WorldWideScience

Sample records for safety showers

  1. Reweighting Parton Showers

    CERN Document Server

    Bellm, Johannes; Richardson, Peter; Siódmok, Andrzej; Webster, Stephen

    2016-01-01

    We report on the possibility of reweighting parton-shower Monte Carlo predictions for scale variations in the parton-shower algorithm. The method is based on a generalization of the Sudakov veto algorithm. We demonstrate the feasibility of this approach using example physical distributions. Implementations are available for both the parton-shower modules in the Herwig 7 event generator.

  2. Meteor showers in review

    Science.gov (United States)

    Jenniskens, Peter

    2017-09-01

    Recent work on meteor showers is reviewed. New data is presented on the long duration showers that wander in sun-centered ecliptic coordinates. Since the early days of meteor photography, much progress has been made in mapping visual meteor showers, using low-light video cameras instead. Now, some 820,000 meteoroid orbits have been measured by four orbit surveys during 2007-2015. Mapped in sun-centered ecliptic coordinates in 5° intervals of solar longitude, the data show a number of long duration (>15 days) meteor showers that have drifting radiants and speeds with solar longitude. 18 showers emerge from the antihelion source and follow a drift pattern towards high ecliptic latitudes. 27 Halley-type showers in the apex source move mostly towards lower ecliptic longitudes, but those at high ecliptic latitudes move backwards. Also, 5 low-speed showers appear between the toroidal ring and the apex source, moving towards the antihelion source. Most other showers do not last long, or do not move much in sun-centered ecliptic coordinates. The surveys also detected episodic showers, which mostly document the early stages of meteoroid stream formation. New data on the sporadic background have shed light on the dynamical evolution of the zodiacal cloud.

  3. The Vincia parton shower

    NARCIS (Netherlands)

    Giele, W.T.; Hartgring, L.; Kosower, D.A.; Laenen, E.L.M.P.; Larkoski, A.J.; Lopez-Villarejo, J.; Ritzmann, M.; Skands, P.

    2013-01-01

    We summarize recent developments in the VINCIA parton shower. After a brief review of the basics of the formalism, the extension of VINCIA to hadron collisions is sketched. We then turn to improvements of the efficiency of tree-level matching by making the shower history unique and by incorporating

  4. On hadronic shower simulation

    CERN Document Server

    Wellisch, J P

    1999-01-01

    The exploitation of hadronic final states played a key role in the successes of all recent HEP collider experiments, and the ability to use the hadronic final state will continue to be one of the decisive issues during the LHC era. Monte Carlo techniques to make efficient use of hadronic final states have been developed for many years, and have a technological culmination in object oriented tool-kits for hadronic shower simulation that now are becoming available. In the present paper we give a brief overview on the physics modeling underlying hadronic shower simulation, and report on advanced techniques used and developed for simulation of hadronic showers in HEP experiments. We will discuss the three basic types of modelling - data driven, parametrisation driven, and theory driven modelling - and demonstrate ways to combine them in a flexible manner for concrete applications. We will confront the different types of modelling with the stringent requirements on hadronic shower simulation posed by LHC, and inve...

  5. Electromagnetic shower counter

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The octogonal block of lead glass is observed by eight photomultiplier tubes. Four or five such counters, arranged in succession, are used on each arm of the bispectrometer in order to detect heavy particles of the same family as those recently observed at Brookhaven and SLAC. They provide a means of identifying electrons. The arrangement of eight lateral photomultiplier tubes offers an efficient means of collecting the photons produced in the showers and determining, with a high resolution, the energy of the incident electrons. The total width at half-height is less than 6.9% for electrons having an energy of 1 GeV.

  6. Extensive air showers

    CERN Document Server

    Rao, M V S

    1997-01-01

    Ultrahigh energy cosmic rays carry information about their sources and the intervening medium apart from providing a beam of particles for studying certain features of high energy interactions currently inaccessible at man-made accelerators. They can at present be studied only via the extensive air showers (EAS's) they generate while passing through the Earth's atmosphere, since their fluxes are too low for the experiments of limited capability flown in balloons and satellites. The EAS is generated by a series of interactions of the primary cosmic ray and its progeny with the atmospheric nucle

  7. Meteor showers an annotated catalog

    CERN Document Server

    Kronk, Gary W

    2014-01-01

    Meteor showers are among the most spectacular celestial events that may be observed by the naked eye, and have been the object of fascination throughout human history. In “Meteor Showers: An Annotated Catalog,” the interested observer can access detailed research on over 100 annual and periodic meteor streams in order to capitalize on these majestic spectacles. Each meteor shower entry includes details of their discovery, important observations and orbits, and gives a full picture of duration, location in the sky, and expected hourly rates. Armed with a fuller understanding, the amateur observer can better view and appreciate the shower of their choice. The original book, published in 1988, has been updated with over 25 years of research in this new and improved edition. Almost every meteor shower study is expanded, with some original minor showers being dropped while new ones are added. The book also includes breakthroughs in the study of meteor showers, such as accurate predictions of outbursts as well ...

  8. New meteor showers – yes or not?

    Science.gov (United States)

    Koukal, Jakub

    2018-01-01

    The development of meteor astronomy associated with the development of CCD technology is reflected in a huge increase in databases of meteor orbits. It has never been possible before in the history of meteor astronomy to examine properties of meteors or meteor showers. Existing methods for detecting new meteor showers seem to be inadequate in these circumstances. The spontaneous discovery of new meteor showers leads to ambiguous specifications of new meteor showers. There is a duplication of already discovered meteor showers and a division of existing meteor showers based on their own criteria. The analysis in this article considers some new meteor showers in the IAU MDC database.

  9. The Mbale meteorite shower

    Science.gov (United States)

    Jenniskens, Peter; Betlem, Hans; Betlem, Jan; Barifaijo, Erasmus; Schluter, Thomas; Hampton, Craig; Laubenstien, Matthias; Kunz, Joachim; Heusser, Gerd

    1994-01-01

    On 1992 August 14 at 12:40 UTC, an ordinary chondrite of type L5/6 entered the atmosphere over Mbale, Uganda, broke up, and caused a strewn field of size 3 x 7 km. Shortly after the fall, an expedition gathered eye witness accounts and located the position of 48 impacts of masses between 0.19 and 27.4 kg. Short-lived radionuclide data were measured for two specimens, one of which was only 12 days after the fall. Subsequent recoveries of fragements has resulted in a total of 863 mass estimates by 1993 October. The surfaces of all fragments contain fusion crust. The meteorite shower caused some minor inconveniences. Most remarkably, a young boy was hit on the head by a small specimen. The data interpreted as to indicate that the meteorite had an initial mass between 400-1000 kg (most likely approximately 1000 kg) and approached Mbale from AZ = 185 +/- 15, H = 55 +/- 15, and V(sub infinity) = 13.5 +/- 1.5/s. Orbital elements are given. Fragmentation of the initial mass started probably above 25 km altitude, but the final catastrophic breakup occurred at an altitude of 10-14 km. An estimated 190 +/- 40 kg reached the Earth's surface minutes after the final breakup of which 150 kg of material has been recovered.

  10. Injuries associated with bathtubs and showers among children in the United States.

    Science.gov (United States)

    Mao, Shengyi J; McKenzie, Lara B; Xiang, Huiyun; Smith, Gary A

    2009-08-01

    The goal was to describe the epidemiological features of injuries associated with bathtubs and showers, especially those related to slips, trips, and falls, among US children. A retrospective study was performed by using nationally representative data from the US Consumer Product Safety Commission National Electronic Injury Surveillance System from 1990 through 2007 for children bathtub- and shower-related injuries among children bathtub. Of the cases with a known place of injury, 97.1% occurred at home. An estimated 2.8% of patients were admitted, transferred to another hospital, or held for observation. This is the first study on bathtub- and shower-related injuries using nationally representative data. Slips, trips, and falls in bathtubs and showers are a common cause of injury among children, especially children bathtub and shower surfaces.

  11. 46 CFR 154.1410 - Decontamination shower.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Decontamination shower. 154.1410 Section 154.1410... Equipment § 154.1410 Decontamination shower. When Table 4 references this section, a vessel carrying the listed cargo must have a decontamination shower and an eye wash that: (a) Are on the weatherdeck; and (b...

  12. Results on reuse of reclaimed shower water

    Science.gov (United States)

    Verostko, Charles E.; Garcia, Rafael; Pierson, Duane L.; Reysa, Richard P.; Irbe, Robert

    1986-01-01

    The Waste Water Recovery System that has been used in conjunction with a microgravity whole body shower to test a closed loop shower water reclamation system applicable to the NASA Space Station employs a Thermoelectric Integrated Hollow Fiber Membrane Evaporation Subsystem. Attention is given to the suitability of a Space Shuttle soap for such crew showers, the effects of shower water on the entire system, and the purification qualities of the recovered water. The chemical pretreatment of the shower water for microorganism control involved activated carbon, mixed ion exchange resin beds, and iodine bactericide dispensing units. The water was recycled five times, demonstrating the feasibility of reuse.

  13. An analytic initial-state parton shower

    Energy Technology Data Exchange (ETDEWEB)

    Kilian, W. [Siegen Univ. (Germany). Dept. Physik; Reuter, J.; Schmidt, S.; Wiesler, D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-12-15

    We present a new algorithm for an analytic parton shower. While the algorithm for the final-state shower has been known in the literature, the construction of an initial-state shower along these lines is new. The aim is to have a parton shower algorithm for which the full analytic form of the probability distribution for all branchings is known. For these parton shower algorithms it is therefore possible to calculate the probability for a given event to be generated, providing the potential to reweight the event after the simulation. We develop the algorithm for this shower including scale choices and angular ordering. Merging to matrix elements is used to describe high-energy tails of distributions correctly. Finally, we compare our results with those of other parton showers and with experimental data from LEP, Tevatron and LHC. (orig.)

  14. Ordering variable for parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Zoltán [DESY,Notkestrasse 85, 22607 Hamburg (Germany); Soper, Davison E. [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403-5203 (United States)

    2014-06-30

    The parton splittings in a parton shower are ordered according to an ordering variable, for example the transverse momentum of the daughter partons relative to the direction of the mother, the virtuality of the splitting, or the angle between the daughter partons. We analyze the choice of the ordering variable and conclude that one particular choice has the advantage of factoring softer splittings from harder splittings graph by graph in a physical gauge.

