telescope, and high-resolution wide-field images from the 8 m Subaru Telescope, which resolve the nebulosity into a stream of red giant branch stars, and confirm its physical association with NGC 4449. The properties of the stream imply a massive dwarf spheroidal progenitor, which after complete disruption will deposit an amount of stellar mass that is comparable to the existing stellar halo of the main galaxy. The stellar mass ratio between the two galaxies is {approx}1:50, while the indirectly measured dynamical mass ratio, when including dark matter, may be {approx}1:10-1:5. This system may thus represent a 'stealth' merger, where an infalling satellite galaxy is nearly undetectable by conventional means, yet has a substantial dynamical influence on its host galaxy. This singular discovery also suggests that satellite accretion can play a significant role in building up the stellar halos of low-mass galaxies, and possibly in triggering their starbursts.

  6. Delayed star formation in isolated dwarf galaxies: Hubble space telescope star formation history of the Aquarius dwarf irregular

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania, 7001 Australia (Australia); Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55441 (United States); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, Dominion Astrophysical Observatory, Victoria, BC, V9E 2E7 Canada (Canada); Brooks, Alyson M. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Leaman, Ryan, E-mail: andrew.cole@utas.edu.au, E-mail: drw@ucsc.edu, E-mail: adolphin@raytheon.com, E-mail: skillman@astro.umn.edu, E-mail: alan.mcconnachie@nrc-cnrc.gc.ca, E-mail: abrooks@physics.rutgers.edu, E-mail: rleaman@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈6-8 Gyr ago (z ≈ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M {sub H} {sub I}/M {sub *}, dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.

  7. A possible formation scenario for dwarf spheroidal galaxies - III. Adding star formation histories to the fiducial model

    Science.gov (United States)

    Alarcón Jara, A. G.; Fellhauer, M.; Matus Carrillo, D. R.; Assmann, P.; Urrutia Zapata, F.; Hazeldine, J.; Aravena, C. A.

    2018-02-01

    Dwarf spheroidal galaxies are regarded as the basic building blocks in the formation of larger galaxies and are the most dark matter dominated systems in the Universe, known so far. There are several models that attempt to explain their formation and evolution, but they have problems modelling the formation of isolated dwarf spheroidal galaxies. Here, we will explain a possible formation scenario in which star clusters form inside the dark matter halo of a dwarf spheroidal galaxy. These star clusters suffer from low star formation efficiency and dissolve while orbiting inside the dark matter halo. Thereby, they build the faint luminous components that we observe in dwarf spheroidal galaxies. In this paper, we study this model by adding different star formation histories to the simulations and compare the results with our previous work and observational data to show that we can explain the formation of dwarf spheroidal galaxies.

  8. Infall of Associations of Dwarf Galaxies into the Milky Way Halo

    Science.gov (United States)

    Benavides, J.; Casas-Miranda, R. A.

    2018-01-01

    The origin of the satellite disc of the Milky Way (DoS or VPOS) and M31 (GPoA) remains an open problem in astrophysics (Klypling, Kravtsov, & Valenzuela, 1999; Pawlowski, Kroupa, & Jerjen, 2013). This paper presents a study on the possible formation of the Milky Way satellite disc from an association of dwarf galaxies that infall into the Milky Way dark matter halo in parabolic orbits. For this, we performed Newtonian numerical simulations of N-bodies taking values for the initial distances of 4, 2 and 1 Mpc. Morphological properties of dwarfs were analyzed after a simulation time of 10 Gy, proposed for the interaction with the Milky Way, taking into account: the distributions obtained around the plane of the host galaxy, the distances to which the dwarfs are located, their density profiles and their velocity dispersion. One results is that, after 10 Gy of fall, the structures remain compact maintaining their morphological properties, with better results when the halo of dark matter that envelops them is included. Only associations of dwarf galaxies located at distances of 1 Mpc these manage to enter the halo of the galaxy. This is supported by the fact that these closest associations are those that have fallen in towards the halo of the galaxy, which is why no associations of dwarfs are observed at these distances in the Local Group, the closet association being 14+12 at a distance of 1.37 Mpc from the Milky Way (Tully, 2006).

  9. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10.

    Science.gov (United States)

    Reines, Amy E; Sivakoff, Gregory R; Johnson, Kelsey E; Brogan, Crystal L

    2011-02-03

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  10. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows.

    Science.gov (United States)

    Governato, F; Brook, C; Mayer, L; Brooks, A; Rhee, G; Wadsley, J; Jonsson, P; Willman, B; Stinson, G; Quinn, T; Madau, P

    2010-01-14

    For almost two decades the properties of 'dwarf' galaxies have challenged the cold dark matter (CDM) model of galaxy formation. Most observed dwarf galaxies consist of a rotating stellar disk embedded in a massive dark-matter halo with a near-constant-density core. Models based on the dominance of CDM, however, invariably form galaxies with dense spheroidal stellar bulges and steep central dark-matter profiles, because low-angular-momentum baryons and dark matter sink to the centres of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present-day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different dark-matter particle candidate. Here we report hydrodynamical simulations (in a framework assuming the presence of CDM and a cosmological constant) in which the inhomogeneous interstellar medium is resolved. Strong outflows from supernovae remove low-angular-momentum gas, which inhibits the formation of bulges and decreases the dark-matter density to less than half of what it would otherwise be within the central kiloparsec. The analogues of dwarf galaxies-bulgeless and with shallow central dark-matter profiles-arise naturally in these simulations.

  11. Suppression of star formation in dwarf galaxies by photoelectric grain heating feedback.

    Science.gov (United States)

    Forbes, John C; Krumholz, Mark R; Goldbaum, Nathan J; Dekel, Avishai

    2016-07-28

    Photoelectric heating--heating of dust grains by far-ultraviolet photons--has long been recognized as the primary source of heating for the neutral interstellar medium. Simulations of spiral galaxies have shown some indication that photoelectric heating could suppress star formation; however, simulations that include photoelectric heating have typically shown that it has little effect on the rate of star formation in either spiral galaxies or dwarf galaxies, which suggests that supernovae are responsible for setting the gas depletion time in galaxies. This result is in contrast with recent work indicating that a star formation law that depends on galaxy metallicity--as is expected with photoelectric heating,but not with supernovae--reproduces the present-day galaxy population better than does a metallicity-independent one. Here we report a series of simulations of dwarf galaxies, the class of galaxy in which the effects of both photoelectric heating and supernovae are expected to be strongest. We simultaneously include space and time-dependent photoelectric heating in our simulations, and we resolve the energy-conserving phase of every supernova blast wave, which allows us to directly measure the relative importance of feedback by supernovae and photoelectric heating in suppressing star formation. We find that supernovae are unable to account for the observed large gas depletion times in dwarf galaxies. Instead, photoelectric heating is the dominant means by which dwarf galaxies regulate their star formation rate at any given time,suppressing the rate by more than an order of magnitude relative to simulations with only supernovae.

  12. DRIVERS OF H I TURBULENCE IN DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Stilp, Adrienne M.; Dalcanton, Julianne J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Skillman, Evan [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Warren, Steven R. [Department of Astronomy, University of Maryland, CSS Building, Room 1024, Stadium Drive, College Park, MD 20742-2421 (United States); Ott, Juergen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Koribalski, Baerbel [Australia Telescope National Facility, CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia)

    2013-08-20

    Neutral hydrogen (H I) velocity dispersions are believed to be set by turbulence in the interstellar medium (ISM). Although turbulence is widely believed to be driven by star formation, recent studies have shown that this driving mechanism may not be dominant in regions of low star formation surface density ({Sigma}{sub SFR}), such those as found in dwarf galaxies or the outer regions of spirals. We have generated average H I line profiles in a number of nearby dwarfs and low-mass spirals by co-adding H I spectra in subregions with either a common radius or {Sigma}{sub SFR}. We find that the individual spatially resolved ''superprofiles'' are composed of a central narrow peak ({approx}5-15 km s{sup -1}) with higher velocity wings to either side, similar to their global counterparts as calculated for the galaxy as a whole. Under the assumption that the central peak reflects the H I turbulent velocity dispersion, we compare measures of H I kinematics determined from the superprofiles to local ISM properties, including surface mass densities and measures of star formation. The shape of the wings of the superprofiles do not show any correlation with local ISM properties, which indicates that they may be an intrinsic feature of H I line-of-sight spectra. On the other hand, the H I velocity dispersion is correlated most strongly with baryonic and H I surface mass density, which points toward a gravitational origin for turbulence, but it is unclear which, if any, gravitational instabilities are able to operate efficiently in these systems. Star formation energy is typically produced at a level sufficient to drive H I turbulent motions at realistic coupling efficiencies in regimes where {Sigma}{sub SFR} {approx}> 10{sup -4} M{sub Sun} yr{sup -1} kpc{sup -2}, as is typically found in inner spiral disks. At low star formation intensities, on the other hand, star formation cannot supply enough energy to drive the observed turbulence, nor does it uniquely

  13. OBSERVATIONAL CONSTRAINTS ON THE MOLECULAR GAS CONTENT IN NEARBY STARBURST DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D. [Department of Astronomy, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Dalcanton, Julianne J.; Weisz, Daniel R.; Williams, Benjamin F. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Holtzman, Jon, E-mail: kmcquinn@astro.umn.edu [Department of Astronomy, New Mexico State University, Box 30001, Department 4500, 1320 Frenger Street, Las Cruces, NM 88003 (United States)

    2012-06-01

    Using star formation histories derived from optically resolved stellar populations in 19 nearby starburst dwarf galaxies observed with the Hubble Space Telescope, we measure the stellar mass surface densities of stars newly formed in the bursts. By assuming a star formation efficiency (SFE), we then calculate the inferred gas surface densities present at the onset of the starbursts. Assuming an SFE of 1%, as is often assumed in normal star-forming galaxies, and assuming that the gas was purely atomic, translates to very high H I surface densities ({approx}10{sup 2}-10{sup 3} M{sub Sun} pc{sup -2}), which are much higher than have been observed in dwarf galaxies. This implies either higher values of SFE in these dwarf starburst galaxies or the presence of significant amounts of H{sub 2} in dwarfs (or both). Raising the assumed SFEs to 10% or greater (in line with observations of more massive starbursts associated with merging galaxies), still results in H I surface densities higher than observed in 10 galaxies. Thus, these observations appear to require that a significant fraction of the gas in these dwarf starbursts galaxies was in the molecular form at the onset of the bursts. Our results imply molecular gas column densities in the range 10{sup 19}-10{sup 21} cm{sup -2} for the sample. In the galaxies where CO observations have been made, these densities correspond to values of the CO-H{sub 2} conversion factor (X{sub CO}) in the range >(3-80) Multiplication-Sign 10{sup 20} cm{sup -2} (K km s{sup -1}){sup -1}, or up to 40 Multiplication-Sign greater than Galactic X{sub CO} values.

  14. The effect of central starbursts on the interstellar medium of dwarf galaxies

    Science.gov (United States)

    De Young, David S.; Heckman, Timothy M.

    1994-01-01

    Major starburst events can last tens of millions of years, and in the process they can deposit significant amounts of energy into the surrounding interstellar medium. This energy from supernova and stellar winds imparts enough momentum to the interstellar medium (ISM) that portions of the ISM can become unbound and leave the parent galaxy, taking the metal-enriched stellar debris along. In dwarf galaxies, starbursts can produce enough total energy to unbind most or all of the ambient ISM. Whether this actually occurs is a strong function of the ellipticity of the ISM distribution, with flat disks and spheres being the limiting cases. We calculate whether 'blow out' along the symmetry axis of 'blow away' of the entire ISM occurs during a central starburst in dwarf galaxies as a function of galactic mass, starburst energy, ISM density, and ISM ellipticity. The calculations cover a range of 10(exp 7) to 10(exp 9) solar mass for dwarf galaxies and include 'normal' galaxies of 10(exp 11) solar mass as well. No massive dark matter halos are assumed to be present. We find that for physically reasonable values of total ISM mass and starburst energy a blow out along the symmetry axis occurs in the majority of cases, though a significant fraction of small dwarf galaxies can lose most of their ISM. As no dark matter halos or clumpy ISM distributions are included, it is apparent that the ISM in most dwarf galaxies may be generally resistant to significant disruption by a central starburst event. The effects of this range of behavi or on the metallicities that would be observed in these galaxies is discussed.

  15. Galaxy Evolution in the Cluster Abell 85: New Insights from the Dwarf Population

    Science.gov (United States)

    Habas, Rebecca; Fadda, Dario; Marleau, Francine R.; Biviano, Andrea; Durret, Florence

    2018-01-01

    We present the first results of a new spectroscopic survey of the cluster Abell 85 targeting 1466 candidate cluster members within the central ˜1 deg2 of the cluster and having magnitudes mr cluster members or part of an infalling population. A significant fraction are low mass; the median stellar mass of the sample is 109.6 M⊙, and 25% have stellar masses below 109 M⊙ (i.e. 133 dwarf galaxies). We also identify seven active galactic nuclei (AGN), four of which reside in dwarf host galaxies. We probe the evolution of star formation rates, based on Hα emission and continuum modeling, as a function of both mass and environment. We find that more star forming galaxies are observed at larger clustercentric distances, while infalling galaxies show evidence for recently enhanced star forming activity. Main sequence galaxies, defined by their continuum star formation rates, show different evolutionary behavior based on their mass. At the low mass end, the galaxies have had their star formation recently quenched, while more massive galaxies show no significant change. The timescales probed here favor fast quenching mechanisms, such as ram-pressure stripping. Galaxies within the green valley, defined similarly, do not show evidence of quenching. Instead, the low mass galaxies maintain their levels of star forming activity, while the more massive galaxies have experienced a recent burst.

  16. The ACS LCID Project: On the Origin of Dwarf Galaxy Types—A Manifestation of the Halo Assembly Bias?

    NARCIS (Netherlands)

    Gallart, Carme; Monelli, Matteo; Mayer, Lucio; Aparicio, Antonio; Battaglia, Giuseppina; Bernard, Edouard J.; Cassisi, Santi; Cole, Andrew A.; Dolphin, Andrew E.; Drozdovsky, Igor; Hidalgo, Sebastian L.; Navarro, Julio F.; Salvadori, Stefania; Skillman, Evan D.; Stetson, Peter B.; Weisz, Daniel R.

    2015-01-01

    We discuss how knowledge of the whole evolutionary history of dwarf galaxies, including details on the early star formation events, can provide insight on the origin of the different dwarf galaxy types. We suggest that these types may be imprinted by the early conditions of formation rather than

  17. Dark Matter Limits from Dwarf Spheroidal Galaxies with the HAWC Gamma-Ray Observatory

    Science.gov (United States)

    Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Engel, K.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Garfias, F.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hona, B.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lauer, R. J.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Longo Proper, M.; Raya, G. Luis; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Vianello, G.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Younk, P. W.; Zhou, H.

    2018-02-01

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view observatory sensitive to 500 GeV–100 TeV gamma-rays and cosmic rays. It can also perform diverse indirect searches for dark matter annihilation and decay. Among the most promising targets for the indirect detection of dark matter are dwarf spheroidal galaxies. These objects are expected to have few astrophysical sources of gamma-rays but high dark matter content, making them ideal candidates for an indirect dark matter detection with gamma-rays. Here we present individual limits on the annihilation cross section and decay lifetime for 15 dwarf spheroidal galaxies within the field of view, as well as their combined limit. These are the first limits on the annihilation cross section and decay lifetime using data collected with HAWC. We also present the HAWC flux upper limits of the 15 dwarf spheroidal galaxies in half-decade energy bins.

  18. Cores in dwarf galaxies from dark matter with a Yukawa potential.

    Science.gov (United States)

    Loeb, Abraham; Weiner, Neal

    2011-04-29

    We show that cold dark matter particles interacting through a Yukawa potential could naturally explain the recently observed cores in dwarf galaxies without affecting the dynamics of objects with a much larger velocity dispersion, such as clusters of galaxies. The velocity dependence of the associated cross section as well as the possible exothermic nature of the interaction alleviates earlier concerns about strongly interacting dark matter. Dark matter evaporation in low-mass objects might explain the observed deficit of satellite galaxies in the Milky Way halo and have important implications for the first galaxies and reionization.

  19. Simulating Ultra-faint Dwarf Glaxies: The Hallmark of Reionization at the Threshold of Galaxy Formation

    Science.gov (United States)

    Bullock, James

    2015-10-01

    Ultra-faint dwarf galaxies (UFDs) include the faintest, lowest-metallicity, and most dark-matter dominated galaxies known, providing unique and particularly powerful laboratories for our understanding of galaxy formation at the earliest times and in the lowest mass dark matter halos that host long-lived stars. Among the most striking discoveries about UFDs is that they appear to contain exclusively ancient stars (> 10 Gyr), an insight made possible by extremely deep HST imaging. Remarkably, this is exactly the age distribution expected in a scenario where the Missing Satellites Problem is primarily solved via early reionization-related feedback. Motivated by these exciting results from HST, this proposal is aimed at understanding the cosmological formation of UFDs using ultra-high resolution cosmological simulations. We aim to determine the relationship between the global reionization history and the observed star formation histories of low-mass dwarfs. We will also determine the relationship betwen halo mass and stellar mass at the dwarf regime, and use these results to inform our interpretation of dwarf galaxy counts in the Local Group in the context of LCDM cosmology. Our simulations, based on the FIRE star formation scheme, will carefully track the impact of local stellar feedback and global reionization feedback on the star formation histories of dwarf galaxies. Using zoom-in simulations over a range of dwarf-sized halos, we will explore the physical origin of the transition between uniformly (and anciently) quenched UFDs to the slightly larger classical dwarfs that appear to be star-forming at z=0 in the absence of environmental quenching.

  20. Prolate rotation and metallicity gradient in the transforming dwarf galaxy Phoenix

    Science.gov (United States)

    Kacharov, Nikolay; Battaglia, Giuseppina; Rejkuba, Marina; Cole, Andrew A.; Carrera, Ricardo; Fraternali, Filippo; Wilkinson, Mark I.; Gallart, Carme G.; Irwin, Mike; Tolstoy, Eline

    2017-04-01

    Transition type dwarf galaxies are thought to be systems undergoing the process of transformation from a star-forming into a passively evolving dwarf, which makes them particularly suitable to study evolutionary processes driving the existence of different dwarf morphological types. Here we present results from a spectroscopic survey of ˜200 individual red giant branch stars in the Phoenix dwarf, the closest transition type with a comparable luminosity to 'classical' dwarf galaxies. We measure a systemic heliocentric velocity Vhelio = -21.2 ± 1.0 km s-1. Our survey reveals the clear presence of prolate rotation that is aligned with the peculiar spatial distribution of the youngest stars in Phoenix. We speculate that both features might have arisen from the same event, possibly an accretion of a smaller system. The evolved stellar population of Phoenix is relatively metal-poor ( = -1.49 ± 0.04 dex) and shows a large metallicity spread (σ[Fe/H] = 0.51 ± 0.04 dex), with a pronounced metallicity gradient of -0.13 ± 0.01 dex arcmin-1 similar to luminous, passive dwarf galaxies. We also report a discovery of an extremely metal-poor star candidate in Phoenix and discuss the importance of correcting for spatial sampling when interpreting the chemical properties of galaxies with metallicity gradients. This study presents a major leap forward in our knowledge of the internal kinematics of the Phoenix transition type dwarf galaxy and the first wide area spectroscopic survey of its metallicity properties. A table containing the measured velocities, metallicities, and CaT equivalent widths of all spectroscopic targets is available online at the CDS.

  1. The imprint of reionization on the star formation histories of dwarf galaxies

    OpenAIRE

    Beńitez-Llambay, A.; Navarro, J. F.; Abadi, M. G.; Gottlöber, S; Yepes, G.; Hoffman, Y.; Steinmetz, M

    2015-01-01

    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved We use a compilation of star formation histories (SFHs) and cosmological simulations to explore the impact of cosmic reionization on nearby isolated dwarf galaxies. Nearby dwarfs show a wide diversity of SFHs; from ancient systems that completed their star formation (SF)...

  2. ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. III. AN EXTREMELY METAL DEFICIENT GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Skillman, Evan D.; Berg, Danielle A.; Olive, Keith A.; McQuinn, Kristen B. W., E-mail: skillman@astro.umn.edu, E-mail: berg@astro.umn.edu, E-mail: olive@physics.umn.edu, E-mail: kmcquinn@astro.umn.edu [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); and others

    2013-07-01

    We present KPNO 4 m and LBT/MODS spectroscopic observations of an H II region in the nearby dwarf irregular galaxy Leo P discovered recently in the Arecibo ALFALFA survey. In both observations, we are able to accurately measure the temperature sensitive [O III] {lambda}4363 line and determine a ''direct'' oxygen abundance of 12 + log(O/H) = 7.17 {+-} 0.04. Thus, Leo P is an extremely metal deficient (XMD) galaxy, and, indeed, one of the most metal deficient star-forming galaxies ever observed. For its estimated luminosity, Leo P is consistent with the relationship between luminosity and oxygen abundance seen in nearby dwarf galaxies. Leo P shows normal {alpha} element abundance ratios (Ne/O, S/O, and Ar/O) when compared to other XMD galaxies, but elevated N/O, consistent with the ''delayed release'' hypothesis for N/O abundances. We derive a helium mass fraction of 0.2509{sup +0.0184}{sub -0.0123}, which compares well with the WMAP + BBN prediction of 0.2483 {+-} 0.0002 for the primordial helium abundance. We suggest that surveys of very low mass galaxies compete well with emission line galaxy surveys for finding XMD galaxies. It is possible that XMD galaxies may be divided into two classes: the relatively rare XMD emission line galaxies which are associated with starbursts triggered by infall of low-metallicity gas and the more common, relatively quiescent XMD galaxies like Leo P, with very low chemical abundances due to their intrinsically small masses.

  3. Stellar Abundances for Galactic Archaeology Database. IV. Compilation of stars in dwarf galaxies

    Science.gov (United States)

    Suda, Takuma; Hidaka, Jun; Aoki, Wako; Katsuta, Yutaka; Yamada, Shimako; Fujimoto, Masayuki Y.; Ohtani, Yukari; Masuyama, Miyu; Noda, Kazuhiro; Wada, Kentaro

    2017-10-01

    We have constructed a database of stars in Local Group galaxies using the extended version of the SAGA (Stellar Abundances for Galactic Archaeology) database that contains stars in 24 dwarf spheroidal galaxies and ultra-faint dwarfs. The new version of the database includes more than 4500 stars in the Milky Way, by removing the previous metallicity criterion of [Fe/H] ≤ -2.5, and more than 6000 stars in the Local Group galaxies. We examined the validity of using a combined data set for elemental abundances. We also checked the consistency between the derived distances to individual stars and those to galaxies as given in the literature. Using the updated database, the characteristics of stars in dwarf galaxies are discussed. Our statistical analyses of α-element abundances show that the change of the slope of the [α/Fe] relative to [Fe/H] (so-called "knee") occurs at [Fe/H] = -1.0 ± 0.1 for the Milky Way. The knee positions for selected galaxies are derived by applying the same method. The star formation history of individual galaxies is explored using the slope of the cumulative metallicity distribution function. Radial gradients along the four directions are inspected in six galaxies where we find no direction-dependence of metallicity gradients along the major and minor axes. The compilation of all the available data shows a lack of CEMP-s population in dwarf galaxies, while there may be some CEMP-no stars at [Fe/H] ≲ -3 even in the very small sample. The inspection of the relationship between Eu and Ba abundances confirms an anomalously Ba-rich population in Fornax, which indicates a pre-enrichment of interstellar gas with r-process elements. We do not find any evidence of anti-correlations in O-Na and Mg-Al abundances, which characterizes the abundance trends in the Galactic globular clusters.

  4. Spectroscopic Studies of Starburst Galaxies; the Dynamical Structure of Blue Compact Dwarf Galaxy Haro 6

    Directory of Open Access Journals (Sweden)

    Mun-Suk Chun

    1995-06-01

    Full Text Available We carried out photometric and spectroscopic observations of the blue compact dwarf galaxy Haro 6 in the Virgo Cluster of Galaxies. The long-slit spectroscopy was employed at three position angles, ϕ = 0°, ϕ = 30°, and ϕ = 120° CCD camera mounted on the Cassegrain Spectrograph. Based on the mean intrinsic axial ratio q0=0.3, we derived inclination i of the system as 44° our composite V-band CCD image. Careful analysis on the velocity field of the system chows an asymptotically flat rotation curve with the maximum rotational velocity V(rmax reaches about 12 km/sec. The calculation of the dynamical mass of Haro 6 with a simple mass model is briefly discussed with emphasis on the mass to luminosity ratio. From the IRAS Point Source Catalogue, we derived dust-to-gas ratio which indicates relatively low dust content, thus tempting us to conjecture the youth of the system.

  5. The influence of the merger history of dwarf galaxies in a reionized universe

    Science.gov (United States)

    Verbeke, Robbert; Vandenbroucke, Bert; De Rijcke, Sven; Koleva, Mina

    2015-08-01

    In the ΛCDM model, cosmic structure forms in a hierarchical fashion. According to this paradigm, even low-mass dwarf galaxies grow via smooth accretion and mergers. Given the low masses of dwarf galaxies and their even smaller progenitors, the UV background is expected to have a significant influence on their gas content and, consequently, their star formation histories. Generally, cosmological simulations predict that most dwarf systems with circular velocities below ~30 km/s should not be able to form significant amounts of stars or contain gas and be, in effect, "dark" galaxies (Sawala et al. 2013, 2014; Hopkins et al. 2014; Shen et al. 2014). This is in contradiction with the recent discovery of low-mass yet gas-rich dwarf galaxies, such as Leo P (Skillman et al. 2013), Pisces A (Tollerud et al. 2014), and SECCO 1 (Bellazzini et al. 2015). Moreover, Tollerud et al. (2014) point out that most isolated dark-matter halos down to circular velocities of ~15 km/s contain neutral gas, in contradiction with the predictions of current simulations.Based on a suite of simulations of the formation and evolution of dwarf galaxies we show that, by reducing the first peak of star formation by including Pop-III stars in the simulations, the resulting dwarf galaxies have severely suppressed SFRs and can hold on to their gas reservoirs. Moreover, we show that the majority of the zero-metallicity stars are ejected during mergers, resulting in an extended, low-metallicity stellar halo. This results in a marked difference between a galaxy's "total" star-formation history and the one read from the stars in the center of the galaxy at z=0. This mechanism leads to the formation of realistic low-mass, gas-rich dwarfs with a broad range of SFHs and which adhere to the observed scaling relations, such as the baryonic Tully-Fisher relation.In short, the simulations presented here are for the first time able to reproduce the observed properties of low-mass, gas-rich dwarfs such as DDO 210

  6. The dearth of halo dwarf galaxies: is there power on short scales?

    Science.gov (United States)

    Kamionkowski; Liddle

    2000-05-15

    N-body simulations of structure formation with scale-invariant primordial perturbations show significantly more virialized objects of dwarf-galaxy mass in a typical galactic halo than are observed around the Milky Way. We show that the dearth of observed dwarf galaxies could be explained by a dramatic downturn in the power spectrum at small distance scales. This suppression of small-scale power might also help mitigate the disagreement between cuspy simulated halos and smooth observed halos, while remaining consistent with Lyman-alpha-forest constraints on small-scale power. Such a spectrum could arise in inflationary models with broken-scale invariance.

  7. Dynamics of Dwarf Galaxies Disfavor Stellar-Mass Black Holes as Dark Matter.

    Science.gov (United States)

    Koushiappas, Savvas M; Loeb, Abraham

    2017-07-28

    We study the effects of black hole dark matter on the dynamical evolution of stars in dwarf galaxies. We find that mass segregation leads to a depletion of stars in the center of dwarf galaxies and the appearance of a ring in the projected stellar surface density profile. Using Segue 1 as an example we show that current observations of the projected surface stellar density rule out at the 99.9% confidence level the possibility that more than 6% of the dark matter is composed of black holes with a mass of few tens of solar masses.

  8. A Widespread, Clumpy Starburst in the Isolated Ongoing Dwarf Galaxy Merger dm1647+21

    Science.gov (United States)

    Privon, G. C.; Stierwalt, S.; Patton, D. R.; Besla, G.; Pearson, S.; Putman, M.; Johnson, K. E.; Kallivayalil, N.; Liss, S.; Titans, TiNy

    2017-09-01

    Interactions between pairs of isolated dwarf galaxies provide a critical window into low-mass hierarchical, gas-dominated galaxy assembly and the build-up of stellar mass in low-metallicity systems. We present the first Very Large Telescope/Multi Unit Spectroscopic Explorer (VLT/MUSE) optical integral field unit (IFU) observations of the interacting dwarf pair dm1647+21 selected from the TiNy Titans survey. The Hα emission is widespread and corresponds to a total unobscured star formation rate (SFR) of 0.44 M ⊙ yr-1, which is 2.7 times higher than the SFR inferred from Sloan Digital Sky Survey (SDSS) data. The implied specific SFR (sSFR) for the system is elevated by more than an order of magnitude above non-interacting dwarfs in the same mass range. This increase is dominated by the lower-mass galaxy, which has a sSFR enhancement of >50. Examining the spatially resolved maps of classic optical line diagnostics, we find that the interstellar medium (ISM) excitation can be fully explained by star formation. The velocity field of the ionized gas is not consistent with simple rotation. Dynamical simulations indicate that the irregular velocity field and the stellar structure is consistent with the identification of this system as an ongoing interaction between two dwarf galaxies. The widespread, clumpy enhancements in the star formation in this system point to important differences in the effect of mergers on dwarf galaxies, compared to massive galaxies; rather than the funneling of gas to the nucleus and giving rise to a nuclear starburst, starbursts in low-mass galaxy mergers may be triggered by large-scale ISM compression, and thus may be more distributed.

  9. R-process enrichment from a single event in an ancient dwarf galaxy.

    Science.gov (United States)

    Ji, Alexander P; Frebel, Anna; Chiti, Anirudh; Simon, Joshua D

    2016-03-31

    Elements heavier than zinc are synthesized through the rapid (r) and slow (s) neutron-capture processes. The main site of production of the r-process elements (such as europium) has been debated for nearly 60 years. Initial studies of trends in chemical abundances in old Milky Way halo stars suggested that these elements are produced continually, in sites such as core-collapse supernovae. But evidence from the local Universe favours the idea that r-process production occurs mainly during rare events, such as neutron star mergers. The appearance of a plateau of europium abundance in some dwarf spheroidal galaxies has been suggested as evidence for rare r-process enrichment in the early Universe, but only under the assumption that no gas accretes into those dwarf galaxies; gas accretion favours continual r-process enrichment in these systems. Furthermore, the universal r-process pattern has not been cleanly identified in dwarf spheroidals. The smaller, chemically simpler, and more ancient ultrafaint dwarf galaxies assembled shortly after the first stars formed, and are ideal systems with which to study nucleosynthesis events such as the r-process. Reticulum II is one such galaxy. The abundances of non-neutron-capture elements in this galaxy (and others like it) are similar to those in other old stars. Here, we report that seven of the nine brightest stars in Reticulum II, observed with high-resolution spectroscopy, show strong enhancements in heavy neutron-capture elements, with abundances that follow the universal r-process pattern beyond barium. The enhancement seen in this 'r-process galaxy' is two to three orders of magnitude higher than that detected in any other ultrafaint dwarf galaxy. This implies that a single, rare event produced the r-process material in Reticulum II. The r-process yield and event rate are incompatible with the source being ordinary core-collapse supernovae, but consistent with other possible sources, such as neutron star mergers.

  10. A Widespread, Clumpy Starburst in the Isolated Ongoing Dwarf Galaxy Merger dm1647+21

    Energy Technology Data Exchange (ETDEWEB)

    Privon, G. C. [Instituto de Astrofśica, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Stierwalt, S.; Johnson, K. E.; Kallivayalil, N.; Liss, S. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Patton, D. R. [Department of Physics and Astronomy, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2 (Canada); Besla, G. [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Pearson, S.; Putman, M., E-mail: gprivon@astro.puc.cl [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Collaboration: TiNy Titans

    2017-09-01

    Interactions between pairs of isolated dwarf galaxies provide a critical window into low-mass hierarchical, gas-dominated galaxy assembly and the build-up of stellar mass in low-metallicity systems. We present the first Very Large Telescope/Multi Unit Spectroscopic Explorer (VLT/MUSE) optical integral field unit (IFU) observations of the interacting dwarf pair dm1647+21 selected from the TiNy Titans survey. The H α emission is widespread and corresponds to a total unobscured star formation rate (SFR) of 0.44 M {sub ⊙} yr{sup −1}, which is 2.7 times higher than the SFR inferred from Sloan Digital Sky Survey (SDSS) data. The implied specific SFR (sSFR) for the system is elevated by more than an order of magnitude above non-interacting dwarfs in the same mass range. This increase is dominated by the lower-mass galaxy, which has a sSFR enhancement of >50. Examining the spatially resolved maps of classic optical line diagnostics, we find that the interstellar medium (ISM) excitation can be fully explained by star formation. The velocity field of the ionized gas is not consistent with simple rotation. Dynamical simulations indicate that the irregular velocity field and the stellar structure is consistent with the identification of this system as an ongoing interaction between two dwarf galaxies. The widespread, clumpy enhancements in the star formation in this system point to important differences in the effect of mergers on dwarf galaxies, compared to massive galaxies; rather than the funneling of gas to the nucleus and giving rise to a nuclear starburst, starbursts in low-mass galaxy mergers may be triggered by large-scale ISM compression, and thus may be more distributed.

  11. The remnant of a merger between two dwarf galaxies in Andromeda II.

    Science.gov (United States)

    Amorisco, N C; Evans, N W; van de Ven, G

    2014-03-20

    Driven by gravity, massive structures like galaxies and clusters of galaxies are believed to grow continuously through hierarchical merging and accretion of smaller systems. Observational evidence of accretion events is provided by the coherent stellar streams crossing the outer haloes of massive galaxies, such as the Milky Way or Andromeda. At similar mass scales, around 10(11) solar masses in stars, further evidence of merging activity is also ample. Mergers of lower-mass galaxies are expected within the hierarchical process of galaxy formation, but have hitherto not been seen for galaxies with less than about 10(9) solar masses in stars. Here we report the kinematic detection of a stellar stream in one of the satellite galaxies of Andromeda, the dwarf spheroidal Andromeda II, which has a mass of only 10(7) solar masses in stars. The properties of the stream show that we are observing the remnant of a merger between two dwarf galaxies. This had a drastic influence on the dynamics of the remnant, which is now rotating around its projected major axis. The stellar stream in Andromeda II illustrates the scale-free character of the formation of galaxies, down to the lowest galactic mass scales.

  12. COMPARING THE OBSERVABLE PROPERTIES OF DWARF GALAXIES ON AND OFF THE ANDROMEDA PLANE

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Michelle L. M.; Martin, Nicolas F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Rich, R. M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Ibata, Rodrigo A. [Observatoire de Strasbourg, 11, Rue de l' Université, F-67000 Strasbourg (France); Chapman, Scott C. [Department of Physics and Atmospheric Science, Dalhousie University, Coburg Road, Halifax B3H1A6 (Canada); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, British Columbia, Victoria V9E 2E7 (Canada); Ferguson, Annette M. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Irwin, Michael J. [Institute of Astronomy, Madingley Rise, Cambridge CB3 0HA (United Kingdom); Lewis, Geraint F., E-mail: michelle.collins@yale.edu [Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, NSW 2006 (Australia)

    2015-01-20

    The thin, extended planes of satellite galaxies detected around both the Milky Way and Andromeda are not a natural prediction of the Λ-cold dark matter paradigm. Galaxies in these distinct planes may have formed and evolved in a different way (e.g., tidally) from their off-plane neighbors. If this were the case, one would expect the on- and off-plane dwarf galaxies in Andromeda to have experienced different evolutionary histories, which should be reflected by the chemistries, dynamics, and star formation histories of the two populations. In this work, we present new, robust kinematic observations for two on-plane M31 dwarf spheroidal galaxies (And XVI and XVII) and compile and compare all available observational metrics for the on- and off-plane dwarfs to search for a signal that would corroborate such a hypothesis. We find that, barring their spatial alignment, the on- and off-plane Andromeda dwarf galaxies are indistinguishable from one another, arguing against vastly different formative and evolutionary histories for these two populations.

  13. UGC 7639: A Dwarf Galaxy in the Canes Venatici I Cloud

    Directory of Open Access Journals (Sweden)

    L. M. Buson

    2015-01-01

    Full Text Available We want to get insight into the formation mechanism and the evolution of UGC 7639, a dwarf galaxy in the Canes Venatici I Cloud (CVnIC. We used archival multiwavelength data to constrain its global properties. Ultraviolet images show that UGC 7639 inner regions are composed mostly by young stellar populations. In addition, we used smoothed particle hydrodynamics simulations with chemophotometric implementation to account for its formation and evolution. UGC 7639 is an example of blue dwarf galaxy whose global properties are well matched by our multiwavelength approach, that is, a suitable approach to highlight the evolution also of these galaxies as a class. We found that the global properties of UGC 7639, namely, its total absolute B-band magnitude, its whole spectral energy distribution, and morphology, are well matched by an encounter with a system four times more massive than our target. Moreover, the current star formation rate of the simulated dwarf, ≈0.03 M⊙ yr−1, is in good agreement with our UV-based estimate. We derived a galaxy age of 8.6 Gyr. Following our simulation, the ongoing star formation will extinguish within 1.6 Gyr, thus leaving a red dwarf galaxy.

  14. SURFACE BRIGHTNESS PROFILES OF DWARF GALAXIES. II. COLOR TRENDS AND MASS PROFILES

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Kimberly A. [Penn State Mont Alto, 1 Campus Drive, Mont Alto, PA 17237 (United States); Hunter, Deidre A. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Elmegreen, Bruce G., E-mail: kah259@psu.edu, E-mail: dah@lowell.edu, E-mail: bge@us.ibm.com [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2016-06-01

    In this second paper of a series, we explore the B  −  V , U  −  B , and FUV−NUV radial color trends from a multi-wavelength sample of 141 dwarf disk galaxies. Like spirals, dwarf galaxies have three types of radial surface brightness profiles: (I) single exponential throughout the observed extent (the minority), (II) down-bending (the majority), and (III) up-bending. We find that the colors of (1) Type I dwarfs generally become redder with increasing radius, unlike spirals which have a blueing trend that flattens beyond ∼1.5 disk scale lengths, (2) Type II dwarfs come in six different “flavors,” one of which mimics the “U” shape of spirals, and (3) Type III dwarfs have a stretched “S” shape where the central colors are flattish, become steeply redder toward the surface brightness break, then remain roughly constant beyond, which is similar to spiral Type III color profiles, but without the central outward bluing. Faint (−9 >  M{sub B}  > −14) Type II dwarfs tend to have continuously red or “U” shaped colors and steeper color slopes than bright (−14 >  M{sub B}  > −19) Type II dwarfs, which additionally have colors that become bluer or remain constant with increasing radius. Sm dwarfs and BCDs tend to have at least some blue and red radial color trend, respectively. Additionally, we determine stellar surface mass density (Σ) profiles and use them to show that the break in Σ generally remains in Type II dwarfs (unlike Type II spirals) but generally disappears in Type III dwarfs (unlike Type III spirals). Moreover, the break in Σ is strong, intermediate, and weak in faint dwarfs, bright dwarfs, and spirals, respectively, indicating that Σ may straighten with increasing galaxy mass. Finally, the average stellar surface mass density at the surface brightness break is roughly 1−2  M {sub ⊙} pc{sup −2} for Type II dwarfs but higher at 5.9  M {sub ⊙} pc{sup −2} or 27  M {sub ⊙} pc{sup −2} for

  15. The Promise of First Spectroscopy of Normal and Dwarf Galaxies

    National Research Council Canada - National Science Library

    Fischer, J

    2001-01-01

    ISO spectroscopic studies of galaxies gave us a taste of the diversity of IR spectroscopic signatures of galaxies and their potential to characterize stellar populations and their effects on the local...

  16. The Eating Habits of Giants and Dwarfs: Chemo-dynamics of Halo Assembly in Nearby Galaxies

    Science.gov (United States)

    Romanowsky, Aaron J.; SAGES Team

    2012-01-01

    I will present novel results on the halo assembly of nearby galaxies, from dwarfs to the most massive ellipticals, using Subaru imaging and Keck spectroscopy. Field stars, globular clusters, and planetary nebulae are used as wide-field chemo-dynamical tracers, mapping out halo substructures that were previously known and unknown. Comparisons are made with simulations of galaxy formation. Supported by the National Science Foundation Grants AST-0808099, AST-0909237, and AST-1109878.

  17. Improving the sensitivity of gamma-ray telescopes to dark matter annihilation in dwarf spheroidal galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Eric [Univ. of California, Santa Cruz, CA (United States). Dept. of Physics; Hooper, Dan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). Center for Particle Astrophysics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics; Linden, Tim [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics

    2015-03-01

    The Fermi-LAT Collaboration has studied the gamma-ray emission from a stacked population of dwarf spheroidal galaxies and used this information to set constraints on the dark matter annihilation cross section. Interestingly, their analysis uncovered an excess with a test statistic (TS) of 8.7. If interpreted naively, this constitutes a 2.95σ local excess (p-value=0.003), relative to the expectations of their background model. In order to further test this interpretation, the Fermi-LAT team studied a large number of blank sky locations and found TS>8.7 excesses to be more common than predicted by their background model, decreasing the significance of their dwarf excess to 2.2σ(p-value=0.027). We argue that these TS>8.7 blank sky locations are largely the result of unresolved blazars, radio galaxies, and star-forming galaxies, and show that multiwavelength information can be used to reduce the degree to which such sources contaminate the otherwise blank sky. In particular, we show that masking regions of the sky that lie within 1° of sources contained in the BZCAT or CRATES catalogs reduce the fraction of blank sky locations with TS>8.7 by more than a factor of 2. Taking such multiwavelength information into account can enable experiments such as Fermi to better characterize their backgrounds and increase their sensitivity to dark matter in dwarf galaxies, the most important of which remain largely uncontaminated by unresolved point sources. We also note that for the range of dark matter masses and annihilation cross sections currently being tested by studies of dwarf spheroidal galaxies, simulations predict that Fermi should be able to detect a significant number of dark matter subhalos. These subhalos constitute a population of subthreshold gamma-ray point sources and represent an irreducible background for searches for dark matter annihilation in dwarf galaxies.

  18. HOW TO MAKE AN ULTRA-FAINT DWARF SPHEROIDAL GALAXY: TIDAL STIRRING OF DISKY DWARFS WITH SHALLOW DARK MATTER DENSITY PROFILES

    Energy Technology Data Exchange (ETDEWEB)

    Lokas, Ewa L. [Nicolaus Copernicus Astronomical Center, 00-716 Warsaw (Poland); Kazantzidis, Stelios [Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States); Mayer, Lucio, E-mail: lokas@camk.edu.pl, E-mail: stelios@astronomy.ohio-state.edu, E-mail: lucio@phys.ethz.ch [Institute for Theoretical Physics, University of Zuerich, CH-8057 Zuerich (Switzerland)

    2012-05-20

    In recent years the Sloan Digital Sky Survey has unraveled a new population of ultra-faint dwarf galaxies (UFDs) whose origin remains a puzzle in the vicinity of the Milky Way (MW). Using a suite of collisionless N-body simulations, we investigate the formation of UFDs in the context of the tidal stirring model for the formation of dwarf spheroidal galaxies in the Local Group (LG). Our simulations are designed to reproduce the tidal interactions between MW-sized host galaxies and rotationally supported dwarfs embedded in 10{sup 9} M{sub Sun} dark matter (DM) halos. We explore a variety of inner density slopes {rho}{proportional_to}r{sup -{alpha}} for the dwarf DM halos, ranging from core-like ({alpha} = 0.2) to cuspy ({alpha} = 1), and different dwarf orbital configurations. Our experiments demonstrate that UFDs can be produced via tidal stirring of disky dwarfs on relatively tight orbits, consistent with a redshift of accretion by the host galaxy of z {approx} 1, and with intermediate values for the halo inner density slopes ({rho}{proportional_to}r{sup -0.6}). The inferred slopes are in excellent agreement with those resulting from both the modeling of the rotation curves of dwarf galaxies and recent cosmological simulations of dwarf galaxy formation. Comparing the properties of observed UFDs with those of their simulated counterparts, we find remarkable similarities in terms of basic observational parameters. We conclude that tidal stirring of rotationally supported dwarfs represents a viable mechanism for the formation of UFDs in the LG environment.

  19. Star Formation Histories of Dwarf Galaxies from the Colour-Magnitude Diagrams of Their Resolved Stellar Populations

    Directory of Open Access Journals (Sweden)

    Michele Cignoni

    2010-01-01

    build synthetic CMDs and to exploit them to derive the SF histories (SFHs are described, as well as the corresponding uncertainties. The SFHs of resolved dwarf galaxies of all morphological types, obtained from the application of the synthetic CMD method, are reviewed and discussed. To summarize: (1 only early-type galaxies show evidence of long interruptions in the SF activity; late-type dwarfs present rather continuous, or gasping, SF regimes; (2 a few early-type dwarfs have experienced only one episode of SF activity concentrated at the earliest epochs, whilst many others show extended or recurrent SF activity; (3 no galaxy experiencing now its first SF episode has been found yet; (4 no frequent evidence of strong SF bursts is found; (5 there is no significant difference in the SFH of dwarf irregulars and blue compact dwarfs, except for the current SF rates. Implications of these results on the galaxy formation scenarios are briefly discussed.

  20. The same with less: The cosmic web of warm versus cold dark matter dwarf galaxies

    Science.gov (United States)

    Reed, Darren; Schneider, Aurel; Smith, Robert E.; Stadel, Joachim; Moore, Ben

    2015-01-01

    We explore fundamental properties of the distribution of low mass dark matter halos within the cosmic web using warm dark matter (WDM) and cold dark matter (CDM) cosmological simulations. Using self abundance-matched mock galaxy catalogs, we show that the distribution of dwarf galaxies in a WDM universe wherein low mass halo formation is heavily suppressed, is nearly indistinguishable to that of a CDM universe whose low mass halos are not seen because galaxy formation is suppressed below some threshold halo mass. However, if the scatter between dwarf galaxy luminosity and halo properties is large enough, low mass CDM halos would sometimes host relatively bright galaxies thereby populating CDM voids with the occasional isolated galaxyand reducing the numbers of completely empty voids. Otherwise, without high mass to light scatter, all mock galaxy clustering statistics that we consider-the auto-correlation function, the numbers and radial profiles of satellites, the numbers of isolated galaxies, and the PDF of small voids-are nearly identical in CDM and WDM. WDM voids are neither larger nor emptier than CDM voids, when constructed from abundance- matched halo catalogs. It is thus a challenge to determine whether the CDM problem of the over-abundance of small halos with respect to the number density of observed dwarf galaxies has a cosmological solution or an astrophysical solution. However, some clues about the dark matter particle and the scatter between the properties of dwarfgalaxies and their dark matter halo hosts might be found in the cosmic web of galaxies in future surveys of the local volume.

  1. What can Gaia proper motions tell us about Milky Way dwarf galaxies?

    NARCIS (Netherlands)

    Jin, S.; Helmi, A.; Breddels, M.

    We present a proper-motion study on models of the dwarf spheroidal galaxy Sculptor, based on the predicted proper-motion accuracy of Gaia measurements. Gaia will measure proper motions of several hundreds of stars for a Sculptor-like system. Even with an uncertainty on the proper motion of order 1.5

  2. A supermassive black hole in an ultra-compact dwarf galaxy.

    Science.gov (United States)

    Seth, Anil C; van den Bosch, Remco; Mieske, Steffen; Baumgardt, Holger; den Brok, Mark; Strader, Jay; Neumayer, Nadine; Chilingarian, Igor; Hilker, Michael; McDermid, Richard; Spitler, Lee; Brodie, Jean; Frank, Matthias J; Walsh, Jonelle L

    2014-09-18

    Ultra-compact dwarf galaxies are among the densest stellar systems in the Universe. These systems have masses of up to 2 × 10(8) solar masses, but half-light radii of just 3-50 parsecs. Dynamical mass estimates show that many such dwarfs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates arise because of the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we report adaptive optics kinematic data of the ultra-compact dwarf galaxy M60-UCD1 that show a central velocity dispersion peak exceeding 100 kilometres per second and modest rotation. Dynamical modelling of these data reveals the presence of a supermassive black hole with a mass of 2.1 × 10(7) solar masses. This is 15 per cent of the object's total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1's stellar mass is consistent with its luminosity, implying a large population of previously unrecognized supermassive black holes in other ultra-compact dwarf galaxies.

  3. Evidence for an Interaction in the Nearest Starbursting Dwarf Irregular Galaxy IC 10

    NARCIS (Netherlands)

    Nidever, David L.; Ashley, Trisha; Slater, Colin T.; Ott, Juergen; Johnson, Megan; Bell, Eric F.; Stanimirovic, Snezana; Putman, Mary; Majewski, Steven R.; Simpson, Caroline E.; Juette, Eva; Oosterloo, Tom A.; Burton, W. Butler

    2013-01-01

    Using deep 21 cm Hi data from the Green Bank Telescope we have detected an greater than or similar to 18.3 kpc long gaseous extension associated with the starbursting dwarf galaxy IC 10. The newly found feature stretches 1 degrees.3 to the northwest and has a large radial velocity gradient reaching

  4. The star formation and chemical evolution history of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    de Boer, T. J. L.; Tolstoy, E.; Hill, V.; Saha, A.; Olszewski, E. W.; Mateo, M.; Starkenburg, E.; Battaglia, G.; Walker, M. G.

