WorldWideScience

Sample records for sagittal coronal planes

  1. The angle of inclination of the native ACL in the coronal and sagittal planes.

    Science.gov (United States)

    Reid, Jonathan C; Yonke, Bret; Tompkins, Marc

    2017-04-01

    The purpose of this cross-sectional study was to evaluate the angle of inclination of the native anterior cruciate ligament (ACL) in both the sagittal and coronal planes and to evaluate these findings based on sex, height, BMI, and skeletal maturity. Inclusion criteria for the study included patients undergoing routine magnetic resonance imaging (MRI) of the knee at a single outpatient orthopedic center who had an intact ACL on MRI. Measurements of the angle of inclination were made on MRIs in both the sagittal and coronal planes. Patients were compared based on sex, height, BMI, and skeletal maturity. One-hundred and eighty-eight patients were included (36 skeletally immature/152 skeletally mature; 98 male/90 female). The overall angle of inclination was 74.3° ± 4.8° in the coronal plane and 46.9° ± 4.9° in the sagittal plane. Skeletally immature patients (coronal: 71.8° ± 6.1°; sagittal: 44.7° ± 5.5°) were significantly different in both coronal and sagittal planes (P = 0.04 and 0.01, respectively) from skeletally mature patients (coronal: 75.3° ± 4.7°; sagittal: 47.4° ± 4.7°). There were no differences based on sex, height, or BMI. There are differences between the angle of inclination findings in this study and other studies, which could be due to MRI and measurement techniques. Clinically, skeletal maturity may be important to account for when using the ACL angle of inclination to evaluate anatomic ACL reconstruction. Prognostic retrospective study, Level of evidence III.

  2. Evaluation of uterine peristalsis using cine MRI on the coronal plane in comparison with the sagittal plane.

    Science.gov (United States)

    Shitano, Fuki; Kido, Aki; Kataoka, Masako; Fujimoto, Koji; Kiguchi, Kayo; Fushimi, Yasutaka; Togashi, Kaori

    2016-01-01

    Uterine peristalsis is supposed to be closely related to the early stages of reproduction. Sperms are preferentially transported from the uterine cervix to the side of the tube with the dominant follicle. However, with respect to magnetic resonance imaging (MRI), uterine peristalsis has only been evaluated at the sagittal plane of cine MRI. To evaluate and compare uterine peristalsis both on sagittal and coronal planes using cine MRI. Internal ethics committee approval was obtained, and subjects provided informed written consent. Thirty-one women underwent MRI scans in the periovulatory phase of the menstrual cycle. Cine MR images obtained by fast advanced spin echo sequence at 3-T field strength magnet (Toshiba Medical Systems) were visually evaluated by two independent radiologists. The frequency and the direction of peristalsis, and the presence of outer myometrium conduction of signal intensities (OMC), were evaluated. The laterality of the dominant follicle was determined on axial images and compared with the peristaltic direction in fundus. The subjects in which peristaltic directions were more clearly recognized were significantly frequent in coronal planes than in sagittal planes (P < 0.05). There was no significant difference in the peristaltic frequency between the sagittal and the coronal plane. However, the OMC was more recognized in the coronal plane than in the sagittal plane (P < 0.05). Peristaltic waves conducted toward the possible ovulation side were observed in only three of the 10 subjects. OMC of uterine peristalsis was better demonstrated in the coronal plane compared to the sagittal plane. © The Foundation Acta Radiologica 2015.

  3. Alignment in the transverse plane, but not sagittal or coronal plane, affects the risk of recurrent patella dislocation.

    Science.gov (United States)

    Takagi, Shigeru; Sato, Takashi; Watanabe, Satoshi; Tanifuji, Osamu; Mochizuki, Tomoharu; Omori, Go; Endo, Naoto

    2017-11-17

    Abnormalities of lower extremity alignment (LEA) in recurrent patella dislocation (RPD) have been studied mostly by two-dimensional (2D) procedures leaving three-dimensional (3D) factors unknown. This study aimed to three-dimensionally examine risk factors for RPD in lower extremity alignment under the weight-bearing conditions. The alignment of 21 limbs in 15 RPD subjects was compared to the alignment of 24 limbs of 12 healthy young control subjects by an our previously reported 2D-3D image-matching technique. The sagittal, coronal, and transverse alignment in full extension as well as the torsional position of the femur (anteversion) and tibia (tibial torsion) under weight-bearing standing conditions were assessed by our previously reported 3D technique. The correlations between lower extremity alignment and RPD were assessed using multiple logistic regression analysis. The difference of lower extremity alignment in RPD between under the weight-bearing conditions and under the non-weight-bearing conditions was assessed. In the sagittal and coronal planes, there was no relationship (statistically or by clinically important difference) between lower extremity alignment angle and RPD. However, in the transverse plane, increased external tibial rotation [odds ratio (OR) 1.819; 95% confidence interval (CI) 1.282-2.581], increased femoral anteversion (OR 1.183; 95% CI 1.029-1.360), and increased external tibial torsion (OR 0.880; 95% CI 0.782-0.991) were all correlated with RPD. The tibia was more rotated relative to femur at the knee joint in the RPD group under the weight-bearing conditions compared to under the non-weight-bearing conditions (p alignment parameters in the transverse plane related to the risk of RPD, while in the sagittal and coronal plane alignment parameters did not correlate with RPD. The clinical importance of this study is that the 3D measurements more directly, precisely, and sensitively detect rotational parameters associated with RPD and

  4. Normal anatomy of the female pelvis in axial, coronal, and sagittal planes demonstrated with reformatted CT

    International Nuclear Information System (INIS)

    Constant, O.C.; Cooke, J.C.; Parsons, C.A.

    1987-01-01

    Axial CT is used in assessing gynecologic malignancies. Accurate delineation of local tumor extent in carcinoma of the cervix is important in initial staging and in planning subsequent management. A modified scanning technique produces reformatted coronal and sagittal images, which demonstrate additional valuable information about the cardinal ligaments, parametria, ureters, boundaries between the cervix, bladder, and rectum, and extension to vagina and uterus. This information is illustrated by representative axial, coronal, and sagittal scans. Familiarity with normal appearances is essential to allow correct interpretation of pathology

  5. Usefulness of the dynamic gadolinium-enhanced magnetic resonance imaging with simultaneous acquisition of coronal and sagittal planes for detection of pituitary microadenomas.

    Science.gov (United States)

    Lee, Han Bee; Kim, Sung Tae; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik; Choi, Jin Wook

    2012-03-01

    Does dynamic gadolinium-enhanced imaging with simultaneous acquisition of coronal and sagittal planes improve diagnostic accuracy of pituitary microadenomas compared with coronal images alone? Fifty-six patients underwent 3-T sella MRI including dynamic simultaneous acquisition of coronal and sagittal planes after gadolinium injection. According to conspicuity, lesions were divided into four scores (0, no; 1, possible; 2, probable; 3, definite delayed enhancing lesion). Additional information on supplementary sagittal images compared with coronal ones was evaluated with a 4-point score (0, no; 1, possible; 2, probable; 3, definite additional information). Accuracy of tumour detection was calculated. Average scores for lesion detection of a combination of two planes, coronal, and sagittal images were 2.59, 2.32, and 2.18. 6/10 lesions negative on coronal images were detected on sagittal ones. Accuracy of a combination of two planes, of coronal and of sagittal images was 92.86%, 82.14% and 75%. Six patients had probable or definite additional information on supplementary sagittal images compared with coronal ones alone (10.71%). Dynamic MRI with combined coronal and sagittal planes was more accurate for detection of pituitary microadenomas than routinely used coronal images. Simultaneous dynamic enhanced acquisition can make study time fast and costs low. We present a new dynamic MRI technique for evaluating pituitary microadenomas • This technique provides simultaneous acquisition of contrast enhanced coronal and sagittal images. • This technique makes the diagnosis more accurate and reduces the examination time. • Such MR imaging only requires one single bolus of contrast agent.

  6. An algorithm based on OmniView technology to reconstruct sagittal and coronal planes of the fetal brain from volume datasets acquired by three-dimensional ultrasound.

    Science.gov (United States)

    Rizzo, G; Capponi, A; Pietrolucci, M E; Capece, A; Aiello, E; Mammarella, S; Arduini, D

    2011-08-01

    To describe a novel algorithm, based on the new display technology 'OmniView', developed to visualize diagnostic sagittal and coronal planes of the fetal brain from volumes obtained by three-dimensional (3D) ultrasonography. We developed an algorithm to image standard neurosonographic planes by drawing dissecting lines through the axial transventricular view of 3D volume datasets acquired transabdominally. The algorithm was tested on 106 normal fetuses at 18-24 weeks of gestation and the visualization rates of brain diagnostic planes were evaluated by two independent reviewers. The algorithm was also applied to nine cases with proven brain defects. The two reviewers, using the algorithm on normal fetuses, found satisfactory images with visualization rates ranging between 71.7% and 96.2% for sagittal planes and between 76.4% and 90.6% for coronal planes. The agreement rate between the two reviewers, as expressed by Cohen's kappa coefficient, was > 0.93 for sagittal planes and > 0.89 for coronal planes. All nine abnormal volumes were identified by a single observer from among a series including normal brains, and eight of these nine cases were diagnosed correctly. This novel algorithm can be used to visualize standard sagittal and coronal planes in the fetal brain. This approach may simplify the examination of the fetal brain and reduce dependency of success on operator skill. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  7. 1975 Memorial Award Paper. Image generation and display techniques for CT scan data. Thin transverse and reconstructed coronal and sagittal planes.

    Science.gov (United States)

    Glenn, W V; Johnston, R J; Morton, P E; Dwyer, S J

    1975-01-01

    The various limitations to computerized axial tomographic (CT) interpretation are due in part to the 8-13 mm standard tissue plane thickness and in part to the absence of alternative planes of view, such as coronal or sagittal images. This paper describes a method for gathering multiple overlapped 8 mm transverse sections, subjecting these data to a deconvolution process, and then displaying thin (1 mm) transverse as well as reconstructed coronal and sagittal CT images. Verification of the deconvolution technique with phantom experiments is described. Application of the phantom results to human post mortem CT scan data illustrates this method's faithful reconstruction of coronal and sagittal tissue densities when correlated with actual specimen photographs of a sectioned brain. A special CT procedure, limited basal overlap scanning, is proposed for use on current first generation CT scanners without hardware modification.

  8. A Proposal of New Reference System for the Standard Axial, Sagittal, Coronal Planes of Brain Based on the Serially-Sectioned Images

    Science.gov (United States)

    Park, Jin Seo; Park, Hyo Seok; Shin, Dong Sun; Har, Dong-Hwan; Cho, Zang-Hee; Kim, Young-Bo; Han, Jae-Yong; Chi, Je-Geun

    2010-01-01

    Sectional anatomy of human brain is useful to examine the diseased brain as well as normal brain. However, intracerebral reference points for the axial, sagittal, and coronal planes of brain have not been standardized in anatomical sections or radiological images. We made 2,343 serially-sectioned images of a cadaver head with 0.1 mm intervals, 0.1 mm pixel size, and 48 bit color and obtained axial, sagittal, and coronal images based on the proposed reference system. This reference system consists of one principal reference point and two ancillary reference points. The two ancillary reference points are the anterior commissure and the posterior commissure. And the principal reference point is the midpoint of two ancillary reference points. It resides in the center of whole brain. From the principal reference point, Cartesian coordinate of x, y, z could be made to be the standard axial, sagittal, and coronal planes. PMID:20052359

  9. Progression of spinal deformity in wheelchair-dependent patients with Duchenne muscular dystrophy who are not treated with steroids: coronal plane (scoliosis) and sagittal plane (kyphosis, lordosis) deformity.

    Science.gov (United States)

    Shapiro, F; Zurakowski, D; Bui, T; Darras, B T

    2014-01-01

    We determined the frequency, rate and extent of development of scoliosis (coronal plane deformity) in wheelchair-dependent patients with Duchenne muscular dystrophy (DMD) who were not receiving steroid treatment. We also assessed kyphosis and lordosis (sagittal plane deformity). The extent of scoliosis was assessed on sitting anteroposterior (AP) spinal radiographs in 88 consecutive non-ambulatory patients with DMD. Radiographs were studied from the time the patients became wheelchair-dependent until the time of spinal fusion, or the latest assessment if surgery was not undertaken. Progression was estimated using a longitudinal mixed-model regression analysis to handle repeated measurements. Scoliosis ≥ 10° occurred in 85 of 88 patients (97%), ≥ 20° in 78 of 88 (89%) and ≥ 30° in 66 of 88 patients (75%). The fitted longitudinal model revealed that time in a wheelchair was a highly significant predictor of the magnitude of the curve, independent of the age of the patient (p lordosis (16 (27%) abnormal and seven (11%) normal). This study provides a baseline to assess the effects of steroids and other forms of treatment on the natural history of scoliosis in patients with DMD, and an approach to assessing spinal deformity in the coronal and sagittal planes in wheelchair-dependent patients with other neuromuscular disorders.

  10. Satisfactory rate of post-processing visualization of fetal cerebral axial, sagittal, and coronal planes from three-dimensional volumes acquired in routine second trimester ultrasound practice by sonographers of peripheral centers.

    Science.gov (United States)

    Rizzo, Giuseppe; Pietrolucci, Maria Elena; Capece, Giuseppe; Cimmino, Ernesto; Colosi, Enrico; Ferrentino, Salvatore; Sica, Carmine; Di Meglio, Aniello; Arduini, Domenico

    2011-08-01

    The aim of this study was to evaluate the feasibility to visualize central nervous system (CNS) diagnostic planes from three-dimensional (3D) brain volumes obtained in ultrasound facilities with no specific experience in fetal neurosonography. Five sonographers prospectively recorded transabdominal 3D CNS volumes starting from an axial approach on 500 consecutive pregnancies at 19-24 weeks of gestation undergoing routine ultrasound examination. Volumes were sent to the referral center (Department of Obstetrics and Gynecology, Università Roma Tor Vergata, Italy) and two independent reviewers with experience in 3D ultrasound assessed their quality in the display of axial, coronal, and sagittal planes. CNS volumes were acquired in 491/500 pregnancies (98.2%). The two reviewers acknowledged the presence of satisfactory images with a visualization rate ranging respectively between 95.1% and 97.14% for axial planes, 73.72% and 87.16% for coronal planes, and 78.41% and 94.29% for sagittal planes. The agreement rate between the two reviewers as expressed by Cohen's kappa coefficient was >0.87 for axial planes, >0.89 for coronal planes, and >0.94 for sagittal planes. The presence of a maternal body mass index >30 alters the probability of achieving satisfactory CNS views, while existence of previous maternal lower abdomen surgery does not affect the quality of the reconstructed planes. CNS volumes acquired by 3D ultrasonography in peripheral centers showed a quality high enough to allow a detailed fetal neurosonogram.

  11. Intrinsic and Extrinsic Contributions to Seated Balance in the Sagittal and Coronal Planes: Implications for Trunk Control After Spinal Cord Injury.

    Science.gov (United States)

    Audu, Musa L; Triolo, Ronald J

    2015-08-01

    The contributions of intrinsic (passive) and extrinsic (active) properties of the human trunk, in terms of the simultaneous actions about the hip and spinal joints, to the control of sagittal and coronal seated balance were examined. Able-bodied (ABD) and spinal-cord-injured (SCI) volunteers sat on a moving platform which underwent small amplitude perturbations in the anterior-posterior (AP) and medial-lateral (ML) directions while changes to trunk orientation were measured. A linear parametric model that related platform movement to trunk angle was fit to the experimental data by identifying model parameters in the time domain. The results showed that spinal cord injury leads to a systematic reduction in the extrinsic characteristics, while most of the intrinsic characteristics were rarely affected. In both SCI and ABD individuals, passive characteristics alone were not enough to maintain seated balance. Passive stiffness in the ML direction was almost 3 times that in the AP direction, making more extrinsic mechanisms necessary for balance in the latter direction. Proportional and derivative terms of the extrinsic model made the largest contribution to the overall output from the active system, implying that a simple proportional plus derivative (PD) controller structure will suffice for restoring seated balance after spinal cord injury.

  12. A Comparison of Plain Radiography with Computer Tomography in Determining Coronal and Sagittal Alignments following Total Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    Solayar GN

    2017-07-01

    Full Text Available INTRODUCTION: Optimal coronal and sagittal component positioning is important in achieving a successful outcome following total knee arthroplasty (TKA. Modalities to determine post-operative alignment include plain radiography and computer tomography (CT imaging. This study aims to determine the accuracy and reliability of plain radiographs in measuring coronal and sagittal alignment following TKA. MATERIALS AND METHODS: A prospective, consecutive study of 58 patients undergoing TKA was performed comparing alignment data from plain radiographs and CT imaging. Hip- knee-angle (HKA, sagittal femoral angle (SFA and sagittal tibial angle (STA measurements were taken by two observers from plain radiographs and compared with CT alignment. Intra- and inter-observer correlation was calculated for each measurement. RESULTS: Intra-observer correlation was excellent for HKA (r>0.89 with a mean difference of 0.95 and STA (r>0.8 compared to SFA (r=0.5. When comparing modalities (radiographs vs CT, HKA estimations for both observers showed the least maximum and mean differences while SFA observations were the least accurate. CONCLUSION: Radiographic estimation of HKA showed excellent intra- and inter-observer correlation and corresponds well with CT imaging. However, radiographic estimation of sagittal plane alignment was less reliably measured and correlated less with CT imaging. Plain radiography was found to be inferior to CT for estimation of biplanar prosthetic alignment following TKA.

  13. Pictorial essay of ultrasound-reconstructed coronal plane images of the uterus in different uterine pathologies.

    Science.gov (United States)

    Grigore, Mihaela; Grigore, Anamaria; Gafitanu, Dumitru; Furnica, Cristina

    2018-04-01

    Imaging in the major planes (horizontal, coronal, and sagittal) of the uterus is important for determining anatomy and allowing the findings to be standardized, and for evaluating and diagnosing different pathological conditions in clinical practice. Examination of the coronal plane is an important step in identifying uterine pathologies and their relationships to the endometrial canal. Three-dimensional (3D) ultrasound reveals the normal anatomy better and improves the depiction of abnormal anatomy, as the coronal plane of the uterus can easily be obtained using 3D reconstruction techniques. Our pictorial essay demonstrates that adding 3D ultrasound to a routine gynecological workup can be beneficial for clinicians, enabling a precise diagnosis to be made. In addition, the volumes obtained and stored by 3D ultrasound can allow students or residents to become more familiar with normal and abnormal pelvic structures. Clin. Anat. 31:373-379, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Clinically acceptable agreement between the ViMove wireless motion sensor system and the Vicon motion capture system when measuring lumbar region inclination motion in the sagittal and coronal planes

    DEFF Research Database (Denmark)

    Mjøsund, Hanne Leirbekk; Boyle, Eleanor; Kjær, Per

    2017-01-01

    . CONCLUSIONS: We found a clinically acceptable level of agreement between these two methods for measuring standing lumbar inclination motion in these two cardinal movement planes. Further research should investigate the ViMove system's ability to measure lumbar motion in more complex 3D functional movements...

  15. Mid-sagittal plane and mid-sagittal surface optimization in brain MRI using a local symmetry measure

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Skoglund, Karl; Ryberg, Charlotte

    2005-01-01

    , the mid-sagittal plane is not always planar, but a curved surface resulting in poor partitioning of the brain hemispheres. To account for this, this paper also investigates an optimization strategy which fits a thin-plate spline surface to the brain data using a robust least median of squares estimator...

  16. Brief communication: age and fractal dimensions of human sagittal and coronal sutures

    DEFF Research Database (Denmark)

    Lynnerup, Niels; Jacobsen, Jens Christian Brings

    2003-01-01

    The fractal dimensions of human sagittal and coronal sutures were calculated on 31 complete skulls from the Terry Collection. The aim was to investigate whether the fractal dimension, relying on the whole sutural length, might yield a better description of age-related changes in sutural morphology......, as opposed to other methods of quantification, which generally rely on more arbitrary scoring systems. However, the fractal dimension did not yield better age correlations than other previously described methods. At best, the results reflected the general observation that young adults below age 40 years...

  17. Os acromiale: evaluation of markers for identification on sagittal and coronal oblique MR images

    Energy Technology Data Exchange (ETDEWEB)

    Uri, D.S. [University of Michigan, Dept. of Radiology, Ann Arbor, MI (United States)]|[Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia (United States); Kneeland, J.B. [Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia (United States); Herzog, R. [Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia (United States)

    1997-01-01

    An os acromiale is a developmental abnormality of ossification involving the anterior acromion which may contribute to impingement and rotator cuff disease. When axial MR sections do not include the acromioclavicular joint, the diagnosis of this often subtle abnormality will rest on its recognition on oblique coronal and sagittal images where it mimics the acromioclavicular joint. The identification of this anomaly is important as it frequently alters the type of surgical procedure utilized in symptomatic patients. We evaluate several imaging features which may be used to diagnose an os acromiale in these cases. (orig.). With 5 figs.

  18. Os acromiale: evaluation of markers for identification on sagittal and coronal oblique MR images

    International Nuclear Information System (INIS)

    Uri, D.S.; Kneeland, J.B.; Herzog, R.

    1997-01-01

    An os acromiale is a developmental abnormality of ossification involving the anterior acromion which may contribute to impingement and rotator cuff disease. When axial MR sections do not include the acromioclavicular joint, the diagnosis of this often subtle abnormality will rest on its recognition on oblique coronal and sagittal images where it mimics the acromioclavicular joint. The identification of this anomaly is important as it frequently alters the type of surgical procedure utilized in symptomatic patients. We evaluate several imaging features which may be used to diagnose an os acromiale in these cases. (orig.). With 5 figs

  19. Improving tibial component coronal alignment during total knee arthroplasty with use of a tibial planing device.

    Science.gov (United States)

    Patil, Shantanu; D'Lima, Darryl D; Fait, James M; Colwell, Clifford W

    2007-02-01

    The outcomes of knee arthroplasty have been shown to be affected by component alignment. Intramedullary and extramedullary alignment instrumentation are fairly effective for achieving the desired mean tibial component coronal alignment. However, there are outliers representing >3 degrees of varus or valgus alignment with respect to the anatomic tibial shaft axis. We measured the efficacy of a custom tibial planing device for reducing the outliers in tibial alignment. We designed a tibial planing tool in an effort to improve tibial alignment. In one cohort (100 knees), we used traditional intramedullary alignment instrumentation to make the tibial bone cut. In a second cohort (120 knees), we used intramedullary alignment instrumentation to make the cut and also used a custom tool to check the cut and to correct an inexact cut. Tibial tray alignment relative to the long axis of the tibial shaft was measured in the coronal and sagittal planes on postoperative radiographs. The target coronal alignment was 90 degrees with respect to the tibial shaft axis (with alignment). A total of 100 anteroposterior radiographs and sixty-five lateral radiographs were analyzed for the group that was treated with traditional instrumentation alone, and a total of 120 anteroposterior radiographs and fifty-five lateral radiographs were analyzed for the group that was treated with use of the custom tibial planing device. The mean coronal alignment of the tibial component was 89.5 degrees +/- 2.1 degrees in the group that was treated with traditional instrumentation alone and 89.6 degrees +/- 1.4 degrees in the group that was treated with use of the custom planing device. Although the mean coronal alignment was not significantly different, the number of outliers was substantially reduced when the custom planing device was used. All 120 components that had been aligned with use of the custom planing device were within 3 degrees of the target coronal alignment, compared with only eighty

  20. A systematic review of the angular values obtained by computerized photogrammetry in sagittal plane: a proposal for reference values.

    Science.gov (United States)

    Krawczky, Bruna; Pacheco, Antonio G; Mainenti, Míriam R M

    2014-05-01

    Reference values for postural alignment in the coronal plane, as measured by computerized photogrammetry, have been established but not for the sagittal plane. The objective of this study is to propose reference values for angular measurements used for postural analysis in the sagittal plane for healthy adults. Electronic databases (PubMed, BVS, Cochrane, Scielo, and Science Direct) were searched using the following key words: evaluation, posture, photogrammetry, and software. Articles published between 2006 and 2012 that used the PAS/SAPO (postural assessment software) were selected. Another inclusion criterion was the presentation of, at least, one of the following measurements: head horizontal alignment, pelvic horizontal alignment, hip angle, vertical alignment of the body, thoracic kyphosis, and lumbar lordosis. Angle samples of the selected articles were grouped 2 by 2 in relation to an overall average, which made possible total average, variance, and SD calculations. Six articles were included, and the following average angular values were found: 51.42° ± 4.87° (head horizontal alignment), -12.26° ± 5.81° (pelvic horizontal alignment), -6.40° ± 3.86° (hip angle), and 1.73° ± 0.94° (vertical alignment of the body). None of the articles contained the measurements for thoracic kyphosis and lumbar lordosis. The reference values can be adopted as reference for postural assessment in future researches if the same anatomical points are considered. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  1. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Science.gov (United States)

    Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie

    2017-01-01

    The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane. Key points An increased shoe collar height effectively reduced ankle joint ROM in the sagittal plane in weight-bearing dorsiflexion maneuver. Shoe collar height did not affect sagittal plane ankle kinematics and had no effect on performance during realistic jumping. Shoe collar height can affect the ankle plantarflexion torque and peak power during the push-off phase in lay-up jump. PMID:29238255

  2. Investigation of reconstruction conditions in sagittal-plane multiplanar reconstruction of the temporal bone

    International Nuclear Information System (INIS)

    Suzuki, Miyako; Yoshikawa, Hiroshi; Hosokawa, Akira; Ichikawa, Ginichiro; Kobayashi, Kenichi; Ando, Ichiro

    2002-01-01

    In recent years, it has become possible to quickly obtain a large amount of 3D data with high continuity by helical CT scanning, in which the body is scanned continuously in a helical fashion. MPR (multiplanar reconstruction) can be performed using this data to generate images in arbitrary sectional planes, making it possible to obtain sagittal-plane images of the highest quality, which is useful for surgical planning. However, the procedures involved are rather complicated. Therefore, this study was conducted to investigate conditions for standardization of sagittal-plane MPR examinations performed using Xvigor CT scanners and Xtension. The results showed that a slice interval of 1 mm, no imaging filter, a zooming factor of 1.5, a window level of 350, and a window width of 3500 are the optimal imaging conditions. The stapes can be visualized in 70% of cases with sagittal-plane MPR based on axial images, and can be recognized at surgery in 75% or more of cases. Images of consistent quality can be obtained by standardizing the conditions for sagittal-plane MPR, which should prove advantageous in the clinical setting. (author)

  3. Reliability and reproducibility analysis of the Cobb angle and assessing sagittal plane by computer-assisted and manual measurement tools.

    Science.gov (United States)

    Wu, Weifei; Liang, Jie; Du, Yuanli; Tan, Xiaoyi; Xiang, Xuanping; Wang, Wanhong; Ru, Neng; Le, Jinbo

    2014-02-06

    Although many studies on reliability and reproducibility of measurement have been performed on coronal Cobb angle, few results about reliability and reproducibility are reported on sagittal alignment measurement including the pelvis. We usually use SurgimapSpine software to measure the Cobb angle in our studies; however, there are no reports till date on its reliability and reproducible measurements. Sixty-eight standard standing posteroanterior whole-spine radiographs were reviewed. Three examiners carried out the measurements independently under the settings of manual measurement on X-ray radiographies and SurgimapSpine software on the computer. Parameters measured included pelvic incidence, sacral slope, pelvic tilt, Lumbar lordosis (LL), thoracic kyphosis, and coronal Cobb angle. SPSS 16.0 software was used for statistical analyses. The means, standard deviations, intraclass and interclass correlation coefficient (ICC), and 95% confidence intervals (CI) were calculated. There was no notable difference between the two tools (P = 0.21) for the coronal Cobb angle. In the sagittal plane parameters, the ICC of intraobserver reliability for the manual measures varied from 0.65 (T2-T5 angle) to 0.95 (LL angle). Further, for SurgimapSpine tool, the ICC ranged from 0.75 to 0.98. No significant difference in intraobserver reliability was found between the two measurements (P > 0.05). As for the interobserver reliability, measurements with SurgimapSpine tool had better ICC (0.71 to 0.98 vs 0.59 to 0.96) and Pearson's coefficient (0.76 to 0.99 vs 0.60 to 0.97). The reliability of SurgimapSpine measures was significantly higher in all parameters except for the coronal Cobb angle where the difference was not significant (P > 0.05). Although the differences between the two methods are very small, the results of this study indicate that the SurgimapSpine measurement is an equivalent measuring tool to the traditional manual in coronal Cobb angle, but is advantageous in spino

  4. Sagittal plane tilting deformity of the patellofemoral joint: a new concept in patients with chondromalacia patella.

    Science.gov (United States)

    Aksahin, Ertugrul; Aktekin, Cem Nuri; Kocadal, Onur; Duran, Semra; Gunay, Cüneyd; Kaya, Defne; Hapa, Onur; Pepe, Murad

    2017-10-01

    The aims of this study were to evaluate sagittal plane alignment in patients with chondromalacia patella via magnetic resonance imaging (MRI), analyse the relationships between the location of the patellar cartilaginous lesions and sagittal alignment and finally investigate the relationships between the sagittal plane malalignment and patellofemoral loadings using by finite element analysis. Fifty-one patients who were diagnosed with isolated modified Outerbridge grade 3-4 patellar chondromalacia based on MRI evaluation and 51 control subjects were evaluated. Chondromalacia patella patients were divided into three subgroups according to the chondral lesion location as superior, middle and inferior. The patella-patellar tendon angle (P-PT) was used for evaluation of sagittal alignment of patellofemoral joint. Each subgroup was compared with control group by using P-PT angle. To investigate the biomechanical effects of sagittal plane malpositioning on patellofemoral joint, bone models were created at 30°, 60° and 90° knee flexion by using mean P-PT angles, which obtained from patients with chondromalacia patellae and control subjects. The total loading and contact area values of the patellofemoral joints were investigated by finite element analysis. The mean age of all participants was 52.9 ± 8.2 years. The mean P-PT angle was significantly lower in chondromalacia group (142.1° ± 3.6°) compared to control group (144.5° ± 5.3°) (p = 0.008). Chondral lesions were located in superior, middle and inferior zones in 16, 20 and 15 patients, respectively. The mean P-PT angles in patients with superior (141.8 ± 2.7) and inferior subgroups (139.2 ± 2.3) were significantly lower than the values in the control group (p chondromalacia than in the control models at the same flexion degrees. There were increased loadings at 30° and 90° flexions in the sagittal patellar tilt models. This study revealed that sagittal plain malpositioning of the

  5. Interpolated sagittal and coronal reconstruction of CT images in the screening of neck abnormalities

    International Nuclear Information System (INIS)

    Koga, Issei

    1983-01-01

    Recontructed sagittal and coronal images were analyzed for their usefulness during clinical applications and to determine the correct use of recontruction techniques. Recontructed stereoscopic images can be formed by continuous or interrupted image reconstruction using interpolation. This study showed that lesions less than 10 mm in diameter should be made continuously and recontructed with uninterrupted technique. However, 5 mm interrupted distances are acceptable for interpolated reconstruction except in cases of lesions less than 10 mm in diameter. Clinically, interpolated reconstruction is not adequated for semicircular lesions less than 10 mm. Blood vessels and linear lesions are good condiated for the application of interpolated recontruction. Reconstruction of images using interrupted interpolation is therefore recommended for screening and for demonstrating correct stereoscopic information, except cases of small lesions less than 10 mm in diameter. Results of this study underscore the fact that obscure information in transverse CT images should be routinely utilized by interporating recontruction techniques, if transverse images are not made continuously. Interpolated recontruction may be helpful in obtaining stereoscopic information. (author)

  6. Tracking errors in tractography of the gastrocnemius muscle. A comparison between the transverse and sagittal planes

    International Nuclear Information System (INIS)

    Aoki, Takako; Tohdoh, Yukihiro; Tawara, Noriyuki; Okuwaki, Toru; Horiuchi, Akira; Itagaki, Takuma; Niitsu, Mamoru

    2010-01-01

    In scans taken in conventional direction, tracking errors may occur when using a streamline-based algorithm for the tractography of the gastrocnemius muscle. To solve errors in tracking, we applied tractography to the musculotendinous junction and performed fiber tracking on the gastrocnemius muscle of 10 healthy subjects with their written informed consent. We employed a spin-echo diffusion tensor imaging (SE-DTI) sequence with 6-direction diffusion gradient sensitization and acquired DTI images at 1.5 tesla using a body array coil with parallel imaging. We compared tractography obtained in the transverse and sagittal planes using anatomical reference and found that the gastrocnemius muscle and musculotendinous junction were significantly better visualized on sagittal scans and in 3 regions of interest. We utilized Mann-Whitney U-test to determine significant differences between rates of concordance (P 2 value of skeletal muscle is around 50 ms, and TE should be as short as possible. A streamline-based algorithm is based on the continuity of a vector. It is easy to take running of the muscle fiber in sagittal scan. Therefore, tracking error is hard to occur. In conclusion, sagittal scanning may be one way to eliminate tracking errors in the tractography of the gastrocnemius muscle. Tracking errors were smaller with sagittal scans than transverse scans, and sagittal scans allow better fiber tracking. (author)

  7. Clinical validation of coronal and sagittal spinal curve measurements based on three-dimensional vertebra vector parameters.

    Science.gov (United States)

    Somoskeöy, Szabolcs; Tunyogi-Csapó, Miklós; Bogyó, Csaba; Illés, Tamás

    2012-10-01

    (Group 4; n=49), and above 75° (Group 5; n=22). All study subjects were examined by EOS 2D imaging, resulting in anteroposterior (AP) and lateral (LAT) full spine, orthogonal digital X-ray images, in standing position. Conventional coronal and sagittal curvature measurements including sagittal L5 vertebra wedges were determined by 3 experienced examiners, using traditional Cobb methods on EOS 2D AP and LAT images. Vertebra vector-based measurements were performed as published earlier, based on computer-assisted calculations of corresponding spinal curvature. Vertebra vectors were generated by dedicated software from sterEOS 3D spine models reconstructed from EOS 2D images by the same three examiners. Manual measurements were performed by each examiner, thrice for sterEOS 3D reconstructions and twice for vertebra vector-based measurements. Means comparison t test, Pearson bivariate correlation analysis, reliability analysis by intraclass correlation coefficients for intraobserver reproducibility and interrater reliability were performed using SPSS v16.0 software. In comparison with manual 2D methods, only small and nonsignificant differences were detectable in vertebra vector-based curvature data for coronal curves and thoracic kyphosis, whereas the found difference in L1-L5 lordosis values was shown to be strongly related to the magnitude of corresponding L5 wedge. Intraobserver reliability was excellent for both methods, and interrater reproducibility was consistently higher for vertebra vector-based methods that was also found to be unaffected by the magnitude of coronal curves or sagittal plane deviations. Vertebra vector-based angulation measurements could fully substitute conventional manual 2D measurements, with similar accuracy and higher intraobserver reliability and interrater reproducibility. Vertebra vectors represent a truly 3D solution for clear and comprehensible 3D visualization of spinal deformities while preserving crucial parametric information for

  8. Video raster stereography back shape reconstruction: a reliability study for sagittal, frontal, and transversal plane parameters.

    Science.gov (United States)

    Schroeder, J; Reer, R; Braumann, K M

    2015-02-01

    As reliability of raster stereography was proved only for sagittal plane parameters with repeated measures on the same day, the present study was aiming at investigating variability and reliability of back shape reconstruction for all dimensions (sagittal, frontal, transversal) and for different intervals. For a sample of 20 healthy volunteers, intra-individual variability (SEM and CV%) and reliability (ICC ± 95% CI) were proved for sagittal (thoracic kyphosis, lumbar lordosis, pelvis tilt angle, and trunk inclination), frontal (pelvis torsion, pelvis and trunk imbalance, vertebral side deviation, and scoliosis angle), transversal (vertebral rotation), and functional (hyperextension) spine shape reconstruction parameters for different test-retest intervals (on the same day, between-day, between-week) by means of video raster stereography. Reliability was high for the sagittal plane (pelvis tilt, kyphosis and lordosis angle, and trunk inclination: ICC > 0.90), and good to high for lumbar mobility (0.86 < ICC < 0.97). Apart from sagittal plane spinal alignment, there was a lack of certainty for a high reproducibility indicated by wider ICC confidence intervals. So, reliability was fair to high for vertebral side deviation and the scoliosis angle (0.71 < ICC < 0.95), and poor to good for vertebral rotation values as well as for frontal plane upper body and pelvis position parameters (0.65 < ICC < 0.92). Coefficients for the between-day and between-week interval were a little lower than for repeated measures on the same day. Variability (SEM) was less than 1.5° or 1.5 mm, except for trunk inclination. Relative variability (CV) was greater in global trunk position and pelvis parameters (35-98%) than in scoliosis (14-20%) or sagittal sway parameters (4-8 %). Although we found a lower reproducibility for the frontal plane, raster stereography is considered to be a reliable method for the non-invasive, three-dimensional assessment of spinal alignment in normal non

  9. Impact of sagittal spinopelvic alignment on clinical outcomes after decompression surgery for lumbar spinal canal stenosis without coronal imbalance.

    Science.gov (United States)

    Hikata, Tomohiro; Watanabe, Kota; Fujita, Nobuyuki; Iwanami, Akio; Hosogane, Naobumi; Ishii, Ken; Nakamura, Masaya; Toyama, Yoshiaki; Matsumoto, Morio

    2015-10-01

    The object of this study was to investigate correlations between sagittal spinopelvic alignment and improvements in clinical and quality-of-life (QOL) outcomes after lumbar decompression surgery for lumbar spinal canal stenosis (LCS) without coronal imbalance. The authors retrospectively reviewed data from consecutive patients treated for LCS with decompression surgery in the period from 2009 through 2011. They examined correlations between preoperative or postoperative sagittal vertical axis (SVA) and radiological parameters, clinical outcomes, and health-related (HR)QOL scores in patients divided according to SVA. Clinical outcomes were assessed according to Japanese Orthopaedic Association (JOA) and visual analog scale (VAS) scores. Health-related QOL was evaluated using the Roland-Morris Disability Questionnaire (RMDQ) and the JOA Back Pain Evaluation Questionnaire (JOABPEQ). One hundred nine patients were eligible for inclusion in the study. Compared to patients with normal sagittal alignment prior to surgery (Group A: SVA imbalance (Group B: SVA ≥ 50 mm) had significantly smaller lumbar lordosis and thoracic kyphosis angles and larger pelvic tilt. In Group B, there was a significant decrease in postoperative SVA compared with the preoperative SVA (76.3 ± 29.7 mm vs. 54.3 ± 39.8 mm, p = 0.004). The patients in Group B with severe preoperative sagittal imbalance (SVA > 80 mm) had residual sagittal imbalance after surgery (82.8 ± 41.6 mm). There were no significant differences in clinical and HRQOL outcomes between Groups A and B. Compared to patients with normal postoperative SVA (Group C: SVA imbalance. Decompression surgery improved the SVA value in patients with preoperative sagittal imbalance; however, the patients with severe preoperative sagittal imbalance (SVA > 80 mm) had residual imbalance after decompression surgery. Both clinical and HRQOL outcomes were negatively affected by postoperative residual sagittal imbalance.

  10. Gender difference of ankle stability in the sagittal and frontal planes.

    Science.gov (United States)

    Hanzlick, Harrison; Hyunglae Lee

    2017-07-01

    This paper offers quantification of ankle stability in relation to simulated haptic environments of varying stiffness. This study analyzes the stability trends of male and female subjects independently over a wide range of simulated environments after subjects were exposed to vigorous position perturbation. Ankle stability was quantified for both degrees-of-freedom of the ankle in the sagittal and frontal planes. Subjects' stability consistently decreased when exposed to environments of negative simulated stiffness. In the frontal plane, male and female subjects exhibited nearly identical stability levels. In the sagittal plane, however, male subjects demonstrated marginally more stability than female subjects in environments with negative stiffness. Results of this study are beneficial to understanding situations in which the ankle is likely to lose stability, potentially resulting in injury.

  11. Direct CT scanning of the lesser pelvis - frontal vs sagittal plane

    International Nuclear Information System (INIS)

    Khadzhigeorgiev, G.; Lichev, A.

    1994-01-01

    Whenever axial scanning alone is used, the anatomical patterns of the true pelvis and the organs contained in it, particularly in women, give rise to diagnostic difficulties during CT assessment of neoplasms originating from these organs. The high demands on precision characterization of the pathological changes in the pelvis minor organs necessitate the obtaining of reliable density and size measurement data, not merely from the axial plane, but from the frontal and sagittal ones as well. The deficient information afforded by secondary reconstruction of the pelvis mind images requires an mandatory evaluation of the potentialities of direct frontal and direct sagittal scanning of the pelvis minor using standard CT equipment. Information yielded by images from direct frontal and direct sagittal pelvis minor scanning as well as diagnostic problems where application of this type of scanning is indicated operational difficulties and their overcoming, are among the issues discussed. 8 figs., 7 refs

  12. Sagittal plane analysis of the spine and pelvis in degenerative lumbar scoliosis.

    Science.gov (United States)

    Han, Fei; Weishi, Li; Zhuoran, Sun; Qingwei, Ma; Zhongqiang, Chen

    2017-01-01

    Previous studies have reported the normative values of pelvic sagittal parameters, but no study has analyzed the sagittal spino-pelvic alignment in degenerative lumbar scoliosis (DLS) and its role in the pathogenesis. Retrospective analysis was applied to 104 patients with DLS, together with 100 cases of asymptomatic young adults as a control group and another control group consisting of 145 cases with cervical spondylosis. The coronal and sagittal parameters were measured on the anteroposterior and lateral radiograph of the whole spine in the DLS group as well as in the two control groups. Statistical analysis showed that the DLS group had a higher pelvic incidence (PI) value (50.5° ± 10.2°), than the normal control group (with PI 47.2° ± 8.8°) and the cervical spondylosis group (46.9° ± 9.1°). In DLS group, there were 38 cases (36.5%) complicated with degenerative lumbar spondylolisthesis, who had higher PI values than patients without it. Besides, the lumbar lordosis (LL) and sacral slope (SS) of DLS group were lower; the scoliosis Cobb's angle was correlated with pelvic tilt (PT); thoracic kyphosis was correlated with LL, SS, and PT; and LL was correlated with other sagittal parameters. Patients with DLS may have a higher PI, which may impact the pathogenesis of DLS. A high PI value is probably associated with the high prevalence of degenerative lumbar spondylolisthesis among DLS patients. In DLS patients, the lumbar spine maintains the ability of regulating the sagittal balance, and the regulation depends more on thoracic curve.

  13. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Directory of Open Access Journals (Sweden)

    Yang Yang, Ying Fang, Xini Zhang, Junliang He, Weijie Fu

    2017-12-01

    Full Text Available The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively performed a weight-bearing dorsiflexion (WB-DF maneuver, drop jumps (DJs, and lay-up jumps (LJs. Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041 was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028 and power (p = 0.022 were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane.

  14. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Science.gov (United States)

    Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie

    2017-12-01

    The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion-extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane.

  15. Ipsilateral wrist-ankle movements in the sagittal plane encoded in extrinsic reference frame.

    Science.gov (United States)

    Muraoka, Tetsuro; Ishida, Yuki; Obu, Takashi; Crawshaw, Larry; Kanosue, Kazuyuki

    2013-04-01

    When performing oscillatory movements of two joints in the sagittal plane, there is a directional constraint for performing such movements. Previous studies could not distinguish whether the directional constraint reflected movement direction encoded in the extrinsic (outside the body) reference frame or in the intrinsic (the participants' torso/head) reference frame since participants performed coordinated movements in a sitting position where the torso/head was stationary relative to the external world. In order to discern the reference frame in the present study, participants performed paced oscillatory movements of the ipsilateral wrist and ankle in the sagittal plane in a standing position so that the torso/head moved relative to the external world. The coordinated movements were performed in one of two modes of coordination, moving the hand upward concomitant with either ankle plantarflexion or ankle dorsiflexion. The same directional mode relative to extrinsic space was more stable and accurate as compared with the opposite directional mode. When forearm position was changed from the pronated position to the supinated position, similar results were obtained, indicating that the results were independent of a particular coupling of muscles. These findings suggest that the directional constraint on ipsilateral joints movements in the sagittal plane reflects movement direction encoded in the extrinsic reference frame. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  16. Body posture in the sagittal plane and scoliotic variables in girls aged 7-18

    Directory of Open Access Journals (Sweden)

    Jacek Wilczyński

    2018-02-01

    Introduction. The aim of the study was to analyze the correlation between the variable posture in the sagittal plane and the scoliotic variables. Material and methods. The study involved 28 girls aged 7-18 years with scoliotic posture and scoliosis. Body posture as well as the spine were examined using Moiré’s spatial photogrammetry and the Exhibeon digital radiography method. Based on the size of the spinal curvature, the following were distinguished: scoliotic postures: 1-9° and scoliosis: ≥10°. Results. There were 21 (75% with scoliotic posture and 7 (25% with scoliosis. The size of the thoracic kyphosis and lumbar lordosis was normal. Conclusions. Between the body postural variables in the sagittal plane and the scoliotic variables, both positive (direct proportional and negative (inversely proportional correlations occurred. In the selection of scoliosis treatment method, the size of the postural variables in the sagittal plane should be taken into account, and each patient’s case should be individually considered.

  17. Knee joint passive stiffness and moment in sagittal and frontal planes markedly increase with compression.

    Science.gov (United States)

    Marouane, H; Shirazi-Adl, A; Adouni, M

    2015-01-01

    Knee joints are subject to large compression forces in daily activities. Due to artefact moments and instability under large compression loads, biomechanical studies impose additional constraints to circumvent the compression position-dependency in response. To quantify the effect of compression on passive knee moment resistance and stiffness, two validated finite element models of the tibiofemoral (TF) joint, one refined with depth-dependent fibril-reinforced cartilage and the other less refined with homogeneous isotropic cartilage, are used. The unconstrained TF joint response in sagittal and frontal planes is investigated at different flexion angles (0°, 15°, 30° and 45°) up to 1800 N compression preloads. The compression is applied at a novel joint mechanical balance point (MBP) identified as a point at which the compression does not cause any coupled rotations in sagittal and frontal planes. The MBP of the unconstrained joint is located at the lateral plateau in small compressions and shifts medially towards the inter-compartmental area at larger compression forces. The compression force substantially increases the joint moment-bearing capacities and instantaneous angular rigidities in both frontal and sagittal planes. The varus-valgus laxities diminish with compression preloads despite concomitant substantial reductions in collateral ligament forces. While the angular rigidity would enhance the joint stability, the augmented passive moment resistance under compression preloads plays a role in supporting external moments and should as such be considered in the knee joint musculoskeletal models.

  18. The Effect of Sagittal Plane Deformities after Tibial Plateau Fractures to Functions and Instability of Knee Joint.

    Science.gov (United States)

    Erdil, M; Yildiz, F; Kuyucu, E; Sayar, Ş; Polat, G; Ceylan, H H; Koçyiğit, F

    2016-01-01

    The objective of this study is to evaluate the effect of posterior tibial slope after fracture healing on antero-posterior knee laxity, functional outcome and patient satisfaction. 126 patients who were treated for tibial plateau fractures between 2008-2013 in the orthopedics and traumatology department of our institution were evaluated for the study. Patients were treated with open reduction and internal fixation, arthroscopy assisted minimally invasive osteosynthesis or conservative treatment. Mean posterior tibial slope after the treatment was 6.91 ± 5.11 and there was no significant difference when compared to the uninvolved side 6.42 ± 4,21 (p = 0.794). Knee laxity in anterior-posterior plane was 6.14 ± 2.11 and 5.95 ± 2.25 respectively on healthy and injured side. The difference of mean laxity in anterior-posterior plane between two sides was statistically significant. In this study we found no difference in laxity between the injured and healthy knees. However Tegner score decreased significantly in patients who had greater laxity difference between the knees. We did not find significant difference between fracture type and laxity, IKDC functional scores independent of the ligamentous injury. In conclusion despite coronal alignment is taken into consideration in treatment of tibial plateau fractures, sagittal alignment is reasonably important for stability and should not be ignored.

  19. Estimation and Perturbation of the Mid-Sagittal Plane and its Effects on Corpus Callosum Morphometry

    DEFF Research Database (Denmark)

    Skoglund, Karl; Stegmann, Mikkel Bille; Ryberg, Charlotte

    2005-01-01

    callosum (CC), the white-matter nervous tissue bridging the left and right cerebral hemisphere. A multitude of papers (e.g. [2]) report on measurements performed on the two-dimensional cross-section of the CC defined by the mid-sagittal plane (MSP) which separates the left hemisphere from the right......Brain morphometry is an important tool for detecting and monitoring brain pathologies such as epilepsy, dementia [1,2] and multiple sclerosis [3]. A common method is to delineate some well-defined area of the brain to yield a shape for interor intra-subject studies. One such structure is the corpus....... Differences in shape due to pathologies are often slight (e.g. [1]). This makes it imperative to define the MSP in an accurate and consistent manner. This work investigates the importance of proper MSP estimation by measuring relative area changes of the CC as a function of plane perturbation angle from...

  20. Comparison of the Multidetector-row Computed Tomographic Angiography Axial and Coronal Planes' Usefulness for Detecting Thoracodorsal Artery Perforators

    Science.gov (United States)

    Kim, Jong Gyu

    2012-01-01

    Background During the planning of a thoracodorsal artery perforator (TDAP) free flap, preoperative multidetector-row computed tomographic (MDCT) angiography is valuable for predicting the locations of perforators. However, CT-based perforator mapping of the thoracodorsal artery is not easy because of its small diameter. Thus, we evaluated 1-mm-thick MDCT images in multiple planes to search for reliable perforators accurately. Methods Between July 2010 and October 2011, 19 consecutive patients (13 males, 6 females) who underwent MDCT prior to TDAP free flap operations were enrolled in this study. Patients ranged in age from 10 to 75 years (mean, 39.3 years). MDCT images were acquired at a thickness of 1 mm in the axial, coronal, and sagittal planes. Results The thoracodorsal artery perforators were detected in all 19 cases. The reliable perforators originating from the descending branch were found in 14 cases, of which 6 had transverse branches. The former were well identified in the coronal view, and the latter in the axial view. The location of the most reliable perforators on MDCT images corresponded well with the surgical findings. Conclusions Though MDCT has been widely used in performing the abdominal perforator free flap for detecting reliable perforating vessels, it is not popular in the TDAP free flap. The results of this study suggest that multiple planes of MDCT may increase the probability of detecting the most reliable perforators, along with decreasing the probability of missing available vessels. PMID:22872839

  1. Measuring Fractional Anisotropy of the Corpus Callosum Using Diffusion Tensor Imaging: Mid-Sagittal versus Axial Imaging Planes

    International Nuclear Information System (INIS)

    Kim, Eung Yeop; Park, Hae Jeong; Kim, Dong Hyun; Lee, Seung Koo; Kim, Jin Na

    2008-01-01

    Many diffusion tensor imaging (DTI) studies of the corpus callosum (CC) have been performed with a relatively thick slice thickness in the axial plane, which may result in underestimating the fractional anisotropy (FA) of the CC due to a partial volume effect. We hypothesized that the FA of the CC can be more accurately measured by using mid-sagittal DTI. We compared the FA values of the CC between the axial and mid-sagittal DTI. Fourteen healthy volunteers underwent MRI at 3.0 T. DTI was performed in both the mid-sagittal and axial planes. One 5-mm mid-sagittal image and twenty-five 2-mm axial images were obtained for the CC. The five regions of interest (ROIs) that included the prefrontal (I), premotor and supplementary motor (II), motor (III), sensory (IV) and parietal, temporal and occipital regions (V) were drawn along the border of the CC on each sagittal FA map. The FA values obtained from each region were compared between the two sagittal maps. The FA values of all the regions, except for region V, were significantly increased on the mid-sagittal imaging. The FA values in region IV were significantly underestimated on the mid-sagittal image from the axial imaging, compared with those in the regions I and V (p = 0.037 and p = 0.001, respectively). The FA values of the CC were significantly higher on the midsagittal DTI than those on the axial DTI in regions I-IV, and particularly in the region IV. Mid-sagittal DTI may provide more accurate FA values of the CC than can the axial DTI, and mid-sagittal DTI may be more desirable for studies that compare between patients and healthy subjects

  2. Does Knee Osteoarthritis Differentially Modulate Proprioceptive Acuity in the Frontal and Sagittal Planes of the Knee?

    Science.gov (United States)

    Cammarata, Martha L; Schnitzer, Thomas J; Dhaher, Yasin Y

    2012-01-01

    Objective Impaired proprioception may alter joint loading and contribute to the progression of knee osteoarthritis (OA). Though frontal plane loading at the knee contributes to OA, proprioception and its modulation with OA in this direction have not been examined. The aim of this study was to assess knee proprioceptive acuity in the frontal and sagittal planes in knee OA and healthy participants. We hypothesized that proprioceptive acuity will be decreased in the OA population in both planes of movement. Methods Thirteen persons with knee OA and fourteen healthy age-matched subjects participated. Proprioceptive acuity was assessed in varus, valgus, flexion, and extension using the threshold to detection of passive movement (TDPM). Repeated measures analysis of variance was used to assess differences in TDPM between subject groups and across movement directions. Linear regression analyses were performed to assess the correlation of TDPM between and within planes of movement. Results TDPM was found to be significantly higher (Pplanes of movement were only weakly correlated, especially in the OA group. Conclusions Consistent differences in TDPM between the OA and control groups across all movement directions suggest a global, not direction-specific, reduction in sensation in knee OA patients. PMID:21547895

  3. Agreement between fiber optic and optoelectronic systems for quantifying sagittal plane spinal curvature in sitting.

    Science.gov (United States)

    Cloud, Beth A; Zhao, Kristin D; Breighner, Ryan; Giambini, Hugo; An, Kai-Nan

    2014-07-01

    Spinal posture affects how individuals function from a manual wheelchair. There is a need to directly quantify spinal posture in this population to ultimately improve function. A fiber optic system, comprised of an attached series of sensors, is promising for measuring large regions of the spine in individuals sitting in a wheelchair. The purpose of this study was to determine the agreement between fiber optic and optoelectronic systems for measuring spinal curvature, and describe the range of sagittal plane spinal curvatures in natural sitting. Able-bodied adults (n = 26, 13 male) participated. Each participant assumed three sitting postures: natural, slouched (accentuated kyphosis), and extension (accentuated lordosis) sitting. Fiber optic (ShapeTape) and optoelectronic (Optotrak) systems were applied to the skin over spinous processes from S1 to C7 and used to measure sagittal plane spinal curvature. Regions of kyphosis and lordosis were identified. A Cobb angle-like method was used to quantify lordosis and kyphosis. Generalized linear model and Bland-Altman analyses were used to assess agreement. A strong correlation exists between curvature values obtained with Optotrak and ShapeTape (R(2) = 0.98). The mean difference between Optotrak and ShapeTape for kyphosis in natural, extension, and slouched postures was 4.30° (95% LOA: -3.43 to 12.04°), 3.64° (95% LOA: -1.07 to 8.36°), and 4.02° (95% LOA: -2.80 to 10.84°), respectively. The mean difference for lordosis, when present, in natural and extension postures was 2.86° (95% LOA: -1.18 to 6.90°) and 2.55° (95% LOA: -3.38 to 8.48°), respectively. In natural sitting, the mean ± SD of kyphosis values was 35.07 ± 6.75°. Lordosis was detected in 8/26 participants: 11.72 ± 7.32°. The fiber optic and optoelectronic systems demonstrate acceptable agreement for measuring sagittal plane thoracolumbar spinal curvature. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility

    Science.gov (United States)

    Williams III, D. S. Blaise; Welch, Lee M.

    2015-01-01

    ABSTRACT Background: Injuries to runners are common. However, there are many potential contributing factors to injury. While lack of flexibility alone is commonly related to injury, there are clear differences in hamstring flexibility between males and females. Objective: To compare the effect of static hamstring length on sagittal plane mechanics between male and female runners. Method: Forty subjects (30.0±6.4 years) participated and were placed in one of 4 groups: flexible males (n=10), inflexible males (n=10), flexible females (n=10), and inflexible females (n=10). All subjects were free of injury at the time of data collection. Three-dimensional kinematics and kinetics were collected while subjects ran over ground across 2 force platforms. Sagittal plane joint angles and moments were calculated at the knee and hip and compared with a 2-way (sex X flexibility) ANOVA (α=0.05). Results: Males exhibited greater peak knee extension moment than females (M=2.80±0.47, F=2.48±0.52 Nm/kg*m, p=0.05) and inflexible runners exhibited greater peak knee extension moment than flexible runners (In=2.83±0.56, Fl=2.44±0.51 Nm/kg*m, p=0.01). For hip flexion at initial contact, a significant interaction existed (pHamstring flexibility results in different mechanical profiles in males and females. Flexibility in the hamstrings may result in decreased moments via active or passive tension. These differences may have implications for performance and injury in flexible female runners. PMID:26537812

  5. Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility.

    Science.gov (United States)

    Williams, D S Blaise; Welch, Lee M

    2015-01-01

    Injuries to runners are common. However, there are many potential contributing factors to injury. While lack of flexibility alone is commonly related to injury, there are clear differences in hamstring flexibility between males and females. To compare the effect of static hamstring length on sagittal plane mechanics between male and female runners. Forty subjects (30.0±6.4 years) participated and were placed in one of 4 groups: flexible males (n=10), inflexible males (n=10), flexible females (n=10), and inflexible females (n=10). All subjects were free of injury at the time of data collection. Three-dimensional kinematics and kinetics were collected while subjects ran over ground across 2 force platforms. Sagittal plane joint angles and moments were calculated at the knee and hip and compared with a 2-way (sex X flexibility) ANOVA (α=0.05). Males exhibited greater peak knee extension moment than females (M=2.80±0.47, F=2.48±0.52 Nm/kg*m, p=0.05) and inflexible runners exhibited greater peak knee extension moment than flexible runners (In=2.83±0.56, Fl=2.44±0.51 Nm/kg*m, p=0.01). For hip flexion at initial contact, a significant interaction existed (pHamstring flexibility results in different mechanical profiles in males and females. Flexibility in the hamstrings may result in decreased moments via active or passive tension. These differences may have implications for performance and injury in flexible female runners.

  6. Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility

    Directory of Open Access Journals (Sweden)

    D. S. Blaise Williams III

    2015-10-01

    Full Text Available ABSTRACTBackground:Injuries to runners are common. However, there are many potential contributing factors to injury. While lack of flexibility alone is commonly related to injury, there are clear differences in hamstring flexibility between males and females.Objective: To compare the effect of static hamstring length on sagittal plane mechanics between male and female runners.Method: Forty subjects (30.0±6.4 years participated and were placed in one of 4 groups: flexible males (n=10, inflexible males (n=10, flexible females (n=10, and inflexible females (n=10. All subjects were free of injury at the time of data collection. Three-dimensional kinematics and kinetics were collected while subjects ran over ground across 2 force platforms. Sagittal plane joint angles and moments were calculated at the knee and hip and compared with a 2-way (sex X flexibility ANOVA (α=0.05.Results: Males exhibited greater peak knee extension moment than females (M=2.80±0.47, F=2.48±0.52 Nm/kg*m, p=0.05 and inflexible runners exhibited greater peak knee extension moment than flexible runners (In=2.83±0.56, Fl=2.44±0.51 Nm/kg*m, p=0.01. For hip flexion at initial contact, a significant interaction existed (p<0.05. Flexible females (36.7±7.4º exhibited more hip flexion than inflexible females (27.9±4.6º, p<0.01 and flexible males (30.1±9.5º, p<0.05. No differences existed for knee angle at initial contact, peak knee angle, peak hip angle, or peak hip moment.Conclusion: Hamstring flexibility results in different mechanical profiles in males and females. Flexibility in the hamstrings may result in decreased moments via active or passive tension. These differences may have implications for performance and injury in flexible female runners.

  7. Reliable sagittal plane kinematic gait assessments are feasible using low-cost webcam technology.

    Science.gov (United States)

    Saner, Robert J; Washabaugh, Edward P; Krishnan, Chandramouli

    2017-07-01

    Three-dimensional (3-D) motion capture systems are commonly used for gait analysis because they provide reliable and accurate measurements. However, the downside of this approach is that it is expensive and requires technical expertise; thus making it less feasible in the clinic. To address this limitation, we recently developed and validated (using a high-precision walking robot) a low-cost, two-dimensional (2-D) real-time motion tracking approach using a simple webcam and LabVIEW Vision Assistant. The purpose of this study was to establish the repeatability and minimal detectable change values of hip and knee sagittal plane gait kinematics recorded using this system. Twenty-one healthy subjects underwent two kinematic assessments while walking on a treadmill at a range of gait velocities. Intraclass correlation coefficients (ICC) and minimal detectable change (MDC) values were calculated for commonly used hip and knee kinematic parameters to demonstrate the reliability of the system. Additionally, Bland-Altman plots were generated to examine the agreement between the measurements recorded on two different days. The system demonstrated good to excellent reliability (ICC>0.75) for all the gait parameters tested on this study. The MDC values were typically low (gait assessments using webcam technology can be reliably used for clinical and research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Sagittal-Plane Knee Moment During Gait and Knee Cartilage Thickness.

    Science.gov (United States)

    Schmitz, Randy J; Harrison, David; Wang, Hsin-Min; Shultz, Sandra J

    2017-06-02

      Understanding the factors associated with thicker cartilage in a healthy population is important when developing strategies aimed at minimizing the cartilage thinning associated with knee osteoarthritis progression. Thicker articular cartilage is commonly thought to be healthier cartilage, but whether the sagittal-plane biomechanics important to gait are related to cartilage thickness is unknown.   To determine the relationship of a weight-bearing region of the medial femoral condyle's cartilage thickness to sagittal gait biomechanics in healthy individuals.   Descriptive laboratory study.   Laboratory.   Twenty-eight healthy participants (15 women: age = 21.1 ± 2.1 years, height = 1.63 ± 0.07 m, weight = 64.6 ± 9.9 kg; 13 men: age = 22.1 ± 2.9 years, height = 1.79 ± 0.05 m, weight = 75.2 ± 9.6 kg).   Tibiofemoral angle (°) was obtained via goniometric assessment, thickness of the medial femoral condyle cartilage (mm) was obtained via ultrasound imaging, and peak internal knee-extensor moment (% body weight · height) was measured during 10 trials of over-ground walking at a self-selected pace. We used linear regression to examine the extent to which peak internal knee-extensor moment predicted cartilage thickness after accounting for tibiofemoral angle and sex.   Sex and tibiofemoral angle (12.3° ± 3.2°) were entered in the initial step as control factors (R 2 = 0.01, P = .872). In the final step, internal knee-extensor moment (1.5% ± 1.3% body weight · height) was entered, which resulted in greater knee-extensor moment being related to greater cartilage thickness (2.0 ± 0.3 mm; R 2 Δ = 0.31, PΔ = .003).   Individuals who walked with a greater peak internal knee-extensor moment during gait had a cartilage structure that is generally considered beneficial in a healthy population. Our study offers promising findings that a potentially modifiable biomechanical factor is associated with cartilage status in a healthy population

  9. Accuracy and reliability of coronal and sagittal spinal curvature data based on patient-specific three-dimensional models created by the EOS 2D/3D imaging system.

    Science.gov (United States)

    Somoskeöy, Szabolcs; Tunyogi-Csapó, Miklós; Bogyó, Csaba; Illés, Tamás

    2012-11-01

    Three-dimensional (3D) deformations of the spine are predominantly characterized by two-dimensional (2D) angulation measurements in coronal and sagittal planes, using anteroposterior and lateral X-ray images. For coronal curves, a method originally described by Cobb and for sagittal curves a modified Cobb method are most widely used in practice, and these methods have been shown to exhibit good-to-excellent reliability and reproducibility, carried out either manually or by computer-based tools. Recently, an ultralow radiation dose-integrated radioimaging solution was introduced with special software for realistic 3D visualization and parametric characterization of the spinal column. Comparison of accuracy, correlation of measurement values, intraobserver and interrater reliability of methods by conventional manual 2D and sterEOS 3D measurements in a routine clinical setting. Retrospective nonrandomized study of diagnostic X-ray images created as part of a routine clinical protocol of eligible patients examined at our clinic during a 30-month period between July 2007 and December 2009. In total, 201 individuals (170 females, 31 males; mean age, 19.88 years) including 10 healthy athletes with normal spine and patients with adolescent idiopathic scoliosis (175 cases), adult degenerative scoliosis (11 cases), and Scheuermann hyperkyphosis (5 cases). Overall range of coronal curves was between 2.4° and 117.5°. Analysis of accuracy and reliability of measurements were carried out on a group of all patients and in subgroups based on coronal plane deviation: 0° to 10° (Group 1, n=36), 10° to 25° (Group 2, n=25), 25° to 50° (Group 3, n=69), 50° to 75° (Group 4, n=49), and more than 75° (Group 5, n=22). Coronal and sagittal curvature measurements were determined by three experienced examiners, using either traditional 2D methods or automatic measurements based on sterEOS 3D reconstructions. Manual measurements were performed three times, and sterEOS 3D

  10. Determination of a sagittal plane axis of rotation for a dynamic office chair.

    Science.gov (United States)

    Bauer, C M; Rast, F M; Böck, C; Kuster, R P; Baumgartner, D

    2018-10-01

    This study investigated the location of the axis of rotation in sagittal plane movement of the spine in a free sitting condition to adjust the kinematics of a mobile seat for a dynamic chair. Dynamic office chairs are designed to avoid continuous isometric muscle activity, and to facilitate increased mobility of the back during sitting. However, these chairs incorporate increased upper body movement which could distract office workers from the performance of their tasks. A chair with an axis of rotation above the seat would facilitate a stable upper back during movements of the lower back. The selection of a natural kinematic pattern is of high importance in order to match the properties of the spine. Twenty-one participants performed four cycles of flexion and extension of the spine during an upper arm hang on parallel bars. The location of the axis of rotation relative to the seat was estimated using infrared cameras and reflective skin markers. The median axis of rotation across all participants was located 36 cm above the seat for the complete movement and 39 cm for both the flexion and extension phases, each with an interquartile range of 20 cm. There was no significant effect of the movement direction on the location of the axis of rotation and only a weak, non-significant correlation between body height and the location of the axis of rotation. Individual movement patterns explained the majority of the variance. The axis of rotation for a spinal flexion/extension movement is located above the seat. The recommended radius for a guide rail of a mobile seat is between 36 cm and 39 cm. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The influence of heel height on sagittal plane knee kinematics during landing tasks in recreationally active and athletic collegiate females.

    Science.gov (United States)

    Lindenberg, Kelly M; Carcia, Christopher R; Phelps, Amy L; Martin, Robroy L; Burrows, Anne M

    2011-09-01

    To determine if heel height alters sagittal plane knee kinematics when landing from a forward hop or drop landing. Knee angles close to extension during landing are theorized to increase ACL injury risk in female athletes. Fifty collegiate females performed two single-limb landing tasks while wearing heel lifts of three different sizes (0, 12 & 24 mm) attached to the bottom of a sneaker. Using an electrogoniometer, sagittal plane kinematics (initial contact [KA(IC)], peak flexion [KA(Peak)], and rate of excursion [RE]) were examined. Repeated measures ANOVAs were used to determine the influence of heel height on the dependent measures. Forward hop task- KA(IC) with 0 mm, 12 mm, and 24 mm lifts were 8.88±6.5, 9.38±5.8 and 11.28±7.0, respectively. Significant differences were noted between 0 and 24 mm lift (psneaker significantly alters sagittal plane knee kinematics upon landing from a unilateral forward hop but not from a drop jump.

  12. A comparison of economy and sagittal plane trunk movements among back-, back/front- and head-loading.

    Science.gov (United States)

    Hudson, Sean; Cooke, Carlton; Davies, Simeon; West, Sacha; Gamieldien, Raeeq; Low, Chris; Lloyd, Ray

    2018-05-14

    It has been suggested that freedom of movement in the trunk could influence load carriage economy. This study aimed to compare the economy and sagittal plane trunk movements associated with three load carriage methods that constrain posture differently. Eighteen females walked at 3 km.h -1 with loads of 0, 3, 6, 9, 12, 15 and 20 kg carried on the back, back/front and head. Load carriage economy was assessed using the Extra Load Index (ELI). Change in sagittal plane trunk forward lean and trunk angle excursion from unloaded to loaded walking were assessed. Results show no difference in economy between methods (p = 0.483), despite differences in the change in trunk forward lean (p = 0.001) and trunk angle excursion (p = 0.021) from unloaded to loaded walking. We conclude that economy is not different among the three methods of load carriage, despite significant differences in sagittal plane trunk movements.

  13. Contributions of individual muscles to the sagittal- and frontal-plane angular accelerations of the trunk in walking.

    Science.gov (United States)

    Klemetti, Rudolf; Steele, Katherine M; Moilanen, Petro; Avela, Janne; Timonen, Jussi

    2014-07-18

    This study was conducted to analyze the unimpaired control of the trunk during walking. Studying the unimpaired control of the trunk reveals characteristics of good control. These characteristics can be pursued in the rehabilitation of impaired control. Impaired control of the trunk during walking is associated with aging and many movement disorders. This is a concern as it is considered to increase fall risk. Muscles that contribute to the trunk control in normal walking may also contribute to it under perturbation circumstances, attempting to prevent an impending fall. Knowledge of such muscles can be used to rehabilitate impaired control of the trunk. Here, angular accelerations of the trunk induced by individual muscles, in the sagittal and frontal planes, were calculated using 3D muscle-driven simulations of seven young healthy subjects walking at free speed. Analysis of the simulations demonstrated that the abdominal and back muscles displayed large contributions throughout the gait cycle both in the sagittal and frontal planes. Proximal lower-limb muscles contributed more than distal muscles in the sagittal plane, while both proximal and distal muscles showed large contributions in the frontal plane. Along with the stance-limb muscles, the swing-limb muscles also exhibited considerable contribution. The gluteus medius was found to be an important individual frontal-plane control muscle; enhancing its function in pathologies could ameliorate gait by attenuating trunk sway. In addition, since gravity appreciably accelerated the trunk in the frontal plane, it may engender excessive trunk sway in pathologies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. An interactive tool for CT volume rendering and sagittal plane-picking of the prostate for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Jani, Ashesh B.; Pelizzari, Charles A.; Chen, George T.Y.; Grzezcszuk, Robert P.; Vijayakumar, Srinivasan

    1997-01-01

    Objective: Accurate and precise target volume and critical structure definition is a basic necessity in radiotherapy. The prostate, particularly the apex (an important potential site of recurrence in prostate cancer patients), is a challenging structure to define using any modality, including conventional axial CT. Invasive or expensive techniques, such as retrograde urethrography or MRI, could be avoided if localization of the prostate were possible using information already available on the planning CT. Our primary objective was to build a software tool to determine whether volume rendering and sagittal plane-picking, which are CT-based, noninvasive visualization techniques, were of utility in radiotherapy treatment planning for the prostate. Methods: Using AVS (Application Visualization System) on a Silicon Graphics Indigo 2 High Impact workstation, we have developed a tool that enables the clinician to efficiently navigate a CT volume and to use volume rendering and sagittal plane-picking to better define structures at any anatomic site. We applied the tool to the specific example of the prostate to compare the two visualization techniques with the current standard of axial CT. The prostate was defined on 80-slice CT scans (scanning thickness 4mm, pixel size 2mm x 2mm) of prostate cancer patients using axial CT images, volume-rendered CT images, and sagittal plane-picked images. Results: The navigation of the prostate using the different visualization techniques qualitatively demonstrated that the sagittal plane-picked images, and even more so the volume-rendered images, revealed the prostate (particularly the lower border) better in relationship to the surrounding regional anatomy (bladder, rectum, pelvis, and penile structures) than did the axial images. A quantitative comparison of the target volumes obtained by navigating using the different visualization techniques demonstrated that, when compared to the prostate volume defined on axial CT, a larger volume

  15. Sectional anatomy of the fetal brain in uterus at term on the sagittal plane

    Directory of Open Access Journals (Sweden)

    Fan-Zhen Kong

    2011-06-01

    Conclusion: Through the comparison study between sagittal sections and corresponding MRI of fetal brain at term, we could obtain morphological anatomic structures and MRI of fetal brain, providing morphological demonstration of the intrauterine development of fetal brain and auxiliary diagnosis of ultrasound and MRI in pregnant woman.