  15. Ordering variable for parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science

    2014-01-15

    The parton splittings in a parton shower are ordered according to an ordering variable, for example the transverse momentum of the daughter partons relative to the direction of the mother, the virtuality of the splitting, or the angle between the daughter partons. We analyze the choice of the ordering variable and conclude that one particular choice has the advantage of factoring softer splittings from harder splittings graph by graph in a physical gauge.

  16. Fast Shower Simulation in the ATLAS Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Barberio, E.; /Melbourne U.; Boudreau, J.; /Pittsburgh U.; Butler, B.; /SLAC; Cheung, S.L.; /Toronto U.; Dell' Acqua, A.; /CERN; Di Simone, A.; /CERN; Ehrenfeld, W.; /Hamburg U. /DESY; Gallas, M.V.; /CERN; Glazov, A.; /DESY; Marshall, Z.; /Caltech /Nevis Labs, Columbia U.; Mueller, J.; /Pittsburgh U.; Placakyte, R.; /DESY; Rimoldi, A.; /Pavia U. /INFN, Pavia; Savard, P.; /Toronto U.; Tsulaia, V.; /Pittsburgh U.; Waugh, A.; /Sydney U.; Young, C.C.; /SLAC

    2011-11-08

    The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime. In the fast shower parameterisation technique, a parameterization is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to {approx} 1 GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper.

  17. Scaling analysis of meteorite shower mass distributions

    DEFF Research Database (Denmark)

    Oddershede, Lene; Meibom, A.; Bohr, Jakob

    1998-01-01

    Meteorite showers are the remains of extraterrestrial objects which are captivated by the gravitational field of the Earth. We have analyzed the mass distribution of fragments from 16 meteorite showers for scaling. The distributions exhibit distinct scaling behavior over several orders of magnetude...

  18. Frozen-shower simulation of electromagnetic showers in the ATLAS forward calorimeter

    CERN Document Server

    Gasnikova, Ksenia; The ATLAS collaboration

    2016-01-01

    Accurate simulation of calorimeter response for high energy electromagnetic particles is essential for the LHC experiments. Detailed simulation of the electromagnetic showers using Geant4 is however very CPU intensive and various fast simulation methods were proposed instead. The frozen shower simulation substitutes the full propagation of the showers for energies below 1~GeV by showers taken from a pre-simulated library. The method is used for production of the main ATLAS Monte Carlo samples, greatly improving the production time. The frozen showers describe shower shapes, sampling fraction, sampling and noise-related fluctuations very well, while description of the constant term, related to calorimeter non-uniformity, requires a careful choice of the shower library binning. A new method is proposed to tune the binning variables, using multivariate techniques. The method is tested and optimized for the description of the ATLAS forward calorimeter.

  19. Meteor Shower Identification and Characterization with Python

    Science.gov (United States)

    Moorhead, Althea

    2015-01-01

    The short development time associated with Python and the number of astronomical packages available have led to increased usage within NASA. The Meteoroid Environment Office in particular uses the Python language for a number of applications, including daily meteor shower activity reporting, searches for potential parent bodies of meteor showers, and short dynamical simulations. We present our development of a meteor shower identification code that identifies statistically significant groups of meteors on similar orbits. This code overcomes several challenging characteristics of meteor showers such as drastic differences in uncertainties between meteors and between the orbital elements of a single meteor, and the variation of shower characteristics such as duration with age or planetary perturbations. This code has been proven to successfully and quickly identify unusual meteor activity such as the 2014 kappa Cygnid outburst. We present our algorithm along with these successes and discuss our plans for further code development.

  20. Occurrence of Legionella in UK household showers.

    Science.gov (United States)

    Collins, Samuel; Stevenson, David; Bennett, Allan; Walker, Jimmy

    2017-04-01

    Household water systems have been proposed as a source of sporadic, community acquired Legionnaires' disease. Showers represent a frequently used aerosol generating device in the domestic setting yet little is known about the occurrence of Legionella spp. in these systems. This study has investigated the prevalence of Legionella spp. by culture and qPCR in UK household showers. Ninety nine showers from 82 separate properties in the South of England were sampled. Clinically relevant Legionella spp. were isolated by culture in 8% of shower water samples representing 6% of households. Legionella pneumophila sg1 ST59 was isolated from two showers in one property and air sampling demonstrated its presence in the aerosol state. A further 31% of showers were positive by Legionella spp. qPCR. By multi-variable binomial regression modelling Legionella spp. qPCR positivity was associated with the age of the property (p=0.02), the age of the shower (p=0.01) and the frequency of use (p=0.09). The concentration of Legionella spp. detected by qPCR was shown to decrease with increased frequency of use (p=0.04) and more frequent showerhead cleaning (p=0.05). There was no association between Legionella spp. qPCR positivity and the cold water supply or the showerhead material (p=0.65 and p=0.71, respectively). Household showers may be important reservoirs of clinically significant Legionella and should be considered in source investigations. Simple public health advice may help to mitigate the risk of Legionella exposure in the domestic shower environment. Crown Copyright © 2016. Published by Elsevier GmbH. All rights reserved.

  1. Established meteor shower activity periods and orbits

    Science.gov (United States)

    Roggemans, Paul

    2017-02-01

    The CAMS dataset of 111233 orbits collected in the period 2010-2013 has been checked to verify the online data of the IAU meteor shower list. The activity periods for all meteor streams detected in CAMS data has been derived from the solar longitudes of the individual orbits that were associated with the meteor stream. For meteor showers that were absent in the CAMS data, mainly daylight meteor streams, CMOR data has been used to complete the information. To make future associations easier and to avoid mixing up shower data, the official naming and IAU code with the orbital elements are listed in this contribution.

  2. The HADES Pre-Shower detector

    Energy Technology Data Exchange (ETDEWEB)

    Balanda, A.; Jaskula, M.; Kajetanowicz, M.; Kidon, L.; Korcyl, K.; Kuehn, W.; Kulessa, R.; Malarz, A.; Otwinowski, J.; Petri, M.; Pietraszko, J. E-mail: j.pietraszko@gsi.de; Prokopowicz, W.; Przygoda, W.; Salabura, P.; Skoczen, A.; Szczybura, M.; Wajda, E.; Walus, W.; Wisniowski, M.; Wojcik, T

    2004-10-01

    The Pre-Shower detector was built for the high acceptance di-electron spectrometer to identify electrons produced in pion, proton and heavy ion-induced reactions in the 0.2shower formation. A scintillator wall is placed in front of the detector for time-of-flight measurements. The paper describes the Pre-Shower detector construction, the detector operation, the read-out electronics and its response to charged particles studied with electron, proton and heavy ion beams.

  3. Antenna Showers with Hadronic Initial States

    CERN Document Server

    Ritzmann, M; Skands, P

    2013-01-01

    We present an antenna shower formalism including contributions from initial-state partons and corresponding backwards evolution. We give a set of phase-space maps and antenna functions for massless partons which define a complete shower formalism suitable for computing observables with hadronic initial states. We focus on the initial-state components: initial-initial and initial-final antenna configurations. The formalism includes comprehensive possibilities for uncertainty estimates. We report on some preliminary results obtained with an implementation in the Vincia antenna-shower framework.

  4. A Parton Shower for High Energy Jets

    DEFF Research Database (Denmark)

    Andersen, Jeppe Rosenkrantz; Lonnblad, Leif; M. Smillie, Jennifer

    2011-01-01

    We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching...... it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss...

  5. Radar reflection off extensive air showers

    Directory of Open Access Journals (Sweden)

    Werner F.

    2013-06-01

    Full Text Available We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  6. Low Temperature Atmospheric Pressure Plasma Sterilization Shower

    Science.gov (United States)

    Gandhiraman, R. P.; Beeler, D.; Meyyappan, M.; Khare, B. N.

    2012-10-01

    Low-temperature atmospheric pressure plasma sterilization shower to address both forward and backward biological contamination issues is presented. The molecular effects of plasma exposure required to sterilize microorganisms is also analysed.

  7. Microwave detection of air showers with MIDAS

    Energy Technology Data Exchange (ETDEWEB)

    Facal San Luis, P., E-mail: facal@kicp.uchicago.edu [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Alekotte, I. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), 8400 San Carlos de Bariloche, Rio Negro (Argentina); Alvarez, J. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, Campus Sur, E-15782 Santiago de Compostela (Spain); Berlin, A. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bertou, X. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), 8400 San Carlos de Bariloche, Rio Negro (Argentina); Bogdan, M.; Bohacova, M. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bonifazi, C. [Univ. Federal do Rio de Janeiro (UFRJ), Instituto de Fisica, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Carvalho, W.R. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, Campus Sur, E-15782 Santiago de Compostela (Spain); Mello Neto, J.R.T. de [Univ. Federal do Rio de Janeiro (UFRJ), Instituto de Fisica, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Genat, J.F.; Mills, E.; Monasor, M.; Privitera, P.; Reyes, I.C.; Rouille d& #x27; Orfeuil, B. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); and others

    2012-01-11

    MIDAS (MIcrowave Detector of Air Showers) is a prototype of a microwave telescope to detect extensive air showers: it images a 20{sup Degree-Sign } Multiplication-Sign 10{sup Degree-Sign} region of the sky with a 4.5 m parabolic reflector and 53 feeds in the focal plane. It has been commissioned in March 2010 and is currently taking data. We present the design, performance and first results of MIDAS.

  8. Extensive air showers in the classroom

    Science.gov (United States)

    Badalà, A.; Blanco, F.; La Rocca, P.; Pappalardo, G. S.; Pulvirenti, A.; Riggi, F.

    2007-09-01

    The basic properties of extensive air showers of particles produced in the interaction of a high-energy primary cosmic ray in the Earth's atmosphere are discussed in the context of educational cosmic ray projects involving undergraduate students and high-school teams. Simulation results produced by an air shower development code were made available on the Web by the use of ASCII files and EXCEL spreadsheets to allow people to carry out graphical and numerical analyses in cosmic ray physics.