    We present deep photometry in the B, V and I filters from CTIO/MOSAIC for about 270 000 stars in the Fornax dwarf spheroidal galaxy, out to a radius of rell ≈ 0.8 degrees. By combining the accurately calibrated photometry with the spectroscopic metallicity distributions of individual red giant

  5. The star formation and chemical evolution history of the sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    de Boer, T. J. L.; Tolstoy, E.; Hill, V.; Saha, A.; Olsen, K.; Starkenburg, E.; Lemasle, B.; Irwin, M. J.; Battaglia, G.

    We have combined deep photometry in the B, V and I bands from CTIO/MOSAIC of the Sculptor dwarf spheroidal galaxy, going down to the oldest main sequence turn-offs, with spectroscopic metallicity distributions of red giant branch stars. This allows us to obtain the most detailed and complete star

  6. A Model for Gas Dynamics and Chemical Evolution of the Fornax Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Yuan, Zhen

    We present an empirical model for the halo evolution, global gas dynamics and chemical evolution of Fornax, the brightest Milky Way (MW) dwarf spheroidal galaxy (dSph). Assuming a global star formation rate psi(t) = lambda*(t)[Mg( t)/M[solar masses

  7. The kinematic properties of dwarf early-type galaxies in the Virgo cluster

    NARCIS (Netherlands)

    Toloba, E.; Boselli, A.; Peletier, R. F.; Gorgas, J.; Zapatero Osorio, M.R.; Gorgas, J.; Maíz Apellániz, J.; Pardo, J.R.; Gil de Paz, A.

    2011-01-01

    We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster. These data are used to study the origin of dEs inhabiting clusters. Within them we detect two populations: half of the sample (52%) are rotationally supported and the other

  8. VLT/UVES abundances in four nearby dwarf spheroidal galaxies. I. Nucleosynthesis and abundance ratios

    NARCIS (Netherlands)

    Shetrone, M; Venn, KA; Tolstoy, E; Primas, F; Hill, [No Value; Kaufer, A

    We have used the Ultraviolet Echelle Spectrograph (UVES) on Kueyen (UT2) of the Very Large Telescope to take spectra of 15 individual red giants in the Sculptor, Fornax, Carina, and Leo I dwarf spheroidal galaxies (dSph's). We measure the abundances of alpha-, iron peak, first s-process, second

  9. The kinematic status and mass content of the sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Battaglia, G.; Helmi, A.; Tolstoy, E.; Irwin, M.; Hill, V.; Jablonka, P.

    2008-01-01

    We present VLT FLAMES spectroscopic observations (R similar to 6500) in the Ca II triplet region for 470 probable kinematic members of the Sculptor (Scl) dwarf spheroidal galaxy. The accurate velocities (+/- 2 km s(-1)) and large area coverage of Scl allow us to measure a velocity gradient of

  10. A comparison of two mass distributions applicable to globular clusters and dwarf galaxies

    Directory of Open Access Journals (Sweden)

    Ninković Slobodan D.

    2004-01-01

    Full Text Available A particular case of mass distribution in stellar systems, already described in the literature, is compared to the King model of mass distribution. For the cases which would correspond to the description of real stellar systems such as the globular clusters and dwarf galaxies, one finds a satisfactory agreement between these two mass distributions.

  11. The chemical evolution of dwarf spheroidal galaxies : dissecting the inner regions and their stellar populations

    NARCIS (Netherlands)

    Marcolini, A.; D'Ercole, A.; Battaglia, G.; Gibson, B. K.

    2008-01-01

    Using three-dimensional hydrodynamical simulations of isolated dwarf spheroidal galaxies (dSphs), we undertake an analysis of the chemical properties of their inner regions, identifying the respective roles played by Type Ia supernovae (SNe Ia) and Type II supernovae (SNe II). The effect of

  12. Ultra-faint dwarfs: The living fossils of the first galaxies

    NARCIS (Netherlands)

    Salvadori, Stefania

    The nature of the faintest dwarf galaxies and their connection with the recently discovered very metal-poor Damped Lyα Absorption systems (DLAs) is investigate in the context of the Milky Way formation. By using a cosmological model I will discuss the theoretical implications of the observed

  13. The episodic star formation history of the Carina dwarf spheroidal galaxy

    NARCIS (Netherlands)

    de Boer, T.J.L.; Tolstoy, E.; Lemasle, B.; Saha, A.; Olszewski, E.W.; Mateo, M.; Irwin, M.J.; Battaglia, G.

    2014-01-01

    We present deep photometry of the Carina dwarf spheroidal galaxy in the B and V filters from CTIO/MOSAIC out to and beyond the tidal radius of rell ≈ 0.48 degrees. The accurately calibrated photometry is combined with spectroscopic metallicity distributions of red giant branch (RGB) stars to

  14. The imprint of reionization on the star formation histories of dwarf galaxies

    Science.gov (United States)

    Benítez-Llambay, A.; Navarro, J. F.; Abadi, M. G.; Gottlöber, S.; Yepes, G.; Hoffman, Y.; Steinmetz, M.

    2015-07-01

    We use a compilation of star formation histories (SFHs) and cosmological simulations to explore the impact of cosmic reionization on nearby isolated dwarf galaxies. Nearby dwarfs show a wide diversity of SFHs; from ancient systems that completed their star formation (SF) ˜10 Gyr ago to young dwarfs that formed the majority of their stars in the past ˜5 Gyr to `two-component' systems characterized by the overlap of old and young stars. As an ensemble, SF in nearby dwarfs dips to lower-than-average rates at intermediate times (4 haloes, affecting especially systems with virial temperatures of ˜2 × 104 K at zreion. SF begins before zreion in systems above this threshold; its associated feedback compounds the effects of reionization, emptying the haloes of gas and leaving behind old stellar systems. In haloes below the threshold at zreion, reionization leads to a delay in the onset of SF that lasts until the halo grows massive enough to allow gas to cool and form stars, leading to a system with a prominent young stellar component. `Two-component' systems may be traced to late accretion events that allow young stars to form in systems slightly above the threshold at zreion. The dearth of intermediate-age stars in nearby dwarfs might be the clearest signature of the imprint of cosmic reionization on the SFHs of dwarf galaxies.

  15. Wide-field Imaging of the Environments of LITTLE THINGS Dwarf Irregular Galaxies

    Science.gov (United States)

    Hunter, Deidre A.; Melton, Casey; Leshin, Stephen; Wong, Alson; Clark, Maurice; Kamienski, Jerald; Moriya, Netzer; Packwood, Burley; Birket, Bob; Edwards, William; Millward, Mervyn; Wheelband, Ian

    2018-01-01

    We have obtained wide-field images of 36 of the 41 LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The H I Nearby Galaxy Survey) nearby (limiting magnitudes of the images range from 19.7 to 28.3 mag arcsec‑2, with a median value of 25.9 mag arcsec‑2. We did not find any unknown companions. Two of the LITTLE THINGS galaxies, NGC 4163 and NGC 4214, and the fainter dwarf, UGCA 276, lie potentially within 100 kpc of each other, but our imaging does not reveal any stellar bridge between the galaxies. This project was part of the Lowell Amateur Research Initiative.

  16. NIHAO - XIV. Reproducing the observed diversity of dwarf galaxy rotation curve shapes in ΛCDM

    Science.gov (United States)

    Santos-Santos, Isabel M.; Di Cintio, Arianna; Brook, Chris B.; Macciò, Andrea; Dutton, Aaron; Domínguez-Tenreiro, Rosa

    2018-02-01

    The significant diversity of rotation curve (RC) shapes in dwarf galaxies has recently emerged as a challenge to Λ cold dark matter (ΛCDM): in dark matter (DM) only simulations, DM haloes have a universal cuspy density profile that results in self-similar RC shapes. We compare RC shapes of simulated galaxies from the NIHAO (Numerical Investigation of a Hundred Astrophysical Objects) project with observed galaxies from the homogeneous SPARC data set. The DM haloes of the NIHAO galaxies can expand to form cores, with the degree of expansion depending on their stellar-to-halo mass ratio. By means of the V2kpc-VRlast relation (where VRlast is the outermost measured rotation velocity), we show that both the average trend and the scatter in RC shapes of NIHAO galaxies are in reasonable agreement with SPARC: this represents a significant improvement compared to simulations that do not result in DM core formation, suggesting that halo expansion is a key process in matching the diversity of dwarf galaxy RCs. Note that NIHAO galaxies can reproduce even the extremely slowly rising RCs of IC 2574 and UGC 5750. Revealingly, the range where observed galaxies show the highest diversity corresponds to the range where core formation is most efficient in NIHAO simulations, 50 galaxies in this range cannot be matched by any NIHAO RC nor by simulations that predict a universal halo profile. Interestingly, the majority of these are starbursts or emission-line galaxies, with steep RCs and small effective radii. Such galaxies represent an interesting observational target providing new clues to the process/viability of cusp-core transformation, the relationship between starburst and inner potential well, and the nature of DM.

  17. Chemically-Deduced Star Formation Histories Of Dwarf Galaxies Using Barium

    Science.gov (United States)

    Duggan, Gina; Kirby, Evan

    2017-06-01

    Dwarf galaxies offer a unique opportunity to study the competing forces of galaxy evolution. Their simpler history (i.e., small size, fewer major mergers, and lack of active galactic nuclei) enables us to isolate different physical mechanisms more easily. The effects of these mechanisms are imprinted on the galaxy's star formation history. Traditionally, star formation histories are determined from color-magnitude diagrams. However, chemical abundances can increase the precision of this measurement. Here we present a simplistic galactic chemical evolution model to infer the star formation history. Chemical abundances are measured from spectra obtained with Keck/DEIMOS medium-resolution spectroscopy for over a hundred red giant stars from several satellite dwarf spheroidal galaxies and globular clusters. We focus our work on iron and barium abundances because they predominantly trace Type Ia supernovae and asymptotic giant branch stars, respectively. The different timescales of these two nucleosynthetic sources can be used to measure a finely resolved star formation history, especially when combined with existing [α/Fe] measurements. These models will inform the details of early star formation in dwarf galaxies and how it is affected by various physical processes, such as reionization and tidal stripping.

  18. Chemical Abundance Measurements of Ultra-Faint Dwarf Galaxies Discovered by the Dark Energy Survey

    Science.gov (United States)

    Nagasawa, Daniel; Marshall, Jennifer L.; Simon, Joshua D.; Hansen, Terese; Li, Ting; Bernstein, Rebecca; Balbinot, Eduardo; Drlica-Wagner, Alex; Pace, Andrew; Strigari, Louis; Pellegrino, Craig; DePoy, Darren L.; Suntzeff, Nicholas; Bechtol, Keith; Dark Energy Suvey

    2018-01-01

    We present chemical abundance analysis results derived from high-resolution spectroscopy of ultra-faint dwarfs discovered by the Dark Energy Survey. Ultra-faint dwarf galaxies preserve a fossil record of the chemical abundance patterns imprinted by the first stars in the Universe. High-resolution spectroscopic observations of member stars in several recently discovered Milky Way satellites reveal a range of abundance patterns among ultra-faint dwarfs suggesting that star formation processes in the early Universe were quite diverse. The chemical content provides a glimpse not only of the varied nucleosynthetic processes and chemical history of the dwarfs themselves, but also the environment in which they were formed. We present the chemical abundance analysis of these objects and discuss possible explanations for the observed abundance patterns.

  19. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    Science.gov (United States)

    vanderWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; hide

    2012-01-01

    We identify an abundant population of extreme emission line galaxies (EELGs) at redshift z approx. 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broad-band magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission lines . with rest-frame equivalent widths approx. 1000A in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with approx.10(exp 8) Solar Mass in stellar mass, undergoing an enormous starburst phase with M*/M* of only approx. 15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the co-moving number density (3.7x10(exp -4) Mpc(sup -3) can produce in approx.4 Gyr much of the stellar mass density that is presently contained in 10(exp 8) - 10(exp 9) Solar Mass dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  20. A Radio Continuum Study of Dwarf Galaxies: 6 cm Imaging of LITTLE THINGS

    Science.gov (United States)

    Hindson, Luke; Kitchener, Ged; Brinks, Elias; Heesen, Volker; Westcott, Jonathan; Hunter, Deidre; Zhang, Hong-Xin; Rupen, Michael; Rau, Urvashi

    2018-02-01

    In this paper, we examine to what extent the radio continuum can be used as an extinction-free probe of star formation in dwarf galaxies. To that aim, we observe 40 nearby dwarf galaxies with the Very Large Array at 6 cm (4–8 GHz) in C-configuration. We obtained images with 3″–8″ resolution and noise levels of 3–15 μJy beam‑1. We detected emission associated with 22 of the 40 dwarf galaxies, eight of which are new detections. The general picture is that of an interstellar medium largely devoid of radio continuum emission, interspersed by isolated pockets of emission associated with star formation. We find an average thermal fraction of ∼50%–70% and an average magnetic field strength of ∼5–8 μG, only slightly lower than that found in larger, spiral galaxies. At 100 pc scales, we find surprisingly high values for the average magnetic field strength of up to 50 μG. We find that dwarf galaxies follow the theoretical predictions of the radio continuum–star formation rate relation within regions of significant radio continuum emission but that the nonthermal radio continuum is suppressed relative to the star formation rate when considering the entire optical disk. We examine the far-infrared–star formation rate relation for our sample and find that the far-infrared is suppressed compared to the expected star formation rate. We discuss explanations for these observed relations and the impact of our findings on the radio continuum–far-infrared relation. We conclude that radio continuum emission at centimeter wavelengths has the promise of being a largely extinction-free star formation rate indicator. We find that star formation rates of gas-rich, low-mass galaxies can be estimated with an uncertainty of ±0.2 dex between the values of 2 × 10‑4 and 0.1 M ⊙ yr‑1.

  1. On The gamma-ray emission from Reticulum II and other dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; Linden, Tim

    2015-09-01

    The recent discovery of ten new dwarf galaxy candidates by the Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) could increase the Fermi Gamma-Ray Space Telescope's sensitivity to annihilating dark matter particles, potentially enabling a definitive test of the dark matter interpretation of the long-standing Galactic Center gamma-ray excess. In this paper, we compare the previous analyses of Fermi data from the directions of the new dwarf candidates (including the relatively nearby Reticulum II) and perform our own analysis, with the goal of establishing the statistical significance of any gamma-ray signal from these sources. We confirm the presence of an excess from Reticulum II, with a spectral shape that is compatible with the Galactic Center signal. The significance of this emission is greater than that observed from 99.84% of randomly chosen high-latitude blank-sky locations, corresponding to a local detection significance of 3.2σ. We caution that any dark matter interpretation of this excess must be validated through observations of additional dwarf spheroidal galaxies, and improved calculations of the relative J-factor of dwarf spheroidal galaxies. We improve upon the standard blank-sky calibration approach through the use of multi-wavelength catalogs, which allow us to avoid regions that are likely to contain unresolved gamma-ray sources.

  2. On The gamma-ray emission from Reticulum II and other dwarf galaxies

    Science.gov (United States)

    Hooper, Dan; Linden, Tim

    2015-09-01

    The recent discovery of ten new dwarf galaxy candidates by the Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) could increase the Fermi Gamma-Ray Space Telescope's sensitivity to annihilating dark matter particles, potentially enabling a definitive test of the dark matter interpretation of the long-standing Galactic Center gamma-ray excess. In this paper, we compare the previous analyses of Fermi data from the directions of the new dwarf candidates (including the relatively nearby Reticulum II) and perform our own analysis, with the goal of establishing the statistical significance of any gamma-ray signal from these sources. We confirm the presence of an excess from Reticulum II, with a spectral shape that is compatible with the Galactic Center signal. The significance of this emission is greater than that observed from 99.84% of randomly chosen high-latitude blank-sky locations, corresponding to a local detection significance of 3.2σ. We caution that any dark matter interpretation of this excess must be validated through observations of additional dwarf spheroidal galaxies, and improved calculations of the relative J-factor of dwarf spheroidal galaxies. We improve upon the standard blank-sky calibration approach through the use of multi-wavelength catalogs, which allow us to avoid regions that are likely to contain unresolved gamma-ray sources.

  3. The Celestial Buffet: multiple populations and globular cluster formation in dwarf galaxies

    Science.gov (United States)

    Maxwell, Aaron J.; Wadsley, James; Couchman, H. M. P.; Sills, Alison

    2014-04-01

    We present a framework that explains the commonly observed variation in light element abundances in globular clusters. If globular clusters form in the centres of dwarf galaxies, they will be pumped on to larger orbits as star formation progresses. The potential well will only retain the moderate velocity asymptotic giant branch (AGB) ejecta, the expected source of enrichment, but not supernova ejecta. There is no need to increase the initial cluster mass, a requirement of self-enrichment scenarios, as all the stars within the dwarf can contribute. As the clusters move through the dwarf centre they sweep up a mix of AGB ejecta and in-falling pristine gas to form a second generation of stars. The specific mix will vary in time and is thus able to explain the spread in second generation abundances observed in different clusters. The globular clusters will survive to the present day or be stripped as part of the hierarchical merging process of larger galaxies. We illustrate how this process may operate using a high-resolution simulation of a dwarf galaxy at high redshift.

  4. Searching for Dwarf H Alpha Emission-line Galaxies within Voids III: First Spectra

    Science.gov (United States)

    Moody, J. Ward; Draper, Christian; McNeil, Stephen; Joner, Michael D.

    2017-02-01

    The presence or absence of dwarf galaxies with {M}r\\prime > -14 in low-density voids is determined by the nature of dark matter halos. To better understand what this nature is, we are conducting an imaging survey through redshifted Hα filters to look for emission-line dwarf galaxies in the centers of two nearby galaxy voids called FN2 and FN8. Either finding such dwarfs or establishing that they are not present is a significant result. As an important step in establishing the robustness of the search technique, we have observed six candidates from the survey of FN8 with the Gillett Gemini telescope and GMOS spectrometer. All of these candidates had emission, although none was Hα. The emission in two objects was the [O iii]λ4959, 5007 doublet plus Hβ, and the emission in the remaining four was the [O ii]λ3727 doublet, all from objects beyond the void. While no objects were within the void, these spectra show that the survey is capable of finding emission-line dwarfs in the void centers that are as faint as {M}r\\prime ˜ -12.4, should they be present. These spectra also show that redshifts estimated from our filtered images are accurate to several hundred km s-1 if the line is identified correctly, encouraging further work in finding ways to conduct redshift surveys through imaging alone.

  5. Recovering the mass profile and orbit anisotropy of mock dwarf galaxies with Schwarzschild modelling

    Science.gov (United States)

    Kowalczyk, Klaudia; Łokas, Ewa L.; Valluri, Monica

    2017-10-01

    We present a new study concerning the application of the Schwarzschild orbit superposition method to model spherical galaxies. The method aims to recover the mass and the orbit anisotropy parameter profiles of the objects using measurements of positions and line-of-sight velocities usually available for resolved stellar populations of dwarf galaxies in the Local Group. To test the reliability of the method, we used different sets of mock data extracted from four numerical realizations of dark matter haloes. The models shared the same density profile but differed in anisotropy profiles, covering a wide range of possibilities, from constant to increasing and decreasing with radius. The tests were done in two steps, first assuming that the mass profile of the dwarf is known and employing the method to retrieve the anisotropy only, and then varying also the mass distribution. We used two kinds of data samples: unrealistically large ones based on over 270 000 particles from the numerical realizations and small ones matching the amount of data available for the Fornax dwarf. For the large data samples, we recover both the mass and the anisotropy profiles with very high accuracy. For the realistically small ones, we also find a reasonably good agreement between the fitted and the input anisotropies, however the total density profiles can be significantly biased as a result of their oversensitivity to the available data. Our results therefore provide convincing evidence in favour of the applicability of the Schwarzschild method to break the mass-anisotropy degeneracy in dwarf galaxies.

  6. VizieR Online Data Catalog: N/O ratio of dwarf galaxies from SDSS (Douglass+, 2017)

    Science.gov (United States)

    Douglass, K. A.; Vogeley, M. S.

    2017-10-01

    We examine how the cosmic environment affects the chemical evolution of galaxies in the universe by comparing the N/O ratio of dwarf galaxies in voids with that of dwarf galaxies in denser regions. Ratios of the forbidden [OIII] and [SII] transitions provide estimates of a region's electron temperature and number density. We estimate the abundances of oxygen and nitrogen using these temperature and density estimates and the emission-line fluxes [OII]3727, [OIII]4959,5007, and [NII]6548,6584 with the direct Te method. Using spectroscopic observations from the Sloan Digital Sky Survey Data Release 7, we are able to estimate the N/O ratio in 42 void dwarf galaxies and 89 dwarf galaxies in denser regions. The N/O ratio for void dwarfs (Mr>-17) is slightly lower (~12%) than for dwarf galaxies in denser regions. We also estimate the nitrogen and oxygen abundances of 2050 void galaxies and 3883 galaxies in denser regions with Mr>-20. These somewhat brighter galaxies (but still fainter than L*) also display similar minor shifts in the N/O ratio. The shifts in the average and median element abundance values in all absolute magnitude bins studied are in the same direction, suggesting that the large-scale environment may influence the chemical evolution of galaxies. We discuss possible causes of such a large-scale environmental dependence of the chemical evolution of galaxies, including retarded star formation and a higher ratio of dark matter halo mass to stellar mass in void galaxies. (1 data file).

  7. Diversity of dwarf galaxy IR-submm emission patterns: CLUES from hydrodynamical simulations

    Science.gov (United States)

    Santos-Santos, Isabel M. E.; Domínguez-Tenreiro, Rosa; Granato, Gian Luigi; Brook, Chris B.; Obreja, Aura

    2017-06-01

    Context. The spectral energy distributions (SEDs) of low-mass low-metallicity (dwarf) galaxies are a challenging piece of the puzzle of galaxy formation in the near Universe. These SEDs show some particular features in the submillimeter to far-infrared (FIR) wavelength range compared to normal larger galaxies that cannot be explained by the current models. Aims: We aim to explain the particular emission features of low-mass low-metallicity galaxies in the IR-submm range, which are: a broadening of the IR peak, which implies a warmer dust component; an excess of emission in the submm ( 500 μm), that causes a flattening of the submm/FIR slope; and a very low intensity of polycyclic aromatic hydrocarbon emission features. Methods: The SEDs of a sample of 27 simulated dwarf galaxies were calculated using the GRASIL-3D radiative transfer code. This code has the particularity that it separately treats the radiative transfer through dust grains within molecular clouds and within the cirrus, the dense and diffuse components of the gas phase, respectively. The simulated galaxies have stellar masses ranging from 106-109M⊙, and were obtained from a single simulation run within a Local Group environment with initial conditions from the CLUES project. Results: We report a study of the IRAS, Spitzer, and Herschel bands luminosities, and of the star formation rates, dust, and gas (HI and H2) mass contents. We find a satisfactory agreement with observational data, with GRASIL-3D naturally reproducing the specific spectral features mentioned above. Conclusions: We conclude that the GRASIL-3D two-component dust model gives a physical interpretation of the emission of dwarf galaxies: molecular clouds and cirrus represent the warm and cold dust components, respectively, needed to reproduce observational data.

  8. Tidal stripping and the structure of dwarf galaxies in the Local Group

    Science.gov (United States)

    Fattahi, Azadeh; Navarro, Julio F.; Frenk, Carlos S.; Oman, Kyle A.; Sawala, Till; Schaller, Matthieu

    2018-02-01

    The shallow faint-end slope of the galaxy mass function is usually reproduced in ΛCDM galaxy formation models by assuming that the fraction of baryons that turns into stars drops steeply with decreasing halo mass and essentially vanishes in haloes with maximum circular velocities Vmax dwarfs should therefore have characteristic velocities of about that value, unless they are small enough to probe only the rising part of the halo circular velocity curve (i.e., half-mass radii, r1/2 ≪ 1 kpc). Many dwarfs have properties in disagreement with this prediction: they are large enough to probe their halo Vmax but their characteristic velocities are well below 20 km s-1. These `cold faint giants' (an extreme example is the recently discovered Crater 2 Milky Way satellite) can only be reconciled with our ΛCDM models if they are the remnants of once massive objects heavily affected by tidal stripping. We examine this possibility using the APOSTLE cosmological hydrodynamical simulations of the Local Group. Assuming that low velocity dispersion satellites have been affected by stripping, we infer their progenitor masses, radii, and velocity dispersions, and find them in remarkable agreement with those of isolated dwarfs. Tidal stripping also explains the large scatter in the mass discrepancy-acceleration relation in the dwarf galaxy regime: tides remove preferentially dark matter from satellite galaxies, lowering their accelerations below the amin ˜ 10-11 m s-2 minimum expected for isolated dwarfs. In many cases, the resulting velocity dispersions are inconsistent with the predictions from Modified Newtonian Dynamics, a result that poses a possibly insurmountable challenge to that scenario.

  9. Stellar population gradients in isolated, local group dwarf galaxies

    Directory of Open Access Journals (Sweden)

    Hidalgo S.L.

    2012-02-01

    Full Text Available We discuss the detailed star formation as a function of radius that we have derived for the LCID galaxies, with particular emphasis on the stellar populations gradient and the effect of the UV-background.

  10. The Promise of First Spectroscopy of Normal and Dwarf Galaxies

    National Research Council Canada - National Science Library

    Fischer, J

    2001-01-01

    ... 4418 and in the ultraluminous galaxies. Combined with ground-based, SOFIA and SIRTF studies, First will be able to study starburst evolution in galactic disks, gaseous abundance variations and gradients among Hubble types and the affects...

  11. Faint blue counts from formation of dwarf galaxies at z approximately equals 1

    Science.gov (United States)

    Babul, Arif; Rees, Martin J.

    1993-01-01

    The nature of faint blue objects (FBO's) has been a source of much speculation since their detection in deep CCD images of the sky. Their high surface density argues against them being progenitors of present-day bright galaxies and since they are only weakly clustered on small scales, they cannot be entities that merged together to form present-day galaxies. Babul & Rees (1992) have suggested that the observed faint blue counts may be due to dwarf elliptical galaxies undergoing their initial starburst at z is approximately equal to 1. In generic hierarchical clustering scenarios, however, dwarf galaxy halos (M is approximately 10(exp 9) solar mass) are expected to form at an earlier epoch; for example, typical 10(exp 9) solar mass halos will virialize at z is approximately equal to 2.3 if the power-spectrum for the density fluctuations is that of the standard b = 2 cold dark matter (CDM) model. Under 'ordinary conditions' the gas would rapidly cool, collect in the cores, and undergo star-formation. Conditions at high redshifts are far from 'ordinary'. The intense UV background will prevent the gas in the dwarf halos from cooling, the halos being released from their suspended state only when the UV flux has diminished sufficiently.

  12. Local Group Dwarf Galaxies and the Star Formation Law at High Redshift.

    Science.gov (United States)

    Gnedin

    2000-06-01

    I show how the existing observational data on Local Group dwarf galaxies can be used to estimate the average star formation law during the first 3 Gyr of the history of the universe. I find that the observational data are consistent with the orthodox Schmidt law with a star formation efficiency of about 4% if the star formation is continuous (during the first 3 Gyr). The efficiency is proportionally higher if most of the gas in the dwarfs was consumed (and never replenished) in a short time interval well before the universe turned 3 Gyr.

  13. Modelling chemical abundance distributions for dwarf galaxies in the Local Group: the impact of turbulent metal diffusion

    Science.gov (United States)

    Escala, Ivanna; Wetzel, Andrew; Kirby, Evan N.; Hopkins, Philip F.; Ma, Xiangcheng; Wheeler, Coral; Kereš, Dušan; Faucher-Giguère, Claude-André; Quataert, Eliot

    2018-02-01

    We investigate stellar metallicity distribution functions (MDFs), including Fe and α-element abundances, in dwarf galaxies from the Feedback in Realistic Environment (FIRE) project. We examine both isolated dwarf galaxies and those that are satellites of a Milky Way-mass galaxy. In particular, we study the effects of including a sub-grid turbulent model for the diffusion of metals in gas. Simulations that include diffusion have narrower MDFs and abundance ratio distributions, because diffusion drives individual gas and star particles towards the average metallicity. This effect provides significantly better agreement with observed abundance distributions in dwarf galaxies in the Local Group, including small intrinsic scatter in [α/Fe] versus [Fe/H] of ≲0.1 dex. This small intrinsic scatter arises in our simulations because the interstellar medium in dwarf galaxies is well mixed at nearly all cosmic times, such that stars that form at a given time have similar abundances to ≲0.1 dex. Thus, most of the scatter in abundances at z = 0 arises from redshift evolution and not from instantaneous scatter in the ISM. We find similar MDF widths and intrinsic scatter for satellite and isolated dwarf galaxies, which suggests that environmental effects play a minor role compared with internal chemical evolution in our simulations. Overall, with the inclusion of metal diffusion, our simulations reproduce abundance distribution widths of observed low-mass galaxies, enabling detailed studies of chemical evolution in galaxy formation.

  14. Star formation in blue compact dwarf galaxies: Mkn 104 and I Zw 97

    Science.gov (United States)

    Ramya, S.; Sahu, D. K.; Prabhu, T. P.

    2009-06-01

    Two blue compact dwarf galaxies, Mkn 104 and I Zw 97, are studied photometrically and spectroscopically. Mkn 104 is found to contain three distinct bright star-forming regions, whereas I Zw 97 is found to contain three bright and two faint star-forming regions. Medium-resolution spectra of three bright HII regions in the two galaxies were obtained. Estimation of oxygen abundance in these regions yields a value equal to log(O/H) + 12 = 8.5 (Z = Zsolar/2.7). Star-formation rates in these star-forming regions are estimated. The highest star-formation rate for I Zw 97 is found to be 0.04Msolaryr-1, and for Mkn 104 it is 0.02Msolaryr-1. I Zw 97 is realized to be a cometary blue compact dwarf galaxy undergoing a strong burst of star formation. A U - B versus V - I colour-colour mixed population model is created using the Starburst99 evolutionary model curves. The spectrum of the bright star-forming knot of I Zw 97 does not show any strong signature of an underlying relatively older stellar population, but the U - B versus V - I two-colour diagram indicates the strong contribution of a ~500Myr population. A spectrum of the central region of Mkn 104 gives a hint about the underlying old stellar population. The age of this underlying population using the U - B versus V - I two-colour diagram is estimated to be ~ 500Myr. Surface-brightness profiles and colour profiles for these galaxies are presented. The surface-brightness profile of both the galaxies can be represented well by a two-component Sérsic profile consisting of a near-exponential distribution and a Gaussian nuclear starburst. To conclude, neither of these galaxies is a young system; instead they are undergoing episodic star formation superposed on a faint older component. I Zw 97 is a cometary blue compact dwarf galaxy where the underlying low-surface-brightness (LSB) galaxy is a dwarf irregular observed during a major stochastic enhancement of its otherwise moderate star-formation activity, a phenomenon widely

  15. The impact of galaxy harassment on the globular cluster systems of early-type cluster dwarf galaxies

    Science.gov (United States)

    Smith, R.; Sánchez-Janssen, R.; Fellhauer, M.; Puzia, T. H.; Aguerri, J. A. L.; Farias, J. P.

    2013-02-01

    The dynamics of globular cluster systems (GCSs) around galaxies are often used to assess the total enclosed mass, and even to constrain the dark matter distribution. The GCS of a galaxy is typically assumed to be in dynamical equilibrium within the potential of the host galaxy. However cluster galaxies are subjected to a rapidly evolving and, at times, violently destructive tidal field. We investigate the impact of the harassment on the dynamics of GCs surrounding early-type cluster dwarfs, using numerical simulations. We find that the dynamical behaviour of the GCS is strongly influenced by the fraction of bound dark matter fDM remaining in the galaxy. Only when fDM falls to ˜15 per cent do stars and GCs begin to be stripped. Still the observed GC velocity dispersion can be used to measure the true enclosed mass to within a factor of 2, even when fDM falls as low as ˜3 per cent. This is possible partly because unbound GCs quickly separate from the galaxy body. However even the distribution of bound GCs may spatially expand by a factor of 2-3. Once fDM falls into the <3 per cent regime, the galaxy is close to complete disruption, and GCS dynamics can no longer be used to reliably estimate the enclosed mass. In this regime, the remaining bound GCS may spatially expand by a factor of 4 to 8. It may be possible to test if a galaxy is in this regime by measuring the dynamics of the stellar disc. We demonstrate that if a stellar disc is rotationally supported, it is likely that a galaxy has sufficient dark matter that the dynamics of the GCS can be used to reliably estimate the enclosed mass.

  16. Cleaning spectroscopic samples of stars in nearby dwarf galaxies : The use of the nIR Mg I line to weed out Milky Way contaminants

    NARCIS (Netherlands)

    Battaglia, G.; Starkenburg, E.

    Dwarf galaxies provide insight into the processes of star formation and chemical enrichment at the low end of the galaxy mass function, as well as into the clustering of dark matter on small scales. In studies of Local Group dwarf galaxies, spectroscopic samples of individual stars are used to

  17. ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. II. OPTICAL IMAGING OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, Katherine L.; Salzer, John J.; Haurberg, Nathalie C.; Van Sistine, Angela; Young, Michael D. [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Haynes, Martha P.; Giovanelli, Riccardo; Adams, Elizabeth A. K. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, Saint Paul, MN 55105 (United States); Skillman, Evan D.; McQuinn, Kristen B. W., E-mail: rhode@astro.indiana.edu, E-mail: slaz@astro.indiana.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: betsey@astro.cornell.edu, E-mail: jcannon@macalester.edu, E-mail: skillman@astro.umn.edu, E-mail: kmcquinn@astro.umn.edu [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States)

    2013-06-15

    We present results from ground-based optical imaging of a low-mass dwarf galaxy discovered by the ALFALFA 21 cm H I survey. Broadband (BVR) data obtained with the WIYN 3.5 m telescope at Kitt Peak National Observatory (KPNO) are used to construct color-magnitude diagrams of the galaxy's stellar population down to V{sub o} {approx} 25. We also use narrowband H{alpha} imaging from the KPNO 2.1 m telescope to identify a H II region in the galaxy. We use these data to constrain the distance to the galaxy to be between 1.5 and 2.0 Mpc. This places Leo P within the Local Volume but beyond the Local Group. Its properties are extreme: it is the lowest-mass system known that contains significant amounts of gas and is currently forming stars.

  18. Northern dwarf and low surface brightness galaxies. II - The Green Bank neutral hydrogen survey

    Science.gov (United States)

    Schneider, Stephen E.; Thuan, Trinh X.; Mangum, Jeffrey G.; Miller, John

    1992-01-01

    The paper reports neutral hydrogen observations of a large sample of dwarf and other low surface brightness galaxies. A detailed discussion and error analysis of the observations are presented, and spectra are displayed for 329 galaxies detected for the first time, or detected with substantially better signal-to-noise ratios than achieved previously. The positions on the sky of 667 galaxies meeting the present selection criteria north of delta = 38 deg are shown. The distribution of the redshifts of galaxies detected at Green Bank is illustrated. The Green Bank detections tapered off strongly below the median H I flux of 3.7 Jy km/s detected at Arecibo: only 12 percent of the Green Bank sample was detected with smaller fluxes.

  19. Dark Matter Cores in the Fornax and Sculptor Dwarf Galaxies

    DEFF Research Database (Denmark)

    C. Amorisco, Nicola; Zavala Franco, Jesus; J. L. de Boer, Thomas

    2014-01-01

    We combine the detailed Star Formation Histories of the Fornax and Sculptor dwarf Spheroidals with the mass assembly history of their dark matter halo progenitors to estimate if the energy deposited by Supernova type II (SNeII) is sufficient to create a substantial dark matter core. Assuming...... the efficiency of energy injection of the SNeII into dark matter particles is \\epsilon=0.05, we find that a single early episode, z...

  20. Surprising Image Revises Understanding Of Dwarf Galaxies -- Building Blocks of the Universe

    Science.gov (United States)

    2003-01-01

    An intensive study of a neighboring dwarf galaxy has surprised astronomers by showing that most of its molecular gas -- the raw material for new stars -- is scattered among clumps in the galaxy's outskirts, not near its center as they expected. Composite view of galaxy Composite view of the galaxy IC 10. Optical view in blue; Ionized hydrogen (H-alpha) in red; and molecular gas (CO) in green. CREDIT: OVRO, Caltech, NOAO, KPNO "This tells us that the galaxies we call dwarf irregulars are even more irregular than we thought," said Fabian Walter, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. "Our new work also shows that these galaxies probably are useful 'laboratories' for studying how stars were formed when the Universe was young," Walter added. Walter worked with Christopher Taylor of the University of Massachusetts and Nick Scoville of Caltech. The scientists presented their results at the American Astronomical Society's meeting in Seattle, WA. Using the millimeter-wave interferometer at Caltech's Owens Valley Radio Observatory, the astronomers combined 15 smaller images into a single mosaic to produce an image showing the location of Carbon Monoxide (CO) gas throughout a galaxy called IC 10, some 2.5 million light-years away. IC 10 is one of the Local Group of galaxies of which our own Milky Way is part. The telescope system was tuned to a frequency near 115 GigaHertz, where the CO molecule naturally emits radio waves. "We found the clumps of CO gas far from the galaxy's center, and not near the regions of current star formation," Walter said. "This tells us that stars may, in fact, form way out there in the outskirts of the galaxy, where we didn't expect," he added. Most of the galaxy's gas is atomic Hydrogen, composed of single Hydrogen atoms. Most of the galaxy's molecular gas is composed of Hydrogen molecules with two atoms each. Atomic Hydrogen can be seen with radio telescopes because it naturally emits at a radio frequency of 1420 Mega

  1. X-Ray and Ultraviolet Properties of AGNs in Nearby Dwarf Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Baldassare, Vivienne F.; Gallo, Elena [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Reines, Amy E. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2017-02-10

    We present new Chandra X-ray Observatory and Hubble Space Telescope observations of eight optically selected broad-line active galactic nucleus (AGN) candidates in nearby dwarf galaxies ( z < 0.055). Including archival Chandra observations of three additional sources, our sample contains all 10 galaxies from Reines et al. (2013) with both broad H α emission and narrow-line AGN ratios (six AGNs, four composites), as well as one low-metallicity dwarf galaxy with broad H α and narrow-line ratios characteristic of star formation. All 11 galaxies are detected in X-rays. Nuclear X-ray luminosities range from L {sub 0.5–7keV} ≈ 5 × 10{sup 39} to 1 × 10{sup 42} ergs{sup −1}. In all cases except for the star-forming galaxy, the nuclear X-ray luminosities are significantly higher than would be expected from X-ray binaries, providing strong confirmation that AGNs and composite dwarf galaxies do indeed host actively accreting black holes (BHs). Using our estimated BH masses (which range from ∼7 × 10{sup 4} to 1 × 10{sup 6} M {sub ⊙}), we find inferred Eddington fractions ranging from ∼0.1% to 50%, i.e., comparable to massive broad-line quasars at higher redshift. We use the HST imaging to determine the ratio of UV to X-ray emission for these AGNs, finding that they appear to be less X-ray luminous with respect to their UV emission than more massive quasars (i.e., α {sub OX} values an average of 0.36 lower than expected based on the relation between α {sub OX} and 2500 Å luminosity). Finally, we discuss our results in the context of different accretion models onto nuclear BHs.

  2. Radio Continuum and H I Study of Blue Compact Dwarf Galaxies

    Science.gov (United States)

    Ramya, S.; Kantharia, N. G.; Prabhu, T. P.

    2011-02-01

    The multifrequency radio continuum and 21 cm H I observations of five blue compact dwarf (BCD) galaxies, Mrk 104, Mrk 108, Mrk 1039, Mrk 1069, and I Zw 97, using the Giant Meterwave Radio Telescope (GMRT) are presented here. Radio continuum emission at 610 MHz and 325 MHz is detected from all the observed galaxies whereas only a few are detected at 240 MHz. In our sample, three galaxies (Mrk 104, Mrk 108, and Mrk 1039) are members of groups and two galaxies (Mrk 1069 and I Zw 97) are isolated galaxies. The radio emission from Mrk 104 and Mrk 108 is seen to encompass the entire optical galaxy whereas the radio emission from Mrk 1039, Mrk 1069, and I Zw 97 is confined to massive H II regions. This, we suggest, indicates that the star formation in the latter group of galaxies has recently been triggered and that the environment in which the galaxy is evolving plays a role. Star formation rates (SFRs) calculated from 610 MHz emission are in the range 0.01-0.1 M sun yr-1 this is similar to the SFR obtained for individual star-forming regions in BCDs. The integrated radio spectra of four galaxies are modeled over the frequency range where data is available. We find that two of the galaxies, Mrk 1069 and Mrk 1039, show a turnover at low frequencies, which is well fitted by free-free absorption whereas the other two galaxies, Mrk 104 and Mrk 108, show a power law at the lowest GMRT frequencies. The flatter spectrum, localized star formation, and radio continuum in isolated galaxies lend support to stochastic self-propagating star formation. The H I observations of four galaxies, Mrk 104, Mrk 108, Mrk 1039, and Mrk 1069, show extended disks as large as ~1.1-6 times the optical size. All the observed BCDs (except Mrk 104) show rotating disk with a half power width of ~50-124 km s-1. Solid body rotation is common in our sample. We note that the tidal dwarf origin is possible for two of the BCDs in our sample.

  3. VLA-ANGST: A HIGH-RESOLUTION H I SURVEY OF NEARBY DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Juergen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Stilp, Adrienne M.; Dalcanton, Julianne J. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Warren, Steven R.; Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); Walter, Fabian [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); De Blok, W. J. G. [Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo (Netherlands); Koribalski, Baerbel [Australia Telescope National Facility, CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); West, Andrew A., E-mail: jott@nrao.edu, E-mail: adrienne@astro.washington.edu, E-mail: jd@astro.washington.edu, E-mail: warren@astro.umn.edu, E-mail: skillman@astro.umn.edu, E-mail: walter@mpia.de, E-mail: blok@astron.nl, E-mail: Baerbel.Koribalski@csiro.au, E-mail: aawest@bu.edu [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2012-10-01

    We present the 'Very Large Array survey of Advanced Camera for Surveys Nearby Galaxy Survey Treasury galaxies (VLA-ANGST)'. VLA-ANGST is a National Radio Astronomy Observatory Large Program consisting of high spectral (0.6-2.6 km s{sup -1}) and spatial ({approx}6'') resolution observations of neutral, atomic hydrogen (H I) emission toward 35 nearby dwarf galaxies from the ANGST survey. ANGST is a systematic Hubble Space Telescope survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D {approx}< 4 Mpc). VLA-ANGST provides VLA H I observations of the sub-sample of ANGST galaxies with recent star formation that are observable from the northern hemisphere and that were not observed in the 'The H I Nearby Galaxy Survey' (THINGS). The overarching scientific goal of VLA-ANGST is to investigate fundamental characteristics of the neutral interstellar medium (ISM) of dwarf galaxies. Here we describe the VLA observations, the data reduction, and the final VLA-ANGST data products. We present an atlas of the integrated H I maps, the intensity-weighted velocity fields, the second moment maps as a measure for the velocity dispersion of the H I, individual channel maps, and integrated H I spectra for each VLA-ANGST galaxy. We closely follow the observational setup and data reduction of THINGS to achieve comparable sensitivity and angular resolution. A major difference between VLA-ANGST and THINGS, however, is the high velocity resolution of the VLA-ANGST observations (0.65 and 1.3 km s{sup -1} for the majority of the galaxies). The VLA-ANGST data products are made publicly available through a dedicated Web site (https://science.nrao.edu/science/surveys/vla-angst). With available star formation histories from resolved stellar populations and lower resolution ancillary observations from the far-infrared to the ultraviolet, VLA-ANGST will enable detailed studies of the

  4. Quark nugget dark matter: no contradiction with 511 keV line emission from dwarf galaxies

    Science.gov (United States)

    Lawson, Kyle; Zhitnitsky, Ariel

    2017-02-01

    The observed galactic 511 keV line has been interpreted in a number of papers as a possible signal of dark matter annihilation within the galactic bulge. If this is the case then it is possible that a similar spectral feature may be observed in association with nearby dwarf galaxies. These objects are believed to be strongly dark matter dominated and present a relatively clean observational target. Recently INTEGRAL observations have provided new constraints on the 511 keV flux from nearby dwarf galaxies [1] motivating further investigation into the mechanism by which this radiation may arise. In the model presented here dark matter in the form of heavy quark nuggets produces the galactic 511 keV emission line through interactions with the visible matter. It is argued that this type of interaction is not strongly constrained by the flux limits reported in [2].

  5. The Westerbork HI survey of spiral and irregular galaxies - II. R-band surface photometry of late-type dwarf galaxies

    NARCIS (Netherlands)

    Swaters, RA; Balcells, M

    R-band surface photometry is presented for 171 late-type dwarf and irregular galaxies. For a subsample of 46 galaxies B-band photometry is presented as well. We present surface brightness profiles as well as isophotal and photometric parameters including magnitudes, diameters and central surface

  6. Implications for the origin of early-type dwarf galaxies - the discovery of rotation in isolated, low-mass early-type galaxies

    Science.gov (United States)

    Janz, Joachim; Penny, Samantha J.; Graham, Alister W.; Forbes, Duncan A.; Davies, Roger L.

    2017-07-01

    We present the discovery of rotation in quenched, low-mass early-type galaxies that are isolated. This finding challenges the claim that (all) rotating dwarf early-type galaxies in clusters were once spiral galaxies that have since been harassed and transformed into early-type galaxies. Our search of the Sloan Digital Sky Survey data within the Local Volume (z < 0.02) has yielded a sample of 46 galaxies with a stellar mass M⋆ ≲ 5 × 109 M⊙ (median M⋆ ˜ 9.29 × 108 M⊙), a low Hα equivalent width EWHα < 2 Å, and no massive neighbour (M⋆ ≳ 3 × 1010 M⊙) within a velocity interval of ΔV = 500 km s-1 and a projected distance of ˜1 Mpc. Nine of these galaxies were subsequently observed with Keck Echellette Spectrograph and Imager and their radial kinematics are presented here. These extend out to the half-light radius Re in the best cases, and beyond Re/2 for all. They reveal a variety of behaviours similar to those of a comparison sample of early-type dwarf galaxies in the Virgo cluster observed by Toloba et al. Both samples have similar frequencies of slow and fast rotators, as well as kinematically decoupled cores. This, and especially the finding of rotating quenched low-mass galaxies in isolation, reveals that the early-type dwarfs in galaxy clusters need not be harassed or tidally stirred spiral galaxies.

  7. Study of galaxies in the Lynx-Cancer void - III. New extreme low surface brightness dwarf galaxies

    Science.gov (United States)

    Pustilnik, S. A.; Martin, J.-M.; Tepliakova, A. L.; Kniazev, A. Y.

    2011-10-01

    We present the results of a complex study of the low surface brightness dwarf (LSBD) gas-rich galaxies J0723+3621, J0737+4724 and J0852+1350, which reside in the nearby Lynx-Cancer void. Their ratios M(H I)/LB, according to H I data obtained with the Nançay Radio Telescope (NRT), are respectively ˜3.9, ˜2 and ˜2.6. For the two latter galaxies, we derived an oxygen abundance corresponding to the value of 12+log (O/H) ? 7.3, using spectra from the Russian 6-m telescope (BTA) and the Sloan Digital Sky Survey (SDSS) data base. We found two additional blue LSBDs, J0723+3622 and J0852+1351, which appear to be physical companions of J0723+3621 and J0852+1350 situated at projected distances of ˜12-13 kpc. The companion relative velocities, derived from the BTA spectra, are ΔV=+89 km s-1 and +30 km s-1 respectively. The geometry and relative orientation of orbits and spins in these pairs indicate, respectively, prograde and polar encounters for J0723+3621 and J0852+1350. The NRT H I profiles of J0723+3621 and J0723+3622 indicate a sizeable gas flow in this system. The SDSS u, g, r, i images of the five dwarfs are used to derive photometric parameters and exponential or Sersic disc model fits. For three of them, the (u-g), (g-r), (r-i) colours of the outer parts, when compared with PEGASE evolutionary tracks, provide evidence for the dominance of old stellar populations with ages of T˜ (8-10) ± 3 Gyr. For J0723+3622 and J0737+4724 the outer region colours appear rather blue, implying ages of the oldest visible stars of ? Gyr. The new LSB galaxies complement the list of known most metal-poor and 'unevolved' dwarfs in this void, including DDO 68, SDSS J0812+4836, SDSS J0926+3343 and SAO 0822+3545. This unique concentration of 'unevolved' dwarf galaxies in a small cell of the nearby Universe implies a physical relationship between slow galaxy evolution and a void-type global environment. We also compare the baryonic content of these LSBDs with predictions from the most

  8. A new galactic chemical evolution model with dust: results for dwarf irregular galaxies and DLA systems

    Science.gov (United States)

    Gioannini, L.; Matteucci, F.; Vladilo, G.; Calura, F.