  16. CHARACTERISTICS OF BODY POSTURE IN THE SAGITTAL PLANE AND FITNESS OF FIRST-FORM PUPILS FROM RURAL AREAS

    Directory of Open Access Journals (Sweden)

    Hanna Żukowska

    2014-07-01

    Full Text Available Purpose: to find correlations between characteristics of body posture in the sagittal plane and fitness and endurance of first-form children from rural areas. Material: an analysis of more than 30 sources of scientific and educational literature. Results: the study involved 209 children, including 102 girls and 107 boys. They were children who lived in the country since they were born. To assess particular characteristics of body posture, the children were studied by means of the measuring equipment using the projection Moiré system. Motor skills were estimated using selected EUROFIT physical fitness tests (sitting forward bend, standing broad jump, handgrip, sit-and-reach, bent arm hang and 10 x 5 m shuttle run. The level of physical endurance was evaluated with the Harvard Step Test modified by Montoye. Conclusions: the conducted research reveals statistically significant correlations between the characteristics of body posture in the sagittal plane and selected EUROFIT physical fitness tests and physical endurance of the children involved in the study.

  17. Grizzly bear (Ursus arctos horribilis) locomotion: forelimb joint mechanics across speed in the sagittal and frontal planes.

    Science.gov (United States)

    Shine, Catherine L; Robbins, Charles T; Nelson, O Lynne; McGowan, Craig P

    2017-04-01

    The majority of terrestrial locomotion studies have focused on parasagittal motion and paid less attention to forces or movement in the frontal plane. Our previous research has shown that grizzly bears produce higher medial ground reaction forces (lateral pushing from the animal) than would be expected for an upright mammal, suggesting frontal plane movement may be an important aspect of their locomotion. To examine this, we conducted an inverse dynamics analysis in the sagittal and frontal planes, using ground reaction forces and position data from three high-speed cameras of four adult female grizzly bears. Over the speed range collected, the bears used walks, running walks and canters. The scapulohumeral joint, wrist and the limb overall absorb energy (average total net work of the forelimb joints, -0.97 W kg -1 ). The scapulohumeral joint, elbow and total net work of the forelimb joints have negative relationships with speed, resulting in more energy absorbed by the forelimb at higher speeds (running walks and canters). The net joint moment and power curves maintain similar patterns across speed as in previously studied species, suggesting grizzly bears maintain similar joint dynamics to other mammalian quadrupeds. There is no significant relationship with net work and speed at any joint in the frontal plane. The total net work of the forelimb joints in the frontal plane was not significantly different from zero, suggesting that, despite the high medial ground reaction forces, the forelimb acts as a strut in that plane. © 2017. Published by The Company of Biologists Ltd.

  18. EMG Analysis and Sagittal Plane Kinematics of the Two-Handed and Single-Handed Kettlebell Swing: A Descriptive Study.

    Science.gov (United States)

    Van Gelder, Leonard H; Hoogenboom, Barbara J; Alonzo, Bryan; Briggs, Dayna; Hatzel, Brian

    2015-11-01

    Kettlebell (KB) swing exercises have been proposed as a possible method to improve hip and spinal motor control as well as improve power, strength, and endurance. To describe electromyographic (EMG) and sagittal plane kinematics during two KB exercises: the two-handed KB swing (THKS) and the single-handed KB swing (SHKS). In addition, the authors sought to investigate whether or not hip flexor length related to the muscular activity or the kinematics of the exercise. Twenty-three healthy college age subjects participated in this study. Demographic information and passive hip flexor length were recorded for each subject. A maximum voluntary isometric contraction (MVIC) of bilateral gluteus maximus (GMAX), gluteus medius (GMED), and biceps femoris (BF) muscles was recorded. EMG activity and sagittal plane video was recorded during both the THKS and SHKS in a randomized order. Normalized muscular activation of the three studied muscles was calculated from EMG data. During both SHKS and THKS, the average percent of peak MVIC for GMAX was 75.02% ± 55.38, GMED 55.47% ± 26.33, and BF 78.95% ± 53.29. Comparisons of the mean time to peak activation (TTP) for each muscle showed that the biceps femoris was the first muscle to activate during the swings. Statistically significant (p < .05), moderately positive correlations (r = .483 and .417) were found between passive hip flexor length and % MVIC for the GMax during the SHKS and THKS, respectively. The THKS and SHKS provide sufficient muscular recruitment for strengthening of all of the muscles explored. This is the first study to show significant correlations between passive hip flexor length and muscular activation of hip extensors, particularly the GMax. Finally, the BF consistently reached peak activity before the GMax and GMed during the SHKS. Level 3.

  19. Effect of Acute Alterations in Foot Strike Patterns during Running on Sagittal Plane Lower Limb Kinematics and Kinetics

    Directory of Open Access Journals (Sweden)

    Kevin A. Valenzuela, Scott K. Lynn, Lisa R. Mikelson, Guillermo J. Noffal, Daniel A. Judelson

    2015-03-01

    Full Text Available subjects were identified through slow motion video playback (n = 21, age = 22.8±2.2 years, mass = 73.1±14.5 kg, height 1.75 ± 0.10 m. On day two, subjects performed five overground run trials in both their natural and unnatural strike patterns while motion and force data were collected. Data were collected over two days so that foot strike videos could be analyzed for group placement purposes. Several 2 (Foot Strike Pattern –forefoot strike [FFS], rearfoot strike [RFS] x 2 (Group – PFFG, PRFG mixed model ANOVAs (p < 0.05 were run on speed, active peak vertical ground reaction force (VGRF, peak early stance and mid stance sagittal ankle moments, sagittal plane hip and knee moments, ankle dorsiflexion ROM, and sagittal plane hip and knee ROM. There were no significant interactions or between group differences for any of the measured variables. Within subject effects demonstrated that the RFS condition had significantly lower (VGRF (RFS = 2.58 ± .21 BW, FFS = 2.71 ± 0.23 BW, dorsiflexion moment (RFS = -2.6 1± 0.61 Nm·kg-1, FFS = -3.09 ± 0.32 Nm·kg-1, and dorsiflexion range of motion (RFS = 17.63 ± 3.76°, FFS = 22.10 ± 5.08°. There was also a significantly higher peak plantarflexion moment (RFS = 0.23 ± 0.11 Nm·kg-1, FFS = 0.01 ± 0.01 Nm·kg-1, peak knee moment (RFS = 2.61 ± 0.54 Nm·kg-1, FFS = 2.39 ± 0.61 Nm·kg-1, knee ROM (RFS = 31.72 ± 2.79°, FFS = 29.58 ± 2.97°, and hip ROM (RFS = 42.72 ± 4.03°, FFS = 41.38 ± 3.32° as compared with the FFS condition. This research suggests that acute changes in foot strike patterns during shod running can create alterations in certain lower limb kinematic and kinetic measures that are not dependent on the preferred foot strike pattern of the individual. This research also challenges the contention that the impact transient spike in the vertical ground reaction force curve is only present during a rear foot strike type of running gait.

  20. Sagittal plane mal-alignment in lumbar spinal radiographs in a ...

    African Journals Online (AJOL)

    Background: Plane radiograph of the spine is still the primary or first line investigation in patients with a variety of symptoms including back pain in a resource limited setting like ours. Methods: A crosssectional study of radiographs of patients who were referred to Radiology Department of Jos University Teaching Hospital for ...

  1. CT triage for lung malignancy: coronal multiplanar reformation versus images in three orthogonal planes.

    Science.gov (United States)

    Kusk, Martin Weber; Karstoft, Jens; Mussmann, Bo Redder

    2015-11-01

    Generation of multiplanar reformation (MPR) images has become automatic on most modern computed tomography (CT) scanners, potentially increasing the workload of the reporting radiologists. It is not always clear if this increases diagnostic performance in all clinical tasks. To assess detection performance using only coronal multiplanar reformations (MPR) when triaging patients for lung malignancies with CT compared to images in three orthogonal planes, and to evaluate performance comparison of novice and experienced readers. Retrospective study of 63 patients with suspicion of lung cancer, scanned on 64-slice multidetector computed tomography (MDCT) with images reconstructed in three planes. Coronal images were presented to four readers, two novice and two experienced. Readers decided whether the patients were suspicious for malignant disease, and indicated their confidence on a five-point scale. Sensitivity and specificity on per-patient basis was calculated with regards to a reference standard of histological diagnosis, and compared with the original report using McNemar's test. Receiver operating characteristic (ROC) curves were plotted to compare the performance of the four readers, using the area under the curve (AUC) as figure of merit. No statistically significant difference of sensitivity and specificity was found for any of the readers when compared to the original reports. ROC analysis yielded AUCs in the range of 0.92-0.93 for all readers with no significant difference. Inter-rater agreement was substantial (kappa = 0.72). Sensitivity and specificity were comparable to diagnosis using images in three planes. No significant difference was found between experienced and novice readers. © The Foundation Acta Radiologica 2014.

  2. Comparing preseason frontal and sagittal plane plyometric programs on vertical jump height in high-school basketball players.

    Science.gov (United States)

    King, Jeffrey A; Cipriani, Daniel J

    2010-08-01

    The primary purpose of this study was to evaluate whether frontal plane (FP) plyometrics, which are defined as plyometrics dominated with a lateral component, would produce similar increases in vertical jump height (VJH) compared to sagittal plane (SP) Plyometrics. Thirty-two junior varsity and varsity high-school basketball players participated in 6 weeks of plyometric training. Players participated in either FP or SP plyometrics for the entire study. Vertical jump height was measured on 3 occasions: preintervention (baseline), at week 3 of preparatory training, and at week 6 of training. Descriptive statistics were calculated for VJH. A 2-way analysis of variance (ANOVA) with repeated measures was used to test the difference in mean vertical jump scores using FP and SP training modalities. Results showed a significant effect over time for vertical jump (p training did not have a significant effect on VJH and significant improvement in VJH was seen in subjects participating in SP plyometrics thus reinforcing the specificity principle of training. However, coaches should implement both types of plyometrics because both training modalities can improve power and quickness among basketball players.

  3. Task-level strategies for human sagittal-plane running maneuvers are consistent with robotic control policies.

    Directory of Open Access Journals (Sweden)

    Mu Qiao

    Full Text Available The strategies that humans use to control unsteady locomotion are not well understood. A "spring-mass" template comprised of a point mass bouncing on a sprung leg can approximate both center of mass movements and ground reaction forces during running in humans and other animals. Legged robots that operate as bouncing, "spring-mass" systems can maintain stable motion using relatively simple, distributed feedback rules. We tested whether the changes to sagittal-plane movements during five running tasks involving active changes to running height, speed, and orientation were consistent with the rules used by bouncing robots to maintain stability. Changes to running height were associated with changes to leg force but not stance duration. To change speed, humans primarily used a "pogo stick" strategy, where speed changes were associated with adjustments to fore-aft foot placement, and not a "unicycle" strategy involving systematic changes to stance leg hip moment. However, hip moments were related to changes to body orientation and angular speed. Hip moments could be described with first order proportional-derivative relationship to trunk pitch. Overall, the task-level strategies used for body control in humans were consistent with the strategies employed by bouncing robots. Identification of these behavioral strategies could lead to a better understanding of the sensorimotor mechanisms that allow for effective unsteady locomotion.

  4. The Impact of Imaging Modality on the Measurement of Coronal Plane Alignment After Total Knee Arthroplasty.

    Science.gov (United States)

    Nam, Denis; Vajapey, Sravya; Nunley, Ryan M; Barrack, Robert L

    2016-10-01

    The optimal coronal alignment after total knee arthroplasty (TKA) has become an area of increased debate. Sources of variability among investigations include the radiographic technique used for both preoperative surgical planning and postoperative alignment assessments. This study's purpose was to assess the impact of the imaging modality used on the measurement of coronal plane alignment after TKA. A consecutive series of patients undergoing TKA using the same cruciate-retaining prosthesis were included for analysis. Postoperatively, all patients received both a rotationally controlled, scout computed tomography scan and a hip-knee-ankle (HKA) image using the EOS Imaging system (EOS Inc., Paris, France). Two, independent observers measured the HKA angle, and femoral and tibial component alignment from each image. After classifying overall and component alignment as neutral, varus, or valgus, 40.6% (65 of 160) of knees had a discordant alignment classification for HKA, 28.1% (45 of 160) for femoral component alignment, and 26.9% (43 of 160) for tibial component alignment between their computed tomography and EOS images. Overall, 24.4% (39 of 160) of patients had a HKA difference of ≥3° between the 2 images, whereas 18.8% (30 of 160) and 20.0% (32 of 160) of patients had a femoral and tibial component alignment difference of ≥2°, respectively. Significant differences are present when comparing 2 measurement techniques of mechanical alignment after TKA. The impact of imaging modality on postoperative assessments must be accounted for and be consistent when comparing the results of different investigations. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Reliability of cervical lordosis and global sagittal spinal balance measurements in adolescent idiopathic scoliosis.

    Science.gov (United States)

    Vidal, Christophe; Ilharreborde, Brice; Azoulay, Robin; Sebag, Guy; Mazda, Keyvan

    2013-06-01

    Radiological reproducibility study. To assess intra and interobserver reliability of radiographic measurements for global sagittal balance parameters and sagittal spine curves, including cervical spine. Sagittal spine balance in adolescent idiopathic scoliosis (AIS) is a main issue and many studies have been reported, showing that coronal and sagittal deformities often involve sagittal cervical unbalance. Global sagittal balance aims to obtain a horizontal gaze and gravity line at top of hips when subject is in a static position, involving adjustment of each spine curvature in the sagittal plane. To our knowledge, no study did use a methodologically validated imaging analysis tool able to appreciate sagittal spine contours and distances in AIS and especially in the cervical region. Lateral full-spine low-dose EOS radiographs were performed in 75 patients divided in three groups (control subjects, AIS, operated AIS). Three observers digitally analyzed twice each radiograph and 11 sagittal measures were collected for each image. Reliability was assessed calculating intraobserver Pearson's r correlation coefficient, interobserver intra-class correlation coefficient (ICC) completed with a two-by-two Bland-Altman plot analysis. This measurement method has shown excellent intra and interobserver reliability in all parameters, sagittal curvatures, pelvic parameters and global sagittal balance. This study validated a simple and efficient tool in AIS sagittal contour analysis. It defined new relevant landmarks allowing to characterize cervical segmental curvatures and cervical involvement in global balance.

  6. What is the optimal cutoff value of the axis-line-angle technique for evaluating trunk imbalance in coronal plane?

    Science.gov (United States)

    Zhang, Rui-Fang; Fu, Yu-Chuan; Lu, Yi; Zhang, Xiao-Xia; Hu, Yu-Min; Zhou, Yong-Jin; Tian, Nai-Feng; He, Jia-Wei; Yan, Zhi-Han

    2017-02-01

    Accurately evaluating the extent of trunk imbalance in the coronal plane is significant for patients before and after treatment. We preliminarily practiced a new method, axis-line-angle technique (ALAT), for evaluating coronal trunk imbalance with excellent intra-observer and interobserver reliability. Radiologists and surgeons were encouraged to use this method in clinical practice. However, the optimal cutoff value of the ALAT for determination of the extent of coronal trunk imbalance has not been calculated up to now. The purpose of this study was to identify the cutoff value of the ALAT that best predicts a positive measurement point to assess coronal balance or imbalance. A retrospective study at a university affiliated hospital was carried out. A total of 130 patients with C7-central sacral vertical line (CSVL) >0 mm and aged 10-18 years were recruited in this study from September 2013 to December 2014. Data were analyzed to determine the optimal cutoff value of the ALAT measurement. The C7-CSVL and ALAT measurements were conducted respectively twice on plain film within a 2-week interval by two radiologists. The optimal cutoff value of the ALAT was analyzed via receiver operating characteristic (ROC) curve. Comparison variables were performed with chi-square test between the C7-CSVL and ALAT measurements for evaluating trunk imbalance. Kappa agreement coefficient method was used to test the intra-observer and interobserver agreement of C7-CSVL and ALAT. The ROC curve area for the ALAT was 0.82 (95% confidence interval: 0.753-0.894, pimbalance (p>.05). Intra-observer agreement values for the C7-CSVL measurements by observers 1 and 2 were 0.79 and 0.91 (pimbalance in the coronal plane with a high level of intra-observer and interobserver agreement, which suggests that the ALAT is suitable for clinical use. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The Effects of Frontal- and Sagittal-Plane Plyometrics on Change-of-Direction Speed and Power in Adolescent Female Basketball Players.

    Science.gov (United States)

    McCormick, Brian T; Hannon, James C; Newton, Maria; Shultz, Barry; Detling, Nicole; Young, Warren B

    2016-01-01

    Plyometrics is a popular training modality for basketball players to improve power and change-of-direction speed. Most plyometric training has used sagittal-plane exercises, but improvements in change-of-direction speed have been greater in multi-direction programs. To determine the benefits of a 6-wk frontal-plane plyometric (FPP) training program compared with a 6-wk sagittal-plane plyometric (SPP) training program with regard to power and change-of-direction speed. Fourteen female varsity high school basketball players participated in the study. Multiple 2 × 2 repeated-measures ANOVAs were used to determine differences for the FPP and SPP groups from preintervention to postintervention on 4 tests of power and 2 tests of change-of-direction speed. There was a group main effect for time in all 6 tests. There was a significant group × time interaction effect in 3 of the 6 tests. The SPP improved performance of the countermovement vertical jump more than the FPP, whereas the FPP improved performance of the lateral hop (left) and lateral-shuffle test (left) more than the SPP. The standing long jump, lateral hop (right), and lateral-shuffle test (right) did not show a significant interaction effect. These results suggest that basketball players should incorporate plyometric training in all planes to improve power and change-of-direction speed.

  8. Can axial-based nodal size criteria be used in other imaging planes to accurately determine "enlarged" head and neck lymph nodes?

    Science.gov (United States)

    Bartlett, Eric S; Walters, Thomas D; Yu, Eugene

    2013-01-01

    Objective. We evaluate if axial-based lymph node size criteria can be applied to coronal and sagittal planes. Methods. Fifty pretreatment computed tomographic (CT) neck exams were evaluated in patients with head and neck squamous cell carcinoma (SCCa) and neck lymphadenopathy. Axial-based size criteria were applied to all 3 imaging planes, measured, and classified as "enlarged" if equal to or exceeding size criteria. Results. 222 lymph nodes were "enlarged" in one imaging plane; however, 53.2% (118/222) of these were "enlarged" in all 3 planes. Classification concordance between axial versus coronal/sagittal planes was poor (kappa = -0.09 and -0.07, resp., P planes. Conclusion. Classification of "enlarged" lymph nodes differs between axial versus coronal/sagittal imaging planes when axial-based nodal size criteria are applied independently to all three imaging planes, and exclusively used without other morphologic nodal data.

  9. The effects of the sagittal plane malpositioning of the patella and concomitant quadriceps hypotrophy on the patellofemoral joint: a finite element analysis.

    Science.gov (United States)

    Aksahin, Ertugrul; Kocadal, Onur; Aktekin, Cem N; Kaya, Defne; Pepe, Murad; Yılmaz, Serdar; Yuksel, H Yalcin; Bicimoglu, Ali

    2016-03-01

    Anterior knee pain is a common symptom after intramedullary nailing in tibia shaft fracture. Moreover, patellofemoral malalignment is also known to be a major reason for anterior knee pain. Patellofemoral malalignment predisposes to increased loading in patellar cartilage. In the previous study, we have demonstrated the quadriceps atrophy and patellofemoral malalignment after intramedullary nailing due to tibia shaft fracture. In this study, our aim was to clarify the effects of quadriceps atrophy and patellofemoral malalignment with the pathologic loading on the joint cartilage. Mesh models of patellofemoral joint were constructed with CT images and integrated with soft tissue components such as menisci and ligaments. Physiological and sagittal tilt models during extension and flexion at 15°, 30° and 60° were created generating eight models. All the models were applied with 137 N force to present the effects of normal loading and 115.7 N force for the simulation of quadriceps atrophy. Different degrees of loading were applied to evaluate the joint contact area and pressure value with the finite element analysis. There was increased patellofemoral contact area in patellar tilt models with respect to normal models. The similar loading patterns were diagnosed in all models at 0° and 15° knee flexion when 137 N force was applied. Higher loading values were obtained at 30° and 60° knee flexions in sagittal tilt models. Furthermore, in the sagittal tilt models, in which the quadriceps atrophy was simulated, the loadings at 30° and 60° knee flexion were higher than in the physiological ones. Sagittal malalignment of the patellofemoral joint is a new concept that results in different loading patterns in the patellofemoral joint biomechanics. This malalignment in sagittal plane leads to increased loading values on the patellofemoral joint at 30° and 60° of the knee flexions. This new concept should be kept in mind during the course of diagnosis and treatment

  10. Femoral shaft bowing in the coronal plane has more significant effect on the coronal alignment of TKA than proximal or distal variations of femoral shape.

    Science.gov (United States)

    Kim, Jong-Min; Hong, Soo-Heon; Kim, Jong-Min; Lee, Bum-Sik; Kim, Dong-Eun; Kim, Kyung-Ah; Bin, Seong-Il

    2015-07-01

    The aim of this study was to determine (1) variations in the shape of the proximal, middle, and distal femur in a series of Korean patients who had undergone total knee arthroplasty (TKA), (2) the preoperative relationship between these three parameters and the distal valgus cutting angle referenced off the femoral intramedullary guide, and (3) whether there was any relationship between femoral bowing and variations in the shape of the proximal or distal femur in the coronal plane. The preoperative long-standing anteroposterior radiographs of 316 consecutive osteoarthritis patients who underwent primary TKA from 2009 to 2011 were examined. The femoral neck shaft angle, the femoral shaft bowing angle, and the mechanical lateral distal femoral angle were measured to assess the shape of the proximal, middle, and distal femur, respectively. The valgus cutting angle of the femur was defined as the angle between the distal anatomical and mechanical axes of the femur. The study population showed large variations in femoral shape. The mean femoral intramedullary guide angle was 6.5° ± 1.3° (range: 4°-13°). The femoral shaft bowing angle was the factor that showed the strongest correlation with this angle (P shaft angle showed no correlation (n.s.). The femoral shaft bowing angle showed a weak correlation with the mechanical lateral distal femoral angle (P = 0.001), but was not significantly correlated with the femoral neck shaft angle (n.s.). Apparent femoral bowing (>3° of lateral or medial bowing) was found in 42 (13.3 %) of cases (37 cases of lateral bowing and five of medial bowing). Cases with lateral apparent femoral bowing >3° had a distal cutting angle of 8.6° ± 2.2° relative to the femoral intramedullary guide. The femoral intramedullary guide angle was mainly influenced by femoral shaft bowing among femoral deformities in the coronal plane. Therefore, to increase the accuracy of distal femoral cut during TKA, it is necessary to confirm femoral

  11. REDEFINING THE BOUNDARIES OF INTERPLANETARY CORONAL MASS EJECTIONS FROM OBSERVATIONS AT THE ECLIPTIC PLANE

    Energy Technology Data Exchange (ETDEWEB)

    Cid, C.; Palacios, J.; Saiz, E.; Guerrero, A. [Space Research Group—Space Weather, Departamento de Física y Matemáticas, Universidad de Alcalá, Alcalá de Henares (Spain)

    2016-09-01

    On 2015 January 6–7, an interplanetary coronal mass ejection (ICME) was observed at L1. This event, which can be associated with a weak and slow coronal mass ejection, allows us to discuss the differences between the boundaries of the magnetic cloud and the compositional boundaries. A fast stream from a solar coronal hole surrounding this ICME offers a unique opportunity to check the boundaries’ process definition and to explain differences between them. Using Wind and ACE data, we perform a complementary analysis involving compositional, magnetic, and kinematic observations providing relevant information regarding the evolution of the ICME as travelling away from the Sun. We propose erosion, at least at the front boundary of the ICME, as the main reason for the difference between the boundaries, and compositional signatures as the most precise diagnostic tool for the boundaries of ICMEs.

  12. The accuracy of intramedullary tibial guide of sagittal alignment of PCL-substituting total knee arthroplasty.

    Science.gov (United States)

    Han, Hyuk-Soo; Kang, Seung-Baik; Jo, Chris H; Kim, Sun-Hong; Lee, Jung-Ha

    2010-10-01

    Experimental and clinical studies on the accuracy of the intramedullary alignment method have produced different results, and few have addressed accuracy in the sagittal plane. Reported deviations are not only attributable to the alignment method but also to radiological errors. The purpose of this study was to evaluate the accuracy of the intramedullary alignment method in the sagittal plane using computed tomography (CT) and 3-dimensional imaging software. Thirty-one TKAs were performed using an intramedullary alignment method involving the insertion of a long 8-mm diameter rod into the medullary canal to the distal metaphysis of the tibia. All alignment instruments were set to achieve an ideal varus/valgus angle of 0° in the coronal plane and a tibial slope of 0° in the sagittal plane. The accuracy of the intramedullary alignment system was assessed by measuring the coronal tibial component angle and sagittal tibial slope angles, i.e., angles between the tibial anatomical axis and the tangent to the medial and lateral tibial plateau or the cut-surface. The mean coronal tibial component angle was 88.5° ± 1.2° and the mean tibial component slope in the sagittal plane was 1.6° ± 1.2° without anterior slope. Our intramedullary tibial alignment method, which involves passing an 8-mm diameter long rod through the tibial shaft isthmus, showed good accuracy (less than 3 degrees of variation and no anterior slope) in the sagittal plane in neutral or varus knees.

  13. Sagittal plane gait characteristics in hip osteoarthritis patients with mild to moderate symptoms compared to healthy controls: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Eitzen Ingrid

    2012-12-01

    Full Text Available Abstract Background Existent biomechanical studies on hip osteoarthritic gait have primarily focused on the end stage of disease. Consequently, there is no clear consensus on which specific gait parameters are of most relevance for hip osteoarthritis patients with mild to moderate symptoms. The purpose of this study was to explore sagittal plane gait characteristics during the stance phase of gait in hip osteoarthritis patients not eligible for hip replacement surgery. First, compared to healthy controls, and second, when categorized into two subgroups of radiographic severity defined from a minimal joint space of ≤/>2 mm. Methods Sagittal plane kinematics and kinetics of the hip, knee and ankle joint were calculated for total joint excursion throughout the stance phase, as well as from the specific events initial contact, midstance, peak hip extension and toe-off following 3D gait analysis. In addition, the Western Ontario and McMaster Universities Osteoarthritis Index, passive hip range of motion, and isokinetic muscle strength of hip and knee flexion and extension were included as secondary outcomes. Data were checked for normality and differences evaluated with the independent Student’s t-test, Welch’s t-test and the independent Mann–Whitney U-test. A binary logistic regression model was used in order to control for velocity in key variables. Results Fourty-eight hip osteoarthritis patients and 22 controls were included in the final material. The patients walked significantly slower than the controls (p=0.002, revealed significantly reduced joint excursions of the hip (pp=0.011, and a reduced hip flexion moment at midstance and peak hip extension (p2 mm suggested that the observed deviations were more pronounced in patients with greater radiographic severity. The biomechanical differences were, however, not reflected in self-reported symptoms or function. Conclusions Reduced gait velocity, reduced sagittal plane joint excursion, and

  14. Correction of coronal plane deformities around the knee using a tension band plate in children younger than 10 years

    Directory of Open Access Journals (Sweden)

    Ruta M Kulkarni

    2015-01-01

    Full Text Available Background: Guided growth through temporary hemiepiphysiodesis has gained acceptance as the preferred primary treatment in treating pediatric lower limb deformities as it is minimally invasive with a lesser morbidity than the traditional osteotomy. The tension band plate is the most recent development in implants used for temporary hemiepiphysiodesis. Our aim was to determine its safety and efficacy in correcting coronal plane deformities around the knee in children younger than 10 years. Materials and Methods: A total of 24 children under the age of 10 were operated for coronal plane deformities around the knee with a single extra periosteal tension band plate and two nonlocking screws. All the children had a pathological deformity for which a detailed preoperative work-up was carried out to ascertain the cause of the deformity and rule out physiological ones. The average age at hemiepiphysiodesis was 5 years 3 months (range: 2 years to 9 years 1 month. Results: The plates were inserted for an average of 15.625 months (range: 7 months to 29 months. All the patients showed improvement in the mechanical axis. Two patients showed partial correction. Two cases of screw loosening were observed. In the genu valgum group, the tibiofemoral angle improved from a preoperative mean of 19.89° valgus (range: 10° valgus to 40° valgus to 5.72° valgus (range: 2° varus to 10° valgus. In patients with genu varum the tibiofemoral angle improved from a mean of 28.27° varus (range: 13° varus to 41° varus to 1.59° valgus (range: 0-8° valgus. Conclusion: Temporary hemiepiphysiodesis through the application of the tension band plate is an effective method to correct coronal plane deformities around the knee with minimal complications. Its ease and accuracy of insertion has extended the indication of temporary hemiepiphysiodesis to patients younger than 10 years and across a wide variety of diagnosis including pathological physis, which were traditionally

  15. Usefulness of the oblique coronal plane in ankle MRI of the calcaneofibular ligament

    International Nuclear Information System (INIS)

    Park, H.J.; Lee, S.Y.; Park, N.H.; Kim, E.; Chung, E.C.; Kook, S.H.; Lee, J.W.

    2015-01-01

    Aim: To evaluate the usefulness and diagnostic accuracy of oblique coronal MRI of the calcaneofibular ligament (CFL) view for diagnosis of CFL injury. Material and methods: This retrospective study included 91 patients who were suspected to have CFL injury who underwent CFL view imaging. Anatomical identification of the CFL on orthogonal MRI sequences and CFL views was evaluated. Two radiologists evaluated the CFL based on an entire length view, an entire width view, and margin sharpness using a four-point scale. Diagnostic accuracy using orthogonal and CFL views was evaluated by calculating sensitivity, specificity, and accuracy. Arthroscopic or clinical findings were used as the reference standard. Results: Both readers found identification of lesions using the entire length, entire width, and sharp margin from CFL view images to be superior to that based on orthogonal images. The sensitivity and accuracy of diagnosing CFL injury were significantly higher when using the CFL view compared to the orthogonal view, although specificity was not significantly different between the CFL view and orthogonal view images. Conclusions: CFL view imaging enables better anatomical evaluation and improved sensitivity and accuracy of diagnosis of CFL injury. CFL view images should therefore be used to evaluate potential CFL injuries. - Highlights: • We evaluated the diagnostic accuracy of oblique coronal MRI of the calcaneofibular ligament. • Anatomic identification of the CFL on orthogonal MR imaging sequences and CFL views was evaluated. • Diagnostic accuracy using orthogonal and CFL views was evaluated by calculating sensitivity, specificity, and accuracy. • CFL view imaging allows better anatomic evaluation and improved sensitivity and accuracy of diagnosis of CFL injury

  16. Reliability of sagittal plane hip, knee, and ankle joint angles from a single frame of video data using the GAITRite camera system.

    Science.gov (United States)

    Ross, Sandy A; Rice, Clinton; Von Behren, Kristyn; Meyer, April; Alexander, Rachel; Murfin, Scott

    2015-01-01

    The purpose of this study was to establish intra-rater, intra-session, and inter-rater, reliability of sagittal plane hip, knee, and ankle angles with and without reflective markers using the GAITRite walkway and single video camera between student physical therapists and an experienced physical therapist. This study included thirty-two healthy participants age 20-59, stratified by age and gender. Participants performed three successful walks with and without markers applied to anatomical landmarks. GAITRite software was used to digitize sagittal hip, knee, and ankle angles at two phases of gait: (1) initial contact; and (2) mid-stance. Intra-rater reliability was more consistent for the experienced physical therapist, regardless of joint or phase of gait. Intra-session reliability was variable, the experienced physical therapist showed moderate to high reliability (intra-class correlation coefficient (ICC) = 0.50-0.89) and the student physical therapist showed very poor to high reliability (ICC = 0.07-0.85). Inter-rater reliability was highest during mid-stance at the knee with markers (ICC = 0.86) and lowest during mid-stance at the hip without markers (ICC = 0.25). Reliability of a single camera system, especially at the knee joint shows promise. Depending on the specific type of reliability, error can be attributed to the testers (e.g. lack of digitization practice and marker placement), participants (e.g. loose fitting clothing) and camera systems (e.g. frame rate and resolution). However, until the camera technology can be upgraded to a higher frame rate and resolution, and the software can be linked to the GAITRite walkway, the clinical utility for pre/post measures is limited.

  17. Rotation of intramedullary alignment rods affects distal femoral cutting plane in total knee arthroplasty.

    Science.gov (United States)

    Maderbacher, Günther; Matussek, Jan; Keshmiri, Armin; Greimel, Felix; Baier, Clemens; Grifka, Joachim; Maderbacher, Hermann

    2018-02-17

    Intramedullary rods are widely used to align the distal femoral cut in total knee arthroplasty. We hypothesised that both coronal (varus/valgus) and sagittal (extension/flexion) cutting plane are affected by rotational changes of intramedullary femoral alignment guides. Distal femoral cuts using intramedullary alignment rods were simulated by means of a computer-aided engineering software in 4°, 6°, 8°, 10°, and 12° of valgus in relation to the femoral anatomical axis and 4° extension, neutral, as well as 4°, 8°, and 12° of flexion in relation to the femoral mechanical axis. This reflects the different angles between anatomical and mechanical axis in coronal and sagittal planes. To assess the influence of rotation of the alignment guide on the effective distal femoral cutting plane, all combinations were simulated with the rod gradually aligned from 40° of external to 40° of internal rotation. Rotational changes of the distal femoral alignment guides affect both the coronal and sagittal cutting planes. When alignment rods are intruded neutrally with regards to sagittal alignment, external rotation causes flexion, while internal rotation causes extension of the sagittal cutting plane. Simultaneously the coronal effect (valgus) decreases resulting in an increased varus of the cutting plane. However, when alignment rods are intruded in extension or flexion partly contradictory effects are observed. Generally the effect increases with the degree of valgus preset, rotation and flexion. As incorrect rotation of intramedullary alignment guides for distal femoral cuts causes significant cutting errors, exact rotational alignment is crucial. Coronal cutting errors in the distal femoral plane might result in overall leg malalignment, asymmetric extension gaps and subsequent sagittal cutting errors.

  18. Posterior Tibial Slope Angle Correlates With Peak Sagittal and Frontal Plane Knee Joint Loading During Robotic Simulations of Athletic Tasks

    Science.gov (United States)

    Bates, Nathaniel A.; Nesbitt, Rebecca J.; Shearn, Jason T.; Myer, Gregory D.; Hewett, Timothy E.

    2017-01-01

    Background Tibial slope angle is a nonmodifiable risk factor for anterior cruciate ligament (ACL) injury. However, the mechanical role of varying tibial slopes during athletic tasks has yet to be clinically quantified. Purpose To examine the influence of posterior tibial slope on knee joint loading during controlled, in vitro simulation of the knee joint articulations during athletic tasks. Study Design Descriptive laboratory study. Methods A 6 degree of freedom robotic manipulator positionally maneuvered cadaveric knee joints from 12 unique specimens with varying tibial slopes (range, −7.7° to 7.7°) through drop vertical jump and sidestep cutting tasks that were derived from 3-dimensional in vivo motion recordings. Internal knee joint torques and forces were recorded throughout simulation and were linearly correlated with tibial slope. Results The mean (6SD) posterior tibial slope angle was 2.2° ± 4.3° in the lateral compartment and 2.3° ± 3.3° in the medial compartment. For simulated drop vertical jumps, lateral compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee adduction (r = 0.60–0.65), flexion (r = 0.64–0.66), lateral (r = 0.57–0.69), and external rotation torques (r = 0.47–0.72) as well as inverse correlations with peak abduction (r = −0.42 to −0.61) and internal rotation torques (r = −0.39 to −0.79). Only frontal plane torques were correlated during sidestep cutting simulations. For simulated drop vertical jumps, medial compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee flexion torque (r = 0.64–0.69) and lateral knee force (r = 0.55–0.74) as well as inverse correlations with peak external torque (r = −0.34 to 20.67) and medial knee force (r = −0.58 to −0.59). These moderate correlations were also present during simulated sidestep cutting. Conclusion The investigation supported the theory that increased posterior

  19. Effects of mid-foot contact area ratio on lower body kinetics/kinematics in sagittal plane during stair descent in women.

    Science.gov (United States)

    Lee, Jinkyu; Hong, Yoon No Gregory; Shin, Choongsoo S

    2016-07-01

    The mid-foot contact area relative to the total foot contact area can facilitate foot arch structure evaluation. A stair descent motion consistently provides initial fore-foot contact and utilizes the foot arch more actively for energy absorption. The purpose of this study was to compare ankle and knee joint angle, moment, and work in sagittal plane during stair descending between low and high Mid-Foot-Contact-Area (MFCA) ratio group. The twenty-two female subjects were tested and classified into two groups (high MFCA and low MFCA) using their static MFCA ratios. The ground reaction force (GRF) and kinematics of ankle and knee joints were measured while stair descending. During the period between initial contact and the first peak in vertical GRF (early absorption phase), ankle negative work for the low MFCA ratio group was 33% higher than that for the high MFCA ratio group (pcontact and peak dorsiflexion angle (early absorption phase+late absorption phase). The peak ankle dorsiflexion angle was smaller in the low MFCA ratio group (p<0.05). Our results suggest that strategy of energy absorption at the ankle and foot differs depending upon foot arch types classified by MFCA. The low MFCA ratio group seemed to absorb more impact energy using strain in the planar fascia during early absorption phase, whereas the high MFCA ratio group absorbed more impact energy using increased dorsiflexion during late absorption phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Neuromuscular strategies for lumbopelvic control during frontal and sagittal plane movement challenges differ between people with and without low back pain.

    Science.gov (United States)

    Nelson-Wong, E; Poupore, K; Ingvalson, S; Dehmer, K; Piatte, A; Alexander, S; Gallant, P; McClenahan, B; Davis, A M

    2013-12-01

    Observation-based assessments of movement are a standard component in clinical assessment of patients with non-specific low back pain. While aberrant motion patterns can be detected visually, clinicians are unable to assess underlying neuromuscular strategies during these tests. The purpose of this study was to compare coordination of the trunk and hip muscles during 2 commonly used assessments for lumbopelvic control in people with low back pain (LBP) and matched control subjects. Electromyography was recorded from hip and trunk muscles of 34 participants (17 with LBP) during performance of the Active Hip Abduction (AHAbd) and Active Straight Leg Raise (ASLR) tests. Relative muscle timing was calculated using cross-correlation. Participants with LBP demonstrated a variable strategy, while control subjects used a consistent proximal to distal activation strategy during both frontal and sagittal plane movements. Findings from this study provide insight into underlying neuromuscular control during commonly used assessment tests for patients with LBP that may help to guide targeted intervention approaches. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Accuracy and repeatability of quantitative fluoroscopy for the measurement of sagittal plane translation and finite centre of rotation in the lumbar spine.

    Science.gov (United States)

    Breen, Alexander; Breen, Alan

    2016-07-01

    Quantitative fluoroscopy (QF) was developed to measure intervertebral mechanics in vivo and has been found to have high repeatability and accuracy for the measurement of intervertebral rotations. However, sagittal plane translation and finite centre of rotation (FCR) are potential measures of stability but have not yet been fully validated for current QF. This study investigated the repeatability and accuracy of QF for measuring these variables. Repeatability was assessed from L2-S1 in 20 human volunteers. Accuracy was investigated using 10 consecutive measurements from each of two pairs of linked and instrumented dry human vertebrae as reference; one which tilted without translation and one which translated without tilt. The results found intra- and inter-observer repeatability for translation to be 1.1mm or less (SEM) with fair to substantial reliability (ICC 0.533-0.998). Intra-observer repeatability of FCR location for inter-vertebral rotations of 5° and above ranged from 1.5mm to 1.8mm (SEM) with moderate to substantial reliability (ICC 0.626-0.988). Inter-observer repeatability for FCR ranged from 1.2mm to 5.7mm, also with moderate to substantial reliability (ICC 0.621-0.878). Reliability was substantial (ICC>0.81) for 10/16 measures for translation and 5/8 for FCR location. Accuracy for translation was 0.1mm (fixed centre) and 2.2mm (moveable centre), with an FCR error of 0.3mm(x) and 0.4mm(y) (fixed centre). This technology was found to have a high level of accuracy and with a few exceptions, moderate to substantial repeatability for the measurement of translation and FCR from fluoroscopic motion sequences. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. The use of the T1 sagittal angle in predicting overall sagittal balance of the spine.

    Science.gov (United States)

    Knott, Patrick T; Mardjetko, Steven M; Techy, Fernando

    2010-11-01

    A balanced sagittal alignment of the spine has been shown to strongly correlate with less pain, less disability, and greater health status scores. To restore proper sagittal balance, one must assess the position of the occiput relative to the sacrum. The assessment of spinal balance preoperatively can be challenging, whereas predicting postoperative balance is even more difficult. This study was designed to evaluate and quantify multiple factors that influence sagittal balance. Retrospective analysis of existing spinal radiographs. A retrospective review of 52 adult spine patient records was performed. All patients had full-column digital radiographs that showed all the important skeletal landmarks necessary for accurate measurement. The average age of the patient was 53 years. Both genders were equally represented. The radiographs were measured using standard techniques to obtain the following parameters: scoliosis in the coronal plane; lordosis or kyphosis of the cervical, thoracic, and lumbar spine; the T1 sagittal angle (angle between a horizontal line and the superior end plate of T1); the angle of the dens in the sagittal plane; the angle of the dens in relation to the occiput; the sacral slope; the pelvic incidence; the femoral-sacral angle; and finally, the sagittal vertical axis (SVA) measured from both the dens of C2 and from C7. It was found that the SVA when measured from the dens was on average 16 mm farther forward than the SVA measured from C7 (p<.0001). The dens plumb line (SVA(dens)) was then used in the study. An analysis was done to examine the relationship between SVA(dens) and each of the other measurements. The T1 sagittal angle was found to have a moderate positive correlation (r=0.65) with SVA(dens), p<.0001, indicating that the amount of sagittal T1 tilt can be used as a good predictor of overall sagittal balance. When examining the other variables, it was found that cervical lordosis had a weak correlation (r=0.37) with SVA(dens) that was

  3. Definition of bulky disease in early stage Hodgkin lymphoma in computed tomography era: prognostic significance of measurements in the coronal and transverse planes.

    Science.gov (United States)

    Kumar, Anita; Burger, Irene A; Zhang, Zhigang; Drill, Esther N; Migliacci, Jocelyn C; Ng, Andrea; LaCasce, Ann; Wall, Darci; Witzig, Thomas E; Ristow, Kay; Yahalom, Joachim; Moskowitz, Craig H; Zelenetz, Andrew D

    2016-10-01

    Disease bulk is an important prognostic factor in early stage Hodgkin lymphoma, but its definition is unclear in the computed tomography era. This retrospective analysis investigated the prognostic significance of bulky disease measured in transverse and coronal planes on computed tomography imaging. Early stage Hodgkin lymphoma patients (n=185) treated with chemotherapy with or without radiotherapy from 2000-2010 were included. The longest diameter of the largest lymph node mass was measured in transverse and coronal axes on pre-treatment imaging. The optimal cut off for disease bulk was maximal diameter greater than 7 cm measured in either the transverse or coronal plane. Thirty patients with maximal transverse diameter of 7 cm or under were found to have bulk in coronal axis. The 4-year overall survival was 96.5% (CI: 93.3%, 100%) and 4-year relapse-free survival was 86.8% (CI: 81.9%, 92.1%) for all patients. Relapse-free survival at four years for bulky patients was 80.5% (CI: 73%, 88.9%) compared to 94.4% (CI: 89.1%, 100%) for non-bulky; Cox HR 4.21 (CI: 1.43, 12.38) (P=0.004). In bulky patients, relapse-free survival was not impacted in patients treated with chemoradiotherapy; however, it was significantly lower in patients treated with chemotherapy alone. In an independent validation cohort of 38 patients treated with chemotherapy alone, patients with bulky disease had an inferior relapse-free survival [at 4 years, 71.1% (CI: 52.1%, 97%) vs 94.1% (CI: 83.6%, 100%), Cox HR 5.27 (CI: 0.62, 45.16); P=0.09]. Presence of bulky disease on multidimensional computed tomography imaging is a significant prognostic factor in early stage Hodgkin lymphoma. Coronal reformations may be included for routine Hodgkin lymphoma staging evaluation. In future, our definition of disease bulk may be useful in identifying patients who are most appropriate for chemotherapy alone. Copyright© Ferrata Storti Foundation.

  4. The elementary discussion of volumetric modulated arc therapy using the orthogonal plane dose verification

    International Nuclear Information System (INIS)

    Shi Jinping; Chen Lixin; Xie Qiuying; Zhang Liwen; Teng Jianjian

    2012-01-01

    Objective: This study was to explore the feasibility of using the orthogonal plane dose formed by the coronal and sagittal plane to verify the volumetric modulated arc therapy (VMAT) plan. Methods: The VMAT plans of 12 patients were included in this study. The orthogonal plane dose formed by the coronal and sagittal plane were measured based on the combination of 2D ionization chamber array and multicube phantom, and the point dose were measured based on a multiple hole cylindrical phantom attached with two 0.125 cm 3 ionization chamber probes. Results: In the measurement of the point dose, the average error was 1.5% in high dose area (more than 80% of maximum), and 1.7% in low dose area (less than 80% of maximum), respectively. The discrepancy of point dose measurement was 1.3% between the 2D ionization chamber array and the VMAT planning system. In the measurement of the orthogonal plane dose, the pass rate of γ were 93.7% for 2%/2 mm and 97.2% for 3%/3 mm. Conclusion: It is reliable for using the orthogonal plane dose formed by the coronal and sagittal plane to verify the VMAT plan. (authors)

  5. Angled oblique sagittal MR imaging of rotator cuff tears: comparison with standard oblique sagittal images

    International Nuclear Information System (INIS)

    Tuite, M.J.; Asinger, D.; Orwin, J.F.

    2001-01-01

    Objective. To compare the accuracy for diagnosing rotator cuff tears of oblique coronal images supplemented with standard oblique sagittal images versus thinner-section angled oblique sagittal images.Design and patients. The study included 75 consecutive patients who had a shoulder MR scan followed by arthroscopy. MR images included oblique coronal, oblique sagittal (4 mm thick, 1 mm interslice gap), and angled oblique sagittal (3 mm/0.2 mm) images perpendicular to the lateral cuff. A musculoskeletal staff radiologist and fellow separately evaluated the cuff for tears on the oblique coronal images supplemented with either the oblique sagittal or the angled sagittal images.Results. For distinguishing a cuff tear from no tear, the staff radiologist had an accuracy of 0.76 (95% confidence interval: 0.67, 0.85) with the standard sagittal set, and 0.88 (0.80, 0.95) with the angled set (P=0.04). There was a nonsignificant improvement in accuracy for the fellow, calculated as 0.73 (0.63, 0.83) on the standard sagittal set and 0.76 (0.67, 0.85) on the angled set. Both readers also improved their diagnostic accuracy for partial-thickness tears with the angled set, although the improvement was statistically significant only for the staff radiologist.Conclusion. There is a slight improvement in accuracy for diagnosing rotator cuff tears, particularly partial-thickness tears, for the more experienced radiologist using thinner-section angled oblique sagittal images. These images may be useful as a supplemental sequence in patients where it is important to identify partial-thickness tears accurately. (orig.)

  6. Angled oblique sagittal MR imaging of rotator cuff tears: comparison with standard oblique sagittal images

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J; Asinger, D; Orwin, J F [Dept. of Radiology, Univ. of Wisconsin Hospital and Clinics, Madison, WI (United States)

    2001-05-01

    Objective. To compare the accuracy for diagnosing rotator cuff tears of oblique coronal images supplemented with standard oblique sagittal images versus thinner-section angled oblique sagittal images.Design and patients. The study included 75 consecutive patients who had a shoulder MR scan followed by arthroscopy. MR images included oblique coronal, oblique sagittal (4 mm thick, 1 mm interslice gap), and angled oblique sagittal (3 mm/0.2 mm) images perpendicular to the lateral cuff. A musculoskeletal staff radiologist and fellow separately evaluated the cuff for tears on the oblique coronal images supplemented with either the oblique sagittal or the angled sagittal images.Results. For distinguishing a cuff tear from no tear, the staff radiologist had an accuracy of 0.76 (95% confidence interval: 0.67, 0.85) with the standard sagittal set, and 0.88 (0.80, 0.95) with the angled set (P=0.04). There was a nonsignificant improvement in accuracy for the fellow, calculated as 0.73 (0.63, 0.83) on the standard sagittal set and 0.76 (0.67, 0.85) on the angled set. Both readers also improved their diagnostic accuracy for partial-thickness tears with the angled set, although the improvement was statistically significant only for the staff radiologist.Conclusion. There is a slight improvement in accuracy for diagnosing rotator cuff tears, particularly partial-thickness tears, for the more experienced radiologist using thinner-section angled oblique sagittal images. These images may be useful as a supplemental sequence in patients where it is important to identify partial-thickness tears accurately. (orig.)

  7. Can Axial-Based Nodal Size Criteria Be Used in Other Imaging Planes to Accurately Determine “Enlarged” Head and Neck Lymph Nodes?

    Science.gov (United States)

    Bartlett, Eric S.; Walters, Thomas D.; Yu, Eugene

    2013-01-01

    Objective. We evaluate if axial-based lymph node size criteria can be applied to coronal and sagittal planes. Methods. Fifty pretreatment computed tomographic (CT) neck exams were evaluated in patients with head and neck squamous cell carcinoma (SCCa) and neck lymphadenopathy. Axial-based size criteria were applied to all 3 imaging planes, measured, and classified as “enlarged” if equal to or exceeding size criteria. Results. 222 lymph nodes were “enlarged” in one imaging plane; however, 53.2% (118/222) of these were “enlarged” in all 3 planes. Classification concordance between axial versus coronal/sagittal planes was poor (kappa = −0.09 and −0.07, resp., P planes. Conclusion. Classification of “enlarged” lymph nodes differs between axial versus coronal/sagittal imaging planes when axial-based nodal size criteria are applied independently to all three imaging planes, and exclusively used without other morphologic nodal data. PMID:23984099

  8. The Effect of Local Fatigue Induced at Proximal and Distal Muscles of Lower Extremity in Sagittal Plane on Visual Dependency in Quiet Standing Postural Stability of Healthy Young Females

    Directory of Open Access Journals (Sweden)

    Manijeh Soleymani-Far

    2007-10-01

    Full Text Available Objective: The purpose of the present study was to assess the effect of local muscle fatigue induced at proximal and distal segments of lower extremity on sagittal plane mover on visual dependency in quiet standing postural stability. Materials & Methods: In this Quasi–experimental study (before – after comparison sagittal plane prime movers of the ankle and hip musculature were fatigued using isokinetic contractions at two test sessions with a randomized order and one week interval. Twenty five healthy young female students were َselected by using non probability selection and sample of convenience and asked to maintain single leg upright posture as immobile as possible. RMS and SD of Center of Pressure displacements were assessed in 30 seconds and consequently, the eyes were closed after 15 seconds. A analysis of variance (ANOVA for repeated measures was used to analyze the effect of the following factors over two periods of 5 seconds immediately before and after eye closure: (1 fatigue, (2 vision, (3 segment of fatigue. Results: The main effects of each within-subject factors (fatigue, vision and segment of fatigue were significant (P<0.05. The analysis of RMS and SD of Center of Pressure demonstrated a significant interaction between fatigue and vision, and fatigue and segment of fatigue so that the effects of Fatigue on Proximal segment and eye closed conditions were increased. Conclusion: The visual dependency for control of postural stability incremented following muscle fatigue. Proximal muscle fatigue lead to exaggeration of visual dependency for control of postural stability. Based on the present results, emphasis on the proprioception of proximal segment of lower extremity may be recommended for postural stability training.

  9. Sagittal Plane Correction Using the Lateral Transpsoas Approach: A Biomechanical Study on the Effect of Cage Angle and Surgical Technique on Segmental Lordosis.

    Science.gov (United States)

    Melikian, Rojeh; Yoon, Sangwook Tim; Kim, Jin Young; Park, Kun Young; Yoon, Caroline; Hutton, William

    2016-09-01

    Cadaveric biomechanical study. To determine the degree of segmental correction that can be achieved through lateral transpsoas approach by varying cage angle and adding anterior longitudinal ligament (ALL) release and posterior element resection. Lordotic cage insertion through the lateral transpsoas approach is being used increasingly for restoration of sagittal alignment. However, the degree of correction achieved by varying cage angle and ALL release and posterior element resection is not well defined. Thirteen lumbar motion segments between L1 and L5 were dissected into single motion segments. Segmental angles and disk heights were measured under both 50 N and 500 N compressive loads under the following conditions: intact specimen, discectomy (collapsed disk simulation), insertion of parallel cage, 10° cage, 30° cage with ALL release, 30° cage with ALL release and spinous process (SP) resection, 30° cage with ALL release, SP resection, facetectomy, and compression with pedicle screws. Segmental lordosis was not increased by either parallel or 10° cages as compared with intact disks, and contributed small amounts of lordosis when compared with the collapsed disk condition. Placement of 30° cages with ALL release increased segmental lordosis by 10.5°. Adding SP resection increased lordosis to 12.4°. Facetectomy and compression with pedicle screws further increased lordosis to approximately 26°. No interventions resulted in a decrease in either anterior or posterior disk height. Insertion of a parallel or 10° cage has little effect on lordosis. A 30° cage insertion with ALL release resulted in a modest increase in lordosis (10.5°). The addition of SP resection and facetectomy was needed to obtain a larger amount of correction (26°). None of the cages, including the 30° lordotic cage, caused a decrease in posterior disk height suggesting hyperlordotic cages do not cause foraminal stenosis. N/A.

  10. Three-dimensional shear wave elastography for differentiation of breast lesions: An initial study with quantitative analysis using three orthogonal planes.

    Science.gov (United States)

    Wang, Qiao

    2018-05-25

    To prospectively evaluate the diagnostic performance of three-dimensional (3D) shear wave elastography (SWE) for breast lesions with quantitative stiffness information from transverse, sagittal and coronal planes. Conventional ultrasound (US), two-dimensional (2D)-SWE and 3D-SWE were performed for 122 consecutive patients with 122 breast lesions before biopsy or surgical excision. Maximum elasticity values of Young's modulus (Emax) were recorded on 2D-SWE and three planes of 3D-SWE. Area under the receiver operating characteristic curve (AUC), sensitivity and specificity of US, 2D-SWE and 3D-SWE were evaluated. Two combined sets (i.e., BI-RADS and 2D-SWE; BI-RADS and 3D-SWE) were compared in AUC. Observer consistency was also evaluated. On 3D-SWE, the AUC and sensitivity of sagittal plane were significantly higher than those of transverse and coronal planes (both P 0.05). However, the combined set of BI-RADS and sagittal plane of 3D-SWE had significantly higher sensitivity than the combined set of BI-RADS and 2D-SWE. The sagittal plane shows the best diagnostic performance among 3D-SWE. The combination of BI-RADS and 3D-SWE is a useful tool for predicting breast malignant lesions in comparison with BI-RADS alone.

  11. Rebound Deformity After Growth Modulation in Patients With Coronal Plane Angular Deformities About the Knee: Who Gets It and How Much?

    Science.gov (United States)

    Leveille, Lise A; Razi, Ozan; Johnston, Charles E

    2017-05-18

    With observed success and increased popularity of growth modulation techniques, there has been a trend toward use in progressively younger patients. Younger age at growth modulation increases the likelihood of complete deformity correction and need for implant removal before skeletal maturity introducing the risk of rebound deformity. The purpose of this study was to quantify magnitude and identify risk factors for rebound deformity after growth modulation. We performed a retrospective review of all patients undergoing growth modulation with a tension band plate for coronal plane deformity about the knee with subsequent implant removal. Exclusion criteria included completion epiphysiodesis or osteotomy at implant removal, ongoing growth modulation, and modulation, before implant removal, and at final follow-up. In total, 67 limbs in 45 patients met the inclusion criteria. Mean age at growth modulation was 9.8 years (range, 3.4 to 15.4 y) and mean age at implant removal was 11.4 years (range, 5.3 to 16.4 y). Mean change in HKA after implant removal was 6.9 degrees (range, 0 to 23 degrees). In total, 52% of patients had >5 degrees rebound and 30% had >10 degrees rebound in HKA after implant removal. Females below 10 years and males below 12 years at time of growth modulation had greater mean change in HKA after implant removal compared with older patients (8.4 vs. 4.7 degrees, P=0.012). Patients with initial deformity >20 degrees had an increased frequency of rebound >10 degrees compared with patients with less severe initial deformity (78% vs. 22%, P=0.002). Rebound deformity after growth modulation is common. Growth modulation at a young age and large initial deformity increases risk of rebound. However, rebound does not occur in all at risk patients, therefore, we recommend against routine overcorrection. Level IV-retrospective study.

  12. Adolescent idiopathic scoliosis: sagital plane and low density pedicle screws

    Directory of Open Access Journals (Sweden)

    Rodrigo Augusto do Amaral

    2014-03-01

    Full Text Available OBJECTIVE: To examine the sagittal curves of patients treated with CD instrumentation using exclusively pedicle screws. METHODS: Image analysis of medical records of 27 patients (26 M and 1 F with a minimum follow-up of 6 months, who underwent surgical treatment in our service between January 2005 and December 2010. The curves were evaluated on coronal and sagittal planes, taking into account the potential correction of the technique. RESULTS: In the coronal plan the following curves were evaluated: proximal thoracic (TPx, main thoracic (TPp, and thoracolumbar; lumbar (TL, L, and the average flexibility was 52%, 52%, and 92% and the capacity of correction was 51%, 72%, and 64%, respectively. In the sagittal plane there was a mean increase in thoracic kyphosis (CT of 41% and an average reduction of lumbar lordosis (LL of 17%. Correlation analysis between variables showed Pearson coefficient of correlation of 0.053 and analysis of dispersion of R2 = <0.001. CONCLUSION: The method has shown satisfactory results with maintenance of kyphosis correction in patients with normal and hyper kyphotic deformities.

  13. MRI to delineate the gross tumor volume of nasopharyngeal cancers: which sequences and planes should be used?

    Science.gov (United States)

    Popovtzer, Aron; Ibrahim, Mohannad; Tatro, Daniel; Feng, Felix Y; Ten Haken, Randall K; Eisbruch, Avraham

    2014-09-01

    Magnetic resonance imaging (MRI) has been found to be better than computed tomography for defining the extent of primary gross tumor volume (GTV) in advanced nasopharyngeal cancer. It is routinely applied for target delineation in planning radiotherapy. However, the specific MRI sequences/planes that should be used are unknown. Twelve patients with nasopharyngeal cancer underwent primary GTV evaluation with gadolinium-enhanced axial T1 weighted image (T1) and T2 weighted image (T2), coronal T1, and sagittal T1 sequences. Each sequence was registered with the planning computed tomography scans. Planning target volumes (PTVs) were derived by uniform expansions of the GTVs. The volumes encompassed by the various sequences/planes, and the volumes common to all sequences/planes, were compared quantitatively and anatomically to the volume delineated by the commonly used axial T1-based dataset. Addition of the axial T2 sequence increased the axial T1-based GTV by 12% on average (p = 0.004), and composite evaluations that included the coronal T1 and sagittal T1 planes increased the axial T1-based GTVs by 30% on average (p = 0.003). The axial T1-based PTVs were increased by 20% by the additional sequences (p = 0.04). Each sequence/plane added unique volume extensions. The GTVs common to all the T1 planes accounted for 38% of the total volumes of all the T1 planes. Anatomically, addition of the coronal and sagittal-based GTVs extended the axial T1-based GTV caudally and cranially, notably to the base of the skull. Adding MRI planes and sequences to the traditional axial T1 sequence yields significant quantitative and anatomically important extensions of the GTVs and PTVs. For accurate target delineation in nasopharyngeal cancer, we recommend that GTVs be outlined in all MRI sequences/planes and registered with the planning computed tomography scans.

  14. Evolution of the postoperative sagittal spinal profile in early-onset scoliosis: is there a difference between rib-based and spine-based growth-friendly instrumentation?

    Science.gov (United States)

    Chen, Zhonghui; Li, Song; Qiu, Yong; Zhu, Zezhang; Chen, Xi; Xu, Liang; Sun, Xu

    2017-12-01

    OBJECTIVE Although the vertical expandable prosthetic titanium rib (VEPTR) and growing rod instrumentation (GRI) encourage spinal growth via regular lengthening, they can create different results because of their different fixation patterns and mechanisms in correcting scoliosis. Previous studies have focused comparisons on coronal plane deformity with minimal attention to the sagittal profile. In this retrospective study, the authors aimed to compare the evolution of the sagittal spinal profile in early-onset scoliosis (EOS) treated with VEPTR versus GRI. METHODS The data for 11 patients with VEPTR and 22 with GRI were reviewed. All patients had more than 2 years' follow-up with more than 2 lengthening procedures. Radiographic measurements were performed before and after the index surgery and at the latest follow-up. The complications in both groups were recorded. RESULTS Patients in both groups had similar diagnoses, age at the index surgery, and number of lengthening procedures. The changes in the major coronal Cobb angle and T1-S1 spinal height were not significantly different between the 2 groups. Compared with the GRI group, the VEPTR group had less correction in thoracic kyphosis (23% ± 12% vs 44% ± 16%, p GRI: 8° ± 5°, p = 0.569), the incidence of proximal junctional kyphosis was relatively lower in the VEPTR group (VEPTR: 18.2% vs GRI: 22.7%). No significant changes in the spinopelvic parameters were observed, while the sagittal vertical axis showed a tendency toward a neutral position in both groups. The overall complication rate was higher in the VEPTR group than in the GRI group (72.7% vs 54.5%). CONCLUSIONS The VEPTR had coronal correction and spinal growth results similar to those with GRI. In the sagittal plane, however, the VEPTR was not comparable to the GRI in controlling thoracic kyphosis. Thus, for hyperkyphotic EOS patients, GRI is recommended over VEPTR.

  15. The Relationships Between the Center of Mass Position and the Trunk, Hip, and Knee Kinematics in the Sagittal Plane: A Pilot Study on Field-Based Video Analysis for Female Soccer Players

    Directory of Open Access Journals (Sweden)

    Sasaki Shogo

    2015-03-01

    Full Text Available Athletes with non-contact anterior cruciate ligament tears have common features in the sagittal plane; namely, the body’s center of mass (COM is located posterior to the base of support, the trunk and knee joints are extended, and the hip angle is flexed. However, the relationships among these variables have not been assessed in field-based movements. This study sought to determine relationships between distances from the COM to the base of support and the trunk, hip, and knee positions in women while playing soccer. Sixty events (29 single-leg landing and 31 single-leg stopping events were analyzed using two-dimensional video analysis. The relationships among the measurement variables were determined using the Pearson’s product-moment correlation coefficient, and stepwise multiple linear regression models were used to explore the relationships between the COM position and the kinematic variables. The distance from the COM to the base of support displayed a moderate negative relationship with the trunk angle (r = - 0.623, p < .0001, r2 = 0.388 and a strong positive relationship with the limb angle (r = 0.869, p < .0001, r2 = 0.755. The limb, knee, and trunk angles were selected in the best regression model (adjusted r2 = 0.953, p < .0001, f2 = 20.277. These findings suggest that an increased trunk angle and a decreased limb angle at initial contact are associated with a safer COM position. Neuromuscular training may be useful for controlling the trunk and lower limb positions during dynamic activities.

  16. Valoración de la disposición sagital del raquis en gimnastas especialistas en trampolín. (Assessment of the sagittal plane of the spine in trampoline gymnasts.

    Directory of Open Access Journals (Sweden)

    Pilar Sainz de Baranda

    2009-07-01

    Full Text Available ResumenSe valoró la disposición sagital de la columna vertebral en gimnastas especialistas en la modalidad de trampolín. Se realizó un estudio transversal, en el que participaron 69 gimnastas de trampolín (35 mujeres y 34 varones con una edad media de 14.97 + 4.77 años, y de 6.61+4 años de entrenamiento. La valoración se realizó en tres posiciones: bipedestación relajada, sedentación relajada y flexión máxima del tronco. En todas las posiciones se diferenció la curva dorsal y la lumbar. Para la cuantificación de los grados se utilizó un inclinómetro ISOMED Unilevel-95. En bipedestación la cifosis dorsal media fue 44.96º+8.23º, la lordosis lumbar fue de 36.25º+10.1º. En máxima flexión del tronco desde la bipedestación posición test dedos suelo (FMT-DDS los grados de la curvatura dorsal y lumbar fueron de 51.55º+11º y 29.29º+7.89º. En máxima flexión del tronco desde la sedentación test dedos planta (FMT-DDP los grados de la curvatura dorsal y lumbar fueron de 57.94º+15º y 27.72º+7.51º. En sedentación relajada los grados de la curvatura dorsal y lumbar fueron de 50.28º+10º y 17.48º+9.6º respectivamente. Los valores medios del plano sagital de los gimnastas especialistas en trampolín muestran en bipedestación valores de hipercifosis para la curva dorsal, con una lordosis lumbar normal. En la flexión máxima del tronco se observan valores normales para la cifosis dorsal y valores hipercifóticos para la curva lumbar. En sedentación se observan valores hipercifóticos tanto en la curva dorsal como en la lumbar. Los gimnastas presentan tendencia a una mayor cifosis dorsal en bipedestación y en flexión de tronco. Las gimnastas presentan tendencia a una mayor lordosis en bipedestación y menor cifosis lumbar en flexióny sedentación.Abstract The sagittal plane of the spine was measured in trampoline gymnasts. In this cross-sectional study, 69 club-level trampoline gymnasts (35 females and 34 males

  17. Relationship of maxillary 3-dimensional posterior occlusal plane to mandibular spatial position and morphology.

    Science.gov (United States)

    Coro, Jorge C; Velasquez, Roberto L; Coro, Ivette M; Wheeler, Timothy T; McGorray, Susan P; Sato, Sadao

    2016-07-01

    The purpose of this study was to examine the relationship of the 3-dimensional (3D) posterior occlusal plane (POP) and the mandibular 3D spatial position. The relationship of the POP to mandibular morphology was also investigated. Retrospective data from a convenience sample of pretreatment diagnostic cone-beam computed tomography scans were rendered using InVivo software (Anatomage, San Jose, Calif). The sample consisted of 111 subjects (51 male, 60 female) and included growing and nongrowing subjects of different races and ethnicities. The 3D maxillary POP was defined by selecting the cusp tips of the second premolars and the second molars on the rendered images of the subjects. The angles made by this plane, in reference to the Frankfort horizontal plane, were measured against variables that described the mandibular position in the coronal, sagittal, and axial views. The POP was also compared with bilateral variables that described mandibular morphology. There were significant differences of the POP among the different skeletal malocclusions (P <0.0001). The POP showed significant correlations with mandibular position in the sagittal (P <0.0001), coronal (P <0.05), and axial (P <0.05) planes. The POP also showed a significant correlation with mandibular morphology (P <0.0001). These findings suggest that there is a distinct and significant relationship between the 3D POP and the mandibular spatial position and its morphology. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  18. Does correction of preoperative coronal imbalance make a difference in outcomes of adult patients with deformity?

    Science.gov (United States)

    Daubs, Michael D; Lenke, Lawrence G; Bridwell, Keith H; Kim, Yongjung J; Hung, Man; Cheh, Gene; Koester, Linda A

    2013-03-15

    Retrospective study with prospectively collected outcomes data. Determine the significance of coronal balance on spinal deformity surgery outcomes. Sagittal balance has been confirmed as an important radiographic parameter correlating with adult deformity treatment outcomes. The significance of coronal balance on functional outcomes is less clear. Eighty-five patients with more than 4 cm of coronal imbalance who underwent reconstructive spinal surgery were evaluated to determine the significance of coronal balance on functional outcomes as measured with the Oswestry Disability Index (ODI) and Scoliosis Research Society outcomes questionnaires. Sixty-two patients had combined coronal (>4 cm) and sagittal imbalance (>5 cm), while 23 patients had coronal imbalance alone. Postoperatively, 85% of patients demonstrated improved coronal balance. The mean improvement in the coronal C7 plumb line was 26 mm for a mean correction of 42%. The mean preoperative sagittal C7 plumb line in patients with combined coronal and sagittal imbalance was 118 mm (range, 50-310 mm) and improved to a mean 49 mm. The mean preoperative and postoperative ODI scores were 42 (range, 0-90) and 27 (range, 0-78), for a mean improvement of 15 (36%) (P = 0.00001; 95% CI, 12-20). The mean Scoliosis Research Society scores improved by 17 points (29%) (P = 0.00). Younger age (P = 0.008) and improvement in sagittal balance (P = 0.014) were positive predictors for improved ODI scores. Improvement in sagittal balance (P = 0.010) was a positive predictor for improved Scoliosis Research Society scores. In patients with combined coronal and sagittal imbalance, improvement in sagittal balance was the most significant predictor for improved ODI scores (P = 0.009). In patients with preoperative coronal imbalance alone, improvement in coronal balance trended toward, but was not a significant predictor for improved ODI (P = 0.092). Sagittal balance improvement is the strongest predictor of improved outcomes in

  19. Coronal magnetometry

    CERN Document Server

    Zhang, Jie; Bastian, Timothy

    2014-01-01

    This volume is a collection of research articles on the subject of the solar corona, and particularly, coronal magnetism. The book was motivated by the Workshop on Coronal Magnetism: Connecting Models to Data and the Corona to the Earth, which was held 21 - 23 May 2012 in Boulder, Colorado, USA. This workshop was attended by approximately 60 researchers. Articles from this meeting are contained in this topical issue, but the topical issue also contains contributions from researchers not present at the workshop. This volume is aimed at researchers and graduate students active in solar physics. Originally published in Solar Physics, Vol. 288, Issue 2, 2013 and Vol. 289, Issue 8, 2014.