  9. Macroscopic treatment of radio emission from cosmic ray air showers based on shower simulations

    NARCIS (Netherlands)

    Werner, Klaus; Scholten, Olaf

    We present a macroscopic calculation of coherent electro-magnetic radiation from air showers initiated by ultra-high energy cosmic rays, based on currents obtained from Monte Carlo simulations of air showers in a realistic geo-magnetic field. We can clearly relate the time signal to the time

  10. Electroweak splitting functions and high energy showering

    Science.gov (United States)

    Chen, Junmou; Han, Tao; Tweedie, Brock

    2017-11-01

    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2) L × U(1) Y and discuss their general features in the collinear and soft-collinear regimes. These are the leading contributions at a splitting scale ( k T ) far above the EW scale ( v). We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in v/ k T . We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching between shower and decay, kinematic back-reaction corrections in multi-stage showers, and mixed-state evolution of neutral bosons ( γ/ Z/ h) using density-matrices. We employ the EW showering formalism to study a number of important physical processes at O (1-10 TeV) energies. They include (a) electroweak partons in the initial state as the basis for vector-boson-fusion; (b) the emergence of "weak jets" such as those initiated by transverse gauge bosons, with individual splitting probabilities as large as O (35%); (c) EW showers initiated by top quarks, including Higgs bosons in the final state; (d) the occurrence of O (1) interference effects within EW showers involving the neutral bosons; and (e) EW corrections to new physics processes, as illustrated by production of a heavy vector boson ( W ') and the subsequent showering of its decay products.

  11. Lateral Distribution Functions of Extensive Air Showers

    Science.gov (United States)

    Geranios, A.; Fokitis, E.; Maltezos, S.; Koutsokosta, D.; Antoniadou, I.; Malandraki, O.; Mastichiadis, A.; Antonopoulou, E.; Gika, V.; Dimitrakoudis, S.

    The energy is among the characteristics of Ultra High Energy Cosmic Rays (E>5 x 1019 eV) which could be estimated experimentally. The following paper attempts to estimate the energy of an UHECR proton by applying a Monte Carlo simulation code. A number of extensive air showers, vertical and inclined, is simulated to derive the Lateral Distribution Functions of the shower muons. The scenario of simulations is adopted to the Cerenkov surface detector of the P. AUGER Observatory. Due to the fact that the Lateral Distribution Functions show minimal fluctuations of the muon density at a distance larger than 800 m from the core of the showers, and due to the fact that at a distance of 900 m the distribution functions for inclined showers coincide (which means that it does not change with the zenith angle of the showers), we select the muon density at 900 m to derive the energy of the primary protons. (The project is co-funded by the European Social Fund and National Resources (EPEAEK II) PYTHAGORAS II.)

  12. Analysis of inclined showers measured with LOPES

    Energy Technology Data Exchange (ETDEWEB)

    Saftoiu, A. [National Institute of Physics and Nuclear Engineering Bucharest (Romania)], E-mail: allixme@gmail.com; Apel, W.D. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Asch, T. [Inst. Prozessdatenverarbeitung und Elektronik, Forschungszentrum Karlsruhe (Germany); Auffenberg, J. [Fachbereich Physik, Universitaet Wuppertal (Germany); Badea, F. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Baehren, L. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie Bonn (Germany); Bluemer, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen (Germany); Buitink, S. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Istituto di Fisica dello Spazio Interplanetario, INAF Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany)] (and others)

    2009-06-01

    In the present study, we analyze the radio signal from inclined air showers recorded by LOPES-30 in coincidence with KASCADE-Grande. LOPES-30 consists of 30 East-West oriented digital antennas, which are amplitude calibrated by an external source. Radio emission from air showers is considered a geomagnetic effect. Inclined events provide a larger range of values for geomagnetic angle (angle between shower axis and geomagnetic field direction) than vertical showers and thus more information on the emission processes can be gathered. In order to have the geometry of the air shower we use the reconstruction provided by the KASCADE-Grande particle detectors array. Analyzing events observed by both LOPES and the extended part of the KASCADE array, Grande, gives the possibility to test in particular the capability and efficiency of radio detection of more distant events. The results are compared with a previous analysis of inclined events recorded by the initial 10 antenna set-up, LOPES-10, in coincidence with the Grande array.

  13. Evaluation of human exposure to metals from some commonly used bathing soaps and shower gels in Nigeria.

    Science.gov (United States)

    Iwegbue, Chukwujindu M A; Emakunu, Omotekoro S; Nwajei, Godwin E; Bassey, Francisca I; Martincigh, Bice S

    2017-02-01

    The concentrations of nine metals (Cd, Pb, Ni, Cr, Co, Cu, Fe, Mn and Zn) were measured in selected brands of medicated, moisturizing and skin-lightening soaps and shower gels with the aim of evaluating the human health risk associated with metal exposure from the use of these products. The concentrations of metals in these products were determined by means of atomic absorption spectrophotometry after sample digestion with a mixture of acids. The concentration ranges of the metals in the bathing soaps and shower gels were found to be: soaps and shower gels were below their respective provisional tolerable daily intake/or recommended daily intake values. The margin of safety values obtained for the metals were greater than 100 which indicated that there was no significant risk to the users of these brands of bathing soaps and shower gels, except in the case of Co. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Cosmic Ray Air Shower Detection with LOPES

    Energy Technology Data Exchange (ETDEWEB)

    Haungs, A. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany)], E-mail: haungs@ik.fzk.de; Apel, W.D.; Arteaga, J.C. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Asch, T. [Inst. Prozessdatenverarb. und Elektronik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Badea, A.F. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Baehren, L. [ASTRON, 7990 AA Dwingeloo (Netherlands); Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie, 53010 Bonn (Germany); Bluemer, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, P.O. Box Mg-6, RO-7690 Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen, 57068 Siegen (Germany); Buitink, S. [Dept. of Astrophysics, Radboud University Nijmegen, 6525 ED Nijmegen (Netherlands); Butcher, H. [ASTRON, 7990 AA Dwingeloo (Netherlands); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Di Pierro, F. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy)] (and others)

    2008-01-15

    LOPES is set up at the location of the KASCADE-Grande extensive air shower experiment in Karlsruhe, Germany and aims to investigate radio pulses from extensive air showers experimentally and theoretically. Data taken during half a year of operation of 10 LOPES antennas (LOPES-10), triggered by EAS observed with KASCADE-Grande have been analysed. We report about the results of correlations with shower parameters present in the radio signals measured by LOPES-10. The extended setup LOPES-30 consists of 30 antennas which have an absolute calibration and the data of which will be compared with expectations from detailed Monte-Carlo simulations. In addition, LOPES operates antennas of a different type (LOPES{sup STAR}) which are optimized for an application at the Pierre Auger Observatory.

  15. Parton shower matching for electroweak corrections

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, Michael; Mueck, Alexander; Oymanns, Lennart [RWTH Aachen, Institut fuer Theoretische Teilchenphysik und Kosmologie (Germany)

    2016-07-01

    The POWHEG method is widely used to match next-to-leading order (NLO) QCD calculations with standard parton shower programs. It is also possible to use the POWHEG method to match electroweak (EW) corrections with parton showers. We present how the POWHEG method can be extended to handle EW corrections, including photon radiation, and we use it to investigate the Drell-Yan process (pp → μ{sup +}μ{sup -}). Our implementation is compared to an existing implementation in the POWHEGBOX and to NLO calculations for QCD and EW corrections.

  16. Air shower radio detection with LOPES

    Energy Technology Data Exchange (ETDEWEB)

    Bluemer, J; Apel, W D; Arteaga, J C; Badea, F; Bekk, K; Bozdog, H; Daumiller, K [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Asch, T [Inst. Prozessdatenverarbeitung und Elektronik, Forschungszentrum Karlsruhe (Germany); Auffenberg, J [Fachbereich Physik, Universitaet Wuppertal (Germany); Baehren, L; Butcher, H [ASTRON, Dwingeloo (Netherlands); Bertaina, M; Chiavassa, A [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Biermann, P L [Max-Planck-Institut fuer Radioastronomie Bonn (Germany); Brancus, I M [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Brueggemann, M; Buchholz, P [Fachbereich Physik, Universitaet Siegen (Germany); Buitink, S [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Cossavella, F; Souza, V de [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany)], E-mail: Johannes.Bluemer@ik.fzk.de (and others)

    2008-07-15

    LOPES is an array of 30 radio antenna co-located with the KASCADE-Grande extensive air shower detector in Karlsruhe, Germany. It is designed as a digital radio interferometer for the detection of radio emission from extensive air showers. LOPES features high bandwidth and fast data processing. A unique asset is the concurrent operation with KASCADE-Grande. We report about the progress in understanding the radio signals measured by LOPES. In addition, the status and further perspectives of LOPES and the large scale application of this novel detection technique are sketched.

  17. Implementing NLO DGLAP evolution in Parton Showers

    Energy Technology Data Exchange (ETDEWEB)

    Höche, Stefan [SLAC; Krauss, Frank [Durham U., IPPP; Prestel, Stefan [Fermilab

    2017-05-02

    We present a parton shower which implements the DGLAP evolution of parton densities and fragmentation functions at next-to-leading order precision up to effects stemming from local four-momentum conservation. The Monte-Carlo simulation is based on including next-to-leading order collinear splitting functions in an existing parton shower and combining their soft enhanced contributions with the corresponding terms at leading order. Soft double counting is avoided by matching to the soft eikonal. Example results from two independent realizations of the algorithm, implemented in the two event generation frameworks Pythia and Sherpa, illustrate the improved precision of the new formalism.

  18. Measurement of parton shower observables with OPAL

    Directory of Open Access Journals (Sweden)

    Fischer N.

    2016-01-01

    Full Text Available A study of QCD coherence is presented based on a sample of about 397,000 e+e- hadronic annihilation events collected at √s = 91 GeV with the OPAL detector at LEP. The study is based on four recently proposed observables that are sensitive to coherence effects in the perturbative regime. The measurement of these observables is presented, along with a comparison with the predictions of different parton shower models. The models include both conventional parton shower models and dipole antenna models. Different ordering variables are used to investigate their influence on the predictions.