    2017-01-01

    We present a galactic chemical evolution model which adopts updated prescriptions for all the main processes governing the dust cycle. We follow in detail the evolution of the abundances of several chemical species (C, O, S, Si, Fe and Zn) in the gas and dust of a typical dwarf irregular galaxy. The dwarf irregular galaxy is assumed to evolve with a low but continuous level of star formation and experience galactic winds triggered by supernova (SN) explosions. We predict the evolution of the gas to dust ratio in such a galaxy and discuss critically the main processes involving dust, such as dust production by asymptotic giant branch stars and Type II SNe, destruction and accretion (gas condensation in clouds). We then apply our model to damped Lyman α (DLA) systems which are believed to be dwarf irregulars, as witnessed by their abundance patterns. Our main conclusions are the following. (i) We can reproduce the observed gas to dust ratio in dwarf galaxies. (ii) We find that the process of dust accretion plays a fundamental role in the evolution of dust and in certain cases it becomes the dominant process in the dust cycle. On the other hand, dust destruction seems to be a negligible process in irregulars. (iii) Concerning DLA systems, we show that the observed gas-phase abundances of silicon, normalized to volatile elements (zinc and sulfur), are in agreement with our model. (iv) The abundances of iron and silicon in DLA systems suggest that the two elements undergo a different history of dust formation and evolution. Our work casts light on the nature of iron-rich dust: the observed depletion pattern of iron is well reproduced only when an additional source of iron dust is considered. Here we explore the possibility of a contribution from Type Ia SNe as well as an efficient accretion of iron nanoparticles.

  9. Stellar Archeology: What White Dwarf Stars Tell Us About the History of the Galaxy

    Directory of Open Access Journals (Sweden)

    Terry D. Oswalt

    2012-06-01

    Full Text Available White dwarf stars have played important roles in rather diverse areas of astrophysics. This paper outlines how these stellar remnants, especially those in widely separated “fragile” binaries, have provided unique leverage on difficult astrophysical problems such as the ages of stars, the structure and evolution of the Galaxy, the nature of dark matter and even the discovery of dark energy.

  10. HI observations of dwarf galaxies out to a distance of 50 Mpc

    Science.gov (United States)

    Simpson, Caroline; Gottesman, S. T.

    1993-01-01

    Here we report our preliminary findings from an HI search for dwarf galaxies in three environmentally distinct regions of the sky: a galactic void, a galactic cluster, and an interaction field. This study is sensitive at the 5(sigma) level to hydrogen masses as low as 5 x 10(exp 5) solar mass. We have made three possible detections of previously uncatalogued objects: one in the void field, and two in the cluster field. Reduction of the interaction field is in progress.

  11. UVES abundances of stars in nearby dwarf spheroidal galaxies

    NARCIS (Netherlands)

    Tolstoy, E; Venn, K; Shetrone, M; Primas, F; Hill, [No Value; Kaufer, A; Szeifert, T

    2002-01-01

    It is a truth universally acknowledged, that a galaxy in possession of a good quantity of gas must want to form stars. It is the details of how and why that baffle us all. The simplest theories either would have this process a carefully self-regulated affair, or one that goes completely out of

  12. An optical velocity for the Phoenix dwarf galaxy

    NARCIS (Netherlands)

    Irwin, M; Tolstoy, E

    2002-01-01

    We present the results of a Very Large Telescope observing programme carried out in service mode using FORS1 on ANTU in long-slit mode to determine the optical velocities of nearby low surface brightness galaxies. As part of our programme of service observations we obtained long-slit spectra of

  13. Ultra faint dwarf galaxies: an arena for testing dark matter versus modified gravity

    Science.gov (United States)

    Lin, Weikang; Ishak, Mustapha

    2016-10-01

    The scenario consistent with a wealth of observations for the missing mass problem is that of weakly interacting dark matter particles. However, arguments or proposals for a Newtonian or relativistic modified gravity scenario continue to be made. A distinguishing characteristic between the two scenarios is that dark matter particles can produce a gravitational effect, in principle, without the need of baryons while this is not the case for the modified gravity scenario where such an effect must be correlated with the amount of baryonic matter. We consider here ultra-faint dwarf (UFD) galaxies as a promising arena to test the two scenarios based on the above assertion. We compare the correlation of the luminosity with the velocity dispersion between samples of UFD and non-UFD galaxies, finding a significant loss of correlation for UFD galaxies. For example, we find for 28 non-UFD galaxies a strong correlation coefficient of -0.688 which drops to -0.077 for the 23 UFD galaxies. Incoming and future data will determine whether the observed stochasticity for UFD galaxies is physical or due to systematics in the data. Such a loss of correlation (if it is to persist) is possible and consistent with the dark matter scenario for UFD galaxies but would constitute a new challenge for the modified gravity scenario.

  14. A near-infrared census of the multicomponent stellar structure of early-type dwarf galaxies in the Virgo cluster

    Energy Technology Data Exchange (ETDEWEB)

    Janz, J.; Laurikainen, E.; Salo, H. [Division of Astronomy, Department of Physics, P.O. Box 3000, FI-90014 University of Oulu (Finland); Lisker, T.; Hansson, K. S. A.; Meyer, H. T.; Paudel, S. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12-14, D-69120 Heidelberg (Germany); Peletier, R. F.; Den Brok, M. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen (Netherlands); Niemi, S.-M. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Toloba, E. [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Hensler, G. [University of Vienna, Department of Astrophysics, Türkenschanzstraße 17, 1180 Vienna (Austria); Falcón-Barroso, J.; Ryś, A. [Instituto de Astrofísica de Canarias, Vía Láctea s/n, La Laguna, Tenerife (Spain); Boselli, A., E-mail: jjanz@ari.uni-heidelberg.de [CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, Aix Marseille Université, F-13388 Marseille (France)

    2014-05-10

    The fraction of star-forming to quiescent dwarf galaxies varies from almost infinity in the field to zero in the centers of rich galaxy clusters. What is causing this pronounced morphology-density relation? What do quiescent dwarf galaxies look like when studied in detail, and what conclusions can be drawn about their formation mechanism? Here we study a nearly magnitude-complete sample (–19 < M{sub r} < –16 mag) of 121 Virgo cluster early types with deep near-infrared images from the SMAKCED project. We fit two-dimensional models with optional inner and outer components, as well as bar and lens components (in ∼15% of the galaxies), to the galaxy images. While a single Sérsic function may approximate the overall galaxy structure, it does not entirely capture the light distribution of two-thirds of our galaxies, for which multicomponent models provide a better fit. This fraction of complex galaxies shows a strong dependence on luminosity, being larger for brighter objects. We analyze the global and component-specific photometric scaling relations of early-type dwarf galaxies and discuss similarities with bright early and late types. The dwarfs' global galaxy parameters show scaling relations that are similar to those of bright disk galaxies. The inner components are mostly fitted with Sérsic n values close to 1. At a given magnitude, they are systematically larger than the bulges of spirals, suggesting that they are not ordinary bulges. We argue that the multicomponent structures in early-type dwarfs are mostly a phenomenon inherent to the disks and may indeed stem from environmental processing.

  15. Investigating environmental trends in the outer visible edges of dwarf irregular galaxies

    Science.gov (United States)

    Dunn, Jacqueline M.

    2017-03-01

    The star formation histories and evolution of 28 dwarf irregular galaxies (dIs) that reside in differing local and global environments are investigated. The shallow gravitational potentials of dwarf galaxies make these objects highly susceptible to changes in morphology or dynamics by external perturbations. Additionally, the lack of more complicated structures such as spiral arms makes environmental effects more easily discernible. Therefore, dIs are ideal candidates for a study of the role of environment in galaxy evolution. The local environment is defined by the local galaxy number density, where high indicates at least one neighbor within 200 kpc and low indicates no neighbors within 1 Mpc. The global environment is classified as either the field or a galaxy group / cluster. Absolute magnitudes, colors, central surface brightnesses, star formation rates and color profiles were compared using photometry from UBVR and Hα imaging. While some environmental trends are noted (galaxies in local high density environments have brighter central and effective surface brightnesses, while those in global high density environments have brighter absolute magnitudes, central and effective surface brightnesses, and higher star formation rates), no systematic environmental trends are seen in the shape of the color profiles or spatial distribution of recent star formation. A lack of environmental trend in star formation and galaxy color indicates that either internal processes dominate the formation and subsequent evolution of the outskirts of dIs, or there is no systematic environmental effect on such. The appearance of environmental effects should be more noticeable at the outermost edges of these systems. The lack of a trend in such implies that the exact nature of the environmental influence varies greatly depending on the exact nature of the interaction occurring.

  16. Young, metal-enriched cores in early-type dwarf galaxies in the Virgo cluster based on colour gradients

    NARCIS (Netherlands)

    Urich, Linda; Lisker, Thorsten; Janz, Joachim; van de Ven, Glenn; Leaman, Ryan; Boselli, Alessandro; Paudel, Sanjaya; Sybilska, Agnieszka; Peletier, Reynier F.; den Brok, Mark; Hensler, Gerhard; Toloba, Elisa; Falcón-Barroso, Jesús; Niemi, Sami-Matias

    2017-01-01

    Early-type dwarf galaxies are not simply featureless, old objects, but were found to be much more diverse, hosting substructures and a variety of stellar population properties. To explore the stellar content of faint early-type galaxies, and to investigate in particular those with recent central

  17. Stellar Kinematics and Metallicities in the Draco and Ursa Minor Dwarf Spheroidal Galaxies from WHT/AF2-WYFFOS

    NARCIS (Netherlands)

    Jin, S.; Irwin, M.; Tolstoy, E.; Lewis, J.; Hartke, J.; Skillen, I.; Barcells, M.; Trager, S.

    2016-01-01

    We present preliminary results from our chemo-dynamical survey of two Milky Way dwarf spheroidal (dSph) galaxies, Draco and Ursa Minor. The two galaxies have similar radial velocities and reside in close proximity in the outskirts of the Milky Way halo, yet exhibit noteworthy differences in their

  18. The Resolved Structure and Dynamics of an Isolated Dwarf Galaxy: A VLT and Keck Spectroscopic Survey of WLM

    NARCIS (Netherlands)

    Leaman, Ryan; Venn, Kim A.; Brooks, Alyson M.; Battaglia, Giuseppina; Cole, Andrew A.; Ibata, Rodrigo A.; Irwin, Mike J.; McConnachie, Alan W.; Mendel, J. Trevor; Tolstoy, Eline

    We present spectroscopic data for 180 red giant branch (RGB) stars in the isolated dwarf irregular galaxy Wolf-Lundmark-Mellote (WLM). Observations of the calcium II triplet lines in spectra of RGB stars covering the entire galaxy were obtained with FORS2 at the Very Large Telescope and DEIMOS on

  19. The Resolved Structure and Dynamics of an Isolated Dwarf Galaxy : A VLT and Keck Spectroscopic Survey of WLM

    NARCIS (Netherlands)

    Leaman, Ryan; Venn, Kim A.; Brooks, Alyson M.; Battaglia, Giuseppina; Cole, Andrew A.; Ibata, Rodrigo A.; Irwin, Mike J.; McConnachie, Alan W.; Mendel, J. Trevor; Tolstoy, Eline

    We present spectroscopic data for 180 red giant branch (RGB) stars in the isolated dwarf irregular galaxy Wolf-Lundmark-Mellote (WLM). Observations of the calcium II triplet lines in spectra of RGB stars covering the entire galaxy were obtained with FORS2 at the Very Large Telescope and DEIMOS on

  20. Impact of Lyman alpha pressure on metal-poor dwarf galaxies

    Science.gov (United States)

    Kimm, Taysun; Haehnelt, Martin; Blaizot, Jérémy; Katz, Harley; Michel-Dansac, Léo; Garel, Thibault; Rosdahl, Joakim; Teyssier, Romain

    2018-01-01

    Understanding the origin of strong galactic outflows and the suppression of star formation in dwarf galaxies is a key problem in galaxy formation. Using a set of radiation-hydrodynamic simulations of an isolated dwarf galaxy embedded in a 10^{10} M_⊙ halo, we show that the momentum transferred from resonantly scattered Lyman-α (Lyα) photons is an important source of stellar feedback which can shape the evolution of galaxies. We find that Lyα feedback suppresses star formation by a factor of two in metal-poor galaxies by regulating the dynamics of star-forming clouds before the onset of supernova explosions (SNe). This is possible because each Lyα photon resonantly scatters and imparts ˜10-300 times greater momentum than in the single scattering limit. Consequently, the number of star clusters predicted in the simulations is reduced by a factor of ˜5, compared to the model without the early feedback. More importantly, we find that galactic outflows become weaker in the presence of strong Lyα radiation feedback, as star formation and associated SNe become less bursty. We also examine a model in which radiation field is arbitrarily enhanced by a factor of up to 10, and reach the same conclusion. The typical mass loading factors in our metal-poor dwarf system are estimated to be ˜5 - 10 near the mid plane, while it is reduced to ˜1 at larger radii. Finally, we find that the escape of ionizing radiation and hence the reionization history of the Universe is unlikely to be strongly affected by Lyα feedback.

  1. A Deeper Look at Faint Hα Emission in Nearby Dwarf Galaxies

    Science.gov (United States)

    Lee, Janice C.; Veilleux, Sylvain; McDonald, Michael; Hilbert, Bryan

    2016-02-01

    We present deep Hα imaging of three nearby dwarf galaxies, carefully selected to optimize observations with the Maryland-Magellan Tunable Filter (MMTF) on the Magellan 6.5 m telescope. An effective bandpass of ˜13 Å is used, and the images reach 3σ flux limits of ˜8 × 10-18 erg s-1 cm-2, which is about an order of magnitude lower than standard narrowband observations obtained by the most recent generation of local Hα galaxy surveys. The observations were originally motivated by the finding that the Hα/FUV flux ratio of galaxies systematically declines as global galactic properties such as the star formation rate (SFR) and stellar mass decrease. The three dwarf galaxies selected for study have SFRs that, when calculated from their Hα luminosities using standard conversion recipes, are ˜50% of those based on the FUV. Follow-up studies of many of the potential causes for the trends in the Hα/FUV flux ratio have been performed, but the possibility that previous observations have missed a non-negligible fraction of faint ionized emission in dwarf galaxies has not been investigated. The MMTF observations reveal both diffuse and structured Hα emission (filaments, shells, possible single-star H ii regions) spanning extents up to 2.5 times larger relative to previous observations. However, only up to an additional ˜5% of Hα flux is captured, which does not account for the trends in the Hα/FUV ratio. Beyond investigation of the Hα/FUV ratio, the impact of the newly detected extended flux on our understanding of star formation, the properties of H ii regions, and the propagation of ionizing photons warrant further investigation.

  2. Abundance ratios and IMF slopes in the dwarf elliptical galaxy NGC 1396 with MUSE

    Science.gov (United States)

    Mentz, J. J.; La Barbera, F.; Peletier, R. F.; Falcón-Barroso, J.; Lisker, T.; van de Ven, G.; Loubser, S. I.; Hilker, M.; Sánchez-Janssen, R.; Napolitano, N.; Cantiello, M.; Capaccioli, M.; Norris, M.; Paolillo, M.; Smith, R.; Beasley, M. A.; Lyubenova, M.; Munoz, R.; Puzia, T.

    2016-12-01

    Deep observations of the dwarf elliptical (dE) galaxy NGC 1396 (MV = -16.60, Mass ˜4 × 108 M⊙), located in the Fornax cluster, have been performed with the Very Large Telescope/Multi Unit Spectroscopic Explorer spectrograph in the wavelength region from 4750 to 9350 Å. In this paper, we present a stellar population analysis studying chemical abundances, the star formation history (SFH) and the stellar initial mass function (IMF) as a function of galactocentric distance. Different, independent ways to analyse the stellar populations result in a luminosity-weighted age of ˜6 Gyr and a metallicity [Fe/H]˜ -0.4, similar to other dEs of similar mass. We find unusually overabundant values of [Ca/Fe] ˜+ 0.1, and underabundant Sodium, with [Na/Fe] values around -0.1, while [Mg/Fe] is overabundant at all radii, increasing from ˜+ 0.1 in the centre to ˜+ 0.2 dex. We notice a significant metallicity and age gradient within this dwarf galaxy. To constrain the stellar IMF of NGC 1396, we find that the IMF of NGC 1396 is consistent with either a Kroupa-like or a top-heavy distribution, while a bottom-heavy IMF is firmly ruled out. An analysis of the abundance ratios, and a comparison with galaxies in the Local Group, shows that the chemical enrichment history of NGC 1396 is similar to the Galactic disc, with an extended SFH. This would be the case if the galaxy originated from a Large Magellanic Cloud-sized dwarf galaxy progenitor, which would lose its gas while falling into the Fornax cluster.

  3. Bursts of star formation in computer simulations of dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Comins, N.F.

    1984-09-01

    A three-dimensional Stochastic Self-Propagating Star Formation (SSPSF) model of compact galacies is presented. Two phases of gas, active and inactive, are present, and permanent depletion of gas in the form of long lived, low mass stars and remnants occurs. Similarly, global infall of gas from a galactic halo or through galactic cannibalism is permitted. We base our parameters on the observed properties of the compact blue galaxy I Zw 36. Our results are that bursts of star formation occur much more frequently in these runs than continuous nonbursting star formation, suggesting that the blue compact galaxies are probably undergoing bursts rather than continuous, nonbursting low-level star formation activity.

  4. Outside-in Shrinking of the Star-forming Disk of Dwarf Irregular Galaxies

    Science.gov (United States)

    Zhang, Hong-Xin; Hunter, Deidre A.; Elmegreen, Bruce G.; Gao, Yu; Schruba, Andreas

    2012-02-01

    We have studied multi-band surface brightness profiles of a representative sample of 34 nearby dwarf irregular galaxies. Our data include Galaxy Evolution Explorer (GALEX) FUV/NUV, UBV, and Hα and Spitzer 3.6 μm images. These galaxies constitute the majority of the LITTLE THINGS survey (Local Irregulars That Trace Luminosity Extremes—The H I Nearby Galaxy Survey). By modeling the azimuthal averages of the spectral energy distributions with a complete library of star formation histories, we derived the stellar mass surface density distributions and the star formation rate averaged over three different timescales: the recent 0.1 Gyr, 1 Gyr, and a Hubble time. We find that, for ~80% (27 galaxies) of our sample galaxies, radial profiles (at least in the outer part) at shorter wavelengths, corresponding to younger stellar populations, have shorter disk scale lengths than those at longer wavelengths, corresponding to older stellar populations. This indicates that the star-forming disk has been shrinking. In addition, the radial distributions of the stellar mass surface density are well described as piece-wise exponential profiles, and ~80% of the galaxies have steeper mass profiles in the outer disk than in the inner region. The steep radial decline of the star formation rate in the outer parts compared to that in the inner disks gives a natural explanation for the down-bending stellar mass surface density profiles. Within the inner disks, our sample galaxies on average have constant ratios of recent star formation rate to stellar mass with radius. Nevertheless, ~35% (12 galaxies, among which 7 have baryonic mass lsim108 M ⊙) of the sample exhibit negative slopes across the observed disk, which is in contrast with the so-called inside-out disk growth scenario suggested for luminous spiral galaxies. The tendency of star formation to become concentrated toward the inner disks in low-mass dwarf irregular galaxies is interpreted as a result of their susceptibility to

  5. The Origin of Prolate Rotation in Dwarf Spheroidal Galaxies Formed by Mergers of Disky Dwarfs

    Czech Academy of Sciences Publication Activity Database

    Ebrová, Ivana; Lokas, E.

    2015-01-01

    Roč. 813, č. 1 (2015), 10/1-10/15 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : galaxies * fundamental parameters * kinematics and dynamics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015

  6. The Sagittarius impact as an architect of spirality and outer rings in the Milky Way.

    Science.gov (United States)

    Purcell, Chris W; Bullock, James S; Tollerud, Erik J; Rocha, Miguel; Chakrabarti, Sukanya

    2011-09-14

    Like many galaxies of its size, the Milky Way is a disk with prominent spiral arms rooted in a central bar, although our knowledge of its structure and origin is incomplete. Traditional attempts to understand our Galaxy's morphology assume that it has been unperturbed by major external forces. Here we report simulations of the response of the Milky Way to the infall of the Sagittarius dwarf galaxy (Sgr), which results in the formation of spiral arms, influences the central bar and produces a flared outer disk. Two ring-like wrappings emerge towards the Galactic anti-Centre in our model that are reminiscent of the low-latitude arcs observed in the same area of the Milky Way. Previous models have focused on Sgr itself to reproduce the dwarf's orbital history and place associated constraints on the shape of the Milky Way gravitational potential, treating the Sgr impact event as a trivial influence on the Galactic disk. Our results show that the Milky Way's morphology is not purely secular in origin and that low-mass minor mergers predicted to be common throughout the Universe probably have a similarly important role in shaping galactic structure.

  7. Dwarf Galaxies in the Nearby Lynx-Cancer Void: Photometry, Colours and Ages

    Science.gov (United States)

    Pustilnik, Simon; Kniazev, Alexei; Lyamina, Yulia; Tepliakova, Arina

    The nearby Lynx-Cancer void is a good laboratory to study the effect of very rarefied environment on the evolution of the least massive dwarf galaxies. A recently compiled sample of this void's galaxies includes about one hundred objects with MB in the range -12 to -18 mag. Good quality images are available in the SDSS database for ˜80% of the sample. Their u, g, r, i, z photometry allows one to derive galaxy stellar mass (and, incorporating HI data, gas mass-fraction) and ages of visible stellar populations, and hence, the epoch of their formation (first SF episode). We present the first photometric results of the ongoing study of the Lynx-Cancer void.

  8. The formation of Dwarf Spheroidal galaxies by the dissolving star cluster model.

    Science.gov (United States)

    Alarcon, Alex; Theory and Star Formation Group

    2018-01-01

    Dwarf spheroidal (dSph) galaxies are regarded as key object in the formation of larger galaxies and are believed to be the most dark matter dominated systems known. There are several model that attempt to explain their formation, but they have problems to model the formation of isolated dSph. Here we will explain a possible formation scenario in which star clusters form in the dark matter halo of a dSph. these cluster suffer from low star formation efficiency and dissolve while orbiting inside the halo. Thereby they build the faint luminous components that we observe in dSph galaxies. Here we will show the main results of this simulations and how they would be corroborated using observational data.

  9. The Environment of X-Ray Binaries in the Dwarf Starburst Galaxy NGC 1569

    Science.gov (United States)

    Clark, David M.; Eikenberry, Stephen S.; Raines, Steven N.

    2008-05-01

    We use deep, J and Ks observations of NGC 1569 acquired with FLAMINGOS on the KPNO 4-m to search for star cluster counterparts to X-ray binaries identified in archived Chandra images of this dwarf starburst galaxy. Performing near-IR photometry on the star cluster counterparts, we determine their colors, luminosities and masses. Comparing these results to the properties for all clusters in this galaxy, we search for trends in clusters associated with X-ray sources. Combining this study with FISICA, near-IR spectral observations, we further characterize the surroundings to X-ray binaries in NGC 1569. Contrasting this work with findings from a similar study performed on the Antennae galaxies, a large, merging system, we investigate the differences in X-ray binary environments.

  10. A Study of Two Dwarf Irregular Galaxies with Asymmetrical Star Formation Distributions

    Science.gov (United States)

    Hunter, Deidre A.; Gallardo, Samavarti; Zhang, Hong-Xin; Adamo, Angela; Cook, David O.; Oh, Se-Heon; Elmegreen, Bruce G.; Kim, Hwihyun; Kahre, Lauren; Ubeda, Leonardo; Bright, Stacey N.; Ryon, Jenna E.; Fumagalli, Michele; Sacchi, Elena; Kennicutt, R. C.; Tosi, Monica; Dale, Daniel A.; Cignoni, Michele; Messa, Matteo; Grebel, Eva K.; Gouliermis, Dimitrios A.; Sabbi, Elena; Grasha, Kathryn; Gallagher, John S., III; Calzetti, Daniela; Lee, Janice C.

    2018-03-01

    Two dwarf irregular galaxies, DDO 187 and NGC 3738, exhibit a striking pattern of star formation: intense star formation is taking place in a large region occupying roughly half of the inner part of the optical galaxy. We use data on the H I distribution and kinematics and stellar images and colors to examine the properties of the environment in the high star formation rate (HSF) halves of the galaxies in comparison with the low star formation rate halves. We find that the pressure and gas density are higher on the HSF sides by 30%–70%. In addition we find in both galaxies that the H I velocity fields exhibit significant deviations from ordered rotation and there are large regions of high-velocity dispersion and multiple velocity components in the gas beyond the inner regions of the galaxies. The conditions in the HSF regions are likely the result of large-scale external processes affecting the internal environment of the galaxies and enabling the current star formation there.

  11. The Nature of Turbulence in the LITTLE THINGS Dwarf Irregular Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Erin; Chien, Li-Hsin; Hollyday, Gigja [Department of Physics and Astronomy, Northern Arizona University, NAU Box 6010, Flagstaff, AZ 86011 (United States); Elmegreen, Bruce G. [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York, NY 10598 (United States); Hunter, Deidre A. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Simpson, Caroline E. [Department of Physics, Florida International University, CP 204, 11200 SW 8th Street, Miami, FL 33199 (United States)

    2017-04-01

    We present probability density functions and higher order (skewness and kurtosis) analyses of the galaxy-wide and spatially resolved distributions of H i column density in the LITTLE THINGS sample of dwarf irregular galaxies. This analysis follows that of Burkhart et al. for the Small Magellanic Cloud (SMC). About 60% of our sample have galaxy-wide values of kurtosis that are similar to that found for the SMC, with a range up to much higher values, and kurtosis increases with integrated star formation rate. Kurtosis and skewness were calculated for radial annuli and for a grid of 32 pixel × 32 pixel kernels across each galaxy. For most galaxies, kurtosis correlates with skewness. For about half of the galaxies, there is a trend of increasing kurtosis with radius. The range of kurtosis and skewness values is modeled by small variations in the Mach number close to the sonic limit and by conversion of H i to molecules at high column density. The maximum H i column densities decrease with increasing radius in a way that suggests molecules are forming in the weak-field limit, where H{sub 2} formation balances photodissociation in optically thin gas at the edges of clouds.

  12. The Cosmological Impact of Luminous TeV Blazars. III. Implications for Galaxy Clusters and the Formation of Dwarf Galaxies

    Science.gov (United States)

    Pfrommer, Christoph; Chang, Philip; Broderick, Avery E.

    2012-06-01

    8, and may reconcile SZ-inferred values with those by other cosmological probes even after allowing for a contribution due to patchy reionization. (3) Our redshift-dependent entropy floor increases the characteristic halo mass below which dwarf galaxies cannot form by a factor of approximately 10 (50) at mean density (in voids) over that found in models that include photoionization alone. This prevents the formation of late-forming dwarf galaxies (z problem" in the Milky Way of the low observed abundances of dwarf satellites compared to cold dark matter simulations and may bring the observed early star formation histories into agreement with galaxy formation models. At the same time, it explains the "void phenomenon" by suppressing the formation of galaxies within existing dwarf halos of masses <3 × 1010 M ⊙ with a maximum circular velocity <60 km s-1 for z <~ 2, hence reconciling the number of dwarfs in low-density regions in simulations and the paucity of those in observations.

  13. DGSAT: Dwarf Galaxy Survey with Amateur Telescopes. II. A catalogue of isolated nearby edge-on disk galaxies and the discovery of new low surface brightness systems

    Science.gov (United States)

    Henkel, C.; Javanmardi, B.; Martínez-Delgado, D.; Kroupa, P.; Teuwen, K.

    2017-07-01

    The connection between the bulge mass or bulge luminosity in disk galaxies and the number, spatial and phase space distribution of associated dwarf galaxies is a discriminator between cosmological simulations related to galaxy formation in cold dark matter and generalised gravity models. Here, a nearby sample of isolated Milky Way-class edge-on galaxies is introduced, to facilitate observational campaigns to detect the associated families of dwarf galaxies at low surface brightness. Three galaxy pairs with at least one of the targets being edge-on are also introduced. Approximately 60% of the catalogued isolated galaxies contain bulges of different size, while the remaining objects appear to be bulgeless. Deep images of NGC 3669 (small bulge, with NGC 3625 at the edge of the image) and NGC 7814 (prominent bulge), obtained with a 0.4 m aperture, are also presented, resulting in the discovery of two new dwarf galaxy candidates, NGC 3669-DGSAT-3 and NGC 7814-DGSAT-7. Eleven additional low surface brightness galaxies are identified, previously notified with low quality measurement flags in the Sloan Digital Sky Survey (SDSS). Integrated magnitudes, surface brightnesses, effective radii, Sersic indices, axis ratios, and projected distances to their putative major hosts are displayed. At least one of the galaxies, NGC 3625-DGSAT-4, belongs with a surface brightness of μr ≈ 26 mag arcsec-2 and effective radius >1.5 kpc to the class of ultra-diffuse galaxies (UDGs). NGC 3669-DGSAT-3, the galaxy with the lowest surface brightness in our sample, may also be an UDG.

  14. THE MERGER HISTORY, ACTIVE GALACTIC NUCLEUS, AND DWARF GALAXIES OF HICKSON COMPACT GROUP 59

    Energy Technology Data Exchange (ETDEWEB)

    Konstantopoulos, I. S.; Charlton, J. C.; Brandt, W. N.; Eracleous, M.; Gronwall, C. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Gallagher, S. C.; Fedotov, K.; Hill, A. R. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada); Durrell, P. R. [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555 (United States); Tzanavaris, P.; Hornschemeier, A. E. [Laboratory for X-ray Astrophysics, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Zabludoff, A. I. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Maier, M. L. [Gemini Observatory, Casilla 603, Colina el Pino S/N, La Serena (Chile); Elmegreen, D. M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Johnson, K. E.; Walker, L. M. [Department of Astronomy, University of Virginia, P. O. Box 400325, Charlottesville, VA 22904 (United States); Maybhate, A. [Space Telescope Science Institute, Baltimore, MD (United States); English, J. [University of Manitoba, Winnipeg, MN (Canada); Mulchaey, J. S., E-mail: iraklis@astro.psu.edu [Carnegie Observatories, Pasadena, CA 91101 (United States)

    2012-01-20

    Compact group galaxies often appear unaffected by their unusually dense environment. Closer examination can, however, reveal the subtle, cumulative effects of multiple galaxy interactions. Hickson Compact Group (HCG) 59 is an excellent example of this situation. We present a photometric study of this group in the optical (Hubble Space Telescope), infrared (Spitzer), and X-ray (Chandra) regimes aimed at characterizing the star formation and nuclear activity in its constituent galaxies and intra-group medium. We associate five dwarf galaxies with the group and update the velocity dispersion, leading to an increase in the dynamical mass of the group of up to a factor of 10 (to 2.8 Multiplication-Sign 10{sup 13} M{sub Sun }), and a subsequent revision of its evolutionary stage. Star formation is proceeding at a level consistent with the morphological types of the four main galaxies, of which two are star-forming and the other are two quiescent. Unlike in some other compact groups, star-forming complexes across HCG 59 closely follow mass-radius scaling relations typical of nearby galaxies. In contrast, the ancient globular cluster populations in galaxies HCG 59A and B show intriguing irregularities, and two extragalactic H II regions are found just west of B. We age-date a faint stellar stream in the intra-group medium at {approx}1 Gyr to examine recent interactions. We detect a likely low-luminosity active galactic nucleus in HCG 59A by its {approx}10{sup 40} erg s{sup -1} X-ray emission; the active nucleus rather than star formation can account for the UV+IR spectral energy distribution. We discuss the implications of our findings in the context of galaxy evolution in dense environments.

  15. The evolution of C/O in dwarf galaxies from Hubble Space Telescope FOS observations

    Science.gov (United States)

    Garnett, D. R.; Skillman, E. D.; Dufour, R. J.; Peimbert, M.; Torres-Peimbert, S.; Terlevich, R.; Terlevich, E.; Shields, G. A.

    1995-01-01

    We present UV observations of seven H II regions in low-luminosity dwarf irregular galaxies and the Magellanic Clouds obtained with the Faint Object Spectrograph (FOS) on the Hubble Space Telescope (HST) in order to measure the C/O abundance ratio in the interstellar medium (ISM) of those galaxies. We measure both O III 1666 A and C III 1909 A in our spectra, enabling us to determine C(+2)/O(+2) with relatively small uncertainties. The results from our HST observations show a continuous increase in C/O with increasing O/H, consistent with a power law having an index of 0.43 +/- 0.09 over the range -4.7 to -3.6 in log (O/H). One possible interpretation of this trend is that the most metal-poor galaxies are the youngest and dominated by the products of early enrichment by massive stars, while more metal-rich galaxies show increasing, delayed contributions of carbon from intermediate-mass stars. Our results also suggest that it may not be appropiate to combine abundances in irregular galaxies with those in spiral galaxies to study the evolution of chemical abundances. Our measured C/O ratios in the most metal-poor galaxies are consistent with predictions of nucleosynthesis from massive stars for Weaver & Woosley's best estimate for the 12C(alpha, gamma) 16O nuclear reaction rate, assuming negligible contanmination from carbon produced in intermediate-mass stars in these galaxies. We detect a weak N III 1750 A multiplet in SMC N88A and obtain interesting upper limits for two other objects. Our 2 sigma uppr limits on the 1750 A feature indicate that the N(+2)/O(+2) ratios in these objects are not significantly larger than the N(+)/O(+) ratios measured from optical spectra. This behavior is consistent with predictions of photionization models, although better detections of N III are needed to confirm the results.

  16. The Merger History, AGN and Dwarf Galaxies of Hickson Compact Group 59

    Science.gov (United States)

    Konstantopoulos, I. S.; Gallagher, S. C.; Fedotov, K.; Durrell, P. R.; Tzanavaris, P.; Hill, A. R.; Zabludoff, A. I.; Maier, M. L.; Elmegreen, D. M.; Charlton, J. C.; hide

    2011-01-01

    Compact group galaxies often appear unaffected by their unusually dense environment. Closer examination can, however, reveal the subtle, cumulative effects of multiple galaxy interactions. Hickson Compact Group (HCG) 59 is an excellent example of this situation. We present a photometric study of this group in the optical (HST), infrared (Spitzer) and X-ray (Chandra) regimes aimed at characterizing the star formation and nuclear activity in its constituent galaxies and intra-group medium. We associate five dwarf galaxies with the group and update the velocity dispersion, leading to an increase in the dynamical mass of the group of up to a factor of 10 (to 2.8 x 10(exp 13) Stellar Mass), and a subsequent revision of its evolutionary stage. Star formation is proceeding at a level consistent with the morphological types of the four main galaxies, of which two are star-forming and the other two quiescent. Unlike in some other compact groups, star-forming complexes across HCG 59 closely follow mass-radius scaling relations typical of nearby galaxies. In contrast, the ancient globular cluster populations in galaxies HCG 59A and B show intriguing irregularities, and two extragalactic HII regions are found just west of B. We age-date a faint stellar stream in the intra-group medium at approx. 1 Gyr to examine recent interactions. We detect a likely low-luminosity AGN in HCG 59A by its approx. 10(exp 40) erg/s X-ray emission; the active nucleus rather than star formation can account for the UV+IR SED. We discuss the implications of our findings in the context of galaxy evolution in dense environments.

  17. Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxies

    Science.gov (United States)

    Hunt, Leslie K.; Madden, Suzanne C.; Schneider, Raffaella

    2008-12-01

    'Shea and Michael L. Norman; 16. Damped Lyα systems as probes of chemical evolution over cosmological timescales Miroslava Dessauges-Zavadsky; 17. Connecting high-redshift galaxy populations through observations of local damped Lyman alpha dwarf galaxies Regina E. Schulte-Ladbeck; 18. Chemical enrichment and feedback in low metallicity environments: constraints on galaxy formation Francesca Matteucci; 19. Effects of reionization on dwarf galaxy formation Massimo Ricotti; 20. The importance of following the evolution of the dust in galaxies on their SEDs A. Schurer, F. Calura, L. Silva, A. Pipino, G. L. Granato, F. Matteucci and R. Maiolino; 21. About the chemical evolution of dSphs (and the peculiar globular cluster ωCen) Andrea Marcolini and Annibale D'Ercole; 22. Young star clusters in the small Magellanic cloud: impact of local and global conditions on star formation Elena Sabbi, Linda J. Smith, Lynn R. Carlson, Antonella Nota, Monca Tosi, Michele Cignoni, Jay S. Gallagher III, Marco Sirianni and Margaret Meixner; 23. Modeling the ISM properties of metal-poor galaxies and gamma-ray burst hosts Emily M. Levesque, Lisa J. Kewley, Kirsten Larson and Leonie Snijders; 24. Dwarf galaxies and the magnetisation of the IGM Uli Klein; Session III. Explosive Events in Low-Metallicity Environments: 25. Supernovae and their evolution in a low metallicity ISM Roger A. Chevalier; 26. First stars - type Ib supernovae connection Ken'ichi Nomoto, Masaomi Tanaka, Yasuomi Kamiya, Nozomu Tominaga and Keiichi Maeda; 27. Supernova nucleosynthesis in the early universe Nozomu Tominaga, Hideyuki Umeda, Keiichi Maeda, Ken'ichi Nomoto and Nobuyuki Iwamoto; 28. Powerful explosions at Z = 0? Sylvia Ekström, Georges Meynet, Raphael Hirschi and André Maeder; 29. Wind anisotropy and stellar evolution Cyril Georgy, Georges Meynet and André Maeder; 30. Low-mass and metal-poor gamma-ray burst

  18. Hubble Space Telescope Imaging of the Active Dwarf Galaxy RGG 118

    Science.gov (United States)

    Baldassare, Vivienne F.; Reines, Amy E.; Gallo, Elena; Greene, Jenny E.

    2017-12-01

    RGG 118 (SDSS 1523+1145) is a nearby (z = 0.0243), dwarf disk galaxy ({M}* ≈ 2× {10}9 {M}ȯ ) that is found to host an active ∼50,000 solar mass black hole at its core. RGG 118 is one of a growing collective sample of dwarf galaxies known to contain active galactic nuclei (AGNs)—a group that, until recently, contained only a handful of objects. Here, we report on new Hubble Space Telescope Wide Field Camera 3 UVIS and IR imaging of RGG 118, with the main goal of analyzing its structure. Using 2D parametric modeling, we find that the morphology of RGG 118 is best described by an outer spiral disk, an inner component consistent with a pseudobulge, and a central point-spread function (PSF). The luminosity of the PSF is consistent with the central point source that is being dominated by the AGN. We measure the luminosity and the mass of the “pseudobulge” and confirm that the central black hole in RGG 118 is under-massive, with respect to the {M}{BH}{--}{M}{bulge} and {M}{BH}{--}{L}{bulge} relations. This result is consistent with a picture in which black holes in disk-dominated galaxies grow primarily through secular processes.

  19. Using the VLBA to Uncover AGN in Dwarf Galaxies Exhibiting Nuclear Radio Emission

    Science.gov (United States)

    Dieck, Christopher; Johnson, Megan; Reines, Amy; Greene, Jenny

    2018-01-01

    The formation mechanism of billion solar mass black holes found in massive galaxies in the early universe is not yet understood. Investigation of black holes in dwarf galaxies in the local universe can help to constrain theoretical formation mechanisms and masses of black hole seeds for these supermassive black holes. The pilot study discussed herein used the Very Long Baseline Array (VLBA) to observe three nearby low mass (~109 M⊙) dwarf galaxies detected with the Jansky Very Large Array (JVLA). However, the JVLA does not have sufficient spatial resolution to discriminate between emission from various processes (e.g. supernova remnants and active galactic nuclei). Due to the high spatial resolution of the VLBA and the proximity of the targets, the physical scales probed are on the order of unity parsecs. Imaging of this small physical region should allow us to differentiate the source of the JVLA detected emission between a single nuclear source and multiple discreet sources, depending on whether the emission is resolved by the VLBA or not. Here we present preliminary results of our VLBA imaging and future plans.

  20. First Characterization of the Neutral ISM in Two Local Volume Dwarf Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Bralts-Kelly, Lilly; Bulatek, Alyssa M.; Chinski, Sarah; Ford, Robert N.; Gilbonio, Hannah E.; Helmel, Greta; McGlasson, Riley; Mizener, Andrew; Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Kaisin, Serafim; Karachentsev, Igor [Special Astrophysical Observatory of RAS, Nizhnij Arkhyz, KChR, 369167 (Russian Federation); Denn, Grant, E-mail: jcannon@macalester.edu, E-mail: skai@sao.ru, E-mail: ikar@sao.ru, E-mail: gdenn@msudenver.edu [Department of Physics, Metropolitan State University of Denver, P.O. Box 173362, Denver, CO 80217 (United States)

    2017-10-10

    We present the first H i spectral-line images of the nearby, star-forming dwarf galaxies UGC 11411 and UGC 8245, acquired as part of the “Observing for University Classes” program with the Karl G. Jansky Very Large Array (VLA). These low-resolution images localize the H i gas and reveal the bulk kinematics of each system. Comparing with Hubble Space Telescope ( HST ) broadband and ground-based H α imaging, we find that the ongoing star formation in each galaxy is associated with the highest H i mass surface density regions. UGC 8245 has a much lower current star formation rate than UGC 11411, which harbors very high surface brightness H α emission in the inner disk and diffuse, lower surface brightness nebular gas that extends well beyond the stellar disk as traced by HST . We measure the dynamical masses of each galaxy and find that the halo of UGC 11411 is more than an order of magnitude more massive than the halo of UGC 8245, even though the H i and stellar masses of the sources are similar. We show that UGC 8245 shares similar physical properties with other well-studied low-mass galaxies, while UGC 11411 is more highly dark matter dominated. Both systems have negative peculiar velocities that are associated with a coherent flow of nearby galaxies at high supergalactic latitude.

  1. Modelling the gas kinematics of an atypical Ly α emitting compact dwarf galaxy

    Science.gov (United States)

    Forero-Romero, Jaime E.; Gronke, Max; Remolina-Gutiérrez, Maria Camila; Garavito-Camargo, Nicolás; Dijkstra, Mark

    2018-02-01

    Star-forming compact dwarf galaxies (CDGs) resemble the expected pristine conditions of the first galaxies in the Universe and are the best systems to test models on primordial galaxy formation and evolution. Here, we report on one of such CDGs, Tololo 1214-277, which presents a broad, single peaked, highly symmetric Ly α emission line that had evaded theoretical interpretation so far. In this paper, we reproduce for the first time these line features with two different physically motivated kinematic models: an interstellar medium composed by outflowing clumps with random motions and an homogeneous gaseous sphere undergoing solid body rotation. The multiphase model requires a clump velocity dispersion of 54.3 ± 0.6 km s-1 with outflows of 54.3 ± 5.1 km s-1 , while the bulk rotation velocity is constrained to be 348^{+75}_{-48} km s-1. We argue that the results from the multiphase model provide a correct interpretation of the data. In that case, the clump velocity dispersion implies a dynamical mass of 2 × 109 M⊙, 10 times its baryonic mass. If future kinematic maps of Tololo 1214-277 confirm the velocities suggested by the multiphase model, it would provide additional support to expect such kinematic state in primordial galaxies, opening the opportunity to use the models and methods presented in this paper to constrain the physics of star formation and feedback in the early generation of Ly α -emitting galaxies.

  2. THE ORIGIN OF THE HEAVIEST METALS IN MOST ULTRA-FAINT DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Roederer, Ian U., E-mail: iur@umich.edu [Department of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109 (United States)

    2017-01-20

    The heaviest metals found in stars in most ultra-faint dwarf (UFD) galaxies in the Milky Way halo are generally underabundant by an order of magnitude or more when compared with stars in the halo field. Among the heavy elements produced by n -capture reactions, only Sr and Ba can be detected in red giant stars in most UFD galaxies. This limited chemical information is unable to identify the nucleosynthesis process(es) responsible for producing the heavy elements in UFD galaxies. Similar [Sr/Ba] and [Ba/Fe] ratios are found in three bright halo field stars, BD−18°5550, CS 22185–007, and CS 22891–200. Previous studies of high-quality spectra of these stars report detections of additional n -capture elements, including Eu. The [Eu/Ba] ratios in these stars span +0.41 to +0.86. These ratios and others among elements in the rare Earth domain indicate an r -process origin. These stars have some of the lowest levels of r -process enhancement known, with [Eu/H] spanning −3.95 to −3.32, and they may be considered nearby proxies for faint stars in UFD galaxies. Direct confirmation, however, must await future observations of additional heavy elements in stars in the UFD galaxies themselves.

  3. The stellar content of the isolated transition dwarf galaxy DDO210

    Science.gov (United States)

    McConnachie, Alan W.; Arimoto, Nobuo; Irwin, Mike; Tolstoy, Eline

    2006-12-01

    We use Subaru Suprime-Cam and VLT FORS1 photometry of the dwarf galaxy DDO210 to study the global stellar content and structural properties of a transition-type galaxy (with properties intermediate between dwarf irregular and dwarf spheroidal systems). This galaxy is sufficiently isolated that tidal interactions are not likely to have affected its evolution in any way. The colour-magnitude diagrams of DDO210 show a red giant branch (RGB) population (with an RGB bump), a bright asymptotic giant branch population, a red clump, young main-sequence stars and blue-loop stars. The youngest stars formed within the last 60Myr and have a distinct radial distribution compared to the main population. Whereas the overall stellar spatial distribution and HI spatial distribution are concentric, the young stars are offset from the centre of DDO210 and are coincident with a `dent' in the HI distribution. The implied recent star formation rate required to form the young population is significantly higher than the derived current star formation rate, by a factor of >10. Most of the stars in DDO210 are found in a red clump, and its mean I-band magnitude suggests that the majority of stars in DDO210 have an average age of 4+2-1Gyr. Given this age, the colour of the RGB implies a mean metallicity of [Fe/H] ~= -1.3. By comparing the shape of the red clump with models for a variety of star formation histories, we estimate that an old (>10 Gyr) stellar population can contribute ~20-30 per cent of the stars in DDO210 at most. The unusual star formation history of DDO210, its low-mass estimate and its isolated nature, provide insight into how star formation proceeds in the lowest mass, unperturbed, dwarf galaxy haloes. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan E-mail: alan@uvic.ca

  4. The Arecibo Galaxy Environment Survey - VIII. Discovery of an isolated dwarf galaxy in the Local Volume

    Czech Academy of Sciences Publication Activity Database

    Taylor, Rhys; Minchin, R.F.; Herbst, H.; Smith, R.

    2014-01-01

    Roč. 442, č. 1 (2014), L46-L50 ISSN 0035-8711 Institutional support: RVO:67985815 Keywords : surveys * galaxies * distances and redshifts Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.107, year: 2014

  5. A Stellar Population Gradient in VII ZW 403: Implications for the Formation of Blue Compact Dwarf Galaxies

    Science.gov (United States)

    Schulte-Ladbeck, Regina E.; Hopp, Ulrich; Crone, Mary M.; Greggio, Laura

    1999-11-01

    We present evidence for the existence of an old stellar halo in the blue compact dwarf galaxy VII Zw 403. VII Zw 403 is the first blue compact dwarf galaxy for which a clear spatial segregation of the resolved stellar content into a core-halo structure is detected. Multicolor Hubble Space Telescope WFPC2 (HST/WFPC2) observations indicate that active star formation occurs in the central region, but is strikingly absent at large radii. Instead, a globular-cluster-like red giant branch suggests the presence of an old (>10 Gyr) and metal-poor (=-1.92) stellar population in the halo. While the vast majority of blue compact dwarf galaxies have been recognized to possess halos of red color in ground-based surface photometry, our observations of VII Zw 403 establish for the first time a direct correspondence between a red halo color and the presence of old, red giant stars. If the halos of blue compact dwarf galaxies are all home to such ancient stellar populations, then the fossil record conflicts with delayed-formation scenarios for dwarfs. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained and supported in part through grant AR-06404.01-95A from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  6. Deconstructing dwarf galaxies: a Suprime-Cam survey of Andromeda II

    Science.gov (United States)

    McConnachie, Alan W.; Arimoto, Nobuo; Irwin, Mike

    2007-07-01

    We present deep, subhorizontal-branch, multicolour photometry of the Andromeda II dwarf spheroidal (And II dSph) taken with the Subaru Suprime-Cam wide-field camera. We identify a red clump population in this galaxy, the first time this feature has been detected in an M31 dSph, which are normally characterized as having no significant intermediate-age populations. We construct radial profiles for the various stellar populations and show that the horizontal branch (HB) has a nearly constant density spatial distribution out to large radius, whereas the reddest red giant branch stars are centrally concentrated in an exponential profile. We argue that these populations trace two distinct structural components in And II, and show that this assumption provides a good match to the overall radial profile of this galaxy. The extended component dominates the stellar populations at large radius, whereas the exponential component dominates the inner few arcminutes. By examining colour-magnitude diagrams in these regions, we show that the two components have very different stellar populations; the exponential component has an average age of ~7-10 Gyr, is relatively metal-rich ([Fe/H] ~ -1) but with a significant tail to low metallicities, and possesses a red clump. The extended component, on the other hand, is ancient (~13 Gyr), metal-poor ([Fe/H] ~ -1.5) with a narrower dispersion σ[Fe/H] ~= 0.28, and has a well-developed blue HB. The extended component contains approximately three-quarters of the light of And II and its unusual density profile is unique in Local Group dwarf galaxies. This suggests that its formation and/or evolution may have been quite different from other dwarf galaxies. The obvious chemodynamical complexity of And II lends further support to the accumulating body of evidence which shows that the evolutionary histories of faint dSph galaxies can be every bit as complicated as their brighter and more massive counterparts. Based on data collected at Subaru

  7. Star formation history of And XVIII: a dwarf spheroidal galaxy in isolation

    Science.gov (United States)

    Makarova, L. N.; Makarov, D. I.; Karachentsev, I. D.; Tully, R. B.; Rizzi, L.