  20. 3D knee segmentation based on three MRI sequences from different planes.

    Science.gov (United States)

    Zhou, L; Chav, R; Cresson, T; Chartrand, G; de Guise, J

    2016-08-01

    In clinical practice, knee MRI sequences with 3.5~5 mm slice distance in sagittal, coronal, and axial planes are often requested for the knee examination since its acquisition is faster than high-resolution MRI sequence in a single plane, thereby reducing the probability of motion artifact. In order to take advantage of the three sequences from different planes, a 3D segmentation method based on the combination of three knee models obtained from the three sequences is proposed in this paper. In the method, the sub-segmentation is respectively performed with sagittal, coronal, and axial MRI sequence in the image coordinate system. With each sequence, an initial knee model is hierarchically deformed, and then the three deformed models are mapped to reference coordinate system defined by the DICOM standard and combined to obtain a patient-specific model. The experimental results verified that the three sub-segmentation results can complement each other, and their integration can compensate for the insufficiency of boundary information caused by 3.5~5 mm gap between consecutive slices. Therefore, the obtained patient-specific model is substantially more accurate than each sub-segmentation results.

  1. Interpretation of coronal synoptic observations

    International Nuclear Information System (INIS)

    Munro, R.H.; Fisher, R.R.

    1986-01-01

    Three-dimensional reconstruction techniques used to determine coronal density distributions from synoptic data are complicated and time consuming to employ. Current techniques also assume time invariant structures and thus mix both temporal and spatial variations present in the coronal data. The observed distribution of polarized brightness, pB, and brightness, B, of coronal features observed either at eclipses or with coronagraphs depends upon both the three-dimensional distribution of electron density within the structure and the location of the feature with respect to the plane-of-the-sky. By theoretically studying the signature of various coronal structures as they would appear during a limb transit, it is possible to recognize these patterns in real synoptic data as well as estimate temporal evolutionary effects

  2. Training intensity and sagittal curvature of the spine in male and female artistic gymnasts.

    Science.gov (United States)

    Sanz-Mengibar, Jose M; Sainz-de-Baranda, Pilar; Santonja-Medina, Fernando

    2018-04-01

    Specific adaptations of the spine in the sagittal plane have been described according to different sports disciplines. The goal of this study was to describe the integrative diagnosis of the sagittal morphotype of the spine in male and female artistic gymnasts. Forty-eight gymnasts were measured with an inclinometer. Thoracic and lumbar curves were quantified in standing position, in Sit and Reach and Slump Sitting in order to assess the sagittal spine posture and analyze if adaptations were related to training intensity. Correlation values of the sagittal plane spine measurements showed significantly increased thoracic kyphosis in men (-0.445, Partistic gymnastics; however, this sport seems to cause specific adaptations in postural hypolordosis, functional thoracic kyphosis and lumbar kyphotic attitude during sitting and trunk flexion. The implications of the functional adaptations observed in our results may require a preventive intervention in male and female artistic gymnasts can be assessed with the integrative diagnosis of the sagittal morphotype of the spine.

  3. Asymmetric C7 pedicle subtraction osteotomy for correction of rigid cervical coronal imbalance secondary to post-traumatic heterotopic ossification: a case report, description of a novel surgical technique, and literature review.

    Science.gov (United States)

    Theologis, Alexander A; Bellevue, Kate D; Qamirani, Erion; Ames, Christopher P; Deviren, Vedat

    2017-05-01

    Deformities of the cervical spine are uncommon in the coronal plane. In this report, a unique case of a 31-year-old male with a fixed, 30° left coronal deformity due to heterotopic ossification 3 years status post poly-trauma was treated with an asymmetric C7 pedicle subtraction osteotomy (PSO). Case report. Pre-operatively, the patient had a fixed 45-degree left tilt of his neck and radiographs demonstrated a rigid 30° scoliosis, 7 cm coronal imbalance, and 4 cm negative sagittal balance, diffuse bridging bone between the spinous processes and the facet joints of C5 to T1 bilaterally. An asymmetric C7 PSO with C2-T3 posterior spinal fusion was completed without complication. There was residual 9° coronal deformity, 2.9 cm left coronal imbalance, and 2.3 cm sagittal imbalance. He had a marked improvement in his function, as assessed by the SF-36 physical component score (pre-op 31.1; post-op 44.7) and mental component score (pre-op 46.0; post-op 66.8). Post-operatively, neck disability index scores also improved (pre-op 38; post-op 16). Although the patient passed away from a drug overdose 14 months post-operatively, he did not report neck pain, he had not sought evaluation from another physician for his neck, and he had not undergone a subsequent neck operation before his passing. In this one patient, an asymmetric C7 PSO was performed safely. While it was effective in addressing a fixed cervical coronal imbalance, its efficacy and safety profile should be confirmed in larger cohorts.

  4. The influence of elastic orthotic belt on sagittal profile in adolescent idiopathic thoracic scoliosis: a comparative radiographic study with Milwaukee brace

    Directory of Open Access Journals (Sweden)

    Qian Bangping

    2010-09-01

    Full Text Available Abstract Background The effectiveness of bracing on preventing curve progression in coronal plane for mild and moderate adolescent idiopathic scoliosis (AIS patients has been confirmed by previous radiographic researches. However, a hypokyphotic effect on the sagittal plane has been reported by a few studies. A relatively increasing number of AIS patients were noticed to wear a new kind of elastic orthotic belt for the treatments of scoliosis without doctors' instructions. We postulate the correcting mechanism of this new appliance may cause flattening of the spine. To our knowledge, no study has investigated the effects of this new orthosis on the sagittal profile of AIS patients. The aim of this study was to evaluate and compare the effects of elastic orthotic belt and Milwaukee brace on the sagittal alignment in AIS patients. Methods Twenty-eight female AIS patients with mild or moderate thoracic curves were included in this study. Standing full-length lateral radiographs were obtained in three conditions: natural standing posture without any treatment, with elastic orthotic belt and with Milwaukee brace. Thoracic kyphosis (TK, lumber lordosis (LL and pelvic incidence (PI were measured and compared between the above three conditions. Results Both elastic orthotic belt and Milwaukee brace can lead to significant decrease of TK, however, the decrease of TK after wearing elastic orthotic belt is significantly larger than that after wearing Milwaukee brace. Compared with no treatment, LL was found to be significantly smaller after wearing Milwaukee brace, however, such significant decrease was not noted after wearing elastic orthotic belt. No significant changes were observed for the PI between 3 conditions. Conclusions The elastic orthotic belt could lead to more severe thoracic hypokyphosis when compared with Milwaukee brace. This belt may not be a suitable conservative method for the treatment of mild and moderate AIS patients.

  5. Measurements of angles of the normal auditory ossicles relative to the reference plane and image reconstruction technique for obtaining optimal sections of the ossicles in high-resolution multiplanar reconstruction using a multislice CT scanner

    International Nuclear Information System (INIS)

    Fujii, Naoko; Katada, Kazuhiro; Yoshioka, Satoshi; Takeuchi, Kenji; Takasu, Akihiko; Naito, Kensei

    2005-01-01

    Using high-resolution isotropic volume data obtained by 0.5 mm, 4-row multislice CT, cross-sectional observation of the auditory ossicles is possible from any desired direction without difficulty in high-resolution multiplanar reconstruction (HR-MPR) images, also distortion-free three-dimensional images of the ossicles are generated in three-dimensional CT (3D-CT) images. We measured angles of fifty normal ossicles relative to the reference plane, which has been defined as a plane through the bilateral infraorbital margins to the middle portion of the external auditory canal. Based on the results of angle measurement, four optimal sections of the ossicles for efficient viewing to the ossicular chain were identified. To understand the position of the angle measurement and the four sections, the ossicles and the reference plane were reconstructed in the 3D-CT images. As the result of observation of the ossicles and the reference plane, the malleus was parallel to the incudal long process and perpendicular to the reference plane. As the results of angle measurement, the mean angle of the tympanic portion of the facial nerve relative to the reference plane in the sagittal plane was found to be 17 deg, and the mean angle of the stapedial crura relative to the reference plane in the sagittal plane was found to be 6 deg. The mean angle of the stapes relative to the reference plane in the coronal plane was 44 deg, and the mean angle of the incudal long process relative to the stapes in the coronal plane was 89 deg. In 80% of ears, the stapes extended straight from the incudal long process. Image reconstruction technique for viewing four sections of the ossicles was investigated. Firstly, the image of the malleal head and the incudal short process was identified in the axial plane. Secondly, an image of the malleus along the malleal manubrium was reconstructed in the coronal plane. Thirdly, the image of the incudal long process was seen immediately behind the malletis image

  6. Supra-acetabular line is better than supra-iliac line for coronal balance referencing-a study of perioperative whole spine X-rays in degenerative lumbar scoliosis and ankylosing spondylitis patients.

    Science.gov (United States)

    Hey, Hwee Weng Dennis; Kim, Cheung-Kue; Lee, Won-Gyu; Juh, Hyung-Suk; Kim, Ki-Tack

    2017-12-01

    The aim of spinal deformity correction is to restore the spine's functional alignment by balancing it in both the sagittal and coronal planes. Regardless of posture, the ideal coronal profile is straight, and therefore readily assessable. This study compares two radiological methods to determine which better predicts postoperative standing coronal balance. We conducted a single-center, radiographic comparative study between 2011 and 2015. A total of 199 patients with a mean age of 55.1 years were studied. Ninety patients with degenerative lumbar scoliosis (DLS) and 109 ankylosing spondylitis (AS) were treated with posterior surgery during this period. Baseline clinical and radiographic parameters (sagittal and coronal) were recorded. Comparison was performed between the new supra-acetabular line (central sacral vertical line [CSVL1]) and conventional supra-iliac line (CSVL2) perpendicular methods of coronal balance assessment. These methods were also compared with the gold standard standing C7 plumb line. Each patient underwent standardized operative procedures and had perioperative spine X-rays obtained for assessment of spinal balance. Adjusted multivariate analysis was used to determine predictors of coronal balance. Significant differences in baseline characteristics (age, gender, and radiographic parameters) were found between patients with DLS and AS. CSVL1, CSVL2, and C7 plumb line differed in all the perioperative measurements. These three radiological methods showed a mean right coronal imbalance for both diagnoses in all pre-, intra-, and postoperative radiographs. The magnitude of imbalance was the greatest for CSVL2 followed by CSVL1 and subsequently the C7 plumb line. A larger discrepancy between CSVL and C7 plumb line measurements intraoperatively than those postoperatively suggests a postural effect on these parameters, which is greater for CSVL2. Multivariate analysis identified that in DLS, the preoperative C7 plumb line was predictive of its

  7. Sagittal x-ray beam deviation at asymmetric inclined diffractors

    Czech Academy of Sciences Publication Activity Database

    Korytár, D.; Hrdý, Jaromír; Artemiev, Nikolai; Ferrari, C.; Freund, A.

    2001-01-01

    Roč. 8, - (2001), s. 1136-1139 ISSN 0909-0495 R&D Projects: GA MŠk OK 305; GA MPO PZ-CH/22 Institutional research plan: CEZ:AV0Z1010914 Keywords : x-ray optics * Si(111) W/grooved crystals * inclined diffraction * out-of-diffraction-plane beams * sagittal focusing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.519, year: 2001

  8. Patients with proximal junctional kyphosis requiring revision surgery have higher postoperative lumbar lordosis and larger sagittal balance corrections.

    Science.gov (United States)

    Kim, Han Jo; Bridwell, Keith H; Lenke, Lawrence G; Park, Moon Soo; Song, Kwang Sup; Piyaskulkaew, Chaiwat; Chuntarapas, Tapanut

    2014-04-20

    Case control study. To evaluate risk factors in patients in 3 groups: those without proximal junctional kyphosis (PJK) (N), with PJK but not requiring revision (P), and then those with PJK requiring revision surgery (S). It is becoming clear that some patients maintain stable PJK angles, whereas others progress and develop severe PJK necessitating revision surgery. A total of 206 patients at a single institution from 2002 to 2007 with adult scoliosis with 2-year minimum follow-up (average 3.5 yr) were analyzed. Inclusion criteria were age more than 18 years and primary fusions greater than 5 levels from any thoracic upper instrumented vertebra to any lower instrumented vertebrae. Revisions were excluded. Radiographical assessment included Cobb measurements in the coronal/sagittal plane and measurements of the PJK angle at postoperative time points: 1 to 2 months, 2 years, and final follow-up. PJK was defined as an angle greater than 10°. The prevalence of PJK was 34%. The average age in N was 49.9 vs. 51.3 years in P and 60.1 years in S. Sex, body mass index, and smoking status were not significantly different between groups. Fusions extending to the pelvis were 74%, 85%, and 91% of the cases in groups N, P, and S. Instrumentation type was significantly different between groups N and S, with a higher number of upper instrumented vertebra hooks in group N. Radiographical parameters demonstrated a higher postoperative lumbar lordosis and a larger sagittal balance change, with surgery in those with PJK requiring revision surgery. Scoliosis Research Society postoperative pain scores were inferior in group N vs. P and S, and Oswestry Disability Index scores were similar between all groups. Patients with PJK requiring revision were older, had higher postoperative lumbar lordosis, and larger sagittal balance corrections than patients without PJK. Based on these data, it seems as though older patients with large corrections in their lumbar lordosis and sagittal balance

  9. Modeling posture-dependent leg actuation in sagittal plane locomotion

    International Nuclear Information System (INIS)

    Schmitt, J; Clark, J

    2009-01-01

    The spring loaded inverted pendulum template has been shown to accurately model the steady locomotion dynamics of a variety of running animals, and has served as the inspiration for an entire class of dynamic running robots. While the template models the leg dynamics by an energy-conserving spring, insects and animals have structures that dissipate, store and produce energy during a stance phase. Recent investigations into the spring-like properties of limbs, as well as animal response to drop-step perturbations, suggest that animals use their legs to manage energy storage and dissipation, and that this management is important for gait stability. In this paper, we extend our previous analysis of control of the spring loaded inverted pendulum template via changes in the leg touch-down angle to include energy variations during the stance phase. Energy variations are incorporated through leg actuation that varies the force-free leg length during the stance phase, yet maintains qualitatively correct force and velocity profiles. In contrast to the partially asymptotically stable gaits identified in previous analyses, incorporating energy and leg angle variations in this manner produces complete asymptotic stability. Drop-step perturbation simulations reveal that the control strategy is rather robust, with gaits recovering from drops of up to 30% of the nominal hip height.

  10. A comparison of cephalometric analyses for assessing sagittal jaw relationship

    International Nuclear Information System (INIS)

    Erum, G.; Fida, M.

    2008-01-01

    To compare the seven methods of cephalometric analysis for assessing sagittal jaw relationship and to determine the level of agreement between them. Seven methods, describing anteroposterior jaw relationships (A-B plane, ANB, Wits, AXB, AF-BF, FABA and Beta angle) were measured on the lateral cephalographs of 85 patients. Correlation analysis, using Cramer's V-test, was performed to determine the possible agreement between the pair of analyses. The mean age of the sample, comprising 35 males and 50 females was 15 years and 3 months. Statistically significant relationships were found among seven sagittal parameters with p-value <0.001. Very strong correlation was found between AXB and AF-BF distance (r=0.924); and weak correlation between ANB and Beta angle (r=0.377). Wits appraisal showed the greatest coefficient of variability. Despite varying strengths of association, statistically significant correlations were found among seven methods for assessing sagittal jaw relationship. FABA and A-B plane may be used to predict the skeletal class in addition to the established ANB angle. (author)

  11. Introduction of hind foot coronal alignment view

    International Nuclear Information System (INIS)

    Moon, Il Bong; Jeon, Ju Seob; Yoon, Kang Cheol; Choi, Nam Kil; Kim, Seung Kook

    2006-01-01

    Accurate clinical evaluation of the alignment of the calcaneus relative to the tibia in the coronal plane is essential in the evaluation and treatment of hind foot pathologic condition. Previously described standard anteroposterior, lateral, and oblique radiographic methods of the foot or ankle do not demonstrate alignment of the tibia relation to the calcaneus in the coronal plane. The purpose of this study was to introduce hind foot coronal alignment view. Both feet were imaged simultaneously on an elevated, radiolucent foot stand equipment. Both feet stood on a radiolucent platform with equal weight on both feet. Both feet are located foot axis longitudinal perpendicular to the platform. Silhouette tracing around both feet are made, and line is then drawn to bisect the silhouette of the second toe and the outline of the heel. The x-ray beam is angled down approximately 15 .deg. to 20 .deg. This image described tibial axis and medial, lateral tuberosity of calcaneus. Calcaneus do not rotated. The view is showed by talotibial joint space. Although computed tomographic and magnetic resonance imaging techniques are capable of demonstrating coronal hind foot alignment, they lack usefulness in most clinical situations because the foot is imaged in a non-weight bearing position. But hind foot coronal alignment view is obtained for evaluating position changing of inversion, eversion of the hind foot and varus, valgus deformity of calcaneus

  12. Measurement and Finite Element Model Validation of Immature Porcine Brain-Skull Displacement during Rapid Sagittal Head Rotations.

    Science.gov (United States)

    Pasquesi, Stephanie A; Margulies, Susan S

    2018-01-01

    Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain-skull displacement in the neonatal piglet head ( n  = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain-skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain-skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain-skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain-skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations.

  13. Measurement and Finite Element Model Validation of Immature Porcine Brain–Skull Displacement during Rapid Sagittal Head Rotations

    Science.gov (United States)

    Pasquesi, Stephanie A.; Margulies, Susan S.

    2018-01-01

    Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain–skull displacement in the neonatal piglet head (n = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain–skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain–skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain–skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain–skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations. PMID:29515995

  14. Formation of coronal cavities

    International Nuclear Information System (INIS)

    An, C.H.; Suess, S.T.; Tandberg-Hanssen, E.; Steinolfson, R.S.

    1986-01-01

    A theoretical study of the formation of a coronal cavity and its relation to a quiescent prominence is presented. It is argued that the formation of a cavity is initiated by the condensation of plasma which is trapped by the coronal magnetic field in a closed streamer and which then flows down to the chromosphere along the field lines due to lack of stable magnetic support against gravity. The existence of a coronal cavity depends on the coronal magnetic field strength; with low strength, the plasma density is not high enough for condensation to occur. Furthermore, we suggest that prominence and cavity material is supplied from the chromospheric level. Whether a coronal cavity and a prominence coexist depends on the magnetic field configuration; a prominence requires stable magnetic support

  15. Correction Capability in the 3 Anatomic Planes of Different Pedicle Screw Designs in Scoliosis Instrumentation.

    Science.gov (United States)

    Wang, Xiaoyu; Aubin, Carl-Eric; Coleman, John; Rawlinson, Jeremy

    2017-05-01

    Computer simulations to compare the correction capabilities of different pedicle screws in adolescent idiopathic scoliosis (AIS) instrumentations. To compare the correction and resulting bone-screw forces associated with different pedicle screws in scoliosis instrumentations. Pedicle screw fixation is widely used in surgical instrumentation for spinal deformity treatment. Screw design, correction philosophies, and surgical techniques are constantly evolving to achieve better control of the vertebrae and correction of the spinal deformity. Yet, there remains a lack of biomechanical studies that quantify the effects and advantages of different screw designs in terms of correction kinematics. The correction capabilities of fixed-angle, multiaxial, uniaxial, and saddle axial screws were kinematically analyzed, simulated, and compared. These simulations were based on the screw patterns and correction techniques proposed by 2 experienced surgeons for 2 AIS cases. Additional instrumentations were assessed to compare the correction and resulting bone-screw forces associated with each type of screw. The fixed-angle, uniaxial and saddle axial screws had similar kinematic behavior and performed better than multiaxial screws in the coronal and transverse planes (8% and 30% greater simulated corrections, respectively). Uniaxial and multiaxial screws were less effective than fixed-angle and saddle axial screws in transmitting compression/distraction to the anterior spine because of their sagittal plane mobility between the screw head and shank. Only the saddle axial screws allow vertebra angle in the sagittal plane to be independently adjusted. Pedicle screws of different designs performed differently for deformity corrections or for compensating screw placement variations in different anatomic planes. For a given AIS case, screw types should be determined based on the particular instrumentation objectives, the deformity's stiffness and characteristics so as to make the best of

  16. Can coronal hole spicules reach coronal temperatures?

    Science.gov (United States)

    Madjarska, M. S.; Vanninathan, K.; Doyle, J. G.

    2011-08-01

    Aims: The present study aims to provide observational evidence of whether coronal hole spicules reach coronal temperatures. Methods: We combine multi-instrument co-observations obtained with the SUMER/SoHO and with the EIS/SOT/XRT/Hinode. Results: The analysed three large spicules were found to be comprised of numerous thin spicules that rise, rotate, and descend simultaneously forming a bush-like feature. Their rotation resembles the untwisting of a large flux rope. They show velocities ranging from 50 to 250 kms-1. We clearly associated the red- and blue-shifted emissions in transition region lines not only with rotating but also with rising and descending plasmas. Our main result is that these spicules although very large and dynamic, are not present in the spectral lines formed at temperatures above 300 000 K. Conclusions: In this paper we present the analysis of three Ca ii H large spicules that are composed of numerous dynamic thin spicules but appear as macrospicules in lower resolution EUV images. We found no coronal counterpart of these and smaller spicules. We believe that the identification of phenomena that have very different origins as macrospicules is due to the interpretation of the transition region emission, and especially the He ii emission, wherein both chromospheric large spicules and coronal X-ray jets are present. We suggest that the recent observation of spicules in the coronal AIA/SDO 171 Å and 211 Å channels probably comes from the existence of transition region emission there. Movie is available in electronic form at http://www.aanda.org

  17. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  18. Utility of coronal oblique slices in cervical spine MRI. Improved detection of the neuroforamina; Nutzen der halbkoronaren Schichtung im MRT der Halswirbelsaeule. Verbesserte Erkennbarkeit von Neuroforamina

    Energy Technology Data Exchange (ETDEWEB)

    Freund, W.; Hoepner, G. [Universitaetskliniken Ulm, Klinik fuer Diagnostische und Interventionelle Radiologie, Ulm (Germany); Klessinger, S. [Nova Clinic Biberach, Neurochirurgie, Biberach (Germany); Universitaetskliniken Ulm, Neurochirurgie, Ulm (Germany); Mueller, M. [Universitaetskliniken Ulm, Klinik fuer Diagnostische und Interventionelle Radiologie, Ulm (Germany); Universitaetskliniken Aachen, Diagnostische und Interventionelle Neuroradiologie, Aachen (Germany); Halatsch, M.E. [Universitaetskliniken Ulm, Neurochirurgie, Ulm (Germany); Weber, F. [Bundeswehrkrankenhaus Ulm, Neurologie, Ulm (Germany); Schmitz, B. [Universitaetskliniken Ulm, Neuroradiologie, Ulm (Germany)

    2015-11-15

    Angulated projections are standard in conventional radiography of the cervical spine, but rarely used in magnetic resonance imaging (MRI). As neuroforaminal pathology plays an important role in the etiology of radicular syndromes and may influence an operative approach, the utility of coronal oblique slices in MRI is explored. In a retrospective setting, 25 consecutive patients with neurologically diagnosed cervical monoradiculopathy were identified. T2-weighted sagittal, coronal oblique, and transversal slice orientations were anonymized. Two radiologists and two neurosurgeons independently assessed the cases. Criteria were site, cause, and grading of the neuroforaminal stenosis and the level of confidence on a 100-point visual analog scale (VAS). We computed interrater agreement, sensitivity, and t tests. Using only one slice orientation, the sensitivity in detecting the relevant neuroforamen was 0.40 for transversal, 0.68 for sagittal, and 0.64 for coronal oblique scans. A combination of the different angulations increased sensitivity and in 4 cases only the coronal oblique scans proved diagnostic. The readers felt significantly more confident in attributing the cause of the pathology on coronal oblique planes (a mean of 72 VAS points, p = 0.0003 vs 58 (sagittal) vs 64 (transversal)). Interrater agreement was significantly better for experienced (kappa 0. 48) than for inexperienced readers (0.32, p = 0.02). Adding coronal oblique planes in cervical spine MRI increases sensitivity and confidence in attributing the cause of neuroforaminal pathology. They are regarded as useful by all the readers. (orig.) [German] Im Gegensatz zur Magnetresonanztomographie (MRT) sind in der konventionellen Roentgendiagnostik der Halswirbelsaeule (HWS) Schraegaufnahmen Standard. Da neuroforaminale Pathologien wichtige Ursachen von radikulaeren Syndromen sind und die Operationstechnik moeglicherweise beeinflussen, wird der Nutzen halbkoronarer Schichten in der MRT untersucht. In

  19. Nearaffine planes

    NARCIS (Netherlands)

    Wilbrink, H.A.

    1982-01-01

    In this paper we develop a theory for nearaffine planes analogous to the theory of ordinary affine translation planes. In a subsequent paper we shall use this theory to give a characterization of a certain class of Minkowski planes.

  20. A three-plane architectonic atlas of the rat hippocampal region.

    Science.gov (United States)

    Boccara, Charlotte N; Kjonigsen, Lisa J; Hammer, Ingvild M; Bjaalie, Jan G; Leergaard, Trygve B; Witter, Menno P

    2015-07-01

    The hippocampal region, comprising the hippocampal formation and the parahippocampal region, has been one of the most intensively studied parts of the brain for decades. Better understanding of its functional diversity and complexity has led to an increased demand for specificity in experimental procedures and manipulations. In view of the complex 3D structure of the hippocampal region, precisely positioned experimental approaches require a fine-grained architectural description that is available and readable to experimentalists lacking detailed anatomical experience. In this paper, we provide the first cyto- and chemoarchitectural description of the hippocampal formation and parahippocampal region in the rat at high resolution and in the three standard sectional planes: coronal, horizontal and sagittal. The atlas uses a series of adjacent sections stained for neurons and for a number of chemical marker substances, particularly parvalbumin and calbindin. All the borders defined in one plane have been cross-checked against their counterparts in the other two planes. The entire dataset will be made available as a web-based interactive application through the Rodent Brain WorkBench (http://www.rbwb.org) which, together with this paper, provides a unique atlas resource. © 2014 Wiley Periodicals, Inc.

  1. Analysis of sagittal spinopelvic parameters in achondroplasia.

    Science.gov (United States)

    Hong, Jae-Young; Suh, Seung-Woo; Modi, Hitesh N; Park, Jong-Woong; Park, Jung-Ho

    2011-08-15

    Prospective radiological analysis of patients with achondroplasia. To analyze sagittal spinal alignment and pelvic orientation in achondroplasia patients. Knowledge of sagittal spinopelvic parameters is important for the treatment of achondroplasia, because they differ from those of the normal population and can induce pain. The study and control groups were composed of 32 achondroplasia patients and 24 healthy volunteers, respectively. All underwent lateral radiography of the whole spine including hip joints. The radiographic parameters examined were sacral slope (SS), pelvic tilt, pelvic incidence (PI), S1 overhang, thoracic kyphosis, T10-L2 kyphosis, lumbar lordosis (LL1, LL2), and sagittal balance. Statistical analysis was performed to identify significant differences between the two groups. In addition, correlations between parameters and symptoms were sought. Sagittal spinopelvic parameters, namely, pelvic tilt, pelvic incidence, S1 overhang, thoracic kyphosis, T10-L2 kyphosis, lumbar lordosis 1 and sagittal balance were found to be significantly different in the patient and control groups (P achondroplasia patients and normal healthy controls. The present study shows that sagittal spinal and pelvic parameters can assist the treatment of spinal disorders in achondroplasia patients.

  2. Assessment of Coronal Radiographic Parameters of the Spine in the Treatment of Adolescent Idiopathic Scoliosis.

    Science.gov (United States)

    Karami, Mohsen; Maleki, Arash; Mazda, Keyvan

    2016-10-01

    To determine the most important preoperative factors that affect postoperative coronal parameters of scoliotic curves. All Adolescent Idiopathic Scoliosis (AIS) patients included in the study were classified according to Lenke and King Classification. The fusion levels were selected according to the rigidity of the existing curves (correction less than 50%), tilt of T1 and shoulders, sagittal angle of the curves and with considering stable and neutral end vertebra. The radiographic coronal parameters: shoulders tilt angle, iliolumbar angle and coronal balance were measured in all patients before, after, and in the last follow-up visit. One hundred twenty patients after mean of 25 months follow-up (18-40 months) were included in the study. Before operation, abnormal coronal balance (more than 2 cm shift) was noticed in 46 patents (38%) and in the last visit, was noted in 22 patients (18%). Multivariate regression analysis revealed a significant predictive value of the preoperative coronal balance on the last visit coronal balance ( P value=0.01). Preoperative coronal balance is very important to make a balanced spine after surgery. Other parameters like Lenke classification or main thoracic overcorrection did not affect postoperative coronal decompensation.

  3. Coronal mass ejections and coronal structures

    International Nuclear Information System (INIS)

    Hildner, E.; Bassi, J.; Bougeret, J.L.

    1986-01-01

    Research on coronal mass ejections (CMF) took a variety of forms, both observational and theoretical. On the observational side there were: case studies of individual events, in which it was attempted to provide the most complete descriptions possible, using correlative observations in diverse wavelengths; statistical studies of the properties of CMEs and their associated activity; observations which may tell us about the initiation of mass ejections; interplanetary observations of associated shocks and energetic particles; observations of CMEs traversing interplanetary space; and the beautiful synoptic charts which show to what degree mass ejections affect the background corona and how rapidly (if at all) the corona recovers its pre-disturbance form. These efforts are described in capsule form with an emphasis on presenting pictures, graphs, and tables so that the reader can form a personal appreciation of the work and its results

  4. Contribution of thin slice (1 mm) oblique coronal proton density-weighted MR images for assessment of anteromedial and posterolateral bundle damage in anterior cruciate ligament injuries

    Energy Technology Data Exchange (ETDEWEB)

    Gokalp, Gokhan, E-mail: drgokhangokalp@yahoo.com [Department of Radiology, Uludag University Medical Faculty, Gorukle, Bursa (Turkey); Demirag, Burak, E-mail: bdemirag@uludag.edu.tr [Department of Orthopedy, Uludag University Medical Faculty, Gorukle, Bursa (Turkey); Nas, Omer Fatih, E-mail: omerfatihnas@gmail.com [Department of Radiology, Uludag University Medical Faculty, Gorukle, Bursa (Turkey); Aydemir, Mehmet Fatih, E-mail: fatiha@yahoo.com [Department of Orthopedy, Uludag University Medical Faculty, Gorukle, Bursa (Turkey); Yazici, Zeynep, E-mail: zyazici@uludag.edu.tr [Department of Radiology, Uludag University Medical Faculty, Gorukle, Bursa (Turkey)

    2012-09-15

    Purpose: To evaluate the diagnostic efficacy of using additional oblique coronal 1 mm proton density-weighted (PDW) MR imaging of the knee for detection and grading anterior cruciate ligament (ACL), anteromedial bundle (AMB) and posterolateral bundle (PLB) injuries. Materials and methods: We prospectively assessed preoperative MR images of 50 patients (36 men, 14 women; age range, 18–62 years). First, we compared the diagnostic performance of routine sagittal (3 mm) and additional oblique coronal images (1 mm) for ACL tears. Then, we compared the tear types (AMB or PLB) and grade presumed from oblique coronal MR imaging with arthroscopy. Results: Arthroscopy revealed ACL tear in 24 (48%) patients. There was significant difference between sagittal images and arthroscopy results for ACL tear recognition (p < 0.001). No significant difference was detected for oblique coronal images when compared with arthroscopy results (p = 0.180). Sensitivity and specificity values for ACL tear diagnosis were 37.04% and 95.65% for sagittal images; 74.07% and 91.30% for oblique coronal images. There was no significant difference between arthroscopy and oblique coronal MR images in grading AMB and PLB injuries (p > 0.05). Conclusion: Addition of thin slice oblique coronal images to conventional sequences could better contribute to better verifying the presence of ACL tear and in determining its grade.

  5. Transforaminal Anterior Release for the Treatment of Fixed Sagittal Imbalance and Segmental Kyphosis, Minimum 2-Year Follow-Up Study.

    Science.gov (United States)

    Sweet, Fred A; Sweet, Andrea

    2015-09-01

    Retrospective review of prospectively accrued patient cohort. To report minimum 2 years' follow-up after a single-surgeon series of 47 consecutive patients in whom fixed sagittal imbalance or segmental kyphosis was treated with a novel unilateral transforaminal annular release. Fixed sagittal imbalance has been treated most recently with pedicle subtraction osteotomy with great success but is associated with significant blood loss and neurologic risk. Forty-seven consecutive patients with fixed sagittal imbalance (n = 29) or segmental kyphosis (n = 18) were treated by a single surgeon with a single-level transforaminal anterior release (TFAR) to effect an opening wedge correction. Sagittal and coronal correction was performed with in situ rod contouring. An interbody cage was captured in the disc space with rod compression. Radiographic and clinical outcome analysis was performed with a minimum 2-year follow-up (range 2-7.8 years). The average increase in lordosis was 36° (range 24°-56°) in the fixed sagittal deformity group. Coronal corrections averaged 34° (range 18°-48°). The average improvement in plumb line was 13.6 cm. There were four pseudarthroses, one at the TFAR. Average blood loss was 578 mL (range 200-1,200). One patient had a transient grade 4/5 anterior tibialis weakness. There were no vascular injuries or permanent neurologic deficits. There were significant improvements in the Oswestry Disability Index (p imbalance with relatively low blood loss and was found to be neurologically safe in this single-surgeon series. Therapeutic study, Level IV (case series, no control group). Copyright © 2015 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  6. Coronal Mass Ejections

    CERN Document Server

    Kunow, H; Linker, J. A; Schwenn, R; Steiger, R

    2006-01-01

    It is well known that the Sun gravitationally controls the orbits of planets and minor bodies. Much less known, however, is the domain of plasma fields and charged particles in which the Sun governs a heliosphere out to a distance of about 15 billion kilometers. What forces activates the Sun to maintain this power? Coronal Mass Ejections (CMEs) and their descendants are the troops serving the Sun during high solar activity periods. This volume offers a comprehensive and integrated overview of our present knowledge and understanding of Coronal Mass Ejections (CMEs) and their descendants, Interplanetary CMEs (ICMEs). It results from a series of workshops held between 2000 and 2004. An international team of about sixty experimenters involved e.g. in the SOHO, ULYSSES, VOYAGER, PIONEER, HELIOS, WIND, IMP, and ACE missions, ground observers, and theoreticians worked jointly on interpreting the observations and developing new models for CME initiations, development, and interplanetary propagation. The book provides...

  7. [An automatic system for anatomophysiological correlation in three planes simultaneously during functional neurosurgery].

    Science.gov (United States)

    Teijeiro, E J; Macías, R J; Morales, J M; Guerra, E; López, G; Alvarez, L M; Fernández, F; Maragoto, C; Seijo, F; Alvarez, E

    The Neurosurgical Deep Recording System (NDRS) using a personal computer takes the place of complex electronic equipment for recording and processing deep cerebral electrical activity, as a guide in stereotaxic functional neurosurgery. It also permits increased possibilities of presenting information in direct graphic form with automatic management and sufficient flexibility to implement different analyses. This paper describes the possibilities of automatic simultaneous graphic representation in three almost orthogonal planes, available with the new 5.1 version of NDRS so as to facilitate the analysis of anatomophysiological correlation in the localization of deep structures of the brain during minimal access surgery. This new version can automatically show the spatial behaviour of signals registered throughout the path of the electrode inside the brain, superimposed simultaneously on sagittal, coronal and axial sections of an anatomical atlas of the brain, after adjusting the scale automatically according to the dimensions of the brain of each individual patient. This may also be shown in a tridimensional representation of the different planes themselves intercepting. The NDRS system has been successfully used in Spain and Cuba in over 300 functional neurosurgery operations. The new version further facilitates analysis of spatial anatomophysiological correlation for the localization of brain structures. This system has contributed to increase the precision and safety in selecting surgical targets in the control of Parkinson s disease and other disorders of movement.

  8. Contribution of thin slice (1 mm) oblique coronal proton density-weighted MR images for assessment of anteromedial and posterolateral bundle damage in anterior cruciate ligament injuries

    International Nuclear Information System (INIS)

    Gokalp, Gokhan; Demirag, Burak; Nas, Omer Fatih; Aydemir, Mehmet Fatih; Yazici, Zeynep

    2012-01-01

    Purpose: To evaluate the diagnostic efficacy of using additional oblique coronal 1 mm proton density-weighted (PDW) MR imaging of the knee for detection and grading anterior cruciate ligament (ACL), anteromedial bundle (AMB) and posterolateral bundle (PLB) injuries. Materials and methods: We prospectively assessed preoperative MR images of 50 patients (36 men, 14 women; age range, 18–62 years). First, we compared the diagnostic performance of routine sagittal (3 mm) and additional oblique coronal images (1 mm) for ACL tears. Then, we compared the tear types (AMB or PLB) and grade presumed from oblique coronal MR imaging with arthroscopy. Results: Arthroscopy revealed ACL tear in 24 (48%) patients. There was significant difference between sagittal images and arthroscopy results for ACL tear recognition (p 0.05). Conclusion: Addition of thin slice oblique coronal images to conventional sequences could better contribute to better verifying the presence of ACL tear and in determining its grade

  9. Fracture morphology of AO/OTA 31-A trochanteric fractures: A 3D CT study with an emphasis on coronal fragments.

    Science.gov (United States)

    Cho, Jae-Woo; Kent, William T; Yoon, Yong-Cheol; Kim, Youngwoo; Kim, Hyungon; Jha, Ashutosh; Durai, Senthil Kumar; Oh, Jong-Keon

    2017-02-01

    This study was designed to assess the incidence and morphology of coronal plane fragments in AO/OTA 31-A trochanteric fractures. 156 cases of AO/OTA 31-A trochanteric fractures were retrospectively evaluated. Lateral radiographs were analyzed for the presence of coronal plane fragments followed by analysis of 3D CT reconstructions in these fractures. The incidence of coronal fragments identified on the lateral radiograph and 3D CT reconstructions were both calculated. Coronal fragment morphology was described based upon the origin and exit points of fracture lines and the number of fragments. On plain radiographs, a coronal plane fracture was identified in 59 cases, an incidence of 37.8% (59/156). In comparison, 3D CT reconstructions identified coronal plane fractures in 138 cases for an incidence of 88.4% (138/156). 3D CT reconstructions identified coronal fracture fragments in 81.9% (50/61) of AO/OTA 31-A1 cases, 94.5% (69/73) of 31-A2 cases, and 86.3% (19/22) of 31-A3 cases. Incidence of coronal fractures identified on plain radiographs of 3 AO/OTA 31-A1,A2,A3 groups was lower when compared to the incidence of coronal fractures identified on 3D CT. Of the 138 cases that had coronal plane fracture, 82 cases (59.4%) had a single coronal fragment (GT fragment 35 cases, GLT fragment 19 cases, GLPC fragment 28 cases). The remaining 56 cases (40.5%) had two coronal fragments. There is a high incidence of coronal fragments in intertrochanteric femur fractures when analyzed with 3D CT reconstructions. Our study suggests that these coronal fragments are difficult to identify on plain radiographs. Knowledge of the incidence and morphology of coronal fragments helps to avoid potential intraoperative pitfalls. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Benefits of sagittal-oblique MRI reconstruction of anterior cruciate ligament of the knee

    International Nuclear Information System (INIS)

    Nenezić, D.

    2015-01-01

    Full text: MRI examination of the anterior cruciate ligament (ACL) of the knee gives valuable information for conventional, physiatrist and/or arthroscopic microinvasiv treatment. three planar MRI examination and 3D reconstructions are highly precise in the analysis of the intra and periarticular structures, with exceptions of anterior cruciate ligament. Direct contact with the roof of the intercondilar fossa (in the full extension during the examination) and its specific orientation makes visualization of ACL diagnostically problematic. In a one year period precise protocol for MRI visualization of ACL was tested and applied as “Sagittal Oblique MRI Reconstruction”. In short, it has been Angled biplanar reconstruction in the parasagital and paratransversal planes (patientrelated and arbitrary selected in full extension), on T2, 2mm slice and 0,2 mm gap. 153 MRI examinations of the patients with lesions of the ACL were included in the study in the Clinical Center of Montenegro during 2005 year. Beside standard Knee MRI protocol all patients had the Sagittal Oblique MRI reconstruction of ACL and the Flexion MRI examination, to compare with. The Sagittal Oblique MRI reconstruction of ACL it is adapted to the concrete morphology of the patients ACL and it does not depend of the volume of the examined knee. In comparison with the Standard Knee MRI protocol and with the Flexion MRI examination, the Sagittal Oblique MRI reconstruction of ACL takes less time to perform, and the ligament is shown in fool length at three to five slices, which is more than with the both compared protocols. Sagittal Oblique MRI Reconstruction of ACL is therefore patient dependable, orientated in shape of concrete ligament of the patient’s knee. In combination with age, occupation, physical activity and level of patients while to contribute in healing process, the Sagittal Oblique MRI reconstruction of ACL contribute to scholastic approach, as highest benefit to patients with

  11. Sagittal crest formation in great apes and gibbons

    OpenAIRE

    Balolia, K. L.; Soligo, C.; Wood, B.

    2017-01-01

    The frequency of sagittal crest expression and patterns of sagittal crest growth and development have been documented in hominoids, including some extinct hominin taxa, and the more frequent expression of the sagittal crest in males has been traditionally linked with the need for larger-bodied individuals to have enough attachment area for the temporalis muscle. In the present study, we investigate sagittal cresting in a dentally mature sample of four hominoid taxa (Pan troglodytes schweinfur...

  12. Atlas of axial, sagittal and coronal anatomy with CT and MRI

    International Nuclear Information System (INIS)

    Christoforidis, A.J.

    1988-01-01

    This book correlates CT scans and nuclear magnetic resonance images with cross sections of all parts of the body-head and neck, thorax, abdomen, male and female pelvis and extremities. Cross sections are fixed, and images are made from the sections to provide exact section-to-scan correlation. Shows all three cross-sectional axes. Includes selected pathologic cases to demonstrate technique

  13. Image-Optimized Coronal Magnetic Field Models

    Science.gov (United States)

    Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M.

    2017-01-01

    We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work we presented early tests of the method which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane, and the effect on the outcome of the optimization of errors in localization of constraints. We find that substantial improvement in the model field can be achieved with this type of constraints, even when magnetic features in the images are located outside of the image plane.

  14. Image-optimized Coronal Magnetic Field Models

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M., E-mail: shaela.i.jones-mecholsky@nasa.gov, E-mail: shaela.i.jonesmecholsky@nasa.gov [NASA Goddard Space Flight Center, Code 670, Greenbelt, MD 20771 (United States)

    2017-08-01

    We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work, we presented early tests of the method, which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper, we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane and the effect on the outcome of the optimization of errors in the localization of constraints. We find that substantial improvement in the model field can be achieved with these types of constraints, even when magnetic features in the images are located outside of the image plane.

  15. Sagittal balance, a useful tool for neurosurgeons?

    Science.gov (United States)

    Villard, Jimmy; Ringel, Florian; Meyer, Bernhard

    2014-01-01

    New instrumentation techniques have made any correction of the spinal architecture possible. Sagittal balance has been described as an important parameter for assessing spinal deformity in the early 1970s, but over the last decade its importance has grown with the published results in terms of overall quality of life and fusion rate. Up until now, most of the studies have concentrated on spinal deformity surgery, but its use in the daily neurosurgery practice remains uncertain and may warrant further studies.

  16. Anthropometric outcome of sagittal craniosynostosis following surgery

    International Nuclear Information System (INIS)

    Takagi, Toshinori; Morota, Nobuhito; Ihara, Satoshi; Kaneko, Tsuyoshi

    2011-01-01

    Several studies have shown good short-term outcomes after surgery for sagittal synostosis. However, the improvement in head shape usually regresses over the long term. The aim of this study was to compare anthropometric changes after surgery between osteoplastic expansion surgery and distraction osteogenesis for correcting sagittal synostosis. From November 2002 through December 2008, 17 patients with sagittal synostosis were analyzed. Anthropometric changes were assessed with cephalic indices obtained with computed tomography of the skull. The age of the patients at the time of surgery ranged from 2 to 25 months (mean, 8.2 months), and the follow-up period ranged from 6 to 63 months (mean, 17 months). In 16 patients, the cephalic index showed improvement immediately after surgery but gradually decreased in the follow-up period. The improving rate was decreased more after osteoplastic expansion surgery than after distraction osteogenesis (p<0.01). Although long-term follow-up is necessary, morphological improvement persists to a greater degree after distraction surgery. (author)

  17. Influence of implant rod curvature on sagittal correction of scoliosis deformity.

    Science.gov (United States)

    Salmingo, Remel Alingalan; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu

    2014-08-01

    Deformation of in vivo-implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. To analyze the changes of the implant rod's angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. Twenty adolescent idiopathic scoliosis patients underwent surgery. Average age at the time of operation was 14 years. The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. Two implant rods were attached to the concave and convex side of the spinal deformity. The preoperative implant rod geometry was measured before surgical implantation. The postoperative implant rod geometry after surgery was measured by computed tomography. The implant rod angle of curvature at the sagittal plane was obtained from the implant rod geometry. The angle of curvature between the implant rod extreme ends was measured before implantation and after surgery. The sagittal curvature between the corresponding spinal levels of healthy adolescents obtained by previous studies was compared with the implant rod angle of curvature to evaluate the sagittal curve correction. The difference between the postoperative implant rod angle of curvature and normal spine sagittal curvature of the corresponding instrumented level was used to evaluate over or under correction of the sagittal deformity. The implant rods at the concave side of deformity of all patients were significantly deformed after surgery. The average degree of rod deformation Δθ at the concave and convex sides was 15.8° and 1.6°, respectively. The average preoperative and postoperative implant rod angle of curvature at the concave side was 33.6° and 17.8

  18. Multidetector CT enteroclysis: comparison of the reading performance for axial and coronal views

    International Nuclear Information System (INIS)

    Schmidt, Sabine; Chalaron, Marc; Schnyder, Pierre; Denys, Alban; Chevallier, Patrick; Bessoud, Bertrand; Verdun, Francis R.; Frascarolo, Philippe

    2005-01-01

    The purpose of this study was to compare the diagnostic performance of axial and coronal views in multidetector CT enteroclysis (MDCTE). We retrospectively evaluated 48 patients with pathological correlation investigated by MDCTE for small bowel disorders. After nasojejunal administration of 2 l of 5% methylcellulose axial arterial and venous acquisition of MDCTE was followed by coronal reconstructions using equal slice thicknesses of 2.5 mm with 2 mm increments. Spatial resolution of both planes was evaluated by phantom. Three radiologists independently read axial and coronal images concerning 12 pathological features. The interobserver agreement and time of reading was calculated. Sensitivity and specificity resulted from comparison with histopathology (n=39) or follow-up (n=9). Phantom study revealed higher spatial resolution for axial than coronal views, whatever reconstruction interval was used. However, spatial frequency always remained high. Most pathological signs, such as bowel wall thickening (BWT), bowel wall enhancement (BWE) and intraperitoneal fluid (IPF), showed better interobserver agreement on axial than coronal views (BWT: 0.61 vs. 0.44; BWE: 0.56 vs. 0.5; IPF:0.53 vs. 0.43). The Wilcoxon signed-rank test revealed significantly higher sensitivity for axial than coronal views (P=0.0453); the time of reading was significantly shorter for the latter (P=0.0146). The diagnostic value of axial slices is superior to coronal reconstructions despite the reduced data volume and display of the physiological course of bowel loops on the coronal plane. (orig.)

  19. Evolving Coronal Holes and Interplanetary Erupting Stream ...

    Indian Academy of Sciences (India)

    prominences, have a significantly higher rate of occurrence in the vicinity of coronal .... coronal holes due to the birth of new holes or the growth of existing holes. .... Statistics of newly formed coronal hole areas (NFOCHA) associated with ...

  20. Additional merit of coronal STIR imaging for MR imaging of lumbar spine

    Directory of Open Access Journals (Sweden)

    Ranjana Gupta

    2015-01-01

    Full Text Available Introduction: Back pain is a common clinical problem and is the frequent complaint for referral of lumbar spine magnetic resonance imaging (MRI. Coronal short tau inversion recovery sequence (STIR can provide diagnostically significant information in small percentage of patients. Materials and Methods: MRI examinations of a total of 350 patients were retrospectively included in the study. MR sequences were evaluated in two settings. One radiologist evaluated sagittal and axial images only, while another radiologist evaluated all sequences, including coronal STIR sequence. After recording the diagnoses, we compared the MRI findings in two subsets of patients to evaluate additional merit of coronal STIR imaging. Results: With addition of coronal STIR imaging, significant findings were observed in 24 subjects (6.8%. Twenty-one of these subjects were considered to be normal on other sequences and in three subjects diagnosis was changed with the addition of coronal STIR. Additional diagnoses on STIR included sacroiliitis, sacroiliac joint degenerative disease, sacral stress/insufficiency fracture/Looser′s zones, muscular sprain and atypical appendicitis. Conclusion: Coronal STIR imaging can provide additional diagnoses in a small percentage of patients presenting for lumbar spine MRI for back pain. Therefore, it should be included in the routine protocol for MR imaging of lumbar spine.

  1. Coronal heating via nanoflares

    International Nuclear Information System (INIS)

    Poletto, G.; Kopp, R.

    1993-01-01

    It has been recently proposed that the coronae of single late-type main sequence stars represent the radiative output from a large number of tiny energy release events, the so-called nanoflares. Although this suggestion is attractive and order of magnitude estimates of the physical parameters involved in the process are consistent with available data, nanoflares have not yet been observed and theoretical descriptions of these phenomena are still very crude. In this paper we examine the temporal behavior of a magnetic flux tube subject to the repeated occurrence of energy release events, randomly distributed in time, and we show that an originally empty cool loop may, in fact, reach typical coronal density and temperature values via nanoflare heating. By choosing physical parameters appropriate to solar conditions we also explore the possibilities for observationally detecting nanoflares. Although the Sun is the only star where nanoflares might be observed, present instrumentation appears to be inadequate for this purpose

  2. PARAMETERS FOR THE EVALUATION OF CERVICAL SAGITTAL BALANCE IN IDIOPATHIC SCOLIOSIS

    Directory of Open Access Journals (Sweden)

    MAURICIO COELHO LIMA

    Full Text Available ABSTRACT Objective: There are no values defined as standard in the literature for the parameters of assessment of cervical sagittal balance in patients with idiopathic scoliosis. This study describes the sagittal cervical parameters in patients with idiopathic scoliosis. Methods: Study carried out in a tertiary public hospital in patients with adolescent idiopathic scoliosis, through the evaluation of panoramic radiographs in lateral view. The Cobb method was used to evaluate cervical lordosis from C2 to C7, distance from the center of gravity (COG of the skull to C7, measurement of T1 slope, thoracic inlet angle (TIA, neck tilt, and plumb line from C7 to S1 (SVA C7-S1. A statistical analysis was performed, to demonstrate the relationship between the alignment of the thoracic spine in the sagittal plane and the cervical sagittal balance of patients with scoliosis. Results: Thirty-four patients were female (69.4% and 15 male (30.6%. The mean values for COG-C7 were 0.71 mm (median 0.8 mm/standard deviation [SD]= 0.51 mm. For Cobb C2-C7, the mean was -11.7° (median -10°/SD= 20.4°. The mean slope of T1 was 23.5° (median 25°/SD= 9.5°. The mean cervical version was 58.8° (median 60°/DP= 15.4°. The mean TIA was 81.8° (median 85°/SD= 16.7°. The mean plumb line C7-S1 was -0.28 (-0.3/SD= 1.0. Conclusion: The analysis of the results showed that the mean values for the cervical lordosis are lower than the values described as normal in the literature, suggesting a loss of sagittal cervical balance in these patients.

  3. Sagittal alignment after single cervical disc arthroplasty.

    Science.gov (United States)

    Guérin, Patrick; Obeid, Ibrahim; Gille, Olivier; Bourghli, Anouar; Luc, Stéphane; Pointillart, Vincent; Vital, Jean-Marc

    2012-02-01

    Prospective study. To analyze the sagittal balance after single-level cervical disc replacement (CDR) and range of motion (ROM). To define clinical and radiologic parameters those have a significant correlation with segmental and overall cervical curvature after CDR. Clinical outcomes and ROM after CDR with Mobi-C (LDR, Troyes, France) prosthesis have been documented in few studies. No earlier report of this prosthesis has studied correlations between static and dynamic parameters or those between static parameters and clinical outcomes. Forty patients were evaluated. Clinical outcome was assessed using the Short Form-36 questionnaire, Neck Disability Index, and a Visual Analog Scale. Spineview software (Surgiview, Paris, France) was used to investigate sagittal balance parameters and ROM. The mean follow-up was 24.3 months (range: 12 to 36 mo). Clinical outcomes were satisfactory. There was a significant improvement of Short Form-36, Neck Disability Index, and Visual Analog Scale scores. Mean ROM was 8.3 degrees preoperatively and 11.0 degrees postoperatively (P=0.013). Mean preoperative C2C7 curvature was 12.8 and 16.0 degrees at last follow-up (P=0.001). Mean preoperative functional spinal unit (FSU) angle was 2.3 and 5.3 degrees postoperatively (P<0.0001). Mean postoperative shell angle was 5.5 degrees. There was a significant correlation between postoperative C2C7 alignment and preoperative C2C7 alignment, change of C2C7 alignment, preoperative and postoperative FSU angle, and prosthesis shell angle. There was also a significant correlation between postoperative FSU angle and preoperative C2C7 alignment, preoperative FSU angle, change of FSU angle, and prosthesis shell angle. Regression analysis showed that prosthesis shell angle and preoperative FSU angle contributed significantly to postoperative FSU angle. Moreover, preoperative C2C7 alignment, preoperative FSU angle, postoperative FSU angle, and prosthesis shell angle contributed significantly to

  4. Sagittal crest formation in great apes and gibbons.

    Science.gov (United States)

    Balolia, Katharine L; Soligo, Christophe; Wood, Bernard

    2017-06-01

    The frequency of sagittal crest expression and patterns of sagittal crest growth and development have been documented in hominoids, including some extinct hominin taxa, and the more frequent expression of the sagittal crest in males has been traditionally linked with the need for larger-bodied individuals to have enough attachment area for the temporalis muscle. In the present study, we investigate sagittal cresting in a dentally mature sample of four hominoid taxa (Pan troglodytes schweinfurthii, Gorilla gorilla gorilla, Pongo pygmaeus pygmaeus and Hylobates lar). We investigate whether sagittal crest size increases with age beyond dental maturity in males and females of G. g. gorilla and Po. pyg. pygmaeus, and whether these taxa show sex differences in the timing of sagittal crest development. We evaluate the hypothesis that the larger sagittal crest of males may not be solely due to the requirement for a larger surface area than the un-crested cranial vault can provide for the attachment of the temporalis muscle, and present data on sex differences in temporalis muscle attachment area and sagittal crest size relative to cranial size. Gorilla g. gorilla and Po. pyg. pygmaeus males show significant relationships between tooth wear rank and sagittal crest size, and they show sagittal crest size differences between age groups that are not found in females. The sagittal crest emerges in early adulthood in the majority of G. g. gorilla males, whereas the percentage of G. g. gorilla females possessing a sagittal crest increases more gradually. Pongo pyg. pygmaeus males experience a three-fold increase in the number of specimens exhibiting a sagittal crest in mid-adulthood, consistent with a secondary growth spurt. Gorilla g. gorilla and Po. pyg. pygmaeus show significant sex differences in the size of the temporalis muscle attachment area, relative to cranial size, with males of both taxa showing positive allometry not shown in females. Gorilla g

  5. Validation, repeatability and reproducibility of a noninvasive instrument for measuring thoracic and lumbar curvature of the spine in the sagittal plane Validade, repetibilidade e reprodutibilidade de um instrumento não-invasivo para medição das curvaturas torácica e lombar da coluna vertebral no plano sagital

    Directory of Open Access Journals (Sweden)

    Fabiana O. Chaise

    2011-12-01

    Full Text Available BACKGROUND: The need for early identification of postural abnormalities without exposing patients to constant radiation has stimulated the development of instruments aiming to measure the spinal curvatures. OBJECTIVE: To verify the validity, repeatability and reproducibility of angular measures of sagittal curvatures of the spine obtained using an adapted arcometer, by comparing them with Cobb angles of the respective curvatures obtained by using X-rays. METHODS: 52 participants were submitted to two procedures designed to evaluate the thoracic and lumbar curvatures: (1 X-ray examination from which the Cobb angles (CA of both curvatures were obtained, and (2 measuring the angles with the arcometer (AA. Two evaluators collected the data using the arcometer, with the rods placed at T1, T12, L1 and L5 spinous processes levels in a way as to permit linear measurements which, with aid of trigonometry, supplied the AA. RESULTS: There was a very strong and significant correlation between AA and CA (r=0.94; pCONTEXTUALIZAÇÃO: A necessidade de identificação precoce de alterações posturais, sem expor as pessoas à radiação constante, tem estimulado a construção de instrumentos para medir as curvaturas da coluna vertebral. OBJETIVO: Verificar a validade, repetibilidade e reprodutibilidade dos ângulos das curvaturas sagitais da coluna vertebral, obtidos por meio de um arcômetro adaptado, comparando-os com os ângulos de Cobb (AC das respectivas curvaturas, obtidos por meio de exames radiográficos. MÉTODOS: Cinquenta e dois indivíduos foram submetidos a dois procedimentos destinados a avaliar as curvaturas torácica e lombar: (1 exame de raios-X, a partir do qual os AC de ambas as curvaturas foram obtidos e (2 medição dos ângulos das curvaturas com o arcômetro (AA. Dois avaliadores coletaram os dados usando o arcômetro com as hastes sobre os processos espinhosos T1, T12, L1 e L5, de modo a permitir medidas que, com auxílio de

  6. Spinal sagittal imbalance in patients with lumbar disc herniation: its spinopelvic characteristics, strength changes of the spinal musculature and natural history after lumbar discectomy.

    Science.gov (United States)

    Liang, Chen; Sun, Jianmin; Cui, Xingang; Jiang, Zhensong; Zhang, Wen; Li, Tao

    2016-07-22

    Spinal sagittal imbalance is a widely acknowledged problem, but there is insufficient knowledge regarding its occurrence. In some patients with lumbar disc herniation (LDH), their symptom is similar to spinal sagittal imbalance. The aim of this study is to illustrate the spinopelvic sagittal characteristics and identity the role of spinal musculature in the mechanism of sagittal imbalance in patients with LDH. Twenty-five adults with spinal sagittal imbalance who initially came to our clinic for treatment of LDH, followed by posterior discectomy were reviewed. The horizontal distance between C7 plumb line-sagittal vertical axis (C7PL-SVA) greater than 5 cm anteriorly with forward bending posture is considered as spinal sagittal imbalance. Radiographic parameters including thoracic kyphotic angle (TK), lumbar lordotic angle (LL), pelvic tilting angle (PT), sacral slope angle (SS) and an electromyography(EMG) index 'the largest recruitment order' were recorded and compared. All patients restored coronal and sagittal balance immediately after lumbar discectomy. The mean C7PL-SVA and trunk shift value decreased from (11.6 ± 6.6 cm, and 2.9 ± 6.1 cm) preoperatively to (-0.5 ± 2.6 cm and 0.2 ± 0.5 cm) postoperatively, while preoperative LL and SS increased from (25.3° ± 14.0° and 25.6° ± 9.5°) to (42.4° ± 10.2° and 30.4° ± 8.7°) after surgery (P imbalance caused by LDH is one type of compensatory sagittal imbalance. Compensatory mechanism of spinal sagittal imbalance mainly includes a loss of lumbar lordosis, an increase of thoracic kyphosis and pelvis tilt. Spinal musculature plays an important role in spinal sagittal imbalance in patients with LDH.

  7. Value of sagittal color Doppler ultrasonography as a supplementary tool in the differential diagnosis of fetal cleft lip and palate

    International Nuclear Information System (INIS)

    Lee, Myoung Seok; Cho, Jeong Yeon; Kim, Sang Youn; Kim, Seung Hyup; Park, Joong Shin; Jun, Jong Kwan

    2017-01-01

    The purpose of this study was to evaluate the feasibility and usefulness of sagittal color Doppler ultrasonography (CDUS) for the diagnosis of fetal cleft lip (CL) and cleft palate (CP). We performed targeted ultrasonography on 25 fetuses with CL and CP, taking coronal and axial images of the upper lip and maxillary alveolar arch in each case. The existence of defects in and malalignment of the alveolus on the axial image, hard palate defects on the midsagittal image, and flow-through defects on CDUS taken during fetal breathing or swallowing were assessed. We compared the ultrasonography findings with postnatal findings in all fetuses. Alveolar defects were detected in 16 out of 17 cases with CP and four out of eight cases with CL. Alveolar malalignment and hard palate defects were detected in 11 out of 17 cases and 14 out of 17 cases with CP, respectively, but not detected in any cases with CL. Communicating flow through the palate defect was detected in 11 out of 17 cases of CL with CP. The accuracy of detection in axial scans of an alveolar defect and malalignment was 80% and 76%, respectively. Accuracy of detection of in mid-sagittal images of hard palate defect and flow was 80% and 86%, respectively. The overall diagnostic accuracy of combined axial and sagittal images with sagittal CDUS was 92%. Sagittal CDUS of the fetal hard palate is a feasible method to directly reveal hard palate bony defects and flow through defects, which may have additional value in the differential diagnosis of fetal CL and CP

  8. Value of sagittal color Doppler ultrasonography as a supplementary tool in the differential diagnosis of fetal cleft lip and palate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Seok [Dept. of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul (Korea, Republic of); Cho, Jeong Yeon; Kim, Sang Youn; Kim, Seung Hyup [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Park, Joong Shin; Jun, Jong Kwan [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2017-01-15

    The purpose of this study was to evaluate the feasibility and usefulness of sagittal color Doppler ultrasonography (CDUS) for the diagnosis of fetal cleft lip (CL) and cleft palate (CP). We performed targeted ultrasonography on 25 fetuses with CL and CP, taking coronal and axial images of the upper lip and maxillary alveolar arch in each case. The existence of defects in and malalignment of the alveolus on the axial image, hard palate defects on the midsagittal image, and flow-through defects on CDUS taken during fetal breathing or swallowing were assessed. We compared the ultrasonography findings with postnatal findings in all fetuses. Alveolar defects were detected in 16 out of 17 cases with CP and four out of eight cases with CL. Alveolar malalignment and hard palate defects were detected in 11 out of 17 cases and 14 out of 17 cases with CP, respectively, but not detected in any cases with CL. Communicating flow through the palate defect was detected in 11 out of 17 cases of CL with CP. The accuracy of detection in axial scans of an alveolar defect and malalignment was 80% and 76%, respectively. Accuracy of detection of in mid-sagittal images of hard palate defect and flow was 80% and 86%, respectively. The overall diagnostic accuracy of combined axial and sagittal images with sagittal CDUS was 92%. Sagittal CDUS of the fetal hard palate is a feasible method to directly reveal hard palate bony defects and flow through defects, which may have additional value in the differential diagnosis of fetal CL and CP.

  9. Plasma Evolution within an Erupting Coronal Cavity

    Science.gov (United States)

    Long, David M.; Harra, Louise K.; Matthews, Sarah A.; Warren, Harry P.; Lee, Kyoung-Sun; Doschek, George A.; Hara, Hirohisa; Jenkins, Jack M.

    2018-03-01

    Coronal cavities have previously been observed to be associated with long-lived quiescent filaments and are thought to correspond to the associated magnetic flux rope. Although the standard flare model predicts a coronal cavity corresponding to the erupting flux rope, these have only been observed using broadband imaging data, restricting an analysis to the plane-of-sky. We present a unique set of spectroscopic observations of an active region filament seen erupting at the solar limb in the extreme ultraviolet. The cavity erupted and expanded rapidly, with the change in rise phase contemporaneous with an increase in nonthermal electron energy flux of the associated flare. Hot and cool filamentary material was observed to rise with the erupting flux rope, disappearing suddenly as the cavity appeared. Although strongly blueshifted plasma continued to be observed flowing from the apex of the erupting flux rope, this outflow soon ceased. These results indicate that the sudden injection of energy from the flare beneath forced the rapid eruption and expansion of the flux rope, driving strong plasma flows, which resulted in the eruption of an under-dense filamentary flux rope.

  10. Solar Coronal Plumes

    Directory of Open Access Journals (Sweden)

    Giannina Poletto

    2015-12-01

    Full Text Available Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features.

  11. Influence of mandibular fixation method on stability of the maxillary occlusal plane after occlusal plane alteration.

    Science.gov (United States)

    Yosano, Akira; Katakura, Akira; Takaki, Takashi; Shibahara, Takahiko

    2009-05-01

    In this study, we investigated how method of mandibular fixation influenced longterm postoperative stability of the maxilla in Class III cases. In particular, we investigated change in the maxillary occlusal plane after Occlusal Plane Alteration. Therefore, we focused on change in the palatal plane to evaluate stability of the maxillary occlusal plane, as the position of the palatal plane affects the maxillary occlusal plane. This study included 16 patients diagnosed with mandibular protrusion. Alteration of the occlusal plane was achieved by clockwise rotation of the maxilla by Le Fort I osteotomy and mandibular setback was performed by bilateral sagittal split ramus osteotomy. We analyzed and examined lateral cephalometric radiographs taken at 1 month, 3 months, 6 months, and 1 year after surgery. Stability achieved by two methods of mandibular fixation was compared. In one group of patients (group S) titanium screws were used, and in the other group (group P) titanium-locking mini-plates were used. No significant displacement was recognized in group S, whereas an approximately 0.7mm upward vertical displacement was recognized in the anterior nasal spine in group P. As a result, not only the angle of the palatal plane and S-N plane, but also occlusal plane angle in group P showed a greater decrease than that in group S. The results suggest that fixing the mandible with screws yielded greater stability of the maxilla and maxillary occlusal plane than fixing the mandible with titanium plates.

  12. Handheld Navigation Device and Patient-Specific Cutting Guides Result in Similar Coronal Alignment for Primary Total Knee Arthroplasty: a Retrospective Matched Cohort Study.

    Science.gov (United States)

    Steinhaus, Michael E; McLawhorn, Alexander S; Richardson, Shawn S; Maher, Patrick; Mayman, David J

    2016-10-01

    Proper alignment of total knee arthroplasty (TKA) is essential for TKA function and may reduce the risk of aseptic failure. Technologies that prevent malalignment may reduce the risk of revision surgery. The purpose of this study was to compare two competing TKA systems that purport improved alignment: patient-specific instrumentation (PSI), and a handheld portable navigation device (NAV). After IRB approval, 49 consecutive PSI TKAs (40 patients) were matched based on preoperative characteristics to 49 NAV TKAs (40 patients) performed by a single surgeon. A blinded observer measured alignment on digital radiographs. Operating room records were reviewed for procedure times. Two-tailed paired sample t tests and McNemar's test were used as appropriate. Alpha level was 0.05 for all tests. Preoperative cohort characteristics were not different. Mean postoperative long-leg mechanical alignment was within ±1° of neutral for both groups, although statistically different ( p  = 0.026). There were no other significant differences in coronal alignment. PSI exhibited significantly greater posterior tibial slope (4.4°) compared to NAV (2.7°) ( p  = 0.004); PSI resulted in significantly more outliers (>6°; p  = 0.004). Procedure time for unilateral TKAs was lower for PSI (74.4 min) compared to that for NAV (80.6 min; p  = 0.023). NAV and PSI technologies provided excellent coronal plane alignment. NAV was better for sagittal tibial slope, while PSI procedure times were shorter for unilateral TKA. The impact of these technologies on patient-reported outcomes and TKA survivorship is controversial and should be the focus of future research.

  13. Superior sagittal sinus thrombosis: a rare complication of nephrotic syndrome.

    Directory of Open Access Journals (Sweden)

    Tullu M

    1999-10-01

    Full Text Available A two and half year-old-male child, known case of steroid responsive nephrotic syndrome presented with fever and vomiting of acute onset. He was diagnosed to have superior sagittal sinus thrombosis on a contrast computerised tomographic scan of brain. Recovery was complete without anticoagulant therapy. Superior sagittal sinus thrombosis is an extremely rare complication of nephrotic syndrome.

  14. Direct coronary and sagittal computerized tomography of the pelvis

    International Nuclear Information System (INIS)

    Maier, W.; Bargon, G.

    1981-01-01

    Whereas quite a number of reports have been published on direct coronary and sagittal computed tomography of the cranium, no extensive experience has been collected on multidimensional computerized tomography of the pelvis. In this article, the authors report on their preliminary experiences in direct approximately sagittal and coronary computerized tomography of the pelvis in a group of 76 patients. (orig.) [de

  15. Finite element analysis of sagittal balance in different morphotype: Forces and resulting strain in pelvis and spine.

    Science.gov (United States)

    Filardi, Vincenzo; Simona, Portaro; Cacciola, Giorgio; Bertino, Salvatore; Soliera, Luigi; Barbanera, Andrea; Pisani, Alessandro; Milardi, Demetrio; Alessia, Bramanti

    2017-06-01

    In humans, vertical posture acquisition caused several changes in bones and muscles which can be assumed as verticalization. Pelvis, femur, and vertebral column gain an extension position which decreases muscular work by paravertebral muscles in the latter. It's widely known that six different morphological categories exist; each category differs from the others by pelvic parameters and vertebral column curvatures. Both values depend on the Pelvic Incidence, calculated as the angle between the axes passing through the rotation centre of the two femur heads and the vertical axis passing through the superior plate of the sacrum. The aim of this study is to evaluate the distribution of stress and the resulting strain along the axial skeleton using finite element analysis. The use of this computational method allows performing different analyses investigating how different bony geometries and skeletal structures can behavior under specific loading conditions. A computerized tomography (CT) of artificial bones, carried on at 1.5 mm of distance along sagittal, coronal and axial planes with the knee at 0° flexion (accuracy 0.5 mm), was used to obtain geometrical data of the model developed. Lines were imported into a commercial code (Hypermesh by Altair ® ) in order to interpolate main surfaces and create the solid version of the model. In particular six different models were created according Roussoly's classification, by arranging geometrical position of the skeletal components. Loading conditions were obtained by applying muscular forces components to T1 till to L5, according to a reference model (Daniel M. 2011), and a fixed constrain was imposed on the lower part of the femurs. Materials were assumed as elastic with an Elastic modulus of 15 GPa, a Shear Modulus of 7 GPa for bony parts, and an Elastic modulus of 6 MPa, a Shear Modulus of 3 MPa for cartilaginous parts. Six different simulations have been carried out in order to evaluate the mechanical behavior

  16. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, R. B.; Obenschain, K. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Laming, J. M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Taylor, B. D. [AFRL Eglin AFB, Pensacola, FL 32542 (United States)

    2016-11-10

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  17. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    International Nuclear Information System (INIS)

    Dahlburg, R. B.; Obenschain, K.; Laming, J. M.; Taylor, B. D.