  19. 46 CFR 153.216 - Shower and eyewash fountains.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Shower and eyewash fountains. 153.216 Section 153.216... Vessel Requirements § 153.216 Shower and eyewash fountains. (a) Each non-self-propelled ship must have a fixed or portable shower and eyewash fountain that operates during cargo transfer and meets paragraph (c...

  20. Precision measurements of cosmic ray air showers

    NARCIS (Netherlands)

    Huege, T.; Bray, J. D.; Buitink, S.; Dallier, R.; Ekers, R. D.; Falcke, H.; James, C. W.; Martin, L.; Revenu, B.; Scholten, O.; Schröder, F. G.

    2014-01-01

    Supplemented with suitable buffering techniques, the low-frequency part of the SKA can be used as an ultra-precise detector for cosmic-ray air showers at very high energies. This would enable a wealth of scientific applications: the physics of the transition from Galactic to extragalactic cosmic

  1. Summing threshold logs in a parton shower

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science

    2016-05-15

    When parton distributions are falling steeply as the momentum fractions of the partons increases, there are effects that occur at each order in α{sub s} that combine to affect hard scattering cross sections and need to be summed. We show how to accomplish this in a leading approximation in the context of a parton shower Monte Carlo event generator.

  2. L3+C air shower array

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    Photo 01: a view of the L3+C air shower array; 50 scintillators on the roof of the SX-hall above L3. Photo 02: view of one of the detectors of the array.Photo 04: detectors seen against the background of the LEP Point 2 facilities.

  3. Measurement of radio emission from extensive air showers with LOPES

    Energy Technology Data Exchange (ETDEWEB)

    Hoerandel, J.R., E-mail: j.horandel@astro.ru.n [Radboud University Nijmegen, Department of Astrophysics, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Apel, W.D. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Asch, T. [IPE, Forschungszentrum Karlsruhe (Germany); Badea, F. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Baehren, L. [Radboud University Nijmegen, Department of Astrophysics, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita di Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie Bonn (Germany); Bluemer, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen (Germany); Buitink, S. [Radboud University Nijmegen, Department of Astrophysics, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita di Torino (Italy); Istituto di Fisica dello Spazio Interplan etario, INAF Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita di Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Souza, V. de [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany)

    2011-02-21

    A new method is explored to detect extensive air showers: the measurement of radio waves emitted during the propagation of the electromagnetic shower component in the magnetic field of the Earth. Recent results of the pioneering experiment LOPES are discussed. It registers radio signals in the frequency range between 40 and 80 MHz. The intensity of the measured radio emission is investigated as a function of different shower parameters, such as shower energy, angle of incidence, and distance to shower axis. In addition, new antenna types are developed in the framework of LOPES{sup star} and new methods are explored to realize a radio self-trigger algorithm in real time.

  4. Air Shower Detection by Bistatic Radar

    Science.gov (United States)

    Othman, M. Abou Bakr; Allen, C.; Belz, J.; Besson, D.; Farhang-Boroujeny, B.; Ikeda, D.; Kunwar, S.; Lundquist, J. P.; Kravchenko, I.; Myers, I.; Nakamura, T.; Sagawa, H.; Sokolsky, P.; Takai, H.; Terasawa, T.; Thomson, G. B.

    2011-09-01

    Progress in the field of high-energy cosmic rays is currently limited by the rarity of the most interesting rays striking the Earth. Indeed, the continuation of the field beyond the current generation of observatories may become financially and practically impossible if new ways are not found to achieve remote coverage over large portions of the Earth's surface. We describe the development of an observatory based on such a new technique: the remote sensing via bistatic radar technology of cosmic ray induced extensive air showers. We build on pilot studies performed by MARIACHI which have demonstrated that air shower radar echoes are detectable, the opportunity afforded by the location of the Northern Hemisphere's largest ``conventional'' cosmic ray observatory (The Telescope Array) in radio-quiet western Utah, and the donation of analog television transmission equipment to this effort by a local television station.

  5. Characterizing the 2016 Perseid Meteor Shower Outburst

    Science.gov (United States)

    Blaauw, R. C.; Moser, D. E.; Molau, S.; Schult, C.; Stober, G.

    2017-01-01

    The Perseid meteor shower has been observed for millennia and is known for its visually spectacular meteors and occasional outbursts. Normal activity displays Zenithal Hourly Rates (ZHRs) of approximately100. The Perseids were expected to outburst in 2016, primarily due to particles released during the 1862 and 1479 revolutions of parent Comet Swift-Tuttle. NASA's Meteoroid Environment Office predicted the timing, strength and duration of the outburst for spacecraft risk using the MSFC Meteoroid Stream Model [1]. A double peak was predicted, with an outburst displaying a ZHR of 210 +/- 50 at 00:30 UTC Aug 12 (139.5deg Solar Longitude), and a traditional peak 12 hours later with rates still heightened from the outburst [2]. Video, visual, and radar observations taken worldwide by various entities were used to characterize the shower and compare to predictions.

  6. Triple collinear emissions in parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Höche, Stefan [SLAC; Prestel, Stefan [Fermilab

    2017-05-01

    A framework to include triple collinear splitting functions into parton showers is presented, and the implementation of flavor-changing NLO splitting kernels is discussed as a first application. The correspondence between the Monte-Carlo integration and the analytic computation of NLO DGLAP evolution kernels is made explicit for both timelike and spacelike parton evolution. Numerical simulation results are obtained with two independent implementations of the new algorithm, using the two independent event generation frameworks Pythia and Sherpa.

  7. Parton Shower Uncertainties with Herwig 7: Benchmarks at Leading Order

    CERN Document Server

    Bellm, Johannes; Plätzer, Simon; Schichtel, Peter; Siódmok, Andrzej

    2016-01-01

    We perform a detailed study of the sources of perturbative uncertainty in parton shower predictions within the Herwig 7 event generator. We benchmark two rather different parton shower algorithms, based on angular-ordered and dipole-type evolution, against each other. We deliberately choose leading order plus parton shower as the benchmark setting to identify a controllable set of uncertainties. This will enable us to reliably assess improvements by higher-order contributions in a follow-up work.

  8. The effect of shower/bath frequency on the health and operational effectiveness of soldiers in a field setting: Recommendation of showering frequencies for reducing performance-degrading nonsystemic microbial skin infections

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.C.; Daniels, J.I. [Lawrence Livermore National Lab., CA (United States); Aly, R.; Maibach, H.I. [California Univ., San Francisco, CA (United States). Dept. of Dermatology; Schaub, S.A. [Army Biomedical Research and Development Lab., Fort Detrick, MD (United States); Becker, L.E. [Brooke General Hospital, Fort Sam Houston, TX (United States)

    1991-09-30

    Historically, military personnel deployed in the field, particularly in hot, humid environments, have suffered disabling microbial infections of the skin severe enough to contribute to significant reductions in combat-troop strength. Currently, the US Army makes facilities available to field personnel for showering on a weekly basis to prevent infestations of the body louse and the subsequent spread of louse-borne disease. However, a weekly showering frequency has never been evaluated for its efficacy in preventing microbial infections of the skin -- a significant cause of man-days lost from combat in modern-day military conflicts. Consequently, field showers may be more important for maintaining combat effectiveness of military personnel than previously thought; however, providing such facilities requires tremendous logistical support. Therefore, we developed shower frequencies for troops in field environments that should minimize or prevent microbial skin infections. According to our calculations, the optimum showering frequency can range from as often as four times per day to as little as once every seven days, depending on skin integrity, environmental conditions, and cleansing agent. We also reviewed the scientific and regulatory information concerning the efficacy and safety of skin-cleansing products; the antimicrobial and antiseptic compounds, triclocarban and chlorhexidine, may be the most suitable for routine use by US military personnel.

  9. Helicity-Dependent Showers and Matching with VINCIA

    CERN Document Server

    Larkoski, Andrew J.; Skands, Peter

    2013-01-01

    We present an antenna-shower formalism that includes helicity dependence for massless partons. The formalism applies to both traditional (global) showers and to sector-based variants. We combine the shower with VINCIA's multiplicative approach to matrix-element matching, generalized to operate on each helicity configuration separately. The result is a substantial gain in computational speed for high parton multiplicities. We present an implementation of both sector and global showers, with min and max variations, and helicity-dependent tree-level matching applied for vector bosons or Higgs decay to q qbar plus up to 4 gluons and for Higgs decay to up to 5 gluons.

  10. On sampling fractions and electron shower shapes

    Energy Technology Data Exchange (ETDEWEB)

    Peryshkin, Alexander; Raja, Rajendran; /Fermilab

    2011-12-01

    We study the usage of various definitions of sampling fractions in understanding electron shower shapes in a sampling multilayer electromagnetic calorimeter. We show that the sampling fractions obtained by the conventional definition (I) of (average observed energy in layer)/(average deposited energy in layer) will not give the best energy resolution for the calorimeter. The reason for this is shown to be the presence of layer by layer correlations in an electromagnetic shower. The best resolution is obtained by minimizing the deviation from the total input energy using a least squares algorithm. The 'sampling fractions' obtained by this method (II) are shown to give the best resolution for overall energy. We further show that the method (II) sampling fractions are obtained by summing the columns of a non-local {lambda} tensor that incorporates the correlations. We establish that the sampling fractions (II) cannot be used to predict the layer by layer energies and that one needs to employ the full {lambda} tensor for this purpose. This effect is again a result of the correlations.

  11. Forbidden mass ranges for shower meteoroids

    Science.gov (United States)

    Moorhead, Althea V.

    2017-10-01

    Burns et al. (1979) use the parameter β to describe the ratio of radiation pressure to gravity for a particle in the Solar System. The central potential that these particles experience is effectively reduced by a factor of (1 - β), which in turn lowers the escape velocity. Burns et al. (1979) derived a simple expression for the value of β at which particles ejected from a comet follow parabolic orbits and thus leave the Solar System; we expand on this to derive an expression for critical β values that takes ejection velocity into account, assuming geometric optics. We use our expression to compute the critical β value and corresponding mass for cometary ejecta leading, trailing, and following the parent comet’s nucleus for 10 major meteor showers. Finally, we numerically solve for critical β values in the case of non-geometric optics. These values determine the mass regimes within which meteoroids are ejected from the Solar System and therefore cannot contribute to meteor showers.