    2017-01-01

    We present a photometric study of the Andromeda XVIII dwarf spheroidal galaxy associated with M31, and situated well outside of the virial radius of the M31 halo. The galaxy was resolved into stars with Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) revealing the old red giant branch and red clump. With the new observational data, we determined the Andromeda XVIII distance to be D = 1.33_{-0.09}^{+0.06} Mpc using the tip of red giant branch method. Thus, the dwarf is situated at the distance of 579 kpc from M31. We model the star formation history of Andromeda XVIII from the stellar photometry and Padova theoretical stellar isochrones. An ancient burst of star formation occurred 12-14 Gyr ago. There is no sign of recent/ongoing star formation in the last 1.5 Gyr. The mass fractions of the ancient and intermediate age stars are 34 and 66 per cent, respectively, and the total stellar mass is 4.2 × 106 M⊙. It is probable that the galaxy has not experienced an interaction with M31 in the past. We also discuss star formation processes of dSphs KKR 25, KKs 03, as well as dTr KK 258. Their star formation histories were uniformly measured by us from HST/ACS observations. All the galaxies are situated well beyond the Local Group, and the two dSphs KKR 25 and KKs 03 are extremely isolated. Evidently, the evolution of these objects has proceeded without influence of neighbours.

  8. Resolving the Connection Between Superluminous Supernovae and Star Formation in Dwarf Galaxies

    Science.gov (United States)

    Lunnan, Ragnhild

    2017-08-01

    Hydrogen-poor superluminous supernovae (SLSN-I) are a rare class of transients with peak luminosities 10-100x those of ordinary SNe and unique spectra. Now a decade after their first discoveries (and even with > 50 objects found), fundamental questions like their energy sources and progenitors are still unknown. A strong clue comes from their host galaxy environments: SLSN-I show an overwhelming preference for low-mass, low-metallicity dwarf galaxies, many of which are also undergoing a starburst. Whether this is purely a metallicity effect or also require extreme star formation conditions is debated, but the latter scenario predicts a correlation between the local SN environments and the host galaxy star formation as traced by UV light. This prediction is testable with resolved HST imaging and precise astrometry, though initial studies have been inconclusive due to small number statistics. Here we propose to remedy this by obtaining resolved rest-frame UV imaging of 22 SLSN-I host galaxies from the Palomar Transient Factory SLSN sample, which will nearly triple the sample with HST imaging compared to previous studies and allow this question to be settled with robust statistics. At the current discovery rate of SLSNe, a similar improvement will not be possible until the LSST era.

  9. CHEMICAL DIVERSITY IN THE ULTRA-FAINT DWARF GALAXY TUCANA II

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Alexander P.; Frebel, Anna; Ezzeddine, Rana [Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Casey, Andrew R., E-mail: alexji@mit.edu [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2016-11-20

    We present the first detailed chemical abundance study of the ultra-faint dwarf galaxy Tucana II, based on high-resolution Magellan/MIKE spectra of four red giant stars. The metallicities of these stars range from [Fe/H] = −3.2 to −2.6, and all stars are low in neutron-capture abundances ([Sr/Fe] and [Ba/Fe] < −1). However, a number of anomalous chemical signatures are present. One star is relatively metal-rich ([Fe/H] = −2.6) and shows [Na, α , Sc/Fe] < 0, suggesting an extended star formation history with contributions from AGB stars and SNe Ia. Two stars with [Fe/H] < −3 are mildly carbon-enhanced ([C/Fe] ∼ 0.7) and may be consistent with enrichment by faint supernovae, if such supernovae can produce neutron-capture elements. A fourth star with [Fe/H] = −3 is carbon-normal, and exhibits distinct light element abundance ratios from the carbon-enhanced stars. This carbon-normal star implies that at least two distinct nucleosynthesis sources, both possibly associated with Population III stars, contributed to the early chemical enrichment of this galaxy. Despite its very low luminosity, Tucana II shows a diversity of chemical signatures that preclude it from being a simple “one-shot” first galaxy yet still provide a window into star and galaxy formation in the early universe.

  10. Observational Test of Environmental Effects on the Local Group Dwarf Spheroidal Galaxies.

    Science.gov (United States)

    Tamura; Hirashita

    1999-11-01

    In this Letter, we examine whether tidal forces exerted by the Galaxy or M31 have an influence on the Local Group dwarf spheroidal galaxies (dSph's) that are their companions. We focus on the surface brightness profiles of the dSph's, especially their core radii, because it is suggested, based on the numerical simulations, that tidal disturbance can make core radii extended. We examine the correlation for the dSph's between the distances from their parent galaxy (the Galaxy or M31) and the compactnesses of their surface brightness profiles by using a parameter C defined newly in this Letter. Consequently, we find no significant correlation. We make some remarks on the origin of this result by considering three possible scenarios-the tidal picture, the dark matter picture, and the heterogeneity of the group of dSphs-each of which has been often discussed as a way of understanding the fundamental properties and formation processes of dSphs.

  11. Carbon monoxide in clouds at low metallicity in the dwarf irregular galaxy WLM.

    Science.gov (United States)

    Elmegreen, Bruce G; Rubio, Monica; Hunter, Deidre A; Verdugo, Celia; Brinks, Elias; Schruba, Andreas

    2013-03-28

    Carbon monoxide (CO) is the primary tracer for interstellar clouds where stars form, but it has never been detected in galaxies in which the oxygen abundance relative to hydrogen is less than 20 per cent of that of the Sun, even though such 'low-metallicity' galaxies often form stars. This raises the question of whether stars can form in dense gas without molecules, cooling to the required near-zero temperatures by atomic transitions and dust radiation rather than by molecular line emission; and it highlights uncertainties about star formation in the early Universe, when the metallicity was generally low. Here we report the detection of CO in two regions of a local dwarf irregular galaxy, WLM, where the metallicity is 13 per cent of the solar value. We use new submillimetre observations and archival far-infrared observations to estimate the cloud masses, which are both slightly greater than 100,000 solar masses. The clouds have produced stars at a rate per molecule equal to 10 per cent of that in the local Orion nebula cloud. The CO fraction of the molecular gas is also low, about 3 per cent of the Milky Way value. These results suggest that in small galaxies both star-forming cores and CO molecules become increasingly rare in molecular hydrogen clouds as the metallicity decreases.

  12. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. 3; Measurement for URSA Minor

    Science.gov (United States)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2005-01-01

    This article presents a measurement of the proper motion of the Ursa Minor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope in two distinct fields. Each field contains a quasi-stellar object that serves as the "reference point". Integrating the motion of Ursa Minor in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 40 (10, 76) and 89 (78, 160) kpc, respectively, where the values in the parentheses represent the 95% confidence intervals derived from Monte Carlo experiments. The eccentricity of the orbit is 0.39 (0.09, 0.79), and the orbital period is 1.5 (1.1, 2.7) Gyr. The orbit is retrograde and inclined by 124 degrees (94 deg, 36 deg ) to the Galactic plane. Ursa Minor is not a likely member of a proposed stream of galaxies on similar orbits around the Milky Way, nor is the plane of its orbit coincident with a recently proposed planar alignment of galaxies around the Milky Way. Comparing the orbits of Ursa Minor and Carina shows no reason for the different star formation histories of these two galaxies. Ursa Minor must contain dark matter to have a high probability of having survived disruption by the Galactic tidal force until the present.

  13. Stellar population properties of the most massive globular clusters and ultra-compact dwarf galaxies of the Fornax cluster

    Science.gov (United States)

    Hilker, Michael

    2017-03-01

    Most ultra-compact dwarf galaxies (UCDs) and very massive globular clusters reside in nearby galaxy clusters or around nearby giant galaxies. Due to their distance (> 4 Mpc) and compactness (r eff simulations on the disruption process of nucleated dwarf galaxies in cluster environments showed that ~ 40% of the most massive UCDs should originate from nuclear star clusters. Some Fornax UCDs actually show evidence for this scenario, as revealed by extended low surface brightness disks around them and onsets of tidal tails. Multi-band UV to optical imaging as well as low to medium resolution spectroscopy revealed that there exist UCDs with youngish ages, (sub-)solar [α/Fe] abundances, and probably He-enriched populations.

  14. A FAST RADIO BURST IN THE DIRECTION OF THE CARINA DWARF SPHEROIDAL GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, V. [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia); Shannon, R. M. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Jameson, A., E-mail: v.vikram.ravi@gmail.com [Swinburne University of Technology, Centre for Astrophysics and Supercomputing, Mail H39, P.O. Box 218, VIC 3122 (Australia)

    2015-01-20

    We report the real-time discovery of a fast radio burst (FRB 131104) with the Parkes radio telescope in a targeted observation of the Carina dwarf spheroidal galaxy. The dispersion measure of the burst is 779 cm{sup –3} pc, exceeding predictions for the maximum line-of-sight Galactic contribution by a factor of 11. The temporal structure of the burst is characterized by an exponential scattering tail with a timescale of 2.0{sub −0.5}{sup +0.8} ms at 1582 MHz that scales as frequency to the power –4.4{sub −1.8}{sup +1.6} (all uncertainties represent 95% confidence intervals). We bound the intrinsic pulse width to be <0.64 ms due to dispersion smearing across a single spectrometer channel. Searches in 78 hr of follow-up observations with the Parkes telescope reveal no additional sporadic emission and no evidence for associated periodic radio emission. We hypothesize that the burst is associated with the Carina dwarf galaxy. Follow-up observations at other wavelengths are necessary to test this hypothesis.

  15. On the Central Helium-burning Variable Stars of the LeoI Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Fiorentino, G.; Stetson, P. B.; Monelli, M.; Bono, G.; Bernard, E. J.; Pietrinferni, A.

    2012-11-01

    We present a study of short-period, central helium-burning variable stars in the Local Group dwarf spheroidal galaxy LeoI, including 106 RR Lyrae stars and 51 Cepheids. So far, this is the largest sample of Cepheids and the largest Cepheids to RR Lyrae ratio found in such a kind of galaxy. Comparison with other Local Group dwarf spheroidals, Carina and Fornax, shows that the period distribution of RR Lyrae stars is quite similar, suggesting similar properties of the parent populations, whereas the Cepheid period distribution in LeoI peaks at longer periods (P ~ 1.26 days instead of ~0.5 days) and spans over a broader range, from 0.5 to 1.78 days. Evolutionary and pulsation predictions indicate, assuming a mean metallicity peaked within -1.5 <~ [Fe/H] <~ -1.3, that the current sample of LeoI Cepheids traces a unique mix of anomalous Cepheids (blue extent of the red-clump, partially electron-degenerate central helium-burning stars) and short-period classical Cepheids (blue-loop, quiescent central helium-burning stars). Current evolutionary prescriptions also indicate that the transition mass between the two different groups of stars is M HeF ~ 2.1 M ⊙, and it is constant for stars metal-poorer than [Fe/H] ~ -0.7. Finally, we briefly outline the different implications of the current findings on the star formation history of LeoI.

  16. Variable Stars in (Not Only) Dwarf Galaxies: Key Tools to Constrain Distances and Stellar Content

    Science.gov (United States)

    Fiorentino, G.

    2011-07-01

    The important role of Cepheid and RR Lyrae variable stars and what they teach us about dwarf galaxies is discussed. Despite ever improving star formation histories of Local Group dwarf galaxies uncertainties remain, in particular in the identification and characterisation of the oldest stellar populations. The old stellar populations sometimes can be hard to interpret, or even to detect, due to their inherent faintness and scarcity, and often a strong overlying young population makes the crowding due to much brighter stars difficult to overcome. Recent and some preliminary results for RR Lyrae searches (in M 32 and Leo A) carried out with HST and Gemini-North/GMOS are presented. In these cases variables represent the only way to constrain the nature and, sometimes, the presence of a stellar population ≥10 Gyrs old. The recent discovery of Cepheids in I Zw 18 with HST is discussed. This allowed the first accurate distance determination, enabling a more secure detection of the Tip of the Red Giant Branch, and confirmed the existence of a population ≥2 Gyrs old.

  17. Observations of MilkyWay Dwarf Spheroidal galaxies with the Fermi-LAT detector and

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T.H.; Buson, S.; Caliandro, G.A.; /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /SLAC /UC, Santa Cruz /INFN, Pisa /DAPNIA, Saclay /INFN, Trieste /Trieste U. /INFN, Padua /Padua U. /INFN, Perugia /Perugia U. /Bari Polytechnic /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /IASF, Milan /George Mason U. /NASA, Goddard

    2010-05-26

    We report on the observations of 14 dwarf spheroidal galaxies with the Fermi Gamma-Ray Space Telescope taken during the first 11 months of survey mode operations. The Fermi telescope, which is conducting an all-sky {gamma}-ray survey in the 20 MeV to >300 GeV energy range, provides a new opportunity to test particle dark matter models through the expected {gamma}-ray emission produced by pair annihilation of weakly interacting massive particles (WIMPs). Local Group dwarf spheroidal galaxies, the largest galactic substructures predicted by the cold dark matter scenario, are attractive targets for such indirect searches for dark matter because they are nearby and among the most extreme dark matter dominated environments. No significant {gamma}-ray emission was detected above 100 MeV from the candidate dwarf galaxies. We determine upper limits to the {gamma}-ray flux assuming both power-law spectra and representative spectra from WIMP annihilation. The resulting integral flux above 100 MeV is constrained to be at a level below around 10{sup -9} photons cm{sup -2}s{sup -1}. Using recent stellar kinematic data, the {gamma}-ray flux limits are combined with improved determinations of the dark matter density profile in 8 of the 14 candidate dwarfs to place limits on the pair annihilation cross-section ofWIMPs in several widely studied extensions of the standard model, including its supersymmetric extension and other models that received recent attention. With the present data, we are able to rule out large parts of the parameter space where the thermal relic density is below the observed cosmological dark matter density and WIMPs (neutralinos here) are dominantly produced non-thermally, e.g. in models where supersymmetry breaking occurs via anomaly mediation. The {gamma}-ray limits presented here also constrain some WIMP models proposed to explain the Fermi and PAMELA e{sup +}e{sup -} data, including low-mass wino-like neutralinos and models with TeV masses pair

  18. Environmental Mechanisms Shaping the Nature of Dwarf Spheroidal Galaxies: The View of Computer Simulations

    Directory of Open Access Journals (Sweden)

    Lucio Mayer

    2010-01-01

    cosmic ultraviolet ionizing flux was much higher than today, and was thus able to keep the gas in the dwarfs warm and diffuse, were rapidly stripped of their baryons via ram pressure and tidal forces, producing very dark-matter-dominated objects with truncated star-formation histories, such as the Draco dSph. The low star-formation efficiency expected in such low-metallicity objects prior to their infall was crucial for keeping their disks gas dominated until stripping took over. Therefore gas stripping along with inefficient star-formation provides a new feedback mechanism, alternative to photoevaporation or supernovae feedback, playing a crucial role in dwarf galaxy formation and evolution. We also discuss how the ultra-faint dSphs belong to a different population of lower-mass dwarf satellites that were mostly shaped by reionization rather than by environmental mechanisms (“reionization fossils”. Finally, we scrutinize the various caveats in the current understanding of environmental effects as well as other recent ideas on the origin of Local Group dSphs.

  19. The Wolf-Rayet star population in the dwarf galaxy NGC 625

    Science.gov (United States)

    Monreal-Ibero, A.; Walsh, J. R.; Iglesias-Páramo, J.; Sandin, C.; Relaño, M.; Pérez-Montero, E.; Vílchez, J.

    2017-07-01

    Context. Quantifying the number, type, and distribution of Wolf-Rayet (W-R) stars is a key component in the context of galaxy evolution, since they put constraints on the age of the star formation bursts. Nearby galaxies (distances ≲5 Mpc) are particularly relevant in this context since they fill the gap between studies in the Local Group, where individual stars can be resolved, and galaxies in the Local Volume and beyond. Aims: We intend to characterise the W-R star population in one of these systems, NGC 625, which is a low-metallicity dwarf galaxy suffering a currently declining burst of star formation. Methods: Optical integral field spectroscopy (IFS) data have been obtained with the VIMOS-IFU and the HR_Orange and HR_Blue gratings at the Very Large Telescope covering the starburst region of NGC 625. Ancillary Hubble Space Telescope (HST) images in the F555W and F814W bands are also used for comparison. We estimate the number of W-R stars using a linear combination of three W-R templates: one early-type nitrogen (WN) star, one late-type WN star, and one carbon-type (WC) star (or oxygen-type (WO) star). Fits using several ensembles of templates were tested. Results were confronted with i) high spatial resolution HST photometry; ii) numbers of W-R stars in nearby galaxies; and iii) model predictions. Results: The W-R star population is spread over the main body of the galaxy and is not necessarily coincident with the overall stellar distribution. Our best estimation for the number of W-R stars yields a total of 28 W-R stars in the galaxy, out of which 17 are early-type WN, six are late-type WN, and five are WC stars. The width of the stellar features nicely correlates with the dominant W-R type found in each aperture. The distribution of the different types of WR in the galaxy is roughly compatible with the way star formation has propagated in the galaxy, according to previous findings using high spatial resolution with the HST. Fits using templates at the

  20. Variations in a Universal Density Profile for the Milky Way's Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Jardel, John; Gebhardt, K.

    2014-01-01

    On the largest scales, the Cold Dark Matter (CDM) paradigm for structure formation has enjoyed remarkable success in describing the universe we live in. The current frontier in our knowledge of galaxy formation is at the low-mass level. Here we find disagreement between theory and observations in a number of interesting cases. One such problem that has received considerable attention is the debate over the shape of the dark matter density profiles in the Milky Way's dwarf spheroidal (dSph) galaxies, known as the core/cusp problem. CDM simulations predict every halo should have a cuspy profile with an inner logarithmic slope of -1, but some observers have found that profiles with constant density inner cores are preferred. However, a major weakness of this previous work is that the dynamical models constructed to measure the mass distribution have had to assume a parameterization for the dark matter profile--exactly the thing one wishes to measure. For my thesis I introduced a new modeling technique, based on Schwarzschild's method, that instead calculates the dark matter profile non-parametrically. Applying these models to five of the Milky Way's dSphs I found a variety of profile shapes including cores, cusps, and other completely unexpected shapes. When scaled to a common normalization, however, I found the combined profile appears to follow an approximate power law with slope -1. The results of this averaging suggest that the individual formation histories of each galaxy produce differing dark matter profiles, but with a net result that is similar to CDM predictions. To better understand the role baryons play in this process, I compare my results to recent hydrodynamical simulations of the formation of dwarf galaxies. Together, my results and the simulations suggest a trend of flatter profiles in galaxies where more stars have formed. This implies that star formation and dark matter halos are linked through the effects of supernova-induced outflows which are

  1. The Binary Fraction of Stars in Dwarf Galaxies: The Case of Leo II

    Science.gov (United States)

    Spencer, Meghin E.; Mateo, Mario; Walker, Matthew G.; Olszewski, Edward W.; McConnachie, Alan W.; Kirby, Evan N.; Koch, Andreas

    2017-06-01

    We combine precision radial velocity data from four different published works of the stars in the Leo II dwarf spheroidal galaxy. This yields a data set that spans 19 years, has 14 different epochs of observation, and contains 372 unique red giant branch stars, 196 of which have repeat observations. Using this multi-epoch data set, we constrain the binary fraction for Leo II. We generate a suite of Monte Carlo simulations that test different binary fractions using Bayesian analysis and determine that the binary fraction for Leo II ranges from {0.30}-0.10+0.09 to {0.34}-0.11+0.11, depending on the distributions of binary orbital parameters assumed. This value is smaller than what has been found for the solar neighborhood (˜0.4-0.6) but falls within the wide range of values that have been inferred for other dwarf spheroidals (0.14-0.69). The distribution of orbital periods has the greatest impact on the binary fraction results. If the fraction we find in Leo II is present in low-mass ultra-faints, it can artificially inflate the velocity dispersion of those systems and cause them to appear more dark matter rich than in actuality. For a galaxy with an intrinsic dispersion of 1 km s-1 and an observational sample of 100 stars, the dispersion can be increased by a factor of 1.5-2 for Leo II-like binary fractions or by a factor of three for binary fractions on the higher end of what has been seen in other dwarf spheroidals.

  2. The Star Formation Histories of Sculptor Group Dwarf Galaxies. I. Current Star Formation Rates and Oxygen Abundances

    Science.gov (United States)

    Miller, Bryan W.

    1996-09-01

    We present Hα and [O III] imaging and nebular spectroscopy of H II regions in Sculptor Group dwarf galaxies. Of the eight galaxies in the sample, only two, E471 -006 and A143, have detected H II regions. The H II region luminosity and size distributions for A143 are consistent with those seen in other dwarf galaxies. Electron densities, filling factors and emission measures are similar to those measured in other galaxies at similar distances but vary significantly from compact H II regions in the Magellanic clouds. Oxygen line ratios are used to determine the oxygen abundances and ionization parameters. The oxygen abundances are typically ~0.1 solar and are consistent with the O/H, M_B_ relation. Comparison of the star formation timescales in Sculptor, M81, and Local Groups shows that the higher density M81 Group has many more galaxies forming stars at an above average rate. This is evidence that local galaxy density can have a measurable effect on current star formation. However, a single O/H, M_B_ relation seems to hold for all environments, so galaxy mass still appears to be the primary factor governing a galaxy's chemical evolution.

  3. VizieR Online Data Catalog: Star formation histories of LG dwarf galaxies (Weisz+, 2014)

    Science.gov (United States)

    Weisz, D. R.; Dolphin, A. E.; Skillman, E. D.; Holtzman, J.; Gilbert, K. M.; Dalcanton, J. J.; Williams, B. F.

    2017-03-01

    For this paper, we have selected only dwarf galaxies that are located within the zero surface velocity of the LG (~1 Mpc; e.g., van den Bergh 2000, The Galaxies of the Local Group (Cambridge: Cambridge Univ. Press) ; McConnachie 2012, J/AJ/144/4). This definition excludes some dwarfs that have been historically associated with the LG, such as GR8 and IC 5152, but which are located well beyond 1 Mpc. We have chosen to include two galaxies with WFPC2 imaging that are located on the periphery of the LG (Sex A and Sex B), because of their ambiguous association with the LG, the NGC 3109 sub-group, or perhaps neither (although see Bellazzini et al. 2013A&A...559L..11B for discussion of the possible association of these systems). We measured the SFH of each field using the maximum likelihood CMD fitting routine, MATCH (Dolphin 2002MNRAS.332...91D). Briefly, MATCH works as follows: it accepts a range of input parameters (e.g., initial mass function (IMF) slope, binary fraction, age and metallicity bin widths, etc.), uses these parameters to construct synthetic CMDs of simple stellar populations (SSPs), and then linearly combines them with a model foreground CMD to form a composite model CMD with a complex SFH. The composite model CMD is then convolved with the noise model from the artificial star tests (i.e., completeness, photometric uncertainties, and color/magnitude biases). The resulting model CMD is then compared to the observed CMD using a Poisson likelihood statistic. (3 data files).

  4. First confirmed ultra-compact dwarf galaxy in the NGC 5044 group

    Science.gov (United States)

    Faifer, Favio R.; Escudero, Carlos G.; Scalia, María C.; Smith Castelli, Analía V.; Norris, Mark; De Rossi, María E.; Forte, Juan C.; Cellone, Sergio A.

    2017-03-01

    Context. Ultra-compact dwarfs (UCDs) are stellar systems displaying colours and metallicities between those of globular clusters (GCs) and early-type dwarf galaxies, as well as sizes of Reff ≲ 100 pc and luminosities in the range -13.5 GMOS deep images of several fields around NGC 5044 and in spectroscopic multi-object data of one of these fields, we detected an unresolved source with g' 20.6 mag, compatible with being an UCD. Its radial velocity was obtained with FXCOR and the penalized pixel-fitting (pPXF) code. To study its stellar population content, we measured the Lick/IDS indices and compared them with predictions of single stellar population models, and we used the full spectral fitting technique. Results: The spectroscopic analysis of the UCD revealed a radial velocity that agrees with the velocity of the elliptical galaxy NGC 5044. From the Lick/IDS indices, we have obtained a luminosity-weighted age and metallicity of 11.7+ 1.4-1.2 Gyr and [Z/H] = -0.79 ± 0.04 dex, respectively, as well as [α/ Fe] = 0.30 ± 0.06. From the full spectral fitting technique, we measured a lower age (8.52 Gyr) and a similar total metallicity ([Z/H] = -0.86 dex). Conclusions: Our results indicate that NGC 5044-UCD1 is most likely an extreme GC (MV -12.5 mag) belonging to the GC system of the elliptical galaxy NGC 5044.

  5. Gas clump formation via thermal instability in high-redshift dwarf galaxy mergers

    Science.gov (United States)

    Arata, Shohei; Yajima, Hidenobu; Nagamine, Kentaro

    2018-01-01

    Star formation in high-redshift dwarf galaxies is a key to understand early galaxy evolution in the early Universe. Using the three-dimensional hydrodynamics code GIZMO, we study the formation mechanism of cold, high-density gas clouds in interacting dwarf galaxies with halo masses of ˜3 × 107 M⊙, which are likely to be the formation sites of early star clusters. Our simulations can resolve both the structure of interstellar medium on small scales of ≲ 0.1 pc and the galactic disk simultaneously. We find that the cold gas clouds form in the post-shock region via thermal instability due to metal-line cooling, when the cooling time is shorter than the galactic dynamical time. The mass function of cold clouds shows almost a power-law initially with an upper limit of thermally unstable scale. We find that some clouds merge into more massive ones with ≳ 104 M⊙ within ˜ 2 Myr. Only the massive cold clouds with ≳ 103 M⊙ can keep collapsing due to gravitational instability, resulting in the formation of star clusters. We find that the clump formation is more efficient in the prograde-prograde merger than the prograde-retrograde case due to the difference in the degree of shear flow. In addition, we investigate the dependence of cloud mass function on metallicity and {H2} abundance, and show that the cases with low metallicities (≲ 10-2 Z⊙) or high {H2} abundance (≳ 10-3) cannot form massive cold clouds with ≳ 103 M⊙.

  6. Nuclei of dwarf spheroidal galaxies KKs 3 and ESO 269-66 and their counterparts in our Galaxy

    Science.gov (United States)

    Sharina, M. E.; Shimansky, V. V.; Kniazev, A. Y.

    2017-10-01

    We present the analysis of medium-resolution spectra obtained at the Southern African Large Telescope for nuclear globular clusters (GCs) in two dwarf spheroidal galaxies (dSphs). The galaxies have similar star formation histories, but they are situated in completely different environments. ESO 269-66 is a close neighbour of the giant S0 NGC 5128. KKs 3 is one of the few truly isolated dSphs within 10 Mpc. We estimate the helium abundance Y = 0.3, age = 12.6 ± 1 Gyr, [Fe/H] = -1.5, -1.55 ± 0.2 dex, and abundances of C, N, Mg, Ca, Ti, and Cr for the nuclei of ESO 269-66 and KKs 3. Our surface photometry results using Hubble Space Telescope images yield the half-light radius of the cluster in KKs 3, rh = 4.8 ± 0.2 pc. We demonstrate the similarities of medium-resolution spectra, ages, chemical compositions, and structure for GCs in ESO 269-66 and KKs 3 and for several massive Galactic GCs with [Fe/H] ∼ -1.6 dex. All Galactic GCs posses Extended Blue Horizontal Branches and multiple stellar populations. Five of the selected Galactic objects are iron-complex GCs. Our results indicate that the sample GCs observed now in different environments had similar conditions of their formation ∼1 Gyr after the Big Bang.

  7. THE KENNICUTT–SCHMIDT RELATION IN EXTREMELY METAL-POOR DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Filho, M. E.; Almeida, J. Sánchez; Muñoz-Tuñón, C. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Amorín, R. [National Institute for Astrophysics, Astronomical Observatory of Rome, Via Frascati 33, I-00040 Monteporzio Catone (Rome) (Italy); Elmegreen, B. G. [IBM, T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Elmegreen, D. M., E-mail: mfilho@astro.up.pt [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States)

    2016-04-01

    The Kennicutt–Schmidt (KS) relation between the gas mass and star formation rate (SFR) describes the star formation regulation in disk galaxies. It is a function of gas metallicity, but the low-metallicity regime of the KS diagram is poorly sampled. We have analyzed data for a representative set of extremely metal-poor galaxies (XMPs), as well as auxiliary data, and compared these to empirical and theoretical predictions. The majority of the XMPs possess high specific SFRs, similar to high-redshift star-forming galaxies. On the KS plot, the XMP H i data occupy the same region as dwarfs and extend the relation for low surface brightness galaxies. Considering the H i gas alone, a considerable fraction of the XMPs already fall off the KS law. Significant quantities of “dark” H{sub 2} mass (i.e., not traced by CO) would imply that XMPs possess low star formation efficiencies (SFE{sub gas}). Low SFE{sub gas} in XMPs may be the result of the metal-poor nature of the H i gas. Alternatively, the H i reservoir may be largely inert, the star formation being dominated by cosmological accretion. Time lags between gas accretion and star formation may also reduce the apparent SFE{sub gas}, as may galaxy winds, which can expel most of the gas into the intergalactic medium. Hence, on global scales, XMPs could be H i-dominated, high-specific-SFR (≳10{sup −10} yr{sup −1}), low-SFE{sub gas} (≲10{sup −9} yr{sup −1}) systems, in which the total H i mass is likely not a good predictor of the total H{sub 2} mass, nor of the SFR.

  8. The ACS LCID project : RR Lyrae stars as tracers of old population gradients in the isolated dwarf spheroidal galaxy tucana

    NARCIS (Netherlands)

    Bernard, Edouard J.; Gallart, Carme; Monelli, Matteo; Aparicio, Antonio; Cassisi, Santi; Skillman, Evan D.; Stetson, Peter B.; Cole, Andrew A.; Drozdovsky, Igor; Hidalgo, Sebastian L.; Mateo, Mario; Tolstoy, Eline

    2008-01-01

    We present a study of the radial distribution of RR Lyrae variables, which present a range of photometric and pulsational properties, in the dwarf spheroidal galaxy Tucana. We find that the fainter RR Lyrae stars, having a shorter period, are more centrally concentrated than the more luminous,

  9. High resolution spectroscopy of Red Giant Branch stars and the chemical evolution of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; de Boer, T. J. L.; Hill, V.; Tolstoy, E.; Irwin, M. J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; Francois, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.; Ballet, J.; Martins, F.; Bournaud, F.; Monier, R.; Reylé, C.

    2014-01-01

    From VLT-FLAMES high-resolution spectra, we determine the abundances of several α, iron-peak and neutron-capture elements in 47 Red Giant Branch stars in the Fornax dwarf spheroidal galaxy. We confirm that SNe Ia started to contribute to the chemical enrichment of Fornax at [Fe/H] between --2.0 and

  10. High resolution spectroscopy of Red Giant Branch stars and the chemical evolution of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; de Boer, T.J.L.; Hill, V.; Tolstoy, E.; Irwin, M.J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; Francois, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.; Ballet, J.; Bournaud, F.; Martins, F.; Monier, R.; Reyle, C.

    2014-01-01

    From VLT-FLAMES high-resolution spectra, we determine the abundances of several α, iron-peak and neutron-capture elements in 47 Red Giant Branch stars in the Fornax dwarf speroidal galaxy. We confirm that SNe Ia started to contribute to the chemical enrichment of Fornax at [Fe/H] between -2.0 and -

  11. Hydra II: A Faint and Compact Milky Way Dwarf Galaxy Found in the Survey of the Magellanic Stellar History

    NARCIS (Netherlands)

    Martin, Nicolas F.; Nidever, David L.; Besla, Gurtina; Olsen, Knut; Walker, Alistair R.; Vivas, A. Katherina; Gruendl, Robert A.; Kaleida, Catherine C.; Muñoz, Ricardo R.; Blum, Robert D.; Saha, Abhijit; Conn, Blair C.; Bell, Eric F.; Chu, You-Hua; Cioni, Maria-Rosa L.; de Boer, Thomas J. L.; Gallart, Carme; Jin, Shoko; Kunder, Andrea; Majewski, Steven R.; Martinez-Delgado, David; Monachesi, Antonela; Monelli, Matteo; Monteagudo, Lara; Noël, Noelia E. D.; Olszewski, Edward W.; Stringfellow, Guy S.; van der Marel, Roeland P.; Zaritsky, Dennis

    We present the discovery of a new dwarf galaxy, Hydra II, found serendipitously within the data from the ongoing Survey of the Magellanic Stellar History conducted with the Dark Energy Camera on the Blanco 4 m Telescope. The new satellite is compact ({{r}h}=68 ± 11 pc) and faint ({{M}V}=-4.8 ± 0.3),

  12. Cold Gas in Quenched Dwarf Galaxies using HI-MaNGA

    Science.gov (United States)

    Bonilla, Alaina

    2017-01-01

    MaNGA (Mapping of Nearby Galaxies at Apache Point Observatory) is a 6-year Sloan Digital Sky Survey fourth generation (SDSS-IV) project that will obtain integral field spectroscopy of a catalogue of 10,000 nearby galaxies. In this study, we explore the properties of the passive dwarf galaxy sample presented in Penny et al. 2016, making use of MaNGA IFU (Integral Field Unit) data to plot gas emission, stellar velocity, and flux maps. In addition, HI-MaNGA, a legacy radio-survey of MaNGA, collects single dish HI data retrieved from the GBT (Green Bank Telescope), which we use to study the the 21cm emission lines present in HI detections. Studying the HI content of passive dwarves will help us reveal the processes that are preventing star formation, such as possible AGN feedback. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from the Sloan Foundation to the Astrophysical Research Consortium.

  13. Simulating neutron star mergers as r-process sources in ultrafaint dwarf galaxies

    Science.gov (United States)

    Safarzadeh, Mohammadtaher; Scannapieco, Evan

    2017-10-01

    To explain the high observed abundances of r-process elements in local ultrafaint dwarf (UFD) galaxies, we perform cosmological zoom simulations that include r-process production from neutron star mergers (NSMs). We model star formation stochastically and simulate two different haloes with total masses ≈108 M⊙ at z = 6. We find that the final distribution of [Eu/H] versus [Fe/H] is relatively insensitive to the energy by which the r-process material is ejected into the interstellar medium, but strongly sensitive to the environment in which the NSM event occurs. In one halo, the NSM event takes place at the centre of the stellar distribution, leading to high levels of r-process enrichment such as seen in a local UFD, Reticulum II (Ret II). In a second halo, the NSM event takes place outside of the densest part of the galaxy, leading to a more extended r-process distribution. The subsequent star formation occurs in an interstellar medium with shallow levels of r-process enrichment that results in stars with low levels of [Eu/H] compared to Ret II stars even when the maximum possible r-process mass is assumed to be ejected. This suggests that the natal kicks of neutron stars may also play an important role in determining the r-process abundances in UFD galaxies, a topic that warrants further theoretical investigation.

  14. J0811+4730: the most metal-poor star-forming dwarf galaxy known

    Science.gov (United States)

    Izotov, Y. I.; Thuan, T. X.; Guseva, N. G.; Liss, S. E.

    2018-01-01

    We report the discovery of the most metal-poor dwarf star-forming galaxy (SFG) known to date, J0811+4730. This galaxy, at a redshift z = 0.04444, has a Sloan Digital Sky Survey (SDSS) g-band absolute magnitude Mg = -15.41 mag. It was selected by inspecting the spectroscopic data base in the Data Release 13 (DR13) of the SDSS. Large Binocular Telescope/Multi-Object Double spectrograph (LBT/MODS) spectroscopic observations reveal its oxygen abundance to be 12 + log O/H = 6.98 ± 0.02, the lowest ever observed for an SFG. J0811+4730 strongly deviates from the main sequence defined by SFGs in the emission line diagnostic diagrams and the metallicity-luminosity diagram. These differences are caused mainly by the extremely low oxygen abundance in J0811+4730, which is ∼10 times lower than that in main-sequence SFGs with similar luminosities. By fitting the spectral energy distributions of the SDSS and LBT spectra, we derive a stellar mass of M⋆ = 106.24-106.29 M⊙, and we find that a considerable fraction of the galaxy stellar mass was formed during the most recent burst of star formation.

  15. The masses of local group dwarf spheroidal galaxies: The death of the universal mass profile

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Michelle L. M.; Martin, Nicolas F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Chapman, Scott C.; Irwin, Michael J. [Institute of Astronomy, Madingley Rise, Cambridge, CB3 0HA (United Kingdom); Rich, R. M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Ibata, Rodrigo A. [Observatoire de Strasbourg, 11 rue de l' Université, F-67000, Strasbourg (France); Bate, Nicholas F.; Lewis, Geraint F. [Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, NSW 2006 (Australia); Peñarrubia, Jorge [Instituto de Astrofísica de Andalucia-CSIC, Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Arimoto, Nobuo [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Casey, Caitlin M. [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822-1839 (United States); Ferguson, Annette M. N. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Koch, Andreas [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg (Germany); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, British Columbia, Victoria V9E 2E7 (Canada); Tanvir, Nial [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2014-03-01

    We investigate the claim that all dwarf spheroidal galaxies (dSphs) reside within halos that share a common, universal mass profile as has been derived for dSphs of the galaxy. By folding in kinematic information for 25 Andromeda dSphs, more than doubling the previous sample size, we find that a singular mass profile cannot be found to fit all of the observations well. Further, the best-fit dark matter density profile measured solely for the Milky Way dSphs is marginally discrepant with that of the Andromeda dSphs (at just beyond the 1σ level), where a profile with lower maximum circular velocity, and hence mass, is preferred. The agreement is significantly better when three extreme Andromeda outliers, And XIX, XXI, and XXV, all of which have large half-light radii (≳ 600 pc) and low-velocity dispersions (σ {sub v} < 5 km s{sup –1}), are omitted from the sample. We argue that the unusual properties of these outliers are likely caused by tidal interactions with the host galaxy.

  16. Evidence for a dwarf galaxy remnant around M82 from deep Hubble Space Telescope imaging

    Science.gov (United States)

    Suwannajak, Chutipong; Sarajedini, Ata

    2018-01-01

    We present HST/ACS photometry of an over-dense region of stars in the southern halo of the edge-on galaxy M82. The structure is located at a projected distance of 5 kpc from the disk of the galaxy, and its color-magnitude diagram reveals a population of predominantly young stars, which are largely absent from the surrounding halo. Their ages are similar to those of the young stars formed in the tidal debris between M81, M82, and NGC3077 as a result of their interactions. We derive the mean metallicity of the surrounding stars, which are considered to be the halo population of M82, to be similar to that of the red giant branch (RGB) population of the halo of M81. However, the mean metallicity of the RGB in the over-dense structure is significantly more metal-rich than the halo. We theorize that this over-density existed as a dwarf galaxy prior to its interaction with M82 with the young stars forming later from the gas remaining in its main body.

  17. Exploring Simulated Early Star Formation in the Context of the Ultrafaint Dwarf Galaxies

    Science.gov (United States)

    Corlies, Lauren; Johnston, Kathryn V.; Wise, John H.

    2018-01-01

    Ultrafaint dwarf galaxies (UFDs) are typically assumed to have simple, stellar populations with star formation ending at reionization. Yet as the observations of these galaxies continue to improve, their star formation histories (SFHs) are revealed to be more complicated than previously thought. In this paper, we study how star formation, chemical enrichment, and mixing proceed in small, dark matter halos at early times using a high-resolution, cosmological, hydrodynamical simulation. The goals are to inform the future use of analytic models and to explore observable properties of the simulated halos in the context of UFD data. Specifically, we look at analytic approaches that might inform metal enrichment within and beyond small galaxies in the early Universe. We find that simple assumptions for modeling the extent of supernova-driven winds agree with the simulation on average whereas inhomogeneous mixing and gas flows have a large effect on the spread in simulated stellar metallicities. In the context of the UFDs, this work demonstrates that simulations can form halos with a complex SFH and a large spread in the metallicity distribution function within a few hundred Myr in the early Universe. In particular, bursty and continuous star formation are seen in the simulation and both scenarios have been argued from the data. Spreads in the simulated metallicities, however remain too narrow and too metal-rich when compared to the UFDs. Future work is needed to help reduce these discrepancies and advance our interpretation of the data.

  18. The star formation histories of local group dwarf galaxies. II. Searching for signatures of reionization

    Energy Technology Data Exchange (ETDEWEB)

    Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Holtzman, Jon [Department of Astronomy, New Mexico State University, Box 30001, 1320 Frenger Street, Las Cruces, NM 88003 (United States); Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F., E-mail: drw@ucsc.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)

    2014-07-10

    We search for signatures of reionization in the star formation histories (SFHs) of 38 Local Group dwarf galaxies (10{sup 4} < M{sub *} < 10{sup 9} M{sub ☉}). The SFHs are derived from color-magnitude diagrams using archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. Only five quenched galaxies (And V, And VI, And XIII, Leo IV, and Hercules) are consistent with forming the bulk of their stars before reionization, when full uncertainties are considered. Observations of 13 of the predicted 'true fossils' identified by Bovill and Ricotti show that only two (Hercules and Leo IV) indicate star formation quenched by reionization. However, both are within the virial radius of the Milky Way and evidence of tidal disturbance complicates this interpretation. We argue that the late-time gas capture scenario posited by Ricotti for the low mass, gas-rich, and star-forming fossil candidate Leo T is observationally indistinguishable from simple gas retention. Given the ambiguity between environmental effects and reionization, the best reionization fossil candidates are quenched low mass field galaxies (e.g., KKR 25).

  19. The star formation histories of local group dwarf galaxies. I. Hubble space telescope/wide field planetary camera 2 observations

    Energy Technology Data Exchange (ETDEWEB)

    Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Holtzman, Jon [Department of Astronomy, New Mexico State University, Box 30001, 1320 Frenger Street, Las Cruces, NM 88003 (United States); Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F., E-mail: drw@ucsc.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)

    2014-07-10

    We present uniformly measured star formation histories (SFHs) of 40 Local Group (LG) dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with τ ∼ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs, and dwarf ellipticals can be approximated by the combination of an exponentially declining SFH (τ ∼ 3-4 Gyr) for lookback ages >10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z = 2 ranges considerably (80% for galaxies with M < 10{sup 5} M{sub ☉} to 30% for galaxies with M > 10{sup 7} M{sub ☉}) and is largely explained by environment; (5) the distinction between 'ultra-faint' and 'classical' dSphs is arbitrary; (6) LG dIrrs formed a significantly higher fraction of stellar mass prior to z = 2 than the Sloan Digital Sky Survey galaxies from Leitner and the SFHs from the abundance matching models of Behroozi et al. This may indicate higher than expected star formation efficiencies at early times in low mass galaxies. Finally, we provide all the SFHs in tabulated electronic format for use by the community.

  20. Alfalfa discovery of the nearby gas-rich dwarf galaxy Leo P. IV. Distance measurement from LBT optical imaging

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Berg, Danielle [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Salzer, John J.; Rhode, Katherine L. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Adams, Elizabeth A. K.; Giovanelli, Riccardo; Haynes, Martha P. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Dolphin, Andrew, E-mail: kmcquinn@astro.umn.edu, E-mail: skillman@astro.umn.edu, E-mail: berg@astro.umn.edu, E-mail: jcannon@macalester.edu, E-mail: rhode@astro.indiana.edu, E-mail: slaz@astro.indiana.edu, E-mail: betsey@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States)

    2013-12-01

    Leo P is a low-luminosity dwarf galaxy discovered through the blind H I Arecibo Legacy Fast ALFA survey. The H I and follow-up optical observations have shown that Leo P is a gas-rich dwarf galaxy with both active star formation and an underlying older population, as well as an extremely low oxygen abundance. Here, we measure the distance to Leo P by applying the tip of the red giant branch (TRGB) distance method to photometry of the resolved stellar population from new Large Binocular Telescope V and I band imaging. We measure a distance modulus of 26.19{sub −0.50}{sup +0.17} mag corresponding to a distance of 1.72{sub −0.40}{sup +0.14} Mpc. Although our photometry reaches 3 mag below the TRGB, the sparseness of the red giant branch yields higher uncertainties on the lower limit of the distance. Leo P is outside the Local Group with a distance and velocity consistent with the local Hubble flow. While located in a very low-density environment, Leo P lies within ∼0.5 Mpc of a loose association of dwarf galaxies which include NGC 3109, Antlia, Sextans A, and Sextans B, and 1.1 Mpc away from its next nearest neighbor, Leo A. Leo P is one of the lowest metallicity star-forming galaxies known in the nearby universe, comparable in metallicity to I Zw 18 and DDO 68, but with stellar characteristics similar to dwarf spheriodals (dSphs) in the Local Volume such as Carina, Sextans, and Leo II. Given its physical properties and isolation, Leo P may provide an evolutionary link between gas-rich dwarf irregular galaxies and dSphs that have fallen into a Local Group environment and been stripped of their gas.

  1. Dark Matter Profiles in Dwarf Galaxies: A Statistical Sample Using High-Resolution Hα Velocity Fields from PCWI

    Science.gov (United States)

    Relatores, Nicole C.; Newman, Andrew B.; Simon, Joshua D.; Ellis, Richard; Truong, Phuongmai N.; Blitz, Leo

    2018-01-01

    We present high quality Hα velocity fields for a sample of nearby dwarf galaxies (log M/M⊙ = 8.4-9.8) obtained as part of the Dark Matter in Dwarf Galaxies survey. The purpose of the survey is to investigate the cusp-core discrepancy by quantifying the variation of the inner slope of the dark matter distributions of 26 dwarf galaxies, which were selected as likely to have regular kinematics. The data were obtained with the Palomar Cosmic Web Imager, located on the Hale 5m telescope. We extract rotation curves from the velocity fields and use optical and infrared photometry to model the stellar mass distribution. We model the total mass distribution as the sum of a generalized Navarro-Frenk-White dark matter halo along with the stellar and gaseous components. We present the distribution of inner dark matter density profile slopes derived from this analysis. For a subset of galaxies, we compare our results to an independent analysis based on CO observations. In future work, we will compare the scatter in inner density slopes, as well as their correlations with galaxy properties, to theoretical predictions for dark matter core creation via supernovae feedback.

  2. HST/ACS DIRECT AGES OF THE DWARF ELLIPTICAL GALAXIES NGC 147 AND NGC 185

    Energy Technology Data Exchange (ETDEWEB)

    Geha, M. [Astronomy Department, Yale University, New Haven, CT 06520 (United States); Weisz, D. [Astronomy Department, Box 351580, University of Washington, Seattle, WA 98195 (United States); Grocholski, A. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Dolphin, A. [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Marel, R. P. van der [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Guhathakurta, P., E-mail: marla.geha@yale.edu [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2015-10-01

    We present the deepest optical photometry for any dwarf elliptical (dE) galaxy based on Hubble Space Telescope Advanced Camera for Surveys (ACS) observations of the Local Group dE galaxies NGC 147 and NGC 185. Our F606W and F814W color–magnitude diagrams are the first to reach below the oldest main sequence turnoff in a dE galaxy, allowing us to determine full star formation histories in these systems. The ACS fields are located roughly ∼1.5 effective radii from the galaxy center to avoid photometric crowding. While both ACS fields show unambiguous evidence for old and intermediate age stars, the mean age of NGC 147 is ∼4–5 Gyr younger as compared to NGC 185. In NGC 147, only 40% of stars were in place 12.5 Gyr ago (z ∼ 5), with the bulk of the remaining stellar population forming between 5 to 7 Gyr. In contrast, 70% of stars were formed in NGC 185 prior to 12.5 Gyr ago with the majority of the remaining population forming between 8 to 10 Gyr ago. Star formation has ceased in both ACS fields for at least 3 Gyr. Previous observations in the central regions of NGC 185 show evidence for star formation as recent as 100 Myr ago, and a strong metallicity gradient with radius. This implies a lack of radial mixing between the center of NGC 185 and our ACS field. The lack of radial gradients in NGC 147 suggests that our inferred SFHs are more representative of its global history. We interpret the inferred differences in star formation histories to imply an earlier infall time into the M31 environment for NGC 185 as compared to NGC 147.

  3. Intergalactic Hydrogen Clouds at Low Redshift: Connections to Voids and Dwarf Galaxies

    Science.gov (United States)

    Shull, J. Michael; Stocke, John T.; Penton, Steve

    1996-01-01

    We provide new post-COSTAR data on one sightline (Mrk 421) and updated data from another (I Zw 1) from our Hubble Space Telescope (HST) survey of intergalactic Ly(alpha) clouds located along sightlines to four bright quasars passing through well-mapped galaxy voids (16000 km/s pathlength) and superclusters (18000 km/s). We report two more definite detections of low-redshift Ly(alpha) clouds in voids: one at 3047 km/s (heliocentric) toward Mrk 421 and a second just beyond the Local Supercluster at 2861 km/s toward I Zw 1, confirming our earlier discovery of Ly(alpha) absorption clouds in voids (Stocke et al., ApJ, 451, 24). We have now identified ten definite and one probable low-redshift neutral hydrogen absorption clouds toward four targets, a frequency of approximately one absorber every 3400 km/s above 10(exp 12.7/sq cm column density. Of these ten absorption systems, three lie within voids; the probable absorber also lies in a void. Thus, the tendency of Ly(alpha) absorbers to 'avoid the voids' is not as clear as we found previously. If the Ly(alpha) clouds are approximated as homogeneous spheres of 100 kpc radius, their masses are approximately 10(exp 9)solar mass (about 0.01 times that of bright L* galaxies) and they are 40 times more numerous, comparable to the density of dwarf galaxies and of low-mass halos in numerical CDM simulations. The Ly(alpha) clouds contribute a fraction Omega(sub cl)approximately equals 0.003/h(sub 75) to the closure density of the universe, comparable to that of luminous matter. These clouds probably require a substantial amount of nonbaryonic dark matter for gravitational binding. They may represent extended haloes of low-mass protogalaxies which have not experienced significant star formation or low-mass dwarf galaxies whose star formation ceased long ago, but blew out significant gaseous material.