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  18. Solar Coronal Structure Study

    Science.gov (United States)

    Nitta, Nariaki; Bruner, Marilyn E.; Saba, Julia; Strong, Keith; Harvey, Karen

    2000-01-01

    The subject of this investigation is to study the physics of the solar corona through the analysis of the EUV and UV data produced by two flights (12 May 1992 and 25 April 1994) of the Lockheed Solar Plasma Diagnostics Experiment (SPDE) sounding rocket payload, in combination with Yohkoh and ground-based data. Each rocket flight produced both spectral and imaging data. These joint datasets are useful for understanding the physical state of various features in the solar atmosphere at different heights ranging from the photosphere to the corona at the time of the, rocket flights, which took place during the declining phase of a solar cycle, 2-4 years before the minimum. The investigation is narrowly focused on comparing the physics of small- and medium-scale strong-field structures with that of large-scale, weak fields. As we close th is investigation, we have to recall that our present position in the understanding of basic solar physics problems (such as coronal heating) is much different from that in 1995 (when we proposed this investigation), due largely to the great success of SOHO and TRACE. In other words, several topics and techniques we proposed can now be better realized with data from these missions. For this reason, at some point of our work, we started concentrating on the 1992 data, which are more unique and have more supporting data. As a result, we discontinued the investigation on small-scale structures, i.e., bright points, since high-resolution TRACE images have addressed more important physics than SPDE EUV images could do. In the final year, we still spent long time calibrating the 1992 data. The work was complicated because of the old-fashioned film, which had problems not encountered with more modern CCD detectors. After our considerable effort on calibration, we were able to focus on several scientific topics, relying heavily on the SPDE UV images. They include the relation between filaments and filament channels, the identification of hot

  19. Coronal Mass Ejections An Introduction

    CERN Document Server

    Howard, Timothy

    2011-01-01

    In times of growing technological sophistication and of our dependence on electronic technology, we are all affected by space weather. In its most extreme form, space weather can disrupt communications, damage and destroy spacecraft and power stations, and increase radiation exposure to astronauts and airline passengers. Major space weather events, called geomagnetic storms, are large disruptions in the Earth’s magnetic field brought about by the arrival of enormous magnetized plasma clouds from the Sun. Coronal mass ejections (CMEs) contain billions of tons of plasma and hurtle through space at speeds of several million miles per hour. Understanding coronal mass ejections and their impact on the Earth is of great interest to both the scientific and technological communities. This book provides an introduction to coronal mass ejections, including a history of their observation and scientific revelations, instruments and theory behind their detection and measurement, and the status quo of theories describing...

  20. Observational Analysis of Coronal Fans

    Science.gov (United States)

    Talpeanu, D.-C.; Rachmeler, L; Mierla, Marilena

    2017-01-01

    Coronal fans (see Figure 1) are bright observational structures that extend to large distances above the solar surface and can easily be seen in EUV (174 angstrom) above the limb. They have a very long lifetime and can live up to several Carrington rotations (CR), remaining relatively stationary for many months. Note that they are not off-limb manifestation of similarly-named active region fans. The solar conditions required to create coronal fans are not well understood. The goal of this research was to find as many associations as possible of coronal fans with other solar features and to gain a better understanding of these structures. Therefore, we analyzed many fans and created an overview of their properties. We present the results of this statistical analysis and also a case study on the longest living fan.

  1. Craniosynostosis of coronal suture in Twist1+/- mice occurs through endochondral ossification recapitulating the physiological closure of posterior frontal suture

    Directory of Open Access Journals (Sweden)

    Bjorn eBehr

    2011-07-01

    Full Text Available Craniosynostosis, the premature closure of cranial suture, is a pathologic condition that affects 1/2000 live births. Saethre-Chotzen syndrome is a genetic condition characterized by craniosynostosis. The Saethre-Chotzen syndrome, which is defined by loss-of-function mutations in the TWIST gene, is the second most prevalent craniosynostosis. Although much of the genetics and phenotypes in craniosynostosis syndromes is understood, less is known about the underlying ossification mechanism during suture closure. We have previously demonstrated that physiological closure of the posterior frontal (PF suture occurs through endochondral ossification. Moreover, we revealed that antagonizing canonical Wnt signaling in the sagittal suture leads to endochondral ossification of the suture mesenchyme and sagittal synostosis, presumably by inhibiting Twist1. Classic Saethre-Chotzen syndrome is characterized by coronal synostosis, and the haploinsufficient Twist1+/- mice represents a suitable model for studying this syndrome. Thus, we seeked to understand the underlying ossification process in coronal craniosynostosis in Twist1+/- mice. Our data indicate that coronal suture closure in Twist1+/- mice occurs between postnatal day 9 to 13 by endochondral ossification, as shown by histology, gene expression analysis and immunohistochemistry. In conclusion, this study reveals that coronal craniosynostosis in Twist1+/- mice occurs through endochondral ossification. Moreover, it suggests that haploinsufficency of Twist1 gene, a target of canonical Wnt-signaling, and inhibitor of chondrogenesis, mimics conditions of inactive canonical Wnt-signaling leading to craniosynostosis.

  2. FUNCTIONAL DISABILITY, SAGITTAL ALIGNMENT AND PELVIC BALANCE IN LUMBAR SPONDYLOLISTHESIS

    Directory of Open Access Journals (Sweden)

    Luis Muñiz Luna

    2016-03-01

    Full Text Available ABSTRACT Objectives: To demonstrate the recovery of lumbar sagittal pelvic alignment and sagittal pelvic balance after surgical reduction of lumbar spondylolisthesis and establish the benefits of the surgery for reduction and fixation of the lumbar spondylolisthesis with 360o circumferential arthrodesis for 2 surgical approaches by clinical and functional evaluation. Method: Eight patients with lumbar spondylolisthesis treated with surgical reduction and fixation of listhesis and segmental circumferential fusion with two surgical approaches were reviewed. They were evaluated before and after treatment with Oswestry, Visual Analogue for pain and Odom scales, performing radiographic measurement of lumbar sagittal alignment and pelvic sagittal balance with the technique of pelvic radius. Results: Oswestry scales and EVA reported improvement of symptoms after treatment in 8 cases; the Odom scale had six outstanding cases reported. The lumbar sagittal alignment presented a lumbosacral lordosis angle and a lumbopelvic lordosis angle reduced in 4 cases and increased in 4 other cases; pelvic sagittal balance increased the pelvic angle in 4 cases and decreased in 3 cases and the sacral translation of the hip axis to the promontory increased in 6 cases. Conclusion: The surgical procedure evaluated proved to be useful by modifying the lumbar sagittal alignment and the pelvic balance, besides reducing the symptoms, enabling the patient to have mobility and movement and the consequent satisfaction with the surgery.

  3. The usefulness of sagittal reformation for diagnosis of sternal fracture

    Energy Technology Data Exchange (ETDEWEB)

    Im, Dong Jin; Hahn, Seok; Kim, Young Ju [Dept. of Radiology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of)

    2014-01-15

    The purpose of our study was to evaluate the usefulness of sagittal reformation of chest computed tomography for the diagnosis of sternal fracture after trauma. We retrospectively reviewed medical records and chest computer tomography (CT) of 716 patients in the emergency department after trauma between January and December 2010. Two radiologists investigated chest CT images. We investigated numbers and locations of sternal fractures on axial images only and on both axial and sagittal images for each radiologist. First, radiologist found sternal fractures in 58 patients (70.7%) on only axial images, and 80 (97.5%) on both axial and sagittal images. Second, radiologist found fractures in 67 patients (81.7%) on axial image only and 81 (98.7%) on both axial and sagittal images. The sensitivity increased after adding sagittal reformation images for each radiologist (p < 0.05, respectively). On the axial images, the interobserver agreement was low (k 0.596) between the two radiologists. However, on both axial and sagittal images, the interobserver agreement increased (k = 0.872). Sagittal reformation of chest CT increases the chance of diagnosis for sternal fracture and leads to early diagnosis resulting in appropriate treatment.

  4. The usefulness of sagittal reformation for diagnosis of sternal fracture

    International Nuclear Information System (INIS)

    Im, Dong Jin; Hahn, Seok; Kim, Young Ju

    2014-01-01

    The purpose of our study was to evaluate the usefulness of sagittal reformation of chest computed tomography for the diagnosis of sternal fracture after trauma. We retrospectively reviewed medical records and chest computer tomography (CT) of 716 patients in the emergency department after trauma between January and December 2010. Two radiologists investigated chest CT images. We investigated numbers and locations of sternal fractures on axial images only and on both axial and sagittal images for each radiologist. First, radiologist found sternal fractures in 58 patients (70.7%) on only axial images, and 80 (97.5%) on both axial and sagittal images. Second, radiologist found fractures in 67 patients (81.7%) on axial image only and 81 (98.7%) on both axial and sagittal images. The sensitivity increased after adding sagittal reformation images for each radiologist (p < 0.05, respectively). On the axial images, the interobserver agreement was low (k 0.596) between the two radiologists. However, on both axial and sagittal images, the interobserver agreement increased (k = 0.872). Sagittal reformation of chest CT increases the chance of diagnosis for sternal fracture and leads to early diagnosis resulting in appropriate treatment.

  5. Coronal ``Wave'': Magnetic Footprint of a Coronal Mass Ejection?

    Science.gov (United States)

    Attrill, Gemma D. R.; Harra, Louise K.; van Driel-Gesztelyi, Lidia; Démoulin, Pascal

    2007-02-01

    We investigate the properties of two ``classical'' EUV Imaging Telescope (EIT) coronal waves. The two source regions of the associated coronal mass ejections (CMEs) possess opposite helicities, and the coronal waves display rotations in opposite senses. We observe deep core dimmings near the flare site and also widespread diffuse dimming, accompanying the expansion of the EIT wave. We also report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions and simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behavior is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME magnetic field and quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings and the widespread diffuse dimming are identified as innate characteristics of this process.

  6. Sagittal Abdominal Diameter: Application in Clinical Practice

    Directory of Open Access Journals (Sweden)

    Thaís Da Silva-Ferreira

    2014-05-01

    Full Text Available Excess visceral fat is associated with cardiovascular risk factors. Sagittal abdominal diameter (SAD has recently been highlighted as an indicator of abdominal obesity, and also may be useful in predicting cardiovascular risk. The purpose of the present study was to review the scientific literature on the use of SAD in adult nutritional assessment. A search was conducted for scientific articles in the following electronic databases: SciELO , MEDLINE (PubMed and Virtual Health Library. SAD is more associated with abdominal fat (especially visceral, and with different cardiovascular risk factors, such as, insulin resistance, blood pressure, and serum lipoproteins than the traditional methods of estimating adiposity, such as body mass index and waist-to-hip ratio. SAD can also be used in association with other anthropometric measures. There are still no cut-off limits established to classify SAD as yet. SAD can be an alternative measure to estimate visceral adiposity. However, the few studies on this diameter, and the lack of consensus on the anatomical site to measure SAD, are obstacles to establish cut-off limits to classify it.

  7. Coronal View Ultrasound Imaging of Movement in Different Segments of the Tongue during Paced Recital: Findings from Four Normal Speakers and a Speaker with Partial Glossectomy

    Science.gov (United States)

    Bressmann, Tim; Flowers, Heather; Wong, Willy; Irish, Jonathan C.

    2010-01-01

    The goal of this study was to quantitatively describe aspects of coronal tongue movement in different anatomical regions of the tongue. Four normal speakers and a speaker with partial glossectomy read four repetitions of a metronome-paced poem. Their tongue movement was recorded in four coronal planes using two-dimensional B-mode ultrasound…

  8. Acute proximal junctional failure in patients with preoperative sagittal imbalance.

    Science.gov (United States)

    Smith, Micah W; Annis, Prokopis; Lawrence, Brandon D; Daubs, Michael D; Brodke, Darrel S

    2015-10-01

    Proximal junctional failure (PJF) is a recognized complication of spinal deformity surgery. Acute PJF (APJF) has recently been demonstrated to be 5.6% in the adult spinal deformity (ASD) population. The incidence and rate of return to the operating room for APJF have not been specifically investigated in individuals with sagittal imbalance. The purpose of this study was to report the incidence of APJF in patients with preoperative sagittal imbalance and the rate of return to the operating room for APJF. This study is based on a retrospective review of prospectively collected database of ASD patients. One hundred seventy-three consecutive patients were included with preoperative sagittal imbalance according to one of the following common parameters: sagittal vertical axis (SVA) greater than 50 mm, global sagittal alignment greater than 45°, or pelvic incidence minus lumbar lordosis greater than 10°. Outcome measure was presence and/or absence of APJF defined as fracture at the upper instrumented vertebra (UIV) or UIV+1, failure of UIV fixation, 15° or more proximal junctional kyphosis, or need for extension of instrumentation within 6 months of surgery. We performed radiographic measurements on X-rays at preoperative, immediate postoperative, and 6-month follow-up visits. The APJF rate was reported for the entire patient population with preoperative sagittal imbalance. Acute PJF incidence was calculated postoperatively for each of the accepted sagittal balance parameters and/or formulas. Patients with persistent postoperative sagittal imbalance were compared with the sagittally balanced group. We also assessed for threshold values. Acute PJF was observed in 60 of 173 patients (35%) and was least common in fusions with the UIV in the upper thoracic (UT) spine (p=.035). Of those who developed APJF, 21.7% required surgery. Proximal junctional kyphosis 15° or more was the most common form of APJF in fusions to the UT spine but least likely to need revision (p=.014

  9. Walking sagittal balance correction by pedicle subtraction osteotomy in adults with fixed sagittal imbalance.

    Science.gov (United States)

    Yagi, Mitsuru; Kaneko, Shinjiro; Yato, Yoshiyuki; Asazuma, Takashi; Machida, Masafumi

    2016-08-01

    Pedicle subtraction osteotomy (PSO) is widely used to treat severe fixed sagittal imbalance. However, the effect of PSO on balance has not been fully documented. The aim of this study was to assess dynamic walking balance after PSO to treat fixed sagittal imbalance. Gait and balance were assessed in 15 consecutive adult female patients who had been treated by PSO for a fixed sagittal imbalance and compare patients' preop and postop dynamic walking balance with that of 15 age- and gender-matched healthy volunteers (HV). Each patient's chart, X-rays, pre and postop SRS22 outcome scores, and ODI were reviewed. Means were compared by Mann-Whitney U test and Chi-square test. The mean age was 66.3 years (51-74 years). The mean follow-up was 2.7 years (2-3.5 years). The C7PL and GL, measured on the force platform, were both improved from 24.2 ± 7.3 cm and 27.6 ± 9.4 to 5.4 ± 2.6 cm and 7.2 ± 3.4 cm, respectively. The baseline hip ROM was significantly smaller in patients compared to HV, whereas no significant difference was observed in the knee or ankle ROM. The pelvic tilt (preop -0.4° ± 1.4°, postop 8.9° ± 1.0°), and maximum hip-extension angle (preop -1.2° ± 14.2°, postop -11.2° ± 7.2°) were also improved after surgery. Cadence (116 s/min), stance-swing ratio (stance 63.2 % vs. swing 36.8 %), and stride (98.0 cm) were all increased after surgery. On the other hand, gait velocity was significantly slower in the PSO group at both pre and postop than in HV (PSO 53.3 m/min at preop and 58.8 m/min at postop vs. HV 71.1 m/min, p = 0.04). Despite a mild residual spinal-pelvic malalignment, PSO restored sagittal alignment and balance satisfactorily and has improved the gait pattern.

  10. The dynamics of coronal magnetic structures

    International Nuclear Information System (INIS)

    Weber, W.

    1978-01-01

    An analysis is made of the evolution of coronal magnetic fields due to the interaction with the solar wind. An analysis of the formation of coronal streamers, arising as a result of the stretching of bipolar fields, is given. Numerical simulations of the formation of coronal streamers are presented. Fast-mode shocks as triggers of microturbulence in the solar corona are discussed

  11. Dynamics of Coronal Hole Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, A. K.; Zurbuchen, T. H. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Antiochos, S. K.; DeVore, C. R. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wyper, P. F. [Universities Space Research Association, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2017-03-10

    Remote and in situ observations strongly imply that the slow solar wind consists of plasma from the hot, closed-field corona that is released onto open magnetic field lines. The Separatrix Web theory for the slow wind proposes that photospheric motions at the scale of supergranules are responsible for generating dynamics at coronal-hole boundaries, which result in the closed plasma release. We use three-dimensional magnetohydrodynamic simulations to determine the effect of photospheric flows on the open and closed magnetic flux of a model corona with a dipole magnetic field and an isothermal solar wind. A rotational surface motion is used to approximate photospheric supergranular driving and is applied at the boundary between the coronal hole and helmet streamer. The resulting dynamics consist primarily of prolific and efficient interchange reconnection between open and closed flux. The magnetic flux near the coronal-hole boundary experiences multiple interchange events, with some flux interchanging over 50 times in one day. Additionally, we find that the interchange reconnection occurs all along the coronal-hole boundary and even produces a lasting change in magnetic-field connectivity in regions that were not driven by the applied motions. Our results show that these dynamics should be ubiquitous in the Sun and heliosphere. We discuss the implications of our simulations for understanding the observed properties of the slow solar wind, with particular focus on the global-scale consequences of interchange reconnection.

  12. MHD aspects of coronal transients

    International Nuclear Information System (INIS)

    Anzer, U.

    1979-10-01

    If one defines coronal transients as events which occur in the solar corona on rapid time scales (< approx. several hours) then one would have to include a large variety of solar phenomena: flares, sprays, erupting prominences, X-ray transients, white light transients, etc. Here we shall focus our attention on the latter two phenomena. (orig.) 891 WL/orig. 892 RDG

  13. Three-dimensional configuration and damping effect of flare coronal transients

    International Nuclear Information System (INIS)

    Ivanov, K.G.; Kharshiladze, A.F.

    1989-01-01

    Inverse problem of searching for three - dimensional configuration of coronal mass outburst (CMO) in the class of flattened spheroids was solved on the basis of solving primal problem of projecting CMO of the given configuration on celestial plane, using experimental data of white light coronograph. It was obtained that CMO, as interplanetary shock waves, were oblate with ∼ 1.25 ratio of axes to the plane of great circle, passing through the flare, parallel to magnetic axis of the nearest bipolar group

  14. The Coronal Place; Why is It Special?

    Directory of Open Access Journals (Sweden)

    Azhar Alkazwini

    2017-10-01

    Full Text Available To prove the existence of arguments about the exact place that can bear the term ‘coronal’, it would be enough to check the explanatory dictionary’s entry. There are different arguments regarding the exact place of coronal. In this paper, some of the linguistic evidence regarding the coronal place shall be mentioned. Then, I shall discuss the classes of coronal that lend support to the fact that coronal place is believed to be special, and that is by discussing the different typologies of coronal consonants and giving their description.

  15. An equatorial coronal hole at solar minimum

    Science.gov (United States)

    Bromage, B. J. I.; DelZanna, G.; DeForest, C.; Thompson, B.; Clegg, J. R.

    1997-01-01

    The large transequatorial coronal hole that was observed in the solar corona at the end of August 1996 is presented. It consists of a north polar coronal hole called the 'elephant's trunk or tusk'. The observations of this coronal hole were carried out with the coronal diagnostic spectrometer onboard the Solar and Heliospheric Observatory (SOHO). The magnetic field associated with the equatorial coronal hole is strongly connected to that of the active region at its base, resulting in the two features rotating at almost the same rate.

  16. Coronal Seismology: The Search for Propagating Waves in Coronal Loops

    Science.gov (United States)

    Schad, Thomas A.; Seeley, D.; Keil, S. L.; Tomczyk, S.

    2007-05-01

    We report on Doppler observations of the solar corona obtained in the Fe XeXIII 1074.7nm coronal emission line with the HAO Coronal Multi-Channel Polarimeter (CoMP) mounted on the NSO Coronal One Shot coronagraph located in the Hilltop Facility of NSO/Sacramento Peak. The COMP is a tunable filtergraph instrument that records the entire corona from the edge of the occulting disk at approximately 1.03 Rsun out to 1.4 Rsun with a spatial resolution of about 4” x 4”. COMP can be rapidly scanned through the spectral line while recording orthogonal states of linear and circular polarization. The two dimensional spatial resolution allows us to correlate temporal fluctuations observed in one part of the corona with those seen at other locations, in particular along coronal loops. Using cross spectral analysis we find that the observations reveal upward propagating waves that are characterized by Doppler shifts with rms velocities of 0.3 km/s, peak wave power in the 3-5 mHz frequency range, and phase speeds 1-3 Mm/s. The wave trajectories are consistent with the direction of the magnetic field inferred from the linear polarization measurements. We discuss the phase and coherence of these waves as a function of height in the corona and relate our findings to previous observations. The observed waves appear to be Alfvenic in character. "Thomas Schad was supported through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the National Science Foundation REU Program." Daniel Seeley was supported through the National Solar Observatory Research Experience for Teachers (RET) site program, which is funded by the National Science Foundation RET program.

  17. Comparison of parameters of spinal curves in the sagittal plane measured by photogrammetry and inclinometry.

    Science.gov (United States)

    Walicka-Cupryś, Katarzyna; Drzał-Grabiec, Justyna; Mrozkowiak, Mirosław

    2013-10-31

    BACKGROUND. The photogrammetric method and inclinometer-based measurements are commonly employed to assess the anteroposterior curvatures of the spine. These methods are used both in clinical trials and for screening purposes. The aim of the study was to compare the parameters used to characterise the anteroposterior spinal curvatures as measured by photogrammetry and inclinometry. MATERIAL AND METHODS. The study enrolled 341 subjects: 169 girls and 172 boys, aged 4 to 9 years, from kindergartens and primary schools in Rzeszów. The anteroposterior spinal curvatures were examined by photogrammetry and with a mechanical inclinometer. RESULTS. There were significant differences in the α angle between the inclinometric and photogrammetric assessment in the Student t test (p=0.017) and the Fisher Snedecor test (p=0.0001), with similar differences in the β angle (Student's t p=0.0001, Fisher Snedecor p=0.007). For the γ angle, significant differences were revealed with Student's t test (p=0.0001), but not with the Fisher Snedecor test (p = 0.22). CONCLUSIONS. 1. Measurements of inclination of particular segments of the spine obtained with the photogrammetric method and the inclinometric method in the same study group revealed statistically significant differences. 2. The results of measurements obtained by photogrammetry and inclinometry are not comparable. 3. Further research on agreement between measurements of the anteroposterior spinal curvatures obtained using the available measurement equipment is recommended.

  18. Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane

    DEFF Research Database (Denmark)

    Sandau, Martin; Koblauch, Henrik; Moeslund, Thomas B.

    2014-01-01

    Estimating 3D joint rotations in the lower extremities accurately and reliably remains unresolved in markerless motion capture, despite extensive studies in the past decades. The main problems have been ascribed to the limited accuracy of the 3D reconstructions. Accordingly, the purpose of the pr......Estimating 3D joint rotations in the lower extremities accurately and reliably remains unresolved in markerless motion capture, despite extensive studies in the past decades. The main problems have been ascribed to the limited accuracy of the 3D reconstructions. Accordingly, the purpose...... subjects in whom hip, knee and ankle joint were analysed. Flexion/extension angles as well as hip abduction/adduction closely resembled those obtained from the marker based system. However, the internal/external rotations, knee abduction/adduction and ankle inversion/eversion were less reliable....

  19. System analysis of sagittal plane human motion wearing an exoskeleton using marker technology

    Directory of Open Access Journals (Sweden)

    Jatsun Sergey

    2016-01-01

    Full Text Available This paper discusses various methods of obtaining time functions for joint angle that describe a exoskeleton’s motion during sit-to-stand motion. This article demonstrates that functions obtained by solving the inverse kinematics problem can be effectively used as inputs to the control system of the robot. Comparison with experimentally data obtained using marker technology is done.

  20. Experimental Evaluation of Balance Prediction Models for Sit-to-Stand Movement in the Sagittal Plane

    Directory of Open Access Journals (Sweden)

    Oscar David Pena Cabra

    2013-01-01

    Full Text Available Evaluation of balance control ability would become important in the rehabilitation training. In this paper, in order to make clear usefulness and limitation of a traditional simple inverted pendulum model in balance prediction in sit-to-stand movements, the traditional simple model was compared to an inertia (rotational radius variable inverted pendulum model including multiple-joint influence in the balance predictions. The predictions were tested upon experimentation with six healthy subjects. The evaluation showed that the multiple-joint influence model is more accurate in predicting balance under demanding sit-to-stand conditions. On the other hand, the evaluation also showed that the traditionally used simple inverted pendulum model is still reliable in predicting balance during sit-to-stand movement under non-demanding (normal condition. Especially, the simple model was shown to be effective for sit-to-stand movements with low center of mass velocity at the seat-off. Moreover, almost all trajectories under the normal condition seemed to follow the same control strategy, in which the subjects used extra energy than the minimum one necessary for standing up. This suggests that the safety considerations come first than the energy efficiency considerations during a sit to stand, since the most energy efficient trajectory is close to the backward fall boundary.

  1. Knee and hip sagittal and transverse plane changes after two fatigue protocols

    Science.gov (United States)

    Lucci, Shawn; Cortes, Nelson; Van Lunen, Bonnie; Ringleb, Stacie; Onate, James

    2013-01-01

    Fatigue has been shown to alter the biomechanics of lower extremity during landing tasks. To date, no study has examined the effects of two types of fatigue on kinetics and kinematics. Objectives This study was conducted to assess biomechanical differences between two fatigue protocols [Slow Linear Oxidative Fatigue Protocol (SLO-FP) and Functional Agility Short-Term Fatigue Protocol (FAST-FP)]. Design Single-group repeated measures design. Methods Fifteen female collegiate soccer players had to perform five successful trials of unanticipated sidestep cutting (SS) pre- and post-fatigue protocols. The SLO-FP consisted of an initial VO2peak test followed by 5-min rest, and a 30-min interval run. The FAST-FP consisted of 4 sets of a functional circuit. Biomechanical measures of the hip and knee were obtained at different instants while performing SS pre- and post-fatigue. Repeated 2 × 2 ANOVAs were conducted to examine task and fatigue differences. Alpha level set a priori at 0.05. Results During the FAST-FP, participants had increased knee internal rotation at initial contact (IC) (12.5 ± 5.9°) when compared to the SLO-FP (7.9 ± 5.4°, p < 0.001). For hip flexion at IC, pre-fatigue had increased angles (36.4 ± 8.4°) compared to post-fatigue (30.4 ± 9.3°, p = 0.003), also greater knee flexion during pre-fatigue (25.6 ± 6.8°) than post-fatigue (22.4 ± 8.4°, p = 0.022). Conclusion The results of this study showed that hip and knee mechanics were substantially altered during both fatigue conditions. PMID:21636322

  2. Which oblique plane is more helpful in diagnosing an anterior cruciate ligament tear?

    International Nuclear Information System (INIS)

    Kwon, J.W.; Yoon, Y.C.; Kim, Y.N.; Ahn, J.H.; Choe, B.K.

    2009-01-01

    Aim: To evaluate the diagnostic role of additional oblique coronal and oblique sagittal magnetic resonance imaging (MRI) for an anterior cruciate ligament (ACL) tear. Materials and methods: A total of 101 patients who had undergone preoperative knee MRI examinations with orthogonal and two sets of oblique images were enrolled in the study. Two radiologists evaluated the MRI images by the use of four methods: orthogonal images only (method A); orthogonal and additional oblique coronal images (method B); orthogonal and oblique sagittal images (method C); and orthogonal images with oblique coronal and sagittal images (method D). The status of the ACL (normal or tear) was determined by consensus. The sensitivity, specificity, and accuracy for an ACL tear with the use of each method were calculated in comparison with arthroscopy as the reference standard, and values were statistically analysed using the McNemar test. The diagnostic accuracies were compared using receiver operating characteristic (ROC) analysis. Results: Arthroscopy identified 10 partial ACL tears and 30 complete ACL tears. The specificities and accuracies for methods B, C, and D were significantly higher than the specificities and accuracies for method A (p 0.05). Conclusions: Additional oblique imaging for an ACL tear improved the specificity. Either of the oblique imaging methods is sufficient, and no further improvement in the diagnostic efficacy was achieved by simultaneous use

  3. Sagittal otolith morphogenesis asymmetry in marine fishes.

    Science.gov (United States)

    Mille, T; Mahe, K; Villanueva, M C; De Pontual, H; Ernande, B

    2015-09-01

    This study investigated and compared asymmetry in sagittal otolith shape and length between left and right inner ears in four roundfish and four flatfish species of commercial interest. For each species, the effects of ontogenetic changes (individual age and total body length), sexual dimorphism (individual sex) and the otolith's location on the right or left side of the head, on the shape and length of paired otoliths (between 143 and 702 pairs according to species) were evaluated. Ontogenetic changes in otolith shape and length were observed for all species. Sexual dimorphism, either in otolith shape and length or in their ontogenetic changes, was detected for half of the species, be they round or flat. Significant directional asymmetry in otolith shape and length was detected in one roundfish species each, but its inconsistency across species and its small average amplitude (6·17% for shape and 1·99% for length) suggested that it has barely any biological relevance. Significant directional asymmetry in otolith shape and length was found for all flatfish species except otolith length for one species. Its average amplitude varied between 2·06 and 17·50% for shape and between 0·00 and 11·83% for length and increased significantly throughout ontogeny for two species, one dextral and one sinistral. The longer (length) and rounder otolith (shape) appeared to be always on the blind side whatever the species. These results suggest differential biomineralization between the blind and ocular inner ears in flatfish species that could result from perturbations of the proximal-distal gradient of otolith precursors in the endolymph and the otolith position relative to the geometry of the saccular epithelium due to body morphology asymmetry and lateralized behaviour. The fact that asymmetry never exceeded 18% even at the individual level suggests an evolutionary canalization of otolith shape symmetry to avoid negative effects on fish hearing and balance. Technically

  4. Altered brain connectivity in sagittal craniosynostosis.

    Science.gov (United States)

    Beckett, Joel S; Brooks, Eric D; Lacadie, Cheryl; Vander Wyk, Brent; Jou, Roger J; Steinbacher, Derek M; Constable, R Todd; Pelphrey, Kevin A; Persing, John A

    2014-06-01

    Sagittal nonsyndromic craniosynostosis (sNSC) is the most common form of NSC. The condition is associated with a high prevalence (> 50%) of deficits in executive function. The authors employed diffusion tensor imaging (DTI) and functional MRI to evaluate whether hypothesized structural and functional connectivity differences underlie the observed neurocognitive morbidity of sNSC. Using a 3-T Siemens Trio MRI system, the authors collected DTI and resting-state functional connectivity MRI data in 8 adolescent patients (mean age 12.3 years) with sNSC that had been previously corrected via total vault cranioplasty and 8 control children (mean age 12.3 years) without craniosynostosis. Data were analyzed using the FMRIB Software Library and BioImageSuite. Analyses of the DTI data revealed white matter alterations approaching statistical significance in all supratentorial lobes. Statistically significant group differences (sNSC right supramarginal gyrus. Analysis of the resting-state seed in relation to whole-brain data revealed significant increases in negative connectivity (anticorrelations) of Brodmann area 8 to the prefrontal cortex (Montreal Neurological Institute [MNI] center of mass coordinates [x, y, z]: -6, 53, 6) and anterior cingulate cortex (MNI coordinates 6, 43, 14) in the sNSC group relative to controls. Furthermore, in the sNSC patients versus controls, the Brodmann area 7, 39, and 40 seed had decreased connectivity to left angular gyrus (MNI coordinates -31, -61, 34), posterior cingulate cortex (MNI coordinates 13, -52, 18), precuneus (MNI coordinates 10, -55, 54), left and right parahippocampus (MNI coordinates -13, -52, 2 and MNI coordinates 11, -50, 2, respectively), lingual (MNI coordinates -11, -86, -10), and fusiform gyri (MNI coordinates -30, -79, -18). Intrinsic connectivity analysis also revealed altered connectivity between central nodes in the default mode network in sNSC relative to controls; the left and right posterior cingulate cortices

  5. Occlusal plane rotation: aesthetic enhancement in mandibular micrognathia.

    Science.gov (United States)

    Rosen, H M

    1993-06-01

    Patients afflicted with extreme degrees of mandibular micrognathia typically have vertically deficient rami as well as sagittally deficient mandibular bodies. This results in deficient posterior facial height, an obtuse gonial angle, excessively steep occlusal and mandibular planes, and a compensatory increase in anterior facial height. The entire maxillomandibular complex is overrotated in a clockwise direction. Standard orthognathic surgical correction fails to address this rotational deformity. As a consequence, the achieved projection of the lower face is inadequate, posterior facial height is further reduced, and occlusal and mandibular planes remain steep. Eleven patients with severe mandibular micrognathia underwent a surgical correction involving occlusal plane rotation to its normal orientation relative to Frankfort horizontal. This was accomplished by Le Fort I osteotomy to shorten the anterior maxilla (creating open bites in seven patients and making preexisting open bites worse in four patients) and sagittal split ramus osteotomies to advance and rotate the mandibular body counterclockwise, thus closing the surgically produced open bite. Counterclockwise rotation of the mandible afforded significantly greater sagittal displacement at the B point (mean 17 mm) than at the first molar (mean 10 mm) and produced adequate degrees of projection of the lower face when accompanied by a modest sliding genioplasty (mean 6.9 mm). Total advancement at the pogonion was a mean of 25.2 mm. In addition, posterior facial height was preserved, and mandibular and occlusal planes were normalized to mean angles of 27 and 10 degrees, respectively. At follow-up, which ranged from 9 to 24 months with a mean of 14.1 months, the mean sagittal relapse at the B point was 1.9 mm. Although heretofore considered unstable and therefore not clinically accepted, maxillomandibular counterclockwise rotation to normalize the occlusal plane rotational deformity provides stable, aesthetically

  6. How is sagittal balance acquired during bipedal gait acquisition? Comparison of neonatal and adult pelves in three dimensions. Evolutionary implications.

    Science.gov (United States)

    Tardieu, Christine; Bonneau, Noémie; Hecquet, Jérôme; Boulay, Christophe; Marty, Catherine; Legaye, Jean; Duval-Beaupère, Geneviève

    2013-08-01

    We compare adult and intact neonatal pelves, using a pelvic sagittal variable, the angle of sacral incidence, which presents significant correlations with vertebral curvature in adults and plays an important role in sagittal balance of the trunk on the lower limbs. Since the lumbar curvature develops in the child in association with gait acquisition, we expect a change in this angle during growth which could contribute to the acquisition of sagittal balance. To understand the mechanisms underlying the sagittal balance in the evolution of human bipedalism, we also measure the angle of incidence of hominid fossils. Fourty-seven landmarks were digitized on 50 adult and 19 intact neonatal pelves. We used a three-dimensional model of the pelvis (DE-VISU program) which calculates the angle of sacral incidence and related functional variables. Cross-sectional data from newborns and adults show that the angle of sacral incidence increases and becomes negatively correlated with the sacro-acetabular distance. During ontogeny the sacrum becomes curved, tends to sink down between the iliac blades as a wedge and moves backward in the sagittal plane relative to the acetabula, thus contributing to the backwards displacement of the center of gravity of the trunk. A chain of correlations links the degree of the sacral slope and of the angle of incidence, which is tightly linked with the lumbar lordosis. We sketch a model showing the coordinated changes occurring in the pelvis and vertebral column during the acquisition of bipedalism in infancy. In the australopithecine pelves, Sts 14 and AL 288-1, and in the Homo erectus Gona pelvis the angle of sacral incidence reaches the mean values of humans. Discussing the incomplete pelves of Ardipithecus ramidus, Australopithecus sediba and the Nariokotome Boy, we suggest how the functional linkage between pelvis and spine, observed in humans, could have emerged during hominid evolution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Polarization of Coronal Forbidden Lines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao; Qu, Zhongquan [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China); Landi Degl’Innocenti, Egidio, E-mail: sayahoro@ynao.ac.cn [Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy)

    2017-03-20

    Since the magnetic field is responsible for most manifestations of solar activity, one of the most challenging problems in solar physics is the diagnostics of solar magnetic fields, particularly in the outer atmosphere. To this end, it is important to develop rigorous diagnostic tools to interpret polarimetric observations in suitable spectral lines. This paper is devoted to analyzing the diagnostic content of linear polarization imaging observations in coronal forbidden lines. Although this technique is restricted to off-limb observations, it represents a significant tool to diagnose the magnetic field structure in the solar corona, where the magnetic field is intrinsically weak and still poorly known. We adopt the quantum theory of polarized line formation developed in the framework of the density matrix formalism, and synthesize images of the emergent linear polarization signal in coronal forbidden lines using potential-field source-surface magnetic field models. The influence of electronic collisions, active regions, and Thomson scattering on the linear polarization of coronal forbidden lines is also examined. It is found that active regions and Thomson scattering are capable of conspicuously influencing the orientation of the linear polarization. These effects have to be carefully taken into account to increase the accuracy of the field diagnostics. We also found that linear polarization observation in suitable lines can give valuable information on the long-term evolution of the magnetic field in the solar corona.

  8. A Comparative Study of Sagittal Balance in Patients with Neuromuscular Scoliosis

    Directory of Open Access Journals (Sweden)

    Paulo Alvim Borges

    Full Text Available OBJECTIVES: Spinopelvic alignment has been associated with improved quality of life in patients with vertebral deformities, and it helps to compensate for imbalances in gait. Although surgical treatment of scoliosis in patients with neuromuscular spinal deformities promotes correction of coronal scoliotic deformities, it remains poorly established whether this results in large changes in sagittal balance parameters in this specific population. The objective of this study is to compare these parameters before and after the current procedure under the hypothesis is that there is no significant modification. METHODS: Sampling included all records of patients with neuromuscular scoliosis with adequate radiographic records treated at Institute of Orthopedics and Traumatology of Clinics Hospital of University of São Paulo (IOT-HCFMUSP from January 2009 to December 2013. Parameters analyzed were incidence, sacral inclination, pelvic tilt, lumbar lordosis, thoracic kyphosis, spinosacral angle, spinal inclination and spinopelvic inclination obtained using the iSite-Philips digital display system with Surgimap and a validated method for digital measurements of scoliosis radiographs. Comparison between the pre- and post-operative conditions involved means and standard deviations and the t-test. RESULTS: Based on 101 medical records only, 16 patients met the inclusion criteria for this study, including 7 males and 9 females, with an age range of 9-20 and a mean age of 12.9±3.06; 14 were diagnosed with cerebral palsy. No significant differences were found between pre and postoperative parameters. CONCLUSIONS: Despite correction of coronal scoliotic deformity in patients with neuromuscular deformities, there were no changes in spinopelvic alignment parameters in the group studied.

  9. Role of thoracoscopy for the sagittal correction of hypokyphotic adolescent idiopathic scoliosis patients.

    Science.gov (United States)

    Ferrero, E; Pesenti, S; Blondel, B; Jouve, J L; Mazda, K; Ilharreborde, B

    2014-12-01

    Thoracic adolescent idiopathic scoliosis (AIS) curves (Lenke 1-4) are often characterized by hypokyphosis. Sagittal alignment remains challenging to correct, even with recent posterior segmental instrumentation. Some authors recommend anterior endoscopic release (AER) to reduce anterior column height, and facilitate thoracic kyphosis correction. The aim of this study was to assess the contribution of AER to sagittal correction in hypokyphotic AIS. Fifty-six hypokyphotic (T4T12<20°) AIS patients were included. In group 1 (28 patients), patients first underwent AER, followed by posterior instrumentation and correction 5-7 days later. In group 2 (28 patients), patients underwent the same posterior procedure without AER. Posterior correction was performed in all cases using posteromedial translation and hybrid constructs consisting of lumbar pedicle screws and thoracic sublaminar bands. From radiological measurements performed using low-dose EOS radiographs, the correction of thoracic kyphosis was compared between the two groups. Groups 1 and 2 were comparable regarding demographic data and preoperative thoracic kyphosis (group 1: 11.7° ± 6.9° vs group 2: 12.1° ± 6.3°, p = 0.89). Postoperative thoracic kyphosis increase averaged 18.3° ± 13.6° in group 1 and 15.2° ± 9.0° in group 2. The benefit of anterior release was not statistically significant (p = 0.35). Although previous studies have suggested that thoracoscopic release improved correction compared to posterior surgery alone, the current study did not confirm this finding. Moreover, results of the current series showed that no significant benefit can be expected from AER in terms of sagittal plane improvement when the posteromedial translation technique is used, even in challenging hypokyphotic patients.

  10. Does Tibial Slope Affect Perception of Coronal Alignment on a Standing Anteroposterior Radiograph?

    Science.gov (United States)

    Schwartz, Adam J; Ravi, Bheeshma; Kransdorf, Mark J; Clarke, Henry D

    2017-07-01

    A standing anteroposterior (AP) radiograph is commonly used to evaluate coronal alignment following total knee arthroplasty (TKA). The impact of coronal alignment on TKA outcomes is controversial, perhaps due to variability in imaging and/or measurement technique. We sought to quantify the effect of image rotation and tibial slope on coronal alignment. Using a standard extramedullary tibial alignment guide, 3 cadaver legs were cut to accept a tibial tray at 0°, 3°, and 7° of slope. A computed tomography scan of the entire tibia was obtained for each specimen to confirm neutral coronal alignment. Images were then obtained at progressive 10° intervals of internal and external rotation up to 40° maximum in each direction. Images were then randomized and 5 blinded TKA surgeons were asked to determine coronal alignment. Continuous data values were transformed to categorical data (neutral [0], valgus [L], and varus [R]). Each 10° interval of external rotation of a 7° sloped tibial cut (or relative internal rotation of a tibial component viewed in the AP plane) resulted in perception of an additional 0.75° of varus. The slope of the proximal tibia bone cut should be taken into account when measuring coronal alignment on a standing AP radiograph. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Axial plane dissimilarities of two identical Lenke-type 6C scoliosis cases visualized and analyzed by vertebral vectors

    DEFF Research Database (Denmark)

    Illés, Tamás S.; Burkus, Máté; Somoskeőy, Szabolcs

    2018-01-01

    is essential to completely evaluate the scoliosis curves, because, despite the similar representations in the frontal and sagittal planes, the occurrence of scoliosis in the horizontal plane can be completely different. Graphical abstract: These slides can be retrieved under Electronic Supplementary Material...

  12. Grading system for migrated lumbar disc herniation on sagittal magnetic resonance imaging. An agreement study

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.; Jeong, T.S. [Gachon University Gil Medical Center, Department of Neurosurgery, Incheon (Korea, Republic of); Lim, T.; Jeon, J.Y. [Gachon University Gil Medical Center, Department of Radiology, Incheon (Korea, Republic of)

    2018-01-15

    Migrated lumbar disc herniations (LDHs) in the sagittal plane are common. Disc migration grading can be applied as a useful measurement tool in the diagnosis, treatment, and outcome evaluation of migrated LDH. No study has evaluated the reliability of migrated LDH grading. We evaluated the reliability and functionality of the current magnetic resonance imaging (MRI) grading system for migrated LDH. We assessed a six-level grading system developed based on sagittal MRI and graded according to the direction (rostral and caudal) and degree (low, high, and very high) of disc migration. One-hundred and one migrated LDHs treated with minimally invasive endoscopic discectomy were analyzed independently by two experienced radiologists. Intraobserver and interobserver agreements were assessed by kappa statistics. The most common migrated LDH grade was grade 4 (30.94%; caudal, low-grade migration). Rostral and caudal migrations were more common in the upper and lower lumbar levels, respectively. Interobserver agreement in the grading of migrated LDH was good at both the first (kappa = 0.737) and second assessment (kappa = 0.657). The intraobserver agreement for reader 1 was very good (kappa = 0.827) and for reader 2 was good (kappa = 0.620). The current grading system for migrated LDH was found to be reliable and functional with good interobserver and intraobserver agreement. It may be useful in the interpretation of disc migration patterns and outcomes of various minimally invasive surgical procedures. (orig.)

  13. Spinal Schmorl's nodes: Sagittal sectional imaging and pathological examination

    International Nuclear Information System (INIS)

    Silberstein, M.; Opeskin, K.

    1999-01-01

    The presence, location and number of Schmorl's nodes was determined in the thoracolumbar spines of 70 motor vehicle accident victims using radiographic examination of a midline sagittal section and subsequent pathological examinations, including histology. In 28% of spines, a greater number of Schmorl's nodes were identified with radiography, while in 44%, pathological examination revealed a greater number of nodes. The visibility of Schmorl's nodes was enhanced by using a sagittal radiographic approach, and, in contrast to previous work, nodes below 0.5 cm 2 were readily detected. The results of the present study offer an additional imaging technique for postmortem analysis of the spine, and support the use of sagittal MR imaging for the evaluation of this condition. Copyright (1999) Blackwell Science Pty Ltd

  14. A clinico-radiographic study to compare and co-relate sagittal condylar guidance determined by intraoral gothic arch tracing method and panoramic radiograph in completely edentulous patients.

    Science.gov (United States)

    Shetty, Sanath; Kunta, Mythili; Shenoy, Kamalakanth

    2018-01-01

    The purpose of this study was to compare and correlate sagittal condylar guidance determined by intraoral gothic arch tracing method and panoramic radiograph in edentulous patients. Twelve completely edentulous patients were selected by the inclusion and exclusion criteria. Conventional steps in the fabrication of complete denture till jaw relation were carried out. Intraoral gothic arch tracing and protrusive interocclusal records were obtained for each patient. Protrusive interocclusal record was used to program the Hanau Wide-Vue semi-adjustable articulator, thus obtaining the sagittal condylar guidance angle. Using RadiAnt DICOM software, on the orthopantomogram obtained for each patient in the study, two reference lines were drawn. The Frankfort's horizontal plane and the mean curvature line (joining the most superior and the inferior points on the glenoid fossa curvature) were drawn. The mean curvature line was extended to intersect the Frankfort's horizontal plane, thus obtaining the radiographic sagittal condylar guidance angle. The condylar guidance angles obtained by these two methods were compared and subjected to paired t -test. There was no statistically significant difference between the sagittal condylar guidance angles obtained between right and left sides with intraoral gothic arch tracing and radiographic methods ( P = 0.107 and 0.07, respectively). Within the limitations of this study, it was concluded that the protrusive condylar guidance angles obtained by panoramic radiograph may be used for programming semi-adjustable articulators.

  15. [Occlusal plane control in hyperdivergents: regarding one case].

    Science.gov (United States)

    Rerhrhaye, Wiam; Zaoui, Fatima; Aalloula, El Housseine

    2009-06-01

    Management of occlusal plane inclination in the sagittal dimension is one of the main concerns of practitioners. Inclination maintenance or correction can condition the success and stability of treatment. By means of a clinical case, we will attempt to discuss the different aspects of management from diagnosis to treatment, bearing in mind the local and regional context. The adopted treatment plan takes into consideration the functional and esthetic issues specific to Moroccan patients without neglecting soft tissue harmony.

  16. The horizontal plane appearances of scoliosis

    DEFF Research Database (Denmark)

    Illés, Tamás S.; Burkus, Máté; Somoskeőy, Szabolcs

    2017-01-01

    Purpose: A posterior-anterior vertebral vector is proposed to facilitate visualization and understanding of scoliosis. The aim of this study was to highlight the interest of using vertebral vectors, especially in the horizontal plane, in clinical practice. Methods: We used an EOS two-/three-dimen......Purpose: A posterior-anterior vertebral vector is proposed to facilitate visualization and understanding of scoliosis. The aim of this study was to highlight the interest of using vertebral vectors, especially in the horizontal plane, in clinical practice. Methods: We used an EOS two...... cases of a normal spine and a thoracic scoliosis are presented. Results: For a normal spine, vector projections in the transverse plane are aligned with the posterior-anterior anatomical axis. For a scoliotic spine, vector projections in the horizontal plane provide information on the lateral...... decompensation of the spine and the lateral displacement of vertebrae. In the horizontal plane view, vertebral rotation and projections of the sagittal curves can also be analyzed simultaneously. Conclusions: The use of posterior-anterior vertebral vector facilitates the understanding of the 3D nature...

  17. Pedicle subtraction osteotomy in elderly patients with degenerative sagittal imbalance.

    Science.gov (United States)

    Cho, Kyu-Jung; Kim, Ki-Tack; Kim, Whoan-Jeang; Lee, Sang-Hoon; Jung, Jae-Hoon; Kim, Young-Tae; Park, Hae-Bong

    2013-11-15

    Retrospective, radiographical analysis. To evaluate pedicle subtraction osteotomy (PSO) as a means of correcting severe degenerative sagittal imbalance in elderly patients. PSO in patients with degenerative sagittal imbalance is likely to cause more complications than in patients with iatrogenic flatback deformity. This study analyzed 34 patients who underwent fusion to the sacrum, with a minimum 2-year follow-up. Age of the patients were in the range from 58 to 73 with the mean at 65.5 years. PSO was performed at one segment in all cases, consisting of L3 (n = 26), L4 (n = 4), L2 (n = 3), and L1 (n = 1). The average number of levels fused was 8.15. Ten patients had structural interbody fusion at the lumbosacral junction. Applying PSO at one segment, the mean correction of the lordotic angle at the osteotomy site was 33.3°, of which the loss of correction (LOC) was 4.0° at the last visit. The correction of lumbar lordosis was 33.7° and the LOC was 8.5°. The sagittal C7 plumb was 215.9 mm before surgery, corrected to 35.1 mm after surgery, and changed to 95.9 mm by the last visit. The correction of the sagittal C7 plumb was 119.9 mm and the LOC was 60.9 mm. There was substantial LOC in lumbar lordosis and sagittal C7 plumb. In 10 patients with addition of posterior lumbar interbody fusion, the LOC of lumbar lordosis was 7.4°, which was less than 9° in those without it. PSO for the correction of degenerative sagittal imbalance in elderly patients resulted in correction of sagittal alignment with a significant LOC of lumbar lordosis and sagittal C7 plumb. The LOC of lumbar lordosis occurred at both the osteotomy and non-osteotomy site. The addition of anterior column support is helpful to maintain correction and reduce complications. N/A.

  18. Development of synthetic simulators for endoscope-assisted repair of metopic and sagittal craniosynostosis.

    Science.gov (United States)

    Eastwood, Kyle W; Bodani, Vivek P; Haji, Faizal A; Looi, Thomas; Naguib, Hani E; Drake, James M

    2018-06-01

    OBJECTIVE Endoscope-assisted repair of craniosynostosis is a safe and efficacious alternative to open techniques. However, this procedure is challenging to learn, and there is significant variation in both its execution and outcomes. Surgical simulators may allow trainees to learn and practice this procedure prior to operating on an actual patient. The purpose of this study was to develop a realistic, relatively inexpensive simulator for endoscope-assisted repair of metopic and sagittal craniosynostosis and to evaluate the models' fidelity and teaching content. METHODS Two separate, 3D-printed, plastic powder-based replica skulls exhibiting metopic (age 1 month) and sagittal (age 2 months) craniosynostosis were developed. These models were made into consumable skull "cartridges" that insert into a reusable base resembling an infant's head. Each cartridge consists of a multilayer scalp (skin, subcutaneous fat, galea, and periosteum); cranial bones with accurate landmarks; and the dura mater. Data related to model construction, use, and cost were collected. Eleven novice surgeons (residents), 9 experienced surgeons (fellows), and 5 expert surgeons (attendings) performed a simulated metopic and sagittal craniosynostosis repair using a neuroendoscope, high-speed drill, rongeurs, lighted retractors, and suction/irrigation. All participants completed a 13-item questionnaire (using 5-point Likert scales) to rate the realism and utility of the models for teaching endoscope-assisted strip suturectomy. RESULTS The simulators are compact, robust, and relatively inexpensive. They can be rapidly reset for repeated use and contain a minimal amount of consumable material while providing a realistic simulation experience. More than 80% of participants agreed or strongly agreed that the models' anatomical features, including surface anatomy, subgaleal and subperiosteal tissue planes, anterior fontanelle, and epidural spaces, were realistic and contained appropriate detail. More

  19. Feasibility of MRI of the fetal heart with balanced steady-state free precession sequence along fetal body and cardiac planes.

    Science.gov (United States)

    Saleem, Sahar N

    2008-10-01

    The purpose of this study was to evaluate the feasibility of imaging the fetal heart with a balanced steady-state free precession MRI sequence along the body and cardiac axes after inadequate echocardiography. After technically inadequate echocardiography, MRI was performed on 20 fetuses (mean gestational age, 24 weeks; range, 18-32 weeks) at risk of congenital heart disease. MRI was attempted along the three fetal body planes (n = 20) and cardiac axes (n = 3) without fetal sedation. The images were analyzed with an anatomic segmental approach. Each feature was classified as well visualized or poorly or not visualized. In each group, the Student's t test was used to assess the relation between visibility of fetal cardiac features and gestational age. Imaging was possible along the fetal body and cardiac axes. In the axial plane, a balanced four-chamber view was obtained in all fetuses, enabling evaluation of heart position, axis, chambers, and interventricular septum. The left and right ventricular outflow tracts were well visualized in 12 (60%) and nine (45%) of the fetuses, respectively; the three-vessel view was obtained in 10 fetuses (50%). With the combination of sagittal and coronal views, both ventricular outflow tracts were assessed in all fetuses. The superior and inferior venae cavae were identified in all fetuses, and at least one pulmonary vein was visualized in 17 fetuses (85%). There were no statistically significant differences between gestational age and lack of visualization of a cardiac feature that was attributed to fetal motion. MRI of the fetal heart with a steady-state free precession sequence in multiple planes and image analysis with an anatomic segmental approach to congenital heart disease are possible in situations that limit echocardiography.

  20. Lenke 1 and 5: changes in sagittal balance

    Directory of Open Access Journals (Sweden)

    Delson Valdemir Pessin

    2014-09-01

    Full Text Available OBJECTIVE: To assess in a cross-sectional study whether there are changes in sagittal balance in patients with adolescent idiopathic scoliosis Lenke types 1 and 5 compared with patients without pathology of the spine and compare the values of the parameters of normal subjects with the parameters found in the literature. METHODS: We measured the values of the parameters of sagittal balance of 21 patients with scoliosis and 14 patients without scoliosis in panoramic radiographs or simply collected data previously measured from the medical records. We compared the mean values of normal subjects, the mean values found in the literature, and the means between normal subjects and patients with scoliosis. For this, we used the Student t test. RESULTS: Using a confidence interval of 5% (p < 0.05 and the Student t test we obtained statistical significance in the comparison of two parameters of sagittal balance between normal subjects and patients with scoliosis. We observed similarities in the measurements of the average parameters of normal subjects with regard to the work already published. CONCLUSIONS: The adolescent idiopathic scoliosis causes changes in two parameters of sagittal balance with statistical significance but suggests changes in all other parameters. As for comparison with previously published work, the results were similar.

  1. A morphological description of the sagittal otoliths of two mormyrids ...

    African Journals Online (AJOL)

    The morphology of the sagittal otoliths of two South African mormyrid fish, Marcusenius macrolepidotus and Petrocephalus catostoma, were studied to determine possible morphological significance. The sagittae of M. macrolepidotus and P. catostoma are kidney-shaped and oblong, respectively. The ventral margin is ...

  2. Bilateral sagittal split osteotomy versus distraction osteogenesis for mandibular advancements

    NARCIS (Netherlands)

    Baas, E.M.

    2015-01-01

    The aim of this thesis was to compare the treatment modality of distraction osteogenesis (DO) with the gold standard for mandibular advancement surgery. In fact we compare distraction osteogenesis with the standard of care, which is a conventional bilateral sagittal split osteotomy as described by

  3. Two-plane symmetry in the structural organization of man.

    Science.gov (United States)

    Ermolenko, A E

    2005-01-01

    Manifestations of symmetry in the human structural organization in ontogenesis and phylogenetic development are analysed. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant: (a) the location of the organs is governed by two principles: in compliance with the symmetry planes and in compliance with the radial symmetry around cavities; (b) the location of the radial symmetry organs is also governed by the principle of two-plane symmetry; (c) out of the four antimeres of two-plane symmetry, two are paired while the other two have merged into one organ; (d) some organs which are antimeres relative to the horizontal plane are located at the cranial end of the organism (sensory organs, cerebrum-cerebellum, heart-spleen and others). The two-plane symmetry is formed by two mechanisms--(a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and (b) genetic mechanisms of the development of chromosomes having two-plane symmetry. When comparing mineral and biological entities we should consider not the whole immobile crystal but only the active superficial part of a growing or dissolving crystal, the interface between the crystal surface and the crystal-forming environment which directly controls crystal growth and adapts itself to it, as well as crystal feed stock expressed in the structure of concentration flows. The symmetry of the chromosome, of the embrion at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described.

  4. Coronal 2D MR cholangiography overestimates the length of the right hepatic duct in liver transplantation donors

    International Nuclear Information System (INIS)

    Kim, Bohyun; Kim, Kyoung Won; Kim, So Yeon; Park, So Hyun; Lee, Jeongjin; Song, Gi Won; Jung, Dong-Hwan; Ha, Tae-Yong; Lee, Sung Gyu

    2017-01-01

    To compare the length of the right hepatic duct (RHD) measured on rotatory coronal 2D MR cholangiography (MRC), rotatory axial 2D MRC, and reconstructed 3D MRC. Sixty-seven donors underwent coronal and axial 2D projection MRC and 3D MRC. RHD length was measured and categorized as ultrashort (≤1 mm), short (>1-14 mm), and long (>14 mm). The measured length, frequency of overestimation, and the degree of underestimation between two 2D MRC sets were compared to 3D MRC. The length of the RHD from 3D MRC, coronal 2D MRC, and axial 2D MRC showed significant difference (p < 0.05). RHD was frequently overestimated on the coronal than on axial 2D MRC (61.2 % vs. 9 %; p <.0001). On coronal 2D MRC, four (6 %) with short RHD and one (1.5 %) with ultrashort RHD were over-categorized as long RHD. On axial 2D MRC, overestimation was mostly <1 mm (83.3 %), none exceeding 3 mm or over-categorized. The degree of underestimation between the two projection planes was comparable. Coronal 2D MRC overestimates the RHD in liver donors. We suggest adding axial 2D MRC to conventional coronal 2D MRC in the preoperative workup protocol for living liver donors to avoid unexpected confrontation with multiple ductal openings when harvesting the graft. (orig.)

  5. Coronal 2D MR cholangiography overestimates the length of the right hepatic duct in liver transplantation donors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bohyun [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul (Korea, Republic of); Ajou University School of Medicine, Department of Radiology, Ajou University Medical Center, Suwon (Korea, Republic of); Kim, Kyoung Won; Kim, So Yeon; Park, So Hyun [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul (Korea, Republic of); Lee, Jeongjin [Soongsil University, School of Computer Science and Engineering, Seoul (Korea, Republic of); Song, Gi Won; Jung, Dong-Hwan; Ha, Tae-Yong; Lee, Sung Gyu [University of Ulsan College of Medicine, Department of Surgery, Division of Hepatobiliary and Liver Transplantation Surgery, Asan Medical Center, Seoul (Korea, Republic of)

    2017-05-15

    To compare the length of the right hepatic duct (RHD) measured on rotatory coronal 2D MR cholangiography (MRC), rotatory axial 2D MRC, and reconstructed 3D MRC. Sixty-seven donors underwent coronal and axial 2D projection MRC and 3D MRC. RHD length was measured and categorized as ultrashort (≤1 mm), short (>1-14 mm), and long (>14 mm). The measured length, frequency of overestimation, and the degree of underestimation between two 2D MRC sets were compared to 3D MRC. The length of the RHD from 3D MRC, coronal 2D MRC, and axial 2D MRC showed significant difference (p < 0.05). RHD was frequently overestimated on the coronal than on axial 2D MRC (61.2 % vs. 9 %; p <.0001). On coronal 2D MRC, four (6 %) with short RHD and one (1.5 %) with ultrashort RHD were over-categorized as long RHD. On axial 2D MRC, overestimation was mostly <1 mm (83.3 %), none exceeding 3 mm or over-categorized. The degree of underestimation between the two projection planes was comparable. Coronal 2D MRC overestimates the RHD in liver donors. We suggest adding axial 2D MRC to conventional coronal 2D MRC in the preoperative workup protocol for living liver donors to avoid unexpected confrontation with multiple ductal openings when harvesting the graft. (orig.)

  6. Factors influencing spinal sagittal balance, bone mineral density, and Oswestry Disability Index outcome measures in patients with rheumatoid arthritis.

    Science.gov (United States)

    Masamoto, Kazutaka; Otsuki, Bungo; Fujibayashi, Shunsuke; Shima, Koichiro; Ito, Hiromu; Furu, Moritoshi; Hashimoto, Motomu; Tanaka, Masao; Lyman, Stephen; Yoshitomi, Hiroyuki; Tanida, Shimei; Mimori, Tsuneyo; Matsuda, Shuichi

    2018-02-01

    To identify the factors influencing spinal sagittal alignment, bone mineral density (BMD), and Oswestry Disability Index (ODI) outcome measures in patients with rheumatoid arthritis (RA). We enrolled 272 RA patients to identify the factors influencing sagittal vertical axis (SVA). Out of this, 220 had evaluation of bone mineral density (BMD) and vertebral deformity (VD) on the sagittal plane; 183 completed the ODI questionnaire. We collected data regarding RA-associated clinical parameters and standing lateral X-ray images via an ODI questionnaire from April to December 2012 at a single center. Patients with a history of spinal surgery or any missing clinical data were excluded. Clinical parameters included age, sex, body mass index, RA disease duration, disease activity score 28 erythrocyte sedimentation rate (DAS28-ESR), serum anti-cyclic citrullinated peptide antibody, serum rheumatoid factor, serum matrix metalloproteinase-3, BMD and treatment type at survey, such as methotrexate (MTX), biological disease-modifying anti-rheumatic drugs, and glucocorticoids. We measured radiological parameters including pelvic incidence (PI), lumbar lordosis (LL), and SVA. We statistically identified the factors influencing SVA, BMD, VD, and ODI using multivariate regression analysis. Multivariate regression analysis showed that larger SVA correlated with older age, higher DAS28-ESR, MTX nonuse, and glucocorticoid use. Lower BMD was associated with female, older age, higher DAS28-ESR, and MTX nonuse. VD was associated with older age, longer disease duration, lower BMD, and glucocorticoid use. Worse ODI correlated with older age, larger PI-LL mismatch or larger SVA, higher DAS28-ESR, and glucocorticoid use. In managing low back pain and spinal sagittal alignment in RA patients, RA-related clinical factors and the treatment type should be taken into consideration.

  7. Lower extremity energy absorption and biomechanics during landing, part II: frontal-plane energy analyses and interplanar relationships.

    Science.gov (United States)

    Norcross, Marc F; Lewek, Michael D; Padua, Darin A; Shultz, Sandra J; Weinhold, Paul S; Blackburn, J Troy

    2013-01-01

    Greater sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing is consistent with sagittal-plane biomechanics that likely increase anterior cruciate ligament (ACL) loading, but it does not appear to influence frontal-plane biomechanics. We do not know whether frontal-plane INI EA is related to high-risk frontal-plane biomechanics. To compare biomechanics among INI EA groups, determine if women are represented more in the high group, and evaluate interplanar INI EA relationships. Descriptive laboratory study. Research laboratory. Participants included 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active volunteers. We assessed landing biomechanics with an electromagnetic motion-capture system and force plate. We calculated frontal- and sagittal-plane total, hip, knee, and ankle INI EA. Total frontal-plane INI EA was used to create high, moderate, and low tertiles. Frontal-plane knee and hip kinematics, peak vertical and posterior ground reaction forces, and peak internal knee-varus moment (pKVM) were identified and compared across groups using 1-way analyses of variance. We used a χ (2) analysis to evaluate male and female allocation to INI EA groups. We used simple, bivariate Pearson product moment correlations to assess interplanar INI EA relationships. The high-INI EA group exhibited greater knee valgus at ground contact, hip adduction at pKVM, and peak hip adduction than the low-INI EA group (P .05). Greater frontal-plane INI EA was associated with less favorable frontal-plane biomechanics that likely result in greater ACL loading. Women were more likely than men to use greater frontal-plane INI EA. The magnitudes of sagittal- and frontal-plane INI EA were largely independent.

  8. Retrograde lag screw placement in anterior acetabular column with regard to the anterior pelvic plane and midsagittal plane -- virtual mapping of 260 three-dimensional hemipelvises for quantitative anatomic analysis.

    Science.gov (United States)

    Ochs, Bjoern Gunnar; Stuby, Fabian Maria; Ateschrang, Atesch; Stoeckle, Ulrich; Gonser, Christoph Emanuel

    2014-10-01

    Percutaneous screw placement can be used for minimally invasive treatment of none or minimally displaced fractures of the anterior column. The complex pelvic geometry can pose a major challenge even for experienced surgeons. The present study examined the preformed bone stock of the anterior column in 260 hemipelvises (130 male and 130 female). Screws were virtually implanted using iPlan(®) CMF (BrainLAB AG, Feldkirchen, Germany); the maximal implant length and the maximal implant diameter were assessed. The study showed, that 6.5mm can generally be used in men; in women however individual planning is essential in regard to the maximal implant diameter since we found that in 15.4% of women, screws with a diameter less than 6.5mm were necessary. The virtual analysis of the preformed bone stock corridor of the anterior column showed two constrictions of crucial clinical importance. These can be found after 18% and 55% (men) respectively 16% and 55% (women) measured from the entry point along the axis of the implant. The entry point of the retrograde anterior column screw in our collective was located lateral of tuberculum pubicum at the level of the superior-medial margin of foramen obturatum. In female patients, the entry point was located significantly more lateral of symphysis and closer to the cranial margin of ramus superior ossis pubis. The mean angle between the screw trajectory and the anterior pelvic plane in sagittal section was 31.6 ± 5.5°, the mean angle between the screw trajectory and the midsagittal plane in axial section was 55.9 ± 4.6° and the mean angle between the screw trajectory and the midsagittal plane in coronal section was 42.1 ± 3.9° with no significant deviation between both sexes. The individual angles formed by the screw trajectory and the anterior pelvic and midsagittal plane are independent from anthropometric parameters sex, age, body length and weight. Therefore, they can be used for orientation in lag screw placement keeping

  9. Image-based reconstruction of the Newtonian dynamics of solar coronal ejecta

    Science.gov (United States)

    Uritsky, Vadim M.; Thompson, Barbara J.

    2016-10-01

    We present a new methodology for analyzing rising and falling dynamics of unstable coronal material as represented by high-cadence SDO AIA images. The technique involves an adaptive spatiotemporal tracking of propagating intensity gradients and their characterization in terms of time-evolving areas swept out by the position vector originated from the Sun disk center. The measured values of the areal velocity and acceleration are used to obtain quantitative information on the angular momentum and acceleration along the paths of the rising and falling coronal plasma. In the absence of other forces, solar gravitation results in purely ballistic motions consistent with the Kepler's second law; non-central forces such as the Lorentz force introduce non-zero torques resulting in more complex motions. The developed algorithms enable direct evaluation of the line-of-sight component of the net torque applied to a unit mass of the ejected coronal material which is proportional to the image-plane projection of the observed areal acceleration. The current implementation of the method cannot reliably distinguish torque modulations caused by the coronal force field from those imposed by abrupt changes of plasma mass density and nontrivial projection effects. However, it can provide valid observational constraints on the evolution of large-scale unstable magnetic topologies driving major solar-coronal eruptions as demonstrated in the related talk by B. Thompson et al.

  10. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, Ali, E-mail: ali.gholipour@childrens.harvard.edu; Afacan, Onur; Scherrer, Benoit; Prabhu, Sanjay P.; Warfield, Simon K. [Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Aganj, Iman [Radiology Department, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Sahin, Mustafa [Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-12-15

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in

  11. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    International Nuclear Information System (INIS)

    Gholipour, Ali; Afacan, Onur; Scherrer, Benoit; Prabhu, Sanjay P.; Warfield, Simon K.; Aganj, Iman; Sahin, Mustafa

    2015-01-01

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in

  12. Space weather and coronal mass ejections

    CERN Document Server

    Howard, Tim

    2013-01-01

    Space weather has attracted a lot of attention in recent times. Severe space weather can disrupt spacecraft, and on Earth can be the cause of power outages and power station failure. It also presents a radiation hazard for airline passengers and astronauts. These ""magnetic storms"" are most commonly caused by coronal mass ejections, or CMES, which are large eruptions of plasma and magnetic field from the Sun that can reach speeds of several thousand km/s. In this SpringerBrief, Space Weather and Coronal Mass Ejections, author Timothy Howard briefly introduces the coronal mass ejection, its sc

  13. Mid-callosal plane determination using preferred directions from diffusion tensor images

    Science.gov (United States)

    Costa, André L.; Rittner, Letícia; Lotufo, Roberto A.; Appenzeller, Simone

    2015-03-01

    The corpus callosum is the major brain structure responsible for inter{hemispheric communication between neurons. Many studies seek to relate corpus callosum attributes to patient characteristics, cerebral diseases and psychological disorders. Most of those studies rely on 2D analysis of the corpus callosum in the mid-sagittal plane. However, it is common to find conflicting results among studies, once many ignore methodological issues and define the mid-sagittal plane based on precary or invalid criteria with respect to the corpus callosum. In this work we propose a novel method to determine the mid-callosal plane using the corpus callosum internal preferred diffusion directions obtained from diffusion tensor images. This plane is analogous to the mid-sagittal plane, but intended to serve exclusively as the corpus callosum reference. Our method elucidates the great potential the directional information of the corpus callosum fibers have to indicate its own referential. Results from experiments with five image pairs from distinct subjects, obtained under the same conditions, demonstrate the method effectiveness to find the corpus callosum symmetric axis relative to the axial plane.

  14. Sagittal synostosis: I. Preoperative morphology of the skull

    DEFF Research Database (Denmark)

    Guimaraes-Ferreira, J.; Gewalli, F.; David, L.

    2006-01-01

    The aim of this study was to characterise the preoperative morphology of the skull in sagittal synostosis in an objective and quantified way. The shapes of the skulls of 105 patients with isolated premature synostosis of the sagittal suture ( SS group) were studied and compared with those......, skull base, and orbit ( 42 in the lateral and 46 in the frontal projections), the production of plots of mean shape for each group, and the intergroup comparison of a series of 81 variables ( linear distance between selected landmarks, and angles defined by groups of three landmarks). Data from...... skull width. Comparison of the mean values of an SS subgroup to age-matched normative data showed a longer (p differ significantly...