  12. Cosmic ray air showers in the knee energy region

    Indian Academy of Sciences (India)

    The cosmic ray extensive air showers in the knee energy region have been studied by the North Bengal University array. The differential size spectra at different atmospheric depths show a systematic shift of the knee towards smaller shower size with the increase in atmospheric depth. The measured values of spectral ...

  13. Cosmic ray air showers in the knee energy region

    Indian Academy of Sciences (India)

    The cosmic ray extensive air showers in the knee energy region have been studied by the. North Bengal ... shower (EAS) technique that is the only feasible experimental method by which the energy spectrum can be derived ... The construction and geometry of the apparatus sets the maximum detectable mo- mentum of 500 ...

  14. Macroscopic model of geomagnetic-radiation from air showers

    NARCIS (Netherlands)

    Scholten, Olaf; Werner, Klaus

    2009-01-01

    We have developed a macroscopic description of coherent electro-magnetic radiation from air showers initiated by ultra-high energy cosmic rays in the presence of the geomagnetic field. This description offers a simple and direct insight in the relation between the properties of the air shower and

  15. Precision study of radio emission from air showers at LOFAR

    NARCIS (Netherlands)

    O. Scholten; Bonardi (A.); S. Buitink; A. Corstanje; U. Ebert (Ute); H. Falcke; J.R. Hörandel; P. Mitra; K. Mulrey; A. Nelles; J.P. Rachen; L. Rossetto; C. Rutjes (Casper); P. Schellart; S. Thoudam; T.N.G. Trinh (Gia); S. ter Veen (Sander); T. Winchen

    2017-01-01

    textabstractRadio detection as well as modeling of cosmic rays has made enormous progress in the past years. We show this by using the subtle circular polarization of the radio pulse from air showers measured in fair weather conditions and the intensity of radio emission from an air shower under

  16. The observability of jets in cosmic air showers

    NARCIS (Netherlands)

    Montanus, J.M.C.

    2017-01-01

    When a cosmic ray enters the atmosphere of the Earth it initiates a cosmic air shower. The evolution of the shower size along atmospheric depth is called the longitudinal profile. Existing longitudinal profiles can be related to the level of accuracy of the underlying model. The lateral density of

  17. Particle Showers in a Highly Granular Hadron Calorimeter

    CERN Document Server

    Simon, Frank

    2010-01-01

    The CALICE collaboration has constructed highly granular electromagnetic and hadronic calorimeter prototypes to evaluate technologies for the use in detector systems at a future Linear Collider. The hadron calorimeter uses small scintillator cells individually read out with silicon photomultipliers. The system with 7608 channels has been successfully operated in beam tests at DESY, CERN and Fermilab since 2006, and represents the first large scale tests of these devices in high energy physics experiments. The unprecedented granularity of the detector provides detailed information of the properties of hadronic showers, which helps to constrain hadronic shower models through comparisons with model calculations. We will discuss results on longitudinal and lateral shower profiles compared to a variety of different shower models, and present studies of the energy reconstruction of hadronic showers using software compensation techniques.

  18. Probing the radio emission from air showers with polarization measurements

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-03-01

    The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.

  19. SAFETY

    CERN Multimedia

    Niels Dupont

    2013-01-01

    CERN Safety rules and Radiation Protection at CMS The CERN Safety rules are defined by the Occupational Health & Safety and Environmental Protection Unit (HSE Unit), CERN’s institutional authority and central Safety organ attached to the Director General. In particular the Radiation Protection group (DGS-RP1) ensures that personnel on the CERN sites and the public are protected from potentially harmful effects of ionising radiation linked to CERN activities. The RP Group fulfils its mandate in collaboration with the CERN departments owning or operating sources of ionising radiation and having the responsibility for Radiation Safety of these sources. The specific responsibilities concerning "Radiation Safety" and "Radiation Protection" are delegated as follows: Radiation Safety is the responsibility of every CERN Department owning radiation sources or using radiation sources put at its disposition. These Departments are in charge of implementing the requi...

  20. Angular resolution of air-shower array-telescopes

    Science.gov (United States)

    Linsley, J.

    1985-01-01

    A fundamental limit on the angular resolution of air shower array-telescopes is set by the finite number of shower particles coupled with the finite thickness of the particle swarm. Consequently the angular resolution which can be achieved in practice depends in a determinant manner on the size and number of detectors in an array-telescope, as well as on the detector separation and the timing resolution. It is also necessary to examine the meaning of particle density in whatever type of detector is used. Results are given which can be used to predict the angular resolution of a given instrument for showers of various sizes, and to compare different instruments.

  1. Nitrogen fluorescence in air for observing extensive air showers

    CERN Document Server

    Keilhauer, B; Fraga, M; Matthews, J; Sakaki, N; Tameda, Y; Tsunesada, Y; Ulrich, A

    2012-01-01

    Extensive air showers initiate the fluorescence emissions from nitrogen molecules in air. The UV-light is emitted isotropically and can be used for observing the longitudinal development of extensive air showers in the atmosphere over tenth of kilometers. This measurement technique is well-established since it is exploited for many decades by several cosmic ray experiments. However, a fundamental aspect of the air shower analyses is the description of the fluorescence emission in dependence on varying atmospheric conditions. Different fluorescence yields affect directly the energy scaling of air shower reconstruction. In order to explore the various details of the nitrogen fluorescence emission in air, a few experimental groups have been performing dedicated measurements over the last decade. Most of the measurements are now finished. These experimental groups have been discussing their techniques and results in a series of \\emph{Air Fluorescence Workshops} commenced in 2002. At the 8$^{\\rm{th}}$ Air Fluoresc...

  2. Multiplicity distributions of shower particles and target fragments in 7 ...

    Indian Academy of Sciences (India)

    emulsion) collisions at 3 A GeV/c are experimentally studied. In the framework of the multisource thermal model, the multicomponent Erlang distribution is used to describe the experimental multiplicity distributions of shower particles, grey fragments ...

  3. Nonpotable reuse: Development of health criteria and technologies for shower water recycle. (Reannouncement with new availability information)

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, W.D.; Schmidt, M.O.; Carnevale, R.M.; Schaub, S.A.

    1991-12-31

    The U.S. Army is evaluating recycle of field shower water as a conservation practice in arid regions and is seeking to define appropriate technologies and health criteria. Shower wastewaters at a military installation have been characterized in terms of physical, chemical and microbiological parameters. Two treatment technologies havebeen investigated. Microfiltration cartridges with a nominal pore size of 0.2 MU m achieved consistent removals of 75 15% of total organic carbon (TOC) and better than 99% of turbidity from synthetic shower water containing 50 to 100 mg/L of TOC as soap. An alternative treatmenttechnology utilized powered activated carbon and coagulation/flocculation/ sedimentation followed by diatomaceous earth filtration. A TOC reduction of 70 15% was achieved in three separate studies, although at a cost of 1 g/L or more of powered activated carbon. Revised quality criteria for recycled shower water have been developed with guidance from the National Research Council. Parameters which can practically be measured in the field are primarily associated with microbiological safety.

  4. A Gas Calorimeter for High-Energy Experiment and Study of High-Energy Cascade Shower

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Hitoshi [Tsukuba U.

    1984-01-01

    High energy behavior of the electromagnetic cascade shower has been studied. high energy showers were created by electron and hadron beams with energies between 25 GeV and 150 GeV at Fermi National Accelerator Laboratory. The showers were observed by a shower detector consisting of multi-layer of lead plates and proportional chambers. The experimental results were analyzed with special emphasis on the fluctuation problem of the electromagnetic cascade shower....

  5. On the hadronic component of extensive air showers

    Energy Technology Data Exchange (ETDEWEB)

    Hoerandel, J.R.; Antoni, T.; Apel, W.D.; Badea, F.; Bekk, K.; Bercuci, A.; Bluemerba, H.; Bozdog, H.; Brancus, I.M.; Buettner, C.; Chilingarian, A.; Daumiller, K.; Doll, P.; Engler, J.; Fessler, F.; Gils, H.J.; Glasstetter, R.; Haeusler, R.; Hambsch, M.; Haungs, A.; Heck, D.; Iwan, A.; Kampert, K.-H.; Klages, H.O.; Maier, G.; Mathes, H.J.; Mayer, H.J.; Milke, J.; Mueller, M.; Obenland, R.; Oehlschlaeger, J.; Ostapchenko, S.; Petcu, M.; Rebel, H.; Risse, M.; Roth, M.; Schatz, G.; Schieler, H.; Scholz, J.; Thouw, T.; Ulrich, H.; Weber, J.H.; Weindl, A.; Wentz, J.; Wochele, J.; Zabierowski, J

    2003-07-01

    The hadronic component of extensive air showers is investigated with the large calorimeter of the KASCADE experiment. The transverse momentum transfer in EAS is explored by investigations of the geometrical structure in the hadronic shower core and the arrival times of hadrons. The flux of unaccompanied hadrons is studied to probe hadronic cross sections. The measured results are compatible with simulations using CORSIKA/QGSJET.