  4. Cleaning spectroscopic samples of stars in nearby dwarf galaxies. The use of the nIR Mg I line to weed out Milky Way contaminants

    Science.gov (United States)

    Battaglia, G.; Starkenburg, E.

    2012-03-01

    Dwarf galaxies provide insight into the processes of star formation and chemical enrichment at the low end of the galaxy mass function, as well as into the clustering of dark matter on small scales. In studies of Local Group dwarf galaxies, spectroscopic samples of individual stars are used to derive the internal kinematics and abundance properties of these galaxies. It is therefore important to clean these samples from Milky Way stars, which are not related to the dwarf galaxy, since they can contaminate analysis of the properties of these objects. Here we introduce a new diagnostic for separating Milky Way contaminant stars, which mainly consist of dwarf stars, and red giant branch stars targeted in dwarf galaxies. As discriminator we use the trends in the equivalent width of the nIR Mg I line at 8806.8 Å as a function of the equivalent width of Ca II triplet lines. This method is particularly useful for works dealing with multi-object, intermediate-resolution spectroscopy focusing in the region of the nIR Ca II triplet. We use synthetic spectra to explore how the equivalent width of these lines changes for stars with different properties (gravity, effective temperature, metallicity) and find that a distinction among giants above the horizontal branch and dwarfs can be made with this method at [Fe/H] > -2 dex. For -2 ≤ [Fe/H] ≤ -1, this method is also valid for distinguishing dwarfs and giants down to approximately one magnitude below the horizontal branch. Using a foreground model we make predictions on the use of this new discrimination method for nearby dwarf spheroidal galaxies, including the ultra-faints. We subsequently use VLT/FLAMES data for the Sextans, Sculptor, and Fornax dwarf spheroidal galaxies to verify the predicted theoretical trends. Based on FLAMES observations collected at the ESO, proposals 171.B-0588, 076.B-0391, 079.B-0435.

  5. DISCOVERY OF AN ULTRA-FAINT DWARF GALAXY IN THE INTRACLUSTER FIELD OF THE VIRGO CENTER: A FOSSIL OF THE FIRST GALAXIES?

    Energy Technology Data Exchange (ETDEWEB)

    Jang, In Sung; Lee, Myung Gyoon, E-mail: isjang@astro.snu.ac.kr, E-mail: mglee@astro.snu.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2014-11-01

    Ultra-faint dwarf galaxies (UFDs) are newcomers among galaxies, and are the faintest galaxies in the observed universe. To date, they have only been found around the Milky Way Galaxy and M31 in the Local Group. We present the discovery of a UFD in the intracluster field in the core of the Virgo cluster (Virgo UFD1), which is far from any massive galaxies. The color-magnitude diagram of the resolved stars in this galaxy shows a narrow red giant branch, similar to those of metal-poor globular clusters in the Milky Way. We estimate its distance by comparing the red giant branch with isochrones, and we obtain a value 16.4 ± 0.4 Mpc. This shows that it is indeed a member of the Virgo cluster. From the color of the red giants we estimate its mean metallicity to be very low, [Fe/H] =–2.4 ± 0.4. Its absolute V-band magnitude and effective radius are derived to be M{sub V} = –6.5 ± 0.2 and r {sub eff} = 81 ± 7 pc, much fainter and smaller than the classical dwarf spheroidal galaxies. Its central surface brightness is estimated to be as low as μ {sub V,} {sub 0} = 26.37 ± 0.05 mag arcsec{sup –2}. Its properties are similar to those of the Local Group analogs. No evidence of tidal features are found in this galaxy. Considering its narrow red giant branch with no asymptotic giant branch stars, low metallicity, and location, it may be a fossil remnant of the first galaxies.

  6. Spectroscopy of Six Red Giants in the Draco Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Smith, Graeme H.; Siegel, Michael H.; Shetrone, Matthew D.; Winnick, Rebeccah

    2006-10-01

    Keck Observatory LRIS-B (Low Resolution Imaging Spectrometer) spectra are reported for six red giant stars in the Draco dwarf spheroidal galaxy and several comparison giants in the globular cluster M13. Indexes that quantify the strengths of the Ca II H and K lines, the λ3883 and λ4215 CN bands, and the λ4300 G band have been measured. These data confirm evidence of metallicity inhomogeneity within Draco obtained by previous authors. The four brightest giants in the sample have absolute magnitudes in the range -2.6intermediate-mass asymptotic giant branch stars to enrich the interstellar medium while star formation was still occurring. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  7. Near-IR TRGB Distance to Dwarf Elliptical Galaxy NGC 147

    Directory of Open Access Journals (Sweden)

    A. Kang

    2007-09-01

    Full Text Available We report the distance modulus of nearby dwarf elliptical galaxy NGC 147 estimated from the Tip of Red-giant Branch (TRGB method applying to the color-magnitude diagrams and luminosity functions in the near-infrared JHK bands. Apparent magnitudes of TRGBs in each band are obtained by applying Savitzky-Golay filter to the luminosity functions, and the theoretical absolute magnitudes are estimated from Yonsei-Yale isochrones. The derived values of distance modulus to NGC 147 are (m-M=23.69±0.12, 23.78±0.17, and 23.85±0.22 for J, H, and K bands, respectively. Distance modulus in bolometric magnitude is also derived as (m-M=23.87±0.11. We compare the derived values of the TRGB distance modulus to NGC 147 in the near-infrared bands with the previous results in other bands.

  8. Dark matter in dwarf spheroidal galaxies and indirect detection: a review.

    Science.gov (United States)

    Strigari, Louis

    2018-02-09

    Indirect dark matter searches targeting dwarf spheroidal galaxies (dSphs) have matured rapidly during the past decade. This has been because of the substantial increase in kinematic data sets from the dSphs, the new dSphs that have been discovered, and the operation of the Fermi-LAT and many ground-based gamma-ray experiments. Here we review the analysis methods that have been used to determine the dSph dark matter distributions, in particular the ``J-factors," comparing and contrasting them, and detailing the underlying systematics that still affect the analysis. We discuss prospects for improving measurements of dark matter distributions, and how these interplay with future indirect dark matter searches. © 2018 IOP Publishing Ltd.

  9. Search for annihilating Dark Matter towards dwarf galaxies with the Cherenkov Telescope Array

    Directory of Open Access Journals (Sweden)

    Morselli Aldo

    2017-01-01

    Full Text Available The standard model of cosmology indicates that approximately 27% of the energy density of the Universe is in the form of dark matter. The nature of dark matter is an open question in modern physics. Indirect dark matter searches with imaging atmospheric Cherenkov telescopes are playing a crucial role in constraining the nature of the dark matter particle through the study of their potential annihilation that could produce very high energy gamma rays from different astrophysical structures. The Cherenkov Telescope Array will provide an unprecedented sensitivity over a range of dark matter mass from ~100 GeV to ~30 TeV. In this contribution we review the status of indirect dark matter searches at dwarf spheroidal galaxies.

  10. Static structure of chameleon dark matter as an explanation of dwarf spheroidal galaxy cores

    Science.gov (United States)

    Chanda, Prolay Krishna; Das, Subinoy

    2017-04-01

    We propose a novel mechanism that explains the cored dark matter density profile in recently observed dark matter rich dwarf spheroidal galaxies. In our scenario, dark matter particle mass decreases gradually as a function of distance towards the center of a dwarf galaxy due to its interaction with a chameleon scalar. At closer distance towards the Galactic center the strength of attractive scalar fifth force becomes much stronger than gravity and is balanced by the Fermi pressure of the dark matter cloud; thus, an equilibrium static configuration of the dark matter halo is obtained. Like the case of soliton star or fermion Q-star, the stability of the dark matter halo is obtained as the scalar achieves a static profile and reaches an asymptotic value away from the Galactic center. For simple scalar-dark matter interaction and quadratic scalar self-interaction potential, we show that dark matter behaves exactly like cold dark matter (CDM) beyond a few kpc away from the Galactic center but at closer distance it becomes lighter and Fermi pressure cannot be ignored anymore. Using Thomas-Fermi approximation, we numerically solve the radial static profile of the scalar field, fermion mass and dark matter energy density as a function of distance. We find that for fifth force mediated by an ultralight scalar, it is possible to obtain a flattened dark matter density profile towards the Galactic center. In our scenario, the fifth force can be neglected at distance r ≥1 kpc from the Galactic center and dark matter can be simply treated as heavy nonrelativistic particles beyond this distance, thus reproducing the success of CDM at large scales.

  11. A state-of-the-art analysis of the dwarf irregular galaxy NGC 6822

    Science.gov (United States)

    Fusco, F.; Buonanno, R.; Hidalgo, S. L.; Aparicio, A.; Pietrinferni, A.; Bono, G.; Monelli, M.; Cassisi, S.

    2014-12-01

    We present a detailed photometric study of the dwarf irregular galaxy NGC 6822 aimed at investigating the properties of its stellar populations and, in particular, the presence of stellar radial gradients. Our goal is to analyse the stellar populations in six fields, which cover the whole bar of this dwarf galaxy. We derived the quantitative star formation history (SFH) of the six fields using the IAC method, involving IAC-pop/MinnIAC codes. The solutions we derived show an enhanced star formation rate (SFR) in Fields 1 and 3 during the past 500 Myr. The SFRs of the other fields are almost extinguished at very recent epochs and. We study the radial gradients of the SFR and consider the total mass converted into stars in two time intervals (between 0 and 0.5 Gyr ago and between 0.5 and 13.5 Gyr ago). We find that the scale lengths of the young and intermediate-to-old populations are perfectly compatible, with the exception of the young populations in Fields 1 and 3. The recent SF in these two fields is greater than in the other ones. This might be an indication that in these two fields we are sampling incipient spiral arms. Further evidence and new observations are required to prove this hypothesis. In addition, we derived the age-metallicity relations. As expected, the metallicity increases with time for all of the fields. We do not observe any radial gradient in the metallicity. Based on observations collected with the ACS on board the NASA/ESA HST.The photometric catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A26

  12. A Multi-epoch Kinematic Study of the Remote Dwarf Spheroidal Galaxy Leo II

    Science.gov (United States)

    Spencer, Meghin E.; Mateo, Mario; Walker, Matthew G.; Olszewski, Edward W.

    2017-02-01

    We conducted a large spectroscopic survey of 336 red giants in the direction of the Leo II dwarf galaxy using Hectochelle on the Multiple Mirror Telescope, and we conclude that 175 of them are members based on their radial velocities and surface gravities. Of this set, 40 stars have never before been observed spectroscopically. The systemic velocity of the dwarf is 78.3 ± 0.6 km s-1 with a velocity dispersion of 7.4 ± 0.4 km s-1. We identify one star beyond the tidal radius of Leo II but find no signatures of uniform rotation, kinematic asymmetries, or streams. The stars show a strong metallicity gradient of -1.53 ± 0.10 dex kpc-1 and have a mean metallicity of -1.70 ± 0.02 dex. There is also evidence of two different chemodynamic populations, but the signal is weak. A larger sample of stars would be necessary to verify this feature. Observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution.

  13. A Multi-epoch Kinematic Study of the Remote Dwarf Spheroidal Galaxy Leo II

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Meghin E.; Mateo, Mario [Department of Astronomy, University of Michigan, Ann Arbor, MI (United States); Walker, Matthew G. [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA (United States); Olszewski, Edward W., E-mail: meghins@umich.edu [Steward Observatory, The University of Arizona, Tucson, AZ (United States)

    2017-02-20

    We conducted a large spectroscopic survey of 336 red giants in the direction of the Leo II dwarf galaxy using Hectochelle on the Multiple Mirror Telescope, and we conclude that 175 of them are members based on their radial velocities and surface gravities. Of this set, 40 stars have never before been observed spectroscopically. The systemic velocity of the dwarf is 78.3 ± 0.6 km s{sup −1} with a velocity dispersion of 7.4 ± 0.4 km s{sup −1}. We identify one star beyond the tidal radius of Leo II but find no signatures of uniform rotation, kinematic asymmetries, or streams. The stars show a strong metallicity gradient of −1.53 ± 0.10 dex kpc{sup −1} and have a mean metallicity of −1.70 ± 0.02 dex. There is also evidence of two different chemodynamic populations, but the signal is weak. A larger sample of stars would be necessary to verify this feature.

  14. THE PAndAS VIEW OF THE ANDROMEDA SATELLITE SYSTEM. I. A BAYESIAN SEARCH FOR DWARF GALAXIES USING SPATIAL AND COLOR-MAGNITUDE INFORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Nicolas F.; Ibata, Rodrigo A. [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Mackey, A. Dougal [Research School of Astronomy and Astrophysics, The Australian National University, Mount Stromlo Observatory, via Cotter Road, Weston, ACT 2611 (Australia); Ferguson, Annette M. N. [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Irwin, Michael J. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Lewis, Geraint F. [Institute of Astronomy, School of Physics A28, University of Sydney, NSW 2006 (Australia); Fardal, Mark A., E-mail: nicolas.martin@astro.unistra.fr [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2013-10-20

    We present a generic algorithm to search for dwarf galaxies in photometric catalogs and apply it to the Pan-Andromeda Archaeological Survey (PAndAS). The algorithm is developed in a Bayesian framework and, contrary to most dwarf galaxy search codes, makes use of both the spatial and color-magnitude information of sources in a probabilistic approach. Accounting for the significant contamination from the Milky Way foreground and from the structured stellar halo of the Andromeda galaxy, we recover all known dwarf galaxies in the PAndAS footprint with high significance, even for the least luminous ones. Some Andromeda globular clusters are also recovered and, in one case, discovered. We publish a list of the 143 most significant detections yielded by the algorithm. The combined properties of the 39 most significant isolated detections show hints that at least some of these trace genuine dwarf galaxies, too faint to be individually detected. Follow-up observations by the community are mandatory to establish which are real members of the Andromeda satellite system. The search technique presented here will be used in an upcoming contribution to determine the PAndAS completeness limits for dwarf galaxies. Although here tuned to the search of dwarf galaxies in the PAndAS data, the algorithm can easily be adapted to the search for any localized overdensity whose properties can be modeled reliably in the parameter space of any catalog.

  15. Impact of NLTE on research of early chemical enrichment of the dwarf galaxies

    Science.gov (United States)

    Mashonkina, Lyudmila

    2015-08-01

    The individual stars observed in the dwarf galaxies orbiting the Milky Way are presumably red giants. Their chemical abundances are commonly determined under the classical LTE assumption, despite its validity is questionable for atmospheres of giant, in particular, metal-poor stars. Exactly metal-poor objects are important for understanding the early chemical enrichment processes of the host galaxy and the onset of star formation. We selected a sample of the -4 factor of SH = 0.5 to the Drawinian rates of Fe+H collisions. Pronounced NLTE effects were calculated for lines of Na I and Al I resulting in up to 0.5 dex lower [Na/Fe] ratios and up to 0.65 dex higher [Al/Fe] ratios compared with the corresponding LTE values. For the six Scl stars, the scatter of data on Mg/Na is much smaller in NLTE, with the mean [Mg/Na] = 0.61 +- 0.11, than LTE, where [Mg/Na] = 0.42 +- 0.21. We computed a grid of the NLTE abundance corrections for an extensive list of the Ca I, Ti I-Ti II, and Fe I lines in the MARCS models of cool giants, 4000 K <= Teff <= 4750 K, 0.5 <= log g <= 2.5, -4 <= [M/H] <= 0.

  16. Near-IR TRGB Distance Modulus of Dwarf Irregular Galaxy IC 1613

    Directory of Open Access Journals (Sweden)

    M. Y. Jung

    2009-12-01

    Full Text Available The JHKs magnitudes of the red giant branch tip (TRGB and the distance moduli of the nearby dwarf irregular galaxy IC 1613 have been determined from the nearinfrared luminosity functions (LFs of the resolved stars in the galaxy. Applying a Savitzky-Golay filtering, we derived the second derivatives of the LFs, and estimated the apparent magnitudes of the TRGB as mJ = 19.1, mH = 18.4, and mKs = 18:0. The mean values of the theoretical absolute magnitudes of the TRGB were measured by using the Yonsei-Yale isochrones with a metallicity range of -2.1 < [Fe/H] < -0.5 and age of 12 Gyr. The derived values of near-infrared TRGB distance moduli for IC 1613 are (m-M = 24.12±0:25, 24.20±0.44, and 24.00±0.52 for J;H, and Ks bands, respectively.

  17. Multi-spectral study of a new sample of blue compact dwarf galaxies

    CERN Document Server

    Doublier, V; Comte, G

    1999-01-01

    For pt.I see ibid., vol.124, no.3, p.405-24 (1997). We present the results of surface photometry on a new sample of blue compact dwarf galaxies (BCDGs), in continuation to a previous paper (Doublier et al. 1997). The 22 galaxies $9 (plus two companions) discussed in the present paper have been selected in the Southern Hemisphere, from several lists. An atlas containing isophotal maps, surface brightnesses and B-R color profiles of the sample is given, together $9 with the tables containing the photometric parameters. The results are consistent with those for objects selected from the Byurakan surveys in the Northern Hemisphere. Similarly, we find about one fourth of the BCDGs showing a $9 dominant r/sup 1/4/ brightness distribution component, one fourth of the BCDGs showing a dominant exponential surface brightness profile, and about half of them show composite brightness distributions. Integrated properties, colors, $9 mean surface brightnesses and luminosity-radius relations are investigated and discussed f...

  18. Supernova-driven outflows and chemical evolution of dwarf spheroidal galaxies.

    Science.gov (United States)

    Qian, Yong-Zhong; Wasserburg, G J

    2012-03-27

    We present a general phenomenological model for the metallicity distribution (MD) in terms of [Fe/H] for dwarf spheroidal galaxies (dSphs). These galaxies appear to have stopped accreting gas from the intergalactic medium and are fossilized systems with their stars undergoing slow internal evolution. For a wide variety of infall histories of unprocessed baryonic matter to feed star formation, most of the observed MDs can be well described by our model. The key requirement is that the fraction of the gas mass lost by supernova-driven outflows is close to unity. This model also predicts a relationship between the total stellar mass and the mean metallicity for dSphs in accord with properties of their dark matter halos. The model further predicts as a natural consequence that the abundance ratios [E/Fe] for elements such as O, Mg, and Si decrease for stellar populations at the higher end of the [Fe/H] range in a dSph. We show that, for infall rates far below the net rate of gas loss to star formation and outflows, the MD in our model is very sharply peaked at one [Fe/H] value, similar to what is observed in most globular clusters. This result suggests that globular clusters may be end members of the same family as dSphs.

  19. The molecular gas reservoir of 6 low-metallicity galaxies from the Herschel Dwarf Galaxy Survey : A ground-based follow-up survey of CO(1–0), CO(2–1), and CO(3–2)

    National Research Council Canada - National Science Library

    Cormier, D; Madden, S. C; Lebouteiller, V; Hony, S; Aalto, S; Costagliola, F; Hughes, A; Rémy-Ruyer, A; Abel, N; Bayet, E; Bigiel, F; Cannon, J. M; Cumming, R. J; Galametz, M; Galliano, F; Viti, S; Wu, R

    2014-01-01

    .... However, some nearby low-metallicity dwarf galaxies are actively forming stars, but CO, the most common tracer of this reservoir, is faint, leaving us with a puzzle about how star formation proceeds...

  20. The hELENa project - II. Abundance distribution trends of early-type galaxies: from dwarfs to giants

    Science.gov (United States)

    Sybilska, A.; Kuntschner, H.; van de Ven, G.; Vazdekis, A.; Falcón-Barroso, J.; Peletier, R. F.; Lisker, T.

    2018-02-01

    In this second paper of The role of Environment in shaping Low-mass Early-type Nearby galaxies (hELENa) series we study [Mg/Fe] abundance distribution trends of early-type galaxies observed with the SAURON integral field unit, spanning a wide range in mass and local environment densities: 20 low-mass early-types (dEs) of Sybilska et al. (2017) and 258 massive early types (ETGs) of the ATLAS3D project, all homogeneously reduced and analyzed. We show that the [Mg/Fe] ratios scale with velocity dispersion (σ) at fixed [Fe/H] and that they evolve with [Fe/H] along similar paths for all early-types, grouped in bins of increasing local and global σ, as well as the second velocity moment Vrms, indicating a common inside-out formation pattern. We then place our dEs on the [Mg/Fe] vs. [Fe/H] diagram of Local Group galaxies and show that dEs occupy the same region and show a similar trend line slope in the diagram as the high-metallicity stars of the Milky Way and the Large Magellanic Cloud. This finding extends the similar trend found for dwarf spheroidal vs. dwarf irregular galaxies and supports the notion that dEs have evolved from late-type galaxies that have lost their gas at a point of their evolution, which likely coincided with them entering denser environments.

  1. Mass Modelling of Dwarf Spheroidal Galaxies: the Effect of Unbound Stars From Tidal Tails And the Milky Way

    Energy Technology Data Exchange (ETDEWEB)

    Klimentowski, Jaroslaw; Lokas, Ewa L.; /Warsaw, Copernicus Astron. Ctr.; Kazantzidis, Stelios; /KIPAC, Menlo Park; Prada, Francisco; /IAA, Granada; Mayer, Lucio; /Zurich,; Mamon, Gary A.; /Paris, Inst. Astrophys. /Meudon Observ.

    2006-11-14

    We study the origin and properties of the population of unbound stars in the kinematic samples of dwarf spheroidal galaxies. For this purpose we have run a high resolution N- body simulation of a two-component dwarf galaxy orbiting in a Milky Way potential. In agreement with the tidal stirring scenario of Mayer et al., the dwarf is placed on a highly eccentric orbit, its initial stellar component is in the form of an exponential disk and it has a NFW-like dark matter halo. After 10 Gyrs of evolution the dwarf produces a spheroidal stellar component and is strongly tidally stripped so that mass follows light and the stars are on almost isotropic orbits. From this final state, we create mock kinematic data sets for 200 stars by observing the dwarf in different directions.We find that when the dwarf is observed along the tidal tails the kinematic samples are strongly contaminated by unbound stars from the tails.We also study another source of possible contamination by adding stars from the Milky Way. We demonstrate that most of the unbound stars can be removed by the method of interloper rejection proposed by den Hartog & Katgert and recently tested on simulated dark matter haloes. We model the cleaned up kinematic samples using solutions of the Jeans equation with constant mass-to-light ratio and velocity anisotropy parameter. We show that even for such strongly stripped dwarf the Jeans analysis, when applied to cleaned samples, allows us to reproduce the mass and mass-to-light ratio of the dwarf with accuracy typically better than 25 percent and almost exactly in the case when the line of sight is perpendicular to the tidal tails. The analysis was applied to the new data for the Fornax dSph galaxy for which we find a mass-to-light ratio of 11 solar units and isotropic orbits. We demonstrate that most of the contamination in the kinematic sample of Fornax probably originates from the Milky Way.

  2. THE COMPARATIVE CHEMICAL EVOLUTION OF AN ISOLATED DWARF GALAXY: A VLT AND KECK SPECTROSCOPIC SURVEY OF WLM

    Energy Technology Data Exchange (ETDEWEB)

    Leaman, Ryan; Venn, Kim A.; Mendel, J. Trevor [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1 (Canada); Brooks, Alyson M. [California Institute of Technology, M/C 350-17, Pasadena, CA 91125 (United States); Battaglia, Giuseppina [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Cole, Andrew A. [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, TAS (Australia); Ibata, Rodrigo A. [Observatoire Astronomique, Universite de Strasbourg, CNRS, 11 rue de l' Universite, F-67000 Strasbourg (France); Irwin, Mike J. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); McConnachie, Alan W. [National Research Council of Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria BC V9E 2E7 (Canada); Starkenburg, Else; Tolstoy, Eline, E-mail: rleaman@iac.es [Kapteyn Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands)

    2013-04-20

    Building on our previous spectroscopic and photometric analysis of the isolated Local Group dwarf irregular (dIrr) galaxy WLM, we present a comparison of the metallicities of its red giant branch stars with respect to the well-studied Local Group dwarf spheroidal galaxies (dSphs) and Magellanic Clouds. We calculate a mean metallicity of [Fe/H] =-1.28 {+-} 0.02 and an intrinsic spread in metallicity of {sigma} = 0.38 {+-} 0.04 dex, similar to the mean and spread observed in the massive dSph Fornax and the Small Magellanic Cloud. Thus, despite WLM's isolated environment, its global metallicity still follows expectations for mass and its global chemical evolution is similar to other nearby luminous dwarf galaxies (gas-rich or gas-poor). The data also show a radial gradient in [Fe/H] of d[Fe/H]/dr{sub c} = -0.04 {+-} 0.04 dex r{sub c}{sup -1}, which is flatter than that seen in the unbiased and spatially extended surveys of dSphs. Comparison of the spatial distribution of [Fe/H] in WLM, the Magellanic Clouds, and a sample of Local Group dSphs shows an apparent dichotomy in the sense that the dIrrs have statistically flatter radial [Fe/H] gradients than the low angular momentum dSphs. The correlation between angular momentum and radial metallicity gradient is further supported when considering the Local Group dEs. This chemodynamic relationship offers a new and useful constraint for environment-driven dwarf galaxy evolution models in the Local Group.

  3. Constraints on the Sommerfeld-enhanced dark matter annihilation from the gamma rays of subhalos and dwarf galaxies

    OpenAIRE

    Lu, Bo-Qiang(Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210008, China); Wu, Yue-Liang; Zhang, Wei-Hong; Zhou, Yu-Feng

    2017-01-01

    The substructures of the Galactic dark matter halo such as dark matter subhalos and dwarf galaxies have very low velocity dispersions, which makes them useful in constraining the scenario of Sommerfeld-enhanced dark matter annihilation. We calculate the velocity distribution of dark matter particles in dark matter halo substructures using the Eddington's formula with NFW density profile. We parametrize the effect of Sommerfeld enhancement of s-wave dark matter annihilation on the gamma-ray fl...

  4. Constraining the Nature of Dark Matter with the Star-formation History of the Faintest Local Group Dwarf Galaxy Satellites

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Alice; Mayer, Lucio [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Governato, Fabio [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States)

    2017-08-10

    Λ warm dark matter (ΛWDM), realized by collisionless particles of 1–3 keV, has been proposed as an alternative scenario to Λ-Cold-Dark Matter (ΛCDM) for the dwarf galaxy scale discrepancies. We present an approach to test the viability of such WDM models using star-formation histories (SFHs) of the dwarf spheroidal galaxies (dSphs) in the Local Group. We compare their high-time-resolution SFHs with the collapse redshift of their dark halos in CDM and WDM. Collapse redshift is inferred after determining the subhalo infall mass. This is based on the dwarf current mass inferred from stellar kinematics, combined with cosmological simulation results on subhalo evolution. WDM subhalos close to the filtering mass scale, forming significantly later than CDM, are the most difficult to reconcile with early truncation of star formation ( z ≥ 3). The ultra-faint dwarfs (UFDs) provide the most stringent constraints. Using six UFDs and eight classical dSphs, we show that a 1 keV particle is strongly disfavored, consistently with other reported methods. Excluding other models is only hinted for a few UFDs. Other UFDs for which the lack of robust constraints on halo mass prevents us from carrying out our analysis rigorously, show a very early onset of star formation that will strengthen the constraints delivered by our method in the future. We discuss the various caveats, notably the low number of dwarfs with accurately determined SFHs and the uncertainties when determining the subhalo infall mass, most notably the baryonic physics. Our preliminary analysis may serve as a pathfinder for future investigations that will combine accurate SFHs for local dwarfs with direct analysis of WDM simulations with baryons.

  5. Star-Formation History of an Unmerged Fragment: the Leo A Dwarf Galaxy

    Science.gov (United States)

    Cole, Andrew

    2005-07-01

    The Leo A dwarf irregular is the only known Local Group galaxy that on the weight of current evidence has been suggested to have experienced its first star formation within the past 2-3 billion years. As a galaxy that could have been almost purely gaseous during the epoch of giant galaxy assembly, Leo A is the best nearby candidate to be a redshift zero analogue to the major building blocks of the Milky Way. We propose to obtain deep optical images of Leo A with the ACS/WFC to achieve three main goals: 1} To establish the fractions of star-formation, by mass, that occurred prior and subsequent to the main epoch of hierarchical merging {redshift z 2-4, Age 10-12.5 Gigayears}; 2} to measure the time variation in Leo A's star-formation rate over the past 10 Gyr, based on statistical analyses of its {V-I, I} color-magnitude diagram; and 3} to measure the radial distributions of young and old stellar populations and quantify the degree to which the optically prominent, young population is embedded in an extended, low-surface brightness sheet or halo of ancient stars. Because of the distance modulus {24.5 mag} and high degree of stellar crowding at the level of the oldest main-sequence turnoffs, the observations necessary to achieve these goals are unobtainable except with HST. The ONLY way to reliably derive the star-formation history of Leo A over its entire lifetime is with photometry to magnitudes of {B, I} = {28.6, 27.9}, the level of the oldest main-sequence turnoff in Leo A. These data would confirm and extend the limited inferences obtained from WFPC2 photometry over 2 magnitudes less deep, and provide the first opportunity to measure the complete star-formation history of a potential "living fossil" analogue to the building blocks of the Milky Way. We propose to use WFPC2 in parallel to measure radial variations in the stellar populations between the galaxy's core and outskirts. Because the expected 2-gyro jitter ellipse is comparable to the pixel scale of ACS

  6. Teaching the Thrill of Discovery: Student Exploration of Ultra-Faint Dwarf Galaxies with the NOAO Data Lab

    Science.gov (United States)

    Olsen, Knut; Walker, Constance E.; Smith, Blake; NOAO Data Lab Team

    2018-01-01

    We describe an activity aimed at teaching students how ultra-faint Milky Way dwarf galaxies are typically discovered: through filtering of optical photometric catalogs and cross-examination with deep images. The activity, which was developed as part of the Teen Astronomy Café program (https://teensciencecafe.org/cafes/az-teen-astronomy-cafe-tucson/), uses the NOAO Data Lab (http://datalab.noao.edu) and other professional-grade tools to lead high school students through exploration of the object catalog and images from the Survey of the Magellanic Stellar History (SMASH). The students are taught how to use images and color-magnitude diagrams to analyze and interpret stellar populations of increasing complexity, including those of star clusters and the Magellanic Clouds, and culminating with the discovery of the Hydra II ultra-faint dwarf galaxy. The tools and datasets presented allow the students to explore and discover other known stellar systems, as well as unknown candidate star clusters and dwarf galaxies. The ultimate goal of the activity is to give students insight into the methods of modern astronomical research and to allow them to participate in the thrill of discovery.

  7. An Integral View on Virgo and Field Dwarf Elliptical Galaxies: Late-Type Origin and Environmental Transformations

    Science.gov (United States)

    Rys, Agnieszka; Falcon-Barroso, J.; van de Ven, G.

    2013-01-01

    Dwarf elliptical galaxies (dEs) are the most common galaxy class in dense environments. They are also a surprisingly inhomogenous class, which has made it challenging both to relate different dE subtypes to each other, as well as place the whole class in the larger context of galaxy assembly and (trans)formation processes. Here we will show the effects of environmental evolution on Virgo Cluster and field dEs, presenting the first large-scale integral-field spectroscopic (SAURON) data for this galaxy class. Our sample consists of 12 galaxies and no two of them are alike. We find that the level of rotation is not tied to flattening; we observe kinematic twists; we discover large-scale kinematically-decoupled components; we see varying gradients in line-strength maps. This great variety of morphological, kinematic, and stellar population parameters supports the claim that dEs are defunct dwarf spiral/irregular galaxies and points to a formation scenario that allows for a stochastic shaping of galaxy properties. The combined influence of ram-pressure stripping and harassment fulfils this requirement, still, their exact impact is not yet understood. We thus further investigate the properties of our sample by performing a detailed comprehensive analysis of its kinematic, dynamical, and stellar population properties. We infer the total (dark and baryonic) matter distribution by fitting the observed stellar velocity and velocity dispersion with the solutions of the Jeans equations. We obtain 2D age, metallicity, and enrichment information from line-strength analysis. We then tie these results to the galaxies' intrinsic (i.e. deprojected) locations in the cluster with the use of surface-brightness fluctuation distances. This step is essential to providing unbiased correlations with the local environment density. We show that the dark matter fraction, unlike the level of rotational support, appears to correlate with the clustrocentric distance, and that our dwarfs have

  8. HST-ACS photometry of the isolated dwarf galaxy VV124=UGC 4879 : Detection of the blue horizontal branch and identification of two young star clusters

    NARCIS (Netherlands)

    Bellazzini, M.; Perina, S.; Galleti, S.; Oosterloo, T.

    We present deep V and I photometry of the isolated dwarf galaxy VV124=UGC 4879, obtained from archival images taken with the Hubble Space Telescope - Advanced Camera for Surveys. In the color-magnitude diagrams of stars at distances greater than 40″ from the center of the galaxy, we clearly identify

  9. Understanding the physics of gas stripping and star-formation quenching of the satellite dwarf galaxies in the Local Group

    Science.gov (United States)

    Wetzel, Andrew

    2017-08-01

    The Milky Way (MW) and M31 are among the best systems to study the physics of the halo environment on galaxy evolution. Nearly all of the satellite dwarf galaxies of the MW and M31 are gas-poor and have quenched star formation. Over 1200 orbits of HST observations of these satellites now provide detailed star-formation histories and proper-motion velocities for full 6-D orbital phase-space, informing both when and where each satellite quenched. However, the lack of sufficiently realistic theoretical models of gas stripping represents a severe limitation to leveraging the astrophysical returns of these HST observations.We propose to use the new Latte cosmological zoom-in hydrodynamic simulations of MW- and M31-mass systems to understand the environmental processes that strip gas from satellite dwarf galaxies and quench their star formation. Our initial Latte simulations form realistic satellite populations, with star-formation histories that agree well HST measurements. These simulations use the state-of-the-art FIRE model for star formation and feedback: this feedback drives strong gas outflows within dwarf galaxies that can enhance the efficiency of ram-pressure stripping within the halo. We will run a new suite of simulations carefully targeted to the Local Group, and we will investigate how the combination of internal feedback and external stripping leads to rapid quenching, as observed by HST. Finally, we will publicly release our satellite galaxy/subhalo catalogs, including their full orbital and star-formation histories, to compare with existing/upcoming HST observations, providing detailed insight into the physics of environmental quenching.

  10. The ISLAnds Project. III. Variable Stars in Six Andromeda Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Martínez-Vázquez, Clara E.; Monelli, Matteo; Bernard, Edouard J.; Gallart, Carme; Stetson, Peter B.; Skillman, Evan D.; Bono, Giuseppe; Cassisi, Santi; Fiorentino, Giuliana; McQuinn, Kristen B. W.; Cole, Andrew A.; McConnachie, Alan W.; Martin, Nicolas F.; Dolphin, Andrew E.; Boylan-Kolchin, Michael; Aparicio, Antonio; Hidalgo, Sebastian L.; Weisz, Daniel R.

    2017-12-01

    We present a census of variable stars in six M31 dwarf spheroidal satellites observed with the Hubble Space Telescope. We detect 870 RR Lyrae (RRL) stars in the fields of And I (296), II (251), III (111), XV (117), XVI (8), and XXVIII (87). We also detect a total of 15 Anomalous Cepheids, three eclipsing binaries, and seven field RRL stars compatible with being members of the M31 halo or the Giant Stellar Stream. We derive robust and homogeneous distances to the six galaxies using different methods based on the properties of the RRL stars. Working with the up-to-date set of Period-Wesenheit (I, B-I) relations published by Marconi et al., we obtain distance moduli of μ 0 = [24.49, 24.16, 24.36, 24.42, 23.70, 24.43] mag (respectively), with systematic uncertainties of 0.08 mag and statistical uncertainties <0.11 mag. We have considered an enlarged sample of 16 M31 satellites with published variability studies, and compared their pulsational observables (e.g., periods and amplitudes) with those of 15 Milky Way satellites for which similar data are available. The properties of the (strictly old) RRL in both satellite systems do not show any significant difference. In particular, we found a strikingly similar correlation between the mean period distribution of the fundamental RRL pulsators (RRab) and the mean metallicities of the galaxies. This indicates that the old RRL progenitors were similar at the early stage in the two environments, suggesting very similar characteristics for the earliest stages of evolution of both satellite systems. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 13028 and 13739.

  11. Stellar Populations and Star Formation History of the Metal-poor Dwarf Galaxy DDO 68

    Science.gov (United States)

    Sacchi, E.; Annibali, F.; Cignoni, M.; Aloisi, A.; Sohn, T.; Tosi, M.; van der Marel, R. P.; Grocholski, A. J.; James, B.

    2016-10-01

    We present the star formation history (SFH) of the extremely metal-poor dwarf galaxy DDO 68, based on our photometry with the Advanced Camera for Surveys. With a metallicity of only 12+{log}({{O}}/{{H}})=7.15 and a very isolated location, DDO 68 is one of the most metal-poor galaxies known. It has been argued that DDO 68 is a young system that started forming stars only ˜0.15 Gyr ago. Our data provide a deep and uncontaminated optical color-magnitude diagram (CMD) that allows us to disprove this hypothesis since we find a population of at least ˜1 Gyr old stars. The star formation activity has been fairly continuous over all the look-back time. The current rate is quite low, and the highest activity occurred between 10 and 100 Myr ago. The average star formation rate over the whole Hubble time is ≃0.01 M ⊙ yr-1, corresponding to a total astrated mass of ≃1.3 × 108 M ⊙. Our photometry allows us to infer the distance from the tip of the red giant branch, D = 12.08 ± 0.67 Mpc; however, to let our synthetic CMD reproduce the observed ones, we need a slightly higher distance, D = 12.65 Mpc, or (m - M)0 = 30.51, still inside the errors of the previous determination, and we adopt the latter. DDO 68 shows a very interesting and complex history, with its quite disturbed shape and a long tail, probably due to tidal interactions. The SFH of the tail differs from that of the main body mainly for enhanced activity at recent epochs likely triggered by the interaction. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA Contract NAS5-26555.

  12. Three-dimensional motions in the Sculptor dwarf galaxy as a glimpse of a new era

    Science.gov (United States)

    Massari, D.; Breddels, M. A.; Helmi, A.; Posti, L.; Brown, A. G. A.; Tolstoy, E.

    2018-02-01

    The three-dimensional motions of stars in small galaxies beyond our own are minute, yet they are crucial for understanding the nature of gravity and dark matter1,2. Even for the dwarf galaxy Sculptor—one of the best-studied systems, which is inferred to be strongly dark matter dominated3,4—there are conflicting reports5-7 on its mean motion around the Milky Way, and the three-dimensional internal motions of its stars have never been measured. Here, we present precise proper motions of Sculptor's stars based on data from the Gaia mission8 and Hubble Space Telescope. Our measurements show that Sculptor moves around the Milky Way on a high-inclination elongated orbit that takes it much further out than previously thought. For Sculptor's internal velocity dispersions, we find σR = 11.5 ± 4.3 km s-1 and σT = 8.5 ± 3.2 km s-1 along the projected radial and tangential directions. Thus, the stars in our sample move preferentially on radial orbits as quantified by the anisotropy parameter, which we find to be β 0.8 6-0.83+0.12 at a location beyond the core radius. Taken at face value, this high radial anisotropy requires abandoning conventional models9 for Sculptor's mass distribution. Our sample is dominated by metal-rich stars and for these we find βM R 0.9 5-0.27+0.04—a value consistent with multi-component spherical models where Sculptor is embedded in a cuspy dark halo10, as might be expected for cold dark matter.

  13. The Importance of Preventive Feedback: Inference from Observations of the Stellar Masses and Metallicities of Milky Way Dwarf Galaxies

    Science.gov (United States)

    Lu, Yu; Benson, Andrew; Wetzel, Andrew; Mao, Yao-Yuan; Tonnesen, Stephanie; Peter, Annika H. G.; Boylan-Kolchin, Michael; Wechsler, Risa H.

    2017-09-01

    Dwarf galaxies are known to have remarkably low star formation efficiency due to strong feedback. Adopting the dwarf galaxies of the Milky Way (MW) as a laboratory, we explore a flexible semi-analytic galaxy formation model to understand how the feedback processes shape the satellite galaxies of the MW. Using Markov Chain Monte Carlo, we exhaustively search a large parameter space of the model and rigorously show that the general wisdom of strong outflows as the primary feedback mechanism cannot simultaneously explain the stellar mass function and the mass-metallicity relation of the MW satellites. An extended model that assumes that a fraction of baryons is prevented from collapsing into low-mass halos in the first place can be accurately constrained to simultaneously reproduce those observations. The inference suggests that two different physical mechanisms are needed to explain the two different data sets. In particular, moderate outflows with weak halo mass dependence are needed to explain the mass-metallicity relation, and prevention of baryons falling into shallow gravitational potentials of low-mass halos (e.g., “pre-heating”) is needed to explain the low stellar mass fraction for a given subhalo mass.

  14. The Importance of Preventive Feedback: Inference from Observations of the Stellar Masses and Metallicities of Milky Way Dwarf Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yu; Benson, Andrew; Wetzel, Andrew; Tonnesen, Stephanie [The Observatories, The Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Mao, Yao-Yuan [Department of Physics and Astronomy and the Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, Pittsburgh, PA 15260 (United States); Peter, Annika H. G. [CCAPP and Department of Physics, The Ohio State University, 191 W. Woodruff Avenue, Columbus, OH 43210 (United States); Boylan-Kolchin, Michael [Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2017-09-01

    Dwarf galaxies are known to have remarkably low star formation efficiency due to strong feedback. Adopting the dwarf galaxies of the Milky Way (MW) as a laboratory, we explore a flexible semi-analytic galaxy formation model to understand how the feedback processes shape the satellite galaxies of the MW. Using Markov Chain Monte Carlo, we exhaustively search a large parameter space of the model and rigorously show that the general wisdom of strong outflows as the primary feedback mechanism cannot simultaneously explain the stellar mass function and the mass–metallicity relation of the MW satellites. An extended model that assumes that a fraction of baryons is prevented from collapsing into low-mass halos in the first place can be accurately constrained to simultaneously reproduce those observations. The inference suggests that two different physical mechanisms are needed to explain the two different data sets. In particular, moderate outflows with weak halo mass dependence are needed to explain the mass–metallicity relation, and prevention of baryons falling into shallow gravitational potentials of low-mass halos (e.g., “pre-heating”) is needed to explain the low stellar mass fraction for a given subhalo mass.

  15. Constraints on the pMSSM from LAT Observations of Dwarf Spheroidal Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Cotta, R.C.; /SLAC; Drlica-Wagner, A.; Murgia, S.; /SLAC /KIPAC, Menlo Park; Bloom, E.D.; Hewett, J.L.; Rizzo, T.G.; /SLAC

    2012-03-15

    We examine the ability for the Large Area Telescope (LAT) to constrain Minimal Supersymmetric Standard Model (MSSM) dark matter through a combined analysis of Milky Way dwarf spheroidal galaxies. We examine the Lightest Supersymmetric Particles (LSPs) for a set of {approx}71k experimentally valid supersymmetric models derived from the phenomenological-MSSM (pMSSM). We find that none of these models can be excluded at 95% confidence by the current analysis; nevertheless, many lie within the predicted reach of future LAT analyses. With two years of data, we find that the LAT is currently most sensitive to light LSPs (mLSP < 50 GeV) annihilating into {tau}-pairs and heavier LSPs annihilating into b{bar b}. Additionally, we find that future LAT analyses will be able to probe some LSPs that form a sub-dominant component of dark matter. We directly compare the LAT results to direct detection experiments and show the complementarity of these search methods.

  16. Investigating the Powering Sources of Expanding Supergiant Shells in the Nearby Dwarf Galaxy IC 2574

    Science.gov (United States)

    Walter, Fabian

    2003-07-01

    Using the unique resolving capability of the Hubble Space Telescope {HST} and the wide-field imaging capabilities of the ACS, we propose to perform a stellar population study of two prominent supergiant shells {SGS} in the nearby dwarf galaxy IC2574. By constructing the star formation history for those SGSs we will for the first time be able to test if past star formation created these impressive structures, as suggested by theory. We have carefully selected 2 SGSs; one is young {age: few 10^7yr, exhibiting a prominent central stellar association and the other is older {few 10^8yr}, with no obvious optical counterpart. The aim of this proposal is to determine the age and SF history of the central stellar associations of both SGSs by B, V, and I band imaging using HST's ACS. A primary goal is the comparison of the stellar ages with the age estimates from the HI kinematics. Using color magnitude diagrams, we will also estimate how many stars have evolved off the main sequence and exploded as SN, giving an estimate for the total mechanical energy deposited. A comparison with the values derived in other wavelengths is not only important for understanding these particular SGSs but will also set strong timing as well as energy constraints on the physical mechanisms which lie at the origin of SGSs in general.

  17. Phase space mass bound for fermionic dark matter from dwarf spheroidal galaxies

    Science.gov (United States)

    Paolo, Chiara Di; Nesti, Fabrizio; Villante, Francesco L.

    2018-01-01

    We reconsider the lower bound on the mass of a fermionic dark matter (DM) candidate resulting from the existence of known small Dwarf Spheroidal galaxies, in the hypothesis that their DM halo is constituted by degenerate fermions, with phase-space density limited by the Pauli exclusion principle. By relaxing the common assumption that the DM halo scale radius is tied to that of the luminous stellar component and by marginalizing on the unknown stellar velocity dispersion anisotropy, we prove that observations lead to rather weak constraints on the DM mass, that could be as low as tens of eV. In this scenario, however, the DM halos would be quite large and massive, so that a bound stems from the requirement that the time of orbital decay due to dynamical friction in the hosting Milky Way DM halo is longer than their lifetime. The smallest and nearest satellites Segue I and Willman I lead to a final lower bound of m ≳ 100 eV, still weaker than previous estimates but robust and independent on the model of DM formation and decoupling. We thus show that phase space constraints do not rule out the possibility of sub-keV fermionic DM.

  18. The ACS LCID project. IX. Imprints of the early universe in the radial variation of the star formation history of dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, Sebastian L.; Monelli, Matteo; Aparicio, Antonio; Gallart, Carme, E-mail: shidalgo@iac.es, E-mail: monelli@iac.es, E-mail: aparicio@iac.es, E-mail: carme@iac.es [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38200 La Laguna, Tenerife, Canary Islands (Spain); and others

    2013-12-01

    Based on Hubble Space Telescope observations from the Local Cosmology from Isolated Dwarfs project, we present the star formation histories, as a function of galactocentric radius, of four isolated Local Group dwarf galaxies: two dSph galaxies, Cetus and Tucana, and two transition galaxies (dTrs), LGS-3 and Phoenix. The oldest stellar populations of the dSphs and dTrs are, within the uncertainties, coeval (∼13 Gyr) at all galactocentric radii. We find that there are no significative differences between the four galaxies in the fundamental properties (such as the normalized star formation rate or age-metallicity relation) of their outer regions (radii greater than four exponential scale lengths); at large radii, these galaxies consist exclusively of old (≳ 10.5 Gyr) metal-poor stars. The duration of star formation in the inner regions varies from galaxy to galaxy, and the extended central star formation in the dTrs produces the dichotomy between dSph and dTr galaxy types. The dTr galaxies show prominent radial stellar population gradients: The centers of these galaxies host young (≲ 1 Gyr) populations, while the age of the last formation event increases smoothly with increasing radius. This contrasts with the two dSph galaxies. Tucana shows a similar, but milder, gradient, but no gradient in age is detected Cetus. For the three galaxies with significant stellar population gradients, the exponential scale length decreases with time. These results are in agreement with outside-in scenarios of dwarf galaxy evolution, in which a quenching of the star formation toward the center occurs as the galaxy runs out of gas in the outskirts.

  19. Stellar Populations in Compact Galaxy Groups: a Multi-wavelength Study of HCGs 16, 22, and 42, Their Star Clusters, and Dwarf Galaxies

    Science.gov (United States)

    Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.; Fedotov, K.; Durrell, P. R.; Mulchaey, J. S.; English, J.; Desjardins, T. D.; Gallagher, S. C.; Walker, L. M.; hide

    2013-01-01

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy.We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 "associates" (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.

  20. The Role of Environment in the SFHs and Gaseous Evolution of Ultra-Faint Dwarf Galaxies across Cosmic Time

    Science.gov (United States)

    Jeon, Myoungwon

    2017-08-01

    Ultra faint dwarf (UFD) galaxies (Mv > -7; Mstar generation of stars. Star formation histories (SFHs) derived from deep HST/ACS imaging of several MW UFDs illustrate quenching of the era of reionization. However, new HST studies of the faintest dwarfs about M31 recently revealed more diverse SFHs, indicating that a wide range of evolutionary paths are possible for UFDs. Interpretation of these data is not possible without hydrodynamic cosmological simulations that account for not only the impact of reionization and stellar feedback, but also the host environment. Such simulations do not currently exist. We propose to create a large suite of cosmological, hydrodynamic simulations of UFD analogs that reside 100 kpc from a MW type host at z = 0. These novel simulations will allow us to quantify the role of host's tidal field on the SFHs and gaseous evolution of UFDs for the first time. Furthermore, our recent work indicates that UFDs can retain substantial gas reservoirs prior to accretion by a massive host. We will create mock absorption line observations of our simulated UFDs at intermediate redshifts to establish or refute the connection between local UFDs as descendants of metal-poor damped Lyman alpha systems. The proposed simulation suite will thus be of critical importance to a wide range of ongoing HST programs designed to understand the gaseous, chemical, and dynamical evolution of the dwarf galaxies across cosmic time.