  15. Spinal pedicle subtraction osteotomy for fixed sagittal imbalance patients

    Science.gov (United States)

    Hyun, Seung-Jae; Kim, Yongjung J; Rhim, Seung-Chul

    2013-01-01

    In addressing spinal sagittal imbalance through a posterior approach, the surgeon now may choose from among a variety of osteotomy techniques. Posterior column osteotomies such as the facetectomy or Ponte or Smith-Petersen osteotomy provide the least correction, but can be used at multiple levels with minimal blood loss and a lower operative risk. Pedicle subtraction osteotomies provide nearly 3 times the per-level correction of Ponte/Smith-Petersen osteotomies; however, they carry increased technical demands, longer operative time, and greater blood loss and associated significant morbidity, including neurological injury. The literature focusing on pedicle subtraction osteotomy for fixed sagittal imbalance patients is reviewed. The long-term overall outcomes, surgical tips to reduce the complications and suggestions for their proper application are also provided. PMID:24340276

  16. Risk factors affecting somatosensory function after sagittal split osteotomy

    DEFF Research Database (Denmark)

    Thygesen, Torben Henrik; Jensen, Allan Bardow; Helleberg, M

    2008-01-01

    Purpose The aim of this study was to evaluate potential individual and intraoperative risk factors associated with bilateral sagittal split osteotomy (BSSO) and to correlate the findings with postoperative changes in somatosensory function. Patients and Methods A total of 18 men and 29 women (mean...... and free dissection of the inferior alveolar nerve during BSSO increased self-reported changes in lower lip sensation and lower lip tactile threshold after BSSO (P discrimination (P

  17. Maxillomandibular Advancement in Obstructive Sleep Apnea Syndrome Patients: a Restrospective Study on the Sagittal Cephalometric Variables

    Directory of Open Access Journals (Sweden)

    Paolo Ronchi

    2013-06-01

    Full Text Available Objectives: The present retrospective study analyzes sagittal cephalometric changes in patients affected by obstructive sleep apnea syndrome submitted to maxillomandubular advancement. Material and Methods: 15 adult sleep apnea syndrome (OSAS patients diagnosed by polysomnography (PSG and treated with maxillomandubular advancement (MMA were included in this study. Pre- (T1 and postsurgical (T2 PSG studies assessing the apnea/hypopnea index (AHI and the lowest oxygen saturation (LSAT level were compared. Lateral cephalometric radiographs at T1 and T2 measuring sagittal cephalometric variables (SNA, SNB, and ANB were analyzed, as were the amount of maxillary and mandibular advancement (Co-A and Co-Pog, the distance from the mandibular plane to the most anterior point of the hyoid bone (Mp-H, and the posterior airway space (PAS.Results: Postoperatively, the overall mean AHI dropped from 58.7 ± 16 to 8.1 ± 7.8 events per hour (P < 0.001. The mean preoperative LSAT increased from 71% preoperatively to 90% after surgery (P < 0.001. All the patients in our study were successfully treated (AHI < 20 or reduced by 50%. Cephalometric analysis performed after surgery showed a statistically significant correlation between the mean SNA variation and the decrease in the AHI (P = 0.01. The overall mean SNA increase was 6°.Conclusions: Our findings suggest that the improvement observed in the respiratory symptoms, namely the apnea/hypopnea episodes, is correlated with the SNA increase after surgery. This finding may help maxillofacial surgeons to establish selective criteria for the surgical approach to sleep apnea syndrome patients.

  18. Posterior coronal plating for tibial fractures: technique and advantages

    Directory of Open Access Journals (Sweden)

    Montu Jain

    2014-04-01

    Full Text Available Objective:Tibial shaft fractures are straightforward to treat but when associated with soft tissue injury particularly at the nail entry/plate insertion site or there is significant comminution proximally or a large butterfly fragment/a second split component in the posterior coronal plane, it is a challenge to the treating surgeon. The aim of the present report is to describe the technique of posterior coronal plating in such a scenario and its advantages. Methods:Between July 2008 and June 2011, 12 patients were pro spectively treated by this approach using 4.5 mm broad dynamic compression plates. Results:The time of bony consolidation and full weight bearing averaged 21.7 weeks (range, 16-26 weeks. Patients were followed up for at least 24 months (range, 24-48 months. At 1 year postoper atively, no loss in reduction or alignment was observed. Mean Hospital for Lower Extremity Measurement Functional Score was 72.8 (range, 64-78. All patients were satisfied with their treatment outcomes. Conclusion:Direct posterior approach and fixation using prone position helps to visualise the fracture fragments and provide rigid fixation. The approach is simple and extensile easily, apart from advantages of less soft tissue and hardware problems compared to standard medial or lateral plating. Key words: Tibial fractures; Bone plates; Orthopedic procedures

  19. Coronal Magnetism and Forward Solarsoft Idl Package

    Science.gov (United States)

    Gibson, S. E.

    2014-12-01

    The FORWARD suite of Solar Soft IDL codes is a community resource for model-data comparison, with a particular emphasis on analyzing coronal magnetic fields. FORWARD may be used both to synthesize a broad range of coronal observables, and to access and compare to existing data. FORWARD works with numerical model datacubes, interfaces with the web-served Predictive Science Inc MAS simulation datacubes and the Solar Soft IDL Potential Field Source Surface (PFSS) package, and also includes several analytic models (more can be added). It connects to the Virtual Solar Observatory and other web-served observations to download data in a format directly comparable to model predictions. It utilizes the CHIANTI database in modeling UV/EUV lines, and links to the CLE polarimetry synthesis code for forbidden coronal lines. FORWARD enables "forward-fitting" of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties.

  20. COMPOSITION OF CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zurbuchen, T. H.; Weberg, M.; Lepri, S. T. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI (United States); Von Steiger, R. [International Space Science Institute, Bern (Switzerland); Mewaldt, R. A. [California Institute of Technology, Pasadena, CA (United States); Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-07-20

    We analyze the physical origin of plasmas that are ejected from the solar corona. To address this issue, we perform a comprehensive analysis of the elemental composition of interplanetary coronal mass ejections (ICMEs) using recently released elemental composition data for Fe, Mg, Si, S, C, N, Ne, and He as compared to O and H. We find that ICMEs exhibit a systematic abundance increase of elements with first ionization potential (FIP) < 10 eV, as well as a significant increase of Ne as compared to quasi-stationary solar wind. ICME plasmas have a stronger FIP effect than slow wind, which indicates either that an FIP process is active during the ICME ejection or that a different type of solar plasma is injected into ICMEs. The observed FIP fractionation is largest during times when the Fe ionic charge states are elevated above Q {sub Fe} > 12.0. For ICMEs with elevated charge states, the FIP effect is enhanced by 70% over that of the slow wind. We argue that the compositionally hot parts of ICMEs are active region loops that do not normally have access to the heliosphere through the processes that give rise to solar wind. We also discuss the implications of this result for solar energetic particles accelerated during solar eruptions and for the origin of the slow wind itself.

  1. Coronal rain in magnetic bipolar weak fields

    Science.gov (United States)

    Xia, C.; Keppens, R.; Fang, X.

    2017-07-01

    Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at http://www.aanda.org

  2. MULTIDIMENSIONAL MODELING OF CORONAL RAIN DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Fang, X.; Xia, C.; Keppens, R. [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, B-3001 Leuven (Belgium)

    2013-07-10

    We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.

  3. MULTIDIMENSIONAL MODELING OF CORONAL RAIN DYNAMICS

    International Nuclear Information System (INIS)

    Fang, X.; Xia, C.; Keppens, R.

    2013-01-01

    We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.

  4. Spine evaluation: Determination of the relationship between thoracic spinal deformity and sagittal curves by a noninvasive method DOI: 10.5007/1980-0037.2010v12n4p282

    Directory of Open Access Journals (Sweden)

    Dalva Minonroze Albuquerque Ferreira

    2010-01-01

    Full Text Available The objectives of this study were to compare sagittal plane alignment between subjects with spinal deformities and a group presenting no changes; to test the reliability of the tool used, and to determine the existence of correlations between spinal deformity and sagittal curvature measures. Forty young subjects were divided into two groups: a control group (n=20 presenting no changes or spinal deformity less than 0.5 cm in the dorsal curvature and 0.7 cm in the lumbar curvature, and an experimental group (n=20 with spinal deformities greater than those described for the control group. Spinal deformity and sagittal plane curvatures were measured using a water level-based tool and by the Adams test. Data were collected from the two groups on two distinct occasions. The Mann-Whitney test showed no difference between sampling times. A significant difference between the two groups was only observed in terms of cervical curvature. Spearman’s test revealed a linear correlation between dorsal curvature and dorsal spinal deformity in the control group, between dorsal and lumbar curves in the two groups, and between dorsal spinal deformity and lumbar and sacral curves and between sacral curvature and dorsal and lumbar curves in the experimental group. In conclusion, spinal deformity measurement is associated with sagittal plane curvatures. The method proposed here is reliable, simple and accessible and can be reproduced without high costs and damage to the patient’s health.

  5. Biomechanical evaluation of sagittal maxillary internal distraction osteogenesis in unilateral cleft lip and palate patient and noncleft patients: a three-dimensional finite element analysis.

    Science.gov (United States)

    Olmez, Sultan; Dogan, Servet; Pekedis, Mahmut; Yildiz, Hasan

    2014-09-01

    To compare the pattern and amount of stress and displacement during maxillary sagittal distraction osteogenesis (DO) between a patient with unilateral cleft lip and palate (UCLP) and a noncleft patient. Three-dimensional finite element models for both skulls were constructed. Displacements of the surface landmarks and stress distributions in the circummaxillary sutures were analyzed after an anterior displacement of 6 mm was loaded to the elements where the inferior plates of the distractor were assumed to be fixed and were below the Le Fort I osteotomy line. In sagittal plane, more forward movement was found on the noncleft side in the UCLP model (-6.401 mm on cleft side and -6.651 mm on noncleft side for the central incisor region). However, similar amounts of forward movement were seen in the control model. In the vertical plane, a clockwise rotation occurred in the UCLP model, whereas a counterclockwise rotation was seen in the control model. The mathematical UCLP model also showed higher stress values on the sutura nasomaxillaris, frontonasalis, and zygomatiomaxillaris on the cleft side than on the normal side. Not only did the sagittal distraction forces produce advancement forces at the intermaxillary sutures, but more stress was also present on the sutura nasomaxillaris, sutura frontonasalis, and sutura zygomaticomaxillaris on the cleft side than on the noncleft side.

  6. Evaluating Uncertainties in Coronal Electron Temperature and Radial Speed Measurements Using a Simulation of the Bastille Day Eruption

    Science.gov (United States)

    Reginald, Nelson; St. Cyr, Orville; Davila, Joseph; Rastaetter, Lutz; Török, Tibor

    2018-05-01

    Obtaining reliable measurements of plasma parameters in the Sun's corona remains an important challenge for solar physics. We previously presented a method for producing maps of electron temperature and speed of the solar corona using K-corona brightness measurements made through four color filters in visible light, which were tested for their accuracies using models of a structured, yet steady corona. In this article we test the same technique using a coronal model of the Bastille Day (14 July 2000) coronal mass ejection, which also contains quiet areas and streamers. We use the coronal electron density, temperature, and flow speed contained in the model to determine two K-coronal brightness ratios at (410.3, 390.0 nm) and (423.3, 398.7 nm) along more than 4000 lines of sight. Now assuming that for real observations, the only information we have for each line of sight are these two K-coronal brightness ratios, we use a spherically symmetric model of the corona that contains no structures to interpret these two ratios for electron temperature and speed. We then compare the interpreted (or measured) values for each line of sight with the true values from the model at the plane of the sky for that same line of sight to determine the magnitude of the errors. We show that the measured values closely match the true values in quiet areas. However, in locations of coronal structures, the measured values are predictably underestimated or overestimated compared to the true values, but can nevertheless be used to determine the positions of the structures with respect to the plane of the sky, in front or behind. Based on our results, we propose that future white-light coronagraphs be equipped to image the corona using four color filters in order to routinely create coronal maps of electron density, temperature, and flow speed.

  7. Dynamics of low density coronal plasma in low current x-pinches

    International Nuclear Information System (INIS)

    Haas, D; Bott, S C; Vikhrev, V; Eshaq, Y; Ueda, U; Zhang, T; Baranova, E; Krasheninnikov, S I; Beg, F N

    2007-01-01

    Experiments were performed on an x-pinch using a pulsed power current generator capable of producing an 80 kA current with a rise time of 50 ns. Molybdenum wires with and without gold coating were employed to study the effect of high z coating on the low-density ( 18 cm -3 ) coronal plasma dynamics. A comparison of images from XUV frames and optical probing shows that the low density coronal plasma from the wires initially converges at the mid-plane immediately above and below the cross-point. A central jet is formed which moves with a velocity of 6 x 10 4 ms -1 towards both electrodes forming a z-pinch column before the current maximum. A marked change in the low density coronal plasma dynamics was observed when molybdenum wires coated with ∼ 0.09 μm of gold were used. The processes forming the jet structure were delayed relative to bare Mo x-pinches, and the time-resolved x-ray emission also showed differences. An m = 0 instability was observed in the coronal plasma along the x-pinch legs, which were consistent with x-ray PIN diode signals in which x-ray pulses were observed before x-ray spot formation. These early time x-ray pulses were not observed with pure molybdenum x-pinches. These observations indicate that a thin layer of gold coating significantly changes the coronal plasma behaviour. Two dimensional MHD simulations were performed and qualitatively agree with experimental observations of low density coronal plasma

  8. The value of coronal image reconstructions of HRCT using MDCT for the assessment of bronchiectasis: experiment with 64 MDCTs

    International Nuclear Information System (INIS)

    Choi, Soo Jin; Kim, Hyung Sik; Jeong, Sung Hwan; Jin, Wook; Yang, Dal Mo

    2006-01-01

    The aim of our study was to evaluate the value of coronal image reconstructions of HRCT with using 64 MDCT scans for the assessment of bronchiectasis. Chest CT scans (0.6-mm collimation, table speed of 14 mm/sec and a rotation time of 0.5 sec) that employed 64 MDCT images (Somatom Sensation 64, Siemens) without contrast media were performed in 56 patients (21 males and 35 females, mean age: 55 years) who displayed hemoptysis. The images were reconstructed with a 1 mm slice thickness in the axial (10 mm apart) and coronal (10 mm apart) planes with using a high frequency algorithm, and they were sent to PACS monitors. The axial images were assessed with and without the coronal images by two radiologists at two separate occasions. The presence of bronchiectasis was decided upon by consensus diagnosis of the two radiologists. The detection rates of bronchiectasis were compared between the readings with using the axial images alone and the readings with using both the axial and coronal images. The detection rate of bronchiectasis was significantly higher with using both the axial and coronal images than with using with axial images alone (82.1%, 46/56 patients Vs 64.3%, 36/56 patients, respectively, ρ = 0.001). The detection rates for all the lobes, except for the superior division of the left upper lobe, were significantly improved with using both the axial and coronal images (RUL; ρ = 0.013, RML; ρ = 0.002, RLL; 0.024, Lt lingular segment; ρ = 0.004, LLL; ρ = 0.018). The coronal images of HRCT with using 64 MDCT improved the detection rate of bronchiectasis in the patients with hemoptysis when they were used in conjunction with the standard axial images. We suggest that HRCT with the coronal images should be obtained for the patients with hemoptysis, despite that the simple chest radiographs are often normal or they have non-specific findings

  9. The value of coronal image reconstructions of HRCT using MDCT for the assessment of bronchiectasis: experiment with 64 MDCTs

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soo Jin; Kim, Hyung Sik; Jeong, Sung Hwan; Jin, Wook; Yang, Dal Mo [Gachon University of Medicine and Science, Incheon (Korea, Republic of)

    2006-09-15

    The aim of our study was to evaluate the value of coronal image reconstructions of HRCT with using 64 MDCT scans for the assessment of bronchiectasis. Chest CT scans (0.6-mm collimation, table speed of 14 mm/sec and a rotation time of 0.5 sec) that employed 64 MDCT images (Somatom Sensation 64, Siemens) without contrast media were performed in 56 patients (21 males and 35 females, mean age: 55 years) who displayed hemoptysis. The images were reconstructed with a 1 mm slice thickness in the axial (10 mm apart) and coronal (10 mm apart) planes with using a high frequency algorithm, and they were sent to PACS monitors. The axial images were assessed with and without the coronal images by two radiologists at two separate occasions. The presence of bronchiectasis was decided upon by consensus diagnosis of the two radiologists. The detection rates of bronchiectasis were compared between the readings with using the axial images alone and the readings with using both the axial and coronal images. The detection rate of bronchiectasis was significantly higher with using both the axial and coronal images than with using with axial images alone (82.1%, 46/56 patients Vs 64.3%, 36/56 patients, respectively, {rho} = 0.001). The detection rates for all the lobes, except for the superior division of the left upper lobe, were significantly improved with using both the axial and coronal images (RUL; {rho} = 0.013, RML; {rho} = 0.002, RLL; 0.024, Lt lingular segment; {rho} = 0.004, LLL; {rho} = 0.018). The coronal images of HRCT with using 64 MDCT improved the detection rate of bronchiectasis in the patients with hemoptysis when they were used in conjunction with the standard axial images. We suggest that HRCT with the coronal images should be obtained for the patients with hemoptysis, despite that the simple chest radiographs are often normal or they have non-specific findings.

  10. Postural Consequences of Cervical Sagittal Imbalance: A Novel Laboratory Model.

    Science.gov (United States)

    Patwardhan, Avinash G; Havey, Robert M; Khayatzadeh, Saeed; Muriuki, Muturi G; Voronov, Leonard I; Carandang, Gerard; Nguyen, Ngoc-Lam; Ghanayem, Alexander J; Schuit, Dale; Patel, Alpesh A; Smith, Zachary A; Sears, William

    2015-06-01

    A biomechanical study using human spine specimens. To study postural compensations in lordosis angles that are necessary to maintain horizontal gaze in the presence of forward head posture and increasing T1 sagittal tilt. Forward head posture relative to the shoulders, assessed radiographically using the horizontal offset distance between the C2 and C7 vertebral bodies (C2-C7 [sagittal vertical alignment] SVA), is a measure of global cervical imbalance. This may result from kyphotic alignment of cervical segments, muscle imbalance, as well as malalignment of thoracolumbar spine. Ten cadaveric cervical spines (occiput-T1) were tested. The T1 vertebra was anchored to a tilting and translating base. The occiput was free to move vertically but its angular orientation was constrained to ensure horizontal gaze regardless of sagittal imbalance. A 5-kg mass was attached to the occiput to mimic head weight. Forward head posture magnitude and T1 tilt were varied and motions of individual vertebrae were measured to calculate C2-C7 SVA and lordosis across C0-C2 and C2-C7. Increasing C2-C7 SVA caused flexion of lower cervical (C2-C7) segments and hyperextension of suboccipital (C0-C1-C2) segments to maintain horizontal gaze. Increasing kyphotic T1 tilt primarily increased lordosis across the C2-C7 segments. Regression models were developed to predict the compensatory C0-C2 and C2-C7 angulation needed to maintain horizontal gaze given values of C2-C7 SVA and T1 tilt. This study established predictive relationships between radiographical measures of forward head posture, T1 tilt, and postural compensations in the cervical lordosis angles needed to maintain horizontal gaze. The laboratory model predicted that normalization of C2-C7 SVA will reduce suboccipital (C0-C2) hyperextension, whereas T1 tilt reduction will reduce the hyperextension in the C2-C7 segments. The predictive relationships may help in planning corrective strategy in patients experiencing neck pain, which may be

  11. Coronal reconstruction of unenhanced abdominal CT for correct ureteral stone size classification

    Energy Technology Data Exchange (ETDEWEB)

    Berkovitz, Nadav; Simanovsky, Natalia; Hiller, Nurith [Hadassah Mount Scopus - Hebrew University Medical Center, Department of Radiology, Jerusalem (Israel); Katz, Ran [Hadassah Mount Scopus - Hebrew University Medical Center, Department of Urology, Jerusalem (Israel); Salama, Shaden [Hadassah Mount Scopus - Hebrew University Medical Center, Department of Emergency Medicine, Jerusalem (Israel)

    2010-05-15

    To determine whether size measurement of a urinary calculus in coronal reconstruction of computed tomography (CT) differs from stone size measured in the axial plane, and whether the difference alters clinical decision making. We retrospectively reviewed unenhanced CT examinations of 150 patients admitted to the emergency room (ER) with acute renal colic. Maximal ureteral calculus size was measured on axial slices and coronal reconstructions. Clinical significance was defined as an upgrading or downgrading of stone size according to accepted thresholds of treatment: {<=}5 mm, 6-9 mm and {>=}10 mm. There were 151 stones in 150 patients (male:female 115:34, mean age 41 years). Transverse stone diameters ranged from 1 to 11 mm (mean 4 mm). On coronal images, 56 (37%) stones were upgraded in severity; 46 (30%) from below 5 mm to 6 mm or more, and ten (7%) from 6-9 mm to 10 mm or more. Transverse measurement on the axial slices enabled correct categorization of 95 stones (63%). Transverse calculus measurement on axial slices often underestimates stone size and provides incorrect clinical classification of the true maximal stone diameter. Coronal reconstruction provides additional information in patients with renal colic that may alter treatment strategy. (orig.)

  12. Coronal reconstruction of unenhanced abdominal CT for correct ureteral stone size classification

    International Nuclear Information System (INIS)

    Berkovitz, Nadav; Simanovsky, Natalia; Hiller, Nurith; Katz, Ran; Salama, Shaden

    2010-01-01

    To determine whether size measurement of a urinary calculus in coronal reconstruction of computed tomography (CT) differs from stone size measured in the axial plane, and whether the difference alters clinical decision making. We retrospectively reviewed unenhanced CT examinations of 150 patients admitted to the emergency room (ER) with acute renal colic. Maximal ureteral calculus size was measured on axial slices and coronal reconstructions. Clinical significance was defined as an upgrading or downgrading of stone size according to accepted thresholds of treatment: ≤5 mm, 6-9 mm and ≥10 mm. There were 151 stones in 150 patients (male:female 115:34, mean age 41 years). Transverse stone diameters ranged from 1 to 11 mm (mean 4 mm). On coronal images, 56 (37%) stones were upgraded in severity; 46 (30%) from below 5 mm to 6 mm or more, and ten (7%) from 6-9 mm to 10 mm or more. Transverse measurement on the axial slices enabled correct categorization of 95 stones (63%). Transverse calculus measurement on axial slices often underestimates stone size and provides incorrect clinical classification of the true maximal stone diameter. Coronal reconstruction provides additional information in patients with renal colic that may alter treatment strategy. (orig.)

  13. Reproducibility and repeatability of a new computerized software for sagittal spinopelvic and scoliosis curvature radiologic measurements: Keops(®).

    Science.gov (United States)

    Maillot, C; Ferrero, E; Fort, D; Heyberger, C; Le Huec, J-C

    2015-07-01

    The purpose of this study was to evaluate the inter- and intra-observer variability of the computerized radiologic measurements using Keops(®) and to determine the bias between the software and the standard paper measurement. Four individuals measured all frontal and sagittal variables on the 30 X-rays randomly selected on two occasions (test and retest conditions). The Bland-Altman plot was used to determine the degree of agreement between the measurement on paper X-ray and the measurement using Keops(®) for all reviewers and for the two measures; the intraclass correlation coefficient (ICC) was calculated for each pair of analyses to assess interobserver reproducibility among the four reviewers for the same patient using either paper X-ray or Keops(®) measurement and finally, concordance correlation coefficient (rc) was calculated to assess intraobserver repeatability among the same reviewer for one patient between the two measure using the same method (paper or Keops(®)). The mean difference calculated between the two methods was minimal at -0, 4° ± 3.41° [-7.1; 6.4] for frontal measurement and 0.1° ± 3.52° [-6.7; 6.8] for sagittal measurement. Keops(®) has a better interobserver reproducibility than paper measurement for determination of the sagittal pelvic parameter (ICC = 0.9960 vs. 0.9931; p = 0.0001). It has a better intraobserver repeatability than paper for determination of Cobbs angle (rc = 0.9872 vs. 0.9808; p rc = 0.9981 vs. 0.9953; p plane and that the use of this software can be recommended for clinical application. Diagnostic, level III.

  14. Existence of Projective Planes

    OpenAIRE

    Perrott, Xander

    2016-01-01

    This report gives an overview of the history of finite projective planes and their properties before going on to outline the proof that no projective plane of order 10 exists. The report also investigates the search carried out by MacWilliams, Sloane and Thompson in 1970 [12] and confirms their result by providing independent verification that there is no vector of weight 15 in the code generated by the projective plane of order 10.

  15. Comprehensive Analysis of Mandibular Residual Asymmetry after Bilateral Sagittal Split Ramus Osteotomy Correction of Menton Point Deviation.

    Science.gov (United States)

    Lin, Han; Zhu, Ping; Lin, Qiuping; Huang, Xiaoqiong; Xu, Yue; Yang, Xiaoping

    2016-01-01

    Facial asymmetry often persists even after mandibular deviation corrected by the bilateral sagittal split ramus osteotomy (BSSRO) operation, since the reference facial sagittal plane for the asymmetry analysis is usually set up before the mandibular menton (Me) point correction. Our aim is to develop a predictive and quantitative method to assess the true asymmetry of the mandible after a midline correction performed by a virtual BSSRO, and to verify its availability by evaluation of the post-surgical improvement. A retrospective cohort study was conducted at the Hospital of Stomatology, Sun Yat-sen University (China) of patients with pure hemi-mandibular elongation (HE) from September 2010 through May 2014. Mandibular models were reconstructed from CBCT images of patients with pre-surgical orthodontic treatment. After mandibular de-rotation and midline alignment with virtual BSSRO, the elongation hemi-mandible was virtually mirrored along the facial sagittal plane. The residual asymmetry, defined as the superimposition and boolean operation of the mirrored elongation side on the normal side, was calculated, including the volumetric differences and the length of transversal and vertical asymmetry discrepancy. For more specific evaluation, both sides of the hemi-mandible were divided into the symphysis and parasymphysis (SP), mandibular body (MB), and mandibular angle (MA) regions. Other clinical variables include deviation of Me point, dental midline and molar relationship. The measurement of volumetric discrepancy between the two sides of post-surgical hemi-mandible were also calculated to verify the availability of virtual surgery. Paired t-tests were computed and the P value was set at .05. This study included 45 patients. The volume differences were 407.8±64.8 mm3, 2139.1±72.5 mm3, and 422.5±36.9 mm3; residual average transversal discrepancy, 1.9 mm, 1.0 mm, and 2.2 mm; average vertical discrepancy, 1.1 mm, 2.2 mm, and 2.2 mm (before virtual surgery). The

  16. Free Magnetic Energy and Coronal Heating

    Science.gov (United States)

    Winebarger, Amy; Moore, Ron; Falconer, David

    2012-01-01

    Previous work has shown that the coronal X-ray luminosity of an active region increases roughly in direct proportion to the total photospheric flux of the active region's magnetic field (Fisher et al. 1998). It is also observed, however, that the coronal luminosity of active regions of nearly the same flux content can differ by an order of magnitude. In this presentation, we analyze 10 active regions with roughly the same total magnetic flux. We first determine several coronal properties, such as X-ray luminosity (calculated using Hinode XRT), peak temperature (calculated using Hinode EIS), and total Fe XVIII emission (calculated using SDO AIA). We present the dependence of these properties on a proxy of the free magnetic energy of the active region

  17. The first coronation churches of medieval Serbia

    Directory of Open Access Journals (Sweden)

    Kalić Jovanka

    2017-01-01

    Full Text Available The medieval ceremony of coronation as a rule took place in the most important church of a realm. The sites of the coronation of Serbian rulers before the establishment of the Žiča monastery church as the coronation church of Serbian kings in the first half of the thirteenth century have not been reliably identified so far. Based on the surviving medieval sources and the archaeological record, this paper provides background information about the titles of Serbian rulers prior to the creation of the Nemanjić state, and proposes that Stefan, son of the founder of the Nemanjić dynasty, was crowned king (1217 in the church of St Peter in Ras.

  18. A contemporary view of coronal heating.

    Science.gov (United States)

    Parnell, Clare E; De Moortel, Ineke

    2012-07-13

    Determining the heating mechanism (or mechanisms) that causes the outer atmosphere of the Sun, and many other stars, to reach temperatures orders of magnitude higher than their surface temperatures has long been a key problem. For decades, the problem has been known as the coronal heating problem, but it is now clear that 'coronal heating' cannot be treated or explained in isolation and that the heating of the whole solar atmosphere must be studied as a highly coupled system. The magnetic field of the star is known to play a key role, but, despite significant advancements in solar telescopes, computing power and much greater understanding of theoretical mechanisms, the question of which mechanism or mechanisms are the dominant supplier of energy to the chromosphere and corona is still open. Following substantial recent progress, we consider the most likely contenders and discuss the key factors that have made, and still make, determining the actual (coronal) heating mechanism (or mechanisms) so difficult.

  19. Does Andrews facial analysis predict esthetic sagittal maxillary position?

    Science.gov (United States)

    Resnick, Cory M; Daniels, Kimberly M; Vlahos, Maryann

    2018-04-01

    Cephalometric analyses have limited utility in planning maxillary sagittal position for orthognathic surgery. In Six Elements of Orofacial Harmony, Andrews quantified maxillary position relative to forehead projection and angulation and proposed an ideal relationship. The purpose of this study was to investigate the ability of this technique to predict esthetic sagittal maxillary position. Survey study including a male and female with straight facial profiles, normal maxillary incisor angulations, and Angle's Class I. Maxillary position was modified on lateral photographs to create 5 images for each participant with incisor-goal anterior limit line (GALL) distances of -4, -2, 0, +2, and +4 mm. A series of health care professionals and laypeople were asked to rate each photo in order of attractiveness. A total of 100 complete responses were received. Incisor-GALL distances of +4 mm (41%) and +2 mm (40%) were most commonly considered "most esthetic" for the female volunteer (P < .001). For the male volunteer, there were 2 peak "most esthetic" responses: incisor-GALL distances of 0 mm (37%) and -4 mm (32%) (P < .001). Respondents considered maxillary incisor position 2 to 4 mm anterior to GALL most attractive in a woman and 0 to 4 mm posterior to GALL most esthetic in a man. Using these modified target distances, this analysis may be useful for orthognathic surgery planning. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    International Nuclear Information System (INIS)

    Kramar, M.; Lin, H.; Tomczyk, S.

    2016-01-01

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments

  1. Radio emission from coronal and interplanetary shocks

    International Nuclear Information System (INIS)

    Cane, H.V.

    1987-01-01

    Observational data on coronal and interplanetary (IP) type II burst events associated with shock-wave propagation are reviewed, with a focus on the past and potential future contributions of space-based observatories. The evidence presented by Cane (1983 and 1984) in support of the hypothesis that the coronal (metric) and IP (kilometric) bursts are due to different shocks is summarized, and the fast-drift kilometric events seen at the same time as metric type II bursts (and designated shock-accelerated or shock-associated events) are characterized. The need for further observations at 0.5-20 MHz is indicated. 20 references

  2. Assessing delay and lag in sagittal trunk control using a tracking task.

    Science.gov (United States)

    Reeves, N Peter; Luis, Abraham; Chan, Elizabeth C; Sal Y Rosas, Victor G; Tanaka, Martin L

    2018-05-17

    Slower trunk muscle responses are linked to back pain and injury. Unfortunately, clinical assessments of spine function do not objectively evaluate this important attribute, which reflects speed of trunk control. Speed of trunk control can be parsed into two components: (1) delay, the time it takes to initiate a movement, and (2) lag, the time it takes to execute a movement once initiated. The goal of this study is to demonstrate a new approach to assess delay and lag in trunk control using a simple tracking task. Ten healthy subjects performed four blocks of six trials of trunk tracking in the sagittal plane. Delay and lag were estimated by modeling trunk control for predictable and unpredictable (control mode) trunk movements in flexion and extension (control direction) at movement amplitudes of 2°, 4°, and 6° (control amplitude). The main effect of control mode, direction, and amplitude of movement were compared between trial blocks to assess secondary influencers (e.g., fatigue). Only control mode was consistent across trial blocks with predictable movements being faster than unpredictable for both delay and lag. Control direction and amplitude effects on delay and lag were consistent across the first two trial blocks and less consistent in later blocks. Given the heterogeneity in the presentation of back pain, clinical assessment of trunk control should include different control modes, directions, and amplitudes. To reduce testing time and the influence of fatigue, we recommend six trials to assess trunk control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Usefulness of MR coronal imaging of the ''pyramidal line''. Predictive value in motor function of stroke patients

    International Nuclear Information System (INIS)

    Satoh, Kenichi; Matsuzaki, Takayuki; Shimazaki, Mitsunori

    1997-01-01

    A coronal image was obtained along a straight line between the front edge of the medulla and the deepest point of the interpeduncular cistern in the midsagittal plane (the ''pyramidal line''). This coronal image along the pyramidal line revealed the pyramidal tract extending from the internal capsule down to the medulla. Using this technique, we studied 25 patients with motor deficit associated with cerebrovascular disease. We predicted the possibility of their recovery in the subacute stage. We were able to predict the recovery in 23 patients (92%). We conclude that a coronal image along the pyramidal line is useful for the understanding of relation between pyramidal tract and lesion and for predicting motor function. (author)

  4. Usefulness of MR coronal imaging of the ``pyramidal line``. Predictive value in motor function of stroke patients

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kenichi; Matsuzaki, Takayuki; Shimazaki, Mitsunori [Hakodate Red Cross Hospital, Hokkaido (Japan)

    1997-06-01

    A coronal image was obtained along a straight line between the front edge of the medulla and the deepest point of the interpeduncular cistern in the midsagittal plane (the ``pyramidal line``). This coronal image along the pyramidal line revealed the pyramidal tract extending from the internal capsule down to the medulla. Using this technique, we studied 25 patients with motor deficit associated with cerebrovascular disease. We predicted the possibility of their recovery in the subacute stage. We were able to predict the recovery in 23 patients (92%). We conclude that a coronal image along the pyramidal line is useful for the understanding of relation between pyramidal tract and lesion and for predicting motor function. (author)

  5. Solar wind and coronal structure near sunspot minimum - Pioneer and SMM observations from 1985-1987

    Science.gov (United States)

    Mihalov, J. D.; Barnes, A.; Hundhausen, A. J.; Smith, E. J.

    1990-01-01

    Changes in solar wind speed and magnetic polarity observed at the Pioneer spacecraft are discussed here in terms of the changing magnetic geometry implied by SMM coronagraph observations over the period 1985-1987. The pattern of recurrent solar wind streams, the long-term average speed, and the sector polarity of the interplanetary magnetic field all changed in a manner suggesting both a temporal variation, and a changing dependence on heliographic latitude. Coronal observations during this epoch show a systematic variation in coronal structure and the magnetic structure imposed on the expanding solar wind. These observations suggest interpretation of the solar wind speed variations in terms of the familiar model where the speed increases with distance from a nearly flat interplanetary current sheet, and where this current sheet becomes aligned with the solar equatorial plane as sunspot minimum approaches, but deviates rapidly from that orientation after minimum.

  6. Skeletal Stability after Large Mandibular Advancement (> 10 mm) with Bilateral Sagittal Split Osteotomy and Skeletal Elastic Intermaxillary Fixation

    DEFF Research Database (Denmark)

    Schwartz, Kristoffer; Rodrigo, Maria; Jensen, Thomas

    2016-01-01

    OBJECTIVES: The aim of the present study was to assess the skeletal stability after large mandibular advancement (> 10 mm) with bilateral sagittal split osteotomy and skeletal elastic intermaxillary fixation and to correlate the skeletal stability with the vertical facial type. MATERIAL AND METHODS......: A total of 33 consecutive patients underwent bimaxillary surgery to correct skeletal Class II malocclusion with a mandibular advancement (> 10 mm) measured at B-point and postoperative skeletal elastic intermaxillary fixation for 16 weeks. Skeletal stability was evaluated using lateral cephalometric...... radiographs obtained preoperative (T1), 8 weeks postoperatively (T2), and 18 month postoperatively (T3). B-point and pogonion (Pog) was used to measure the skeletal relapse and the mandibular plane angle (MP-angle) was used to determine the vertical facial type. RESULTS: The mean advancement from T1 to T2...

  7. Interceptive orthopedics for the correction of maxillary transverse and sagittal deficiency in the early mixed dentition period

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Talapaneni

    2011-01-01

    Full Text Available Dentofacial Orthopedics directed to a hypoplastic maxilla in the prepubertal period redirects growth of the maxilla in the vertical, transverse and sagittal planes of space. The orthopedic correction of maxillary hypoplasia in the early mixed dentition period thus intercepts the establishment of permanent structural asymmetry in the mandible and helps in the achievement of optimal dentofacial esthetics. This paper presents the growth redirection in a hypoplastic maxilla of an 8-year-old girl with simultaneous rapid maxillary expansion and protraction headgear therapy for a period of 11 months which corrected the posterior unilateral cross-bite, the positional asymmetry of the mandible and established an orthognathic profile in the individual.

  8. Three-Dimensional Morphology of a Coronal Prominence Cavity

    Science.gov (United States)

    Gibson, S. E.; Kucera, T. A.; Rastawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hill, S.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; hide

    2010-01-01

    We present a three-dimensional density model of coronal prominence cavities, and a morphological fit that has been tightly constrained by a uniquely well-observed cavity. Observations were obtained as part of an International Heliophysical Year campaign by instruments from a variety of space- and ground-based observatories, spanning wavelengths from radio to soft-X-ray to integrated white light. From these data it is clear that the prominence cavity is the limb manifestation of a longitudinally-extended polar-crown filament channel, and that the cavity is a region of low density relative to the surrounding corona. As a first step towards quantifying density and temperature from campaign spectroscopic data, we establish the three-dimensional morphology of the cavity. This is critical for taking line-of-sight projection effects into account, since cavities are not localized in the plane of the sky and the corona is optically thin. We have augmented a global coronal streamer model to include a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. We have developed a semi-automated routine that fits ellipses to cross-sections of the cavity as it rotates past the solar limb, and have applied it to Extreme Ultraviolet Imager (EUVI) observations from the two Solar Terrestrial Relations Observatory (STEREO) spacecraft. This defines the morphological parameters of our model, from which we reproduce forward-modeled cavity observables. We find that cavity morphology and orientation, in combination with the viewpoints of the observing spacecraft, explains the observed variation in cavity visibility for the east vs. west limbs

  9. Solar Wind Associated with Near Equatorial Coronal Hole M ...

    Indian Academy of Sciences (India)

    2015-05-25

    May 25, 2015 ... coronal hole and solar wind. For both the wavelength bands, we also com- pute coronal hole radiative energy near the earth and it is found to be of similar order as that of solar wind energy. However, for the wavelength. 193 Å, owing to almost similar magnitudes of energy emitted by coronal hole and ...

  10. Higher-speed coronal mass ejections and their geoeffectiveness

    Science.gov (United States)

    Singh, A. K.; Bhargawa, Asheesh; Tonk, Apeksha

    2018-06-01

    We have attempted to examine the ability of coronal mass ejections to cause geoeffectiveness. To that end, we have investigated total 571 cases of higher-speed (> 1000 km/s) coronal mass ejection events observed during the years 1996-2012. On the basis of angular width (W) of observance, events of coronal mass ejection were further classified as front-side or halo coronal mass ejections (W = 360°); back-side halo coronal mass ejections (W = 360°); partial halo (120°mass ejections were much faster and more geoeffective in comparison of partial halo and non-halo coronal mass ejections. We also inferred that the front-sided halo coronal mass ejections were 67.1% geoeffective while geoeffectiveness of partial halo coronal mass ejections and non-halo coronal mass ejections were found to be 44.2% and 56.6% respectively. During the same period of observation, 43% of back-sided CMEs showed geoeffectiveness. We have also investigated some events of coronal mass ejections having speed > 2500 km/s as a case study. We have concluded that mere speed of coronal mass ejection and their association with solar flares or solar activity were not mere criterion for producing geoeffectiveness but angular width of coronal mass ejections and their originating position also played a key role.

  11. Magnetic Topology of Coronal Hole Linkages

    Science.gov (United States)

    Titov, V. S.; Mikic, Z.; Linker, J. A.; Lionello, R.; Antiochos, S. K.

    2010-01-01

    In recent work, Antiochos and coworkers argued that the boundary between the open and closed field regions on the Sun can be extremely complex with narrow corridors of open ux connecting seemingly disconnected coronal holes from the main polar holes, and that these corridors may be the sources of the slow solar wind. We examine, in detail, the topology of such magnetic configurations using an analytical source surface model that allows for analysis of the eld with arbitrary resolution. Our analysis reveals three important new results: First, a coronal hole boundary can join stably to the separatrix boundary of a parasitic polarity region. Second, a single parasitic polarity region can produce multiple null points in the corona and, more important, separator lines connecting these points. Such topologies are extremely favorable for magnetic reconnection, because it can now occur over the entire length of the separators rather than being con ned to a small region around the nulls. Finally, the coronal holes are not connected by an open- eld corridor of finite width, but instead are linked by a singular line that coincides with the separatrix footprint of the parasitic polarity. We investigate how the topological features described above evolve in response to motion of the parasitic polarity region. The implications of our results for the sources of the slow solar wind and for coronal and heliospheric observations are discussed.

  12. Simulating coronal condensation dynamics in 3D

    Science.gov (United States)

    Moschou, S. P.; Keppens, R.; Xia, C.; Fang, X.

    2015-12-01

    We present numerical simulations in 3D settings where coronal rain phenomena take place in a magnetic configuration of a quadrupolar arcade system. Our simulation is a magnetohydrodynamic simulation including anisotropic thermal conduction, optically thin radiative losses, and parametrised heating as main thermodynamical features to construct a realistic arcade configuration from chromospheric to coronal heights. The plasma evaporation from chromospheric and transition region heights eventually causes localised runaway condensation events and we witness the formation of plasma blobs due to thermal instability, that evolve dynamically in the heated arcade part and move gradually downwards due to interchange type dynamics. Unlike earlier 2.5D simulations, in this case there is no large scale prominence formation observed, but a continuous coronal rain develops which shows clear indications of Rayleigh-Taylor or interchange instability, that causes the denser plasma located above the transition region to fall down, as the system moves towards a more stable state. Linear stability analysis is used in the non-linear regime for gaining insight and giving a prediction of the system's evolution. After the plasma blobs descend through interchange, they follow the magnetic field topology more closely in the lower coronal regions, where they are guided by the magnetic dips.

  13. The physical structure of coronal holes

    International Nuclear Information System (INIS)

    Pneuman, G.W.

    1978-11-01

    The longitudinal geometrical structure of solar wind streams as observed at the orbit of earth is governed by two mechanisms - solar rotation and, most importantly, the geometry of the inner coronal magnetic fields. Here, we study the influence of the latter for the polar coronal hole observed by Skylab in 1973 and modeled by Munro and Jackson (1977). The influence of coronal heating on the properties of the solar wind in this geometry is also investigated. To do this, a crude exponentially damped heating function similar to that used by Kopp and Orrall (1976) is introduced into the solar wind equations. We find that increased heating produces higher temperatures in the inner corona but has little effect upon the temperature at 1 A.U. However, the density at 1 A.U. is increased significantly due to the increase in scale height. The most surprising consequence of coronal heating is its effect on the solar wind velocity, being that the velocity at 1 A.U. is actually decreased by heating in the inner corona. Physical reasons for this effect are discussed. (orig./WL) [de

  14. Solar wind acceleration in coronal holes

    International Nuclear Information System (INIS)

    Kopp, R.A.

    1978-01-01

    Past attempts to explain the large solar wind velocities in high speed streams by theoretical models of the expansion have invoked either extended nonthermal heating of the corona, heat flux inhibition, or direct addition of momentum to the expanding coronal plasma. Several workers have shown that inhibiting the heat flux at low coronal densities is probably not adequate to explain quantitatively the observed plasma velocities in high speed streams. It stressed that, in order to account for both these large plasma velocities and the low densities found in coronal holes (from which most high speed streams are believed to emanate), extended heating by itself will not suffice. One needs a nonthermal mechanism to provide the bulk acceleration of the high wind plasma close to the sun, and the most likely candidate at present is direct addition of the momentum carried by outward-propagating waves to the expanding corona. Some form of momentum addition appears to be absolutely necessary if one hopes to build quantitatively self-consistent models of coronal holes and high speed solar wind streams

  15. Evolving Coronal Holes and Interplanetary Erupting Stream ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Coronal holes and interplanetary disturbances are important aspects of the physics of the Sun and heliosphere. Interplanetary disturbances are identified as an increase in the density turbulence compared with the ambient solar wind. Erupting stream disturbances are transient large-scale structures of ...

  16. Role of Magnetic Carpet in Coronal Heating

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... One of the fundamental questions in solar physics is how the solar corona maintains its high temperature of several million Kelvin above photosphere with a temperature of 6000 K. Observations show that solar coronal heating problem is highly complex with many different facts. It is likely that different ...

  17. Mechanisms of Coronal Heating S. R. Verma

    Indian Academy of Sciences (India)

    Abstract. The Sun is a mysterious star. The high temperature of the chromosphere and corona present one of the most puzzling problems of solar physics. Observations show that the solar coronal heating problem is highly complex with many different facts. It is likely that different heating mechanisms are at work in solar ...

  18. Infrared Dual-Line Hanle Diagnostic of the Coronal Vector Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Dima, Gabriel I.; Kuhn, Jeffrey R. [Institute for Astronomy, University of Hawaii, Pukalani, HI (United States); Berdyugina, Svetlana V., E-mail: gdima@hawaii.edu [Institute for Astronomy, University of Hawaii, Pukalani, HI (United States); Kiepenheuer Institut fuer Sonnenphysik, Freiburg (Germany); Predictive Science Inc., San Diego, CA (United States)

    2016-04-20

    Measuring the coronal vector magnetic field is still a major challenge in solar physics. This is due to the intrinsic weakness of the field (e.g., ~4G at a height of 0.1R⊙ above an active region) and the large thermal broadening of coronal emission lines. We propose using concurrent linear polarization measurements of near-infrared forbidden and permitted lines together with Hanle effect models to calculate the coronal vector magnetic field. In the unsaturated Hanle regime both the direction and strength of the magnetic field affect the linear polarization, while in the saturated regime the polarization is insensitive to the strength of the field. The relatively long radiative lifetimes of coronal forbidden atomic transitions implies that the emission lines are formed in the saturated Hanle regime and the linear polarization is insensitive to the strength of the field. By combining measurements of both forbidden and permitted lines, the direction and strength of the field can be obtained. For example, the SiX 1.4301 μm line shows strong linear polarization and has been observed in emission over a large field-of-view (out to elongations of 0.5 R⊙). Here we describe an algorithm that combines linear polarization measurements of the SiX 1.4301 μm forbidden line with linear polarization observations of the HeI 1.0830 μm permitted coronal line to obtain the vector magnetic field. To illustrate the concept we assume that the emitting gas for both atomic transitions is located in the plane of the sky. The further development of this method and associated tools will be a critical step toward interpreting the high spectral, spatial and temporal infrared spectro-polarimetric measurements that will be possible when the Daniel K. Inouye Solar Telescope (DKIST) is completed in 2019.

  19. Cross plane scattering correction

    International Nuclear Information System (INIS)

    Shao, L.; Karp, J.S.

    1990-01-01

    Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution

  20. Superior Sagittal Sinus Thrombosis Complicating Typhoid Fever in a Teenager

    Directory of Open Access Journals (Sweden)

    P. O. Okunola

    2012-01-01

    Full Text Available Cerebral venous sinus (sinovenous thrombosis (CSVT is a rare life-threatening disorder in childhood that is often misdiagnosed. CSVT encompasses cavernous sinus thrombosis, lateral sinus thrombosis, and superior sagittal sinus thrombosis (SSST. We present an adolescent girl who was well until two weeks earlier when she had a throbbing frontal headache and fever with chills; she later had dyspnoea, jaundice, melena stool, multiple seizures, nuchal rigidity, and monoparesis of the right lower limb a day before admission. Urine test for Salmonella typhi Vi antigen was positive, and Widal reaction was significant. Serial cranial computerized tomography scans revealed an expanding hypodense lesion in the parafalcine region consistent with SSST or a parasagittal abscess. Inadvertent left parietal limited craniectomy confirmed SSST. She recovered completely with subsequent conservative management. Beyond neuropsychiatric complications of Typhoid fever, CSVT should be highly considered when focal neurologic deficits are present.

  1. Nonlinear Force-free Coronal Magnetic Stereoscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chifu, Iulia; Wiegelmann, Thomas; Inhester, Bernd, E-mail: chifu@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-03-01

    Insights into the 3D structure of the solar coronal magnetic field have been obtained in the past by two completely different approaches. The first approach are nonlinear force-free field (NLFFF) extrapolations, which use photospheric vector magnetograms as boundary condition. The second approach uses stereoscopy of coronal magnetic loops observed in EUV coronal images from different vantage points. Both approaches have their strengths and weaknesses. Extrapolation methods are sensitive to noise and inconsistencies in the boundary data, and the accuracy of stereoscopy is affected by the ability of identifying the same structure in different images and by the separation angle between the view directions. As a consequence, for the same observational data, the 3D coronal magnetic fields computed with the two methods do not necessarily coincide. In an earlier work (Paper I) we extended our NLFFF optimization code by including stereoscopic constrains. The method was successfully tested with synthetic data, and within this work, we apply the newly developed code to a combined data set from SDO /HMI, SDO /AIA, and the two STEREO spacecraft. The extended method (called S-NLFFF) contains an additional term that monitors and minimizes the angle between the local magnetic field direction and the orientation of the 3D coronal loops reconstructed by stereoscopy. We find that when we prescribe the shape of the 3D stereoscopically reconstructed loops, the S-NLFFF method leads to a much better agreement between the modeled field and the stereoscopically reconstructed loops. We also find an appreciable decrease by a factor of two in the angle between the current and the magnetic field. This indicates the improved quality of the force-free solution obtained by S-NLFFF.

  2. INTERCHANGE RECONNECTION AND CORONAL HOLE DYNAMICS

    International Nuclear Information System (INIS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Lynch, B. J.; Zurbuchen, T. H.

    2010-01-01

    We investigate the effect of magnetic reconnection between open and closed fields, often referred to as 'interchange' reconnection, on the dynamics and topology of coronal hole boundaries. The most important and most prevalent three-dimensional topology of the interchange process is that of a small-scale bipolar magnetic field interacting with a large-scale background field. We determine the evolution of such a magnetic topology by numerical solution of the fully three-dimensional MHD equations in spherical coordinates. First, we calculate the evolution of a small-scale bipole that initially is completely inside an open field region and then is driven across a coronal hole boundary by photospheric motions. Next the reverse situation is calculated in which the bipole is initially inside the closed region and driven toward the coronal hole boundary. In both cases, we find that the stress imparted by the photospheric motions results in deformation of the separatrix surface between the closed field of the bipole and the background field, leading to rapid current sheet formation and to efficient reconnection. When the bipole is inside the open field region, the reconnection is of the interchange type in that it exchanges open and closed fields. We examine, in detail, the topology of the field as the bipole moves across the coronal hole boundary and find that the field remains well connected throughout this process. Our results, therefore, provide essential support for the quasi-steady models of the open field, because in these models the open and closed flux are assumed to remain topologically distinct as the photosphere evolves. Our results also support the uniqueness hypothesis for open field regions as postulated by Antiochos et al. On the other hand, the results argue against models in which open flux is assumed to diffusively penetrate deeply inside the closed field region under a helmet streamer. We discuss the implications of this work for coronal observations.

  3. DARK JETS IN SOLAR CORONAL HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Young, Peter R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2015-03-10

    A new solar feature termed a dark jet is identified from observations of an extended solar coronal hole that was continuously monitored for over 44 hr by the Extreme Ultraviolet Imaging Spectrometer on board the Hinode spacecraft in 2011 February 8–10 as part of Hinode Operation Plan No. 177 (HOP 177). Line of sight (LOS) velocity maps derived from the coronal Fe xii λ195.12 emission line, formed at 1.5 MK, revealed a number of large-scale, jet-like structures that showed significant blueshifts. The structures had either weak or no intensity signal in 193 Å filter images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, suggesting that the jets are essentially invisible to imaging instruments. The dark jets are rooted in bright points and occur both within the coronal hole and at the quiet Sun–coronal hole boundary. They exhibit a wide range of shapes, from narrow columns to fan-shaped structures, and sometimes multiple jets are seen close together. A detailed study of one dark jet showed LOS speeds increasing along the jet axis from 52 to 107 km s{sup −1} and a temperature of 1.2–1.3 MK. The low intensity of the jet was due either to a small filling factor of 2% or to a curtain-like morphology. From the HOP 177 sample, dark jets are as common as regular coronal hole jets, but their low intensity suggests a mass flux around two orders of magnitude lower.

  4. Fourier plane imaging microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, Daniel, E-mail: daniel.dominguez@ttu.edu; Peralta, Luis Grave de [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Alharbi, Nouf; Alhusain, Mdhaoui [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Bernussi, Ayrton A. [Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  5. Extensor Tendon Instability Due to Sagittal Band Injury in a Martial Arts Athlete: A Case Report.

    Science.gov (United States)

    Kochevar, Andrew; Rayan, Ghazi

    2017-03-01

    A Taekwondo participant sustained a hand injury from punching an opponent that resulted in painful instability of the ring finger extensor digitorum communis tendon due to sagittal band damage. His symptoms resolved after reconstructive surgery on the sagittal band (SB) with stabilization of the extensor tendon over the metacarpophalangeal joint.

  6. Strategic Considerations for Effective Sagittal Resection of the Mandible to Achieve a Slim and Attractive Jawline.

    Science.gov (United States)

    Park, Sanghoon; Lee, Tae Sung

    2018-01-01

    Sagittal resection of the mandible has been widely used to reduce the width of the lower face and is usually carried out in combination with a mandibular contouring procedure. However, the surgical outcomes of this procedure are unclear because sagittal resection is rarely performed as a single procedure. The authors clarify misunderstandings regarding this procedure and introduce an improved strategic approach for sagittal resection of the mandible. Under general anesthesia, mandible contouring was performed first with a curved osteotomy, followed by sagittal resection of the outer cortex of mandible. The amount and extent of each procedure was determined in accordance with preoperative analysis. From 2012 to 2014, a consecutive series of 212 patients who underwent mandible contouring surgery without concomitant chin surgery were included in the study. A total of 189 patients underwent both mandibular contouring surgery and sagittal resection, whereas 13 underwent only sagittal resection and 10 underwent only mandibular contouring surgery. All operations were carried out successfully without any severe complications, and most patients had satisfactory aesthetic outcomes. The authors found that the sagittal resection of the mandible should be performed in accordance with the shape of the mandible to effectively reduce facial width and achieve better aesthetic outcomes for both profile and frontal views. In an outcurved-type mandible, conventional mandibular contouring may be effective alone, whereas sagittal resection focusing on removing the mandible body region is essential for incurved-type mandibles. In straight line-type mandibles, both procedures are necessary. Therapeutic, IV.

  7. Reliability and Validity Measurement of Sagittal Lumbosacral Quiet Standing Posture with a Smartphone Application in a Mixed Population of 183 College Students and Personnel

    Directory of Open Access Journals (Sweden)

    George A. Koumantakis

    2016-01-01

    Full Text Available Accurate recording of spinal posture with simple and accessible measurement devices in clinical practice may lead to spinal loading optimization in occupations related to prolonged sitting and standing postures. Therefore, the purpose of this study was to establish the level of reliability of sagittal lumbosacral posture in quiet standing and the validity of the method in differentiating between male and female subjects, establishing in parallel a normative database. 183 participants (83 males and 100 females, with no current low back or pelvic pain, were assessed using the “iHandy Level” smartphone application. Intrarater reliability (3 same-day sequential measurements was high for both the lumbar curve (ICC2,1: 0.96, SEM: 2.13°, and MDC95%: 5.9° and the sacral slope (ICC2,1: 0.97, SEM: 1.61°, and MDC95%: 4.46° sagittal alignment. Data analysis for each gender separately confirmed equally high reliability for both male and female participants. Correlation between lumbar curve and sacral slope was high (Pearson’s r=0.86, p<0.001. Between-gender comparisons confirmed the validity of the method to differentiate between male and female lumbar curve and sacral slope angles, with females generally demonstrating greater lumbosacral values (p<0.001. The “iHandy Level” application is a reliable and valid tool in the measurement of lumbosacral quiet standing spinal posture in the sagittal plane.

  8. MR angiography of the carotid arteries in 3 D TOF-technique with sagittal ''double-slab'' acquisition using a new head-neck coil

    International Nuclear Information System (INIS)

    Link, J.; Mueller-Huelsbeck, S.; Heller, M.

    1996-01-01

    Purpose: The aim of the study was to assess the value of MR angiography (MRA) in sagittal technique compared to DSA in the evaluation of carotid artery stenosis. Methods: 80 Carotid arteries in 40 symptomatic patients were prospectively studied with DSA and MRA. MRA was carried out by means of 3D time-of-flight technique with a FISP sequence (T E 6 ms/T R 80 ms, flip angle 25 , FOV 240x210 mm, matrix 157x256 mm, in-plane resolution 1.34x0.94 mm, partition thickness 1.32 mm, slab thickness 45 mm, acquisition time 7 min) using a new head-neck coil. Data acquisition was performed in sagittal orientation with the 'double-slab' technique. Imaging quality of the extracranial carotid arteries and correctness of quantification of stenosis was performed. Results: Imaging quality was good at the origin of the carotid arteries in 65%, at the bifurcation region in 98% and near the skull base in 81%. The agreement of DSA and MRA was 96% of the normal arteries (24/25), 90% of the severe stenoses (28/31) and 100% of the occluded arteries (9/9). Conclusion: MRA in sagittal 'double-slab' technique is a noninvasive technique allowing to detect normal arteries and candidates for surgery with high degree of certainity. (orig.) [de

  9. Instabilities of Kirkendall planes

    NARCIS (Netherlands)

    Dal, van M.J.H.; Gusak, A.M.; Cserhati, C.; Kodentsov, A.; Loo, van F.J.J.

    2001-01-01

    Reconsideration of the Kirkendall effect is presented. It is demonstrated (experimentally as well as theoretically) that Kirkendall planes can be multiple, stable or unstable within a single-phase reaction zone. A general criterion of instabilty is given.

  10. Algebraic Structures on MOD Planes

    OpenAIRE

    Kandasamy, Vasantha; Ilanthenral, K.; Smarandache, Florentin

    2015-01-01

    Study of MOD planes happens to a very recent one. In this book, systematically algebraic structures on MOD planes like, MOD semigroups, MOD groups and MOD rings of different types are defined and studied. Such study is innovative for a large four quadrant planes are made into a small MOD planes. Several distinct features enjoyed by these MOD planes are defined, developed and described.

  11. Coronal Heating: Testing Models of Coronal Heating by Forward-Modeling the AIA Emission of the Ansample of Coronal Loops

    Science.gov (United States)

    Malanushenko, A. V.

    2015-12-01

    We present a systemic exploration of the properties of coronal heating, by forward-modeling the emission of the ensemble of 1D quasi-steady loops. This approximations were used in many theoretical models of the coronal heating. The latter is described in many such models in the form of power laws, relating heat flux through the photosphere or volumetric heating to the strength of the magnetic field and length of a given field line. We perform a large search in the parameter space of these power laws, amongst other variables, and compare the resulting emission of the active region to that observed by AIA. We use a recently developed magnetic field model which uses shapes of coronal loops to guide the magnetic model; the result closely resembles observed structures by design. We take advantage of this, by comparing, in individual sub-regions of the active region, the emission of the active region and its synthetic model. This study allows us to rule out many theoretical models and formulate predictions for the heating models to come.

  12. Effect of Acute Alterations in Foot Strike Patterns during Running on Sagittal Plane Lower Limb Kinematics and Kinetics.

    Science.gov (United States)

    Valenzuela, Kevin A; Lynn, Scott K; Mikelson, Lisa R; Noffal, Guillermo J; Judelson, Daniel A

    2015-03-01

    The purpose of this study was to determine the effect of foot strike patterns and converted foot strike patterns on lower limb kinematics and kinetics at the hip, knee, and ankle during a shod condition. Subjects were videotaped with a high speed camera while running a 5km at self-selected pace on a treadmill to determine natural foot strike pattern on day one. Preferred forefoot group (PFFG, n = 10) and preferred rear foot group (PRFG, n = 11) subjects were identified through slow motion video playback (n = 21, age = 22.8±2.2 years, mass = 73.1±14.5 kg, height 1.75 ± 0.10 m). On day two, subjects performed five overground run trials in both their natural and unnatural strike patterns while motion and force data were collected. Data were collected over two days so that foot strike videos could be analyzed for group placement purposes. Several 2 (Foot Strike Pattern -forefoot strike [FFS], rearfoot strike [RFS]) x 2 (Group - PFFG, PRFG) mixed model ANOVAs (p strike patterns during shod running can create alterations in certain lower limb kinematic and kinetic measures that are not dependent on the preferred foot strike pattern of the individual. This research also challenges the contention that the impact transient spike in the vertical ground reaction force curve is only present during a rear foot strike type of running gait. Key pointsFootstrike pattern changes should be individually considered and implemented based on individual histories/abilitiesForefoot strike patterns increase external dorsiflexion momentsRearfoot strike patterns increase external knee flexion momentsRecreational shod runners are able to mimic habitual mechanics of different foot strike patterns.

  13. Impact of sitting position on the formation of spinal curvatures in the sagittal plane of taxi drivers - preliminary report

    Directory of Open Access Journals (Sweden)

    Agnieszka Turon-Skrzypinska

    2018-04-01

    Results: The average work time in the examined group was 57.7 and the control group 6.8 hours per week. The mean values of thoracic kyphosis and lumbar lordosis in the examined group were 36.3 and 17.9 degrees, respectively, versus 30.3 and 20.8 in the control group. Age and length of service had an impact on the shaping of the spinal curvatures. Greater value of BMI was associated with deeper thoracic kyphosis, but not with shallower lumbar lordosis. Conclusions: Adverse changes in shaping spinal curvatures progress with increasing age and length of the employment performed in the sitting position. Body mass index and body weight above the normal level contribute to deepening thoracic kyphosis.

  14. Relationship between sagittal plane kinematics, foot morphology and vertical forces applied to three regions of the foot

    OpenAIRE

    Hannah, I.; Sawacha, Z.; Guiotto, A.; Mazza, C.

    2016-01-01

    Kinetic analysis of human motion with a multi-segment musculoskeletal foot model requires the distribution of loading applied to the modeled foot segments to be determined. This work thus examines the existence of any correlation between intersegmental foot kinematics, foot morphology, and the distribution of vertical loading in a multi-segment foot model. Gait analysis trials were performed by 20 healthy subjects at a self-selected speed with intersegmental foot joint angles and the distribu...

  15. Time-varying impedance of the human ankle in the sagittal and frontal planes during straight walk and turning steps.

    Science.gov (United States)

    Ficanha, Evandro M; Ribeiro, Guilherme A; Knop, Lauren; Rastgaar, Mo

    2017-07-01

    This paper describes the methods and experiment protocols for estimation of the human ankle impedance during turning and straight line walking. The ankle impedance of two human subjects during the stance phase of walking in both dorsiflexion plantarflexion (DP) and inversion eversion (IE) were estimated. The impedance was estimated about 8 axes of rotations of the human ankle combining different amounts of DP and IE rotations, and differentiating among positive and negative rotations at 5 instants of the stance length (SL). Specifically, the impedance was estimated at 10%, 30%, 50%, 70% and 90% of the SL. The ankle impedance showed great variability across time, and across the axes of rotation, with consistent larger stiffness and damping in DP than IE. When comparing straight walking and turning, the main differences were in damping at 50%, 70%, and 90% of the SL with an increase in damping at all axes of rotation during turning.

  16. Interplanetary Coronal Mass Ejections detected by HAWC

    Science.gov (United States)

    Lara, Alejandro

    The High Altitude Water Cherenkov (HAWC) observatory is being constructed at the volcano Sierra Negra (4100 m a.s.l.) in Mexico. HAWC’s primary purpose is the study of both: galactic and extra-galactic sources of high energy gamma rays. HAWC will consist of 300 large water Cherenkov detectors (WCD), instrumented with 1200 photo-multipliers. The Data taking has already started while construction continues, with the completion projected for late 2014. The HAWC counting rate will be sensitive to cosmic rays with energies above the geomagnetic cutoff of the site (˜ 8 GV). In particular, HAWC will detect solar energetic particles known as Ground Level Enhancements (GLEs), and the effects of Coronal Mass Ejections on the galactic cosmic ray flux, known as Forbush Decreases. In this paper, we present a description of the instrument and its response to interplanetary coronal mass ejections, and other solar wind large scale structures, observed during the August-December 2013 period.

  17. Solar Coronal Jets: Observations, Theory, and Modeling

    Science.gov (United States)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  18. Sinonasal polyposis: investigation by direct coronal CT

    International Nuclear Information System (INIS)

    Drutman, J.; Harnsberger, H.R.; Babbel, R.W.; Sonkens, J.W.; Braby, D.

    1994-01-01

    To demonstrate the typical clinical and CT features of sinonasal polyposis, we reviewed the clinical records and preoperative direct coronal CT scans of 35 patients with surgically proven disease. Symptoms included progressive nasal stuffiness (100 %), rhinorrhea (69 %), facial pain (60 %), headache (43 %) and anosmia (17 %). We found associations with rhinitis (46 %), asthma (29 %) and aspirin sensitivity (9 %). Coronal CT features included polypoid masses in the nasal cavity (91 %), partial or complete pansinus opacification (90 %), enlargement of infundibula (89 %), bony attenuation of the ethmoid trabeculae (63 %) and nasal septum (37 %), opacified ethmoid sinuses with convex lateral walls (51 %) and air-fluid levels (43 %). The latter feature correlated with symptoms and signs of acute sinusitis in only 40 % of patients. Recognition of sinonasal polyposis is important to the endoscopic surgeon since it can be the most troubling sinonasal inflammatory disease to manage due to its aggressive nature and tendency to recur despite appropriate treatment. (orig.)

  19. Fracture mechanism of coronal teenage dentin

    Science.gov (United States)

    Panfilov, P. E.; Kabanova, A. V.; Borodin, I. N.; Guo, J.; Zang, Z.

    2017-10-01

    The structure of coronal teenage dentin and the development of cracks in it are studied on microand nanolevels. The material is found to fail according to a ductile mechanism on a microlelvel and according to a ductile-brittle mechanism on a nanoscale. This behavior is similar to the failure of a polyethylene film and rubber, when significant elastic and irreversible deformation precedes crack growth. The viscoelastic behavior can be considered as the reaction of dentin to an applied mechanical load.

  20. Plasma Diagnostics of Coronal Dimming Events

    Science.gov (United States)

    Vanninathan, Kamalam; Veronig, Astrid M.; Dissauer, Karin; Temmer, Manuela

    2018-04-01

    Coronal mass ejections are often associated with coronal dimmings, i.e., transient dark regions that are most distinctly observed in Extreme Ultra-violet wavelengths. Using Atmospheric Imaging Assembly (AIA) data, we apply Differential Emission Measure diagnostics to study the plasma characteristics of six coronal dimming events. In the core dimming region, we find a steep and impulsive decrease of density with values up to 50%–70%. Five of the events also reveal an associated drop in temperature of 5%–25%. The secondary dimming regions also show a distinct decrease in density, but less strong, decreasing by 10%–45%. In both the core and the secondary dimming the density changes are much larger than the temperature changes, confirming that the dimming regions are mainly caused by plasma evacuation. In the core dimming, the plasma density reduces rapidly within the first 20–30 minutes after the flare start and does not recover for at least 10 hr later, whereas the secondary dimming tends to be more gradual and starts to replenish after 1–2 hr. The pre-event temperatures are higher in the core dimming (1.7–2.6 MK) than in the secondary dimming regions (1.6–2.0 MK). Both core and secondary dimmings are best observed in the AIA 211 and 193 Å filters. These findings suggest that the core dimming corresponds to the footpoints of the erupting flux rope rooted in the AR, while the secondary dimming represents plasma from overlying coronal structures that expand during the CME eruption.

  1. The transition region and coronal explorer (TRACE)

    Science.gov (United States)

    Title, Alan; Bruner, M.; Jurcevich, B.; Lemen, J.; Strong, K.; Tarbell, Ted; Wolfson, C. Jacob; Golub, L.; Bookbinder, J.; Fisher, R.

    1995-01-01

    The transition region and coronal explorer (TRACE) NASA small explorer mission and instrument are presented. The TRACE scientific investigation explores the relationships between fine-scale magnetic fields and the associated solar plasma structures. The instrument collects images of solar plasmas at temperatures from 10(exp 4) to 10(exp 7) K with one arcsec spatial resolution. The design specifications of the trace instrument are presented.

  2. A SURVEY OF CORONAL CAVITY DENSITY PROFILES

    International Nuclear Information System (INIS)

    Fuller, J.; Gibson, S. E.

    2009-01-01

    Coronal cavities are common features of the solar corona that appear as darkened regions at the base of coronal helmet streamers in coronagraph images. Their darkened appearance indicates that they are regions of lowered density embedded within the comparatively higher density helmet streamer. Despite interfering projection effects of the surrounding helmet streamer (which we refer to as the cavity rim), Fuller et al. have shown that under certain conditions it is possible to use a Van de Hulst inversion of white-light polarized brightness (pB) data to calculate the electron density of both the cavity and cavity rim plasma. In this article, we apply minor modifications to the methods of Fuller et al. in order to improve the accuracy and versatility of the inversion process, and use the new methods to calculate density profiles for both the cavity and cavity rim in 24 cavity systems. We also examine trends in cavity morphology and how departures from the model geometry affect our density calculations. The density calculations reveal that in all 24 cases the cavity plasma has a flatter density profile than the plasma of the cavity rim, meaning that the cavity has a larger density depletion at low altitudes than it does at high altitudes. We find that the mean cavity density is over four times greater than that of a coronal hole at an altitude of 1.2 R sun and that every cavity in the sample is over twice as dense as a coronal hole at this altitude. Furthermore, we find that different cavity systems near solar maximum span a greater range in density at 1.2 R sun than do cavity systems near solar minimum, with a slight trend toward higher densities for systems nearer to solar maximum. Finally, we found no significant correlation of cavity density properties with cavity height-indeed, cavities show remarkably similar density depletions-except for the two smallest cavities that show significantly greater depletion.

  3. Critical Magnetic Field Strengths for Unipolar Solar Coronal Plumes In Quiet Regions and Coronal Holes?

    Science.gov (United States)

    Avallone, Ellis; Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy

    2017-01-01

    Coronal plumes are bright magnetic funnels that are found in quiet regions and coronal holes that extend high into the solar corona whose lifetimes can last from hours to days. The heating processes that make plumes bright involve the magnetic field at the base of the plume, but their intricacies remain mysterious. Raouafi et al. (2014) infer from observation that plume heating is a consequence of magnetic reconnection at the base, whereas Wang et al. (2016) infer that plume heating is a result of convergence of the magnetic flux at the plume's base, or base flux. Both papers suggest that the base flux in their plumes is of mixed polarity, but do not quantitatively measure the base flux or consider whether a critical magnetic field strength is required for plume production. To investigate the magnetic origins of plume heating, we track plume luminosity in the 171 Å wavelength as well as the abundance and strength of the base flux over the lifetimes of six unipolar coronal plumes. Of these, three are in coronal holes and three are in quiet regions. For this sample, we find that plume heating is triggered when convergence of the base flux surpasses a field strength of approximately 300 - 500 Gauss, and that the luminosity of both quiet region and coronal hole plumes respond similarly to the strength of the magnetic field in the base.