  6. Microwave detection of air showers with the MIDAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Privitera, Paolo [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Alekotte, I. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), 8400 San Carlos de Bariloche, Rio Negro (Argentina); Alvarez-Muniz, J. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, Campus Sur, E-15782 Santiago de Compostela (Spain); Berlin, A. [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bertou, X. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), 8400 San Carlos de Bariloche, Rio Negro (Argentina); Bogdan, M.; Bohacova, M. [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bonifazi, C. [Univ. Federal do Rio de Janeiro (UFRJ), Instituto de Fisica, Cidade Universitaria, Caixa Postal 68528, 21945- 970 Rio de Janeiro, RJ (Brazil); Carvalho, W.R. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, Campus Sur, E-15782 Santiago de Compostela (Spain); Mello Neto, J.R.T. de [Univ. Federal do Rio de Janeiro (UFRJ), Instituto de Fisica, Cidade Universitaria, Caixa Postal 68528, 21945- 970 Rio de Janeiro, RJ (Brazil); Facal San Luis, P.; Genat, J.F.; Hollon, N.; Mills, E.; Monasor, M.; Reyes, L.C.; Rouille d' Orfeuil, B. [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Santos, E.M. [Univ. Federal do Rio de Janeiro (UFRJ), Instituto de Fisica, Cidade Universitaria, Caixa Postal 68528, 21945- 970 Rio de Janeiro, RJ (Brazil); Wayne, S.; Williams, C. [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2011-03-15

    Microwave emission from Extensive Air Showers could provide a novel technique for ultra-high energy cosmic rays detection over large area and with 100% duty cycle. We describe the design, performance and first results of the MIDAS (MIcrowave Detection of Air Showers) detector, a 4.5 m parabolic dish with 53 feeds in its focal plane, currently installed at the University of Chicago.

  7. An analytic parton shower. Algorithms, implementation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Sebastian

    2012-06-15

    The realistic simulation of particle collisions is an indispensable tool to interpret the data measured at high-energy colliders, for example the now running Large Hadron Collider at CERN. These collisions at these colliders are usually simulated in the form of exclusive events. This thesis focuses on the perturbative QCD part involved in the simulation of these events, particularly parton showers and the consistent combination of parton showers and matrix elements. We present an existing parton shower algorithm for emissions off final state partons along with some major improvements. Moreover, we present a new parton shower algorithm for emissions off incoming partons. The aim of these particular algorithms, called analytic parton shower algorithms, is to be able to calculate the probabilities for branchings and for whole events after the event has been generated. This allows a reweighting procedure to be applied after the events have been simulated. We show a detailed description of the algorithms, their implementation and the interfaces to the event generator WHIZARD. Moreover we discuss the implementation of a MLM-type matching procedure and an interface to the shower and hadronization routines from PYTHIA. Finally, we compare several predictions by our implementation to experimental measurements at LEP, Tevatron and LHC, as well as to predictions obtained using PYTHIA. (orig.)

  8. Biofilms on Hospital Shower Hoses: Characterization and ...

    Science.gov (United States)

    Although the source of drinking water used in hospitals is commonly, biofilms on water pipelines are refuge to bacteria that survive different disinfection strategies. Drinking water (DW) biofilms are well known to harbor opportunistic pathogens, however, these biofilm communities remain poorly characterized by culture-independent approaches that circumvent the limitations of conventional monitoring efforts. Hence, the frequency of pathogens in DW biofilms and how biofilm members withstand high doses of disinfectants and/or chlorine residuals in the water supply remain speculative, but directly impact public health. The aim of this study was to characterize the composition of microbial communities growing on five hospital shower hoses using both culture-dependent and culture-independent techniques. Two different sequence-based methods were used to characterize the bacterial fractions: 16S rRNA gene sequencing of bacterial cultures and next generation sequencing of metagenomes. Based on the metagenomic data, we found that Mycobacterium-like species was the abundant bacterial taxa that overlapped among the five samples. We also recovered the draft genome of a novel Mycobacterium species, closely related to opportunistic pathogenic nontuberculous mycobacteria, M. rhodesiae and M. tusciae, in addition to other, less abundant species. In contrast, the cultured fraction was mostly affiliated to Proteobacteria, such as members of the Sphingomonas, Blastomonas and Porph

  9. Extensive Air Showers with unusual structure

    Directory of Open Access Journals (Sweden)

    Beznosko Dmitriy

    2017-01-01

    Full Text Available A total of 23500 Extensive Air Showers (EAS with energies above ∼ 1016 eV have been detected during the ∼3500 hours of the Horizon-T (HT detectors system operations before Aug. 2016. Among these EAS, more than a thousand had an unusual spatial and temporary structure that showed pulses with several maxima (modals or modes from several detection points of the HT at the same time. These modes are separated in time from each other starting from tens to thousands of ns. These EAS have been called multi-modal. Analysis shows that the multi-modal EAS that have been detected by Horizon-T have the following properties: 1. Multi-modal EAS have energy above ∼1017 eV. 2. Pulses with several modes are located at large distances from the EAS axis. An overview of the collected data will be provided. General comments about the unusual structure of the multi-modal EAS will be presented.

  10. The radio emission pattern of air showers as measured with LOFAR—a tool for the reconstruction of the energy and the shower maximum

    NARCIS (Netherlands)

    Nelles, A.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, Gia

    2015-01-01

    The pattern of the radio emission of air showers is finely sampled with the Low-Frequency ARray (LOFAR). A set of 382 measured air showers is used to test a fast, analytic parameterization of the distribution of pulse powers. Using this parameterization we are able to reconstruct the shower axis and

  11. Do cosmic ray air showers initiate lightning?: A statistical analysis of cosmic ray air showers and lightning mapping array data

    Science.gov (United States)

    Hare, B. M.; Dwyer, J. R.; Winner, L. H.; Uman, M. A.; Jordan, D. M.; Kotovsky, D. A.; Caicedo, J. A.; Wilkes, R. A.; Carvalho, F. L.; Pilkey, J. T.; Ngin, T. K.; Gamerota, W. R.; Rassoul, H. K.

    2017-08-01

    It has been argued in the technical literature, and widely reported in the popular press, that cosmic ray air showers (CRASs) can initiate lightning via a mechanism known as relativistic runaway electron avalanche (RREA), where large numbers of high-energy and low-energy electrons can, somehow, cause the local atmosphere in a thundercloud to transition to a conducting state. In response to this claim, other researchers have published simulations showing that the electron density produced by RREA is far too small to be able to affect the conductivity in the cloud sufficiently to initiate lightning. In this paper, we compare 74 days of cosmic ray air shower data collected in north central Florida during 2013-2015, the recorded CRASs having primary energies on the order of 1016 eV to 1018 eV and zenith angles less than 38°, with Lightning Mapping Array (LMA) data, and we show that there is no evidence that the detected cosmic ray air showers initiated lightning. Furthermore, we show that the average probability of any of our detected cosmic ray air showers to initiate a lightning flash can be no more than 5%. If all lightning flashes were initiated by cosmic ray air showers, then about 1.6% of detected CRASs would initiate lightning; therefore, we do not have enough data to exclude the possibility that lightning flashes could be initiated by cosmic ray air showers.

  12. Investigations of the radio signal of inclined showers with LOPES

    Energy Technology Data Exchange (ETDEWEB)

    Saftoiu, A., E-mail: allixme@gmail.com [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Apel, W.D. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany); Arteaga, J.C. [Karlsruhe Institute of Technology (KIT), Institut fuer Experimentelle Kernphysik, 76021 Karlsruhe (Germany); Asch, T. [Karlsruhe Institute of Technology (KIT), Institut fuer Prozessdatenverarbeitung und Elektronik, 76021 Karlsruhe (Germany); Baehren, L. [Radboud University Nijmegen, Department of Astrophysics (Netherlands); Bekk, K. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell& #x27; Universita Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie Bonn (Germany); Bluemer, J. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany); Karlsruhe Institute of Technology (KIT), Institut fuer Experimentelle Kernphysik, 76021 Karlsruhe (Germany); Bozdog, H. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Buchholz, P. [Universitaet Siegen, Fachbereich Physik (Germany); Buitink, S. [Radboud University Nijmegen, Department of Astrophysics (Netherlands); Cantoni, E. [Dipartimento di Fisica Generale dell& #x27; Universita Torino (Italy); INAF Torino, Istituto di Fisica dello Spazio Interplanetario (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell& #x27; Universita Torino (Italy); and others

    2012-01-11

    We report in this paper on an analysis of 20 months of data taken with LOPES. LOPES is radio antenna array set-up in coincidence with the Grande array, both located at the Karlsruhe Institute of Technology, Germany. The data used in this analysis were taken with an antenna configuration composed of 30 inverted V-shape dipole antennas. We have restricted the analysis to a special selection of inclined showers - with zenith angle {theta}>40{sup Ring-Operator }. These inclined showers are of particular interest because they are the events with the largest geomagnetic angles and are therefore suitable to test emission models based on geomagnetic effects.The reconstruction procedure of the emitted radio signal in EAS uses as one ingredient the frequency-dependent antenna gain pattern which is obtained from simulations. Effects of the applied antenna model in the calibration procedure of LOPES are studied. In particular, we have focused on one component of the antenna, a metal pedestal, which generates a resonance effect, a peak in the amplification pattern where it is the most affecting high zenith angles, i.e. inclined showers. In addition, polarization characteristics of inclined showers were studied in detail and compared with the features of more vertical showers for the two cases of antenna models, with and without the pedestal.

  13. Air shower measurements with the LOPES radio antenna array

    Energy Technology Data Exchange (ETDEWEB)

    Haungs, A. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany)], E-mail: andreas.haungs@ik.fzk.de; Apel, W.D. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Asch, T. [Inst. Prozessdatenverarbeitung und Elektronik, Forschungszentrum Karlsruhe (Germany); Auffenberg, J. [Fachbereich Physik, Universitaet Wuppertal (Germany); Badea, F. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Baehren, L. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie, Bonn (Germany); Bluemer, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen (Germany); Buitink, S. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Istituto di Fisica dello Spazio Interplanetario, INAF, Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany)] (and others)

    2009-06-01

    LOPES is set up at the location of the KASCADE-Grande extensive air shower experiment in Karlsruhe, Germany and aims to measure and investigate radio pulses from extensive air showers. Since radio waves suffer very little attenuation, radio measurements allow the detection of very distant or highly inclined showers. These waves can be recorded day and night, and provide a bolometric measure of the leptonic shower component. LOPES is designed as a digital radio interferometer using high bandwidths and fast data processing and profits from the reconstructed air shower observables of KASCADE-Grande. The LOPES antennas are absolutely amplitude calibrated allowing to reconstruct the electric field strength which can be compared with predictions from detailed Monte-Carlo simulations. We report about the analysis of correlations present in the radio signals measured by the LOPES 30 antenna array. Additionally, LOPES operates antennas of a different type (LOPES{sup STAR}) which are optimized for an application at the Pierre Auger Observatory. Status, recent results of the data analysis and further perspectives of LOPES and the possible large scale application of this new detection technique are discussed.