  1. THE CHEMICAL SIGNATURE OF A RELIC STAR CLUSTER IN THE SEXTANS DWARF SPHEROIDAL GALAXY-IMPLICATIONS FOR NEAR-FIELD COSMOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Torgny [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Freeman, Ken C. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston ACT 2611 (Australia); Silk, Joe, E-mail: torgny.karlsson@physics.uu.se [Physics Department, University of Oxford, Oxford OX1 3RH (United Kingdom)

    2012-11-10

    We present tentative evidence for the existence of a dissolved star cluster at [Fe/H] = -2.7 in the Sextans dwarf spheroidal galaxy. We use the technique of chemical tagging to identify stars that are highly clustered in a multi-dimensional chemical abundance space (C-space). In a sample of six stars, three, possibly four, stars are identified as potential cluster stars. The initial stellar mass of the parent cluster is estimated from two independent observations to be M{sub *,init}=1.9{sup +1.5}{sub -0.9}(1.6{sup +1.2}{sub -0.8}) Multiplication-Sign 10{sup 5} M{sub sun}, assuming a Salpeter (Kroupa) initial mass function. If corroborated by follow-up spectroscopy, this star cluster is the most metal-poor system identified to date. Chemical signatures of remnant clusters in dwarf galaxies like Sextans provide us with a very powerful probe to the high-redshift universe. From available observational data, we argue that the average star cluster mass in the majority of the newly discovered ultra-faint dwarf galaxies was notably lower than it is in the Galaxy today and possibly lower than in the more luminous, classical dwarf spheroidal galaxies. Furthermore, the mean cumulative metallicity function of the dwarf spheroidals falls below that of the ultra-faints, which increases with increasing metallicity as predicted from our stochastic chemical evolution model. These two findings, together with a possible difference in the ([Mg/Fe]) ratio suggest that the ultra-faint dwarf galaxy population, or a significant fraction thereof, and the dwarf spheroidal population were formed in different environments and would thus be distinct in origin.

  2. Cannibalization of Dwarf Galaxies by the Milky Way: Distance to the Leading Arm of the Magellanic Clouds

    Science.gov (United States)

    Antwi-Danso, Jacqueline; Barger, Kathleen; Haffner, L. Matthew

    2016-01-01

    Tidal interactions between two dwarf galaxies near the Milky Way, the Large and Small Magellanic Clouds, have caused large quantities of gas to be flung into the halo of the Milky Way. Much of this tidal debris, known as the Magellanic System, is currently headed towards the disk of the Milky Way, spearheaded by the Leading Arm, with the Bridge connecting the two dwarf galaxies, and the trailing Magellanic Stream at the end. Estimates for the amount of gas that the Magellanic System contains are in the range of (2 - 4) × 109 M⊙ and this could supply our Galaxy with (3.7 - 6.7) M⊙ yr-1 (Fox et al. 2014). Although this is higher than the present star-formation rate of the Galaxy, the position of the tidal debris predisposes it to ionizing radiation from the extragalactic background and Galactic disk, as well as ram-pressure stripping from the halo, hindering gas accretion. Some parts of the Leading Arm, however, appear to have already survived the trip to the disk as their morphology is indicative of interaction with the interstellar medium of the Galaxy. The exact amount of gas that this structure contains is uncertain because of weak constrains in its distance. In this study, we made seven pointed Hα observations using the Wisconsin Hα Mapper Telescope and then compared the Hα intensity we obtained to models of the anticipated ionizing flux from the Milky Way and extragalactic background. From this, we calculated the distance from the Sun to the Leading Arm of the Magellanic System at the locations of our observations.

  3. THE GAS PHASE MASS METALLICITY RELATION FOR DWARF GALAXIES: DEPENDENCE ON STAR FORMATION RATE AND HI GAS MASS

    Energy Technology Data Exchange (ETDEWEB)

    Jimmy; Tran, Kim-Vy [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Saintonge, Amélie; Accurso, Gioacchino [Department of Physics and Astronomy, University College London, Gower Place, London WC1E 6BT (United Kingdom); Brough, Sarah; Oliva-Altamirano, Paola [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia)

    2015-10-20

    Using a sample of dwarf galaxies observed using the VIMOS IFU on the Very Large Telescope, we investigate the mass–metallicity relation (MZR) as a function of star formation rate (FMR{sub SFR}) as well as HI-gas mass (FMR{sub HI}). We combine our IFU data with a subsample of galaxies from the ALFALFA HI survey crossmatched to the Sloan Digital Sky Survey (SDSS) to study the FMR{sub SFR} and FMR{sub HI} across the stellar mass range 10{sup 6.6}–10{sup 8.8} M{sub ⊙}, with metallicities as low as 12 + log(O/H) = 7.67. We find the 1σ mean scatter in the MZR to be 0.05 dex. The 1σ mean scatter in the FMR{sub SFR} (0.02 dex) is significantly lower than that of the MZR. The FMR{sub SFR} is not consistent between the IFU observed galaxies and the ALFALFA/SDSS galaxies for SFRs lower than 10{sup −2.4} M{sub ⊙} yr{sup −1}, however, this could be the result of limitations of our measurements in that regime. The lowest mean scatter (0.01 dex) is found in the FMR{sub HI}. We also find that the FMR{sub HI} is consistent between the IFU observed dwarf galaxies and the ALFALFA/SDSS crossmatched sample. We introduce the fundamental metallicity luminosity counterpart to the FMR, again characterized in terms of SFR (FML{sub SFR}) and HI-gas mass (FML{sub HI}). We find that the FML{sub HI} relation is consistent between the IFU observed dwarf galaxy sample and the larger ALFALFA/SDSS sample. However, the 1σ scatter for the FML{sub HI} relation is not improved over the FMR{sub HI} scenario. This leads us to conclude that the FMR{sub HI} is the best candidate for a physically motivated fundamental metallicity relation.

  4. Variable interstellar radiation fields in simulated dwarf galaxies: supernovae versus photoelectric heating

    Science.gov (United States)

    Hu, Chia-Yu; Naab, Thorsten; Glover, Simon C. O.; Walch, Stefanie; Clark, Paul C.

    2017-10-01

    We present high-resolution hydrodynamical simulations of isolated dwarf galaxies including self-gravity, non-equilibrium cooling and chemistry, interstellar radiation fields (ISRF) and shielding, star formation, and stellar feedback. This includes spatially and temporally varying photoelectric (PE) heating, photoionization, resolved supernova (SN) blast waves and metal enrichment. A new flexible method to sample the stellar initial mass function allows us to follow the contribution to the ISRF, the metal output and the SN delay times of individual massive stars. We find that SNe play the dominant role in regulating the global star formation rate, shaping the multiphase interstellar medium (ISM) and driving galactic outflows. Outflow rates (with mass-loading factors of a few) and hot gas fractions of the ISM increase with the number of SNe exploding in low-density environments where radiative energy losses are low. While PE heating alone can suppress star formation as efficiently as SNe alone can do, it is unable to drive outflows and reproduce the multiphase ISM that emerges naturally whenever SNe are included. We discuss the potential origins for the discrepancy between our results and another recent study that claimed that PE heating dominates over SNe. In the absence of SNe and photoionization (mechanisms to disperse dense clouds), the impact of PE heating is highly overestimated owing to the (unrealistic) proximity of dense gas to the radiation sources. This leads to a substantial boost of the infrared continuum emission from the UV-irradiated dust and a far-infrared line-to-continuum ratio too low compared to observations.

  5. ESTIMATING THE GeV EMISSION OF MILLISECOND PULSARS IN DWARF SPHEROIDAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Miles; Bechtol, Keith; Vandenbroucke, Justin [Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Zaharijas, Gabrijela, E-mail: winter6@wisc.edu, E-mail: gabrijela.zaharijas@ung.si [Istituto Nazionale di Fisica Nucleare—Sezione Trieste, Padriciano 99, I-34149 Trieste (Italy)

    2016-11-20

    We estimate the conventional astrophysical emission from dwarf spheroidal satellite galaxies (dSphs) of the Milky Way (MW), focusing on millisecond pulsars (MSPs), and evaluate the potential for confusion with dark matter (DM) annihilation signatures at GeV energies. In low-density stellar environments, such as dSphs, the abundance of MSPs is expected to be proportional to stellar mass. Accordingly, we construct the γ -ray luminosity function (LF) of MSPs in the MW disk, where >90 individual MSPs have been detected with the Fermi Large Area Telescope (LAT), and scale this LF to the stellar masses of 30 dSphs to estimate the cumulative emission from their MSP populations. We predict that MSPs within the highest stellar mass dSphs, Fornax and Sculptor, produce a γ -ray flux >500 MeV of ∼10{sup −11} ph cm{sup −2} s{sup −1}, which is a factor ∼10 below the current LAT sensitivity at high Galactic latitudes. The MSP emission in ultra-faint dSphs, including targets with the largest J-factors, is typically several orders of magnitude lower, suggesting that these targets will remain clean targets for indirect DM searches in the foreseeable future. For a DM particle of mass 25 GeV annihilating to b quarks at the thermal relic cross section (consistent with DM interpretations of the Galactic Center excess), we find that the expected γ -ray emission due to DM exceeds that of MSPs in all of the target dSphs. Using the same MW MSP population model, we also estimate the Galactic foreground MSP coincidence probability along the same sightlines to the dSphs.

  6. Weak Galactic Halo-Dwarf Spheroidal Connection from RR Lyrae Stars

    Science.gov (United States)

    Fiorentino, Giuliana; Bono, Giuseppe; Monelli, Matteo; Stetson, Peter B.; Tolstoy, Eline; Gallart, Carme; Salaris, Maurizio; Martínez-Vázquez, Clara E.; Bernard, Edouard J.

    2015-01-01

    We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in 6 dwarf spheroidals (dSphs) and 11 ultra faint dwarf galaxies (~1300) show a Gaussian period distribution well peaked around a mean period of langPabrang = 0.610 ± 0.001 days (σ = 0.03). The Halo RRL (~15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dSphs apart from Sagittarius are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P lsim 0.48 days and AV >= 0.75 mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered 18 globulars covering a broad range in metallicity (-2.3 lsim [Fe/H] lsim -1.1) and hosting more than 35 RRL each. The metallicity turns out to be the main parameter, since only globulars more metal-rich than [Fe/H] ~ -1.5 host RRL in the HASP region. This finding suggests that dSphs similar to the surviving ones do not appear to be the major building-blocks of the Halo. Leading physical arguments suggest an extreme upper limit of ~50% to their contribution. On the other hand, massive dwarfs hosting an old population with a broad metallicity distribution (Large Magellanic Cloud, Sagittarius) may have played a primary role in the formation of the Halo.

  7. THE RESOLVED STRUCTURE AND DYNAMICS OF AN ISOLATED DWARF GALAXY: A VLT AND KECK SPECTROSCOPIC SURVEY OF WLM

    Energy Technology Data Exchange (ETDEWEB)

    Leaman, Ryan; Venn, Kim A.; Mendel, J. Trevor [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1 (Canada); Brooks, Alyson M. [California Institute of Technology, M/C 350-17, Pasadena, CA 91125 (United States); Battaglia, Giuseppina [European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching (Germany); Cole, Andrew A. [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, TAS (Australia); Ibata, Rodrigo A. [Observatoire Astronomique, Universite de Strasbourg, CNRS, 11 rue de I' Universite, F-67000 Strasbourg (France); Irwin, Mike J. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Tolstoy, Eline, E-mail: rleaman@uvic.ca [Kapteyn Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands)

    2012-05-01

    We present spectroscopic data for 180 red giant branch (RGB) stars in the isolated dwarf irregular galaxy Wolf-Lundmark-Mellote (WLM). Observations of the calcium II triplet lines in spectra of RGB stars covering the entire galaxy were obtained with FORS2 at the Very Large Telescope and DEIMOS on Keck II, allowing us to derive velocities, metallicities, and ages for the stars. With accompanying photometric and radio data we have measured the structural parameters of the stellar and gaseous populations over the full galaxy. The stellar populations show an intrinsically thick configuration with 0.39 {<=} q{sub 0} {<=} 0.57. The stellar rotation in WLM is measured to be 17 {+-} 1 km s{sup -1}; however, the ratio of rotation to pressure support for the stars is V/{sigma} {approx} 1, in contrast to the gas, whose ratio is seven times larger. This, along with the structural data and alignment of the kinematic and photometric axes, suggests we are viewing WLM as a highly inclined oblate spheroid. Stellar rotation curves, corrected for asymmetric drift, are used to compute a dynamical mass of (4.3 {+-} 0.3) Multiplication-Sign 10{sup 8} M{sub Sun} at the half-light radius (r{sub h} = 1656 {+-} 49 pc). The stellar velocity dispersion increases with stellar age in a manner consistent with giant molecular cloud and substructure interactions producing the heating in WLM. Coupled with WLM's isolation, this suggests that the extended vertical structure of its stellar and gaseous components and increase in stellar velocity dispersion with age are due to internal feedback, rather than tidally driven evolution. These represent some of the first observational results from an isolated Local Group dwarf galaxy that can offer important constraints on how strongly internal feedback and secular processes modulate star formation and dynamical evolution in low-mass isolated objects.

  8. Stellar Kinematics and Structural Properties of Virgo Cluster Dwarf Early-Type Galaxies from the SMAKCED Project

    Science.gov (United States)

    Toloba, Elisa; Guhathakurta, Puragra; Peletier, Reynier; Boselli, Alessandro; Lisker, Thorsten; Emsellem, Eric; Simon, Joshua D.; van de Ven, Glenn; Smakced Collaboration

    2015-01-01

    We analyze the stellar kinematics of 39 dwarf early-type galaxies (dEs) in the Virgo cluster. This is the largest survey conducted so far on spatially resolved kinematics of dEs. This sample is representative of the early-type population in the absolute magnitude range -19.0 high-pass filtered optical images, while the slow rotators do not exhibit these structures. In addition, two of the dEs have kinematically decoupled cores and four more have emission partially filling in the Balmer absorption lines. These properties suggest that Virgo cluster dEs may have originated from late-type star-forming galaxies that were transformed by the environment after their infall into the cluster. The correlation between the specific angular momentum and the clustercentric distance can be explained by a scenario where low luminosity star-forming galaxies fall into the cluster, their gas is rapidly removed by ram pressure stripping, although some of it can be retained in their core, their star-formation is quenched but their stellar kinematics are preserved. After a long time in the cluster and several passes through its center, the galaxies are heated up and transformed into slow rotating dEs.

  9. A Radio Continuum and H I Study of Optically Selected Blue Compact Dwarf Galaxies: Mrk 1039 and Mrk 0104

    Science.gov (United States)

    Ramya, S.; Kantharia, N. G.; Prabhu, T. P.

    2009-09-01

    We present a GMRT radio continuum and H I study of two Blue Compact Dwarf (BCD) galaxies Mrk 1039 and Mrk 0104. GMRT 610 MHz observations of Mrk 1039 show that the emission is coincident with a bright intense star forming region in the east of the galaxy. The emission at 610 MHz is more extended compared to higher frequencies. The radio spectrum is found to steepen away from the star forming region, suggesting the dominance of the non-thermal component at 610 MHz which maybe due to an older (few 100 Myr old) burst. We detect radio emission at 610 and 240 MHz from Mrk 0104 and estimate a spectral index of -1.14. We find that the emission is more extended at the low GMRT frequencies compared to the 1.4 GHz emission. The galaxy shows extended H I distribution which is about 1.3 times the optical size and contains a mass of 9×10^8 M⊙. We also detect a H I cloud about ˜ 4.5 kpc to the north of the galaxy which does not have any obvious optical counterpart. We speculate that this H I cloud could be involved in triggering the current burst of star formation in Mrk 0104.

  10. Intra-Day Variability of Sagittarius A* at Multi-Wavelengths

    Indian Academy of Sciences (India)

    Abstract. This paper reviews the recent progress in the study of the intra-day variability (IDV) of Sagittarius A* (Sgr A*), the best known supermassive black hole candidates with a dark mass concentration of 4 × 106 ⊙ at the center of our galaxy.

  11. STELLAR POPULATIONS IN COMPACT GALAXY GROUPS: A MULTI-WAVELENGTH STUDY OF HCGs 16, 22, AND 42, THEIR STAR CLUSTERS, AND DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Konstantopoulos, I. S. [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Maybhate, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Charlton, J. C.; Gronwall, C. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Fedotov, K.; Desjardins, T. D.; Gallagher, S. C. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada); Durrell, P. R. [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555 (United States); Mulchaey, J. S. [Carnegie Observatories, Pasadena, CA 91101 (United States); English, J. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Walker, L. M.; Johnson, K. E. [Department of Astronomy, University of Virginia, P.O. Box 3813, Charlottesville, VA 22904 (United States); Tzanavaris, P., E-mail: iraklis@aao.gov.au [Laboratory for X-ray Astrophysics, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-06-20

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy. We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at <1 Gyr. This represents the possible detection of a tidal feature at the end of its phase of optical observability. Our HST images also resolve what were thought to be double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 ''associates'' (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.

  12. The star formation history of the Sextans dwarf spheroidal galaxy: a true fossil of the pre-reionization era

    Science.gov (United States)

    Bettinelli, M.; Hidalgo, S. L.; Cassisi, S.; Aparicio, A.; Piotto, G.

    2018-01-01

    We present the star formation history (SFH) of the Sextans dwarf spheroidal galaxy based on deep archive B, I photometry taken with Suprime-Cam at Subaru telescope focusing our analysis on the inner region of the galaxy, fully located within the core radius. Within the errors of our SFH we have not detected any metallicity gradient along the considered radial distance interval. As a main result of this work we can state that the Sextans dwarf spheroidal stopped forming stars less than ˜1.3 Gyr after Big Bang in correspondance to the end of the reionization epoch. We have been able to constrain the duration of the main burst of star formation to ˜0.6 Gyr. From the calculation of the mechanical luminosity released from supernovae (SNe) during the brief episode of star formation, there are strong indications that SNe could have played an important role in the fate of Sextans, by removing almost completely the gas component, so preventing a prolonged star formation.

  13. Abundance analysis of a CEMP-no star in the Carina dwarf spheroidal galaxy

    Science.gov (United States)

    Susmitha, A.; Koch, A.; Sivarani, T.

    2017-10-01

    Carbon-enhanced metal-poor (CEMP) stars bear important imprints of the early chemical enrichment of any stellar system. While these stars are known to exist in copious amounts in the Milky Way halo, detailed chemical abundance data from the faint dwarf spheroidal (dSph) satellites are still sparse, although the relative fraction of these stars increases with decreasing metallicity. Here, we report the abundance analysis of a metal-poor ([ Fe / H ] = - 2.5 dex), carbon-rich ([C/Fe] = 1.4 dex) star, ALW-8, in the Carina dSph using high-resolution spectroscopy obtained with the ESO/UVES instrument. Its spectrum does not indicate any over-enhancements of neutron capture elements. Thus classified as a CEMP-no star, this is the first detection of this kind of star in Carina. Another of our sample stars, ALW-1, is shown to be a CEMP-s star, but its immediate binarity prompted us to discard it from a detailed analysis. The majority of the 18 chemical elements we measured are typical of Carina's field star population and also agree with CEMP stars in other dSph galaxies. Similar to the only known CEMP-no star in the Sculptor dSph and the weak-r-process star HD 122563, the lack of any strong barium-enhancement is accompanied by a moderate overabundance in yttrium, indicating a weak r-process activity. The overall abundance pattern confirms that, also in Carina, the formation site for CEMP-no stars has been affected by both faint supernovae and by standard core collapse supernovae. Whichever process was responsible for the heavy element production in ALW-8 must be a ubiquitous source to pollute the CEMP-no stars, acting independently of the environment such as in the Galactic halo or in dSphs. Based on observations collected at the European Southern Observatory at Paranal, Chile; Large Programme proposal 171.B- 0520.Table A.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  14. An Accreting White Dwarf near the Chandrasekhar Limit in the Andromeda Galaxy

    Science.gov (United States)

    Tang, Sumin; Bildsten, Lars; Wolf, William M.; Li, K. L.; Kong, Albert K. H.; Cao, Yi; Cenko, S. Bradley; De Cia, Annalisa; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; hide

    2014-01-01

    The iPTF (Intermediate Palomar Transient Factory) detection of the most recent outburst of the recurrent nova system RX J0045.4+4154 in the Andromeda Galaxy has enabled the unprecedented study of a massive (mass is greater than 1.3 solar masses) accreting white dwarf (WD). We detected this nova as part of the near daily iPTF monitoring of M31 to a depth of R (red band-pass filter) approximately equal to magnitude 21 and triggered optical photometry, spectroscopy and soft X-ray monitoring of the outburst. Peaking at an absolute magnitude of MR (red, mid-infrared band-pass filter) equals magnitude -6.6, and with a decay time of 1 magnitude per day, it is a faint and very fast nova. It shows optical emission lines of He/N and expansion velocities of 1900 to 2600 kilometers per second 1-4 days after the optical peak. The Swift monitoring of the X-ray evolution revealed a supersoft source (SSS) with kT (energy: Boltzmann constant times temperature) (sub eff (effective)) approximately equal to 90-110 electronvolts that appeared within 5 days after the optical peak, and lasted only 12 days. Most remarkably, this is not the first event from this system, rather it is a recurrent nova with a time between outbursts of approximately 1 year, the shortest known. Recurrent X-ray emission from this binary was detected by ROSAT in 1992 and 1993, and the source was well characterized as a mass greater than 1.3 solar masses WD SSS. Based on the observed recurrence time between different outbursts, the duration and effective temperature of the SS phase, MESA models of accreting WDs allow us to constrain the accretion rate to mass greater than 1.7x10 (sup -7) solar masses per year and WD mass greater than 1.30 solar masses. If the WD keeps 30 percent of the accreted material, it will take less than a million years to reach core densities high enough for carbon ignition (if made of C/O) or electron capture (if made of O/Ne) to end the binary evolution.

  15. Clues on the missing sources of reionization from self-consistent modelling of Milky Way and dwarf galaxy globular clusters

    Science.gov (United States)

    Katz, Harley; Ricotti, Massimo

    2014-11-01

    Globular clusters are unique tracers of ancient star formation. We determine the formation efficiencies of globular clusters across cosmic time by modelling the formation and dynamical evolution of the globular cluster population of a Milky Way type galaxy in hierarchical cosmology, using the merger tree from the Via Lactea II simulation. All of the models are constrained to reproduce the observed specific frequency and initial mass function of globular clusters in isolated dwarfs. Globular cluster orbits are then computed in a time varying gravitational potential after they are either accreted from a satellite halo or formed in situ, within the Milky Way halo. We find that the Galactocentric distances and metallicity distribution of globular clusters are very sensitive to the formation efficiencies of globular clusters as a function of redshift and halo mass. Our most accurate models reveal two distinct peaks in the globular cluster formation efficiency at z ˜ 2 and 7-12 and prefer a formation efficiency that is mildly increasing with decreasing halo mass, the opposite of what expected for feedback-regulated star formation. This model accurately reproduces the positions, velocities, mass function, metallicity distribution, and age distribution of globular clusters in the Milky Way and predicts that ˜40 per cent formed in situ, within the Milky Way halo, while the other ˜60 per cent were accreted from about 20 satellite dwarf galaxies with vcir > 30 km s-1, and about 29 per cent of all globular clusters formed at redshifts z > 7. These results further strengthen the notion that globular cluster formation was an important mode of star formation in high-redshift galaxies and likely played a significant role in the reionization of the intergalactic medium.

  16. Enrichment in r-process Elements from Multiple Distinct Events in the Early Draco Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Tsujimoto, Takuji; Matsuno, Tadafumi; Aoki, Wako; Ishigaki, Miho N.; Shigeyama, Toshikazu

    2017-11-01

    The stellar record of elemental abundances in satellite galaxies is important to identify the origin of r-process because such a small stellar system could have hosted a single r-process event, which would distinguish member stars that are formed before and after the event through the evidence of a considerable difference in the abundances of r-process elements, as found in the ultra-faint dwarf galaxy Reticulum II (Ret II). However, the limited mass of these systems prevents us from collecting information from a sufficient number of stars in individual satellites. Hence, it remains unclear whether the discovery of a remarkable r-process enrichment event in Ret II explains the nature of r-process abundances or is an exception. We perform high-resolution spectroscopic measurements of r-process abundances for 12 metal-poor stars in the Draco dwarf galaxy in the metallicity range of -2.5< [{Fe}/{{H}}]< -2. We found that these stars are separated into two groups with r-process abundances differing by one order of magnitude. A group of stars with high abundances of r-process elements was formed by a single r-process event that corresponds to the event evidenced in Ret II. On the other hand, the low r-process abundance group was formed by another sporadic enrichment channel producing far fewer r-process elements, which is clearly identified for the first time. Accordingly, we identified two populations of stars with different r-process abundances, which are built by two r-process events that enriched gases at levels that differ by more than one order of magnitude. This work is based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  17. GASP. VIII. Capturing the Birth of a Tidal Dwarf Galaxy in a Merging System at z ˜ 0.05

    Science.gov (United States)

    Vulcani, Benedetta; Moretti, Alessia; Poggianti, Bianca M.; Fasano, Giovanni; Fritz, Jacopo; Gullieuszik, Marco; Duc, Pierre-Alain; Jaffé, Yara; Bettoni, Daniela

    2017-12-01

    Within the GAs Stripping Phenomena in galaxies with MUSE (GASP) sample, we identified an ongoing 1:1 merger between 2 galaxies and the consequent formation of a tidal dwarf galaxy (TDG). The system is observed at z = 0.05043 and is part of a poor group. Exploiting the exquisite quality of the Multi Unit Spectroscopic Explorer (MUSE)/Very Large Telescope data, we present the spatially resolved kinematics and physical properties of gas and stars of this object and describe its evolutionary history. An old (luminosity weighted age ˜2 × 109 yr), gas-poor, early-type-like galaxy is merging with a younger (luminosity weighted age ˜2.5 × 108 yr), gas-rich, late-type galaxy. The system has a quite strong metallicity gradient, which is indicative of an early-stage phase. Comparing the spatial extension of the star formation at different epochs, we date the beginning of the merger between 2 × 107 yr kinematic pattern reflects that of the late-type object and is distorted in correspondence to the location of the impact. The stellar kinematic instead is more chaotic, as expected for mergers. The gas redistribution in the system induces high levels of star formation between the two components, where we indeed detect the birth of the TDG. This stellar structure has a mass of ˜6 × 109 M ⊙, a radius of ˜2 kpc, and even though it has already accreted large quantities of gas and stars, it is still located within the disk of the progenitor, is characterized by a high velocity dispersion, indicating that it is still forming, is dusty, and has high levels of star formation (star formation rate ˜ 0.3 M ⊙ yr-1). This TDG is originated in an early-stage merger, while these structures usually form in more evolved systems.

  18. STELLAR METALLICITIES AND KINEMATICS IN A GAS-RICH DWARF GALAXY : FIRST CALCIUM TRIPLET SPECTROSCOPY OF RED GIANT BRANCH STARS IN WLM

    NARCIS (Netherlands)

    Leaman, Ryan; Cole, Andrew A.; Venn, Kim A.; Tolstoy, Eline; Irwin, Mike J.; Szeifert, Thomas; Skillman, Evan D.; McConnachie, Alan W.

    2009-01-01

    We present the first determination of the radial velocities and metallicities of 78 red giant stars in the isolated dwarf irregular galaxy WLM. Observations of the calcium II triplet in these stars were made with FORS2 at the VLT-UT2 in two separated fields of view in WLM, and the [Fe/H] values were

  19. Stellar Kinematics and Structural Properties of Virgo Cluster Dwarf Early-type Galaxies from the SMAKCED Project. III. Angular Momentum and Constraints on Formation Scenarios

    NARCIS (Netherlands)

    Toloba, E.; Guhathakurta, P.; Boselli, A.; Peletier, R. F.; Emsellem, E.; Lisker, T.; van de Ven, G.; Simon, J. D.; Falcón-Barroso, J.; Adams, J. J.; Benson, A. J.; Boissier, S.; den Brok, M.; Gorgas, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Paudel, S.; Ryś, A.; Salo, H.

    2015-01-01

    We analyze the stellar kinematics of 39 dwarf early-type galaxies (dEs) in the Virgo Cluster. Based on the specific stellar angular momentum λRe and the ellipticity, we find 11 slow rotators and 28 fast rotators. The fast rotators in the outer parts of the Virgo Cluster rotate significantly faster

  20. Stellar Kinematics and Structural Properties of Virgo Cluster Dwarf Early-type Galaxies from the SMAKCED Project. I. Kinematically Decoupled Cores and Implications for Infallen Groups in Clusters

    NARCIS (Netherlands)

    Toloba, E.; Guhathakurta, P.; van de Ven, G.; Boissier, S.; Boselli, A.; den Brok, M.; Falcón-Barroso, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Lisker, T.; Paudel, S.; Peletier, R. F.; Ryś, A.; Salo, H.

    We present evidence for kinematically decoupled cores (KDCs) in two dwarf early-type (dE) galaxies in the Virgo cluster, VCC 1183 and VCC 1453, studied as part of the SMAKCED stellar absorption-line spectroscopy and imaging survey. These KDCs have radii of 1.''8 (0.14 kpc) and 4.''2 (0.33 kpc),

  1. The Araucaria Project: The Distance to the Fornax Dwarf Galaxy from Near-infrared Photometry of RR Lyrae Stars

    Science.gov (United States)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Górski, Marek; Gieren, Wolfgang; Bersier, David

    2017-12-01

    We have obtained single-phase near-infrared (NIR) magnitudes in the J and K bands for 77 RR Lyrae (RRL) stars in the Fornax Dwarf Spheroidal Galaxy. We have used different theoretical and empirical NIR period-luminosity-metallicity calibrations for RRL stars to derive their absolute magnitudes, and found a true, reddening-corrected distance modulus of 20.818+/- 0.015{{(statistical)}}+/- 0.116{{(systematic)}} mag. This value is in excellent agreement with the results obtained within the Araucaria Project from the NIR photometry of red clump stars (20.858 ± 0.013 mag), the tip of the red giant branch (20.84+/- 0.04+/- 0.14 mag), as well as with other independent distance determinations to this galaxy. The effect of metallicity and reddening is substantially reduced in the NIR domain, making this method a robust tool for accurate distance determination at the 5% level. This precision is expected to reach the level of 3% once the zero points of distance calibrations are refined thanks to the Gaia mission. NIR period-luminosity-metallicity relations of RRL stars are particularly useful for distance determinations to galaxies and globular clusters up to 300 kpc, that lack young standard candles, like Cepheids. Based on data collected with the VLT/HAWK-I instrument at ESO Paranal Observatory, Chile, as a part of programme 082.D-0123(B).

  2. Mass-metallicity relation of dwarf galaxies and its dependency on time: clues from resolved systems and comparison with massive galaxies

    Science.gov (United States)

    Hidalgo, S. L.

    2017-10-01

    Aims: We present a new approach to study the mass-metallicity relation and its dependency on time. Methods: We used the star formation history (SFH) derived from color-magnitude diagram fitting techniques of a sample of Local Group (LG) dwarfs to obtain stellar masses, metallicities, and star-formation rates (SFR) to analyze the mass-metallicity relation as a function of the ages of their stellar populations. The accurate SFHs allow a time resolution of about 2 Gyr at the oldest ages for a total redshift range of 0 ≲ z ≲ 3. Results: The mass-metallicity relation retrieved for the sample of LG dwarfs was compared with a large dataset of literature data obtained in a wide redshift range. Neither of the two independent datasets shows a clear evolution of the mass-metallicity relation slope with redshift. However, when the star-formation rate is added as an additional parameter in the relation, it shows a dependence on the redshift in the sense that the coefficient of the mass decreases with increasing redshift, while the coefficient for the SFR is almost constant with time. This result suggests an increasing contribution with time of the galaxy stellar mass to the metalliticy of the stars that formed most recently, but it also shows that the SFR can play a fundamental role in shaping the mass-metallicity relation.

  3. Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy.

    Science.gov (United States)

    Izotov, Y I; Orlitová, I; Schaerer, D; Thuan, T X; Verhamme, A; Guseva, N G; Worseck, G

    2016-01-14

    One of the key questions in observational cosmology is the identification of the sources responsible for ionization of the Universe after the cosmic 'Dark Ages', when the baryonic matter was neutral. The currently identified distant galaxies are insufficient to fully reionize the Universe by redshift z ≈ 6 (refs 1-3), but low-mass, star-forming galaxies are thought to be responsible for the bulk of the ionizing radiation. As direct observations at high redshift are difficult for a variety of reasons, one solution is to identify local proxies of this galaxy population. Starburst galaxies at low redshifts, however, generally are opaque to Lyman continuum photons. Small escape fractions of about 1 to 3 per cent, insufficient to ionize much surrounding gas, have been detected only in three low-redshift galaxies. Here we report far-ultraviolet observations of the nearby low-mass star-forming galaxy J0925+1403. The galaxy is leaking ionizing radiation with an escape fraction of about 8 per cent. The total number of photons emitted during the starburst phase is sufficient to ionize intergalactic medium material that is about 40 times as massive as the stellar mass of the galaxy.

  4. Integral field observations of the blue compact galaxy Haro14. Star formation and feedback in dwarf galaxies

    Science.gov (United States)

    Cairós, L. M.; González-Pérez, J. N.

    2017-04-01

    Context. Low-luminosity, gas-rich blue compact galaxies (BCG) are ideal laboratories to investigate the triggering and propagation of star formation in galaxies, the effects of massive stellar feedback within a shallow gravitational potential, and the enrichment of the interstellar medium. Aims: We aim to probe the morphology, stellar content, and kinematics, along with the nebular excitation and ionization mechanism, in the BCG Haro 14 by means of integral field observations. Methods: We observed Haro 14 at the Very Large Telescope, working with the Visible Multi-Object Spectrograph. From these data we build maps in continuum and in the brighter emission lines, produce line-ratio maps (interstellar extinction, density, and diagnostic-line ratios), and obtain the velocity and velocity dispersion fields. We also generate the integrated spectrum of the major H II regions and young stellar clusters identified in the maps to determine reliable physical parameters and oxygen abundances. Results: We find as follows: I) the current star formation in Haro 14 is spatially extended with the major H II regions placed along a linear (chain-like) structure, elongated in the north-south direction, and in a horseshoe-like curvilinear feature that extends about 760 pc eastward; the continuum emission is more concentrated and peaks close to the galaxy center; II) two different episodes of star formation are present in the central galaxy regions: the recent starburst, with ages ≤6 Myr and the intermediate-age clusters, with ages between 10 and 30 Myr; these stellar components rest on a several Gyr old underlying host galaxy; III) the Hα/Hβ pattern is inhomogeneous, with excess color values varying from E(B-V) = 0.04 up to E(B-V) = 1.09; iv) shocks play a significant role in the galaxy; and v) the velocity field displays a complicated pattern with regions of material moving toward us in the east and north galaxy areas. Conclusions: The morphology of Haro 14, its irregular

  5. The Impact of Star Formation Histories on Stellar Mass Estimation: Implications from the Local Group Dwarf Galaxies

    Science.gov (United States)

    Zhang, Hong-Xin; Puzia, Thomas H.; Weisz, Daniel R.

    2017-11-01

    Building on the relatively accurate star formation histories (SFHs) and metallicity evolution of 40 Local Group (LG) dwarf galaxies derived from resolved color-magnitude diagram modeling, we carried out a comprehensive study of the influence of SFHs, metallicity evolution, and dust extinction on the UV-to-near-IR color-mass-to-light ratio (color-{log}{{{\\Upsilon }}}\\star (λ)) distributions and M ⋆ estimation of local universe galaxies. We find that (1) the LG galaxies follow color-{log}{{{\\Upsilon }}}\\star (λ) relations that fall in between the ones calibrated by previous studies; (2) optical color-{log}{{{\\Upsilon }}}\\star (λ) relations at higher [M/H] are generally broader and steeper; (3) the SFH “concentration” does not significantly affect the color-{log}{{{\\Upsilon }}}\\star (λ) relations; (4) light-weighted ages }λ and metallicities }λ together constrain {log}{{{\\Upsilon }}}\\star (λ) with uncertainties ranging from ≲0.1 dex for the near-IR up to 0.2 dex for the optical passbands; (5) metallicity evolution induces significant uncertainties to the optical but not near-IR {{{\\Upsilon }}}\\star (λ) at a given }λ and }λ ; (6) the V band is the ideal luminance passband for estimating {{{\\Upsilon }}}\\star (λ) from single colors, because the combinations of {{{\\Upsilon }}}\\star (V) and optical colors such as B - V and g - r exhibit the weakest systematic dependences on SFHs, metallicities, and dust extinction; and (7) without any prior assumption on SFHs, M ⋆ is constrained with biases ≲0.3 dex by the optical-to-near-IR SED fitting. Optical passbands alone constrain M ⋆ with biases ≲0.4 dex (or ≲0.6 dex) when dust extinction is fixed (or variable) in SED fitting. SED fitting with monometallic SFH models tends to underestimate M ⋆ of real galaxies. M ⋆ tends to be overestimated (or underestimated) at the youngest (or oldest) }{mass}.

  6. Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data.

    Science.gov (United States)

    Ackermann, M; Albert, A; Anderson, B; Atwood, W B; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Bissaldi, E; Blandford, R D; Bloom, E D; Bonino, R; Bottacini, E; Brandt, T J; Bregeon, J; Bruel, P; Buehler, R; Caliandro, G A; Cameron, R A; Caputo, R; Caragiulo, M; Caraveo, P A; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cuoco, A; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Desiante, R; Digel, S W; Di Venere, L; Drell, P S; Drlica-Wagner, A; Essig, R; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Gomez-Vargas, G A; Grenier, I A; Guiriec, S; Gustafsson, M; Hays, E; Hewitt, J W; Horan, D; Jogler, T; Jóhannesson, G; Kuss, M; Larsson, S; Latronico, L; Li, J; Li, L; Llena Garde, M; Longo, F; Loparco, F; Lubrano, P; Malyshev, D; Mayer, M; Mazziotta, M N; McEnery, J E; Meyer, M; Michelson, P F; Mizuno, T; Moiseev, A A; Monzani, M E; Morselli, A; Murgia, S; Nuss, E; Ohsugi, T; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Sánchez-Conde, M; Schulz, A; Sehgal, N; Sgrò, C; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Strigari, L; Tajima, H; Takahashi, H; Thayer, J B; Tibaldo, L; Torres, D F; Troja, E; Vianello, G; Werner, M; Winer, B L; Wood, K S; Wood, M; Zaharijas, G; Zimmer, S

    2015-12-04

    The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on γ-ray observations of Milky Way dSphs based on six years of Fermi Large Area Telescope data processed with the new Pass8 event-level analysis. None of the dSphs are significantly detected in γ rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs. These constraints are among the strongest and most robust to date and lie below the canonical thermal relic cross section for DM of mass ≲100  GeV annihilating via quark and τ-lepton channels.

  7. MOND Calculations of Bulk Dispersions and Radial Dispersion Profiles of Milky Way and Andromeda Dwarf Spheroidal Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, S. G.; Walentosky, M. J.; Messinger, Justin; Staron, Alexander; Blankartz, Benjamin; Clark, Tristan [Department of Physics Miami University Oxford, OH 45056 (United States)

    2017-02-01

    We present a new computational method for calculating the motion of stars in a dwarf spheroidal galaxy (dSph) that can use either Newtonian gravity or Modified Newtonian Dynamics (MOND). In our model, we explicitly calculate the motion of several thousand stars in a spherically symmetric gravitational potential, and we statistically obtain both the line-of-sight bulk velocity dispersion and dispersion profile. Our results for MOND calculated bulk dispersions for Local Group dSph’s agree well with previous calculations and observations. Our MOND calculated dispersion profiles are compared with the observations of Walker et al. for Milky Way dSph’s, and we present calculated dispersion profiles for a selection of Andromeda dSph’s.

  8. Chemical Abundance Analysis of Three α-poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, D.Q.; et al.

    2017-08-07

    We present chemical abundance measurements of three stars in the ultra-faintdwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark EnergySurvey. Using high resolution spectroscopic observations we measure themetallicity of the three stars as well as abundance ratios of several$\\alpha$-elements, iron-peak elements, and neutron-capture elements. Theabundance pattern is relatively consistent among all three stars, which have alow average metallicity of [Fe/H] $\\sim -2.6$ and are not $\\alpha$-enhanced([$\\alpha$/Fe] $\\sim 0.0$). This result is unexpected when compared to otherlow-metallicity stars in the Galactic halo and other ultra-faint dwarfs andhints at an entirely different mechanism for the enrichment of Hor I comparedto other satellites. We discuss possible scenarios that could lead to thisobserved nucleosynthetic signature including extended star formation, aPopulation III supernova, and a possible association with the Large MagellanicCloud.

  9. Mapping the Tidal Destruction of the Hercules Dwarf: A Wide-field DECam Imaging Search for RR Lyrae Stars

    Science.gov (United States)

    Garling, Christopher; Willman, Beth; Sand, David J.; Hargis, Jonathan; Crnojević, Denija; Bechtol, Keith; Carlin, Jeffrey L.; Strader, Jay; Zou, Hu; Zhou, Xu; Nie, Jundan; Zhang, Tianmeng; Zhou, Zhimin; Peng, Xiyan

    2018-01-01

    We investigate the hypothesized tidal disruption of the Hercules ultra-faint dwarf galaxy (UFD). Previous tidal disruption studies of the Hercules UFD have been hindered by the high degree of foreground contamination in the direction of the dwarf. We bypass this issue by using RR Lyrae stars, which are standard candles with a very low field-volume density at the distance of Hercules. We use wide-field imaging from the Dark Energy Camera on CTIO to identify candidate RR Lyrae stars, supplemented with observations taken in coordination with the Beijing–Arizona Sky Survey on the Bok Telescope. Combining color, magnitude, and light-curve information, we identify three new RR Lyrae stars associated with Hercules. All three of these new RR Lyrae stars lie outside its published tidal radius. When considered with the nine RR Lyrae stars already known within the tidal radius, these results suggest that a substantial fraction of Hercules’ stellar content has been stripped. With this degree of tidal disruption, Hercules is an interesting case between a visibly disrupted dwarf (such as the Sagittarius dwarf spheroidal galaxy) and one in dynamic equilibrium. The degree of disruption also shows that we must be more careful with the ways we determine object membership when estimating dwarf masses in the future. One of the three discovered RR Lyrae stars sits along the minor axis of Hercules, but over two tidal radii away. This type of debris is consistent with recent models that suggest Hercules’ orbit is aligned with its minor axis.

  10. A Suprime-Cam study of the stellar population of the Ursa Major I dwarf spheroidal galaxy

    Science.gov (United States)

    Okamoto, S.; Arimoto, N.; Yamada, Y.; Onodera, M.

    2008-08-01

    We present deep and wide V, I CCD photometry of the Ursa Major I (UMa I) dwarf spheroidal galaxy (dSph) in the Local Group. The images of the galaxy were taken with the Subaru/Suprime-Cam wide field camera, covering a field of 34´ × 27´ located at the centre of the galaxy. The colour-magnitude diagram (CMD) of the UMa I dSph shows a steep and narrow red giant branch (RGB), blue and red horizontal branch (HB), and main sequence (MS) stars. A well-defined main sequence turn-off (MSTO) is found to be located at V0,MSTO ~ 23.5 mag. The distance modulus is derived as (m-M)0 = 19.93±0.1 (corresponding to a distance D = 96.8±4 kpc) from the V-band magnitude of the horizontal branch (V0,HB = 20.45±0.02). The mean metallicity of the RGB stars is estimated by the V-I colour as [Fe/H] ~ -2.0. The turn-off age estimated by overlaying the theoretical isochrones reveals that most of stars in the UMa I dSph are formed at a very early epoch (~12 Gyr ago). The isopleth map of stellar number density of the UMa I dSph, based upon the resolved star counts of MS, RGB, HB stars as well as blue stragglers (BS), shows that the morphology of the UMa I dSph is quite irregular and distorted, suggesting that the galaxy is in a process of disruption. The very old and metal-poor nature of the stellar population implies that the star formation history of this newly discoverd faint dSph may have been different from other well-known “classical” dSphs, which show significant stellar populations of intermediate age. The stellar population of the UMa I dSph closely resembles that of Galactic old metal-poor globular clusters, but its size is typical of Galactic dSphs (re = 188 [pc], r1/2 = 300 [pc]), and the shape of its spatial density contours suggests that it is undergoing tidal disruption. These characteristics of stellar population and spatial distribution of the faint galaxies help us to understand how they formed and evolved, and give a hint to the nature of the building blocks of

  11. ALMA CO(3-2) Observations of Star-forming Filaments in a Gas-poor Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Consiglio, S. Michelle; Turner, Jean L.; Beck, Sara; Meier, David S.; Silich, Sergiy; Zhao, Jun-Hui

    2017-11-01

    We report ALMA observations of 12CO(3-2) and 13CO(3-2) in the gas-poor dwarf galaxy NGC 5253. These 0.″3(5.5 pc) resolution images reveal small, dense molecular gas clouds that are located in kinematically distinct extended filaments. Some of the filaments appear to be falling into the galaxy and may be fueling its current star formation. The most intense CO(3-2) emission comes from the central ˜100 pc region centered on the luminous radio-infrared H II region known as the supernebula. The CO(3-2) clumps within the starburst region are anti-correlated with Hα on ˜5 pc scales, but are well-correlated with radio free-free emission. Cloud D1, which enshrouds the supernebula, has a high 12CO/13CO ratio, as does another cloud within the central 100 pc starburst region, possibly because the clouds are hot. CO(3-2) emission alone does not allow determination of cloud masses as molecular gas temperature and column density are degenerate at the observed brightness, unless combined with other lines such as 13CO.

  12. Connecting the First Galaxies with Ultrafaint Dwarfs in the Local Group: Chemical Signatures of Population III Stars

    Science.gov (United States)

    Jeon, Myoungwon; Besla, Gurtina; Bromm, Volker

    2017-10-01

    We investigate the star formation history (SFH) and chemical evolution of isolated analogs of Local Group (LG) ultrafaint dwarf galaxies (UFDs; stellar mass range of {10}2 {M}⊙ generation of stars down to z = 0. We confirm that reionization, combined with supernova (SN) feedback, is primarily responsible for the truncated star formation in UFDs. Specifically, halos with a virial mass of {M}{vir}≲ 2× {10}9 {M}⊙ form ≳ 90 % of stars prior to reionization. Our work further demonstrates the importance of Population III stars, with their intrinsically high [{{C}}/{Fe}] yields and the associated external metal enrichment, in producing low-metallicity stars ([{Fe}/{{H}}]≲ -4) and carbon-enhanced metal-poor (CEMP) stars. We find that UFDs are composite systems, assembled from multiple progenitor halos, some of which hosted only Population II stars formed in environments externally enriched by SNe in neighboring halos, naturally producing extremely low metallicity Population II stars. We illustrate how the simulated chemical enrichment may be used to constrain the SFHs of true observed UFDs. We find that Leo P analogs can form in halos with {M}{vir}˜ 4× {10}9 {M}⊙ (z = 0). Such systems are less affected by reionization and continue to form stars until z = 0, causing higher-metallicity tails. Finally, we predict the existence of extremely low metallicity stars in LG UFD galaxies that preserve the pure chemical signatures of Population III nucleosynthesis.

  13. First Metallicty Distribution From CaT Spectroscopy of RGB Stars in the Dwarf Irregular Galaxy WLM

    Science.gov (United States)

    Leaman, Ryan; Cole, A.; Venn, K.; Tolstoy, E.; Irwin, M.; Szeifert, T.

    2007-07-01

    A metallicity distribution for the central bar region of the dwarf irregular galaxy WLM is presented from VLT FORS2 spectra of 46 red giant stars, as well as radial velocities for the member stars in this field. The [Fe/H] values were derived using the near infrared Ca II triplet lines as a tracer of metallicity (see Grocholski et al. 2006, Rutledge et al. 1997) and is conformed to a metallicity scale with the aid of four calibrating globular clusters. Although limited by small number statistics in this preliminary release, the ability to study the metallicitiy with respect to velocity and physical location of the member stars is invaluable in helping to characterize the formation and enrichment history of these kind of stellar populations - as has been found from CaT analysis of RGB stars in the Sculptor and Fornax galaxies. (Tolstoy et al. 2004, Battaglia et al. 2006) Specifically, the metallicty distribution for the WLM stellar population(s) can be tied to the recent HST star formation history study (Dolphin, 2000) which places estimates on the frequency and duration of star formation episodes in WLM. The isolated nature of WLM allows a unique opportunity to analyze the enrichment and star formation history of a low luminosity stellar population, which presumably has had a less complicated evolution due to minimal local group interactions. Research for this study was funded in part by NSERC Discovery Grant Program #327292-06.

  14. Variable stars in the Cetus dwarf spheroidal galaxy: population gradients and connections with the star formation history

    Science.gov (United States)

    Monelli, M.; Bernard, E. J.; Gallart, C.; Fiorentino, G.; Drozdovsky, I.; Aparicio, A.; Bono, G.; Cassisi, S.; Skillman, E. D.; Stetson, P. B.