  4. Coronal Heating Observed with Hi-C

    Science.gov (United States)

    Winebarger, Amy R.

    2013-01-01

    The recent launch of the High-Resolution Coronal Imager (Hi-C) as a sounding rocket has offered a new, different view of the Sun. With approx 0.3" resolution and 5 second cadence, Hi-C reveals dynamic, small-scale structure within a complicated active region, including coronal braiding, reconnection regions, Alfven waves, and flows along active region fans. By combining the Hi-C data with other available data, we have compiled a rich data set that can be used to address many outstanding questions in solar physics. Though the Hi-C rocket flight was short (only 5 minutes), the added insight of the small-scale structure gained from the Hi-C data allows us to look at this active region and other active regions with new understanding. In this talk, I will review the first results from the Hi-C sounding rocket and discuss the impact of these results on the coronal heating problem.

  5. Forward Modeling of a Coronal Cavity

    Science.gov (United States)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    We apply a forward model of emission from a coronal cavity in an effort to determine the temperature and density distribution in the cavity. Coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and X-rays. When these structures erupt they form the cavity portions of CMEs The model consists of a coronal streamer model with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. Temperature and density can be varied as a function of altitude both in the cavity and streamer. We apply this model to a cavity observed in Aug. 2007 by a wide array of instruments including Hinode/EIS, STEREO/EUVI and SOHO/EIT. Studies such as these will ultimately help us understand the the original structures which erupt to become CMEs and ICMES, one of the prime Solar Orbiter objectives.

  6. Temperature Structure of a Coronal Cavity

    Science.gov (United States)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    we analyze the temperature structure of a coronal cavity observed in Aug. 2007. coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and x-rays. when these structures erupt they form the cavity portions of CMEs. It is important to establish the temperature structure of cavities in order to understand the thermodynamics of cavities in relation to their three-dimensional magnetic structure. To analyze the temperature we compare temperature ratios of a series of iron lines observed by the Hinode/EUv Imaging spectrometer (EIS). We also use those lines to constrain a forward model of the emission from the cavity and streamer. The model assumes a coronal streamer with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel lenth. Temperature and density can be varied as a function of altitude both in the cavity and streamer. The general cavity morphology and the cavity and streamer density have already been modeled using data from STEREO's SECCHI/EUVI and Hinode/EIS (Gibson et al 2010 and Schmit & Gibson 2011).

  7. Solar origins of coronal mass ejections

    Science.gov (United States)

    Kahler, Stephen

    1987-01-01

    The large scale properties of coronal mass ejections (CMEs), such as morphology, leading edge speed, and angular width and position, have been cataloged for many events observed with coronagraphs on the Skylab, P-78, and SMM spacecraft. While considerable study has been devoted to the characteristics of the SMEs, their solar origins are still only poorly understood. Recent observational work has involved statistical associations of CMEs with flares and filament eruptions, and some evidence exists that the flare and eruptive-filament associated CMEs define two classes of events, with the former being generally more energetic. Nevertheless, it is found that eruptive-filament CMEs can at times be very energetic, giving rise to interplanetary shocks and energetic particle events. The size of the impulsive phase in a flare-associated CME seems to play no significant role in the size or speed of the CME, but the angular sizes of CMEs may correlate with the scale sizes of the 1-8 angstrom x-ray flares. At the present time, He 10830 angstrom observations should be useful in studying the late development of double-ribbon flares and transient coronal holes to yield insights into the CME aftermath. The recently available white-light synoptic maps may also prove fruitful in defining the coronal conditions giving rise to CMEs.

  8. [Development of electroforming apparatus for coronal restoration].

    Science.gov (United States)

    Watanabe, M; Sawada, T; Ukiya, M

    1989-03-01

    As dental technologies become highly developed, techniques have been more diversified. From as aspect of prosthodontic practice, both esthetic and functional requirements are emphasized for coronal restoration and consequently, these should be considered in the routine procedure. In fabrication of coronal restorations, metal, porcelain and resin are commonly used, and there exists the various disadvantages for metal cast method due to complicated processes by using different dental materials. Therefore, an electroforming apparatus was developed by us to replace the conventional procedure by a cathode rotary system. It was applied for coronal restorations to allow an electroforming directly on a working model. An experiment was successfully conducted to apply for a veneer crown on abutment tooth of upper central incisor on plaster model. The results were obtained as follows, 1. It was become possible to construct a metal framework by the electroforming. 2. Metal framework can be constructed on the same working model without a duplication of it. 3. The combined system for cathode rotation and liquid circulation could shorten the electroposition time, and allows a high current density extending to 50 A/dm2.

  9. SUNQUAKE GENERATION BY CORONAL MAGNETIC RESTRUCTURING

    Energy Technology Data Exchange (ETDEWEB)

    Russell, A. J. B.; Mooney, M. K. [School of Science and Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Leake, J. E. [Naval Research Laboratory, Washington, DC 20375 (United States); Hudson, H. S. [Space Sciences Lab, University of California Berkeley, Berkeley, CA 94720 (United States)

    2016-11-01

    Sunquakes are the surface signatures of acoustic waves in the Sun’s interior that are produced by some but not all flares and coronal mass ejections (CMEs). This paper explores a mechanism for sunquake generation by the changes in magnetic field that occur during flares and CMEs, using MHD simulations with a semiempirical FAL-C atmosphere to demonstrate the generation of acoustic waves in the interior in response to changing magnetic tilt in the corona. We find that Alfvén–sound resonance combined with the ponderomotive force produces acoustic waves in the interior with sufficient energy to match sunquake observations when the magnetic field angle changes of the order of 10° in a region where the coronal field strength is a few hundred gauss or more. The most energetic sunquakes are produced when the coronal field is strong, while the variation of magnetic field strength with height and the timescale of the change in tilt are of secondary importance.

  10. SUNQUAKE GENERATION BY CORONAL MAGNETIC RESTRUCTURING

    International Nuclear Information System (INIS)

    Russell, A. J. B.; Mooney, M. K.; Leake, J. E.; Hudson, H. S.

    2016-01-01

    Sunquakes are the surface signatures of acoustic waves in the Sun’s interior that are produced by some but not all flares and coronal mass ejections (CMEs). This paper explores a mechanism for sunquake generation by the changes in magnetic field that occur during flares and CMEs, using MHD simulations with a semiempirical FAL-C atmosphere to demonstrate the generation of acoustic waves in the interior in response to changing magnetic tilt in the corona. We find that Alfvén–sound resonance combined with the ponderomotive force produces acoustic waves in the interior with sufficient energy to match sunquake observations when the magnetic field angle changes of the order of 10° in a region where the coronal field strength is a few hundred gauss or more. The most energetic sunquakes are produced when the coronal field is strong, while the variation of magnetic field strength with height and the timescale of the change in tilt are of secondary importance.

  11. THE CORONAL ABUNDANCE ANOMALIES OF M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brian E.; Laming, J. Martin [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States); Karovska, Margarita, E-mail: brian.wood@nrl.navy.mil [Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 (United States)

    2012-07-01

    We analyze Chandra X-ray spectra of the M0 V+M0 V binary GJ 338. As quantified by X-ray surface flux, these are the most inactive M dwarfs ever observed with X-ray grating spectroscopy. We focus on measuring coronal abundances, in particular searching for evidence of abundance anomalies related to first ionization potential (FIP). In the solar corona and wind, low-FIP elements are overabundant, which is the so-called FIP effect. For other stars, particularly very active ones, an 'inverse FIP effect' is often observed, with low-FIP elements being underabundant. For both members of the GJ 338 binary, we find evidence for a modest inverse FIP effect, consistent with expectations from a previously reported correlation between spectral type and FIP bias. This amounts to strong evidence that all M dwarfs should exhibit the inverse FIP effect phenomenon, not just the active ones. We take the first step toward modeling the inverse FIP phenomenon in M dwarfs, building on past work that has demonstrated that MHD waves coursing through coronal loops can lead to a ponderomotive force that fractionates elements in a manner consistent with the FIP effect. We demonstrate that in certain circumstances this model can also lead to an inverse FIP effect, pointing the way to more detailed modeling of M dwarf coronal abundances in the future.

  12. The Coronal Abundance Anomalies of M Dwarfs

    Science.gov (United States)

    Wood, Brian E.; Laming, J. Martin; Karovska, Margarita

    2012-07-01

    We analyze Chandra X-ray spectra of the M0 V+M0 V binary GJ 338. As quantified by X-ray surface flux, these are the most inactive M dwarfs ever observed with X-ray grating spectroscopy. We focus on measuring coronal abundances, in particular searching for evidence of abundance anomalies related to first ionization potential (FIP). In the solar corona and wind, low-FIP elements are overabundant, which is the so-called FIP effect. For other stars, particularly very active ones, an "inverse FIP effect" is often observed, with low-FIP elements being underabundant. For both members of the GJ 338 binary, we find evidence for a modest inverse FIP effect, consistent with expectations from a previously reported correlation between spectral type and FIP bias. This amounts to strong evidence that all M dwarfs should exhibit the inverse FIP effect phenomenon, not just the active ones. We take the first step toward modeling the inverse FIP phenomenon in M dwarfs, building on past work that has demonstrated that MHD waves coursing through coronal loops can lead to a ponderomotive force that fractionates elements in a manner consistent with the FIP effect. We demonstrate that in certain circumstances this model can also lead to an inverse FIP effect, pointing the way to more detailed modeling of M dwarf coronal abundances in the future.

  13. THE CORONAL ABUNDANCE ANOMALIES OF M DWARFS

    International Nuclear Information System (INIS)

    Wood, Brian E.; Laming, J. Martin; Karovska, Margarita

    2012-01-01

    We analyze Chandra X-ray spectra of the M0 V+M0 V binary GJ 338. As quantified by X-ray surface flux, these are the most inactive M dwarfs ever observed with X-ray grating spectroscopy. We focus on measuring coronal abundances, in particular searching for evidence of abundance anomalies related to first ionization potential (FIP). In the solar corona and wind, low-FIP elements are overabundant, which is the so-called FIP effect. For other stars, particularly very active ones, an 'inverse FIP effect' is often observed, with low-FIP elements being underabundant. For both members of the GJ 338 binary, we find evidence for a modest inverse FIP effect, consistent with expectations from a previously reported correlation between spectral type and FIP bias. This amounts to strong evidence that all M dwarfs should exhibit the inverse FIP effect phenomenon, not just the active ones. We take the first step toward modeling the inverse FIP phenomenon in M dwarfs, building on past work that has demonstrated that MHD waves coursing through coronal loops can lead to a ponderomotive force that fractionates elements in a manner consistent with the FIP effect. We demonstrate that in certain circumstances this model can also lead to an inverse FIP effect, pointing the way to more detailed modeling of M dwarf coronal abundances in the future.

  14. EIT Observations of Coronal Mass Ejections

    Science.gov (United States)

    Gurman, J. B.; Fisher, Richard B. (Technical Monitor)

    2000-01-01

    Before the Solar and Heliospheric Observatory (SOHO), we had only the sketchiest of clues as to the nature and topology of coronal mass ejections (CMEs) below 1.1 - 1.2 solar radii. Occasionally, dimmings (or 'transient coronal holes') were observed in time series of soft X-ray images, but they were far less frequent than CME's. Simply by imaging the Sun frequently and continually at temperatures of 0.9 - 2.5 MK we have stumbled upon a zoo of CME phenomena in this previously obscured volume of the corona: (1) waves, (2) dimmings, and (3) a great variety of ejecta. In the three and a half years since our first observations of coronal waves associated with CME's, combined Large Angle Spectroscopic Coronagraph (LASCO) and extreme ultra-violet imaging telescope (EIT) synoptic observations have become a standard prediction tool for space weather forecasters, but our progress in actually understanding the CME phenomenon in the low corona has been somewhat slower. I will summarize the observations of waves, hot (> 0.9 MK) and cool ejecta, and some of the interpretations advanced to date. I will try to identify those phenomena, analysis of which could most benefit from the spectroscopic information available from ultraviolet coronograph spectrometer (UVCS) observations.

  15. Accuracy of the sagittal vertical axis in a standing lateral radiograph as a measurement of balance in spinal deformities

    NARCIS (Netherlands)

    van Royen, B.J.; Toussaint, H.M.; Kingma, I.; Bot, S.D.M.; Caspers, M.; Harlaar, J.

    1998-01-01

    Sagittal balance of the spine is becoming an important issue in the assessment of the degree of spinal deformity. On a standing lateral full- length radiograph of the spine, the plumb line, or sagittal vertical axis (SVA), can be used to determine the spinal sagittal balance. In this procedure

  16. Transformational plane geometry

    CERN Document Server

    Umble, Ronald N

    2014-01-01

    Axioms of Euclidean Plane Geometry The Existence and Incidence Postulates The Distance and Ruler Postulates The Plane Separation Postulate The Protractor Postulate The Side-Angle-Side Postulate and the Euclidean Parallel Postulate Theorems of Euclidean Plane Geometry The Exterior Angle Theorem Triangle Congruence Theorems The Alternate Interior Angles Theorem and the Angle Sum Theorem Similar Triangles Introduction to Transformations, Isometries, and Similarities Transformations Isometries and SimilaritiesAppendix: Proof of Surjectivity Translations, Rotations, and Reflections Translations Rotations Reflections Appendix: Geometer's Sketchpad Commands Required by Exploratory Activities Compositions of Translations, Rotations, and Reflections The Three Points Theorem Rotations as Compositions of Two Reflections Translations as Compositions of Two Halfturns or Two Reflections The Angle Addition Theorem Glide Reflections Classification of Isometries The Fundamental Theorem and Congruence Classification of Isometr...

  17. Fast Plane Wave Imaging

    DEFF Research Database (Denmark)

    Jensen, Jonas

    This PhD project investigates and further develops methods for ultrasound plane wave imaging and blood flow estimation with the objective of overcoming some of the major limitations in conventional ultrasound systems, which are related to low frame rates and only estimation of velocities along...... the ultrasound beam. The first part of the contribution investigates the compromise between frame rate and plane wave image quality including the influence of grating lobes from a λ-pitch transducer. A method for optimizing the image quality is suggested, and it is shown that the frame rate can be increased...... healthy volunteers. Complex flow patterns were measured in an anthropomorphic flow phantom and showed good agreement with the velocity field simulated using computational fluid dynamics. The last part of the contribution investigates two clinical applications. Plane wave imaging was used for slow velocity...

  18. Back to the future: sagittal CT in the evaluation of COPD

    International Nuclear Information System (INIS)

    Hightower, Jessica S.; Amadi, Chiemezie; Den, Elana; Schmitt, James E.; Shah, Rosita M.; Miller, Wallace T.

    2016-01-01

    To identify features of obstructive airway disease on sagittal reconstruction, compare the accuracy of findings to traditional imaging characteristics of COPD, and determine the fraction of additional cases identified using new characteristics. The study was approved by the centre's Institutional Review Board and is HIPAA compliant. Two hundred sixteen patients with HRCT and spirometry within a 3-month window were included. Four radiologists evaluated each HRCT for traditional characteristics of COPD and new quantitative and qualitative features of obstruction on axial and sagittal reconstructions. Imaging characteristics were assessed for correlation with the spirometric diagnosis of obstructive airway disease. Quantitative and qualitative findings on sagittal reconstruction are highly specific for COPD (specificity >90 %). Features of hyperinflation on sagittal reconstruction are more accurate predictors of obstruction than traditional axial measures, with greater interobserver reliability (hyperinflation left hemidiaphragm: accuracy: 70.08 % ± 2.49 %; kappa: 0.511 versus traditional measures: accuracy: 62.00 % ± 5.38 %; kappa: 0.407). Sagittal reconstruction identified 27-70 % more patients with COPD than traditional axial findings (p < 0.05). Analysis of sagittal reconstruction enables greater accuracy and specificity in the diagnosis of obstructive airway disease compared to traditional measures on axial imaging. Use of sagittal reconstructions can help identify up to 70 % more patients with COPD than traditional imaging findings alone. (orig.)

  19. Assessment of Gender Dimorphism on Sagittal Cephalometry in Pakistani Population

    International Nuclear Information System (INIS)

    Qamruddin, I.; Shahid, F.; Tanveer, S.; Mukhtiar, M.; Asim, Z.; Alam, M. K.

    2016-01-01

    Objective: To determine and compare the cephalometric values among Pakistani males and females using commonly used sagittal skeletal measurements (ANB, Wits appraisal, Beta-angle) and newly developed cephalometric analyses (Yen-angle and W-angle). Study Design: Observational, cross-sectional study. Place and Duration of Study: Orthodontic Department of Baqai Medical University, Karachi, Pakistan, from August to October 2013. Methodology: A total of 209 pre-treatment lateral cephalometric radiographs of orthodontic patients were selected from departmental records, comprised of 92 males and 117 females. Radiographs were traced for measurements of ANB, Wits appraisal, Beta-angle, W-angle and Yen-angle. Patients were categorized into skeletal classes I, II, and III on the basis of performed measurements, incisor classification, and profile recorded from their records. Descriptive analysis was used to obtain median interquartile range in both the genders and Mann-Whitney U-test was used to observe gender dimorphism. Result: Skeletal class II was the most prevalent type of malocclusion. There were no difference in the obtained measurements between males and females except the Wits appraisal and Beta-angle in class II patients, which showed significant difference in values (p < 0.05). Conclusion: Pakistani population has no significant different difference in the craniofacial morphology of males and females, with the exception of Wits-appraisal and Beta-angle in class II cases. (author)

  20. Sagittal venous sinus thrombosis after cesarean section: a case report

    Directory of Open Access Journals (Sweden)

    Farideh Keypour

    2013-07-01

    Full Text Available Background: Cerebral venous thrombosis (CVT is uncommon after cesarean section. Although it can be a leading cause of maternal mortality. CVT may occur during pregnancy because of hypercoagulable states such as preeclampsia, thrombophilias, antiphospholipid antibody syndrome and sepsis.Case presentation: A 31 years old woman G2 Ab1 at 37 weeks gestational age with  premature rupture of membrane underwent cesarean section because breech presentation and preeclampsia. Spinal anesthesia was done for emergent cesarean section. On the second day after cesarean section, she developed headache, vomiting, focal neurologic deficits, paresthesia, blurred vision. Brain magnetic resonance imaging (MRI showed thrombosis in anterior half of superior sagittal sinus. Treatment consisted of anticoagulation.  Conclusion: Thrombophilias, pregnancy-related hypertension and cesarean section are the predisposing factors for thromboembolism. Unfractionated heparin and low molecular weight heparin (LMWs are effective drugs for thromboprophylaxis. It is vital to prevent venous thrombosis to reduce mortality during both intrapartum and postpartum periods. Consideration of cerebral venous thrombosis in similar cases is recommended.

  1. Effect of trunk sagittal attitude on shoulder, thorax and pelvis three-dimensional kinematics in able-bodied subjects during gait.

    Directory of Open Access Journals (Sweden)

    Alberto Leardini

    Full Text Available It has been shown that an original attitude in forward or backward inclination of the trunk is maintained at gait initiation and during locomotion, and that this affects lower limb loading patterns. However, no studies have shown the extent to which shoulder, thorax and pelvis three-dimensional kinematics are modified during gait due to this sagittal inclination attitude. Thirty young healthy volunteers were analyzed during level walking with video-based motion analysis. Reflecting markers were mounted on anatomical landmarks to form a two-marker shoulder line segment, and a four-marker thorax and pelvis segments. Absolute and relative spatial rotations were calculated, for a total of 11 degrees of freedom. The subjects were divided into two groups of 15 according to the median of mean thorax inclination angle over the gait cycle. Preliminary MANOVA analysis assessed whether gender was an independent variable. Then two-factor nested ANOVA was used to test the possible effect of thorax inclination on body segments, planes of motion and gait periods, separately. There was no significant difference in all anthropometric and spatio-temporal parameters between the two groups, except for subject mass. The three-dimensional kinematics of the thorax and pelvis were not affected by gender. Nested ANOVA revealed group effect in all segment rotations apart those at the pelvis, in the sagittal and frontal planes, and at the push-off. Attitudes in sagittal thorax inclination altered trunk segments kinematics during gait. Subjects with a backward thorax showed less thorax-to-pelvis motion, but more shoulder-to-thorax and thorax-to-laboratory motion, less motion in flexion/extension and in lateral bending, and also less motion during push-off. This contributes to the understanding of forward propulsion and sideways load transfer mechanisms, fundamental for the maintenance of balance and the risk of falling.

  2. Solar wind and coronal structure near sunspot minimum: Pioneer and SMM observations from 1985-1987

    International Nuclear Information System (INIS)

    Mihalov, J.D.; Barnes, A.; Hundhausen, A.J.; Smith, E.J.

    1990-01-01

    The solar wind speeds observed in the outer heliosphere (20 to 40 AU heliocentric distance, approximately) by Pioneers 10 an 11, and at a heliocentric distance of 0.7 AU by the Pioneer Venus spacecraft, reveal a complex set of changes in the years near the recent sunspot minimum, 1985-1987. The pattern of recurrent solar wind streams, the long-term average speed, and the sector polarity of the interplanetary magnetic field all changed in a manner suggesting both a temporal variation, and a changing dependence on heliographic latitude. Coronal observations made from the Solar Maximum Mission spacecraft during the same epoch show a systematic variation in coronal structure and (by implication) the magnetic structure imposed on the expanding solar wind. These observations suggest interpretation of the solar wind speed variations in terms of the familiar model where the speed increases with distance from a nearly flat interplanetary current sheet (or with heliomagnetic latitude), and where this current sheet becomes aligned with the solar equatorial plane as sunspot minimum approaches, but deviates rapidly from that orientation after minimum. The authors confirm here that this basic organization of the solar wind speed persists in the outer heliosphere with an orientation of the neutral sheet consistent with that inferred at a heliocentric distance of a few solar radii, from the coronal observations

  3. Gender differences of sagittal knee and ankle biomechanics during stair-to-ground descent transition.

    Science.gov (United States)

    Hong, Yoon No Gregory; Shin, Choongsoo S

    2015-12-01

    Falls on stairs often result in severe injury and occur twice as frequently in women. However, gender differences in kinetics and kinematics during stair descent are unknown. Thus, this study aimed to determine whether gender differences of knee and ankle biomechanics exist in the sagittal plane during the stair-to-ground descending transition. It was hypothesized that 1) women would reveal higher ground-toe-trochanter angle and lower ground-toe length during stair-to-ground descent transition than men; and 2) women would reveal lower peak knee extension moment during stair-to-ground descent transition than men. Fifteen men and fifteen women were recruited and performed a stair descent activity. Kinetic and kinematic data were obtained using a force plate and motion capture system. The women performed the stair descent with a lower peak knee extension moment and a peak knee power at the early weight acceptance phase. The women also revealed a higher ground-toe-trochanter angle and a lower ground-toe length, which indicated a more forward position of the lower extremity relative to the toe contact point at both the initial contact and at the time of peak kinematic and kinetic events. This study found that knee and ankle kinematics and kinetics differed significantly between the genders due to differences in ground-toe-trochanter angle. Women have a different stair descending strategy that reduces the demand of the lower extremity muscle function, but this strategy seems to increase the risk of falls. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. KELVIN-HELMHOLTZ INSTABILITY OF A CORONAL STREAMER

    Energy Technology Data Exchange (ETDEWEB)

    Feng, L.; Gan, W. Q. [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210008 Nanjing (China); Inhester, B., E-mail: lfeng@pmo.ac.cn [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Str.2, D-37191 Katlenburg-Lindau (Germany)

    2013-09-10

    Shear-flow-driven instability can play an important role in energy transfer processes in coronal plasma. We present for the first time the observation of a kink-like oscillation of a streamer that is probably caused by the streaming kink-mode Kelvin-Helmholtz instability (KHI). The wave-like behavior of the streamer was observed by the Large Angle and Spectrometric Coronagraph Experiment C2 and C3 on board the SOlar and Heliospheric Observatory. The observed wave had a period of about 70-80 minutes, and its wavelength increased from 2 R{sub Sun} to 3 R{sub Sun} in about 1.5 hr. The phase speeds of its crests and troughs decreased from 406 {+-} 20 to 356 {+-} 31 km s{sup -1} during the event. Within the same heliocentric range, the wave amplitude also appeared to increase with time. We attribute the phenomena to the MHD KHI, which occurs at a neutral sheet in a fluid wake. The free energy driving the instability is supplied by the sheared flow and sheared magnetic field across the streamer plane. The plasma properties of the local environment of the streamer were estimated from the phase speed and instability threshold criteria.

  5. The acceleration of electrons at a spherical coronal shock in a streamer-like coronal field

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiangliang, E-mail: kongx@sdu.edu.cn; Chen, Yao, E-mail: yaochen@sdu.edu.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Guo, Fan, E-mail: guofan.ustc@gmail.com [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-03-25

    We study the effect of large-scale coronal magnetic field on the electron acceleration at a spherical coronal shock using a test-particle method. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. It shows that the closed field plays the role of a trapping agency of shock-accelerated electrons, allowing for repetitive reflection and acceleration, therefore can greatly enhance the shock-electron acceleration efficiency. It is found that, with an ad hoc pitch-angle scattering, electron injected in the open field at the shock flank can be accelerated to high energies as well. In addition, if the shock is faster or stronger, a relatively harder electron energy spectrum and a larger maximum energy can be achieved.

  6. The OBS control plane

    DEFF Research Database (Denmark)

    Manolova, Anna Vasileva; Ruepp, Sarah Renée

    2010-01-01

    . The applicability analysis carried out here focuses on the actual feasibility of the integration and the potential trade-offs which appear when two contradicting principles are combined. Taking advantage of the flexibility of the GMPLS control plane does not seem to be as easy and as straightforward as expected...

  7. Associations between lower extremity muscle mass and multiplanar knee laxity and stiffness: a potential explanation for sex differences in frontal and transverse plane knee laxity.

    Science.gov (United States)

    Shultz, Sandra J; Pye, Michele L; Montgomery, Melissa M; Schmitz, Randy J

    2012-12-01

    Compared with men, women have disproportionally greater frontal (varus-valgus) and transverse (internal-external) plane laxity and lower stiffness, despite having similar sagittal (anterior-posterior) plane laxity and stiffness. While the underlying cause is unclear, the amount of lower extremity lean mass (LELM) may be a contributing factor. Lower extremity lean mass would be a stronger predictor of frontal and transverse plane laxity and incremental stiffness than the sagittal plane. Associations between LELM and stiffness would be stronger at lower force increments. Descriptive laboratory study. Sixty-three women and 30 men with no history of ligament injury were measured for knee laxity and incremental stiffness in the sagittal (-90- to 130-N posterior-to-anterior directed loads), frontal (±10-N·m varus-valgus torques), and transverse (±5-N·m internal-external rotation torques) planes and underwent dual-energy X-ray absorptiometry scans to measure LELM. Linear regressions examined the extent to which LELM predicted each laxity and stiffness value, while also accounting for a person's sex. Females (vs males) had greater laxity and less stiffness in the frontal and transverse planes but not the sagittal plane. Lower extremity lean mass was a poor predictor of sagittal laxity and stiffness (R (2) range = .021-.081; P > .06) but was a stronger predictor of frontal (R (2) range = .215-.567; P plane laxity and stiffness. Associations were stronger for low (R (2) = .495-.504) versus high (R (2) = .215-.435) frontal plane stiffness but were similar for low (R (2) = .233-.293) versus high (R (2) = .224-.356) transverse plane stiffness. Once we accounted for a person's LELM, sex had little effect on laxity and stiffness (change in R (2) after removal = .01-.08; P = .027-.797). Less LELM was associated with greater laxity and less stiffness in frontal and transverse planes, which may contribute to the disproportionally higher laxities and reduced stiffnesses observed

  8. AN IMPROVEMENT ON MASS CALCULATIONS OF SOLAR CORONAL MASS EJECTIONS VIA POLARIMETRIC RECONSTRUCTION

    International Nuclear Information System (INIS)

    Dai, Xinghua; Wang, Huaning; Huang, Xin; Du, Zhanle; He, Han

    2015-01-01

    The mass of a coronal mass ejection (CME) is calculated from the measured brightness and assumed geometry of Thomson scattering. The simplest geometry for mass calculations is to assume that all of the electrons are in the plane of the sky (POS). With additional information like source region or multiviewpoint observations, the mass can be calculated more precisely under the assumption that the entire CME is in a plane defined by its trajectory. Polarization measurements provide information on the average angle of the CME electrons along the line of sight of each CCD pixel from the POS, and this can further improve the mass calculations as discussed here. A CME event initiating on 2012 July 23 at 2:20 UT observed by the Solar Terrestrial Relations Observatory is employed to validate our method

  9. The transverse ligament as a landmark for tibial sagittal insertions of the anterior cruciate ligament: a cadaveric study.

    Science.gov (United States)

    Kongcharoensombat, Wirat; Ochi, Mitsuo; Abouheif, Mohamed; Adachi, Nobuo; Ohkawa, Shingo; Kamei, Goki; Okuhara, Atushi; Shibuya, Hoyatoshi; Niimoto, Takuya; Nakasa, Tomoyuki; Nakamae, Atsuo; Deie, Masataka

    2011-10-01

    The purpose of this study was to determine the relation between the position of the transverse ligament, the anterior edge of the anterior cruciate ligament (ACL) tibial footprint, and the center of the ACL tibial insertion. We used arthroscopy for localization of the anatomic landmarks, followed by insertions of guide pins under direct visualization, and then the position of these guide pins was checked on plain lateral radiographs. The transverse ligament and the anterior aspect of the ACL tibial footprint were identified by arthroscopy in 20 unpaired cadaveric knees (10 left and 10 right). Guide pins were inserted with tibial ACL adapter drill guides under direct observation at the transverse ligament, the anterior aspect of the tibial footprint, and the center of tibial insertion of the ACL. Then, plain lateral radiographs of specimens were taken. The Amis and Jakob line was used to define the attachment of the ACL tibial insertion and the transverse ligament. A sagittal percentage of the location of the insertion point was determined and calculated from the anterior margin of the tibia in the anteroposterior direction. The transverse ligament averaged 21.20% ± 4.1%, the anterior edge of the ACL tibial insertion averaged 21.60% ± 4.0%, and the center of the ACL tibial insertion averaged 40.30% ± 4.8%. There were similar percent variations between the transverse ligament and the anterior edge of the ACL tibial insertion, with no significant difference between them (P = .38). Intraobserver and interobserver reliability was high, with small standard errors of measurement. This study shows that the transverse ligament coincides with the anterior edge of the ACL tibial footprint in the sagittal plane. The transverse ligament can be considered as a new landmark for tibial tunnel positioning during anatomic ACL reconstruction. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  10. A comparison of standard definitions and sagittal abdominal ...

    Science.gov (United States)

    Introduction: Metabolic syndrome (MeTS) is the cluster of several clinical symptoms that together represent the strongest risk factor for cardiovascular disease. The prevalence of MeTS in adolescents is difficult to estimate given that there are several, but no agreed upon definition of MeTS for this age group. It is important to estimate MeTS and identify at-risk adolescents early in order to provide effective interventions prior to the development of diabetes and coronary heart disease. Objective: Study objectives are to: (1) estimate the prevalence of MeTS in U.S. adolescents using three widely adopted definitions and (2) compare changes in prevalence of MeTS when utilizing sagittal abdominal diameter (SAD) as a component of MeTS. Methods: Data from U.S. adolescents ages 12–19 years (N=970) in the NHANES (2011–2014) were analyzed. MeTS standard definitions developed by Cook et al. (2003), deFerranti et al. (2007), and the International Disease Federation (IDF, 2007) were applied to estimate the sex-stratified, weighted prevalence of MeTS and its individual components (i.e., high waist circumference (WC), hypertension, blood lipid abnormalities, and high fasting blood glucose (FBG)). The definitions were modified by substituting SAD for WC, and weighted MeTS prevalence was re-estimated. Results: Regardless of gender and definition, abnormal blood lipids and high WC were the most prevalent MeTS components. For both sexes, estimated prevalence of componen

  11. Posterior sagittal anorectoplasty in vestibular fistula: with or without colostomy.

    Science.gov (United States)

    Karakus, Suleyman Cuneyt; User, Idil Rana; Akcaer, Vedat; Ceylan, Haluk; Ozokutan, Bulent Hayri

    2017-07-01

    The aim of this study is to compare the results and complications of one- and three-stage repairs in females with vestibular fistula (VF) and make contribution to the discussion of whether the disadvantages outweigh the protective effect of a colostomy from wound infection and wound dehiscence following posterior sagittal anorectoplasty (PSARP). Patients with a diagnosis of VF who underwent PSARP between October 2009 and November 2015 were retrospectively reviewed. The patients were divided into two groups: Group 1-patients treated by one-stage procedure (n = 30); Group 2-patients treated by three-stage procedure (n = 16). There were no statistically significant differences between the groups with respect to wound infection, recurrence of fistula and rectal mucosal prolapse. Minor wound dehiscence occurred slightly more common in Group 1, even if p value is not significant. No wound dehiscence has been observed since we switched to the protocol of keeping the child nil per oral for 5 postoperative days and loperamide (0.1 mg/kg) administration for 7 postoperative days. The mean time before resuming oral intake was 2.87 ± 1.7 and 1.19 ± 0.4 days in Group 1 and Group 2, respectively (p = 0.001). None developed major wound disruption or anal stenosis in either group. There were no statistical differences between the groups in terms of voluntary bowel movements, soiling and constipation. PSARP performed without a protective colostomy in patients with VF has low morbidity, good continence rates and obvious advantages for both the patients and their parents.

  12. Subjective alveolar nerve function after bilateral sagittal split osteotomy or distraction osteogenesis of mandible

    NARCIS (Netherlands)

    Baas, E.M.; Horsthuis, R.B.G.; de Lange, J.

    2012-01-01

    Purpose: The present retrospective cohort study compared the subjective inferior alveolar nerve (IAN) function after distraction osteogenesis (DOG) and bilateral sagittal split osteotomy (BSSO) in mandibular advancement surgery. Materials and Methods: Treatment consisted of correction of a

  13. Subjective Alveolar Nerve Function After Bilateral Sagittal Split Osteotomy or Distraction Osteogenesis of Mandible

    NARCIS (Netherlands)

    Baas, Erik M.; Horsthuis, Roy B. G.; de Lange, Jan

    2012-01-01

    Purpose: The present retrospective cohort study compared the subjective inferior alveolar nerve (IAN) function after distraction osteogenesis (DOG) and bilateral sagittal split osteotomy (BSSO) in mandibular advancement surgery. Materials and Methods: Treatment consisted of correction of a

  14. Density Fluctuations in a Polar Coronal Hole

    Science.gov (United States)

    Hahn, Michael; D’Huys, Elke; Savin, Daniel Wolf

    2018-06-01

    We have measured the root-mean-square (rms) amplitude of intensity fluctuations, ΔI, in plume and interplume regions of a polar coronal hole. These intensity fluctuations correspond to density fluctuations. Using data from the Sun Watcher using the Active Pixel System detector and Image Processing on the Project for Onboard Autonomy (Proba2), our results extend up to a height of about 1.35 R ⊙. One advantage of the rms analysis is that it does not rely on a detailed evaluation of the power spectrum, which is limited by noise levels to low heights in the corona. The rms approach can be performed up to larger heights where the noise level is greater, provided that the noise itself can be quantified. At low heights, both the absolute ΔI, and the amplitude relative to the mean intensity, ΔI/I, decrease with height. However, starting at about 1.2 R ⊙, ΔI/I increases, reaching 20%–40% by 1.35 R ⊙. This corresponds to density fluctuations of Δn e/n e ≈ 10%–20%. The increasing relative amplitude implies that the density fluctuations are generated in the corona itself. One possibility is that the density fluctuations are generated by an instability of Alfvén waves. This generation mechanism is consistent with some theoretical models and with observations of Alfvén wave amplitudes in coronal holes. Although we find that the energy of the observed density fluctuations is small, these fluctuations are likely to play an important indirect role in coronal heating by promoting the reflection of Alfvén waves and driving turbulence.

  15. Coronal Loops: Evolving Beyond the Isothermal Approximation

    Science.gov (United States)

    Schmelz, J. T.; Cirtain, J. W.; Allen, J. D.

    2002-05-01

    Are coronal loops isothermal? A controversy over this question has arisen recently because different investigators using different techniques have obtained very different answers. Analysis of SOHO-EIT and TRACE data using narrowband filter ratios to obtain temperature maps has produced several key publications that suggest that coronal loops may be isothermal. We have constructed a multi-thermal distribution for several pixels along a relatively isolated coronal loop on the southwest limb of the solar disk using spectral line data from SOHO-CDS taken on 1998 Apr 20. These distributions are clearly inconsistent with isothermal plasma along either the line of sight or the length of the loop, and suggested rather that the temperature increases from the footpoints to the loop top. We speculated originally that these differences could be attributed to pixel size -- CDS pixels are larger, and more `contaminating' material would be expected along the line of sight. To test this idea, we used CDS iron line ratios from our data set to mimic the isothermal results from the narrowband filter instruments. These ratios indicated that the temperature gradient along the loop was flat, despite the fact that a more complete analysis of the same data showed this result to be false! The CDS pixel size was not the cause of the discrepancy; rather, the problem lies with the isothermal approximation used in EIT and TRACE analysis. These results should serve as a strong warning to anyone using this simplistic method to obtain temperature. This warning is echoed on the EIT web page: ``Danger! Enter at your own risk!'' In other words, values for temperature may be found, but they may have nothing to do with physical reality. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783. This research was funded in part by the NASA/TRACE MODA grant for Montana State University.

  16. VARIABILITY OF MANUAL AND COMPUTERIZED METHODS FOR MEASURING CORONAL VERTEBRAL INCLINATION IN COMPUTED TOMOGRAPHY IMAGES

    Directory of Open Access Journals (Sweden)

    Tomaž Vrtovec

    2015-06-01

    Full Text Available Objective measurement of coronal vertebral inclination (CVI is of significant importance for evaluating spinal deformities in the coronal plane. The purpose of this study is to systematically analyze and compare manual and computerized measurements of CVI in cross-sectional and volumetric computed tomography (CT images. Three observers independently measured CVI in 14 CT images of normal and 14 CT images of scoliotic vertebrae by using six manual and two computerized measurements. Manual measurements were obtained in coronal cross-sections by manually identifying the vertebral body corners, which served to measure CVI according to the superior and inferior tangents, left and right tangents, and mid-endplate and mid-wall lines. Computerized measurements were obtained in two dimensions (2D and in three dimensions (3D by manually initializing an automated method in vertebral centroids and then searching for the planes of maximal symmetry of vertebral anatomical structures. The mid-endplate lines were the most reproducible and reliable manual measurements (intra- and inter-observer variability of 0.7° and 1.2° standard deviation, SD, respectively. The computerized measurements in 3D were more reproducible and reliable (intra- and inter-observer variability of 0.5° and 0.7° SD, respectively, but were most consistent with the mid-wall lines (2.0° SD and 1.4° mean absolute difference. The manual CVI measurements based on mid-endplate lines and the computerized CVI measurements in 3D resulted in the lowest intra-observer and inter-observer variability, however, computerized CVI measurements reduce observer interaction.

  17. The Role of Proprioception in the Sagittal Setting of Anticipatory Postural Adjustments During Gait Initiation

    OpenAIRE

    Pereira Marcelo P.; Pelicioni Paulo H. Silva; Gobbi Lilian T.B.

    2015-01-01

    Purpose. Previous studies have studied the role of proprioception on the setting of anticipatory postural adjustments (APA) during gait initiation. However, these studies did not investigate the role of proprioception in the sagittal APA setting. We aimed to investigate the role of proprioception manipulation to induce APA sagittal adaptations on gait initiation. Methods. Fourteen healthy adults performed gait initiation without, and with, vibration applied before movement onset, and during m...

  18. SAGITTAL DIAMETER OF FORAMEN MAGNUM IN NORMAL POPULATION: AN MRI STUDY

    OpenAIRE

    Lakshmi

    2015-01-01

    Lower position of cerebellar tonsils was frequently noticed in Western studies. In some of the studies, sagittal diameter of foramen magnum was found to be larger in cases of Chiari malformation. However, there are no Indian studies for comparison. Our study was proposed to determine the standard values for sagittal diameter of foramen magnum in various age groups and both sexes. This gives a guideline for further studies in pathological conditions like Craniovertebral Junctional ...

  19. 'Lumbar Degenerative Kyphosis' Is Not Byword for Degenerative Sagittal Imbalance: Time to Replace a Misconception.

    Science.gov (United States)

    Lee, Chang-Hyun; Chung, Chun Kee; Jang, Jee-Soo; Kim, Sung-Min; Chin, Dong-Kyu; Lee, Jung-Kil

    2017-03-01

    Lumbar degenerative kyphosis (LDK) is a subgroup of the flat-back syndrome and is most commonly caused by unique life styles, such as a prolonged crouched posture during agricultural work and performing activities of daily living on the floor. Unfortunately, LDK has been used as a byword for degenerative sagittal imbalance, and this sometimes causes confusion. The aim of this review was to evaluate the exact territory of LDK, and to introduce another appropriate term for degenerative sagittal deformity. Unlike what its name suggests, LDK does not only include sagittal balance disorder of the lumbar spine and kyphosis, but also sagittal balance disorder of the whole spine and little lordosis of the lumbar spine. Moreover, this disease is closely related to the occupation of female farmers and an outdated Asian life style. These reasons necessitate a change in the nomenclature of this disorder to prevent misunderstanding. We suggest the name "primary degenerative sagittal imbalance" (PDSI), which encompasses degenerative sagittal misalignments of unknown origin in the whole spine in older-age patients, and is associated with back muscle wasting. LDK may be regarded as a subgroup of PDSI related to an occupation in agriculture. Conservative treatments such as exercise and physiotherapy are recommended as first-line treatments for patients with PDSI, and surgical treatment is considered only if conservative treatments failed. The measurement of spinopelvic parameters for sagittal balance is important prior to deformity corrective surgery. LDK can be considered a subtype of PDSI that is more likely to occur in female farmers, and hence the use of LDK as a global term for all degenerative sagittal imbalance disorders is better avoided. To avoid confusion, we recommend PDSI as a newer, more accurate diagnostic term instead of LDK.

  20. ?Lumbar Degenerative Kyphosis? Is Not Byword for Degenerative Sagittal Imbalance: Time to Replace a Misconception

    OpenAIRE

    Lee, Chang-Hyun; Chung, Chun Kee; Jang, Jee-Soo; Kim, Sung-Min; Chin, Dong-Kyu; Lee, Jung-Kil

    2017-01-01

    Lumbar degenerative kyphosis (LDK) is a subgroup of the flat-back syndrome and is most commonly caused by unique life styles, such as a prolonged crouched posture during agricultural work and performing activities of daily living on the floor. Unfortunately, LDK has been used as a byword for degenerative sagittal imbalance, and this sometimes causes confusion. The aim of this review was to evaluate the exact territory of LDK, and to introduce another appropriate term for degenerative sagittal...

  1. Sagittal imbalance in patients with lumbar spinal stenosis and outcomes after simple decompression surgery.

    Science.gov (United States)

    Shin, E Kyung; Kim, Chi Heon; Chung, Chun Kee; Choi, Yunhee; Yim, Dahae; Jung, Whei; Park, Sung Bae; Moon, Jung Hyeon; Heo, Won; Kim, Sung-Mi

    2017-02-01

    Lumbar spinal stenosis (LSS) is the most common lumbar degenerative disease, and sagittal imbalance is uncommon. Forward-bending posture, which is primarily caused by buckling of the ligamentum flavum, may be improved via simple decompression surgery. The objectives of this study were to identify the risk factors for sagittal imbalance and to describe the outcomes of simple decompression surgery. This is a retrospective nested case-control study PATIENT SAMPLE: This was a retrospective study that included 83 consecutive patients (M:F=46:37; mean age, 68.5±7.7 years) who underwent decompression surgery and a minimum of 12 months of follow-up. The primary end point was normalization of sagittal imbalance after decompression surgery. Sagittal imbalance was defined as a C7 sagittal vertical axis (SVA) ≥40 mm on a 36-inch-long lateral whole spine radiograph. Logistic regression analysis was used to identify the risk factors for sagittal imbalance. Bilateral decompression was performed via a unilateral approach with a tubular retractor. The SVA was measured on serial radiographs performed 1, 3, 6, and 12 months postoperatively. The prognostic factors for sagittal balance recovery were determined based on various clinical and radiological parameters. Sagittal imbalance was observed in 54% (45/83) of patients, and its risk factors were old age and a large mismatch between pelvic incidence and lumbar lordosis. The 1-year normalization rate was 73% after decompression surgery, and the median time to normalization was 1 to 3 months. Patients who did not experience SVA normalization exhibited low thoracic kyphosis (hazard ratio [HR], 1.04; 95% confidence interval [CI], 1.02-1.10) (pimbalance was observed in more than 50% of LSS patients, but this imbalance was correctable via simple decompression surgery in 70% of patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Superior sagittal sinus thrombosis: a rare complication in a child with nephrotic syndrome

    International Nuclear Information System (INIS)

    Pirogovsky, A.; Adi, M.; Barzilai, N.; Dagan, A.; Sinai, L.; Sthoeger, D.; Tabachnik, E.

    2001-01-01

    A 2-year-old boy with new-onset nephrotic syndrome developed recurrent vomiting, apathy and papilloedema. Superior sagittal sinus thrombosis was diagnosed on cranial CT and MRI. He gradually recovered after treatment with heparin, fresh frozen plasma and warfarin with complete resolution of the thrombosis after 1 month. Superior sagittal sinus thrombosis is an extremely rare complication of nephrotic syndrome in children. Early diagnosis is essential for institution of anticoagulation therapy and a successful outcome. (orig.)

  3. Superior sagittal sinus thrombosis: a rare complication in a child with nephrotic syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Pirogovsky, A.; Adi, M.; Barzilai, N. [Dept. of Radiology, Kaplan Medical Center, Rehovot (Israel); Dagan, A.; Sinai, L.; Sthoeger, D. [Div. of Paediatrics, Kaplan Medical Center, Rehovot (Israel); Tabachnik, E. [Div. of Paediatrics, Kaplan Medical Center, Rehovot (Israel); Paediatric ICU, Kaplan Hospital, Rehovot (Israel)

    2001-10-01

    A 2-year-old boy with new-onset nephrotic syndrome developed recurrent vomiting, apathy and papilloedema. Superior sagittal sinus thrombosis was diagnosed on cranial CT and MRI. He gradually recovered after treatment with heparin, fresh frozen plasma and warfarin with complete resolution of the thrombosis after 1 month. Superior sagittal sinus thrombosis is an extremely rare complication of nephrotic syndrome in children. Early diagnosis is essential for institution of anticoagulation therapy and a successful outcome. (orig.)

  4. A multi-channel coronal spectrophotometer.

    Science.gov (United States)

    Landman, D. A.; Orrall, F. Q.; Zane, R.

    1973-01-01

    We describe a new multi-channel coronal spectrophotometer system, presently being installed at Mees Solar Observatory, Mount Haleakala, Maui. The apparatus is designed to record and interpret intensities from many sections of the visible and near-visible spectral regions simultaneously, with relatively high spatial and temporal resolution. The detector, a thermoelectrically cooled silicon vidicon camera tube, has its central target area divided into a rectangular array of about 100,000 pixels and is read out in a slow-scan (about 2 sec/frame) mode. Instrument functioning is entirely under PDP 11/45 computer control, and interfacing is via the CAMAC system.

  5. Evolution of coronal and interplanetary magnetic fields

    International Nuclear Information System (INIS)

    Levine, R.H.

    1980-01-01

    Numerous studies have provided the detailed information necessary for a substantive synthesis of the empirical relation between the magnetic field of the sun and the structure of the interplanetary field. The author points out the latest techniques and studies of the global solar magnetic field and its relation to the interplanetary field. The potential to overcome most of the limitations of present methods of analysis exists in techniques of modelling the coronal magnetic field using observed solar data. Such empirical models are, in principle, capable of establishing the connection between a given heliospheric point and its magnetically-connected photospheric point, as well as the physical basis for the connection. (Auth.)

  6. Solar radio bursts of spectral type II, coronal shocks, and optical coronal transients

    Science.gov (United States)

    Maxwell, A.; Dryer, M.

    1981-01-01

    An examination is presented of the association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H-alpha, the green coronal line, and white-light coronagraphs. It is suggested that fast-moving optical coronal transients should for the most part be identified with piston-type phenomena well behind the outward-traveling shock waves that generate type II radio bursts. A general model is presented which relates type II radio bursts and coronal shocks to optically observed ejecta and consists of three main velocity regimes: (1) a quasi-hemispherical shock wave moving outward from the flare at speeds of 1000-2000 km/sec and Alfven Mach number of about 1.5; (2) the velocity of the piston driving the shock, on the order of 0.8 that of the shock; and (3) the regime of the slower-moving H-alpha ejecta, with velocities of 300-500 km/sec.

  7. The longitudinal sagittal growth changes of maxilla and mandible according to quantitative cervical vertebral maturation.

    Science.gov (United States)

    Chen, Lili; Lin, Jiuxiang; Xu, Tianmin; Long, Xiaosi

    2009-04-01

    To investigate the longitudinal sagittal growth changes of maxilla and mandible according to the quantitative cervical vertebral maturation (QCVM) for adolescents with normal occlusion, mixed longitudinal data were used. The samples included 87 adolescents aged from 8 to 18 y old with normal occlusion (32 males, 55 females) selected from 901 candidates. Sequential lateral cephalograms and hand-wrist films were taken once a year, lasting for 6 y. The longitudinal sagittal growth changes of maxilla and mandible according to QCVM were measured. There were some significant differences between maxilla and mandible according to QCVM. The sagittal growth change of maxilla showed a trend towards high velocity-->decelerating velocity-->completing velocity from QCVM stage I to stage IV. The sagittal growth change of mandible showed a trend towards accelerating velocity-->high velocity-->decelerating velocity-->completing velocity from QCVM stage I to stage IV. With sagittal relationship, growth magnitude was almost the same between maxilla and mandible at QCVM stage I. At stage II the growth of mandible exceeded that of maxilla and growth in mandible continued at stages III and IV, while the maxilla ceased to grow. Growth magnitude was greater and the growth duration was longer with male mandible. It is concluded that the longitudinal sagittal growth changes of maxilla and mandible on the basis of QCVM is of value in the orthodontic practice.

  8. BKP plane partitions

    International Nuclear Information System (INIS)

    Foda, Omar; Wheeler, Michael

    2007-01-01

    Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another

  9. BKP plane partitions

    Energy Technology Data Exchange (ETDEWEB)

    Foda, Omar; Wheeler, Michael [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)

    2007-01-15

    Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another.

  10. Carbon nanotube plane fastener

    Directory of Open Access Journals (Sweden)

    Kaori Hirahara

    2011-12-01

    Full Text Available We report a feature of carbon nanotubes (CNTs that arises when the surfaces of two vertically-aligned CNT brushes are pressed together. Adhesion between the CNTs creates a plane fastener-like device. Observations from scanning electron microscopy and measurements of adhesion properties indicate a device-dependence on CNT density and shape near the tip region. Among other applications, such fasteners have the potential to attach small components onto micron-sized electronic devices.

  11. Conquest of the Plane

    OpenAIRE

    Colignatus, Thomas

    2011-01-01

    CONQUEST OF THE PLANE provides: an integrated course for geometry and analysis a didactic build-up that avoids traditional clutter use of only the essentials for good understanding proper place for vectors, complex numbers, linear algebra and trigonometry an original and elegant development of trigonometry an original and elegant foundation for calculus examples from physics, economics and statistics integration within the dynamic environment of Mathematica ...

  12. An Algorithm for constructing Hjelmslev planes

    OpenAIRE

    Hall, Joanne L.; Rao, Asha

    2013-01-01

    Projective Hjelmslev planes and Affine Hjelmselv planes are generalisations of projective planes and affine planes. We present an algorithm for constructing a projective Hjelmslev planes and affine Hjelsmelv planes using projective planes, affine planes and orthogonal arrays. We show that all 2-uniform projective Hjelmslev planes, and all 2-uniform affine Hjelsmelv planes can be constructed in this way. As a corollary it is shown that all 2-uniform Affine Hjelmselv planes are sub-geometries o...

  13. Simultaneous orthogonal plane imaging.

    Science.gov (United States)

    Mickevicius, Nikolai J; Paulson, Eric S

    2017-11-01

    Intrafraction motion can result in a smearing of planned external beam radiation therapy dose distributions, resulting in an uncertainty in dose actually deposited in tissue. The purpose of this paper is to present a pulse sequence that is capable of imaging a moving target at a high frame rate in two orthogonal planes simultaneously for MR-guided radiotherapy. By balancing the zero gradient moment on all axes, slices in two orthogonal planes may be spatially encoded simultaneously. The orthogonal slice groups may be acquired with equal or nonequal echo times. A Cartesian spoiled gradient echo simultaneous orthogonal plane imaging (SOPI) sequence was tested in phantom and in vivo. Multiplexed SOPI acquisitions were performed in which two parallel slices were imaged along two orthogonal axes simultaneously. An autocalibrating phase-constrained 2D-SENSE-GRAPPA (generalized autocalibrating partially parallel acquisition) algorithm was implemented to reconstruct the multiplexed data. SOPI images without intraslice motion artifacts were reconstructed at a maximum frame rate of 8.16 Hz. The 2D-SENSE-GRAPPA reconstruction separated the parallel slices aliased along each orthogonal axis. The high spatiotemporal resolution provided by SOPI has the potential to be beneficial for intrafraction motion management during MR-guided radiation therapy or other MRI-guided interventions. Magn Reson Med 78:1700-1710, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Evaluation of the Minifilament-Eruption Scenario for Solar Coronal Jets in Polar Coronal Holes

    Science.gov (United States)

    Baikie, Tomi K.; Sterling, Alphonse C.; Falconer, David; Moore, Ronald L.; Savage, Sabrina L.

    2016-01-01

    Solar coronal jets are suspected to result from magnetic reconnection low in the Sun's atmosphere. Sterling et al. (2015) looked as 20 jets in polar coronal holes, using X-ray images from the Hinode/X-Ray Telescope (XRT) and EUV images from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA). They suggested that each jet was driven by the eruption of twisted closed magnetic field carrying a small-scale filament, which they call a 'minifilament', and that the jet was produced by reconnection of the erupting field with surrounding open field. In this study, we carry out a more extensive examination of polar coronal jets. From 180 hours of XRT polar coronal hole observations spread over two years (2014-2016), we identified 130 clearly-identifiable X-ray jet events and thus determined an event rate of over 17 jets per day per in the Hinode/XRT field of view. From the broader set, we selected 25 of the largest and brightest events for further study in AIA 171, 193, 211, and 304 Angstrom images. We find that at least the majority of the jets follow the minifilament-eruption scenario, although for some cases the evolution of the minifilament in the onset of its eruption is more complex than presented in the simplified schematic of Sterling et al. (2015). For all cases in which we could make a clear determination, the spire of the X-ray jet drifted laterally away from the jet-base-edge bright point; this spire drift away from the bright point is consistent with expectations of the minifilament-eruption scenario for coronal-jet production. This work was supported with funding from the NASA/MSFC Hinode Project Office, and from the NASA HGI program.

  15. Extreme ultraviolet observations of coronal holes. II

    International Nuclear Information System (INIS)

    Bohlin, J.D.; Sheeley, N.R. Jr.

    1978-01-01

    Extreme-ultraviolet Skylab and ground-based solar magnetic field data have been combined to study the origin and evolution of coronal holes. It is shown that holes exist only within the large-scale unipolar magnetic cells into which the solar surface is divided at any given time. A well-defined boundary zone usually exists between the edge of a hole and the neutral line which marks the edge of its magnetic cell. This boundary zone is the region across which a cell is connected by magnetic arcades with adjacent cells of opposite polarity. Three pieces of observational evidence are offered to support the hypothesis that the magnetic lines of force from a hole are open. Kitt Peak magnetograms are used to show that, at least on a relative scale, the average field strengths within holes are quite variable, but indistinguishable from the field strengths in other quiet parts of the Sun's surface. Finally it is shown that the large, equatorial holes characteristic of the declining phase of the last solar cycle during Skylab (1973-74) were all formed as a result of the mergence of bipolar magnetic regions (BMR's), confirming an earlier hypothesis by Timothy et al. (1975). Systematic application of this model to the different aspects of the solar cycle correctly predicts the occurrence of both large, equatorial coronal holes (the 'M-regions' which cause recurrent geomagnetic storms) and the polar cap holes. (Auth.)

  16. BAYESIAN MAGNETOHYDRODYNAMIC SEISMOLOGY OF CORONAL LOOPS

    International Nuclear Information System (INIS)

    Arregui, I.; Asensio Ramos, A.

    2011-01-01

    We perform a Bayesian parameter inference in the context of resonantly damped transverse coronal loop oscillations. The forward problem is solved in terms of parametric results for kink waves in one-dimensional flux tubes in the thin tube and thin boundary approximations. For the inverse problem, we adopt a Bayesian approach to infer the most probable values of the relevant parameters, for given observed periods and damping times, and to extract their confidence levels. The posterior probability distribution functions are obtained by means of Markov Chain Monte Carlo simulations, incorporating observed uncertainties in a consistent manner. We find well-localized solutions in the posterior probability distribution functions for two of the three parameters of interest, namely the Alfven travel time and the transverse inhomogeneity length scale. The obtained estimates for the Alfven travel time are consistent with previous inversion results, but the method enables us to additionally constrain the transverse inhomogeneity length scale and to estimate real error bars for each parameter. When observational estimates for the density contrast are used, the method enables us to fully constrain the three parameters of interest. These results can serve to improve our current estimates of unknown physical parameters in coronal loops and to test the assumed theoretical model.

  17. Lumbar Facet Joint Arthritis Is Associated with More Coronal Orientation of the Facet Joints at the Upper Lumbar Spine

    International Nuclear Information System (INIS)

    Jentzsch, Th.; Geiger, J.; Zimmermann, S.M.; Slankamenac, K.; Werner, C.M.L.; Nguyen-Kim, Th.D.L.

    2013-01-01

    We retrospectively analyzed CT scans of 620 individuals, who presented to our traumatology department between 2008 and 2010. Facet joint (FJ) arthritis was present in 308 (49.7%) individuals with a mean grade of 1. It was seen in 27% of individuals ≤40 years and in 75% of individuals ≥41 years ( Ρ <0.0001) as well as in 52% of females and 49% of males ( Ρ=0.61). Mean FJ orientation was 30.4° at L2/3, 38.7° at L3/4, 47° at L4/5, and 47.3° at L5/S1. FJ arthritis was significantly associated with more coronal (increased degree) FJ orientation at L2/3 (Ρ=0.03) with a cutoff point at ≥32°. FJs were more coronally oriented (48.8°) in individuals ≤40 years and more sagittally oriented (45.6°) in individuals ≥41 years at L5/S1 (Ρ=0.01). Mean FJ asymmetry was 4.89° at L2/3, 6.01° at L3/4, 6.67° at L4/5, and 7.27° at L5/S1, without a significant difference for FJ arthritis. FJ arthritis is common, increases with age, and affects both genders equally. More coronally oriented FJs (≥32°) in the upper lumbar spine may be an individual risk factor for development of FJ arthritis.

  18. Mid-term periodicities and heliospheric modulation of coronal index ...

    Indian Academy of Sciences (India)

    PRITHVI RAJ SINGH

    2018-03-06

    Mar 6, 2018 ... long-term periodicity of ∼11 years, with different solar activities. The physical processes that occur inside the. Sun are reflected by a periodic character in terms of coronal index of coronal emission (Fe XIV 530.3 nm) during solar activity cycles. Recently, a link between the strength of photospheric magnetic ...

  19. Quality of coroner's post-mortems in a UK hospital.

    Science.gov (United States)

    Al Mahdy, Husayn

    2014-01-01

    The aim of this paper was, principally, to look at the coroner's post-mortem report quality regarding adult medical patients admitted to an English hospital; and to compare results with Royal College of Pathologists guidelines. Hospital clinical notes of adult medical patients dying in 2011 and who were referred to the coroner's office to determine the cause of death were scrutinised. Their clinical care was also reviewed. There needs to be a comprehensive approach to coroner's post-mortems such as routinely taking histological and microbiological specimens. Acute adult medical patient care needs to improve. Steps should be taken to ensure that comprehensive coroner's post-mortems are performed throughout the UK, including with routine histological and microbiological specimens examination. Additionally, closer collaboration between clinicians and pathologists needs to occur to improve emergency adult medical patient clinical care. The study highlights inadequacies in coroner's pathology services.

  20. MRI T2 mapping of the asymptomatic supraspinatus tendon by age and imaging plane using clinically relevant subregions

    Energy Technology Data Exchange (ETDEWEB)

    Anz, Adam W., E-mail: anz.adam.w@gmail.com [The Steadman Clinic, Vail, CO (United States); Lucas, Erin P., E-mail: erin.lucas14@gmail.com [Steadman Philippon Research Institute, Vail, CO (United States); Fitzcharles, Eric K., E-mail: ericfitzcharles@gmail.com [Steadman Philippon Research Institute, Vail, CO (United States); Surowiec, Rachel K., E-mail: Rachel.surowiec@sprivail.org [Steadman Philippon Research Institute, Vail, CO (United States); Millett, Peter J., E-mail: drmillett@thesteadmanclinic.com [The Steadman Clinic, Vail, CO (United States); Ho, Charles P., E-mail: Charles.ho@sprivail.org [Steadman Philippon Research Institute, Vail, CO (United States)

    2014-05-15

    Purpose: Diagnosis of partial rotator cuff tears and tendonopathy using conventional MRI has proven variable. Quantitative T2 mapping may have application for assessing rotator cuff health. In order to evaluate the usefulness of T2 mapping for the rotator cuff, methods must be refined for mapping the supraspinatus tendon, and normative T2 values must first be acquired. Materials and methods: This study was IRB approved. Thirty asymptomatic volunteers (age: 18–62) were evaluated with sagittal and coronal T2 mapping sequences. Manual segmentation of tendon and muscle as a unit and tendon alone was performed twice by two independent raters. Segmentations were divided into medial, middle and lateral subregions and mean T2 values calculated. Results: Anatomic comparison of mean T2 values illustrated highest values in the medial region, lowest values in the lateral region, and intermediate values for the middle region upon coronal segmentation (p < 0.001). In sagittal segmentations, there were higher values in the medial region and no significant differences between the lateral and middle subregions. No significant differences were found with comparison across age groups. Inter and intra-rater segmentation repeatability was excellent, with coefficients ranging from 0.85 to 0.99. Conclusion: T2 mapping illustrated anatomic variation along the supraspinatus muscle-tendon unit with low standard deviations and excellent repeatability, suggesting that changes in structure due to degeneration or changes associated with healing after repair may be detectable.

  1. MRI T2 mapping of the asymptomatic supraspinatus tendon by age and imaging plane using clinically relevant subregions

    International Nuclear Information System (INIS)

    Anz, Adam W.; Lucas, Erin P.; Fitzcharles, Eric K.; Surowiec, Rachel K.; Millett, Peter J.; Ho, Charles P.

    2014-01-01

    Purpose: Diagnosis of partial rotator cuff tears and tendonopathy using conventional MRI has proven variable. Quantitative T2 mapping may have application for assessing rotator cuff health. In order to evaluate the usefulness of T2 mapping for the rotator cuff, methods must be refined for mapping the supraspinatus tendon, and normative T2 values must first be acquired. Materials and methods: This study was IRB approved. Thirty asymptomatic volunteers (age: 18–62) were evaluated with sagittal and coronal T2 mapping sequences. Manual segmentation of tendon and muscle as a unit and tendon alone was performed twice by two independent raters. Segmentations were divided into medial, middle and lateral subregions and mean T2 values calculated. Results: Anatomic comparison of mean T2 values illustrated highest values in the medial region, lowest values in the lateral region, and intermediate values for the middle region upon coronal segmentation (p < 0.001). In sagittal segmentations, there were higher values in the medial region and no significant differences between the lateral and middle subregions. No significant differences were found with comparison across age groups. Inter and intra-rater segmentation repeatability was excellent, with coefficients ranging from 0.85 to 0.99. Conclusion: T2 mapping illustrated anatomic variation along the supraspinatus muscle-tendon unit with low standard deviations and excellent repeatability, suggesting that changes in structure due to degeneration or changes associated with healing after repair may be detectable

  2. Plane partition vesicles

    International Nuclear Information System (INIS)

    Rensburg, E J Janse van; Ma, J

    2006-01-01

    We examine partitions and their natural three-dimensional generalizations, plane partitions, as models of vesicles undergoing an inflation-deflation transition. The phase diagrams of these models include a critical point corresponding to an inflation-deflation transition, and exhibits multicritical scaling in the vicinity of a multicritical point located elsewhere on the critical curve. We determine the locations of the multicritical points by analysing the generating functions using analytic and numerical means. In addition, we determine the numerical values of the multicritical scaling exponents associated with the multicritical scaling regimes in these models

  3. Reproduction of superior sagittal sinus animal model by bypass transplantation of biomaterial graft

    Directory of Open Access Journals (Sweden)

    Qing-yong LUO

    2011-03-01

    Full Text Available Objective To establish the beagles model of superior sagittal sinus bypass graft,and explore the feasibility of reconstruction of superior sagittal sinus with biomaterials using this model.Methods Eight adult male beagles(weight: 12.5-22.0kg were involved in the present study.The superior sagittal sinus was exposed and blocked via bone window,and then anastomosed side-to-end to the biomaterial graft under the dedicated microscope of neurosurgery surgery,expectant treatment such as anti-inflammatory was given for the animals.The digital subtraction venography(DSV and color Doppler flow imaging(CDFI of superior sagittal sinus were performed in 1,2,4 and 8 weeks after the operation.Eight weeks after the operation,all the animals were sacrificed and the material graft was examined histologically.Results The DSV and CDFI of superior sagittal sinus showed that the stomas of 2 beagles were with slight stenosis and high flow velocity,of 1 beagle with small leakage and low flow velocity,while of other 5 beagles were normal.The histological examination showed endothelial cells were growing on the graft and superior sagittal sinus,and crawling toward the lumen of graft 8 weeks after the operation.Conclusion The beagles model of superior sagittal sinus bypass graft was established successfully.The short-term effect of the model was satisfactory,while further work should be performed to determine the long-term effects.

  4. Assessment of Coronal Radiographic Parameters of the Spine in the Treatment of Adolescent Idiopathic Scoliosis

    Directory of Open Access Journals (Sweden)

    Mohsen Karami

    2016-10-01

    Preoperative coronal balance is very important to make a balanced spine after surgery. Other parameters like Lenke classification or main thoracic overcorrection did not affect postoperative coronal decompensation.

  5. The effect of orientation on prehension movement time

    NARCIS (Netherlands)

    van Bergen, E.; van Swieten, L.M.; Williams, J.H.G.; Mon-Williams, M.

    2007-01-01

    We explored the relationship between hand orientation and movement time. Three groups of participants (n = 8 per group) were asked to grasp an object rotated in one of the following planes: (1) coronal; (2) sagittal; (3) horizontal. In the coronal plane, the rotational requirements directly mapped

  6. The effect of orientation on prehension movement time

    NARCIS (Netherlands)

    Van Bergen, Elsje; van Swieten, Lisa M.; Williams, Justin H G; Mon-Williams, Mark A.

    We explored the relationship between hand orientation and movement time. Three groups of participants (n = 8 per group) were asked to grasp an object rotated in one of the following planes: (1) coronal; (2) sagittal; (3) horizontal. In the coronal plane, the rotational requirements directly mapped

  7. Sagittal Alignment As a Predictor of Clinical Adjacent Segment Pathology requiring Surgery after Anterior Cervical Arthrodesis

    Science.gov (United States)

    Park, Moon Soo; Kelly, Michael P.; Lee, Dong-Ho; Min, Woo-Kie; Rahman, Ra’Kerry K.; Riew, K. Daniel

    2014-01-01

    BACKGROUND CONTEXT Postoperative malalignment of the cervical spine may alter cervical spine mechanics, and put patients at risk for clinical adjacent segment pathology requiring surgery. PURPOSE To investigate whether a relationship exists between cervical spine sagittal alignment and clinical adjacent segment pathology requiring surgery (CASP-S) following anterior cervical fusion (ACF). STUDY DESIGN Retrospective matched study. PATIENT SAMPLE One hundred twenty two patients undergoing ACF from 1996 to 2008 were identified, with a minimum of 2 year follow-up. OUTCOME MEASURES Radiographs were reviewed to measure the sagittal alignment using C2 and C7 sagittal plumb lines, distance from the fusion mass plumb line to the C2 and C7 plumb lines, the alignment of the fusion mass, caudally adjacent disc angle, the sagittal slope angle of the superior endplate of the vertebra caudally adjacent to the fusion mass, T1 sagittal angle, overall cervical sagittal alignment, and curve patterns by Katsuura classification. METHODS One hundred twenty two patients undergoing ACF from 1996 to 2008 were identified, with a minimum of 1 year follow-up. Patients were divided into groups according to the development of CASP requiring surgery (Control / CASP-S) and by number/location of levels fused. Radiographs were reviewed to measure the sagittal alignment using C2 and C7 sagittal plumb lines, distance from the fusion mass plumb line to the C2 and C7 plumb lines, the alignment of the fusion mass, caudally adjacent disc angle, the sagittal slope angle of the superior endplate of the vertebra caudally adjacent to the fusion mass, T1 sagittal angle, overall cervical sagittal alignment, and curve patterns by Katsuura classification. Appropriate statistical tests were performed to calculate relationships between the variables and the development of CASP-S. No funds were received in support of this work. No benefits in any form have been or will be received from a commercial party related

  8. A model for a stable coronal loop

    International Nuclear Information System (INIS)

    Hoven, G.V.; Chiuderi, C.; Giachetti, R.

    1977-01-01

    We present here a new plasma-physics model of a stable active-region arch which corresponds to the structure observed in the EUV. Pressure gradients are seen, so that the equilibrium magnetic field must depart from the force-free form valid in the surrounding corona. We take advantage of the data and of the approximate cylindrical symmetry to develop a modified form of the commonly assumed sheared-spiral structure. The dynamic MHD behavior of this new pressure/field model is then evaluated by the Newcomb criterion, taken from controlled-fusion physics, and the results show short-wavelength stability in a specific parameter range. Thus we demonstrate the possibility, for pressure profiles with widths of the order of the magnetic-field scale, that such arches can persist for reasonable periods. Finally, the spatial proportions and magnetic fields of a characteristic stable coronal loop are described

  9. Endogenous Magnetic Reconnection in Solar Coronal Loops

    Science.gov (United States)

    Asgari-Targhi, M.; Coppi, B.; Basu, B.; Fletcher, A.; Golub, L.