  14. Aging comets and their meteor showers

    Science.gov (United States)

    Ye, Quan-Zhi

    2016-10-01

    Comets are thought to be responsible for the terrestrial accretion of water and organic materials. The aging of comets is one of the most critical yet poorly understood problems in planetary astronomy. Here we attack this problem by examining different parts of the cometary aging spectrum of Jupiter-family comets (JFCs), a group of comets that dominates the cometary influx in the near-Earth space, using both telescopic and meteor observations.We examine two representative JFCs and the population of dormant comets. At the younger end of the aging spectrum, we examine a moderately active JFC, 15P/Finlay, and review the puzzle of the non-detection of the associated Finlayid meteor shower. We find that, although having been behaved like a dying comet in the past several 102 years, 15P/Finlay does possess ability for energetic outbursts without a clear reason. Towards the more aged end of the spectrum, we examine a weakly active JFC, 209P/LINEAR. By bridging telescopic observations at visible and infrared wavelength, meteor observations and dynamical investigations, we find that 209P/LINEAR is indeed likely an aged yet long-lived comet. At the other end of the spectrum, we examine the population of dormant near-Earth comets, by conducting a comprehensive meteor-based survey looking for dormant comets that have recently been active. We find the lower limit of the dormant comet fraction in the near-Earth object (NEO) population to be 2.0 ± 1.7%. This number is at the lower end of the numbers found using dynamical and telescopic techniques, which may imply that a significant fraction of comets in the true JFC population are weakly active and are not yet detected.These results have revealed interesting diversities in dying or dead comets, both in their behaviors as well as their natures. An immediate quest in the understanding of cometary aging would be to examine a large number of dying or dead comets and understand their general characteristics.

  15. Modeling coherent cherenkov radio emissions from high energy electromagnetic showers.

    Energy Technology Data Exchange (ETDEWEB)

    Schoessow, P.

    1998-04-24

    A technique currently under study for the detection of ultrahigh energy cosmic ray neutrinos involves the measurement of radio emissions from the electromagnetic shower generated by the neutrino in a large volume of naturally occurring dielectric such as the Antarctic ice cap or salt domes. The formation of an electron excess in the shower leads to the emission of coherent Cherenkov radiation, an effect similar to the generation of wakefields in dielectric loaded structures. We have used the finite difference time domain (FDTD) wakefield code ARRAKIS to model coherent Cherenkov radiation fields from high energy showers; we present as an example calculations of expected signals in a proof of principle experiment proposed for the Fermilab Main Injector.

  16. Timelike Dipole-Antenna Showers with Massive Fermions

    CERN Document Server

    Gehrmann-De Ridder, Aude; Skands, Peter

    2012-01-01

    We present a complete formalism for final-state (timelike) dipole-antenna showers including fermion masses, but neglecting polarization and finite-width effects. We make several comparisons of tree-level expansions of this shower algorithm to fixed-order matrix elements for hadronic Z decays, up to and including Z to 6 partons, to which the algorithm can be consistently matched over all of phase space. We also compare to analytical resummations at the NLL level. The shower algorithm has been implemented in the publicly available VINCIA plugin to the PYTHIA 8 event generator, which enables us to compare to experimental data at the fully hadronized level. We also include comparisons to selected observables in b-tagged Z decays.

  17. Antenna Showers with One-Loop Matrix Elements

    CERN Document Server

    Hartgring, L; Skands, P

    2013-01-01

    We consider the probability for a colour-singlet qqbar pair to emit a gluon, in strongly and smoothly ordered antenna showers. We expand to second order in alphaS and compare to the second-order QCD matrix elements for Z -> 3 jets, neglecting terms suppressed by 1/NC^2. We give a prescription that corrects the shower to the matrix-element result at this order for both soft and hard emissions, thereby explicitly reducing its dependence on evolution- and renormalization-scale choices. We confirm that the choice of pT for both of these scales absorbs all logarithms through order alphaS^2, and contrast this with various alternatives. We include these corrections in the VINCIA shower generator and study the impact on LEP event-shape and fragmentation observables. An uncertainty estimate is provided for each event, in the form of a vector of alternative weights.

  18. Matching NLO with parton shower in Monte Carlo scheme

    CERN Document Server

    Sapeta, Sebastian

    2016-01-01

    A new method of including NLO QCD corrections to the hard process in the LO Monte Carlo (MC) shower is discussed. The method is based on a recently proposed MC factorization scheme, which dramatically simplifies the NLO coefficient functions. The NLO corrections are introduced by simple reweighing of the events produced by the LO shower with a single, positive MC weight. A practical implementation of the method is presented for the case of electro-weak boson production in the hadron-hadron collision, and the results are compared with well established approaches to NLO+PS matching.

  19. First results of the air shower experiment KASCADE

    Energy Technology Data Exchange (ETDEWEB)

    Haungs, A. E-mail: haungs@ik3.fzk.de; Antonia, T.; Apel, W.D.; Badea, F.; Bekk, K.; Bernloehr, K.; Bluemer, H.; Bollmann, E.; Bozdog, H.; Brancus, I.M.; Buettner, C.; Chilingarian, A.; Daumiller, K.; Dolla, P.; Engler, J.; Fessler, F.; Gils, H.J.; Glasstetter, R.; Haeusler, R.; Hafemann, W.; Heck, H.; Hoerandel, J.R.; Holst, T.; Kampert, K.-H.; Keim, H.; Kempa, J.; Klages, H.O.; Knapp, J.; Martello, D.; Mathes, H.J.; Matussek, P.; Mayer, H.J.; Milke, J.; Muehlenberg, D.; Oehlschlaeger, J.; Pectu, M.; Rebel, H.; Risse, M.; Roth, M.; Schatz, G.; Schimdt, F.K.; Thouw, T.; Ulrich, H.; Vardanyan, A.; Vulpescu, B.; Weber, J.H.; Wentz, J.; Wiegert, T.; Wochele, J.; Zabierowski, J.; Zagromski, S

    2000-06-01

    The main goals of the KASCADE (KArlsruhe Shower Core and Array DEtector) experiment are the determination of the energy spectrum and elemental composition of the charged cosmic rays in the energy range around the knee at {approx} 5 PeV. Due to the large number of measured observables per single shower a variety of different approaches are applied to the data, preferably on an event-by-event basis. First results are presented and the influence of the high-energy interaction models underlying the analyses is discussed.

  20. MESSENGER observations of a flux‐transfer‐event shower at Mercury

    National Research Council Canada - National Science Library

    Slavin, James A; Imber, Suzanne M; Boardsen, Scott A; DiBraccio, Gina A; Sundberg, Torbjorn; Sarantos, Menelaos; Nieves‐Chinchilla, Teresa; Szabo, Adam; Anderson, Brian J; Korth, Haje; Zurbuchen, Thomas H; Raines, Jim M; Johnson, Catherine L; Winslow, Reka M; Killen, Rosemary M; McNutt, Ralph L; Solomon, Sean C

    2012-01-01

    ... “FTE showers.” The northward and sunward orientation of the interplanetary magnetic field during this shower strongly suggests that the FTEs observed during this event formed just tailward of Mercury's southern magnetic cusp...

  1. SAFETY

    CERN Multimedia

    C. Schaefer and N. Dupont

    2013-01-01

      “Safety is the highest priority”: this statement from CERN is endorsed by the CMS management. An interpretation of this statement may bring you to the conclusion that you should stop working in order to avoid risks. If the safety is the priority, work is not! This would be a misunderstanding and misinterpretation. One should understand that “working safely” or “operating safely” is the priority at CERN. CERN personnel are exposed to different hazards on many levels on a daily basis. However, risk analyses and assessments are done in order to limit the number and the gravity of accidents. For example, this process takes place each time you cross the road. The hazard is the moving vehicle, the stake is you and the risk might be the risk of collision between both. The same principle has to be applied during our daily work. In particular, keeping in mind the general principles of prevention defined in the late 1980s. These principles wer...

  2. SAFETY

    CERN Document Server

    M. Plagge, C. Schaefer and N. Dupont

    2013-01-01

    Fire Safety – Essential for a particle detector The CMS detector is a marvel of high technology, one of the most precise particle measurement devices we have built until now. Of course it has to be protected from external and internal incidents like the ones that can occur from fires. Due to the fire load, the permanent availability of oxygen and the presence of various ignition sources mostly based on electricity this has to be addressed. Starting from the beam pipe towards the magnet coil, the detector is protected by flooding it with pure gaseous nitrogen during operation. The outer shell of CMS, namely the yoke and the muon chambers are then covered by an emergency inertion system also based on nitrogen. To ensure maximum fire safety, all materials used comply with the CERN regulations IS 23 and IS 41 with only a few exceptions. Every piece of the 30-tonne polyethylene shielding is high-density material, borated, boxed within steel and coated with intumescent (a paint that creates a thick co...

  3. 46 CFR 108.205 - Wash spaces; toilet spaces; and shower spaces.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Wash spaces; toilet spaces; and shower spaces. 108.205...; toilet spaces; and shower spaces. (a) For the purposes of this section— (1) “Private facility” means a toilet, washing, or shower space that is accessible only from one single or double occupancy sleeping...

  4. What the radio signal tells about the cosmic-ray air shower

    NARCIS (Netherlands)

    Scholten, Olaf; de Vries, Krijn D.; Werner, Klaus

    2013-01-01

    The physics of radio emission from cosmic-ray induced air showers is shortly summarized. It will be shown that the radio signal at different distances from the shower axis provides complementary information on the longitudinal shower evolution, in particular the early part, and on the distribution

  5. A new way of air shower detection: measuring the properties of cosmic rays with LOFAR

    NARCIS (Netherlands)

    Nelles, A.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Rachen, J. P.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T.N.G.

    2015-01-01

    High-energy cosmic rays impinging onto the atmosphere of the Earth initiate cascades of secondary particles: extensive air showers. Many of the particles in a shower are electrons and positrons. During the development of the air shower and by interacting with the geomagnetic field, the

  6. Precision measurements of cosmic ray air showers with the SKA

    NARCIS (Netherlands)

    Huege, T.; Bray, J.; Buitink, S.; Dallier, R.; Ekers, R. D.; Falcke, H. D. E.; James, C. W.; Martin, L.; Revenu, B.; Scholten, O.; Schroeder, F.