    2012-05-01

    We investigate the variable star content of the isolated, Local Group, dwarf spheroidal (dSph) galaxy Cetus. Multi-epoch, wide-field images collected with the Very Large Telescope/Visible Multiobject Spectrograph camera allowed us to detect 638 variable stars (630 RR Lyrae stars and eight anomalous Cepheids), 475 of which are new detections. We present a full catalogue of periods, amplitudes and mean magnitudes. Motivated by the recent discovery that the pulsational properties of the RR Lyrae stars in the Tucana dSph revealed the presence of a metallicity gradient within the oldest (>rsim10 Gyr old) stellar populations, we investigated the possibility of an analogous effect in Cetus. We found that, despite the obvious radial gradient in the horizontal branch and red giant branch morphologies, both becoming bluer on average for increasing distance from the centre of Cetus, the properties of the RR Lyrae stars are homogeneous within the investigated area (out to r˜ 15 arcmin), with no significant evidence of a radial gradient. We discuss this in connection with the star formation history previously derived for the two galaxies. The observed differences between these two systems show that even systems this small show a variety of early evolutionary histories. These differences could be due to different merger or accretion histories.

  15. Alfalfa discovery of the nearby gas-rich dwarf galaxy LEO P. V. Neutral gas dynamics and kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein-Cooper, Elijah Z.; Pardy, Stephen A. [Department of Astronomy, University of Wisconsin, 475 N Charter Street, Madison, WI 53706 (United States); Cannon, John M., E-mail: ezbc@astro.wisc.edu, E-mail: spardy@astro.wisc.edu, E-mail: jcannon@macalester.edu [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); and others

    2014-08-01

    We present new H I spectral line imaging of the extremely metal-poor, star-forming dwarf irregular galaxy Leo P. Our H I images probe the global neutral gas properties and the local conditions of the interstellar medium (ISM). The H I morphology is slightly elongated along the optical major axis. We do not find obvious signatures of interaction or infalling gas at large spatial scales. The neutral gas disk shows obvious rotation, although the velocity dispersion is comparable to the rotation velocity. The rotation amplitude is estimated to be V {sub c} =15 ± 5 km s{sup –1}. Within the H I radius probed by these observations, the mass ratio of gas to stars is roughly 2:1, while the ratio of the total mass to the baryonic mass is ≳15:1. We use this information to place Leo P on the baryonic Tully-Fisher relation, testing the baryonic content of cosmic structures in a sparsely populated portion of parameter space that has hitherto been occupied primarily by dwarf spheroidal galaxies. We detect the signature of two temperature components in the neutral ISM of Leo P; the cold and warm components have characteristic velocity widths of 4.2 ± 0.9 km s{sup –1} and 10.1 ± 1.2 km s{sup –1}, corresponding to kinetic temperature upper limits of ∼1100 K and ∼6200 K, respectively. The cold H I component is unresolved at a physical resolution of 200 pc. The highest H I surface densities are observed in close physical proximity to the single H II region. A comparison of the neutral gas properties of Leo P with other extremely metal-deficient (XMD) galaxies reveals that Leo P has the lowest neutral gas mass of any known XMD, and that the dynamical mass of Leo P is more than two orders of magnitude smaller than any known XMD with comparable metallicity.

  16. Wide-Field Survey around Local Group Dwarf Spheroidal Galaxy Leo II: Spatial Distribution of Stellar Content

    Science.gov (United States)

    Komiyama, Yutaka; Doi, Mamoru; Furusawa, Hisanori; Hamabe, Masaru; Imi, Katsumi; Kimura, Masahiko; Miyazaki, Satoshi; Nakata, Fumiaki; Okada, Norio; Okamura, Sadanori; Ouchi, Masami; Sekiguchi, Maki; Shimasaku, Kazuhiro; Yagi, Masafumi; Yasuda, Naoki

    2007-08-01

    We carried out a wide-field V, I imaging survey of the Local Group dwarf spheroidal galaxy Leo II using the Subaru Prime Focus Camera on the 8.2 m Subaru Telescope. The survey covered an area of 26.67×26.67 arcmin2, far beyond the tidal radius of Leo II (8.63'), down to the limiting magnitude of V~=26, which is roughly 1 mag deeper than the turnoff point of the main-sequence stars of Leo II. Radial number density profiles of bright and faint red giant branch (RGB) stars were found to change their slopes at around the tidal radius, and extend beyond the tidal radius with shallower slopes. A smoothed surface brightness map of Leo II suggests the existence of a small substructure (4×2.5 arcmin2, 270×170 pc 2 in physical size) of globular cluster luminosity beyond the tidal radius. We investigated the properties of the stellar population by means of a color-magnitude diagram. The horizontal branch (HB) morphology index shows a radial gradient in which red HB stars are more concentrated than blue HB stars, which is common to many Local Group dwarf spheroidal galaxies. The color distribution of RGB stars around the mean RGB sequence shows a larger dispersion at the center than in the outskirts, indicating a mixture of stellar populations at the center and a more homogeneous population in the outskirts. Based on the age estimation using subgiant branch stars, we found that although the major star formation took place ~8 Gyr ago, a considerable stellar population younger than 8 Gyr is found at the center; such a younger population is insignificant in the outskirts. The following star formation history is suggested for Leo II. Star-forming activity occurred more than ~8 Gyr ago throughout the galaxy at a modest star formation rate. The star-forming region gradually shrank from the outside toward the center, and star-forming activity finally dropped to ~0 by ~4 Gyr ago, except for the center, where a small population younger than 4 Gyr is present. Based on data collected

  17. The Epoch of the First Star Formation in the Closest Metal-Poor Blue Compact Dwarf Galaxy UGC 4483

    Science.gov (United States)

    Aloisi, Alessandra

    2017-08-01

    Metal-poor Blue Compact Dwarf (BCD) galaxies have been interpreted as nearby galaxies in formation. This view has been challenged by HST detection of Red Giant Branch (RGB) stars in all metal-poor BCDs where an RGB tip (TRGB, brightest RGB phase) has been searched for, impling the presence of stars at least 1 Gyr old. Due to the age-metallicity degeneracy, the RGB color provides little insight into the exact star formation history (SFH) beyond 1 Gyr. So, the first SF epoch may have occurred anywhere between 13 and 1 Gyr ago. To resolve this, it is necessary to reach features in the color-magnitude diagram (CMD) that are much fainter than the TRGB. Here we propose new WFC3/UVIS observations (with ACS/WFC in parallel) of the closest metal-poor BCD, UGC 4483. These data will yield an I vs. V-I CMD that goes 4 mag deeper than the TRGB allowing to detect red clump (RC) and horizontal branch (HB) stars. Variable stars of RR Lyrae type will also be detected. With their mere presence, these variables will indisputably prove the existence of a population at least 10 Gyr old. Apparent mag and width of RC, HB and RGB will independently constrain age and metallicity of the old/evolved stars, the presence of multiple SF episodes, their duration and metallicity spread. This deep crowded-field photometric project is only possible with HST. Due to UGC 4483 location in CVZ, it can be done in half the number of orbits that it would otherwise take. Since UGC 4483 is so close, it may be the only BCD for which these questions can be answered in the near future. It provides our best chance for learning about the true cosmological age and evolutionary state of these enigmatic galaxies.

  18. Deep wide-field imaging down to the oldest main sequence turn-offs in the Sculptor dwarf spheroidal galaxy

    Science.gov (United States)

    de Boer, T. J. L.; Tolstoy, E.; Saha, A.; Olsen, K.; Irwin, M. J.; Battaglia, G.; Hill, V.; Shetrone, M. D.; Fiorentino, G.; Cole, A.

    2011-04-01

    We present wide-field photometry of resolved stars in the nearby Sculptor dwarf spheroidal galaxy using CTIO/MOSAIC, going down to the oldest main sequence turn-off. The accurately flux calibrated wide field colour-magnitude diagrams can be used to constrain the ages of different stellar populations, and also their spatial distribution. The Sculptor dSph contains a predominantly ancient stellar population (>10 Gyr old) which can be easily resolved into individual stars. A galaxy dominated by an old population provides a clear view of ancient processes of galaxy formation unimpeded by overlying younger populations. By using spectroscopic metallicities of RGB stars in combination with our deep main sequence turn-off photometry we can constrain the ages of different stellar populations with particular accuracy. We find that the known metallicity gradient in Sculptor is well matched to an age gradient. This is the first time that this link with age has been directly quantified. This gradient has been previously observed as a variation in horizontal branch properties and is now confirmed to exist for main sequence turn-offs as well. It is likely the Sculptor dSph first formed an extended metal-poor population at the oldest times, and subsequent more metal-rich, younger stars were formed more towards the centre until the gas was depleted or lost roughly 7 Gyr ago. The fact that these clear radial gradients have been preserved up to the present day is consistent with the apparent lack of signs of recent tidal interactions. Appendices are only available in electronic form at http://www.aanda.org

  19. LOCALIZED STARBURSTS IN DWARF GALAXIES PRODUCED BY THE IMPACT OF LOW-METALLICITY COSMIC GAS CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Elmegreen, B. G. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Elmegreen, D. M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Pérez-Montero, E.; Vílchez, J. M. [Instituto de Astrofísica de Andalucía, CSIC, Granada (Spain); Amorín, R. [INAF-Osservatorio Astronomico di Roma, Monte Porzio Catone (Italy); Ascasibar, Y. [Universidad Autonoma de Madrid, Madrid (Spain); Papaderos, P., E-mail: jos@iac.es [Centro de Astrofísica da Universidade do Porto, Porto (Portugal)

    2015-09-10

    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter halos. Although these predictions are unambiguous, the observational support has been indirect so far. Here, we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias optical spectra of 10 XMPs show that the galaxy hosts have metallicities around 60% solar, on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6% solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties.

  20. Stellar kinematics and structural properties of virgo cluster dwarf early-type galaxies from the SMAKCED project. I. Kinematically decoupled cores and implications for infallen groups in clusters

    Energy Technology Data Exchange (ETDEWEB)

    Toloba, E.; Guhathakurta, P. [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Van de Ven, G. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Boissier, S.; Boselli, A. [Laboratoire d' Astrophysique de Marseille-LAM, Université d' Aix-Marseille and CNRS, UMR 7326, 38 rue F. Joliot-Curie, F-13388 Marseille Cedex 13 (France); Den Brok, M. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Falcón-Barroso, J.; Ryś, A. [Instituto de Astrofísica de Canarias, Vía Láctea s/n, La Laguna, Tenerife (Spain); Hensler, G. [Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna (Austria); Janz, J.; Lisker, T. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12-14, D-69120 Heidelberg (Germany); Laurikainen, E.; Salo, H. [Division of Astronomy, Department of Physics, University of Oulu, P.O. Box 3000, FI-90014 Oulu (Finland); Paudel, S. [Laboratoire AIM Paris-Saclay, CNRS/INSU, Université Paris Diderot, CEA/IRFU/SAp, F-91191 Gif-sur-Yvette Cedex (France); Peletier, R. F., E-mail: toloba@ucolick.org [Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen (Netherlands)

    2014-03-10

    We present evidence for kinematically decoupled cores (KDCs) in two dwarf early-type (dE) galaxies in the Virgo cluster, VCC 1183 and VCC 1453, studied as part of the SMAKCED stellar absorption-line spectroscopy and imaging survey. These KDCs have radii of 1.''8 (0.14 kpc) and 4.''2 (0.33 kpc), respectively. Each of these KDCs is distinct from the main body of its host galaxy in two ways: (1) inverted sense of rotation and (2) younger (and possibly more metal-rich) stellar population. The observed stellar population differences are probably associated with the KDC, although we cannot rule out the possibility of intrinsic radial gradients in the host galaxy. We describe a statistical analysis method to detect, quantify the significance of, and characterize KDCs in long-slit rotation curve data. We apply this method to the two dE galaxies presented in this paper and to five other dEs for which KDCs have been reported in the literature. Among these seven dEs, there are four significant KDC detections, two marginal KDC detections, and one dE with an unusual central kinematic anomaly that may be an asymmetric KDC. The frequency of occurrence of KDCs and their properties provide important constraints on the formation history of their host galaxies. We discuss different formation scenarios for these KDCs in cluster environments and find that dwarf-dwarf wet mergers or gas accretion can explain the properties of these KDCs. Both of these mechanisms require that the progenitor had a close companion with a low relative velocity. This suggests that KDCs were formed in galaxy pairs residing in a poor group environment or in isolation whose subsequent infall into the cluster quenched star formation.

  1. Probing star formation and feedback in dwarf galaxies. Integral field view of the blue compact galaxy Tololo 1937-423

    Science.gov (United States)

    Cairós, L. M.; González-Pérez, J. N.

    2017-12-01

    Context. Blue compact galaxies (BCG) are gas-rich, low-mass, small systems that form stars at unusually high rates. This makes them excellent laboratories for investigating the process of star-formation (SF) at galactic scales and the effects of massive stellar feedback on the interstellar (and intergalactic) medium. Aims: We analyzed the BCG Tololo 1937-423 using optical integral field spectroscopy to probe its morphology, stellar content, nebular excitation and ionization properties, and the kinematics of its warm ionized gas. Methods: Tololo 1937-423 was observed with the Visible Multi-Object Spectrograph at the Very Large Telescope. We took data in the wavelength range 4150-7400 Å, covering a field of view of 27″× 27″ on the sky with a spatial sampling of 0.̋67. From these data we built maps in the continuum and brighter emission lines, diagnostic line ratio maps, and velocity dispersion fields. We also generated the integrated spectrum of the main H II regions and young stellar clusters to determine reliable physical parameters and oxygen abundances. Results: We found that Tololo 1937-423 is currently undergoing an extended starburst. In the Hα maps we identified nine major clumps, aligned mostly northeast-southwest, and stretching to galactocentric distances ≥2 kpc. The galaxy presents a single continuum peak that is not cospatial with any knot in emission lines, indicating at least two relatively recent episodes of SF. The inhomogeneous dust distribution reachs its maximum (E(B-V) 0.97) roughly at the position of the continuum peak. We found shocked regions in the galaxy outer regions and at the edges of the SF knots. The oxygen abundance, 12 + log(O/H) 8.20 ± 0.1, is similar in all the SF regions, suggesting a chemically homogeneous ionized interstellar medium over spatial scales of several kpc. The ionized gas kinematics displays an overall regular rotation around a northwest-southeast axis, with a maximum velocity of 70 ± 7 km s-1. Conclusions

  2. Exclusion of canonical weakly interacting massive particles by joint analysis of Milky Way dwarf galaxies with data from the Fermi Gamma-Ray Space Telescope.

    Science.gov (United States)

    Geringer-Sameth, Alex; Koushiappas, Savvas M

    2011-12-09

    Dwarf spheroidal galaxies are known to be excellent targets for the detection of annihilating dark matter. We present new limits on the annihilation cross section of weakly interacting massive particles based on the joint analysis of seven Milky Way dwarfs using a frequentist Neyman construction and Pass 7 data from the Fermi Gamma-Ray Space Telescope. We exclude generic weakly interacting massive particle candidates annihilating into bb with a mass less than 40 GeV that reproduce the observed relic abundance. To within 95% systematic errors on the dark matter distribution within the dwarfs, the mass lower limit can be as low as 19 GeV or as high as 240 GeV. For annihilation into τ+ τ-, these limits become 19, 13, and 80 GeV, respectively.

  3. Nature vs. nurture in the low-density environment: structure and evolution of early-type dwarf galaxies in poor groups

    Science.gov (United States)

    Annibali, F.; Grützbauch, R.; Rampazzo, R.; Bressan, A.; Zeilinger, W. W.

    2011-04-01

    We present the stellar population properties of 13 dwarf galaxies residing in poor groups (low-density environment, LDE) observed with VIMOS at VLT. Ages, metallicities, and [α/Fe] ratios were derived within an r < re/2 aperture from the Lick indices Hβ, Mgb, Fe5270, and Fe5335 through comparison with our simple stellar population (SSP) models that account for variable [α/Fe] ratios. For a fiducial subsample of 10 early-type dwarfs, we derived median values and scatters around the medians of 5.7 ± 4.4 Gyr, -0.26 ± 0.28, and -0.04 ± 0.33 for age, log Z/Z⊙, and [α/Fe] , respectively. For a selection of bright early-type galaxies (ETGs) from an earlier sample residing in a comparable environment, we derive median values of 9.8 ± 4.1 Gyr, 0.06 ± 0.16, and 0.18 ± 0.13 for the same stellar population parameters. It follows that dwarfs are on average younger, less metal rich, and less enhanced in the α-elements than giants, in agreement with the extrapolation to the low-mass regime of the scaling relations derived for giant ETGs. From the total (dwarf + giant) sample, we find that age ∝ σ0.39 ± 0.22, Z ∝ σ0.80 ± 0.16, and α/Fe ∝ σ0.42 ± 0.22. We also find correlations with morphology, in the sense that the metallicity and the [α/Fe] ratio increase with the Sersic index n or with the bulge-to-total light fraction B/T. The presence of a strong morphology-[α/Fe] relation appears to contradict the possible evolution along the Hubble sequence from low B/T (low n) to high B/T (high n) galaxies. We also investigate the role played by environment by comparing the properties of our LDE dwarfs with those of Coma red passive dwarfs from the literature. We find possible evidence that LDE dwarfs experienced more prolonged star formations than Coma dwarfs, however larger data samples are needed to draw firmer conclusions. Based on observations obtained at the European Southern Observatory, La Silla, Chile.

  4. A kinematic study of planetary nebulae in the dwarf irregular galaxy IC10

    Science.gov (United States)

    Gonçalves, Denise R.; Teodorescu, Ana M.; Alves-Brito, Alan; Méndez, Roberto H.; Magrini, Laura

    2012-10-01

    We present positions, kinematics and the planetary nebula luminosity function (PNLF) for 35 planetary nebulae (PNe) in the nearest starburst galaxy IC10 extending out to 3 kpc from the galaxy's centre. We take advantage of the deep imaging and spectroscopic capabilities provided by the Faint Object Camera and Spectrograph on the 8.2 m Subaru Telescope. The PN velocities were measured through the slitless-spectroscopy technique, which allows us to explore the kinematics of IC10 with high precision. Using these velocities, we conclude that there is a kinematic connection between the H I envelope located around IC10 and the galaxy's PN population. By assuming that the PNe in the central regions and in the outskirts have similar ages, our results put strong observational constraints on the past tidal interactions in the Local Group. This is so because by dating the PN central stars, we, therefore, infer the epoch of a major episode of star formation likely linked to the first encounter of the H I extended envelope with the galaxy. Our deep [O III] images also allow us to use the PNLF to estimate a distance modulus of 24.1 ± 0.25, which is in agreement with recent results in the literature based on other techniques. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  5. The Influence of Galactic Outflows on the Formation of Nearby Dwarf Galaxies.

    Science.gov (United States)

    Scannapieco; Ferrara; Broadhurst

    2000-06-10

    We show that the gas in growing density perturbations is vulnerable to the influence of winds outflowing from nearby collapsed galaxies that have already formed stars. This suggests that the formation of nearby galaxies with masses less, similar10(9) M( middle dot in circle) is likely to be suppressed, irrespective of the details of galaxy formation. An impinging wind may shock-heat the gas of a nearby perturbation to above the virial temperature, thereby mechanically evaporating the gas, or the baryons may be stripped from the perturbation entirely if they are accelerated to above the escape velocity. We show that baryonic stripping is the most effective of these two processes, because shock-heated clouds that are too large to be stripped are able to radiatively cool within a sound crossing time, limiting evaporation. The intergalactic medium temperatures and star formation rates required for outflows to have a significant influence on the formation of low-mass galaxies are consistent with current observations, but may soon be examined directly via associated distortions in the cosmic microwave background and with near-infrared observations from the Next Generation Space Telescope, which may detect the supernovae from early-forming stars.

  6. The Fate of Dwarf Galaxies in Clusters and the Origin of Intracluster ...

    Indian Academy of Sciences (India)

    Abstract. The main goal of this paper is to compare the relative impor- tance of destruction by tides vs. destruction by mergers, in order to assess if tidal destruction of galaxies in clusters is a viable scenario for explain- ing the origin of intracluster stars. We have designed a simple algorithm for simulating the evolution of ...

  7. Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy.

    Czech Academy of Sciences Publication Activity Database

    Izotov, Y.I.; Orlitová, Ivana; Schaerer, D.; Thuan, T.X.; Verhamme, A.; Guseva, N.G.; Worseck, G.

    2016-01-01

    Roč. 529, č. 7585 (2016), s. 178-180 ISSN 0028-0836 R&D Projects: GA ČR(CZ) GP14-20666P Institutional support: RVO:67985815 Keywords : digital sky survey * emission-line galaxies * small-magellanic-cloud Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 40.137, year: 2016

  8. The Shape of LITTLE THINGS Dwarf Galaxies DDO 46 and DDO 168: Understanding the Stellar and Gas Kinematics

    Science.gov (United States)

    Johnson, Megan C.; Hunter, Deidre; Wood, Sarah; Oh, Se-Heon; Zhang, Hong-Xin; Herrmann, Kimberly A.; Levine, Stephen E.

    2015-06-01

    Determining the shape of dwarf irregular (dIrr) galaxies is controversial because if one assumes that these objects are disks and if these disks are randomly distributed over the sky, then their projected minor-to-major axis ratios should follow a particular statistical distribution, which is not observed. Thus, different studies have led to different conclusions. Some believe that the observed distributions can be explained by assuming the dIrrs are thick disks while others have concluded that dIrrs are triaxial. Fortunately, the central stellar velocity dispersion, σz,0, combined with maximum rotation speed, Vmax, provides a kinematic measure, Vmax/σz,0, which gives the three-dimensional shape of a system. In this work, we present the stellar and gas kinematics of DDO 46 and DDO 168 from the Local Irregulars That Trace Luminosity Extremes; The H i Nearby Galaxy Survey (LITTLE THINGS) and determine their respective Vmax/σz,0 values. We used the Kitt Peak National Observatory's Mayall 4 m telescope with the Echelle spectrograph as a long-slit spectrograph, which provided a two-dimensional, 3‧-long slit. We acquired spectra of DDO 168 along four position angles (PAs) by placing the slit over the morphological major and minor axes and two intermediate PAs. However, due to poor weather conditions during our observing run for DDO 46, we were able to extract only one useful data point from the morphological major axis. We determined a central stellar velocity dispersion perpendicular to the disk, σz,0, of 13.5 ± 8 km s-1 for DDO 46 and of 10.7 ± 2.9 km s-1 for DDO 168. We then derived the maximum rotation speed in both galaxies using the LITTLE THINGS H i data. We separated bulk motions from non-circular motions using a double Gaussian decomposition technique and applied a tilted-ring model to the bulk velocity field. We corrected the observed H i rotation speeds for asymmetric drift and found a maximum velocity, Vmax, of 77.4 ± 3.7 and 67.4 ± 4.0 for DDO 46

  9. THE STELLAR INITIAL MASS FUNCTION OF ULTRA-FAINT DWARF GALAXIES: EVIDENCE FOR IMF VARIATIONS WITH GALACTIC ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Geha, Marla [Astronomy Department, Yale University, New Haven, CT 06520 (United States); Brown, Thomas M.; Tumlinson, Jason; Kalirai, Jason S.; Avila, Roberto J.; Ferguson, Henry C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Simon, Joshua D. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Kirby, Evan N. [Department of Physics and Astronomy, University of California Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); VandenBerg, Don A. [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada); Munoz, Ricardo R. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Guhathakurta, Puragra, E-mail: marla.geha@yale.edu, E-mail: tbrown@stsci.edu, E-mail: tumlinson@stsci.edu [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-07-01

    We present constraints on the stellar initial mass function (IMF) in two ultra-faint dwarf (UFD) galaxies, Hercules and Leo IV, based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. The Hercules and Leo IV galaxies are extremely low luminosity (M{sub V} = -6.2, -5.5), metal-poor (([Fe/H]) = -2.4, -2.5) systems that have old stellar populations (>11 Gyr). Because they have long relaxation times, we can directly measure the low-mass stellar IMF by counting stars below the main-sequence turnoff without correcting for dynamical evolution. Over the stellar mass range probed by our data, 0.52-0.77 M{sub Sun }, the IMF is best fit by a power-law slope of {alpha}= 1.2{sub -0.5}{sup +0.4} for Hercules and {alpha} = 1.3 {+-} 0.8 for Leo IV. For Hercules, the IMF slope is more shallow than a Salpeter ({alpha} = 2.35) IMF at the 5.8{sigma} level, and a Kroupa ({alpha} = 2.3 above 0.5 M{sub Sun }) IMF slope at 5.4{sigma} level. We simultaneously fit for the binary fraction, f{sub binary}, finding f{sub binary}= 0.47{sup +0.16}{sub -0.14} for Hercules, and 0.47{sup +0.37}{sub -0.17} for Leo IV. The UFD binary fractions are consistent with that inferred for Milky Way stars in the same mass range, despite very different metallicities. In contrast, the IMF slopes in the UFDs are shallower than other galactic environments. In the mass range 0.5-0.8 M{sub Sun }, we see a trend across the handful of galaxies with directly measured IMFs such that the power-law slopes become shallower (more bottom-light) with decreasing galactic velocity dispersion and metallicity. This trend is qualitatively consistent with results in elliptical galaxies inferred via indirect methods and is direct evidence for IMF variations with galactic environment.

  10. ROTATIONAL DYNAMICS AND STAR FORMATION IN THE NEARBY DWARF GALAXY NGC 5238

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, John M.; McNichols, Andrew T.; Teich, Yaron G., E-mail: jcannon@macalester.edu, E-mail: amcnicho@nrao.edu, E-mail: yateich@gmail.com; and others

    2016-12-01

    We present new H i spectral-line images of the nearby low-mass galaxy NGC 5238, acquired with the Karl G. Jansky Very Large Array. Located at a distance of 4.51 ± 0.04 Mpc, NGC 5238 is an actively star-forming galaxy with widespread H α and ultraviolet (UV) continuum emission. The source is included in many ongoing and recent nearby galaxy surveys, but until this work the spatially resolved qualities of its neutral interstellar medium have remained unstudied. Our H i images resolve the disk on physical scales of ∼400 pc, allowing us to undertake a detailed comparative study of the gaseous and stellar components. The H i disk is asymmetric in the outer regions, and the areas of high H i mass surface density display a crescent-shaped morphology that is slightly offset from the center of the stellar populations. The H i column density exceeds 10{sup 21} cm{sup −2} in much of the disk. We quantify the degree of co-spatiality of dense H i gas and sites of ongoing star formation as traced by far-UV and H α emission. The neutral gas kinematics are complex; using a spatially resolved position–velocity analysis, we infer a rotational velocity of 31 ± 5 km s{sup −1}. We place NGC 5238 on the baryonic Tully–Fisher relation and contextualize the system among other low-mass galaxies.

  11. Exploring the making of a galactic wind in the star-bursting dwarf irregular galaxy IC 10 with LOFAR

    Science.gov (United States)

    Heesen, V.; Rafferty, D. A.; Horneffer, A.; Beck, R.; Basu, A.; Westcott, J.; Hindson, L.; Brinks, E.; ChyŻy, K. T.; Scaife, A. M. M.; Brüggen, M.; Heald, G.; Fletcher, A.; Horellou, C.; Tabatabaei, F. S.; Paladino, R.; Nikiel-Wroczyński, B.; Hoeft, M.; Dettmar, R.-J.

    2018-02-01

    Low-mass galaxies are subject to strong galactic outflows, in which cosmic rays may play an important role; they can be best traced with low-frequency radio continuum observations, which are less affected by spectral ageing. We present a study of the nearby star burst dwarf irregular galaxy IC 10 using observations at 140 MHz with the LOw-Frequency ARray (LOFAR), at 1580 MHz with the Very Large Array (VLA) and at 6200 MHz with the VLA and the 100-m Effelsberg telescope. We find that IC 10 has a low-frequency radio halo, which manifests itself as a second component (thick disc) in the minor axis profiles of the non-thermal radio continuum emission at 140 and 1580 MHz. These profiles are then fitted with 1D cosmic-ray transport models for pure diffusion and advection. We find that a diffusion model fits best, with a diffusion coefficient of D = (0.4-0.8) × 1026(E/GeV)0.5 cm2 s-1, which is at least an order of magnitude smaller than estimates both from anisotropic diffusion and the diffusion length. In contrast, advection models, which cannot be ruled out due to the mild inclination, while providing poorer fits, result in advection speeds close to the escape velocity of ≈50 km s^{-1}, as expected for a cosmic-ray driven wind. Our favoured model with an accelerating wind provides a self-consistent solution, where the magnetic field is in energy equipartition with both the warm neutral and warm ionized medium with an important contribution from cosmic rays. Consequently, cosmic rays can play a vital role for the launching of galactic winds in the disc-halo interface.

  12. Search for Gamma-Ray Emission from DES Dwarf Spheroidal Galaxy Candidates with Fermi-LAT Data

    Energy Technology Data Exchange (ETDEWEB)

    Drlica-Wagner, A.; et al.

    2015-08-04

    Due to their proximity, high dark-matter (DM) content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection of DM. Recently, eight new dSph candidates were discovered using the first year of data from the Dark Energy Survey (DES). We searched for gamma-ray emission coincident with the positions of these new objects in six years of Fermi Large Area Telescope data. We found no significant excesses of gamma-ray emission. Under the assumption that the DES candidates are dSphs with DM halo properties similar to the known dSphs, we computed individual and combined limits on the velocity-averaged DM annihilation cross section for these new targets. If the estimated DM content of these dSph candidates is confirmed, they will constrain the annihilation cross section to lie below the thermal relic cross section for DM particles with masses $\\lesssim 20\\,\\mathrm{GeV}$ annihilating via the $b\\bar{b}$ or τ(+)τ(-) channels.

  13. Population gradient in the Sextans dSph: comprehensive mapping of a dwarf galaxy by Suprime-Cam

    Science.gov (United States)

    Okamoto, S.; Arimoto, N.; Tolstoy, E.; Jablonka, P.; Irwin, M. J.; Komiyama, Y.; Yamada, Y.; Onodera, M.

    2017-05-01

    We present the deep and wide V and Ic photometry of the Sextans dwarf spheroidal galaxy (dSph) taken by the Suprime-Cam imager on the Subaru Telescope, which extends out to the tidal radius. The colour-magnitude diagram (CMD) reaches two magnitudes below the main-sequence (MS) turn-off, showing a steep red giant branch, a blue and a red horizontal branch (BHB and RHB, respectively), a sub-giant branch (SGB), an MS and blue stragglers (BSs). We construct the radial profile of each evolutionary phase and demonstrate that blue HB stars are more spatially extended, while red HB stars are more centrally concentrated than the other components. The colour distribution of SGB stars also varies with the galactocentric distance; the inner SGB stars shift bluer than those in the outskirts. The radial differences in the CMD morphology indicate the existence of the age gradient. The relatively younger stars (˜10 Gyr) are more centrally concentrated than the older ones (˜13 Gyr). The spatial contour maps of stars in different age bins also show that the younger population has a higher concentration and higher ellipticity than the older one. We also detect the centrally concentrated bright BS stars, the number of which is consistent with the idea that a part of these stars belongs to the remnant of a disrupted star cluster discovered in the previous spectroscopic studies.

  14. Near-infrared Stellar Populations in the Metal-poor, Dwarf Irregular Galaxies Sextans A and Leo A

    Science.gov (United States)

    Jones, Olivia C.; Maclay, Matthew T.; Boyer, Martha L.; Meixner, Margaret; McDonald, Iain; Meskhidze, Helen

    2018-02-01

    We present JHK s observations of the metal-poor ([Fe/H] dwarf-irregular galaxies, Leo A and Sextans A, obtained with the WIYN High-resolution Infrared Camera at Kitt Peak. Their near-IR stellar populations are characterized by using a combination of color–magnitude diagrams and by identifying long-period variable stars. We detected red giant and asymptotic giant branch stars, consistent with membership of the galaxy’s intermediate-age populations (2–8 Gyr old). Matching our data to broadband optical and mid-IR photometry, we determine luminosities, temperatures, and dust-production rates (DPR) for each star. We identify 32 stars in Leo A and 101 stars in Sextans A with a DPR > {10}-11 {M}ȯ {yr}}-1, confirming that metal-poor stars can form substantial amounts of dust. We also find tentative evidence for oxygen-rich dust formation at low metallicity, contradicting previous models that suggest oxygen-rich dust production is inhibited in metal-poor environments. The total rates of dust injection into the interstellar medium of Leo A and Sextans A are (8.2+/- 1.8)× {10}-9 {M}ȯ {yr}}-1 and (6.2+/- 0.2)× {10}-7 {M}ȯ {yr}}-1, respectively. The majority of this dust is produced by a few very dusty evolved stars and does not vary strongly with metallicity.

  15. Search for cold and hot gas in the ram pressure stripped Virgo dwarf galaxy IC 3418

    Czech Academy of Sciences Publication Activity Database

    Jáchym, Pavel; Kenney, J.D.P.; Růžička, Adam; Sun, M.; Combes, F.; Palouš, Jan

    2013-01-01

    Roč. 556, August (2013), A99/1-A99/15 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GPP209/11/P699; GA ČR GAP209/12/1795 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100031203 Program:M Institutional support: RVO:67985815 Keywords : VCC 1217/IC 3418 * Virgo * evolution of galaxies Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.479, year: 2013

  16. Exploring the Evolution of Star Formation and Dwarf Galaxy Properties with JWST /MIRI Serendipitous Spectroscopic Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Bonato, Matteo; Sajina, Anna; McKinney, Jed; Marchesini, Danilo; Roebuck, Eric; Shipley, Heath [Department of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, MA (United States); Zotti, Gianfranco De [INAF, Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Baronchelli, Ivano; Yan, Lin [California Institute of Technology, Pasadena, CA (United States); Negrello, Mattia [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Kurinsky, Noah [Department of Physics, Stanford University, Stanford, CA (United States); Pope, Alexandra [Department of Astronomy, University of Massachusetts Amherst, Amherst, MA (United States); Noriega-Crespo, Alberto [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD (United States); Kirkpatrick, Allison [Department of Astronomy, Yale University, New Haven, CT (United States)

    2017-02-20

    The James Webb Space Telescope ’s Medium Resolution Spectrometer (MRS), will offer nearly two orders of magnitude improvement in sensitivity and >3× improvement in spectral resolution over our previous space-based mid-IR spectrometer, the Spitzer IRS. In this paper, we make predictions for spectroscopic pointed observations and serendipitous detections with the MRS. Specifically, pointed observations of Herschel sources require only a few minutes on source integration for detections of several star-forming and active galactic nucleus lines, out to z = 3 and beyond. But the same data will also include tens of serendipitous 0 ≲ z ≲ 4 galaxies per field with infrared luminosities ranging ∼10{sup 6}–10{sup 13} L {sub ☉}. In particular, for the first time and for free we will be able to explore the L {sub IR} < 10{sup 9} L {sub ☉} regime out to z ∼ 3. We estimate that with ∼ 100 such fields, statistics of these detections will be sufficient to constrain the evolution of the low- L end of the infrared luminosity function, and hence the star formation rate function. The above conclusions hold for a wide range in the potential low- L end of the IR luminosity function, and account for the PAH deficit in low- L , low-metallicity galaxies.

  17. Hubble Space Telescope Proper Motions along the Sagittarius Stream. I. Observations and Results for Stars in Four Fields

    Science.gov (United States)

    Sohn, Sangmo Tony; van der Marel, Roeland P.; Carlin, Jeffrey L.; Majewski, Steven R.; Kallivayalil, Nitya; Law, David R.; Anderson, Jay; Siegel, Michael H.

    2015-04-01

    We present a multi-epoch Hubble Space Telescope (HST) study of stellar proper motions (PMs) for four fields spanning 200° along the Sagittarius (Sgr) stream: one trailing arm field, one field near the Sgr dwarf spheroidal tidal radius, and two leading arm fields. We determine absolute PMs of dozens of individual stars per field, using established techniques that use distant background galaxies as the stationary reference frame. Stream stars are identified based on combined color-magnitude diagram and PM information. The results are broadly consistent with the few existing PM measurements for the Sgr galaxy and the trailing arm. However, our new results provide the highest PM accuracy for the stream to date, the first PM measurements for the leading arm, and the first PM measurements for individual stream stars; we also serendipitously determine the PM of the globular cluster NGC 6652. In the trailing-arm field, the individual PMs allow us to kinematically separate trailing-arm stars from leading-arm stars that are 360° further ahead in their orbit. Also, in three of our fields we find indications that two distinct kinematical components may exist within the same arm and wrap of the stream. Qualitative comparison of the HST data to the predictions of the Law & Majewski and Peñarrubia et al. N-body models show that the PM measurements closely follow the predicted trend with Sgr longitude. This provides a successful consistency check on the PM measurements, as well as on these N-body approaches (which were not tailored to fit any PM data).

  18. Bailing out the Milky Way: variation in the properties of massive dwarfs among galaxy-sized systems

    Energy Technology Data Exchange (ETDEWEB)

    Purcell, Chris W.; Zentner, Andrew R., E-mail: cpurcell@pitt.edu, E-mail: zentner@pitt.edu [Department of Physics and Astronomy and Pittsburgh Particle physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 15260 Pittsburgh U.S.A. (United States)

    2012-12-01

    Recent kinematical constraints on the internal densities of the Milky Way's dwarf satellites have revealed a discrepancy with the subhalo populations of simulated Galaxy-scale halos in the standard cold dark matter model of hierarchical structure formation. In particular, the Via Lactea II and Aquarius simulations both have large subhalos with internal densities that are larger than the constraints inferred for any Milky Way dwarf satellites. This has been dubbed the ''too big to fail'' problem, with reference to the improbability of large and invisible companions existing in the Galactic environment. In this paper, we argue that both the Milky Way observations and simulated subhalos are consistent with the predictions of the standard model for structure formation. Specifically, we show that there is significant variation in the properties of subhalos among distinct host halos of fixed mass and suggest that this can reasonably account for the deficit of dense satellites in the Milky Way. We exploit well-tested analytic techniques to predict the properties in a large sample of distinct host halos with a variety of masses spanning the range expected of the Galactic halo. Such techniques render the problem of estimating the variance in subhalo properties computationally feasible. The analytic model produces subhalo populations consistent with both Via Lactea II and Aquarius, and our results suggest that natural variation in subhalo properties suffices to explain the discrepancy between Milky Way satellite kinematics and these numerical simulations. At least ∼ 10% of Milky Way-sized halos host subhalo populations for which there is no ''too big to fail'' problem, even when the host halo mass is as large as M{sub host} = 10{sup 12.2} h{sup −1} M{sub s}un. Follow-up studies consisting of high-resolution simulations of a large number of Milky Way-sized hosts are necessary to confirm our predictions. In the absence of such

  19. Metal enrichment of the neutral gas of blue compact dwarf galaxies: the compelling case of Pox 36

    Science.gov (United States)

    Lebouteiller, V.; Kunth, D.; Thuan, T. X.; Désert, J. M.

    2009-02-01

    Context: Evidence has grown over the past few years that the neutral phase of blue compact dwarf (BCD) galaxies may be metal-deficient as compared to the ionized gas of their H ii regions. These results have strong implications for our understanding of the chemical evolution of galaxies, and it is essential to strengthen the method, as well as to find possible explanations. Aims: We present the analysis of the interstellar spectrum of Pox 36 with the Far Ultraviolet Spectroscopic Explorer (FUSE). Pox 36 was selected because of the relatively low foreground gas content that makes it possible to detect absorption-lines weak enough that unseen components should not be saturated. Methods: Interstellar lines of H i, N i, O i, Si ii, P ii, Ar i, and Fe ii are detected. Column densities are derived directly from the observed line profiles except for H i, whose lines are contaminated by stellar absorption, thus needing the stellar continuum to be removed. We used the TLUSTY models to remove the stellar continuum and isolate the interstellar component. The best fit indicates that the dominant stellar population is B0. The observed far-UV flux agrees with an equivalent number of ~300 B0 stars. The fit of the interstellar H i line gives a column density of 1020.3±0.4 cm-2. Chemical abundances were then computed from the column densities using the dominant ionization stage in the neutral gas. Our abundances are compared to those measured from emission-line spectra in the optical, probing the ionized gas of the H ii regions. Results: Our results suggest that the neutral gas of Pox 36 is metal-deficient by a factor ~7 as compared to the ionized gas, and they agree with a metallicity of ≈1/35 Z_⊙. Elemental depletion is not problematic because of the low dust content along the selected lines of sight. In contrast, the ionized gas shows a clear depletion pattern, with iron being strongly depleted. Conclusions: The abundance discontinuity between the neutral and ionized phases

  20. Searching for dwarf spheroidal galaxies and other galactic dark matter substructures with the Fermi large area telescope

    Energy Technology Data Exchange (ETDEWEB)

    Drlica-Wagner, Alex [Stanford Univ., CA (United States). Dept. of Physics

    2013-08-01

    Over the past century, it has become clear that about a quarter of the known universe is composed of an invisible, massive component termed ''dark matter''. Some of the most popular theories of physics beyond the Standard Model suggest that dark matter may be a new fundamental particle that could self-annihilate to produce γ rays. Nearby over-densities in the dark matter halo of our Milky Way present some of the most promising targets for detecting the annihilation of dark matter. We used the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope to search for γ rays produced by dark matter annihilation in Galactic dark matter substructures. We searched for γ-ray emission coincident with Milky Way dwarf spheroidal satellite galaxies, which trace the most massive Galactic dark matter substructures. We also sought to identify nearby dark matter substructures that lack all astrophysical tracers and would be detectable only through γ-ray emission from dark matter annihilation. We found no conclusive evidence for γ-ray emission from dark matter annihilation, and we set stringent and robust constraints on the dark matter annihilation cross section. While γ-ray searches for dark matter substructure are currently the most sensitive and robust probes of dark matter annihilation, they are just beginning to intersect the theoretically preferred region of dark matter parameter space. Thus, we consider future prospects for increasing the sensitivity of γ-ray searches through improvements to the LAT instrument performance and through upcoming wide- field optical surveys.

  1. Magellan/M2FS Spectroscopy of the Reticulum 2 Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Walker, Matthew G.; Mateo, Mario; Olszewski, Edward W.; Bailey, John I., III; Koposov, Sergey E.; Belokurov, Vasily; Evans, N. Wyn

    2015-08-01

    We present results from spectroscopic observations with the Michigan/Magellan Fiber System (M2FS) of 182 stellar targets along the line of sight (LOS) to the newly discovered “ultrafaint” object Reticulum 2 (Ret 2). For 37 of these targets, the spectra are sufficient to provide simultaneous estimates of LOS velocity ({v}{los}, median random error {δ }{v{los}}=1.4 km s-1), effective temperature ({T}{eff}, {δ }{T{eff}}=478 K), surface gravity ({log}g, {δ }{logg}=0.63 dex), and iron abundance ([{Fe}/{{H}}], {δ }[{Fe/{{H}}]}=0.47 dex). We use these results to confirm 17 stars as members of Ret 2. From the member sample we estimate a velocity dispersion of {σ }{v{los}}= {3.6}-0.7+1.0 km s-1 about a mean of = {64.3}-1.2+1.2 km s-1 in the solar rest frame (˜ -90.9 km s-1 in the Galactic rest frame), and a metallicity dispersion of {σ }[{Fe/{{H}}]} = {0.49}-0.14+0.19 dex about a mean of = -{2.58}-0.33+0.34. These estimates marginalize over possible velocity and metallicity gradients, which are consistent with zero. Our results place Ret 2 on chemodynamical scaling relations followed by the Milky Way’s dwarf-galactic satellites. Under assumptions of dynamic equilibrium and negligible contamination from binary stars—both of which must be checked with deeper imaging and repeat spectroscopic observations—the estimated velocity dispersion suggests a dynamical mass of M({R}{{h}})≈ 5{R}{{h}}{σ }{v{los}}{}2/(2G) = {2.4}-0.8+1.4× {10}5 {M}⊙ enclosed within projected halflight radius {R}{{h}}˜ 32 pc, with mass-to-light ratio ≈ 2M({R}{{h}})/{L}V = {467}-168+286 in solar units. This paper presents data gathered with the Magellan Telescopes at Las Campanas Observatory, Chile.

  2. THE DETECTION OF ULTRA-FAINT LOW SURFACE BRIGHTNESS DWARF GALAXIES IN THE VIRGO CLUSTER: A PROBE OF DARK MATTER AND BARYONIC PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Giallongo, E.; Menci, N.; Grazian, A.; Fassbender, R.; Fontana, A.; Paris, D.; Pentericci, L. [INAF—Osservatorio Astronomico di Roma, via di Frascati 33, I-00040 Monteporzio (Italy)

    2015-11-01

    We have discovered 11 ultra-faint (r ≲ 22.1) low surface brightness (LSB, central surface brightness 23 ≲ μ{sub r} ≲ 26) dwarf galaxy candidates in one deep Virgo field of just 576 arcmin{sup 2} obtained by the Large Binocular Camera at the Large Binocular Telescope. Their association with the Virgo cluster is supported by their distinct position in the central surface brightness—total magnitude plane with respect to the background galaxies of similar total magnitude. They have typical absolute magnitudes and scale sizes, if at the distance of Virgo, in the range −13 ≲ M{sub r} ≲ −9 and 250 ≲ r{sub s} ≲ 850 pc, respectively. Their colors are consistent with a gradually declining star formation history with a specific star formation rate of the order of 10{sup −11} yr{sup −1}, i.e., 10 times lower than that of main sequence star-forming galaxies. They are older than the cluster formation age and appear to be regular in morphology. They represent the faintest extremes of the population of low luminosity LSB dwarfs that has recently been detected in wider surveys of the Virgo cluster. Thanks to the depth of our observations, we are able to extend the Virgo luminosity function down to M{sub r} ∼ −9.3 (corresponding to total masses M ∼ 10{sup 7} M{sub ⊙}), finding an average faint-end slope α ≃ −1.4. This relatively steep slope puts interesting constraints on the nature of the dark matter and, in particular, on warm dark matter (WDM) often invoked to solve the overprediction of the dwarf number density by the standard cold dark matter scenario. We derive a lower limit on the WDM particle mass >1.5 keV.

  3. Gravitational detection of a low-mass dark satellite galaxy at cosmological distance.

    Science.gov (United States)

    Vegetti, S; Lagattuta, D J; McKean, J P; Auger, M W; Fassnacht, C D; Koopmans, L V E

    2012-01-18

    The mass function of dwarf satellite galaxies that are observed around Local Group galaxies differs substantially from simulations based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard. A massive dark satellite in an early-type lens galaxy at a redshift of 0.222 was recently found using a method based on gravitational lensing, suggesting that the mass fraction contained in substructure could be higher than is predicted from simulations. The lack of very low-mass detections, however, prohibited any constraint on their mass function. Here we report the presence of a (1.9 ± 0.1) × 10(8) M dark satellite galaxy in the Einstein ring system JVAS B1938+666 (ref. 11) at a redshift of 0.881, where M denotes the solar mass. This satellite galaxy has a mass similar to that of the Sagittarius galaxy, which is a satellite of the Milky Way. We determine the logarithmic slope of the mass function for substructure beyond the local Universe to be 1.1(+0.6)(-0.4), with an average mass fraction of 3.3(+3.6)(-1.8) per cent, by combining data on both of these recently discovered galaxies. Our results are consistent with the predictions from cold dark matter simulations at the 95 per cent confidence level, and therefore agree with the view that galaxies formed hierarchically in a Universe composed of cold dark matter.

  4. Stellar Populations and Structural Properties of Ultra Faint Dwarf Galaxies, Canes Venatici I, Boötes I, Canes Venatici II, and Leo IV

    Science.gov (United States)

    Okamoto, Sakurako; Arimoto, Nobuo; Yamada, Yoshihiko; Onodera, Masato

    2012-01-01

    We take deep images of four ultra faint dwarf (UFD) galaxies, Canes Venatici I (CVn I), Boötes I (Boö I), Canes Venatici II (CVn II), and Leo IV, using the Suprime-Cam on the Subaru Telescope. Color-magnitude diagrams (CMDs) extend below main-sequence turnoffs (MSTOs) and yield measurements of the ages of stellar populations. The stellar populations of three faint galaxies, the Boö I, CVn II, and Leo IV dwarf spheroidal galaxies (dSphs), are estimated to be as old as the Galactic globular cluster M92. We confirm that Boö I dSph has no intrinsic color spread in the MSTO and no spatial difference in the CMD morphology, which indicates that Boö I dSph is composed of an old single stellar population. One of the brightest UFDs, CVn I dSph, shows a relatively younger age (~12.6 Gyr) with respect to Boö I, CVn II, and Leo IV dSphs, and the distribution of red horizontal branch (HB) stars is more concentrated toward the center than that of blue HB stars, suggesting that the galaxy contains complex stellar populations. Boö I and CVn I dSphs show the elongated and distorted shapes. CVn II dSph has the smallest tidal radius of a Milky Way satellite and has a distorted shape, while Leo IV dSph shows a less concentrated spherical shape. The simple stellar population of faint UFDs indicates that the gases in their progenitors were removed more effectively than those of brighter dSphs at the occurrence of their initial star formation. This is reasonable if the progenitors of UFDs belong to less massive halos than those of brighter dSphs. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  5. STELLAR KINEMATICS AND STRUCTURAL PROPERTIES OF VIRGO CLUSTER DWARF EARLY-TYPE GALAXIES FROM THE SMAKCED PROJECT. III. ANGULAR MOMENTUM AND CONSTRAINTS ON FORMATION SCENARIOS

    Energy Technology Data Exchange (ETDEWEB)

    Toloba, E.; Guhathakurta, P. [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Boselli, A.; Boissier, S. [Aix Marseille Universit, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Peletier, R. F. [Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen (Netherlands); Emsellem, E. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Lisker, T. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12-14, D-69120 Heidelberg (Germany); Van de Ven, G. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Simon, J. D.; Adams, J. J.; Benson, A. J. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Falcón-Barroso, J.; Ryś, A. [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38200 La Laguna, Tenerife (Spain); Den Brok, M. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Gorgas, J. [Departamento de Astrofísica y Ciencias de la Atmósfera, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Hensler, G. [Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, A-1180 Vienna (Austria); Janz, J. [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Laurikainen, E.; Salo, H. [Division of Astronomy, Department of Physics, University of Oulu, P.O. Box 3000, FI-90014 Oulu (Finland); Paudel, S., E-mail: toloba@ucolick.org [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2015-02-01

    We analyze the stellar kinematics of 39 dwarf early-type galaxies (dEs) in the Virgo Cluster. Based on the specific stellar angular momentum λ{sub Re} and the ellipticity, we find 11 slow rotators and 28 fast rotators. The fast rotators in the outer parts of the Virgo Cluster rotate significantly faster than fast rotators in the inner parts of the cluster. Moreover, 10 out of the 11 slow rotators are located in the inner 3° (D < 1 Mpc) of the cluster. The fast rotators contain subtle disk-like structures that are visible in high-pass filtered optical images, while the slow rotators do not exhibit these structures. In addition, two of the dEs have kinematically decoupled cores and four more have emission partially filling in the Balmer absorption lines. These properties suggest that Virgo Cluster dEs may have originated from late-type star-forming galaxies that were transformed by the environment after their infall into the cluster. The correlation between λ{sub Re} and the clustercentric distance can be explained by a scenario where low luminosity star-forming galaxies fall into the cluster, their gas is rapidly removed by ram-pressure stripping, although some of it can be retained in their core, their star formation is quenched but their stellar kinematics are preserved. After a long time in the cluster and several passes through its center, the galaxies are heated up and transformed into slow rotating dEs.