    2017-12-01

    We propose that a magneto-thermal reconnection process occurring in coronal loops be the source of the heating of the Solar Corona [1]. In the adopted model, magnetic reconnection is associated with electron temperature gradients, anisotropic electron temperature fluctuations and plasma current density gradients [2]. The input parameters for our theoretical model are derived from the most recent observations of the Solar Corona. In addition, the relevant (endogenous) collective modes can produce high energy particle populations. An endogenous reconnection process is defined as being driven by factors internal to the region where reconnection takes place. *Sponsored in part by the U.S. D.O.E. and the Kavli Foundation* [1] Beafume, P., Coppi, B. and Golub, L., (1992) Ap. J. 393, 396. [2] Coppi, B. and Basu, B. (2017) MIT-LNS Report HEP 17/01.

  10. Characteristics of polar coronal hole jets

    Science.gov (United States)

    Chandrashekhar, K.; Bemporad, A.; Banerjee, D.; Gupta, G. R.; Teriaca, L.

    2014-01-01

    Context. High spatial- and temporal-resolution images of coronal hole regions show a dynamical environment where mass flows and jets are frequently observed. These jets are believed to be important for the coronal heating and the acceleration of the fast solar wind. Aims: We studied the dynamics of two jets seen in a polar coronal hole with a combination of imaging from EIS and XRT onboard Hinode. We observed drift motions related to the evolution and formation of these small-scale jets, which we tried to model as well. Methods: Stack plots were used to find the drift and flow speeds of the jets. A toymodel was developed by assuming that the observed jet is generated by a sequence of single reconnection events where single unresolved blobs of plasma are ejected along open field lines, then expand and fall back along the same path, following a simple ballistic motion. Results: We found observational evidence that supports the idea that polar jets are very likely produced by multiple small-scale reconnections occurring at different times in different locations. These eject plasma blobs that flow up and down with a motion very similar to a simple ballistic motion. The associated drift speed of the first jet is estimated to be ≈27 km s-1. The average outward speed of the first jet is ≈171 km s-1, well below the escape speed, hence if simple ballistic motion is considered, the plasma will not escape the Sun. The second jet was observed in the south polar coronal hole with three XRT filters, namely, C-poly, Al-poly, and Al-mesh filters. Many small-scale (≈3″-5″) fast (≈200-300 km s-1) ejections of plasma were observed on the same day; they propagated outwards. We observed that the stronger jet drifted at all altitudes along the jet with the same drift speed of ≃7 km s-1. We also observed that the bright point associated with the first jet is a part of sigmoid structure. The time of appearance of the sigmoid and that of the ejection of plasma from the bright

  11. EUV and radio spectrum of coronal holes

    Energy Technology Data Exchange (ETDEWEB)

    Chiuderi Drago, F [Osservatorio Astrofisico di Arcetri, Florence (Italy)

    1980-03-01

    From the intensity of 19 EUV lines whose formation temperature anti T ranges from 3 x 10/sup 4/ to 1.4 x 10/sup 6/, two different models of the transition region and corona for the cell-centre and the network are derived. It is shown that both these models give radio brightness temperatures systematically higher than the observed ones. An agreement with radio data can be found only with lines formed at low temperature (anti T < 8.5 x 10/sup 5/) by decreasing the coronal temperature and the emission measure. The possibility of resolving the discrepancy by using different ion abundances has also been investigated with negative results.

  12. Coronal mass ejections and large geomagnetic storms

    International Nuclear Information System (INIS)

    Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L.

    1990-01-01

    Previous work indicates that coronal mass ejection (CME) events in the solar wind at 1 AU can be identified by the presence of a flux of counterstreaming solar wind halo electrons (above about 80 eV). Using this technique to identify CMEs in 1 AU plasma data, the authors find that most large geomagnetic storms during the interval surrounding the last solar maximum (Aug. 1978-Oct. 1982) were associated with Earth-passage of interplanetary disturbances in which the Earth encountered both a shock and the CME driving the shock. However, only about one CME in six encountered by Earth was effective in causing a large geomagnetic storm. Slow CMEs which did not interact strongly with the ambient solar wind ahead were particularly ineffective in a geomagnetic sense

  13. Determination of Coronal Magnetic Fields from Vector Magnetograms

    Science.gov (United States)

    Mikic, Zoran

    1997-01-01

    During the course of the present contract we developed an 'evolutionary technique' for the determination of force-free coronal magnetic fields from vector magnetograph observations. The method can successfully generate nonlinear force- free fields (with non-constant-a) that match vector magnetograms. We demonstrated that it is possible to determine coronal magnetic fields from photospheric measurements, and we applied it to vector magnetograms of active regions. We have also studied theoretical models of coronal fields that lead to disruptions. Specifically, we have demonstrated that the determination of force-free fields from exact boundary data is a well-posed mathematical problem, by verifying that the computed coronal field agrees with an analytic force-free field when boundary data for the analytic field are used; demonstrated that it is possible to determine active-region coronal magnetic fields from photospheric measurements, by computing the coronal field above active region 5747 on 20 October 1989, AR6919 on 15 November 1991, and AR7260 on 18 August 1992, from data taken with the Stokes Polarimeter at Mees Solar Observatory, University of Hawaii; started to analyze active region 7201 on 19 June 1992 using measurements made with the Advanced Stokes Polarimeter at NSO/Sac Peak; investigated the effects of imperfections in the photospheric data on the computed coronal magnetic field; documented the coronal field structure of AR5747 and compared it to the morphology of footpoint emission in a flare, showing that the 'high- pressure' H-alpha footpoints are connected by coronal field lines; shown that the variation of magnetic field strength along current-carrying field lines is significantly different from the variation in a potential field, and that the resulting near-constant area of elementary flux tubes is consistent with observations; begun to develop realistic models of coronal fields which can be used to study flare trigger mechanisms; demonstrated that

  14. PROMINENCE ACTIVATION BY CORONAL FAST MODE SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya [Department of Astronomy, Kyoto University, Sakyo, Kyoto, 606-8502 (Japan); Asai, Ayumi [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Shibata, Kazunari, E-mail: takahashi@kwasan.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan)

    2015-03-01

    An X5.4 class flare occurred in active region NOAA11429 on 2012 March 7. The flare was associated with a very fast coronal mass ejection (CME) with a velocity of over 2500 km s{sup −1}. In the images taken with the Solar Terrestrial Relations Observatory-B/COR1, a dome-like disturbance was seen to detach from an expanding CME bubble and propagated further. A Type-II radio burst was also observed at the same time. On the other hand, in extreme ultraviolet images obtained by the Solar Dynamic Observatory/Atmospheric Imaging Assembly (AIA), the expanding dome-like structure and its footprint propagating to the north were observed. The footprint propagated with an average speed of about 670 km s{sup −1} and hit a prominence located at the north pole and activated it. During the activation, the prominence was strongly brightened. On the basis of some observational evidence, we concluded that the footprint in AIA images and the ones in COR1 images are the same, that is, the MHD fast mode shock front. With the help of a linear theory, the fast mode Mach number of the coronal shock is estimated to be between 1.11 and 1.29 using the initial velocity of the activated prominence. Also, the plasma compression ratio of the shock is enhanced to be between 1.18 and 2.11 in the prominence material, which we consider to be the reason for the strong brightening of the activated prominence. The applicability of linear theory to the shock problem is tested with a nonlinear MHD simulation.

  15. A previously unreported variant of the synostotic sagittal suture: Case report and review of salient literature

    Directory of Open Access Journals (Sweden)

    Madison Budinich

    2016-12-01

    Full Text Available Introduction: Sagittal synostosis is a rare congenital disease caused by the premature fusion of the sagittal suture. Craniosynostosis occurs for a variety of reasons, different for every case, and often the etiology is unclear but the anomaly can frequently be seen as part of Crouzon's or Apert's syndromes. Herein, we discuss a rare case of craniosynostosis where the patient presented with a, to our knowledge, a previously undescribed variant of sagittal synostosis. Case report: A 3-month-old female infant presented to a craniofacial clinic for a consultation regarding an abnormal head shape. Images of the skull were performed, demonstrating that the patient had craniosynostosis. The patient displayed no other significant symptoms besides abnormalities in head shape. The sagittal suture was found to extend into the occipital bone where it was synostotic. Conclusion: To our knowledge, a synostotic sagittal suture has not been reported that extended posteriorly it involve the occipital bone. Those who interpret imaging or operate on this part of the skull should consider such a variation. Keywords: Anatomy, Craniosynostosis, Skull, Malformation, Pediatrics

  16. Duality and noncommutative planes

    DEFF Research Database (Denmark)

    Jøndrup, Søren

    2015-01-01

    We study extensions of simple modules over an associative ring A   and we prove that for twosided ideals mm and nn with artinian factors the condition ExtA1(A/m,A/n)≠0 holds for the left A  -modules A/mA/m and A/nA/n if and only if it holds for the right modules A/nA/n and A/mA/m. The methods pro...... proving this are applied to show that noncommutative models of the plane, i.e. algebras of the form k〈x,y〉/(f)k〈x,y〉/(f), where f∈([x,y])f∈([x,y]) are noetherian only in case (f)=([x,y])...

  17. Measurements of EUV coronal holes and open magnetic flux

    International Nuclear Information System (INIS)

    Lowder, C.; Qiu, J.; Leamon, R.; Liu, Y.

    2014-01-01

    Coronal holes are regions on the Sun's surface that map the footprints of open magnetic field lines. We have developed an automated routine to detect and track boundaries of long-lived coronal holes using full-disk extreme-ultraviolet (EUV) images obtained by SOHO/EIT, SDO/AIA, and STEREO/EUVI. We measure coronal hole areas and magnetic flux in these holes, and compare the measurements with calculations by the potential field source surface (PFSS) model. It is shown that, from 1996 through 2010, the total area of coronal holes measured with EIT images varies between 5% and 17% of the total solar surface area, and the total unsigned open flux varies between (2-5)× 10 22 Mx. The solar cycle dependence of these measurements is similar to the PFSS results, but the model yields larger hole areas and greater open flux than observed by EIT. The AIA/EUVI measurements from 2010-2013 show coronal hole area coverage of 5%-10% of the total surface area, with significant contribution from low latitudes, which is under-represented by EIT. AIA/EUVI have measured much enhanced open magnetic flux in the range of (2-4)× 10 22 Mx, which is about twice the flux measured by EIT, and matches with the PFSS calculated open flux, with discrepancies in the location and strength of coronal holes. A detailed comparison between the three measurements (by EIT, AIA-EUVI, and PFSS) indicates that coronal holes in low latitudes contribute significantly to the total open magnetic flux. These low-latitude coronal holes are not well measured with either the He I 10830 line in previous studies, or EIT EUV images; neither are they well captured by the static PFSS model. The enhanced observations from AIA/EUVI allow a more accurate measure of these low-latitude coronal holes and their contribution to open magnetic flux.

  18. Measurements of EUV coronal holes and open magnetic flux

    Energy Technology Data Exchange (ETDEWEB)

    Lowder, C.; Qiu, J.; Leamon, R. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Liu, Y., E-mail: clowder@solar.physics.montana.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-03-10

    Coronal holes are regions on the Sun's surface that map the footprints of open magnetic field lines. We have developed an automated routine to detect and track boundaries of long-lived coronal holes using full-disk extreme-ultraviolet (EUV) images obtained by SOHO/EIT, SDO/AIA, and STEREO/EUVI. We measure coronal hole areas and magnetic flux in these holes, and compare the measurements with calculations by the potential field source surface (PFSS) model. It is shown that, from 1996 through 2010, the total area of coronal holes measured with EIT images varies between 5% and 17% of the total solar surface area, and the total unsigned open flux varies between (2-5)× 10{sup 22} Mx. The solar cycle dependence of these measurements is similar to the PFSS results, but the model yields larger hole areas and greater open flux than observed by EIT. The AIA/EUVI measurements from 2010-2013 show coronal hole area coverage of 5%-10% of the total surface area, with significant contribution from low latitudes, which is under-represented by EIT. AIA/EUVI have measured much enhanced open magnetic flux in the range of (2-4)× 10{sup 22} Mx, which is about twice the flux measured by EIT, and matches with the PFSS calculated open flux, with discrepancies in the location and strength of coronal holes. A detailed comparison between the three measurements (by EIT, AIA-EUVI, and PFSS) indicates that coronal holes in low latitudes contribute significantly to the total open magnetic flux. These low-latitude coronal holes are not well measured with either the He I 10830 line in previous studies, or EIT EUV images; neither are they well captured by the static PFSS model. The enhanced observations from AIA/EUVI allow a more accurate measure of these low-latitude coronal holes and their contribution to open magnetic flux.

  19. Signs of patellar chondromalacia on sagittal T2-weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    De Smet, A.A.; Monu, J.U.; Fisher, D.R.; Keene, J.S.; Graf, B.K.

    1992-01-01

    We incidentally noted distinctive high signal defects or fissures in the patellar articular cartilage on sagittal T2-weighted magnetic resonance (MR) images in 4 patients. At subsequent arthroscopy all 4 patients were found to have patellar chondromalacia. To determine the reliabilty of these signs, we retrospectively evaluated, in a blinded manner, sagittal T2-weighted MR images of the knee in 75 patients who were undergoing arthroscopic assessment of their patellar articular cartilage. We indentified high signal defects of fissures in the patellar cartilage of 5 patients. Patellar chondromalacia was noted at arthroscopy in all 5 patients. Arthroscopy demonstrated patellar chondromalacia in an additional 21 patients with normal MR images. We conclude that high signal defects or fissures on sagittal T2-weighted images are usefull signs of patellar chondromalacia. This single imaging sequence will, however, detect only a small number of the cartilage lesions that may be present. (orig.)

  20. Signs of patellar chondromalacia on sagittal T2-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    De Smet, A.A.; Monu, J.U.; Fisher, D.R. (Univ. of Wisconsin Hospital and Clinics, Dept. of Radiology, Madison, WI (United States)); Keene, J.S.; Graf, B.K. (Univ. of Wisconsin Hospital and Clinics, Div. of Orthopedic Surgery, Madison, WI (United States))

    1992-02-01

    We incidentally noted distinctive high signal defects or fissures in the patellar articular cartilage on sagittal T2-weighted magnetic resonance (MR) images in 4 patients. At subsequent arthroscopy all 4 patients were found to have patellar chondromalacia. To determine the reliabilty of these signs, we retrospectively evaluated, in a blinded manner, sagittal T2-weighted MR images of the knee in 75 patients who were undergoing arthroscopic assessment of their patellar articular cartilage. We indentified high signal defects of fissures in the patellar cartilage of 5 patients. Patellar chondromalacia was noted at arthroscopy in all 5 patients. Arthroscopy demonstrated patellar chondromalacia in an additional 21 patients with normal MR images. We conclude that high signal defects or fissures on sagittal T2-weighted images are usefull signs of patellar chondromalacia. This single imaging sequence will, however, detect only a small number of the cartilage lesions that may be present. (orig.).

  1. A rare complication in a child undergoing chemotherapy for acute lymphoblastic leukemia: Superior sagittal sinus thrombosis

    Directory of Open Access Journals (Sweden)

    Ting-Yao Wang

    2011-04-01

    Full Text Available We report the case of a 4-year-old boy with acute lymphoblastic leukemia in high-risk group who suffered from generalized tonic-colonic seizure evolving into status epilepticus, and subsequent left hemiparesis during his first reinduction chemotherapy, consisting of dexamethasone, vincristine, l-asparaginase, and epirubicin. Superior sagittal sinus and cerebral venous thrombosis, predominantly in right side, were proved by brain magnetic resonance imaging. After aggressive treatment with low-molecular weight heparin (LMWH, left hemiparesis improved in 1 week. And he was fully ambulatory 3 weeks later. The second cycle of reinduction chemotherapy was conducted smoothly with the concomitant use of LMWH. This case illustrates the strong correlation of the rare thrombotic complication, superior sagittal sinus thrombosis, and hypercoagulable status secondary to combination use of l-asparaginase and corticosteroid. Early and vigilant recognition of superior sagittal sinus thrombosis and prompt anticoagulation with LMWH may prevent further neurological damage.

  2. Influence of implant rod curvature on sagittal correction of scoliosis deformity

    DEFF Research Database (Denmark)

    Salmingo, Remel A.; Tadano, Shigeru; Abe, Yuichiro

    2014-01-01

    of the implant rod’s angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. STUDY DESIGN: A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. PATIENT SAMPLE: Twenty adolescent idiopathic......BACKGROUND CONTEXT: Deformation of in vivo–implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. PURPOSE: To analyze the changes...... scoliosis patients underwent surgery. Average age at the time of operation was 14 years. OUTCOME MEASURES: The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. METHODS: Two implant rods were attached to the concave and convex side...

  3. Evaluation of failing hemodialysis fistulas with multidetector CT angiography: comparison of different 3D planes.

    Science.gov (United States)

    Karadeli, E; Tarhan, N C; Ulu, E M Kayahan; Tutar, N U; Basaran, O; Coskun, M; Niron, E A

    2009-01-01

    To evaluate failing hemodialysis fistula complications using 16-detector MDCTA, and to assess the accuracies of different 3D planes. Thirty patients (16 men, 14 women, aged 27-79 years) were referred for hemodialysis access dysfunction. Thirty-one MDCTA exams were done prior to fistulography. For MDCTA, contrast was administered (2mL/kg at 5mL/s) via a peripheral vein in the contralateral arm. Axial MIP, coronal MIP, and VRT images were constructed. Venous complications were evaluated on axial source images, on each 3D plane, and on all-planes together. Results were analyzed using McNemar test. Axial MIP, VRT and all-planes evaluations were most sensitive for fistula site detection (93%). Coronal MIP had the highest sensitivity, specificity and accuracy (35%, 96%, and 85%, respectively) for detecting venous stenosis. VRT and all-planes had the highest sensitivity and accuracy for detecting aneurysms (100%). All-planes and axial MIP were most sensitive for detecting venous occlusion (61% and 54%). Comparisons of detection frequencies for each venous pathology between the five categories of MDCTA revealed no significant differences (P>0.05). MDCTA additionally showed 3 partially thrombosed aneurysms, 4 anastomosis site stenosis and 12 arterial complications. MDCTA overall gives low sensitivity for detection of central vein stenosis and moderate sensitivity for occlusion. For most pathology, all-planes evaluation of MDCTA gives highest sensitivity and accuracy rates when compared to other planes. For venous stenosis and occlusion, MDCTA should be considered when ultrasonography and fistulography are inconclusive. MDCTA is helpful in identifying aneurysms, collaterals, partial venous thromboses and additional arterial, anastomosis site pathologies.

  4. Case report: pre-eruptive intra-coronal radiolucencies revisited.

    LENUS (Irish Health Repository)

    Counihan, K P

    2012-08-01

    Pre-eruptive intra-coronal radiolucency (PEIR) describes a radiolucent lesion located in the coronal dentine, just beneath the enamel-dentine junction of unerupted teeth. The prevalence of this lesion varies depending on the type and quality of radiographic exposure and age of patients used for assessment. The aetiology of pre-eruptive intra-coronal radiolucent lesions is not fully understood, but published clinical and histological evidence suggest that these lesions are resorptive in nature. Issues around the diagnosis, treatment planning and clinical management of this lesion are explored using previously unreported cases.

  5. Sagittal alignment and complications following lumbar 3-column osteotomy: does the level of resection matter?

    Science.gov (United States)

    Ferrero, Emmanuelle; Liabaud, Barthelemy; Henry, Jensen K; Ames, Christopher P; Kebaish, Khaled; Mundis, Gregory M; Hostin, Richard; Gupta, Munish C; Boachie-Adjei, Oheneba; Smith, Justin S; Hart, Robert A; Obeid, Ibrahim; Diebo, Bassel G; Schwab, Frank J; Lafage, Virginie

    2017-11-01

    OBJECTIVE Three-column osteotomy (3CO) is a demanding technique that is performed to correct sagittal spinal malalignment. However, the impact of the 3CO level on pelvic or truncal sagittal correction remains unclear. In this study, the authors assessed the impact of 3CO level and postoperative apex of lumbar lordosis on sagittal alignment correction, complications, and revisions. METHODS In this retrospective study of a multicenter spinal deformity database, radiographic data were analyzed at baseline and at 1- and 2-year follow-up to quantify spinopelvic alignment, apex of lordosis, and resection angle. The impact of 3CO level and apex level of lumbar lordosis on the sagittal correction was assessed. Logistic regression analyses were performed, controlling for cofounders, to investigate the effects of 3CO level and apex level on intraoperative and postoperative complications as well as on the need for subsequent revision surgery. RESULTS A total of 468 patients were included (mean age 60.8 years, mean body mass index 28.1 kg/m 2 ); 70% of patients were female. The average 3CO resection angle was 25.1° and did not significantly differ with regard to 3CO level. There were no significant correlations between the 3CO level and amount of sagittal vertical axis or pelvic tilt correction. The postoperative apex level significantly correlated with greater correction of pelvic tilt (2° per more caudal level, R = -0.2, p = 0.006). Lower-level 3CO significantly correlated with revisions for pseudarthrosis (OR = 3.88, p = 0.001) and postoperative motor deficits (OR = 2.02, p = 0.026). CONCLUSIONS In this study, a more caudal lumbar 3CO level did not lead to greater sagittal vertical axis correction. The postoperative apex of lumbar lordosis significantly impacted pelvic tilt. 3CO levels that were more caudal were associated with more postoperative motor deficits and revisions.

  6. Conjoined lumbosacral nerve roots compromised by disk herniation: sagittal shoulder sign for the preoperative diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Ho [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea); Korea University College of Medicine, Department of Radiology, Anam Hospital, Seoul (Korea); Shin, Myung Jin; Kim, Sung Moon; Lee, Sang Hoon; Kim, Hee Kyung; Ryu, Jeong Ah [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea); Lee, Choon-Sung [University of Ulsan College of Medicine, Asan Medical Center, Department of Orthopedic Surgery, Seoul (Korea); Kim, Sam Soo [Kangwon National University College of Medicine, Department of Radiology, Kangwon (Korea)

    2008-03-15

    The objective was to determine the importance of the ''sagittal shoulder sign'' on magnetic resonance (MR) images for the diagnosis of conjoined lumbosacral nerve roots (CLNR) that are compromised by herniated disks. Magnetic resonance images of 11 patients (6 men and 5 women; age range, 25-71 years; average age, 48.7 years) with surgically proven CLNR, which was compromised by herniated disks, were retrospectively evaluated by two musculoskeletal radiologists. MR images were evaluated for the presence or absence of the sagittal shoulder sign - a vertical structure connecting two consecutive nerve roots and overlying disk on the sagittal MR images. The radiologists noted the type of accompanying disk herniation and bony spinal canal changes, as well as other characteristic MR features of CLNR, the common passage of two consecutive nerve roots through the neural foramen on axial MR images. The sagittal shoulder sign was identified with a mean frequency of 90.9% by the two observers (in 10 of 11 patients). The common passage of two consecutive nerve roots through the neural foramen on axial MR images was identified with a mean frequency of 59.1% (in 7 and 6 out of 11 patients, by observers 1 and 2, respectively). Good interobserver agreement for the sagittal shoulder sign was present (k = 0.621, p < 0.05). Observation of the sagittal shoulder sign may prove helpful for diagnosing CLNR in patients with disk herniation. In particular, this sign appears to be useful when there is no evidence of CLNR on axial MR images. (orig.)

  7. Alphabet Soup: Sagittal Balance Correction Osteotomies of the Spine-What Radiologists Should Know.

    Science.gov (United States)

    Takahashi, T; Kainth, D; Marette, S; Polly, D

    2018-04-01

    Global sagittal malalignment has been demonstrated to have correlation with clinical symptoms and is a key component to be restored in adult spinal deformity. In this article, various types of sagittal balance-correction osteotomies are reviewed primarily on the basis of the 3 most commonly used procedures: Smith-Petersen osteotomy, pedicle subtraction osteotomy, and vertebral column resection. Familiarity with the expected imaging appearance and commonly encountered complications seen on postoperative imaging studies following correction osteotomies is crucial for accurate image interpretation. © 2018 by American Journal of Neuroradiology.

  8. Bulky scalp metastasis and superior sagittal sinus thrombosis from a cervical adenocarcinoma: an unusual case

    International Nuclear Information System (INIS)

    Abhishek, A.; Ouseph, M. M.; Sharma, M.; Sharma, P.; Kamal, V.

    2008-01-01

    Distant cutaneous metastases from cervical malignancies are uncommon, with scalp metastases being exceptional events. We present the case of a 53-year-old postmenopausal lady with adenocarcinoma of the uterine cervix that metastasized to the scalp with superior sagittal sinus thrombosis 8 months after diagnosis. In contrast to the seven prior cases of scalp metastases of cervical squamous cell carcinoma reported in published reports, ours is the first documentation of such an occurrence in cervical adenocarcinoma. Superior sagittal sinus thrombosis has not been reported with this tumour in the past.

  9. Pneumatized articular eminence in a cohort of orthodontic patients with different sagittal skeletal anomalies. A retrospective cone beam computed tomography study

    International Nuclear Information System (INIS)

    Miloglu, O.; Celikoglu, M.; Yildirim, E.; Yilmaz, A.B.; Demirtas, O.

    2010-01-01

    The aim of this study was to determine the prevalence and characteristics of pneumatized articular eminence (PAE) in dental patients using cone beam computed tomography (CBCT) with respect to age, sex, and type of skeletal anomaly. The results were then compared to prevalence studies regarding PAE in the literature. A retrospective study of 603 orthodontic patients aged between 6 and 24 years was performed using sagittal and coronal CBCT images at the Department of Oral and Maxillofacial Radiology (Erzurum, Turkey). The age, gender, skeletal anomaly, and lateral were recorded for all patients, and the types were noted for cases of PAE. The chi-squared test was used for statistical analyses. Sixty-four PAEs were found in 39 orthodontic patients, representing a prevalence of 6.47%. No significant differences in sex (p=0.153), age (before and after puberty, p=0.389), and type of skeletal anomaly were observed (p=0.271). A higher frequency of PAE was detected among dental patients aged 6-24 years when compared to previous studies, most likely because of the use of CBCT images. No significant relation was observed between PAE and the type of skeletal anomalies. One, however, must be aware of these structures to avoid complications in cases for which surgical treatment is planned due to the occlusion and recognize its role in the onset or perpetuation of temporomandibular joint dysfunction. (author)

  10. The dural entrance of cerebral bridging veins into the superior sagittal sinus: an anatomical comparison between cadavers and digital subtraction angiography

    International Nuclear Information System (INIS)

    Han, Hui; Tao, Wei; Zhang, Ming

    2007-01-01

    Intracranial venous structures have received increasing attention due to improved neuroimaging techniques and increased awareness of cerebral venous disease. To date, few studies have attempted to investigate the dural entrance of the cerebral bridging vein (BV). The aim of this study was to use the superior sagittal sinus (SSS) as an example to identify anatomical features of the dural entrance of the BVs into the SSS in both human cadavers and digital subtraction angiography (DSA) images. A total of 30 adult and 7 fetal human cadavers and 36 patients were examined with anatomical dissections, vascular casting and DSA. The number, diameter and angle of the BVs entering the SSS were measured and compared between the cadavers and DSA images. The results demonstrated that (1) the way a BV entered the SSS varied in three dimensions, and thus the BV dural entrance was difficult to precisely localize by DSA, (2) the distribution pattern of the dural entrance of the BVs into the SSS was relatively constant and a nontributary segment of the SSS was centered at the coronal suture and was identifiable by DSA, and (3) nearly all the BVs (97%, 561/581) entered the SSS at an angle opposite to the direction of blood flow. Unique anatomical features of the dural entrance of a BV into the SSS should be considered in neuroimaging interpretation of the sinus and its associated veins. (orig.)

  11. Fast Breakdown as Coronal/Ionization Waves?

    Science.gov (United States)

    Krehbiel, P. R.; Petersen, D.; da Silva, C. L.

    2017-12-01

    Studies of high-power narrow bipolar events (NBEs) have shown they are produced by a newly-recognized breakdown process called fast positive breakdown (FPB, Rison et al., 2016, doi:10.1038/ncomms10721). The breakdown was inferred to be produced by a system of positive streamers that propagate at high speed ( ˜3-6 x 107 m/s) due to occurring in a localized region of strong electric field. The polarity of the breakdown was determined from broadband interferometer (INTF) observations of the propagation direction of its VHF radiation, which was downward into the main negative charge region of a normally-electrified storm. Subsequent INTF observations being conducted in at Kennedy Space Center in Florida have shown a much greater incidence of NBEs than in New Mexico. Among the larger dataset have been clear-cut instances of some NBEs being produced by upward breakdown that would be of negative polarity. The speed and behavior of the negative breakdown is the same as that of the fast positive, leading to it being termed fast negative breakdown (FNB). The similarity (not too mention its occurrence) is surprising, given the fact that negative streamers and breakdown develops much differently than that of positive breakdown. The question is how this happens. In this study, we compare fast breakdown characteristics to well-known streamer properties as inferred from laboratory experiments and theoretical analysis. Additionally, we begin to explore the possibility that both polarities of fast breakdown are produced by what may be called coronal or ionization waves, in which the enhanced electric field produced by streamer or coronal breakdown of either polarity propagates away from the advancing front at the speed of light into a medium that is in a metastable condition of being at the threshold of hydrometeor-mediated corona onset or other ionization processes. The wave would develop at a faster speed than the streamer breakdown that gives rise to it, and thus would be

  12. Reliability and measurement error of sagittal spinal motion parameters in 220 patients with chronic low back pain using a three-dimensional measurement device.

    Science.gov (United States)

    Mieritz, Rune M; Bronfort, Gert; Jakobsen, Markus D; Aagaard, Per; Hartvigsen, Jan

    2014-09-01

    A basic premise for any instrument measuring spinal motion is that reliable outcomes can be obtained on a relevant sample under standardized conditions. The purpose of this study was to assess the overall reliability and measurement error of regional spinal sagittal plane motion in patients with chronic low back pain (LBP), and then to evaluate the influence of body mass index, examiner, gender, stability of pain, and pain distribution on reliability and measurement error. This study comprises a test-retest design separated by 7 to 14 days. The patient cohort consisted of 220 individuals with chronic LBP. Kinematics of the lumbar spine were sampled during standardized spinal extension-flexion testing using a 6-df instrumented spatial linkage system. Test-retest reliability and measurement error were evaluated using interclass correlation coefficients (ICC(1,1)) and Bland-Altman limits of agreement (LOAs). The overall test-retest reliability (ICC(1,1)) for various motion parameters ranged from 0.51 to 0.70, and relatively wide LOAs were observed for all parameters. Reliability measures in patient subgroups (ICC(1,1)) ranged between 0.34 and 0.77. In general, greater (ICC(1,1)) coefficients and smaller LOAs were found in subgroups with patients examined by the same examiner, patients with a stable pain level, patients with a body mass index less than below 30 kg/m(2), patients who were men, and patients in the Quebec Task Force classifications Group 1. This study shows that sagittal plane kinematic data from patients with chronic LBP may be sufficiently reliable in measurements of groups of patients. However, because of the large LOAs, this test procedure appears unusable at the individual patient level. Furthermore, reliability and measurement error varies substantially among subgroups of patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. LONG-TERM TREND OF SOLAR CORONAL HOLE DISTRIBUTION FROM 1975 TO 2014

    Energy Technology Data Exchange (ETDEWEB)

    Fujiki, K.; Tokumaru, M.; Hayashi, K.; Satonaka, D. [Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Furo-cho, Chikusa, Nagoya Aichi 464-8601 (Japan); Hakamada, K., E-mail: fujiki@isee.nagoya-u.ac.jp [Department of Natural Science and Mathematics, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan)

    2016-08-20

    We developed an automated prediction technique for coronal holes using potential magnetic field extrapolation in the solar corona to construct a database of coronal holes appearing from 1975 February to 2015 July (Carrington rotations from 1625 to 2165). Coronal holes are labeled with the location, size, and average magnetic field of each coronal hole on the photosphere and source surface. As a result, we identified 3335 coronal holes and found that the long-term distribution of coronal holes shows a similar pattern known as the magnetic butterfly diagram, and polar/low-latitude coronal holes tend to decrease/increase in the last solar minimum relative to the previous two minima.

  14. Semantic Versus Syntactic Cutting Planes

    OpenAIRE

    Filmus, Yuval; Hrubeš, Pavel; Lauria, Massimo

    2016-01-01

    In this paper, we compare the strength of the semantic and syntactic version of the cutting planes proof system. First, we show that the lower bound technique of Pudlák applies also to semantic cutting planes: the proof system has feasible interpolation via monotone real circuits, which gives an exponential lower bound on lengths of semantic cutting planes refutations. Second, we show that semantic refutations are stronger than syntactic ones. In particular, we give a formula for whic...

  15. SEISMOLOGY OF A LARGE SOLAR CORONAL LOOP FROM EUVI/STEREO OBSERVATIONS OF ITS TRANSVERSE OSCILLATION

    International Nuclear Information System (INIS)

    Verwichte, E.; Van Doorsselaere, T.; Foullon, C.; Nakariakov, V. M.; Aschwanden, M. J.

    2009-01-01

    The first analysis of a transverse loop oscillation observed by both Solar TErrestrial RElations Observatories (STEREO) spacecraft is presented, for an event on the 2007 June 27 as seen by the Extreme Ultraviolet Imager (EUVI). The three-dimensional loop geometry is determined using a three-dimensional reconstruction with a semicircular loop model, which allows for an accurate measurement of the loop length. The plane of wave polarization is found from comparison with a simulated loop model and shows that the oscillation is a fundamental horizontally polarized fast magnetoacoustic kink mode. The oscillation is characterized using an automated method and the results from both spacecraft are found to match closely. The oscillation period is 630 ± 30 s and the damping time is 1000 ± 300 s. Also, clear intensity variations associated with the transverse loop oscillations are reported for the first time. They are shown to be caused by the effect of line-of-sight integration. The Alfven speed and coronal magnetic field derived using coronal seismology are discussed. This study shows that EUVI/STEREO observations achieve an adequate accuracy for studying long-period, large-amplitude transverse loop oscillations.

  16. First Imaging Observation of Standing Slow Wave in Coronal Fan Loops

    Energy Technology Data Exchange (ETDEWEB)

    Pant, V.; Tiwari, A.; Banerjee, D. [Indian Institute of Astrophysics, Bangalore 560 034 (India); Yuan, D. [Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen 518000 (China)

    2017-09-20

    We observe intensity oscillations along coronal fan loops associated with the active region AR 11428. The intensity oscillations were triggered by blast waves that were generated due to X-class flares in the distant active region AR 11429. To characterize the nature of oscillations, we created time–distance maps along the fan loops and noted that the intensity oscillations at two ends of the loops were out of phase. As we move along the fan loop, the amplitude of the oscillations first decreased and then increased. The out-of-phase nature together with the amplitude variation along the loop implies that these oscillations are very likely to be standing waves. The period of the oscillations is estimated to be ∼27 minutes, damping time to be ∼45 minutes, and phase velocity projected in the plane of sky to be ∼65–83 km s{sup −1}. The projected phase speeds were in the range of the acoustic speed of coronal plasma at about 0.6 MK, which further indicates that these are slow waves. To the best of our knowledge, this is the first report on the existence of the standing slow waves in non-flaring fan loops.

  17. First Imaging Observation of Standing Slow Wave in Coronal Fan Loops

    International Nuclear Information System (INIS)

    Pant, V.; Tiwari, A.; Banerjee, D.; Yuan, D.

    2017-01-01

    We observe intensity oscillations along coronal fan loops associated with the active region AR 11428. The intensity oscillations were triggered by blast waves that were generated due to X-class flares in the distant active region AR 11429. To characterize the nature of oscillations, we created time–distance maps along the fan loops and noted that the intensity oscillations at two ends of the loops were out of phase. As we move along the fan loop, the amplitude of the oscillations first decreased and then increased. The out-of-phase nature together with the amplitude variation along the loop implies that these oscillations are very likely to be standing waves. The period of the oscillations is estimated to be ∼27 minutes, damping time to be ∼45 minutes, and phase velocity projected in the plane of sky to be ∼65–83 km s"−"1. The projected phase speeds were in the range of the acoustic speed of coronal plasma at about 0.6 MK, which further indicates that these are slow waves. To the best of our knowledge, this is the first report on the existence of the standing slow waves in non-flaring fan loops.

  18. Coronal Magnetic Field Lines and Electrons Associated with Type III

    Indian Academy of Sciences (India)

    Coronal Magnetic Field Lines and Electrons Associated with Type III–V Radio Bursts in a Solar Flare ... velocities of the electron streams associated with the above two types of bursts indicate ... Journal of Astrophysics and Astronomy | News ...

  19. Coroner Autopsy Findings Among Children and Adolescents of ...

    African Journals Online (AJOL)

    year retrospective study of coroner autopsies carried out on children I adolescents aged between 0-19 years, evaluated the pattern, causes and demographic features of childhood deaths in Rivers state, Nigeria. Methods A retrospective remew of ...

  20. Energy released by the interaction of coronal magnetic fields

    International Nuclear Information System (INIS)

    Sheeley, N.R. Jr.

    1976-01-01

    Comparisons between coronal spectroheliograms and photospheric magnetograms are presented to support the idea that as coronal magnetic fields interact, a process of field line reconnection usually takes place as a natural way of preventing magnetic stresses from building up in the lower corona. This suggests that the energy which would have been stored in stressed fields in continuously released as kinetic energy of material being driven aside to make way for the reconnecting fields. However, this kinetic energy is negligible compared to the thermal energy of the coronal plasma. Therefore, it appears that these slow adjustments of coronal magnetic fields cannot account for even the normal heating of the corona, much less the energetic events associated with solar flares. (Auth.)

  1. The X-ray signature of solar coronal mass

    Science.gov (United States)

    Harrison, R. A.; Waggett, P. W.; Bentley, R. D.; Phillips, K. J. H.; Bruner, M.

    1985-01-01

    The coronal response to six solar X-ray flares has been investigated. At a time coincident with the projected onset of the white-light coronal mass ejection associated with each flare, there is a small, discrete soft X-ray enhancement. These enhancements (precursors) precede by typically about 20 m the impulsive phase of the solar flare which is dominant by the time the coronal mass ejection has reached an altitude above 0.5 solar radii. Motions of hot X-ray emitting plasma, during the precursors, which may well be a signature of the mass ejection onsets, are identified. Further investigations have also revealed a second class of X-ray coronal transient, during the main phase of the flare. These appear to be associated with magnetic reconnection above post-flare loop systems.

  2. Cyclical Variation of the Quiet Corona and Coronal Holes

    Indian Academy of Sciences (India)

    tribpo

    Key words. Coronagraphs—solar activity cycle—solar corona—total ... can be divided into the quiet sun (including coronal holes) and active regions. The ... regions has attracted attention and is termed as 'the extended solar cycle'. Here the.

  3. Coronal Structures as Tracers of Sub-Surface Processes

    Indian Academy of Sciences (India)

    tribpo

    dramatic differences in appearance and physical processes, all these structures share a common ... mena that indicate a close relationship between coronal and sub-photo- spheric processes. .... 8) maintaining the same chirality. Large scale ...

  4. The nature of micro CMEs within coronal holes

    Science.gov (United States)

    Bothmer, Volker; Nistico, Giuseppe; Zimbardo, Gaetano; Patsourakos, Spiros; Bosman, Eckhard

    Whilst investigating the origin and characteristics of coronal jets and large-scale CMEs identi-fied in data from the SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) instrument suites on board the two STEREO satellites, we discovered transient events that originated in the low corona with a morphology resembling that of typical three-part struc-tured coronal mass ejections (CMEs). However, the CMEs occurred on considerably smaller spatial scales. In this presentation we show evidence for the existence of small-scale CMEs from inside coronal holes and present quantitative estimates of their speeds and masses. We interprete the origin and evolution of micro CMEs as a natural consequence of the emergence of small-scale magnetic bipoles related to the Sun's ever changing photospheric magnetic flux on various scales and their interactions with the ambient plasma and magnetic field. The analysis of CMEs is performed within the framework of the EU Erasmus and FP7 SOTERIA projects.

  5. Assessment of Isometric Trunk Strength - The Relevance of Body Position and Relationship between Planes of Movement.

    Science.gov (United States)

    Kocjan, Andrej; Sarabon, Nejc

    2014-05-01

    The aim of the study was to assess the differences in maximal isometric trunk extension and flexion strength during standing, sitting and kneeling. Additionally, we were interested in correlations between the maximal strength in sagittal, frontal and transverse plane, measured in the sitting position. Sixty healthy subjects (24 male, 36 female; age 41.3 ± 15.1 yrs; body height 1.70 ± 0.09 m; body mass 72.7 ± 13.3 kg) performed maximal voluntary isometric contractions of the trunk flexor and extensor muscles in standing, sitting and kneeling position. The subjects also performed lateral flexions and rotations in the sitting position. Each task was repeated three times and average of maximal forces was used for data analysis. RANOVA with post-hoc testing was applied to the flexion and extension data. The level of statistical significance was set to p strength showed the strongest correlation, followed by frontal-transverse and sagittal-frontal plane correlation pairs (R(2) = 0.830, 0.712 and 0.657). The baseline trunk isometric strength data provided by this study should help further strength diagnostics, more precisely, the prevention of low back disorders. Key pointsMaximal voluntary isometric force of the trunk extensors increased with the angle at the hips (highest in sitting, medium in kneeling and lowest in upright standing).The opposite trend was true for isometric MVC force of trunk flexors (both genders together and men only).In the sitting position, the strongest correlation between MVC forces was found between sagittal (average flexion/extension) and transverse plane (average left/right rotation).IN ORDER TO INCREASE THE VALIDITY OF TRUNK STRENGTH TESTING THE LETTER SHOULD INCLUDE: specific warm-up, good pelvic fixation and visual feedback.

  6. MHD Simulations of the Eruption of Coronal Flux Ropes under Coronal Streamers

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yuhong, E-mail: yfan@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green Drive, Boulder, CO 80301 (United States)

    2017-07-20

    Using three-dimensional magnetohydrodynamic (MHD) simulations, we investigate the eruption of coronal flux ropes underlying coronal streamers and the development of a prominence eruption. We initialize a quasi-steady solution of a coronal helmet streamer, into which we impose at the lower boundary the slow emergence of a part of a twisted magnetic torus. As a result, a quasi-equilibrium flux rope is built up under the streamer. With varying streamer sizes and different lengths and total twists of the flux rope that emerges, we found different scenarios for the evolution from quasi-equilibrium to eruption. In the cases with a broad streamer, the flux rope remains well confined until there is sufficient twist such that it first develops the kink instability and evolves through a sequence of kinked, confined states with increasing height until it eventually develops a “hernia-like” ejective eruption. For significantly twisted flux ropes, prominence condensations form in the dips of the twisted field lines due to runaway radiative cooling. Once formed, the prominence-carrying field becomes significantly non-force-free due to the weight of the prominence, despite having low plasma β . As the flux rope erupts, the prominence erupts, showing substantial draining along the legs of the erupting flux rope. The prominence may not show a kinked morphology even though the flux rope becomes kinked. On the other hand, in the case with a narrow streamer, the flux rope with less than one wind of twist can erupt via the onset of the torus instability.

  7. THE CONTRIBUTION OF CORONAL JETS TO THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Lionello, R.; Török, T.; Titov, V. S.; Mikić, Z.; Linker, J. A. [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Leake, J. E.; Linton, M. G., E-mail: lionel@predsci.com [US Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375 (United States)

    2016-11-01

    Transient collimated plasma eruptions in the solar corona, commonly known as coronal (or X-ray) jets, are among the most interesting manifestations of solar activity. It has been suggested that these events contribute to the mass and energy content of the corona and solar wind, but the extent of these contributions remains uncertain. We have recently modeled the formation and evolution of coronal jets using a three-dimensional (3D) magnetohydrodynamic (MHD) code with thermodynamics in a large spherical domain that includes the solar wind. Our model is coupled to 3D MHD flux-emergence simulations, i.e., we use boundary conditions provided by such simulations to drive a time-dependent coronal evolution. The model includes parametric coronal heating, radiative losses, and thermal conduction, which enables us to simulate the dynamics and plasma properties of coronal jets in a more realistic manner than done so far. Here, we employ these simulations to calculate the amount of mass and energy transported by coronal jets into the outer corona and inner heliosphere. Based on observed jet-occurrence rates, we then estimate the total contribution of coronal jets to the mass and energy content of the solar wind to (0.4–3.0)% and (0.3–1.0)%, respectively. Our results are largely consistent with the few previous rough estimates obtained from observations, supporting the conjecture that coronal jets provide only a small amount of mass and energy to the solar wind. We emphasize, however, that more advanced observations and simulations (including parametric studies) are needed to substantiate this conjecture.

  8. Calcium K-line network in coronal holes

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, K A [Hale Observatories, Pasadena, Calif. (USA)

    1977-05-01

    Microphotometry of calcium K-line photographs in the regions of polar coronal holes shows that the chromospheric network exterior to a hole has a slightly broader intensity distribution than that inside the hole itself, a fact which can be attributed to a greater number of bright network elements outside the hole. These bright elements presumably represent the enhanced network resulting from the dispersal of magnetic flux from old active regions, a hypothesis which is consistent with current ideas of coronal hole formation.

  9. Photospheric Driving of Non-Potential Coronal Magnetic Field Simulations

    Science.gov (United States)

    2016-09-19

    synthesize observable emission . In future, the computational speed of the MF model makes it a potential avenue for near- real time and/or ensemble...AFRL-AFOSR-UK-TR-2016-0030 PHOTOSPHERIC DRIVING OF NON-POTENTIAL CORONAL MAGNETIC FIELD SIMULATIONS Anthony Yeates UNIVERSITY OF DURHAM Final Report...Final 3. DATES COVERED (From - To)  15 Sep 2014 to 14 Sep 2017 4. TITLE AND SUBTITLE PHOTOSPHERIC DRIVING OF NON-POTENTIAL CORONAL MAGNETIC FIELD

  10. Culex coronator in coastal Georgia and South Carolina.

    Science.gov (United States)

    Moulis, Robert A; Russell, Jennifer D; Lewandowski, Henry B; Thompson, Pamela S; Heusel, Jeffrey L

    2008-12-01

    In 2007, adult Culex coronator were collected in Chatham County, Georgia, and Jasper County, South Carolina, during nuisance and disease vector surveillance efforts. A total of 75 specimens of this species were collected at 8 widely separated locations in Chatham County, Georgia, and 4 closely situated sites in Jasper County, South Carolina. These represent the first Atlantic coastal records of this species in Georgia and the first confirmed records of Cx. coronator in South Carolina.

  11. Reconstructing the Morphology of an Evolving Coronal Mass Ejection

    Science.gov (United States)

    2009-01-01

    694, 707 Wood, B. E., Howard, R. A ., Thernisien, A ., Plunkett, S. P., & Socker, D. G. 2009b, Sol. Phys., 259, 163 Wood, B. E., Karovska , M., Chen, J...Reconstructing the Morphology of an Evolving Coronal Mass Ejection B. E. Wood, R. A . Howard, D. G. Socker Naval Research Laboratory, Space Science...mission, we empirically reconstruct the time-dependent three-dimensional morphology of a coronal mass ejection (CME) from 2008 June 1, which exhibits

  12. Active Longitude and Coronal Mass Ejection Occurrences

    International Nuclear Information System (INIS)

    Gyenge, N.; Kiss, T. S.; Erdélyi, R.; Singh, T.; Srivastava, A. K.

    2017-01-01

    The spatial inhomogeneity of the distribution of coronal mass ejection (CME) occurrences in the solar atmosphere could provide a tool to estimate the longitudinal position of the most probable CME-capable active regions in the Sun. The anomaly in the longitudinal distribution of active regions themselves is often referred to as active longitude (AL). In order to reveal the connection between the AL and CME spatial occurrences, here we investigate the morphological properties of active regions. The first morphological property studied is the separateness parameter, which is able to characterize the probability of the occurrence of an energetic event, such as a solar flare or CME. The second morphological property is the sunspot tilt angle. The tilt angle of sunspot groups allows us to estimate the helicity of active regions. The increased helicity leads to a more complex buildup of the magnetic structure and also can cause CME eruption. We found that the most complex active regions appear near the AL and that the AL itself is associated with the most tilted active regions. Therefore, the number of CME occurrences is higher within the AL. The origin of the fast CMEs is also found to be associated with this region. We concluded that the source of the most probably CME-capable active regions is at the AL. By applying this method, we can potentially forecast a flare and/or CME source several Carrington rotations in advance. This finding also provides new information for solar dynamo modeling.

  13. Active Longitude and Coronal Mass Ejection Occurrences

    Energy Technology Data Exchange (ETDEWEB)

    Gyenge, N.; Kiss, T. S.; Erdélyi, R. [Solar Physics and Space Plasmas Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom); Singh, T.; Srivastava, A. K., E-mail: n.g.gyenge@sheffield.ac.uk [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi (India)

    2017-03-20

    The spatial inhomogeneity of the distribution of coronal mass ejection (CME) occurrences in the solar atmosphere could provide a tool to estimate the longitudinal position of the most probable CME-capable active regions in the Sun. The anomaly in the longitudinal distribution of active regions themselves is often referred to as active longitude (AL). In order to reveal the connection between the AL and CME spatial occurrences, here we investigate the morphological properties of active regions. The first morphological property studied is the separateness parameter, which is able to characterize the probability of the occurrence of an energetic event, such as a solar flare or CME. The second morphological property is the sunspot tilt angle. The tilt angle of sunspot groups allows us to estimate the helicity of active regions. The increased helicity leads to a more complex buildup of the magnetic structure and also can cause CME eruption. We found that the most complex active regions appear near the AL and that the AL itself is associated with the most tilted active regions. Therefore, the number of CME occurrences is higher within the AL. The origin of the fast CMEs is also found to be associated with this region. We concluded that the source of the most probably CME-capable active regions is at the AL. By applying this method, we can potentially forecast a flare and/or CME source several Carrington rotations in advance. This finding also provides new information for solar dynamo modeling.

  14. Active Longitude and Coronal Mass Ejection Occurrences

    Science.gov (United States)

    Gyenge, N.; Singh, T.; Kiss, T. S.; Srivastava, A. K.; Erdélyi, R.

    2017-03-01

    The spatial inhomogeneity of the distribution of coronal mass ejection (CME) occurrences in the solar atmosphere could provide a tool to estimate the longitudinal position of the most probable CME-capable active regions in the Sun. The anomaly in the longitudinal distribution of active regions themselves is often referred to as active longitude (AL). In order to reveal the connection between the AL and CME spatial occurrences, here we investigate the morphological properties of active regions. The first morphological property studied is the separateness parameter, which is able to characterize the probability of the occurrence of an energetic event, such as a solar flare or CME. The second morphological property is the sunspot tilt angle. The tilt angle of sunspot groups allows us to estimate the helicity of active regions. The increased helicity leads to a more complex buildup of the magnetic structure and also can cause CME eruption. We found that the most complex active regions appear near the AL and that the AL itself is associated with the most tilted active regions. Therefore, the number of CME occurrences is higher within the AL. The origin of the fast CMEs is also found to be associated with this region. We concluded that the source of the most probably CME-capable active regions is at the AL. By applying this method, we can potentially forecast a flare and/or CME source several Carrington rotations in advance. This finding also provides new information for solar dynamo modeling.

  15. Geometric Model of a Coronal Cavity

    Science.gov (United States)

    Kucera, Therese A.; Gibson, S. E.; Ratawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Reeves, K. K.; hide

    2010-01-01

    We observed a coronal cavity from August 8-18 2007 during a multi-instrument observing campaign organized under the auspices of the International Heliophysical Year (IHY). Here we present initial efforts to model the cavity with a geometrical streamer-cavity model. The model is based the white-light streamer mode] of Gibson et a]. (2003 ), which has been enhanced by the addition of a cavity and the capability to model EUV and X-ray emission. The cavity is modeled with an elliptical cross-section and Gaussian fall-off in length and width inside the streamer. Density and temperature can be varied in the streamer and cavity and constrained via comparison with data. Although this model is purely morphological, it allows for three-dimensional, multi-temperature analysis and characterization of the data, which can then provide constraints for future physical modeling. Initial comparisons to STEREO/EUVI images of the cavity and streamer show that the model can provide a good fit to the data. This work is part of the effort of the International Space Science Institute International Team on Prominence Cavities

  16. Guided flows in coronal magnetic flux tubes

    Science.gov (United States)

    Petralia, A.; Reale, F.; Testa, P.

    2018-01-01

    Context. There is evidence that coronal plasma flows break down into fragments and become laminar. Aims: We investigate this effect by modelling flows confined along magnetic channels. Methods: We consider a full magnetohydrodynamic (MHD) model of a solar atmosphere box with a dipole magnetic field. We compare the propagation of a cylindrical flow perfectly aligned with the field to that of another flow with a slight misalignment. We assume a flow speed of 200 km s-1 and an ambient magnetic field of 30 G. Results: We find that although the aligned flow maintains its cylindrical symmetry while it travels along the magnetic tube, the misaligned one is rapidly squashed on one side, becoming laminar and eventually fragmented because of the interaction and back-reaction of the magnetic field. This model could explain an observation made by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory of erupted fragments that fall back onto the solar surface as thin and elongated strands and end up in a hedge-like configuration. Conclusions: The initial alignment of plasma flow plays an important role in determining the possible laminar structure and fragmentation of flows while they travel along magnetic channels. Movies are available in electronic form at http://www.aanda.org

  17. ANATOMY OF DEPLETED INTERPLANETARY CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.; Manchester, W. B. IV, E-mail: mkocher@umich.edu [Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2017-01-10

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE /SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C{sup 6+}/C{sup 5+} and O{sup 7+}/O{sup 6+} depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property of significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.

  18. A Catalog of Coronal "EIT Wave" Transients

    Science.gov (United States)

    Thompson, B. J.; Myers, D. C.

    2009-01-01

    Solar and Heliospheric Observatory (SOHO) Extreme ultraviolet Imaging Telescope (EIT) data have been visually searched for coronal "EIT wave" transients over the period beginning from 1997 March 24 and extending through 1998 June 24. The dates covered start at the beginning of regular high-cadence (more than one image every 20 minutes) observations, ending at the four-month interruption of SOHO observations in mid-1998. One hundred and seventy six events are included in this catalog. The observations range from "candidate" events, which were either weak or had insufficient data coverage, to events which were well defined and were clearly distinguishable in the data. Included in the catalog are times of the EIT images in which the events are observed, diagrams indicating the observed locations of the wave fronts and associated active regions, and the speeds of the wave fronts. The measured speeds of the wave fronts varied from less than 50 to over 700 km s(exp -1) with "typical" speeds of 200-400 km s(exp -1).

  19. A CATALOG OF CORONAL 'EIT WAVE' TRANSIENTS

    International Nuclear Information System (INIS)

    Thompson, B. J.; Myers, D. C.

    2009-01-01

    Solar and Heliospheric Observatory (SOHO) Extreme ultraviolet Imaging Telescope (EIT) data have been visually searched for coronal 'EIT wave' transients over the period beginning from 1997 March 24 and extending through 1998 June 24. The dates covered start at the beginning of regular high-cadence (more than 1 image every 20 minutes) observations, ending at the four-month interruption of SOHO observations in mid-1998. One hundred and seventy six events are included in this catalog. The observations range from 'candidate' events, which were either weak or had insufficient data coverage, to events which were well defined and were clearly distinguishable in the data. Included in the catalog are times of the EIT images in which the events are observed, diagrams indicating the observed locations of the wave fronts and associated active regions, and the speeds of the wave fronts. The measured speeds of the wave fronts varied from less than 50 to over 700 km s -1 with 'typical' speeds of 200-400 km s -1 .

  20. Evidence linking coronal mass ejections with interplanetary magnetic clouds

    International Nuclear Information System (INIS)

    Wilson, R.M.; Hildner, E.

    1983-12-01

    Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking. Six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients

  1. New Evidence that Magnetoconvection Drives Solar–Stellar Coronal Heating

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy R. [NASA Marshall Space Flight Center, Mail Code ST 13, Huntsville, AL 35812 (United States); Thalmann, Julia K., E-mail: sanjivtiwari80@gmail.com [Institute of Physics/IGAM, University of Graz, Universittsplatz 5/II, A-8010 Graz (Austria)

    2017-07-10

    How magnetic energy is injected and released in the solar corona, keeping it heated to several million degrees, remains elusive. Coronal heating generally increases with increasing magnetic field strength. From a comparison of a nonlinear force-free model of the three-dimensional active region coronal field to observed extreme-ultraviolet loops, we find that (1) umbra-to-umbra coronal loops, despite being rooted in the strongest magnetic flux, are invisible, and (2) the brightest loops have one foot in an umbra or penumbra and the other foot in another sunspot’s penumbra or in unipolar or mixed-polarity plage. The invisibility of umbra-to-umbra loops is new evidence that magnetoconvection drives solar-stellar coronal heating: evidently, the strong umbral field at both ends quenches the magnetoconvection and hence the heating. Broadly, our results indicate that depending on the field strength in both feet, the photospheric feet of a coronal loop on any convective star can either engender or quench coronal heating in the loop’s body.

  2. THE CORONAL ABUNDANCES OF MID-F DWARFS

    International Nuclear Information System (INIS)

    Wood, Brian E.; Laming, J. Martin

    2013-01-01

    A Chandra spectrum of the moderately active nearby F6 V star π 3 Ori is used to study the coronal properties of mid-F dwarfs. We find that π 3 Ori's coronal emission measure distribution is very similar to those of moderately active G and K dwarfs, with an emission measure peak near log T = 6.6 seeming to be ubiquitous for such stars. In contrast to coronal temperature, coronal abundances are known to depend on spectral type for main sequence stars. Based on this previously known relation, we expected π 3 Ori's corona to exhibit an extremely strong ''first ionization potential (FIP) effect'', a phenomenon first identified on the Sun where elements with low FIP are enhanced in the corona. We instead find that π 3 Ori's corona exhibits a FIP effect essentially identical to that of the Sun and other early G dwarfs, perhaps indicating that the increase in FIP bias toward earlier spectral types stops or at least slows for F stars. We find that π 3 Ori's coronal characteristics are significantly different from two previously studied mid-F stars, Procyon (F5 IV-V) and τ Boo (F7 V). We believe π 3 Ori is more representative of the coronal characteristics of mid-F dwarfs, with Procyon being different because of luminosity class, and τ Boo being different because of the effects of one of two close companions, one stellar (τ Boo B: M2 V) and one planetary.

  3. Comparative Study of Skeletal Stability between Postoperative Skeletal Intermaxillary Fixation and No Skeletal Fixation after Bilateral Sagittal Split Ramus Osteotomy

    DEFF Research Database (Denmark)

    Hartlev, Jens; Godtfredsen, Erik; Andersen, Niels Trolle

    2014-01-01

    OBJECTIVES: The purpose of the present study was to evaluate skeletal stability after mandibular advancement with bilateral sagittal split osteotomy. MATERIAL AND METHODS: Twenty-six patients underwent single-jaw bilateral sagittal split osteotomy (BSSO) to correct skeletal Class II malocclusion....

  4. Gravitational Couplings for Gop-Planes and y-Op-Planes

    OpenAIRE

    Giraldo, Juan Fernando Ospina

    2000-01-01

    The Wess-Zumino actions for generalized orientifold planes (GOp-planes) and y-deformed orientifold planes (yOp-planes) are presented and two series power expantions are realized from whiches processes that involves GOp-planes,yOp-planes, RR-forms, gravitons and gaugeons, are obtained. Finally non-standard GOp-planes and y-Op-planes are showed.

  5. Influence of the sagittal anatomy of the pelvis on the intercrestal line position.

    Science.gov (United States)

    Horduna, M; Legaye, J

    2008-03-01

    The line joining the two iliac crests is classically regarded as the anatomical landmark determining the inter-vertebral space L4-L5 for the spinal punctures. Its variability has been reported but never related to predictive clinical anatomic factors identifying patients groups in which there is increased risk of miscalculation of the spinal level. Two sagittal pelvic anatomical angles, called 'pelvic incidence' and 'pelvic lordosis' were measured on lateral X-rays of the pelvis of 132 normal individuals and 49 spondylolysis patients. The values were compared with the sagittal projection of the intercrestal line on the disco-vertebral lumbar structures. A strict relation was observed between this projection of the intercrestal line and the sagittal pelvic anatomical angles. The greater the pelvic incidence, the higher the intercrestal line was projected, all the more in patients with spondylolysis with a listhesis or a disc narrowing. The relation between the pelvic sagittal angles and the intercrestal line projection explains the variability described for this anatomical landmark. It implies precautions minimizing neurological risk in the case of a puncture carried out more cranially than expected, particularly for high values of pelvic incidence occurring in spinal pathologies such as spondylolysis, in the elderly or in the obese patients. In these cases, we recommend the use of spinal imaging during the procedure to assist selection of the desired insertion level.

  6. Direct sagittal CT scanning in the diagnosis of pituitary fossa tumours and posterior fossa pathology

    International Nuclear Information System (INIS)

    Podlas, H.

    1981-01-01

    Two independent methods are presented for multidirectional CT scanning of the brain using the Philips Tomoscan 300. The advantages in scanning pituitary fossa tumours and pathology of the posterior fossa are discussed. No additional software or modifications are required. Direct sagittal scanning is particularly advantageous for accurate assessment of the size of pituitary tumours and intrasellar lesions requiring surgical intervention or radiation therapy. (Auth.)

  7. INFLUENCE OF THE SAGITTAL BALANCE ON THE CLINICAL OUTCOME IN SPINAL FUSION

    Directory of Open Access Journals (Sweden)

    Marcela Almeida Campos Coutinho

    2016-03-01

    Full Text Available ABSTRACT Objective: Evaluates which radiographic parameters of the sagittal and spinopelvic balance influence the clinical and functional outcomes of a sample of patients undergoing spinal fusion. Methods: We studied 32 patients who underwent spinal fusion. Radiographs of the total spine were obtained from all patients. The clinical and functional parameters studied were analysis of pain by visual analogic scale (VAS and Oswestry and SRS-30 questionnaires. We analyzed the correlation between the clinical and functional parameters and radiographic parameters of the sagittal and spinopelvic balance. Results: There was no significant correlation between parameters pelvic incidence (PI, pelvic tilt (PT, lumbar lordosis (LL and difference between PI and LL (PI-LL and clinical parameters (p > 0.05 and r <0.2. Significant correlation were identified only between Sagittal Vertical Axis (SVA and Satisfaction with Treatment domain of SRS-30 (r = 0.402 e p = 0.023 and between thoracic kyphosis (TK and the total SRS-30 (r = 0.419 and p = 0.017. Conclusions: According to the study results, it was not possible to precisely characterize the role of the parameters of the sagittal and spinopelvic balance in the post-operative analysis of the clinical outcome of spinal fusion. There was a significant correlation only between SVA and the Satisfaction with Treatment domain of SRS-30 and between TK and total SRS-30.

  8. Relationship between thoracic hypokyphosis, lumbar lordosis and sagittal pelvic parameters in adolescent idiopathic scoliosis.

    Science.gov (United States)

    Clément, Jean-Luc; Geoffray, Anne; Yagoubi, Fatima; Chau, Edouard; Solla, Federico; Oborocianu, Ioana; Rampal, Virginie

    2013-11-01

    Sagittal spine and pelvic alignment of adolescent idiopathic scoliosis (AIS) is poorly described in the literature. It generally reports the sagittal alignment with regard to the type of curve and never correlated to the thoracic kyphosis. The objective of this study is to investigate the relationship between thoracic kyphosis, lumbar lordosis and sagittal pelvic parameters in thoracic AIS. Spinal and pelvic sagittal parameters were evaluated on lateral radiographs of 86 patients with thoracic AIS; patients were separated into hypokyphosis group (n = 42) and normokyphosis group (n = 44). Results were statistically analyzed. The lumbar lordosis was lower in the hypokyphosis group, due to the low proximal lordosis. The thoracic kyphosis was not correlated with any pelvic parameters but with the proximal lordosis. The pelvic incidence was correlated with sacral slope, pelvic tilt, lumbar lordosis and highly correlated with distal lumbar lordosis in the two groups. There was a significant linear regression between thoracic kyphosis and proximal lordosis and between pelvic incidence and distal lordosis. We can consider that the proximal part of the lordosis depends on the thoracic kyphosis and the distal part depends on the pelvic incidence. The hypokyphosis in AIS is independent of the pelvic parameters and could be described as a structural parameter, characteristic of the scoliotic deformity.

  9. Anterior sagittal transanorectal approach to the posterior urethra in the pediatric age group.

    Science.gov (United States)

    Rossi, F; De Castro, R; Ceccarelli, P L; Dòmini, R

    1998-09-01

    Surgical access to the posterior urethra is often difficult and several surgical solutions have been proposed. We suggest an anterior sagittal transanorectal approach based on splitting the anterior rectal wall only. This alternative technique provides excellent exposure to the retrourethral region, permitting simple and safe surgery. Between 1994 and 1996 we performed surgery via the anterior sagittal transanorectal approach in 8 patients with a mean age of 9.06 years. Patients included 1 girl with a posttraumatic urethrovaginal fistula, 3 with intersex disorders (2 with mixed gonadal dysgenesis raised as boys and 1 with male dysgenetic pseudohermaphroditism with an enlarged urtricle) and 4 boys (1 with penile agenesis raised as girl, 2 with urethral duplication and 1 with prostatic rhabdomyosarcoma). The patient was placed in a knee-chest position. A midline sagittal incision was made through the anterior anorectal wall only and deepened through the perineal body to expose the posterior urethra and retrovesical space. After the pathological condition was corrected the anterior rectal wall and perineal body were reconstructed. The operation was completed with protective colostomy. In our final patient with prostatic rhabdomyosarcoma the anterior sagittal transanorectal approach was used without colostomy. Anorectal manometry was done 6 months postoperatively. All patients were completely continent of stool and urine. Convalescence was unremarkable in all cases. Postoperative manometry in 7 patients revealed no differences from preoperative measurements. This procedure should be considered a useful alternative to other techniques for various congenital and acquired pelvic disorders.

  10. Reliability of the xipho-pubic angle in patients with sagittal imbalance of the spine.

    Science.gov (United States)

    Langella, Francesco; Villafañe, Jorge H; Ismael, Maryem; Buric, Josip; Piazzola, Andrea; Lamartina, Claudio; Berjano, Pedro

    2018-04-01

    Proximal junctional kyphosis (PJK) is a frequent complication that compromises the outcomes of spinal surgery, especially for adult deformity. To the date no single risk factor or cause has been identified that explains its occurrence. The purpose of this study was to investigate the test-retest reliability of the radiologic measurements using xipho-pubic angle (XPA) for subjects undergoing surgery for sagittal misalignment of the spine. Retrospective observational cross-sectional study of prospectively collected data. Full-spine standing lateral radiographs of 50 patients who underwent surgery for fixed sagittal imbalance (preoperative and postoperative) were evaluated. Internal consistency, reproducibility, concurrent validity, and discriminative ability of the XPA. Two physicians measured XPA on the 100 randomly sorted and anonymized radiographs on two occasions, one week apart (test and retest conditions), were calculated for inter and intraobserver agreement. Test-retest reliability of XPA measurement was excellent for pre- (ICC=0.98; P=0.001) and post-surgical (ICC=0.86; P=0.001) radiographs of subjects with sagittal imbalance of the spine. XPA was able to discriminate between preoperative and postoperative radiographs F=17.924, Pimbalance for both raters. There were significant differences between pre- vs. postoperative XPA, pelvic tilt, lumbar lordosis and sagittal vertical axis values (all Pimbalance.

  11. Cost, operation and hospitalization times in distraction osteogenesis versus sagittal split osteotomy

    NARCIS (Netherlands)

    van Strijen, P. J.; Breuning, K. H.; Becking, A. G.; Perdijk, F. B. T.; Tuinzing, D. B.

    2003-01-01

    Distraction osteogenesis in 'common' surgical orthodontics is mentioned as an alternative for conventional sagittal split osteotomy. After a 'learning curve' in the surgical skills of distraction, the two techniques can be compared concerning time and cost aspects. Forty-seven patients (male n=28,

  12. Conceptual Design of Wave Plane

    DEFF Research Database (Denmark)

    Frigaard, Peter; Trewers, Andrew; Kofoed, Jens Peter

    The Wave Plane is a patented Wave Energy device of the overtopping type, designed to capture potential as well as kinetic energy. This is as such different to other overtopping devices, who usually only focus on potential energy. If Wave Plane A/S can deliver the turbine technology to utilize both...

  13. Sagittal synostosis in X-linked hypophosphatemic rickets and related diseases

    Energy Technology Data Exchange (ETDEWEB)

    Currarino, Guido [Texas Scottish Rite Hospital, Department of Radiology, Dallas, TX (United States)

    2007-08-15

    The recent observations of two new cases of X-linked hypophosphatemic rickets associated with premature closure of the sagittal suture prompted a review of similar cases seen in this institution. To review the clinical records and skull radiographs of 28 children with hypophosphatemic rickets in order to investigate the frequency and type of craniosynostosis and other cranial vault changes seen in these conditions and to review the literature for relevant findings. Clinical and imaging records were reviewed on 28 patients with hypophosphatemic rickets, all younger than 18 years. Most patients had X-linked hypophosphatemic rickets and a few had autosomal-dominant hypophosphatemic rickets or were non-familial cases. Of the 28 patients, 13 had sagittal synostosis. Dolichocephaly was present in ten patients. The configuration of the cranial vault in some of these ten patients with dolichocephaly varied somewhat from that seen in nonsyndromic sagittal synostosis. In one patient, a Chiari I malformation was demonstrated by MRI. In another patient with increased intracranial pressure the sagittal suture closure was associated with lambdoidal synostosis. Dolichocephaly was not present in three patients, suggesting that the synostosis started later than in the other patients, probably in the second year of life, a period of slower brain growth than in the first year. The two patients in this group of three showed thickening and sclerosis of the cranial vault of uncertain etiology. There is an increased risk of sagittal synostosis in hypophosphatemic rickets and related diseases in children. The appearance of the cranial vault in this type of synostosis can vary from that seen in nonsyndromic synostosis. In this setting, careful clinical and imaging follow-up is warranted. (orig.)

  14. Sagittal synostosis in X-linked hypophosphatemic rickets and related diseases

    International Nuclear Information System (INIS)

    Currarino, Guido

    2007-01-01

    The recent observations of two new cases of X-linked hypophosphatemic rickets associated with premature closure of the sagittal suture prompted a review of similar cases seen in this institution. To review the clinical records and skull radiographs of 28 children with hypophosphatemic rickets in order to investigate the frequency and type of craniosynostosis and other cranial vault changes seen in these conditions and to review the literature for relevant findings. Clinical and imaging records were reviewed on 28 patients with hypophosphatemic rickets, all younger than 18 years. Most patients had X-linked hypophosphatemic rickets and a few had autosomal-dominant hypophosphatemic rickets or were non-familial cases. Of the 28 patients, 13 had sagittal synostosis. Dolichocephaly was present in ten patients. The configuration of the cranial vault in some of these ten patients with dolichocephaly varied somewhat from that seen in nonsyndromic sagittal synostosis. In one patient, a Chiari I malformation was demonstrated by MRI. In another patient with increased intracranial pressure the sagittal suture closure was associated with lambdoidal synostosis. Dolichocephaly was not present in three patients, suggesting that the synostosis started later than in the other patients, probably in the second year of life, a period of slower brain growth than in the first year. The two patients in this group of three showed thickening and sclerosis of the cranial vault of uncertain etiology. There is an increased risk of sagittal synostosis in hypophosphatemic rickets and related diseases in children. The appearance of the cranial vault in this type of synostosis can vary from that seen in nonsyndromic synostosis. In this setting, careful clinical and imaging follow-up is warranted. (orig.)