  6. Stellar Kinematics and Structural Properties of Virgo Cluster Dwarf Early-type Galaxies from the SMAKCED Project. III. Angular Momentum and Constraints on Formation Scenarios

    Science.gov (United States)

    Toloba, E.; Guhathakurta, P.; Boselli, A.; Peletier, R. F.; Emsellem, E.; Lisker, T.; van de Ven, G.; Simon, J. D.; Falcón-Barroso, J.; Adams, J. J.; Benson, A. J.; Boissier, S.; den Brok, M.; Gorgas, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Paudel, S.; Ryś, A.; Salo, H.

    2015-02-01

    We analyze the stellar kinematics of 39 dwarf early-type galaxies (dEs) in the Virgo Cluster. Based on the specific stellar angular momentum λRe and the ellipticity, we find 11 slow rotators and 28 fast rotators. The fast rotators in the outer parts of the Virgo Cluster rotate significantly faster than fast rotators in the inner parts of the cluster. Moreover, 10 out of the 11 slow rotators are located in the inner 3° (D high-pass filtered optical images, while the slow rotators do not exhibit these structures. In addition, two of the dEs have kinematically decoupled cores and four more have emission partially filling in the Balmer absorption lines. These properties suggest that Virgo Cluster dEs may have originated from late-type star-forming galaxies that were transformed by the environment after their infall into the cluster. The correlation between λRe and the clustercentric distance can be explained by a scenario where low luminosity star-forming galaxies fall into the cluster, their gas is rapidly removed by ram-pressure stripping, although some of it can be retained in their core, their star formation is quenched but their stellar kinematics are preserved. After a long time in the cluster and several passes through its center, the galaxies are heated up and transformed into slow rotating dEs.

  7. HI properties and star formation history of a fly-by pair of blue compact dwarf galaxies

    Science.gov (United States)

    Kim, Jinhyub; Chung, Aeree; Wong, O. Ivy; Lee, Bumhyun; Sung, Eon-Chang; Staveley-Smith, Lister

    2017-09-01

    A fly-by interaction has been suggested to be one of the major explanations for enhanced star formation in blue compact dwarf (BCD) galaxies, yet no direct evidence for this scenario has been found to date. In the Hi Parkes all-sky survey (HIPASS), ESO 435-IG 020 and ESO 435-G 016, a BCD pair were found in a common, extended gas envelope of atomic hydrogen, providing an ideal case to test the hypothesis that the starburst in BCDs can be indeed triggered by a fly-by interaction. Using high-resolution data from the Australia Telescope Compact Array (ATCA), we investigated Hi properties and the spectral energy distribution (SED) of the BCD pair to study their interaction and star formation histories. The high-resolution Hi data of both BCDs reveal a number of peculiarities, which are suggestive of tidal perturbation. Meanwhile, 40% of the HIPASS flux is not accounted for in the ATCA observations with no Hi gas bridge found between the two BCDs. Intriguingly, in the residual of the HIPASS and the ATCA data, 10% of the missing flux appears to be located between the two BCDs. While the SED-based age of the most dominant young stellar population is old enough to have originated from the interaction with any neighbors (including the other of the two BCDs), the most recent star formation activity traced by strong Hα emission in ESO 435-IG 020 and the shear motion of gas in ESO 435-G 016, suggest a more recent or current tidal interaction. Based on these and the residual emission between the HIPASS and the ATCA data, we propose an interaction between the two BCDs as the origin of their recently enhanced star formation activity. The shear motion on the gas disk, potentially with re-accretion of the stripped gas, could be responsible for the active star formation in this BCD pair. The reduced datacube (FITS file) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A54

  8. Tracing the stellar component of low surface brightness Milky Way dwarf galaxies to their outskirts. I. Sextans

    Science.gov (United States)

    Cicuéndez, L.; Battaglia, G.; Irwin, M.; Bermejo-Climent, J. R.; McMonigal, B.; Bate, N. F.; Lewis, G. F.; Conn, A. R.; de Boer, T. J. L.; Gallart, C.; Guglielmo, M.; Ibata, R.; McConnachie, A.; Tolstoy, E.; Fernando, N.

    2018-01-01

    Aims: We present results from deep and very spatially extended CTIO/DECam g and r photometry (reaching out to 2 mag below the oldest main-sequence turn-off and covering 20 deg2) around the Sextans dwarf spheroidal galaxy. We aim to use this dataset to study the structural properties of Sextans overall stellar population and its member stars in different evolutionary phases, as well as to search for possible signs of tidal disturbance from the Milky Way, which would indicate departure from dynamical equilibrium. Methods: We performed the most accurate and quantitative structural analysis to-date of Sextans' stellar components by applying Bayesian Monte Carlo Markov chain methods to the individual stars' positions. Surface density maps are built by statistically decontaminating the sample through a matched filter analysis of the colour-magnitude diagram, and then analysed for departures from axisymmetry. Results: Sextans is found to be significantly less spatially extended and more centrally concentrated than early studies suggested. No statistically significant distortions or signs of tidal disturbances were found down to a surface brightness limit of 31.8 mag/arcsec2 in V-band. We identify an overdensity in the central regions that may correspond to previously reported kinematic substructure(s). In agreement with previous findings, old and metal-poor stars such as Blue Horizontal Branch stars cover a much larger area than stars in other evolutionary phases, and bright Blue Stragglers (BSs) are less spatially extended than faint ones. However, the different spatial distribution of bright and faint BSs appears consistent with the general age and metallicity gradients found in Sextans' stellar component. This is compatible with Sextans BSs having formed by evolution of binaries and not necessarily due to the presence of a central disrupted globular cluster, as suggested in the literature. We provide structural parameters for the various populations analysed and make

  9. Galaxies: The Long Wavelength View

    National Research Council Canada - National Science Library

    Fischer, J

    2000-01-01

    ... (more than 2 orders of magnitude) in the [C II]/FIR ratios in galaxies extending from blue compact dwarfs, to normal and starburst galaxies, down to elliptical and ultraluminous galaxies (ULICs...

  10. Stellar Kinematics and Structural Properties of Virgo Cluster Dwarf Early-type Galaxies from the SMAKCED Project. II. The Survey and a Systematic Analysis of Kinematic Anomalies and Asymmetries

    NARCIS (Netherlands)

    Toloba, E.; Guhathakurta, P.; Peletier, R. F.; Boselli, A.; Lisker, T.; Falcón-Barroso, J.; Simon, J. D.; van de Ven, G.; Paudel, S.; Emsellem, E.; Janz, J.; den Brok, M.; Gorgas, J.; Hensler, G.; Laurikainen, E.; Niemi, S.-M.; Ryś, A.; Salo, H.

    2014-01-01

    We present spatially resolved kinematics and global stellar populations and mass-to-light ratios for a sample of 39 dwarf early-type (dE) galaxies in the Virgo cluster studied as part of the SMAKCED stellar absorption-line spectroscopy and imaging survey. This sample is representative of the

  11. New insights into the interstellar medium of the dwarf galaxy IC 10: connection between magnetic fields, the radio-infrared correlation and star formation

    Science.gov (United States)

    Basu, Aritra; Roychowdhury, Sambit; Heesen, Volker; Beck, Rainer; Brinks, Elias; Westcott, Jonathan; Hindson, Luke

    2017-10-01

    We present the highest sensitivity and angular resolution study at 0.32 GHz of the dwarf irregular galaxy IC 10, observed using the Giant Metrewave Radio Telescope, probing ˜45 pc spatial scales. We find the galaxy-averaged radio continuum spectrum to be relatively flat, with a spectral index α = -0.34 ± 0.01 (Sν ∝ να), mainly due to a high contribution from free-free emission. At 0.32 GHz, some of the H II regions show evidence of free-free absorption as they become optically thick below ˜0.41 GHz with corresponding free electron densities of ˜ 11-22 cm- 3. After removing the free-free emission, we studied the radio-infrared (IR) relations on 55, 110 and 165 pc spatial scales. We find that on all scales the non-thermal emission at 0.32 and 6.2 GHz correlates better with far-infrared (FIR) emission at 70 μm than mid-IR emission at 24 μm. The dispersion of the radio-FIR relation arises due to variations in both magnetic field and dust temperature, and decreases systematically with increasing spatial scale. The effect of cosmic ray transport is negligible as cosmic ray electrons were only injected ≲5 Myr ago. The average magnetic field strength (B) of 12 μG in the disc is comparable to that of large star-forming galaxies. The local magnetic field is strongly correlated with local star formation rate (SFR) as B ∝ SFR0.35 ± 0.03, indicating a starburst-driven fluctuation dynamo to be efficient (˜10 per cent) in amplifying the field in IC 10. The high spatial resolution observations presented here suggest that the high efficiency of magnetic field amplification and strong coupling with SFR likely sets up the radio-FIR correlation in cosmologically young galaxies.

  12. A GMOS-N IFU study of the central H ii region in the blue compact dwarf galaxy NGC 4449: kinematics, nebular metallicity and star formation

    Science.gov (United States)

    Kumari, Nimisha; James, Bethan L.; Irwin, Mike J.

    2017-10-01

    We use integral field spectroscopic (IFS) observations from the Gemini Multi-Object Spectrograph North (GMOS-N) to study the central H ii region in a nearby blue compact dwarf (BCD) galaxy NGC 4449. The IFS data enable us to explore the variation of physical and chemical conditions of the star-forming region and the surrounding gas on spatial scales as small as 5.5 pc. Our kinematical analysis shows possible signatures of shock ionization and shell structures in the surroundings of the star-forming region. The metallicity maps of the region, created using direct Te and indirect strong line methods (R23, O3N2 and N2), do not show any chemical variation. From the integrated spectrum of the central H ii region, we find a metallicity of 12 + log(O/H) = 7.88 ± 0.14 ({˜ }0.15^{+0.06}_{-0.04} Z⊙) using the direct method. Comparing the central H ii region metallicity derived here with those of H ii regions throughout this galaxy from previous studies, we find evidence of increasing metallicity with distance from the central nucleus. Such chemical inhomogeneities can be due to several mechanisms, including gas loss via supernova blowout, galactic winds or metal-poor gas accretion. However, we find that the localized area of decreased metallicity aligns spatially with the peak of star-forming activity in the galaxy, suggesting that gas accretion may be at play here. Spatially resolved IFS data for the entire galaxy are required to confirm the metallicity inhomogeneity found in this study and determine its possible cause.

  13. Kinematic, Photometric, and Spectroscopic Properties of Faint White Dwarf Stars Discovered in the HALO7D Survey of the Milky Way Galaxy

    Science.gov (United States)

    Harris, Madison; Cunningham, Emily; Guhathakurta, Puragra; Cheshire, Ishani; Gupta, Nandita

    2018-01-01

    White dwarf (WD) stars represent the final phase in the life of solar-mass stars. The extreme low luminosity of WDs means that most detailed measurements of such stars are limited to samples in the immediate neighborhood of the Sun in the thin disk of the Milky Way galaxy. We present spectra, line-of-sight (LOS) velocities, and proper motions (PMs) of a sample of faint (m_V ~ 19.0–24.5) white dwarfs (WDs) from the HALO7D survey. HALO7D is a Keck II/DEIMOS spectroscopic survey of unprecedented depth (8–24 hour integrations) in the CANDELS fields of main sequence turnoff stars in the Milky Way's outer halo. Faint WD stars are rare but useful by-products of this survey. We identify the sample of WDs based on their characteristic broad spectral Balmer absorption features, and present a Bayesian method for measuring their LOS velocities. Using their broadband colors, LOS velocities and PMs measured with the Hubble Space Telescope, we identify candidate halo members among the WDs based on the predicted velocity distributions from the Besançon numerical model of stellar populations in the Milky Way galaxy. The WDs found in the HALO7D survey will yield new insights on the old stellar population associated with the Milky Way's thick disk and halo. Funding for this research was provided by the National Science Foundation and NASA/STScI. NG and IC's participation in this research was under the auspices of the Science Internship Program at the University of California Santa Cruz.

  14. Transition of an X-ray binary to the hard ultraluminous state in the blue compact dwarf galaxy VII Zw 403

    Science.gov (United States)

    Brorby, M.; Kaaret, P.; Feng, H.

    2015-04-01

    We examine the X-ray spectra of VII Zw 403, a nearby low-metallicity blue compact dwarf (BCD) galaxy. The galaxy has been observed to contain an X-ray source, likely a high-mass X-ray binary (HMXB), with a luminosity of 1.3-23 × 1038 erg s-1 in the 0.3-8 keV energy range. A new Suzaku observation shows a transition to a luminosity of 1.7 × 1040 erg s-1 [0.3-8 keV], higher by a factor of 7-130. The spectra from the high-flux state are hard, best described by a disc plus Comptonization model, and exhibit curvature at energies above 5 keV. This is consistent with many high-quality ultraluminous X-ray source spectra which have been interpreted as stellar mass black holes accreting at super-Eddington rates. However, this lies in contrast to another HMXB in a low-metallicity BCD, I Zw 18, that exhibits a soft spectrum at high flux, similar to Galactic black hole binaries and has been interpreted as a possible intermediate-mass black hole. Determining the spectral properties of HMXBs in BCDs has important implications for models of the Epoch of Reionization. It is thought that the main component of X-ray heating in the early Universe was dominated by HMXBs within the first galaxies. Early galaxies were small, metal-deficient, star-forming galaxies with large H I mass fractions - properties shared by local BCDs we see today. Understanding the spectral evolution of HMXBs in early Universe analogue galaxies, such as BCDs, is an important step in estimating their contribution to the heating of the intergalactic medium during the Epoch of Reionization. The strong contrast between the properties of the only two spectroscopically studied HMXBs within BCDs motivates further study on larger samples of HMXBs in low-metallicity environments in order to properly estimate the X-ray heating in the early Universe.

  15. New ALMA constraints on the star-forming interstellar medium at low metallicity: a 50 pc view of the blue compact dwarf galaxy SBS 0335-052

    Science.gov (United States)

    Cormier, D.; Bendo, G. J.; Hony, S.; Lebouteiller, V.; Madden, S. C.; Galliano, F.; Glover, S. C. O.; Klessen, R. S.; Abel, N. P.; Bigiel, F.; Clark, P. C.

    2017-06-01

    Properties of the cold interstellar medium of low-metallicity galaxies are not well known due to the faintness and extremely small scale on which emission is expected. We present deep ALMA band 6 (230 GHz) observations of the nearby, low-metallicity (12 + log (O/H) = 7.25) blue compact dwarf galaxy SBS 0335-052 at an unprecedented resolution of 0.2 arcsec (52 pc). The 12CO J = 2→1 line is not detected and we report a 3σ upper limit of LCO(2-1) = 3.6 × 104 K km s-1 pc2. Assuming that molecular gas is converted into stars with a given depletion time, ranging from 0.02 to 2 Gyr, we find lower limits on the CO-to-H2 conversion factor αCO in the range 102-104 M⊙ pc-2 (K km s-1)-1. The continuum emission is detected and resolved over the two main super star clusters. Re-analysis of the IR-radio spectral energy distribution suggests that the mm-fluxes are not only free-free emission but are most likely also associated with a cold dust component coincident with the position of the brightest cluster. With standard dust properties, we estimate its mass to be as large as 105 M⊙. Both line and continuum results suggest the presence of a large cold gas reservoir unseen in CO even with ALMA.

  16. Transformation of a Virgo Cluster Dwarf Irregular Galaxy by Ram Pressure Stripping: IC3418 and Its Fireballs

    Czech Academy of Sciences Publication Activity Database

    Kenney, J.D.P.; Geha, M.; Jáchym, Pavel; Crowl, H.H.; Dague, W.; Chung, A.; van Gorkom, J.; Vollmer, B.

    2014-01-01

    Roč. 780, č. 2 (2014), 119/1-119/20 ISSN 0004-637X Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100031203 Program:M Institutional support: RVO:67985815 Keywords : galaxies * cluster * evolution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.993, year: 2014

  17. The Alpha-element knee of the Sagittarius Stream

    OpenAIRE

    de Boer, T.J.L.; Belokurov, V.; Beers, T. C.; Lee, Y. S.

    2014-01-01

    We employ abundances from the Sloan Digital Sky Survey (SDSS) and the Sloan Extension for Galactic Understanding and Exploration (SEGUE) to study the alpha-element distribution of the stellar members of the Sagittarius stream. To test the reliability of SDSS/SEGUE abundances for the study of Sagittarius, we select high-likelihood samples tracing the different components of the Milky Way, and recover known literature alpha-element distributions. Using selection criteria based on the spatial po...

  18. THE ARAUCARIA PROJECT: THE DISTANCE TO THE CARINA DWARF GALAXY FROM INFRARED PHOTOMETRY OF RR LYRAE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Karczmarek, Paulina; Pietrzynski, Grzegorz; Suchomska, Ksenia; Konorski, Piotr; Górski, Marek; Pilecki, Bogumił; Wielgórski, Piotr [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478, Warsaw (Poland); Gieren, Wolfgang; Graczyk, Dariusz, E-mail: pkarczmarek@astrouw.edu.pl, E-mail: ksenia@astrouw.edu.pl, E-mail: piokon@astrouw.edu.pl, E-mail: pilecki@astrouw.edu.pl, E-mail: pwielgorski@astrouw.edu.pl, E-mail: pietrzyn@astrouw.edu.pl, E-mail: wgieren@astro-udec.cl, E-mail: mgorski@astrouw.edu.pl, E-mail: darek@astro-udec.cl [Universidad de Concepción, Departamento de Astronomia, Casilla 160-C, Concepción (Chile)

    2015-09-15

    We obtained single-phase near-infrared (NIR) magnitudes in the J- and K-band for a sample of 33 RR Lyrae (RRL) stars in the Carina dSph galaxy. Applying different theoretical and empirical calibrations of the NIR period–luminosity–metallicity relation for RRL stars, we find consistent results and obtain a true, reddening-corrected distance modulus of 20.118 ± 0.017 (statistical) ± 0.11 (systematic) mag. This value is in excellent agreement with the results obtained in the context of the Araucaria Project from NIR photometry of red clump stars (20.165 ± 0.015) and the tip of red giant branch (20.09 ± 0.03 ± 0.12 mag in the J band, 20.14 ± 0.04 ± 0.14 mag in the K band), as well as with most independent distance determinations to this galaxy. The NIR RRL method proved to be a reliable tool for accurate distance determination at the 5% level or better, particularly for galaxies and globular clusters that lack young standard candles, like Cepheids.

  19. NuSTAR detection of high-energy X-ray emission and rapid variability from sagittarius A* flares

    DEFF Research Database (Denmark)

    Barrière, Nicolas M.; Tomsick, John A.; Baganoff, Frederick K.

    2014-01-01

    Sagittarius A* harbors the supermassive black hole that lies at the dynamical center of our Galaxy. Sagittarius A* spends most of its time in a low luminosity emission state but flares frequently in the infrared and X-ray, increasing up to a few hundred fold in brightness for up to a few hours...... at a time. The physical processes giving rise to the X-ray flares are uncertain. Here we report the detection with the NuSTAR observatory in Summer and Fall 2012 of four low to medium amplitude X-ray flares to energies up to 79 keV. For the first time, we clearly see that the power-law spectrum...... of Sagittarius A* X-ray flares extends to high energy, with no evidence for a cutoff. Although the photon index of the absorbed power-law fits are in agreement with past observations, we find a difference between the photon index of two of the flares (significant at the 95% confidence level). The spectra...

  20. The extended structure of the dwarf irregular galaxies Sextans A and Sextans B. Signatures of tidal distortion in the outskirts of the Local Group

    Science.gov (United States)

    Bellazzini, M.; Beccari, G.; Fraternali, F.; Oosterloo, T. A.; Sollima, A.; Testa, V.; Galleti, S.; Perina, S.; Faccini, M.; Cusano, F.

    2014-06-01

    We present a detailed study of the stellar and H i structure of the dwarf irregular galaxies Sextans A and Sextans B, members of the NGC 3109 association. We use newly obtained deep (r ≃ 26.5) and wide-field g and r photometry to extend the surface brightness (SB) profiles of the two galaxies down to μV ≃ 31.0 mag/arcsec2. We find that both galaxies are significantly more extended than previously traced with surface photometry, out to ~4 kpc from their centres along their major axes. Older stars are found to have more extended distribution than younger populations. We obtain the first estimate of the mean metallicity for the old stars in Sex B, from the colour distribution of the red giant branch, ⟨[Fe/H]⟩ = -1.6. The SB profiles show significant changes of slope and cannot be fitted with a single Sérsic model. Both galaxies have HI discs as massive as their respective stellar components. In both cases the H i discs display solid-body rotation with maximum amplitude of ~50 km s-1 (albeit with significant uncertainty due to the poorly constrained inclination), implying a dynamical mass ~109 M⊙, a mass-to-light ratio M / LV ~ 25, and a dark-to-baryonic mass ratio of ~10. The distribution of the stellar components is more extended than the gaseous disc in both galaxies. We find that the main, approximately round, stellar body of Sex A is surrounded by an elongated low-SB stellar halo that can be interpreted as a tidal tail, similar to that found in another member of the same association (Antlia). We discuss these, as well as other evidence of tidal disturbance, in the framework of a past passage of the NGC 3109 association close to the Milky Way, which has been hypothesised by several authors and is also supported by the recently discovered filamentary configuration of the association itself. Appendices are available in electronic form at http://www.aanda.orgTable of stellar photometry is only available at the CDS via anonymous ftp to http

  1. Gas Expulsion in MOND: The Possible Origin of Diffuse Globular Clusters and Ultra-faint Dwarf Galaxies

    Science.gov (United States)

    Wu, Xufen; Kroupa, Pavel

    2018-01-01

    We study the evolution of star clusters located in the outer regions of a galaxy undergoing a sudden mass loss through gas expulsion in the framework of Milgromian dynamics (MOND) by means of N-body simulations. We find that, to leave a bound star cluster, the star formation efficiency (SFE) of an embedded cluster dominated by deep MOND gravity can be reduced down to 2.5 % . For a given SFE, the star clusters that survive in MOND can bind a larger fraction of mass compared to those of the Newtonian dynamics. Moreover, the more diffuse the embedded cluster is, the less substantial the size expansion of the final star cluster is. The density profiles of a surviving star cluster are more cuspy in the center for more massive embedded clusters, and the central density profiles are flatter for less massive embedded clusters or for lower SFE. This work may help to understand the low concentration and extension of the distant low-density globular clusters and ultra-faint and diffuse satellite galaxies around the Milky Way.

  2. Predicting the locations of possible long-lived low-mass first stars: importance of satellite dwarf galaxies

    Science.gov (United States)

    Magg, Mattis; Hartwig, Tilman; Agarwal, Bhaskar; Frebel, Anna; Glover, Simon C. O.; Griffen, Brendan F.; Klessen, Ralf S.

    2018-02-01

    The search for metal-free stars has so far been unsuccessful, proving that if there are surviving stars from the first generation, they are rare, they have been polluted or we have been looking in the wrong place. To predict the likely location of Population III (Pop III) survivors, we semi-analytically model early star formation in progenitors of Milky Way-like galaxies and their environments. We base our model on merger trees from the high-resolution dark matter only simulation suite Caterpillar. Radiative and chemical feedback are taken into account self-consistently, based on the spatial distribution of the haloes. Our results are consistent with the non-detection of Pop III survivors in the Milky Way today. We find that possible surviving Pop III stars are more common in Milky Way satellites than in the main Galaxy. In particular, low-mass Milky Way satellites contain a much larger fraction of Pop III stars than the Milky Way. Such nearby, low-mass Milky Way satellites are promising targets for future attempts to find Pop III survivors, especially for high-resolution, high signal-to-noise spectroscopic observations. We provide the probabilities of finding a Pop III survivor in the red giant branch phase for all known Milky Way satellites to guide future observations.

  3. The gravitational dynamics of galaxies

    Indian Academy of Sciences (India)

    one could arrive at the number of galaxies of this size in the observable Universe – again around 1011. A few galaxies are bigger and brighter than our own, but many more are smaller, going down to dwarf galaxies which could be ten thousand times less luminous. Nevertheless, galaxies do form a distinct and unique unit ...

  4. High-Resolution Near-Infrared Spectroscopy of an Equivalent Width-Selected Sample of Starbursting Dwarf Galaxies

    Science.gov (United States)

    Maseda, Michael V.; VanDerWeL, Arjen; DaChuna, Elisabete; Rix, Hans-Walter; Pacafichi, Camilla; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; VanDokkum, Pieter; Bell, Eric F.; hide

    2013-01-01

    Spectroscopic observations from the Large Binocular Telescope and the Very Large Telescope reveal kinematically narrow lines (approx. 50 km/s) for a sample of 14 Extreme Emission Line Galaxies (EELGs) at redshifts 1.4 < zeta < 2.3. These measurements imply that the total dynamical masses of these systems are low ( 3 × 10(exp 9) M). Their large [O III]5007 equivalent widths (500 - 1100 A) and faint blue continuum emission imply young ages of 10-100 Myr and stellar masses of 10(exp 8)-10(exp 9) M, confirming the presence of a violent starburst. The stellar mass formed in this vigorous starburst phase thus represents a large fraction of the total (dynamical) mass, without a significantly massive underlying population of older stars. The occurrence of such intense events in shallow potentials strongly suggests that supernova-driven winds must be of critical importance in the subsequent evolution of these systems.

  5. Resolved magnetic-field structure and variability near the event horizon of Sagittarius A.

    Science.gov (United States)

    Johnson, Michael D; Fish, Vincent L; Doeleman, Sheperd S; Marrone, Daniel P; Plambeck, Richard L; Wardle, John F C; Akiyama, Kazunori; Asada, Keiichi; Beaudoin, Christopher; Blackburn, Lindy; Blundell, Ray; Bower, Geoffrey C; Brinkerink, Christiaan; Broderick, Avery E; Cappallo, Roger; Chael, Andrew A; Crew, Geoffrey B; Dexter, Jason; Dexter, Matt; Freund, Robert; Friberg, Per; Gold, Roman; Gurwell, Mark A; Ho, Paul T P; Honma, Mareki; Inoue, Makoto; Kosowsky, Michael; Krichbaum, Thomas P; Lamb, James; Loeb, Abraham; Lu, Ru-Sen; MacMahon, David; McKinney, Jonathan C; Moran, James M; Narayan, Ramesh; Primiani, Rurik A; Psaltis, Dimitrios; Rogers, Alan E E; Rosenfeld, Katherine; SooHoo, Jason; Tilanus, Remo P J; Titus, Michael; Vertatschitsch, Laura; Weintroub, Jonathan; Wright, Melvyn; Young, Ken H; Zensus, J Anton; Ziurys, Lucy M

    2015-12-04

    Near a black hole, differential rotation of a magnetized accretion disk is thought to produce an instability that amplifies weak magnetic fields, driving accretion and outflow. These magnetic fields would naturally give rise to the observed synchrotron emission in galaxy cores and to the formation of relativistic jets, but no observations to date have been able to resolve the expected horizon-scale magnetic-field structure. We report interferometric observations at 1.3-millimeter wavelength that spatially resolve the linearly polarized emission from the Galactic Center supermassive black hole, Sagittarius A*. We have found evidence for partially ordered magnetic fields near the event horizon, on scales of ~6 Schwarzschild radii, and we have detected and localized the intrahour variability associated with these fields. Copyright © 2015, American Association for the Advancement of Science.

  6. Space Motions of the Dwarf Spheroidal Galaxies Draco and Sculptor Based on HST Proper Motions with a ˜10 yr Time Baseline

    Science.gov (United States)

    Sohn, Sangmo Tony; Patel, Ekta; Besla, Gurtina; van der Marel, Roeland P.; Bullock, James S.; Strigari, Louis E.; van de Ven, Glenn; Walker, Matt G.; Bellini, Andrea

    2017-11-01

    We present new proper motion (PM) measurements of the dwarf spheroidal galaxies (dSphs) Draco and Sculptor using multiepoch images obtained with the Hubble Space Telescope ACS/WFC. Our PM results have uncertainties far lower than previous measurements, even those made with the same instrument. The PM results for Draco and Sculptor are ({μ }W, {μ }N{)}{Dra}=(-0.0562+/- 0.0099, -0.1765+/- 0.0100) {mas} {{yr}}-1 and ({μ }W, {μ }N{)}{Scl}=(-0.0296+/- 0.0209, -0.1358+/- 0.0214) {mas} {{yr}}-1. The implied Galactocentric velocity vectors for Draco and Sculptor have radial and tangential components: ({V}{rad}, {V}\\tan {)}{Dra}=(-88.6, 161.4)+/- (4.4, 5.6) {km} {{{s}}}-1 and ({V}{rad}, {V}\\tan {)}{Scl}=(72.6, 200.2)+/- (1.3, 10.8) {km} {{{s}}}-1. We study the detailed orbital histories of both Draco and Sculptor via numerical orbit integrations. Orbital periods of Draco and Sculptor are found to be 1-2 Gyr and 2-5 Gyr, respectively, accounting for uncertainties in the Milky Way (MW) mass. We also study the influence of the Large Magellanic Cloud (LMC) on the orbits of Draco and Sculptor. Overall, the inclusion of the LMC increases the scatter in the orbital results. Based on our calculations, Draco shows a rather wide range of orbital parameters depending on the MW mass and inclusion/exclusion of the LMC, but Sculptor’s orbit is very well constrained, with its most recent pericentric approach to the MW being 0.3-0.4 Gyr ago. Our new PMs imply that the orbital trajectories of both Draco and Sculptor are confined within the “Disk of Satellites,” better so than implied by earlier PM measurements, and likely rule out the possibility that these two galaxies were accreted together as part of a tightly bound group.

  7. Astrometric Binaries: White Dwarfs?

    Science.gov (United States)

    Oliversen, Nancy A.

    We propose to observe a selection of astrometric or spectroscopicastrometric binaries nearer than about 20 pc with unseen low mass companions. Systems of this type are important for determining the luminosity function of low mass stars (white dwarfs and very late main sequence M stars), and their contribution to the total mass of the galaxy. Systems of this type are also important because the low mass, invisible companions are potential candidates in the search for planets. Our target list is selected primarily from the list of 31 astrometric binaries near the sun by Lippincott (1978, Space Sci. Rev., 22, 153), with additional candidates from recent observations by Kamper. The elimination of stars with previous IUE observations, red companions resolved by infrared speckle interferometry, or primaries later than M1 (because if white dwarf companions are present they should have been detected in the visible region) reduces the list to 5 targets which need further information. IUE SWP low dispersion observations of these targets will show clearly whether the remaining unseen companions are white dwarfs, thus eliminating very cool main sequence stars or planets. This is also important in providing complete statistical information about the nearest stars. The discovery of a white dwarf in such a nearby system would provide important additional information about the masses of white dwarfs. Recent results by Greenstein (1986, A. J., 92, 859) from binary systems containing white dwarfs imply that 80% of such systems are as yet undetected. The preference of binaries for companions of approximately equal mass makes the Lippincott-Kamper list of A through K primaries with unseen companions a good one to use to search for white dwarfs. The mass and light dominance of the current primary over the white dwarf in the visible makes ultraviolet observations essential to obtain an accurate census of white dwarf binaries.

  8. PREDICTING Lyα AND Mg II FLUXES FROM K AND M DWARFS USING GALAXY EVOLUTION EXPLORER ULTRAVIOLET PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Shkolnik, Evgenya L.; Rolph, Kristina A. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Peacock, Sarah; Barman, Travis S., E-mail: shkolnik@lowell.edu, E-mail: kristina.rolph@fandm.edu, E-mail: speacock@lpl.arizona.edu, E-mail: barman@lpl.arizona.edu [Department of Planetary Sciences and Lunar and Planetary Laboratory University of Arizona, Tucson AZ 85721 (United States)

    2014-11-20

    A star's ultraviolet (UV) emission can greatly affect the atmospheric chemistry and physical properties of closely orbiting planets with the potential for severe mass loss. In particular, the Lyα emission line at 1216 Å, which dominates the far-ultraviolet (FUV) spectrum, is a major source of photodissociation of important atmospheric molecules such as water and methane. The intrinsic flux of Lyα, however, cannot be directly measured due to the absorption of neutral hydrogen in the interstellar medium and contamination by geocoronal emission. To date, reconstruction of the intrinsic Lyα line based on Hubble Space Telescope spectra has been accomplished for 46 FGKM nearby stars, 28 of which have also been observed by the Galaxy Evolution Explorer (GALEX). Our investigation provides a correlation between published intrinsic Lyα and GALEX far- and near-ultraviolet (NUV) chromospheric fluxes for K and M stars. The negative correlations between the ratio of the Lyα to the GALEX fluxes reveal how the relative strength of Lyα compared to the broadband fluxes weakens as the FUV and NUV excess flux increase. We also correlate GALEX fluxes with the strong NUV Mg II h+k spectral emission lines formed at lower chromospheric temperatures than Lyα. The reported correlations provide estimates of intrinsic Lyα and Mg II fluxes for the thousands of K and M stars in the archived GALEX all-sky surveys. These will constrain new stellar upper atmosphere models for cool stars and provide realistic inputs to models describing exoplanetary photochemistry and atmospheric evolution in the absence of UV spectroscopy.

  9. VLT/X-shooter observations of the low-metallicity blue compact dwarf galaxy PHL 293B including a luminous blue variable star

    Science.gov (United States)

    Izotov, Y. I.; Guseva, N. G.; Fricke, K. J.; Henkel, C.

    2011-09-01

    Context. We present VLT/X-shooter spectroscopic observations in the wavelength range λλ3000-23 000 Å of the extremely metal-deficient blue compact dwarf (BCD) galaxy PHL 293B containing a luminous blue variable (LBV) star and compare them with previous data. Aims: This BCD is one of the two lowest-metallicity galaxies where LBV stars were detected, allowing us to study the LBV phenomenon in the extremely low metallicity regime. Methods: We determine abundances of nitrogen, oxygen, neon, sulfur, argon, and iron by analyzing the fluxes of narrow components of the emission lines using empirical methods and study the properties of the LBV from the fluxes and widths of broad emission lines. Results: We derive an interstellar oxygen abundance of 12+log O/H = 7.71 ± 0.02, which is in agreement with previous determinations. The observed fluxes of narrow Balmer, Paschen and Brackett hydrogen lines correspond to the theoretical recombination values after correction for extinction with a single value C(Hβ) = 0.225. This implies that the star-forming region observed in the optical range is the only source of ionisation and there is no additional source of ionisation that is seen in the NIR range but is hidden in the optical range. We detect three v = 1-0 vibrational lines of molecular hydrogen. Their flux ratios and non-detection of v = 2-1 and 3-1 emission lines suggest that collisional excitation is the main source producing H2 lines. For the LBV star in PHL 293B we find broad emission with P Cygni profiles in several Balmer hydrogen emission lines and for the first time in several Paschen hydrogen lines and in several He i emission lines, implying temporal evolution of the LBV on a time scale of 8 years. The Hα luminosity of the LBV star is by one order of magnitude higher than the one obtained for the LBV star in NGC 2363 ≡ Mrk 71 which has a slightly higher metallicity 12+logO/H = 7.87. The terminal velocity of the stellar wind in the low-metallicity LBV of PHL293

  10. Galaxy evolution. Galactic paleontology.

    Science.gov (United States)

    Tolstoy, Eline

    2011-07-08

    Individual low-mass stars have very long lives, comparable to the age of the universe, and can thus be used to probe ancient star formation. At present, such stars can be identified and studied only in the Milky Way and in the very closest of our neighboring galaxies, which are predominantly small dwarf galaxies. These nearby ancient stars are a fossil record that can provide detailed information about the physical processes that dominated the epoch of galaxy formation and subsequent evolution.

  11. Slowly Spinning Southern M Dwarfs

    Science.gov (United States)

    Newton, Elisabeth; Mondrik, Nicholas; Irwin, Jonathan; Charbonneau, David

    2018-01-01

    M dwarf stars are the most common type of star in the galaxy, but their ages are challenging to determine due to their trillion-year lifetimes on the main sequence. Consequently, the evolution of rotation and magnetism at field ages is difficult to investigate observationally. M dwarfs in the Solar Neighborhood provide a unique opportunity to make progress in this area due to the availability of parallaxes and the accessibility of spectroscopy. We have used new rotation period measurements and our compilation of H-alpha emission for nearby M dwarfs to explore two questions: 1) What is the longest rotation period an M dwarf can have? And 2) Do M dwarfs undergo an era of rapid angular momentum evolution? Here, we focus on the view from the Southern hemisphere, presenting approximately 200 new rotation periods for fully convective M dwarfs. Amongst the highest-quality datasets, we identify rotation periods in three-quarters of all stars; of these, half have rotation periods longer than 70 days. The longest rotation period we detect is 148 days, which is for a 0.15 solar-mass star. The lack of M dwarfs with intermediate rotation periods that we previously identified persists, supporting our hypothesis that M dwarfs rapidly spin down from 10-day to 100-day periods.ERN is supported by the National Science Foundation Astronomy & Astrophysics Postdoctoral Fellowship. We gratefully acknowledge support from the David and Lucille Packard Foundation, the National Science Foundation, and the John Templeton Foundation.

  12. White dwarf cooling sequences and cosmochronology

    Science.gov (United States)

    Isern, J.; Artigas, A.; García-Berro, E.

    2013-03-01

    The evolution of white dwarfs is a simple gravothermal process. This means that their luminosity function, i.e. the number of white dwarfs per unit bolometric magnitude and unit volume as a function of bolometric magnitude, is a monotonically increasing function that decreases abruptly as a consequence of the finite age of the Galaxy. The precision and the accuracy of the white dwarf luminosity functions obtained with the recent large surveys together with the improved quality of the theoretical models of evolution of white dwarfs allow to feed the hope that in a near future it will be possible to reconstruct the history of the different Galactic populations.

  13. The Survey of HI in Extremely Low-mass Dwarfs: A Multi-Wavelength Perspective on Low-Mass Galaxy Evolution

    NARCIS (Netherlands)

    Cannon, John M.; McNichols, Andrew; Teich, Yaron; Adams, Elizabeth A.; Giovanelli, Riccardo; Haynes, Martha P.; McQuinn, Kristen B.; Salzer, John Joseph; Skillman, Evan D.; Dolphin, Andrew E.; Elson, Edward C.; Haurberg, Nathalie C.; Huang, Shan; Janowiecki, Steven; Jozsa, Gyula; Leisman, Luke; Ott, Juergen; Papastergis, Emmanouil; Rhode, Katherine L.; Saintonge, Amelie; Van Sistine, Angela; Warren, Steven R.

    2017-01-01

    The “Survey of HI in Extremely Low-mass Dwarfs” (SHIELD) is a multiwavelength study of local volume low-mass galaxies drawn from the Arecibo Legacy Fast ALFA (ALFALFA) catalog. HST/Spitzer joint program GO-12658 revealed the stellar populations of the first 12 SHIELD galaxies (Cannon et al. 2011),

  14. V3885 Sagittarius: A Comparison With a Range of Standard Model Accretion Disks

    Science.gov (United States)

    Linnell, Albert P.; Godon, Patrick; Hubeny, Ivan; Sion, Edward M; Szkody, Paula; Barrett, Paul E.

    2009-01-01

    A chi-squared analysis of standard model accretion disk synthetic spectrum fits to combined Far Ultraviolet Spectroscopic Explorer and Space Telescope Imaging Spectrograph spectra of V3885 Sagittarius, on an absolute flux basis, selects a model that accurately represents the observed spectral energy distribution. Calculation of the synthetic spectrum requires the following system parameters. The cataclysmic variable secondary star period-mass relation calibrated by Knigge in 2006 and 2007 sets the secondary component mass. A mean white dwarf (WD) mass from the same study, which is consistent with an observationally determined mass ratio, sets the adopted WD mass of 0.7M(solar mass), and the WD radius follows from standard theoretical models. The adopted inclination, i = 65 deg, is a literature consensus, and is subsequently supported by chi-squared analysis. The mass transfer rate is the remaining parameter to set the accretion disk T(sub eff) profile, and the Hipparcos parallax constrains that parameter to mas transfer = (5.0 +/- 2.0) x 10(exp -9) M(solar mass)/yr by a comparison with observed spectra. The fit to the observed spectra adopts the contribution of a 57,000 +/- 5000 K WD. The model thus provides realistic constraints on mass transfer and T(sub eff) for a large mass transfer system above the period gap.

  15. STELLAR KINEMATICS AND STRUCTURAL PROPERTIES OF VIRGO CLUSTER DWARF EARLY-TYPE GALAXIES FROM THE SMAKCED PROJECT. II. THE SURVEY AND A SYSTEMATIC ANALYSIS OF KINEMATIC ANOMALIES AND ASYMMETRIES

    Energy Technology Data Exchange (ETDEWEB)

    Toloba, E.; Guhathakurta, P. [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Peletier, R. F. [Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen (Netherlands); Boselli, A. [Laboratoire d' Astrophysique de Marseille-LAM, Université d' Aix-Marseille and CNRS, UMR 7326, 38 rue F. Joliot-Curie, 13388 Marseille Cedex 13 (France); Lisker, T. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12-14, D-69120 Heidelberg (Germany); Falcón-Barroso, J.; Ryś, A. [Instituto de Astrofísica de Canarias, Vía Láctea s/n, La Laguna, Tenerife (Spain); Simon, J. D. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Van de Ven, G. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Paudel, S. [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Emsellem, E. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748, Garching (Germany); Janz, J. [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Den Brok, M. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Gorgas, J. [Departamento de Astrofísica y Física de la Atmósfera, Universidad Complutense de Madrid, E-28040, Madrid (Spain); Hensler, G. [Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna (Austria); Laurikainen, E.; Salo, H. [Division of Astronomy, Department of Physics, PO Box 3000, FI-90014 University of Oulu (Finland); Niemi, S.-M., E-mail: toloba@ucolick.org [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2015-01-01

    We present spatially resolved kinematics and global stellar populations and mass-to-light ratios for a sample of 39 dwarf early-type (dE) galaxies in the Virgo cluster studied as part of the SMAKCED stellar absorption-line spectroscopy and imaging survey. This sample is representative of the early-type population in the Virgo cluster in the absolute magnitude range –19.0 < M{sub r} < –16.0 and of all morphological subclasses found in this galaxy population. For each dE, we measure the rotation curve and velocity dispersion profile and fit an analytic function to the rotation curve. We study the significance of the departure of the rotation curve from the best-fit analytic function (poorly fit) and of the difference between the approaching and receding sides of the rotation curve (asymmetry). Our sample includes two dEs with kinematically decoupled cores that have been previously reported. We find that 62 ± 8% (23 out of the 39) of the dEs have a significant anomaly in their rotation curve. Analysis of the images reveals photometric anomalies for most galaxies. However, there is no clear correlation between the significance of the photometric and kinematic anomalies. We measure age-sensitive (H{sub β} and H{sub γA}) and metallicity sensitive (Fe4668 and Mgb) Lick spectral indices in the LIS-5 Å system. This population of galaxies exhibits a wide range of ages and metallicities; we also find that 4 dEs show clear evidence of emission partially filling in the Balmer absorption lines. Finally, we estimate the total masses and dark matter fractions of the dEs and plot them in the mass-size, the mass-velocity dispersion, and the fundamental plane scaling relations. The dEs seem to be the bridge between massive early-type galaxies and dSphs, and have a median total mass within the R{sub e} of log M{sub e} = 9.1 ± 0.2 and a median dark matter fraction within the R{sub e} of f {sub DM} = 46 ± 18%. Any formation model for the dE galaxy class must account for this

  16. Characterization of star-forming dwarf galaxies at 0.1 ≲z ≲ 0.9 in VUDS: probing the low-mass end of the mass-metallicity relation

    Science.gov (United States)

    Calabrò, A.; Amorín, R.; Fontana, A.; Pérez-Montero, E.; Lemaux, B. C.; Ribeiro, B.; Bardelli, S.; Castellano, M.; Contini, T.; De Barros, S.; Garilli, B.; Grazian, A.; Guaita, L.; Hathi, N. P.; Koekemoer, A. M.; Le Fèvre, O.; Maccagni, D.; Pentericci, L.; Schaerer, D.; Talia, M.; Tasca, L. A. M.; Zucca, E.

    2017-05-01

    Context. The study of statistically significant samples of star-forming dwarf galaxies (SFDGs) at different cosmic epochs is essential for the detailed understanding of galaxy assembly and chemical evolution. However, the main properties of this large population of galaxies at intermediate redshift are still poorly known. Aims: We present the discovery and spectrophotometric characterization of a large sample of 164 faint (IAB 23-25 mag) SFDGs at redshift 0.13 ≤ z ≤ 0.88 selected by the presence of bright optical emission lines in the VIMOS Ultra Deep Survey (VUDS). We investigate their integrated physical properties and ionization conditions, which are used to discuss the low-mass end of the mass-metallicity relation (MZR) and other key scaling relations. Methods: We use optical VUDS spectra in the COSMOS, VVDS-02h, and ECDF-S fields, as well as deep multi-wavelength photometry that includes HST-ACS F814W imaging, to derive stellar masses, extinction-corrected star-formation rates (SFR), and gas-phase metallicities of SFDGs. For the latter, we use the direct method and a Te-consistent approach based on the comparison of a set of observed emission lines ratios with the predictions of detailed photoionization models. Results: The VUDS SFDGs are compact (median re 1.2 kpc), low-mass (M∗ 107-109M⊙) galaxies with a wide range of star-formation rates (SFR(Hα) 10-3-101M⊙/yr) and morphologies. Overall, they show a broad range of subsolar metallicities (12 +log (O/H) =7.26-8.7; 0.04 ≲Z/Z⊙≲ 1). Nearly half of the sample are extreme emission-line galaxies (EELGs) characterized by high equivalent widths and emission line ratios indicative of higher excitation and ionization conditions. The MZR of SFDGs shows a flatter slope compared to previous studies of galaxies in the same mass range and redshift. We find the scatter of the MZR is partly explained in the low mass range by varying specific SFRs and gas fractions amongst the galaxies in our sample. In

  17. X-ray flaring from Sagittarius A*: exploring the Milky Way black hole through its brightest flares

    Science.gov (United States)

    Nynka, Melania; Haggard, Daryl

    2017-08-01

    Sagittarius A* is the supermassive black hole at the center of our own Milky Way galaxy. Ambitious monitoring campaigns have yielded rich multiwavelength, time-resolved data, which have the power to probe the physical processes that underlie Sgr A*'s quiescent and flare emission. In 2013 and 2014 the Chandra X-ray Observatory captured two extremely luminous flares from Sgr A*, the two brightest ever detected in X-ray. I will describe the spectral and temporal properties of these flares, how they compare to previous analysis, and the possible physical processes driving the Sgr A* variability. I will also discuss the power spectral densities of the flares which may contain information about the black hole's ISCO and spin.

  18. White dwarf dynamical interactions

    OpenAIRE

    Aznar Siguan, Gabriela

    2015-01-01

    Premi Extraordinari de Doctorat, promoció 2014-2015. Àmbit de Ciències Merging white dwarfs is a promising channel to trigger Type Ia supernovae, known as the double degenerate scenario. Supernovae are stellar explosions that radiate as much energy as any ordinary star is expected to emit over its entire life span, outshining briefly the whole hosting galaxy. They enrich the interstellar medium with higher mass elements and trigger the formation of new stars by the produced expanding shock...

  19. On order and chaos in the mergers of galaxies

    Science.gov (United States)

    Vandervoort, Peter O.

    2018-03-01

    This paper describes a low-dimensional model of the merger of two galaxies. The governing equations are the complete sets of moment equations of the first and second orders derived from the collisionless Boltzmann equations representing the galaxies. The moment equations reduce to an equation governing the relative motion of the galaxies, tensor virial equations, and equations governing the kinetic energy tensors. We represent the galaxies as heterogeneous ellipsoids with Gaussian stratifications of their densities, and we represent the mean stellar motions in terms of velocity fields that sustain those densities consistently with the equation of continuity. We reduce and solve the governing equations for a head-on encounter of a dwarf galaxy with a giant galaxy. That reduction includes the effect of dynamical friction on