  15. The Influence of Natural Head Position on the Cervical Sagittal Alignment

    Directory of Open Access Journals (Sweden)

    Kuan Wang

    2017-01-01

    Full Text Available Introduction. This study investigated the relationship between the parameters related to the natural head position and cervical segmental angles and alignment of patients with neck pain. Material and Methods. The lateral radiographs of the cervical spine were collected from 103 patients and were used to retrospectively analyze the correlation between the natural head position, cervical local sagittal angles, and alignment. Sagittal measurements were as follows: cervical curvature classification, slope of McGregor’s line (McGS, local sagittal angles (C0–C2 angle, C2–C5 angle, C5–C7 angle, and C2–C7 angle, T1 slope, center of gravity of the head to sagittal vertical axis (CG–C7 SVA, and local sagittal alignment (C0–C2 SVA and C2–C7 SVA. Results. McGS was significantly correlated to C0–C2 angle (r=0.57, C0–C2 SVA (r=−0.53, C2–C7 SVA (r=−0.28, and CG–C7 SVA (r=−0.47. CG–C7 SVA was also significantly correlated to curvature type (r=0.27, C5–C7 angle (r=−0.37, and C2–C7 angle (r=−0.39. Conclusions. A backward shift with an extended head position may accompany a relatively normal curvature of the cervical spine. The effect of posture control in relieving abnormal mechanical state of the cervical spine needs to be further confirmed by biomechanical analysis.

  16. ON THE RELATIONSHIP BETWEEN THE CORONAL MAGNETIC DECAY INDEX AND CORONAL MASS EJECTION SPEED

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yan; Liu Chang; Jing Ju; Wang Haimin, E-mail: yx2@njit.edu [Space Weather Research Lab, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102-1982 (United States)

    2012-12-10

    Numerical simulations suggest that kink and torus instabilities are two potential contributors to the initiation and prorogation of eruptive events. A magnetic parameter called the decay index (i.e., the coronal magnetic gradient of the overlying fields above the eruptive flux ropes) could play an important role in controlling the kinematics of eruptions. Previous studies have identified a threshold range of the decay index that distinguishes between eruptive and confined configurations. Here we advance the study by investigating if there is a clear correlation between the decay index and coronal mass ejection (CME) speed. Thirty-eight CMEs associated with filament eruptions and/or two-ribbon flares are selected using the H{alpha} data from the Global H{alpha} Network. The filaments and flare ribbons observed in H{alpha} associated with the CMEs help to locate the magnetic polarity inversion line, along which the decay index is calculated based on the potential field extrapolation using Michelson Doppler Imager magnetograms as boundary conditions. The speeds of CMEs are obtained from the LASCO C2 CME catalog available online. We find that the mean decay index increases with CME speed for those CMEs with a speed below 1000 km s{sup -1} and stays flat around 2.2 for the CMEs with higher speeds. In addition, we present a case study of a partial filament eruption, in which the decay indices show different values above the erupted/non-erupted part.

  17. Comparison of accuracy of uncorrected and corrected sagittal tomography in detection of mandibular condyle erosions: An exvivo study

    Directory of Open Access Journals (Sweden)

    Asieh Zamani Naser

    2010-01-01

    Full Text Available Background: Radiographic examination of TMJ is indicated when there are clinical signs of pathological conditions, mainly bone changes that may influence the diagnosis and treatment planning. The purpose of this study was to evaluate and to compare the validity and diagnostic accuracy of uncorrected and corrected sagittal tomographic images in the detection of simulated mandibular condyle erosions. Methods : Simulated lesions were created in 10 dry mandibles using a dental round bur. Using uncorrected and corrected sagittal tomography techniques, mandibular condyles were imaged by a Cranex Tome X-ray unit before and after creating the lesions. The uncorrected and corrected tomography images were examined by two independent observers for absence or presence of a lesion. The accuracy for detecting mandibular condyle lesions was expressed as sensitivity, specificity, and validity values. Differences between the two radiographic modalities were tested by Wilcoxon for paired data tests. Inter-observer agreement was determined by Cohen′s Kappa. Results: The sensitivity, specificity and validity were 45%, 85% and 30% in uncorrected sagittal tomographic images, respectively, and 70%, 92.5% and 60% in corrected sagittal tomographic images, respectively. There was a significant statistical difference between the accuracy of uncorrected and corrected sagittal tomography in detection of mandibular condyle erosions (P = 0.016. The inter-observer agreement was slight for uncorrected sagittal tomography and moderate for corrected sagittal tomography. Conclusion: The accuracy of corrected sagittal tomography is significantly higher than that of uncorrected sagittal tomography. Therefore, corrected sagittal tomography seems to be a better modality in detection of mandibular condyle erosions.

  18. The Longitudinal Evolution of Equatorial Coronal Holes

    Science.gov (United States)

    Krista, Larisza D.; McIntosh, Scott W.; Leamon, Robert J.

    2018-04-01

    In 2011, three satellites—the Solar-Terrestrial RElations Observatory A & B, and the Solar Dynamics Observatory (SDO)—were in a unique spatial alignment that allowed a 360° view of the Sun. This alignment lasted until 2014, the peak of solar cycle 24. Using extreme ultraviolet images and Hovmöller diagrams, we studied the lifetimes and propagation characteristics of coronal holes (CHs) in longitude over several solar rotations. Our initial results show at least three distinct populations of “low-latitude” or “equatorial” CHs (below 65^\\circ latitude). One population rotates in retrograde direction and coincides with a group of long-lived (over sixty days) CHs in each hemisphere. These are typically located between 30° and 55^\\circ , and display velocities of ∼55 m s‑1 slower than the local differential rotation rate. A second, smaller population of CHs rotate prograde, with velocities between ∼20 and 45 m s‑1. This population is also long-lived, but observed ±10° from the solar equator. A third population of CHs are short-lived (less than two solar rotations), and they appear over a wide range of latitudes (±65°) and exhibit velocities between ‑140 and 80 m s‑1. The CH “butterfly diagram” we developed shows a systematic evolution of the longer-lived holes; however, the sample is too short in time to draw conclusions about possible connections to dynamo-related phenomena. An extension of the present work to the 22 years of the combined SOHO–SDO archives is necessary to understand the contribution of CHs to the decadal-scale evolution of the Sun.

  19. Coronal mass ejections and solar radio bursts

    International Nuclear Information System (INIS)

    Kundu, M.R.

    1990-01-01

    The properties of coronal mass ejection (CME) events and their radio signatures are discussed. These signatures are mostly in the form of type II and type IV burst emissions. Although type II bursts are temporally associated with CMEs, it is shown that there is no spatial relationship between them. Type II's associated with CMEs have in most cases a different origin, and they are not piston-driven by CMEs. Moving type IV and type II bursts can be associated with slow CMEs with speeds as low as 200 km/s, contrary to the earlier belief that only CMEs with speeds >400 km/s are associated with radio bursts. A specific event has been discussed in which the CME and type IV burst has nearly the same speed and direction, but the type II burst location was behind the CME and its motion was transverse. The speed and motion of the type II burst strongly suggest that the type II shock was decoupled from the CME and was probably due to a flare behind the limb. Therefore only the type IV source could be directly associated with the slow CME. The electrons responsble for the type IV emission could be produced in the flare or in the type II and then become trapped in a plasmoid associated with the CME. The reconnected loop could then move outwards as in the usual palsmoid model. Alternatively, the type IV emission could be interpreted as due to electrons produced by acceleration in wave turbulence driven by currents in the shock front driven by the CME. The lower-hybrid model Lampe and Papadopoulos (1982), which operates at both fast and slow mode shocks, could be applied to this situation. (author). 31 refs., 12 figs

  20. Deviation of landmarks in accordance with methods of establishing reference planes in three-dimensional facial CT evaluation.

    Science.gov (United States)

    Yoon, Kaeng Won; Yoon, Suk-Ja; Kang, Byung-Cheol; Kim, Young-Hee; Kook, Min Suk; Lee, Jae-Seo; Palomo, Juan Martin

    2014-09-01

    This study aimed to investigate the deviation of landmarks from horizontal or midsagittal reference planes according to the methods of establishing reference planes. Computed tomography (CT) scans of 18 patients who received orthodontic and orthognathic surgical treatment were reviewed. Each CT scan was reconstructed by three methods for establishing three orthogonal reference planes (namely, the horizontal, midsagittal, and coronal reference planes). The horizontal (bilateral porions and bilateral orbitales) and midsagittal (crista galli, nasion, prechiasmatic point, opisthion, and anterior nasal spine) landmarks were identified on each CT scan. Vertical deviation of the horizontal landmarks and horizontal deviation of the midsagittal landmarks were measured. The porion and orbitale, which were not involved in establishing the horizontal reference plane, were found to deviate vertically from the horizontal reference plane in the three methods. The midsagittal landmarks, which were not used for the midsagittal reference plane, deviated horizontally from the midsagittal reference plane in the three methods. In a three-dimensional facial analysis, the vertical and horizontal deviations of the landmarks from the horizontal and midsagittal reference planes could vary depending on the methods of establishing reference planes.

  1. Deviation of landmarks in accordance with methods of establishing reference planes in three-dimensional facial CT evaluation

    International Nuclear Information System (INIS)

    Yoon, Kaeng Won; Yoon, Suk Ja; Kang, Byung Cheol; Kook, Min Suk; Lee, Jae Seo; Kim, Young Hee; Palomo, Juan Martin

    2014-01-01

    This study aimed to investigate the deviation of landmarks from horizontal or midsagittal reference planes according to the methods of establishing reference planes. Computed tomography (CT) scans of 18 patients who received orthodontic and orthognathic surgical treatment were reviewed. Each CT scan was reconstructed by three methods for establishing three orthogonal reference planes (namely, the horizontal, midsagittal, and coronal reference planes). The horizontal (bilateral porions and bilateral orbitales) and midsagittal (crista galli, nasion, prechiasmatic point, opisthion, and anterior nasal spine) landmarks were identified on each CT scan. Vertical deviation of the horizontal landmarks and horizontal deviation of the midsagittal landmarks were measured. The porion and orbitale, which were not involved in establishing the horizontal reference plane, were found to deviate vertically from the horizontal reference plane in the three methods. The midsagittal landmarks, which were not used for the midsagittal reference plane, deviated horizontally from the midsagittal reference plane in the three methods. In a three-dimensional facial analysis, the vertical and horizontal deviations of the landmarks from the horizontal and midsagittal reference planes could vary depending on the methods of establishing reference planes.

  2. Deviation of landmarks in accordance with methods of establishing reference planes in three-dimensional facial CT evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kaeng Won; Yoon, Suk Ja; Kang, Byung Cheol; Kook, Min Suk; Lee, Jae Seo [School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju (Korea, Republic of); Kim, Young Hee [Dept. of Oral and Maxillofacial Radiology, Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of); Palomo, Juan Martin [Dept. of Orthodontics, School of Dental Medicine, Case Western Reserve University, Cleveland (Korea, Republic of)

    2014-09-15

    This study aimed to investigate the deviation of landmarks from horizontal or midsagittal reference planes according to the methods of establishing reference planes. Computed tomography (CT) scans of 18 patients who received orthodontic and orthognathic surgical treatment were reviewed. Each CT scan was reconstructed by three methods for establishing three orthogonal reference planes (namely, the horizontal, midsagittal, and coronal reference planes). The horizontal (bilateral porions and bilateral orbitales) and midsagittal (crista galli, nasion, prechiasmatic point, opisthion, and anterior nasal spine) landmarks were identified on each CT scan. Vertical deviation of the horizontal landmarks and horizontal deviation of the midsagittal landmarks were measured. The porion and orbitale, which were not involved in establishing the horizontal reference plane, were found to deviate vertically from the horizontal reference plane in the three methods. The midsagittal landmarks, which were not used for the midsagittal reference plane, deviated horizontally from the midsagittal reference plane in the three methods. In a three-dimensional facial analysis, the vertical and horizontal deviations of the landmarks from the horizontal and midsagittal reference planes could vary depending on the methods of establishing reference planes.

  3. CME Interaction with Coronal Holes and Their Interplanetary Consequences

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Xie, H.; Akiyama, S.; Yashiro, S.

    2008-01-01

    A significant number of interplanetary (IP) shocks (-17%) during cycle 23 were not followed by drivers. The number of such "driverless" shocks steadily increased with the solar cycle with 15%, 33%, and 52% occurring in the rise, maximum, and declining phase of the solar cycle. The solar sources of 15% of the driverless shocks were very close the central meridian of the Sun (within approx.15deg), which is quite unexpected. More interestingly, all the driverless shocks with their solar sources near the solar disk center occurred during the declining phase of solar cycle 23. When we investigated the coronal environment of the source regions of driverless shocks, we found that in each case there was at least one coronal hole nearby suggesting that the coronal holes might have deflected the associated coronal mass ejections (CMEs) away from the Sun-Earth line. The presence of abundant low-latitude coronal holes during the declining phase further explains why CMEs originating close to the disk center mimic the limb CMEs, which normally lead to driverless shocks due to purely geometrical reasons. We also examined the solar source regions of shocks with drivers. For these, the coronal holes were located such that they either had no influence on the CME trajectories. or they deflected the CMEs towards the Sun-Earth line. We also obtained the open magnetic field distribution on the Sun by performing a potential field source surface extrapolation to the corona. It was found that the CMEs generally move away from the open magnetic field regions. The CME-coronal hole interaction must be widespread in the declining phase, and may have a significant impact on the geoeffectiveness of CMEs.

  4. Space- and Ground-based Coronal Spectro-Polarimetry

    Science.gov (United States)

    Fineschi, Silvano; Bemporad, Alessandro; Rybak, Jan; Capobianco, Gerardo

    This presentation gives an overview of the near-future perspectives of ultraviolet and visible-light spectro-polarimetric instrumentation for probing coronal magnetism from space-based and ground-based observatories. Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter - has been recently installed on the Lomnicky Peak Observatory 20cm Zeiss coronagraph. The preliminary results from CorMag will be presented. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include the capability of imaging polarimetry of the HI Lyman-alpha, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. This presentation will describe how in future re-flights SCORE could observe the expected Hanle effect in corona with a HI Lyman-alpha polarimeter.

  5. Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F-Coronal Brightness

    Science.gov (United States)

    Ragot, B. R.; Kahler, S. W.

    2003-01-01

    The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Solar Radius. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs. acting on the dust in the 3-5 Solar Radius region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Solar Radius. for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (greater than or approx. 3 microns) dust grains. hence faster depletion rates and lower dust-pain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 microns) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness. the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 100% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (less than or approx. 3 microns) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital

  6. Magnetic Resonance Angiography of the pulmonary veins: TOF 3D versus 2D

    International Nuclear Information System (INIS)

    Carriero, Alessandro; Magarelli, Nicola; Gatta, Stefania; Pinto, Dario; Bonomo, Lorenzo; Baratto, Michele; Scapati, Carmelo

    1997-01-01

    The aim of this work was to optimize the magnetic resonance angiography (MRA) technique for the selective study of the pulmonary veins. Twenty patients (13 men and 7 women; mean age: 30.5 years) were examined. MRA was performed with a 1 T superconductive magnet and the 3D time of flight (TOF) technique. Fast sequences (3D FISP : TR 58 ms, TE 6 ms, FA 20 deg, matrix 192 x 256; and 2D FLASH: TR 44 ms, TE 10 ms, FA 30 deg, matrix 192 x 256) were used. Coronal and sagittal images were submitted to MIP processing; presaturation pulses for the pulmonary arteries were located in the mediastinal region. In the right lung 3D TOF on the coronal plane well showed 124 veins, while sagittal images showed 106 veins. In the left lung, 3D TOF on the coronal plane well showed 96 vessels, while sagittal images showed 44 vessels. In the right lung, 2D TOF on the coronal plane well showed 54 veins, while sagittal images showed 36 vessels. In the left lung, 2D TOF on the coronal plane well showed 22 vessels, while sagittal images showed 21 vessels. Therefore 3D TOF yielded better than 2D TOF (p<0.05). To conclude, 3D TOF with contrast agent administration is a useful tool to study the pulmonary veins; those with a larger caliber are better depicted and the integration of coronal and sagittal images depicts more veins

  7. Characterizing head motion in three planes during combined visual and base of support disturbances in healthy and visually sensitive subjects.

    Science.gov (United States)

    Keshner, E A; Dhaher, Y

    2008-07-01

    Multiplanar environmental motion could generate head instability, particularly if the visual surround moves in planes orthogonal to a physical disturbance. We combined sagittal plane surface translations with visual field disturbances in 12 healthy (29-31 years) and 3 visually sensitive (27-57 years) adults. Center of pressure (COP), peak head angles, and RMS values of head motion were calculated and a three-dimensional model of joint motion was developed to examine gross head motion in three planes. We found that subjects standing quietly in front of a visual scene translating in the sagittal plane produced significantly greater (pplane of platform motion significantly increased (phistory of vestibular disorder produced large, delayed compensatory head motion. Orthogonal head motions were significantly greater in visually sensitive than in healthy subjects in the dark (pplanes orthogonal to the direction of a physical perturbation. These results suggest that the mechanisms controlling head orientation in space are distinct from those that control trunk orientation in space. These behaviors would have been missed if only COP data were considered. Data suggest that rehabilitation training can be enhanced by combining visual and mechanical perturbation paradigms.

  8. Optimizing Global Coronal Magnetic Field Models Using Image-Based Constraints

    Science.gov (United States)

    Jones-Mecholsky, Shaela I.; Davila, Joseph M.; Uritskiy, Vadim

    2016-01-01

    The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field, an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of this approach on two theoretical problems, and discuss opportunities for application.

  9. Generating asymptotically plane wave spacetimes

    International Nuclear Information System (INIS)

    Hubeny, Veronika E.; Rangamani, Mukund

    2003-01-01

    In an attempt to study asymptotically plane wave spacetimes which admit an event horizon, we find solutions to vacuum Einstein's equations in arbitrary dimension which have a globally null Killing field and rotational symmetry. We show that while such solutions can be deformed to include ones which are asymptotically plane wave, they do not posses a regular event horizon. If we allow for additional matter, such as in supergravity theories, we show that it is possible to have extremal solutions with globally null Killing field, a regular horizon, and which, in addition, are asymptotically plane wave. In particular, we deform the extremal M2-brane solution in 11-dimensional supergravity so that it behaves asymptotically as a 10-dimensional vacuum plane wave times a real line. (author)

  10. Two-transitive MInkowski planes

    NARCIS (Netherlands)

    Wilbrink, H.A.

    1982-01-01

    In this paper we determine all finite Minkowski planes with an automorphism group which satisfies the following transitivity property: any ordered pair of nonparallel points can be mapped onto any other ordered pair of nonparallel points.

  11. Computed tomography arthrography using a radial plane view for the detection of triangular fibrocartilage complex foveal tears.

    Science.gov (United States)

    Moritomo, Hisao; Arimitsu, Sayuri; Kubo, Nobuyuki; Masatomi, Takashi; Yukioka, Masao

    2015-02-01

    To classify triangular fibrocartilage complex (TFCC) foveal lesions on the basis of computed tomography (CT) arthrography using a radial plane view and to correlate the CT arthrography results with surgical findings. We also tested the interobserver and intra-observer reliability of the radial plane view. A total of 33 patients with a suspected TFCC foveal tear who had undergone wrist CT arthrography and subsequent surgical exploration were enrolled. We classified the configurations of TFCC foveal lesions into 5 types on the basis of CT arthrography with the radial plane view in which the image slices rotate clockwise centered on the ulnar styloid process. Sensitivity, specificity, and positive predictive values were calculated for each type of foveal lesion in CT arthrography to detect foveal tears. We determined interobserver and intra-observer agreements using kappa statistics. We also compared accuracies with the radial plane views with those with the coronal plane views. Among the tear types on CT arthrography, type 3, a roundish defect at the fovea, and type 4, a large defect at the overall ulnar insertion, had high specificity and positive predictive value for the detection of foveal tears. Specificity and positive predictive values were 90% and 89% for type 3 and 100% and 100% for type 4, respectively, whereas sensitivity was 35% for type 3 and 22% for type 4. Interobserver and intra-observer agreement was substantial and almost perfect, respectively. The radial plane view identified foveal lesion of each palmar and dorsal radioulnar ligament separately, but accuracy results with the radial plane views were not statistically different from those with the coronal plane views. Computed tomography arthrography with a radial plane view exhibited enhanced specificity and positive predictive value when a type 3 or 4 lesion was identified in the detection of a TFCC foveal tear compared with historical controls. Diagnostic II. Copyright © 2015 American Society for

  12. Coronal Loop Evolution Observed with AIA and Hi-C

    Science.gov (United States)

    Mulu-Moore, Fana; Winebarger, A.; Cirtain, J.; Kobayashi, K.; Korreck, K.; Golub, L.; Kuzin. S.; Walsh, R.; DeForest, C.; DePontieu, B.; hide

    2012-01-01

    Despite much progress toward understanding the dynamics of the solar corona, the physical properties of coronal loops are not yet fully understood. Recent investigations and observations from different instruments have yielded contradictory results about the true physical properties of coronal loops. In the past, the evolution of loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this poster we discuss the first results of loop analysis comparing AIA and Hi-C data. We find signatures of cooling in a pixel selected along a loop structure in the AIA multi-filter observations. However, unlike previous studies, we find that the cooling time is much longer than the draining time. This is inconsistent with previous cooling models.

  13. Examining the Properties of Jets in Coronal Holes

    Science.gov (United States)

    Gaulle, Owen; Adams, Mitzi L.; Tennant, A. F.

    2012-01-01

    We examined both X-ray and Magnetic field data in order to determine if there is a correlation between emerging magnetic flux and the production of Coronal jets. It was proposed that emerging flux can be a trigger to a coronal jet. The jet is thought to be caused when local bipoles reconnect or when a region of magnetic polarity emerges through a uniform field. In total we studied 15 different jets that occurred over a two day period starting 2011-02-27 00:00:00 UTC and ending 2011-02-28 23:59:55 UTC. All of the jets were contained within a coronal hole that was centered on the disk. Of the 15 that we studied 6 were shown to have an increase of magnetic flux within one hour prior to the creation of the jet and 10 were within 3 hours before the event.

  14. Influence of coronal holes on CMEs in causing SEP events

    International Nuclear Information System (INIS)

    Shen Chenglong; Yao Jia; Wang Yuming; Ye Pinzhong; Wang Shui; Zhao Xuepu

    2010-01-01

    The issue of the influence of coronal holes (CHs) on coronal mass ejections (CMEs) in causing solar energetic particle (SEP) events is revisited. It is a continuation and extension of our previous work, in which no evident effects of CHs on CMEs in generating SEPs were found by statistically investigating 56 CME events. This result is consistent with the conclusion obtained by Kahler in 2004. We extrapolate the coronal magnetic field, define CHs as the regions consisting of only open magnetic field lines and perform a similar analysis on this issue for 76 events in total by extending the study interval to the end of 2008. Three key parameters, CH proximity, CH area and CH relative position, are involved in the analysis. The new result confirms the previous conclusion that CHs did not show any evident effect on CMEs in causing SEP events. (research papers)

  15. The origin of coronal lines in Seyfert galaxies

    International Nuclear Information System (INIS)

    Korista, K.T.; Ferland, G.J.

    1989-01-01

    This paper examines the possibility that the coronal line region in Seyfert galaxies may be the result of an interstellar medium (ISM) exposed to, and subsequently photoionized by, a 'bare' Seyfert nucleus. It is shown that a 'generic' AGN continuum illuminating the warm-phase of the ISM of a spiral galaxy can produce the observed emission. In this picture the same UV-radiation cone that is responsible for the high-excitation extended narrow-line emission clouds observed out to 1-2 kpc or farther from the nuclei of some Seyfert galaxies also produces the coronal lines. Soft X-rays originating in the nucleus are Compton-scattered off the ISM, thus producing extended soft X-ray emission, as observed in NGC 4151. The results of the calculations show a basic insensitivity to the ISM density, which explains why similar coronal line spectra are found in many Seyfert galaxies of varying physical environments. 60 refs

  16. CORONAL MASS EJECTION INDUCED OUTFLOWS OBSERVED WITH HINODE/EIS

    International Nuclear Information System (INIS)

    Jin, M.; Ding, M. D.; Chen, P. F.; Fang, C.; Imada, S.

    2009-01-01

    We investigate the outflows associated with two halo coronal mass ejections (CMEs) that occurred on 2006 December 13 and 14 in NOAA 10930, using the Hinode/EIS observations. Each CME was accompanied by an EIT wave and coronal dimmings. Dopplergrams in the dimming regions are obtained from the spectra of seven EIS lines. The results show that strong outflows are visible in the dimming regions during the CME eruption at different heights from the lower transition region to the corona. It is found that the velocity is positively correlated with the photospheric magnetic field, as well as the magnitude of the dimming. We estimate the mass loss based on height-dependent EUV dimmings and find it to be smaller than the CME mass derived from white-light observations. The mass difference is attributed partly to the uncertain atmospheric model, and partly to the transition region outflows, which refill the coronal dimmings.

  17. Dorsal free graft urethroplasty for urethral stricture by ventral sagittal urethrotomy approach.

    Science.gov (United States)

    Asopa, H S; Garg, M; Singhal, G G; Singh, L; Asopa, J; Nischal, A

    2001-11-01

    To explore the feasibility of applying a dorsal free graft to treat urethral stricture by the ventral sagittal urethrotomy approach without mobilizing the urethra. Twelve patients with long or multiple strictures of the anterior urethra were treated by a dorsal free full-thickness preputial or buccal mucosa graft. The urethra was not separated from the corporal bodies and was opened in the midline over the stricture. The floor of the urethra was incised, and an elliptical raw area was created over the tunica on which a free full-thickness graft of preputial or buccal mucosa was secured. The urethra was retubularized in one stage. After a follow-up of 8 to 40 months, one recurrence developed and required dilation. The ventral sagittal urethrotomy approach for dorsal free graft urethroplasty is not only feasible and successful, but is easy to perform.

  18. Sagittal synostosis: II. Cranial morphology and growth after the modified pi-plasty

    DEFF Research Database (Denmark)

    Guimaraes-Ferreira, J.; Gewalli, F.; David, L.

    2006-01-01

    The aim of this study was to characterise the postoperative cranial growth and morphology after a modified pi-plasty for sagittal synostosis. The shape of the skull of 82 patients with isolated premature synostosis of the sagittal suture ( SS group) operated on with a modified pi-plasty was studied...... developed by Kreiborg, which included the digitisation of 89 landmarks of the calvaria, cranial base, and orbit ( 43 in the lateral and 46 in the frontal projections), the production of mean shape plots for each group, and the intergroup comparison of a series of 78 variables ( linear distance between...... selected landmarks, and angles defined by groups of three landmarks). Paired and unpaired t tests were used to assess the differences between the variables studied. These were accepted as significant for values of p...

  19. A Review Of Referral Patterns For Sagittal Synostosis In Ireland: 2008-2013

    LENUS (Irish Health Repository)

    Berney, M J

    2018-01-01

    Sagittal synostosis (SS) is the commonest form of craniosynostosis. Children with sagittal synostosis in Ireland are treated in the National Paediatric Craniofacial Centre (NPCC) in Temple Street Children’s University Hospital. This retrospective study analysed the correlation between referral patterns to the unit and age at operation. The notes of 81 patients referred over a 5 year period (April 2008 – April 2013) to the NPCC with non-syndromic SS were reviewed and demographics and referral information were recorded. Of 81 patients reviewed, 60 (74%) were referred before 6 months of age, while 21 (26%) had late referrals. Neonatologists referred 100% of infants before 6 months, paediatricians referred 71%, and GPs 64%. Later referral was associated with a more complex referral pathway, including multiple-steps of referral and unnecessary investigations. Improved clinician knowledge and emphasis on the importance of early referral may lead to a reduction in late referrals.

  20. Comparison of Asymmetric and Ice-cream Cone Models for Halo Coronal Mass Ejections

    Science.gov (United States)

    Na, H.; Moon, Y.

    2011-12-01

    Halo coronal mass ejections (HCMEs) are major cause of the geomagnetic storms. To minimize the projection effect by coronagraph observation, several cone models have been suggested: an ice-cream cone model, an asymmetric cone model etc. These models allow us to determine the three dimensional parameters of HCMEs such as radial speed, angular width, and the angle between sky plane and central axis of the cone. In this study, we compare these parameters obtained from different models using 48 well-observed HCMEs from 2001 to 2002. And we obtain the root mean square error (RMS error) between measured projection speeds and calculated projection speeds for both cone models. As a result, we find that the radial speeds obtained from the models are well correlated with each other (R = 0.86), and the correlation coefficient of angular width is 0.6. The correlation coefficient of the angle between sky plane and central axis of the cone is 0.31, which is much smaller than expected. The reason may be due to the fact that the source locations of the asymmetric cone model are distributed near the center, while those of the ice-cream cone model are located in a wide range. The average RMS error of the asymmetric cone model (85.6km/s) is slightly smaller than that of the ice-cream cone model (87.8km/s).

  1. Sagittal abdominal diameter shows better correlation with cardiovascular risk factors than waist circumference and BMI

    OpenAIRE

    de Souza, Natalia Cavalheri; de Oliveira, Erick Prado

    2013-01-01

    Background Obesity (abdominal adiposity) is a risk factor for cardiovascular diseases and the most used methods to measure the adiposity are body mass index (BMI), waist circumference (WC), and sagittal abdominal diameter (SAD). Objective To correlate BMI, WC, and SAD with biochemical parameters and blood pressure in adults. Methods A non-experimental exploratory/descriptive and cross sectional study was developed and it was assessed 133 subjects (59 men and 74 women) aging between 18 and 87?...

  2. Is Postoperative Intensive Care Unit Care Necessary following Cranial Vault Remodeling for Sagittal Synostosis?

    Science.gov (United States)

    Wolfswinkel, Erik M; Howell, Lori K; Fahradyan, Artur; Azadgoli, Beina; McComb, J Gordon; Urata, Mark M

    2017-12-01

    Of U.S. craniofacial and neurosurgeons, 94 percent routinely admit patients to the intensive care unit following cranial vault remodeling for correction of sagittal synostosis. This study aims to examine the outcomes and cost of direct ward admission following primary cranial vault remodeling for sagittal synostosis. An institutional review board-approved retrospective review was undertaken of the records of all patients who underwent primary cranial vault remodeling for isolated sagittal craniosynostosis from 2009 to 2015 at a single pediatric hospital. Patient demographics, perioperative course, and outcomes were recorded. One hundred ten patients met inclusion criteria with absence of other major medical problems. Average age at operation was 6.7 months, with a mean follow-up of 19.8 months. Ninety-eight patients (89 percent) were admitted to a general ward for postoperative care, whereas the remaining 12 (11 percent) were admitted to the intensive care unit for preoperative or perioperative concerns. Among ward-admitted patients, there were four (3.6 percent) minor complications; however, there were no major adverse events, with none necessitating intensive care unit transfers from the ward and no mortalities. Average hospital stay was 3.7 days. The institution's financial difference in cost of intensive care unit stay versus ward bed was $5520 on average per bed per day. Omitting just one intensive care unit postoperative day stay for this patient cohort would reduce projected health care costs by a total of $540,960 for the study period. Despite the common practice of postoperative admission to the intensive care unit following cranial vault remodeling for sagittal craniosynostosis, the authors suggest that postoperative care be considered on an individual basis, with only a small percentage requiring a higher level of care. Therapeutic, III.

  3. Zebrin II Is Expressed in Sagittal Stripes in the Cerebellum of Dragon Lizards (Ctenophorus sp.).

    Science.gov (United States)

    Wylie, Douglas R; Hoops, Daniel; Aspden, Joel W; Iwaniuk, Andrew N

    2016-01-01

    Aldolase C, also known as zebrin II (ZII), is a glycolytic enzyme that is expressed in cerebellar Purkinje cells of the vertebrate cerebellum. In both mammals and birds, ZII is expressed heterogeneously, such that there are sagittal stripes of Purkinje cells with high ZII expression (ZII+) alternating with stripes of Purkinje cells with little or no expression (ZII-). In contrast, in snakes and turtles, ZII is not expressed heterogeneously; rather all Purkinje cells are ZII+. Here, we examined the expression of ZII in the cerebellum of lizards to elucidate the evolutionary origins of ZII stripes in Sauropsida. We focused on the central netted dragon (Ctenophorus nuchalis) but also examined cerebellar ZII expression in 5 other dragon species (Ctenophorus spp.). In contrast to what has been observed in snakes and turtles, we found that in these lizards, ZII is heterogeneously expressed. In the posterior part of the cerebellum, on each side of the midline, there were 3 sagittal stripes consisting of Purkinje cells with high ZII expression (ZII+) alternating with 2 sagittal stripes with weaker ZII expression (ZIIw). More anteriorly, most of the Purkinje cells were ZII+, except laterally, where the Purkinje cells did not express ZII (ZII-). Finally, all Purkinje cells in the auricle (flocculus) were ZII-. Overall, the parasagittal heterogeneous expression of ZII in the cerebellum of lizards is similar to that in mammals and birds, and contrasts with the homogenous ZII+ expression seen in snakes and turtles. We suggest that a sagittal heterogeneous expression of ZII represents the ancestral condition in stem reptiles which was lost in snakes and turtles. © 2017 S. Karger AG, Basel.

  4. Visibility of mandibular canal on panoramic radiograph after bilateral sagittal split osteotomy (BSSO).

    OpenAIRE

    Politis, Constantinus; Ramirez, Xiomara Botero; Sun, Yi; Lambrichts, Ivo; Heath, Neil; Agbaje, Jimoh Olubanwo

    2013-01-01

    PURPOSE: This study aimed to assess the visibility of the mandibular canal (MC) on panoramic radiographs after bilateral sagittal split osteotomy (BSSO), and to investigate what factors affect this MC visibility. METHODS: We assessed MC visibility on panoramic radiographs of 200 BSSO patients. Images were acquired preoperatively (T0), immediately postoperatively (T1), 6 months postoperatively (T2), and 1 year postoperatively (T3), from three diffe...

  5. Sagittal fractures of the third carpal bone in horses: 12 cases (1977-1985)

    International Nuclear Information System (INIS)

    Fischer, A.T. Jr.; Stover, S.M.

    1987-01-01

    Third carpal sagittal fractures were found to be related to racing injuries in 10 of 12 horses. These fractures occurred most commonly on the medial aspect of the bone. A dorsoproximal-dorsodistal view of the carpus was required to visualize the fracture in all cases. Healing of the fracture required periods of rest of up to one year. Conservative management of these fractures resulted in return to function in 7 of 12 horses

  6. The Role of Hyperthyroidism as the Predisposing Factor for Superior Sagittal Sinus Thrombosis

    OpenAIRE

    Hwang, Jong-Uk; Kwon, Ki-Young; Hur, Jin-Woo; Lee, Jong-Won; Lee, Hyun-Koo

    2012-01-01

    Superior sagittal sinus thrombosis (SSST) is an uncommon cause of stroke, whose symptoms and clinical course are highly variable. It is frequently associated with a variety of hypercoagulable states. Coagulation abnormalities are commonly seen in patients with hyperthyroidism. To the best of our knowledge, there are few reports on the association between hyperthyroidism and cerebral venous thrombosis. We report on a 31-year-old male patient with a six-year history of hyperthyroidism who devel...

  7. Sagittal balance in scoliosis associated with Marfan syndrome: a stereoradiographic three-dimensional analysis.

    Science.gov (United States)

    Glard, Yann; Pomero, Vincent; Collignon, Patrick; Skalli, Wafa; Jouve, Jean-Luc; Bollini, Gérard

    2008-03-01

    Marfan syndrome (MFS) is a genetic disease often marked by the presence of scoliosis. There is no three-dimensional analysis of the deformity in the literature. Our aim was to determine what kind of sagittal balance defines scoliosis associated with MFS, namely a flexion deformity, as it is in scoliosis associated with Chiari I or an extension deformity, as in adolescent idiopathic scoliosis (AIS). To address this issue, we compared the presence or absence of a thoracic scoliosis with the presence or absence of a segment in extension in the thoracic spine. In our series, 30 patients diagnosed with Marfan syndrome were prospectively included. In each patient, personalized three-dimensional reconstruction from T1 to L5 of the spine was made using stereoradiography. The patients were first separated based on the presence or absence of thoracic scoliosis, in order to compare this with the presence or absence of a segment in extension in the thoracic spine. They were then classified into two groups based on the presence or absence of the segment in extension (meaning containing negative values of inter-vertebral sagittal rotation) in the thoracic spine. Among scoliotic patients with a thoracic scoliosis (17 cases), there were 13 (76.5% cases) with a segment in extension in the thoracic spine and 4 with no segment in extension. Our results showed that scoliosis associated with MFS is somehow original, demonstrating a sagittal balance in extension (as AIS) in about 80% of thoracic curves, but without this characteristic feature in about 20%.

  8. CORRELATION BETWEEN OBESITY, SAGITTAL BALANCE AND CLINICAL OUTCOME IN SPINAL FUSION

    Directory of Open Access Journals (Sweden)

    Marcel Machado da Motta

    2015-09-01

    Full Text Available Objective:To correlate obesity with radiographic parameters of spinal and spinopelvic balance in patients undergoing spinal arthrodesis, and to correlate obesity with clinical outcome of these patients.Methods:Observational retrospective study including patients who underwent spinal arthrodesis, with minimum follow-up period of three months. We measured waist circumference, as well as height and weight to calculate body mass index (BMI and obtained radiographs of the total column. The clinical parameters studied were pain by visual analog scale (VAS and the Oswestry questionnaire (ODI. Obesity correlated with radiographic parameters of the sagittal and spinopelvic balance and postoperative clinical parameters.Results:32 patients were analyzed. The higher the BMI, the greater the value of VAS found, but without statistical significance (p=0.83. There was also no correlation between BMI and the ODI questionnaire. Analyzing the abdominal circumference, there was no correlation between the VAS and ODI. There was no correlation between BMI or waist circumference and the radiographic parameters of global spinopelvic sagittal alignment. Regarding the postoperative results, there was no correlation between the mean BMI and waist circumference and the postoperative results for ODI and VAS (p=0.75 and p=0.7, respectively.Conclusions:The clinical outcomes of patients who undergone spinal fusion were not affected by the BMI and waist circumference. Also, there was no correlation between radiographic parameters of spinal and spinopelvic sagittal balance with obesity in patients previously treated with arthrodesis of the spine.

  9. The Role of Proprioception in the Sagittal Setting of Anticipatory Postural Adjustments During Gait Initiation

    Directory of Open Access Journals (Sweden)

    Pereira Marcelo P.

    2015-12-01

    Full Text Available Purpose. Previous studies have studied the role of proprioception on the setting of anticipatory postural adjustments (APA during gait initiation. However, these studies did not investigate the role of proprioception in the sagittal APA setting. We aimed to investigate the role of proprioception manipulation to induce APA sagittal adaptations on gait initiation. Methods. Fourteen healthy adults performed gait initiation without, and with, vibration applied before movement onset, and during movement. In addition, the effects of two different vibration frequencies (80 and 120Hz were tested. Vibration was applied bilaterally on the tibialis anterior, rectus femoris and trapezius superior. The first step characteristics, ground reaction forces and CoP behaviour were assessed. Results. Vibration improved gait initiation performance regardless of the moment it was applied. CoP velocity during the initial phase of APA was increased by vibration only when it was applied before movement. When vibration was applied to disturb the movement, no effects on the CoP behaviour were observed. Manipulation of vibration frequency had no effects. Conclusions. Rather than proprioception manipulation, the results suggest that post-vibratory effects and attentional mechanisms were responsible for our results. Taken together, the results show that sagittal APA setting is robust to proprioception manipulation.

  10. Bad splits in bilateral sagittal split osteotomy: systematic review of fracture patterns.

    Science.gov (United States)

    Steenen, S A; Becking, A G

    2016-07-01

    An unfavourable and unanticipated pattern of the mandibular sagittal split osteotomy is generally referred to as a 'bad split'. Few restorative techniques to manage the situation have been described. In this article, a classification of reported bad split pattern types is proposed and appropriate salvage procedures to manage the different types of undesired fracture are presented. A systematic review was undertaken, yielding a total of 33 studies published between 1971 and 2015. These reported a total of 458 cases of bad splits among 19,527 sagittal ramus osteotomies in 10,271 patients. The total reported incidence of bad split was 2.3% of sagittal splits. The most frequently encountered were buccal plate fractures of the proximal segment (types 1A-F) and lingual fractures of the distal segment (types 2A and 2B). Coronoid fractures (type 3) and condylar neck fractures (type 4) have seldom been reported. The various types of bad split may require different salvage approaches. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Variations of cervical lordosis and head alignment after pedicle subtraction osteotomy surgery for sagittal imbalance.

    Science.gov (United States)

    Cecchinato, R; Langella, F; Bassani, R; Sansone, V; Lamartina, C; Berjano, P

    2014-10-01

    The variations of the cervical lordosis after correction of sagittal imbalance have been poorly studied. The aim of our study is to verify whether the cervical lordosis changes after surgery for sagittal imbalance. Thirty-nine patients were included in the study. Cervical, thoracic and lumbar spine, pelvic and lower-limb sagittal parameters were recorded. The cranial alignment was measured by the newly described Cranial Slope. The global cervical kyphosis (preop -43°, postop -31.5°) and the upper (preop -24.1°, postop -20.2°) and lower cervical kyphosis (preop -18.1°, postop -9.2°) were significantly reduced after surgical realignment of the trunk. A positive linear correlation was observed between the changes in T1 slope and the lower cervical lordosis, and between T1 slope and the global cervical alignment. The cervical lordosis is reduced by surgical correction of malalignment of the trunk, suggesting an adaptive role to maintain the head's neutral position.

  12. [Extramedullary fixation combined with intramedullary fixation in the surgical reduction of sagittal mandibular condylar fractures].

    Science.gov (United States)

    Chuanjun, Chen; Xiaoyang, Chen; Jing, Chen

    2016-10-01

    This study aimed to evaluate the clinical effect of extramedullary fixation combined with intramedullary fixation during the surgical reduction of sagittal mandibular condylar fractures. Twenty-four sagittal fractures of the mandibular condyle in18 patients were fixed by two appliances: intramedullary with one long-screw osteosynthesis or Kirschner wire and extramedullary with one micro-plate. The radiologically-recorded post-operative stability-associated com-plications included the screw/micro-plate loosening, micro-plate twisting, micro-plate fractures, and fragment rotation. The occluding relations, the maximalinter-incisal distances upon mouth opening, and the mandibular deflection upon mouth opening were evaluated based on follow-up clinical examination. Postoperative panoramic X-ray and CT scans showed good repositioning of the fragment, with no redislocation or rotation, no screw/plate loosening, and no plate-twisting or fracture. Clinical examination showed that all patients regained normal mandibular movements, ideal occlusion, and normal maximal inter-incisal distances upon mouth opening. Extramedullary fixation combined with intramedullary fixation is highly recommended for sagittal condylar fractures because of the anti-rotation effect of the fragment and the reasonable place-ment of the fixation appliances.

  13. WAVELET ANALYSIS AND NEURAL NETWORK CLASSIFIERS TO DETECT MID-SAGITTAL SECTIONS FOR NUCHAL TRANSLUCENCY MEASUREMENT

    Directory of Open Access Journals (Sweden)

    Giuseppa Sciortino

    2016-04-01

    Full Text Available We propose a methodology to support the physician in the automatic identification of mid-sagittal sections of the fetus in ultrasound videos acquired during the first trimester of pregnancy. A good mid-sagittal section is a key requirement to make the correct measurement of nuchal translucency which is one of the main marker for screening of chromosomal defects such as trisomy 13, 18 and 21. NT measurement is beyond the scope of this article. The proposed methodology is mainly based on wavelet analysis and neural network classifiers to detect the jawbone and on radial symmetry analysis to detect the choroid plexus. Those steps allow to identify the frames which represent correct mid-sagittal sections to be processed. The performance of the proposed methodology was analyzed on 3000 random frames uniformly extracted from 10 real clinical ultrasound videos. With respect to a ground-truth provided by an expert physician, we obtained a true positive, a true negative and a balanced accuracy equal to 87.26%, 94.98% and 91.12% respectively.

  14. Noninvasive Optoelectronic Assessment of Induced Sagittal Imbalance Using the Vicon System.

    Science.gov (United States)

    Ould-Slimane, Mourad; Latrobe, Charles; Michelin, Paul; Chastan, Nathalie; Dujardin, Franck; Roussignol, Xavier; Gauthé, Rémi

    2017-06-01

    Spinal diseases often induce gait disorders with multifactorial origins such as lumbar pain, radicular pain, neurologic complications, or spinal deformities. However, radiography does not permit an analysis of spinal dynamics; therefore, sagittal balance dynamics during gait remain largely unexplored. This prospective and controlled pilot study assessed the Vicon system for detecting sagittal spinopelvic imbalance, to determine the correlations between optoelectronic and radiographic parameters. Reversible anterior sagittal imbalance was induced in 24 healthy men using a thoracolumbar corset. Radiographic, optoelectronic, and comparative analyses were conducted. Corset wearing induced significant variations in radiographic parameters indicative of imbalance; the mean C7-tilt and d/D ratio increased by 15° ± 7.4° and 359%, respectively, whereas the mean spinosacral angle decreased by 16.8° ± 8° (all P imbalance; the mean spinal angle increased by 15.4° ± 5.6° (P imbalance detected using the Vicon system. Optoelectronic C7'S1' correlated with radiographic C7-tilt and d/D ratio. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Differences of Sagittal Lumbosacral Parameters between Patients with Lumbar Spondylolysis and Normal Adults.

    Science.gov (United States)

    Yin, Jin; Peng, Bao-Gan; Li, Yong-Chao; Zhang, Nai-Yang; Yang, Liang; Li, Duan-Ming

    2016-05-20

    Recent studies have suggested an association between elevated pelvic incidence (PI) and the development of lumbar spondylolysis. However, there is still lack of investigation for Han Chinese people concerning the normal range of spinopelvic parameters and relationship between abnormal sagittal parameters and lumbar diseases. The objective of the study was to investigate sagittal lumbosacral parameters of adult lumbar spondylolysis patients in Han Chinese population. A total of 52 adult patients with symptomatic lumbar spondylolysis treated in the General Hospital of Armed Police Force (Beijing, China) were identified as the spondylolysis group. All the 52 patients were divided into two subgroups, Subgroup A: 36 patients with simple lumbar spondylolysis, and Subgroup B: 16 patients with lumbar spondylolysis accompanying with mild lumbar spondylolisthesis (slip percentage spondylolysis group and the control group with independent-sample t- test. There were no statistically significant differences of all seven sagittal lumbosacral parameters between Subgroup A and Subgroup B. PI, PT, SS, and LL were higher (P spondylolysis group than those in the control group, but STA was lower (P spondylolysis group. Current study results suggest that increased PI and decreased STA may play important roles in the pathology of lumbar spondylolysis in Han Chinese population.

  16. Coronal seismology waves and oscillations in stellar coronae

    CERN Document Server

    Stepanov, Alexander; Nakariakov, Valery M

    2012-01-01

    This concise and systematic account of the current state of this new branch of astrophysics presents the theoretical foundations of plasma astrophysics, magneto-hydrodynamics and coronal magnetic structures, taking into account the full range of available observation techniques -- from radio to gamma. The book discusses stellar loops during flare energy releases, MHD waves and oscillations, plasma instabilities and heating and charged particle acceleration. Current trends and developments in MHD seismology of solar and stellar coronal plasma systems are also covered, while recent p

  17. Thermal instabilities in magnetically confined plasmas: Solar coronal loops

    International Nuclear Information System (INIS)

    Habbal, S.R.; Rosner, R.

    1979-01-01

    The thermal stability of confined solar coronal structures (''loops'') is investigated, following both normal mode and a new, global instability analysis. We demonstrate that: (a) normal mode analysis shows modes with size scales comparable to that of loops to be unstable, but to be strongly affected by the loop boundary conditions; (b) a global analysis, based upon variation of the total loop energy losses and gains, yields loop stability conditions for global modes dependent upon the coronal loop heating process, with magnetically coupled heating processes giving marginal stability. The connection between the present analysis and the minimum flux corona of Hearn is also discussed

  18. "Push-Through" Rod Passage Technique for the Improvement of Lumbar Lordosis and Sagittal Balance in Minimally Invasive Adult Degenerative Scoliosis Surgery.

    Science.gov (United States)

    Haque, Raqeeb M; Uddin, Omar M; Ahmed, Yousef; El Ahmadieh, Tarek Y; Hashmi, Sohaib Z; Shah, Amir; Fessler, Richard G

    2016-10-01

    Traditional open surgical techniques for correction of adult degenerative scoliosis (ADS) are often associated with increased blood loss, postoperative pain, and complications. Minimally invasive (MIS) techniques have been utilized to address these issues; however, concerns regarding improving certain alignment parameters have been raised. A new "push-through" technique for MIS correction of ADS has been developed wherein a rod is bent before its placement into the screw heads and then contoured further to yield improved correction of radiographic parameters. Preoperative and postoperative radiographic measurements of 3 patients who underwent MIS correction of scoliosis using the "push-through" technique were compared with 22 prior patients who had received traditional MIS correction. All patients received staged correction of scoliosis. The first stage involved insertion of lateral lumbar interbodies. Standing x-rays were then evaluated for overall global balance. The second stage involved appropriate MIS facetectomies, facet fusions, posterior transforaminal interbodies at lower lumbar segments, and finally the placement of rods.TECHNIQUE OVERVIEW:: (1) A long rod composed of titanium is bent with a mild lordosis and passed through the extensions of the screw heads cephalad to caudad. (2) The rod is passed fully through the incision so it extrudes from the caudal end of the construct. At this point, further lordosis is bent into the rods. (3) The rod is then pulled back into the appropriate position. (4) The unnecessary cephalad rod is then cut to appropriate length with a circular saw. (5) Rod reducers are then sequentially lowered and tightened to achieve the desired correction. Mean age for all patients was 66.02 years. Preoperative coronal Cobb, sagittal vertical axis (SVA), and pelvic incidence (PI) were similar in all patients, whereas lumbar lordosis (LL) was smaller (15.27 vs. 29.85 degrees, P=0.00389) and pelvic tilt (PT) was larger (37.00 vs. 27

  19. Comparison of 2D-3D Measurements of Hallux and First Ray Sagittal Motion in Patients With and Without Hallux Valgus.

    Science.gov (United States)

    Swanson, Jessica E; Stoltman, Matthew G; Oyen, Cheyenne R; Mohrbacher, Jessica A; Orandi, Atefeh; Olson, Jeff M; Glasoe, Ward M

    2016-02-01

    Clinicians base treatment decisions on measures of hallux and first ray motion in the management of first metatarsophalangeal joint disorders. Women account for a majority of the patients. This study assessed the reliability of a 2D approach for the measurements of sagittal motion, and compared the result to a Cardan (3D) angle criterion standard and evaluated how hallux valgus (bunion) deformity affected the comparisons. Twenty-nine women (controls n = 10; bunion n = 19) were examined using a retrospective repeated measures design. Weightbearing magnetic resonance (MR) images were acquired to replicate the position of the foot during the stance phase of gait. The images were reconstructed into virtual bone models using computer processes, whereby measures of hallux and first ray motion were represented by 2D and 3D methods of measurement. An examiner measured 2D motion on the image data sets using a goniometer, and reliability was assessed. The 3D Cardan angle result was derived from a matrix calculation. The 2D-3D comparison of measurements was evaluated with an analysis of variance (ANOVA) model across gait conditions, run separate for groups. The 2D measurement was reliable (ICC ≥ 0.98, SEM ≤ 0.89 degrees). There was no method-by-condition interaction (F ≤ 1.37, P ≥ .25) between variables. No significant difference was detected between the 2D-3D measurements in the control group (F ≤ 1.24, P ≥ .30), but the measurements were statistically different (F ≥ 4.46, P ≤ .049) in the bunion group. This study described a reliable 2D approach for measuring hallux and first ray sagittal motion from weightbearing images. The 2D measurements were comparable to a Cardan angle component motion result in controls, but not in women with bunion. Joint motion measurements may augment clinical decision making. These results suggest that a 2D image-based approach may be adequate to estimate hallux and first ray sagittal motion, although bunion deformity creates out-of-plane

  20. Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Aiying; Zhang, Huai [Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing 100049 (China); Jiang, Chaowei [Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen, 518055 (China); Hu, Qiang; Gary, G. Allen; Wu, S. T. [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Cao, Jinbin, E-mail: duanaiying@ucas.ac.cn, E-mail: hzhang@ucas.ac.cn, E-mail: chaowei@hit.edu.cn [School of Space and Environment, Beihang University, Beijing 100191 (China)

    2017-06-20

    Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE–MHD–NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO /AIA. It is found that the CESE–MHD–NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ∼10°. This suggests that the CESE–MHD–NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (∼30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.

  1. Fracture of fusion mass after hardware removal in patients with high sagittal imbalance.

    Science.gov (United States)

    Sedney, Cara L; Daffner, Scott D; Stefanko, Jared J; Abdelfattah, Hesham; Emery, Sanford E; France, John C

    2016-04-01

    As spinal fusions become more common and more complex, so do the sequelae of these procedures, some of which remain poorly understood. The authors report on a series of patients who underwent removal of hardware after CT-proven solid fusion, confirmed by intraoperative findings. These patients later developed a spontaneous fracture of the fusion mass that was not associated with trauma. A series of such patients has not previously been described in the literature. An unfunded, retrospective review of the surgical logs of 3 fellowship-trained spine surgeons yielded 7 patients who suffered a fracture of a fusion mass after hardware removal. Adult patients from the West Virginia University Department of Orthopaedics who underwent hardware removal in the setting of adjacent-segment disease (ASD), and subsequently experienced fracture of the fusion mass through the uninstrumented segment, were studied. The medical records and radiological studies of these patients were examined for patient demographics and comorbidities, initial indication for surgery, total number of surgeries, timeline of fracture occurrence, risk factors for fracture, as well as sagittal imbalance. All 7 patients underwent hardware removal in conjunction with an extension of fusion for ASD. All had CT-proven solid fusion of their previously fused segments, which was confirmed intraoperatively. All patients had previously undergone multiple operations for a variety of indications, 4 patients were smokers, and 3 patients had osteoporosis. Spontaneous fracture of the fusion mass occurred in all patients and was not due to trauma. These fractures occurred 4 months to 4 years after hardware removal. All patients had significant sagittal imbalance of 13-15 cm. The fracture level was L-5 in 6 of the 7 patients, which was the first uninstrumented level caudal to the newly placed hardware in all 6 of these patients. Six patients underwent surgery due to this fracture. The authors present a case series of 7

  2. ‘Lumbar Degenerative Kyphosis’ Is Not Byword for Degenerative Sagittal Imbalance: Time to Replace a Misconception

    Science.gov (United States)

    Lee, Chang-Hyun; Chung, Chun Kee; Jang, Jee-Soo; Kim, Sung-Min; Chin, Dong-Kyu; Lee, Jung-Kil

    2017-01-01

    Lumbar degenerative kyphosis (LDK) is a subgroup of the flat-back syndrome and is most commonly caused by unique life styles, such as a prolonged crouched posture during agricultural work and performing activities of daily living on the floor. Unfortunately, LDK has been used as a byword for degenerative sagittal imbalance, and this sometimes causes confusion. The aim of this review was to evaluate the exact territory of LDK, and to introduce another appropriate term for degenerative sagittal deformity. Unlike what its name suggests, LDK does not only include sagittal balance disorder of the lumbar spine and kyphosis, but also sagittal balance disorder of the whole spine and little lordosis of the lumbar spine. Moreover, this disease is closely related to the occupation of female farmers and an outdated Asian life style. These reasons necessitate a change in the nomenclature of this disorder to prevent misunderstanding. We suggest the name “primary degenerative sagittal imbalance” (PDSI), which encompasses degenerative sagittal misalignments of unknown origin in the whole spine in older-age patients, and is associated with back muscle wasting. LDK may be regarded as a subgroup of PDSI related to an occupation in agriculture. Conservative treatments such as exercise and physiotherapy are recommended as first-line treatments for patients with PDSI, and surgical treatment is considered only if conservative treatments failed. The measurement of spinopelvic parameters for sagittal balance is important prior to deformity corrective surgery. LDK can be considered a subtype of PDSI that is more likely to occur in female farmers, and hence the use of LDK as a global term for all degenerative sagittal imbalance disorders is better avoided. To avoid confusion, we recommend PDSI as a newer, more accurate diagnostic term instead of LDK. PMID:28264231

  3. Not all sagittal band tears come with extensor instability. A case report with radiological and operative correlation

    International Nuclear Information System (INIS)

    Li, Shuo; Jacob, Jubin; Ghasemiesfe, Ahmadreza; Marrinan, Greg B.; Brooks, Jeffrey J.

    2018-01-01

    The sagittal bands are a component of the extensor hood. They serve an important role in stabilizing the extensor tendon by forming a ''check-rein'' to radial-ulnar translation of the tendon over the metacarpal head, and extending the metacarpophalangeal (MCP) joint by virtue of attaching the extensor tendon to the palmar plate. Injury to the sagittal band is thought to cause extensor instability and subluxation to the contralateral side by disruption of this ''check-rein'' function, although recent evidence from cadaver studies suggests that ulnar sagittal band tear may be spared of extensor instability. As a case in point, we encountered a patient with surgically proven ulnar sagittal band tear, who did not have any extensor tendon subluxation or any limitation in motion. Intraoperative findings demonstrated a chronic-appearing ulnar sagittal band tear, indicating that chronic injury with fibrosis may stabilize the central band. Therefore, in patients with metacarpophalangeal pain without central tendon subluxation or limitation of motion, it remains important to raise the concern of sagittal band tear for appropriate treatment. We present the clinical course of this case, with radiological and operative findings, followed by a review of the relevant literature. (orig.)

  4. Not all sagittal band tears come with extensor instability. A case report with radiological and operative correlation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo; Jacob, Jubin; Ghasemiesfe, Ahmadreza; Marrinan, Greg B. [Yale New Haven Health Bridgeport Hospital, Bridgeport, CT (United States); Brooks, Jeffrey J. [Orthopedic Surgery and Sports Medicine Center, New Canaan, CT (United States)

    2018-04-15

    The sagittal bands are a component of the extensor hood. They serve an important role in stabilizing the extensor tendon by forming a ''check-rein'' to radial-ulnar translation of the tendon over the metacarpal head, and extending the metacarpophalangeal (MCP) joint by virtue of attaching the extensor tendon to the palmar plate. Injury to the sagittal band is thought to cause extensor instability and subluxation to the contralateral side by disruption of this ''check-rein'' function, although recent evidence from cadaver studies suggests that ulnar sagittal band tear may be spared of extensor instability. As a case in point, we encountered a patient with surgically proven ulnar sagittal band tear, who did not have any extensor tendon subluxation or any limitation in motion. Intraoperative findings demonstrated a chronic-appearing ulnar sagittal band tear, indicating that chronic injury with fibrosis may stabilize the central band. Therefore, in patients with metacarpophalangeal pain without central tendon subluxation or limitation of motion, it remains important to raise the concern of sagittal band tear for appropriate treatment. We present the clinical course of this case, with radiological and operative findings, followed by a review of the relevant literature. (orig.)

  5. Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections

    Energy Technology Data Exchange (ETDEWEB)

    Na, Hyeonock; Moon, Y.-J.; Lee, Harim, E-mail: nho0512@khu.ac.kr, E-mail: moonyj@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin (Korea, Republic of)

    2017-04-20

    It is essential to determine three-dimensional parameters (e.g., radial speed, angular width, and source location) of coronal mass ejections (CMEs) for the space weather forecast. In this study, we investigate which cone type represents a halo CME morphology using 29 CMEs (12 Solar and Heliospheric Observatory (SOHO) /Large Angle and Spectrometric Coronagraph (LASCO) halo CMEs and 17 Solar Terrestrial Relations Observatory ( STEREO )/Sun–Earth Connection Coronal and Heliospheric Investigation COR2 halo CMEs) from 2010 December to 2011 June. These CMEs are identified as halo CMEs by one spacecraft ( SOHO or one of STEREO A and B ) and limb ones by the other spacecraft (One of STEREO A and B or SOHO ). From cone shape parameters of these CMEs, such as their front curvature, we find that the CME observational structures are much closer to a full ice-cream cone type than a shallow ice-cream cone type. Thus, we develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths to estimate the three-dimensional parameters of the halo CMEs. This model is constructed by carrying out the following steps: (1) construct a cone for a given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO /LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model).

  6. Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections

    International Nuclear Information System (INIS)

    Na, Hyeonock; Moon, Y.-J.; Lee, Harim

    2017-01-01

    It is essential to determine three-dimensional parameters (e.g., radial speed, angular width, and source location) of coronal mass ejections (CMEs) for the space weather forecast. In this study, we investigate which cone type represents a halo CME morphology using 29 CMEs (12 Solar and Heliospheric Observatory (SOHO) /Large Angle and Spectrometric Coronagraph (LASCO) halo CMEs and 17 Solar Terrestrial Relations Observatory ( STEREO )/Sun–Earth Connection Coronal and Heliospheric Investigation COR2 halo CMEs) from 2010 December to 2011 June. These CMEs are identified as halo CMEs by one spacecraft ( SOHO or one of STEREO A and B ) and limb ones by the other spacecraft (One of STEREO A and B or SOHO ). From cone shape parameters of these CMEs, such as their front curvature, we find that the CME observational structures are much closer to a full ice-cream cone type than a shallow ice-cream cone type. Thus, we develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths to estimate the three-dimensional parameters of the halo CMEs. This model is constructed by carrying out the following steps: (1) construct a cone for a given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO /LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model).

  7. Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections

    Science.gov (United States)

    Na, Hyeonock; Moon, Y.-J.; Lee, Harim

    2017-04-01

    It is essential to determine three-dimensional parameters (e.g., radial speed, angular width, and source location) of coronal mass ejections (CMEs) for the space weather forecast. In this study, we investigate which cone type represents a halo CME morphology using 29 CMEs (12 Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) halo CMEs and 17 Solar Terrestrial Relations Observatory (STEREO)/Sun-Earth Connection Coronal and Heliospheric Investigation COR2 halo CMEs) from 2010 December to 2011 June. These CMEs are identified as halo CMEs by one spacecraft (SOHO or one of STEREO A and B) and limb ones by the other spacecraft (One of STEREO A and B or SOHO). From cone shape parameters of these CMEs, such as their front curvature, we find that the CME observational structures are much closer to a full ice-cream cone type than a shallow ice-cream cone type. Thus, we develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths to estimate the three-dimensional parameters of the halo CMEs. This model is constructed by carrying out the following steps: (1) construct a cone for a given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (I.e., a triangulation method and a Graduated Cylindrical Shell model).

  8. Error Analysis on Plane-to-Plane Linear Approximate Coordinate ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, the error analysis has been done for the linear approximate transformation between two tangent planes in celestial sphere in a simple case. The results demonstrate that the error from the linear transformation does not meet the requirement of high-precision astrometry under some conditions, so the ...

  9. More Macrospicule Jets in On-Disk Coronal Holes

    Science.gov (United States)

    Adams, M. L.; Sterling, A. C.; Moore, R. L.

    2015-01-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of about ten jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 A, examine the magnetic field configuration and flux changes in the jet area, and discuss the probable trigger mechanism of these events. We reported on another jet in this same coronal hole on 2011 February 27, (is) approximately 13:04 UT (Adams et al 2014, ApJ, 783: 11). That jet is a previously-unrecognized variety of blowout jet, in which the base-edge bright point is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field. In contrast, in the presently-accepted 'standard' picture for blowout jets, the base-edge bright point is made by interchange reconnection of initially-closed erupting jet-base field with ambient open field. This poster presents further evidence of the production of the base-edge bright point in blowout jets by internal reconnection. Our observations suggest that most of the bigger and brighter EUV jets in coronal holes are blowout jets of the new-found variety.

  10. CLOSED-FIELD CORONAL HEATING DRIVEN BY WAVE TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Downs, Cooper; Lionello, Roberto; Mikić, Zoran; Linker, Jon A [Predictive Science Incorporated, 9990 Mesa Rim Rd. Suite 170, San Diego, CA 92121 (United States); Velli, Marco, E-mail: cdowns@predsci.com [EPSS, UCLA, Los Angeles, CA 90095 (United States)

    2016-12-01

    To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditions is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-Sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.

  11. Magnetic Source Regions of Coronal Mass Ejections Brigitte ...

    Indian Academy of Sciences (India)

    2003) or two rows of opposite polarity field extending to ... sional Alfvén waves which bring up helicity from the sub-photospheric part of the flux tube ... Figure 1. Loss of equilibrium model: sketches of coronal field lines showing ... lines of the quadrupolar reconnection before the flare, (bottom left): TRACE observations of the.

  12. Automated coronal hole identification via multi-thermal intensity segmentation

    Science.gov (United States)

    Garton, Tadhg M.; Gallagher, Peter T.; Murray, Sophie A.

    2018-01-01

    Coronal holes (CH) are regions of open magnetic fields that appear as dark areas in the solar corona due to their low density and temperature compared to the surrounding quiet corona. To date, accurate identification and segmentation of CHs has been a difficult task due to their comparable intensity to local quiet Sun regions. Current segmentation methods typically rely on the use of single Extreme Ultra-Violet passband and magnetogram images to extract CH information. Here, the coronal hole identification via multi-thermal emission recognition algorithm (CHIMERA) is described, which analyses multi-thermal images from the atmospheric image assembly (AIA) onboard the solar dynamics observatory (SDO) to segment coronal hole boundaries by their intensity ratio across three passbands (171 Å, 193 Å, and 211 Å). The algorithm allows accurate extraction of CH boundaries and many of their properties, such as area, position, latitudinal and longitudinal width, and magnetic polarity of segmented CHs. From these properties, a clear linear relationship was identified between the duration of geomagnetic storms and coronal hole areas. CHIMERA can therefore form the basis of more accurate forecasting of the start and duration of geomagnetic storms.

  13. A Bayesian Approach to Period Searching in Solar Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Scherrer, Bryan; McKenzie, David [Montana State University, P.O. Box 173840 Bozeman, MT 59717-3840 (United States)

    2017-03-01

    We have applied a Bayesian generalized Lomb–Scargle period searching algorithm to movies of coronal loop images obtained with the Hinode X-ray Telescope (XRT) to search for evidence of periodicities that would indicate resonant heating of the loops. The algorithm makes as its only assumption that there is a single sinusoidal signal within each light curve of the data. Both the amplitudes and noise are taken as free parameters. It is argued that this procedure should be used alongside Fourier and wavelet analyses to more accurately extract periodic intensity modulations in coronal loops. The data analyzed are from XRT Observation Program 129C: “MHD Wave Heating (Thin Filters),” which occurred during 2006 November 13 and focused on active region 10293, which included coronal loops. The first data set spans approximately 10 min with an average cadence of 2 s, 2″ per pixel resolution, and used the Al-mesh analysis filter. The second data set spans approximately 4 min with a 3 s average cadence, 1″ per pixel resolution, and used the Al-poly analysis filter. The final data set spans approximately 22 min at a 6 s average cadence, and used the Al-poly analysis filter. In total, 55 periods of sinusoidal coronal loop oscillations between 5.5 and 59.6 s are discussed, supporting proposals in the literature that resonant absorption of magnetic waves is a viable mechanism for depositing energy in the corona.

  14. Microflares as Possible Sources for Coronal Heating Meera Gupta ...

    Indian Academy of Sciences (India)

    around 6.7 keV, which is an indicator of the presence of coronal plasma tem- perature ≥ 9 MK. On the other ... Key words. Solar flares: ... Details of SOXS mission, in-flight performance, calibration, instrumental response and background are ...

  15. Magnetic Field in the Gravitationally Stratified Coronal Loops B. N. ...

    Indian Academy of Sciences (India)

    field for the longest (L = 406 Mm) coronal loops. The magnetic fields Bstr and Babs also increase with the number density, if the loop length does not vary much. The increment in the magnetic field due to gravitational stratification is small at the lower number densities, however, it is large at the higher number densities.

  16. Initiation and Propagation of Coronal Mass Ejections P. F. Chen

    Indian Academy of Sciences (India)

    Introduction. Coronal mass ejections (CMEs) have been observed for over 30 years. They keep being an intriguing research topic, not only because they are now realized to be the major driver for space weather disturbances, which are intimately connected to human activities, but also because they themselves are full of ...

  17. Photometric Variability of Four Coronally Active Stars J. C. Pandey ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    ray surveys with the Einstein and the ROSAT observatories and found to be associated with bright late- type stars. Many of these stars have not been studied in detail for their chromospheric and coronal activity, and their nature is not fully ...

  18. RADIOLOGICAL TIPS Coronal views of the paediatric mandibular ...

    African Journals Online (AJOL)

    imaging. None of the cases subsequently revealed any evidence of traumatic brain injury on CTB but they all demonstrated mandibular condyle fractures best appreciated on coronal views. Axial (Fig. 1) ... T Peedikayil, MB ChB. Department of Radiology, Red Cross War Memorial Children's Hospital, Cape Town.

  19. Automated Identification of Coronal Holes from Synoptic EUV Maps

    Science.gov (United States)

    Hamada, Amr; Asikainen, Timo; Virtanen, Ilpo; Mursula, Kalevi

    2018-04-01

    Coronal holes (CHs) are regions of open magnetic field lines in the solar corona and the source of the fast solar wind. Understanding the evolution of coronal holes is critical for solar magnetism as well as for accurate space weather forecasts. We study the extreme ultraviolet (EUV) synoptic maps at three wavelengths (195 Å/193 Å, 171 Å and 304 Å) measured by the Solar and Heliospheric Observatory/Extreme Ultraviolet Imaging Telescope (SOHO/EIT) and the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) instruments. The two datasets are first homogenized by scaling the SDO/AIA data to the SOHO/EIT level by means of histogram equalization. We then develop a novel automated method to identify CHs from these homogenized maps by determining the intensity threshold of CH regions separately for each synoptic map. This is done by identifying the best location and size of an image segment, which optimally contains portions of coronal holes and the surrounding quiet Sun allowing us to detect the momentary intensity threshold. Our method is thus able to adjust itself to the changing scale size of coronal holes and to temporally varying intensities. To make full use of the information in the three wavelengths we construct a composite CH distribution, which is more robust than distributions based on one wavelength. Using the composite CH dataset we discuss the temporal evolution of CHs during the Solar Cycles 23 and 24.

  20. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops ...

    Indian Academy of Sciences (India)

    The standing slow magneto-acoustic oscillations in cooling coronal loops ... turbation and, eventually, reduces the MHD equations to a 1D system modelling ..... where the function Q is expanded in power series with respect to ǫ, i.e.,. Q = Q0 + ...