    2014-01-01

    Supplemented with suitable buffering techniques, the low-frequency part of the SKA can be used as an ultra-precise detector for cosmic-ray air showers at very high energies. This would enable a wealth of scientific applications: the physics of the transition from Galactic to extragalactic cosmic

  7. NLO Corrections and Parton Showers in the LHC Era

    CERN Document Server

    Arnold, Ken Boris

    The Large Hadron Collider provides a challenging environment, not only for experimentalists. Precise predictions are needed in order to use its potential to full capacity. This thesis focuses on predictions including higher-order corrections in a twofold way. Both results for a pure parton level calculation and for a calculation incorporating a parton shower are presented. Higgs boson plus photon production via vector boson fusion was implemented in a fully flexible parton-level Monte-Carlo program. The results at next-to-leading order accuracy are discussed. It is found that the corrections are large in some regions of phase space. For the simulation of a parton shower matched to a next-to-leading order matrix element, a mixed-language runtime interface was established to use existing matrix elements for Higgs boson production via vector boson fusion. Results are discussed for different parton shower algorithms and matching schemes. The simulation is shown to have a substantial dependence on the shower algor...

  8. Observation of Horizontal Air Showers with ARGO-YBJ

    Energy Technology Data Exchange (ETDEWEB)

    Panico, B., E-mail: beatrice.panico@roma2.infn.it [Dipartimento di Fisica, Universita Roma ' Tor Vergata' , Via della Ricerca Scientifica 1, Roma (Italy); INFN, Sezione Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy); Di Sciascio, G. [INFN, Sezione Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy)

    2012-11-11

    A preliminary analysis of Extensive Air Showers reconstructed by ARGO-YBJ with zenith angle greater than 80 Degree-Sign is reported. The measurement of the size spectrum and of the azimuthal distribution is discussed. A description of the topology of these events is also provided.

  9. Distinguishability of Neutrino Flavors Through Their Different Shower Characteristics

    Science.gov (United States)

    Chen, Chih-Ching; Chen, Pisin; Hu, Chia-Yu; Lai, K.-C.

    2013-12-01

    We propose a new avor identification method to distinguish mu and tau type ultra high energy cosmic neutrinos (UHECN). Energy loss of leptons in matter is an important information for the detection of neutrinos originated from high energy astrophysical sources. 50 years ago, Askaryan proposed to detect Cherenkov radiowave signals emitted from the negative charge excess of neutrino-induced particle shower. The theory of Cherenkov radiation under Fraunhofer approximation has been widely studied in the past two decades. However, at high energies or for high density materials, electromagnetic shower should be elongated due to the Landau-Pomeranchuck-Migdal (LPM) effect. As such the standard Fraunhofer approximation ceases to be valid when the distance between the shower and the detector becomes comparable with the shower length. Monte Carlo simulations have been performed recently to investigate this regime. Here we adopt the deduced relationship between the radio signal and the cascade development profile to investigate its implication to lepton signatures. Our method provides a straightforward technique to identify the neutrino avor through the detected Cherenkov signals.

  10. Air shower detectors in gamma-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Sinnis, Gus [Los Alamos National Laboratory

    2008-01-01

    Extensive air shower (EAS) arrays directly detect the particles in an EAS that reach the observation altitude. This detection technique effectively makes air shower arrays synoptic telescopes -- they are capable of simultaneously and continuously viewing the entire overhead sky. Typical air shower detectors have an effective field-of-view of 2 sr and operate nearly 100% of the time. These two characteristics make them ideal instruments for studying the highest energy gamma rays, extended sources and transient phenomena. Until recently air shower arrays have had insufficient sensitivity to detect gamma-ray sources. Over the past decade, the situation has changed markedly. Milagro, in the US, and the Tibet AS{gamma} array in Tibet, have detected very-high-energy gamma-ray emission from the Crab Nebula and the active galaxy Markarian 421 (both previously known sources). Milagro has discovered TeV diffuse emission from the Milky Way, three unidentified sources of TeV gamma rays, and several candidate sources of TeV gamma rays. Given these successes and the suite of existing and planned instruments in the GeV and TeV regime (AGILE, GLAST, HESS, VERITAS, CTA, AGIS and IceCube) there are strong reasons for pursuing a next generation of EAS detectors. In conjunction with these other instruments the next generation of EAS instruments could answer long-standing problems in astrophysics.

  11. Probing the radio emission from air showers with polarization measurements

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration, [No Value; Martin, L.

    2014-01-01

    The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process

  12. Progress in air shower radio measurements : detection of distant events

    NARCIS (Netherlands)

    Bähren, L.; Buitink, S.J.; Falcke, H.D.E.; Horneffer, K.H.A.; Kuijpers, J.M.E.; Lafebre, S.J.; Nigl, A.; Petrovic, J.; Singh, K.

    2006-01-01

    Data taken during half a year of operation of 10 LOPES antennas (LOPES-10), triggered by EAS observed with KASCADE-Grande have been analysed. We report about the analysis of correlations of radio signals measured by LOPES-10 with extensive air shower events reconstructed by KASCADE-Grande, including

  13. Measure Guideline: Water Management at Tub and Shower Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, B.

    2011-12-01

    Due to the high concentrations of water and the consequential risk of water damage to the home's structure a comprehensive water management system is imperative to protect the building assemblies underlying the finish surround of tub and shower areas. This guide shows how to install fundamental waterproofing strategies to prevent water related issues at shower and tub areas. When conducting a total gut rehab of a structure or constructing a new home, best practice installation and detailing for effective waterproofing are critically important at bathtub and shower assemblies. Water management issues in a structure may go unrecognized for long periods, so that when they are finally observed, the damage from long-term water exposure is extensive. A gut rehab is often undertaken when a home has experienced a natural disaster or when the homeowners are interested in converting an old, high-energy-use building into a high-quality, efficient structure that meets or exceeds one of the national energy standards, such as ENERGY STAR or LEED for homes. During a gut rehab, bath areas need to be replaced with diligent attention to detail. Employing effective water management practices in the installation and detailing of tub and shower assemblies will minimize or eliminate water issues within the building cavities and on the finished surfaces. A residential tub-and-shower surround or shower-stall assembly is designed to handle a high volume of water - 2.5 gallons per minute, with multiple baths occurring during a typical day. Transitions between dissimilar materials and connections between multiple planes must be installed with care to avoid creating a pathway for water to enter the building assemblies. Due to the high volume of water and the consequential risk of water damage to the home's structure, a comprehensive water management system is imperative to protect the building assemblies underlying the finish surround of tub and shower areas. At each stage of

  14. Meteoroid Environment Modeling: the Meteoroid Engineering Model and Shower Forecasting

    Science.gov (United States)

    Moorhead, Althea V.

    2017-01-01

    The meteoroid environment is often divided conceptually into meteor showers plus a sporadic background component. The sporadic complex poses the bulk of the risk to spacecraft, but showers can produce significant short-term enhancements of the meteoroid flux. The Meteoroid Environment Office (MEO) has produced two environment models to handle these cases: the Meteoroid Engineering Model (MEM) and an annual meteor shower forecast. Both MEM and the forecast are used by multiple manned spaceflight projects in their meteoroid risk evaluation, and both tools are being revised to incorporate recent meteor velocity, density, and timing measurements. MEM describes the sporadic meteoroid complex and calculates the flux, speed, and directionality of the meteoroid environment relative to a user-supplied spacecraft trajectory, taking the spacecraft's motion into account. MEM is valid in the inner solar system and offers near-Earth and cis-lunar environments. While the current version of MEM offers a nominal meteoroid environment corresponding to a single meteoroid bulk density, the next version of MEMR3 will offer both flux uncertainties and a density distribution in addition to a revised near-Earth environment. We have updated the near-Earth meteor speed distribution and have made the first determination of uncertainty in this distribution. We have also derived a meteor density distribution from the work of Kikwaya et al. (2011). The annual meteor shower forecast takes the form of a report and data tables that can be used in conjunction with an existing MEM assessment. Fluxes are typically quoted to a constant limiting kinetic energy in order to comport with commonly used ballistic limit equations. For the 2017 annual forecast, the MEO substantially revised the list of showers and their characteristics using 14 years of meteor flux measurements from the Canadian Meteor Orbit Radar (CMOR). Defunct or insignificant showers were removed and the temporal profiles of many showers

  15. Resistive Plate Chamber Digitization in a Hadronic Shower Environment

    CERN Document Server

    Deng, Z.

    2016-06-28

    The CALICE Semi-Digital Hadron Calorimeter (SDHCAL) technological prototype is a sampling calorimeter using Glass Resistive Plate Chamber detectors with a three-threshold readout as the active medium. This technology is one of the two options proposed for the hadron calorimeter of the International Large Detector for the International Linear Collider. The prototype was exposed to beams of muons, electrons and pions of different energies at the CERN Super Proton Synchrotron. To be able to study the performance of such a calorimeter in future experiments it is important to ensure reliable simulation of its response. In this paper we present our prototype simulation performed with GEANT4 and the digitization procedure achieved with an algorithm called SimDigital. A detailed description of this algorithm is given and the methods to determinate its parameters using muon tracks and electromagnetic showers are explained. The comparison with hadronic shower data shows a good agreement up to 50 GeV. Discrepancies are ...

  16. Efficient Matrix-Element Matching with Sector Showers

    CERN Document Server

    Lopez-Villarejo, J J

    2011-01-01

    A Markovian shower algorithm based on "sector antennae" is presented and its main properties illustrated. Tree-level full-color matrix elements can be automatically incorporated in the algorithm and are re-interpreted as process-dependent 2 -> n antenna functions. In hard parts of phase-space, these functions generate tree-level matrix-element corrections to the shower. In soft parts, they should improve the logarithmic accuracy of it. The number of matrix-element evaluations required per order of matching is 1, with an unweighting efficiency that remains very high for arbitrary numbers of legs. Total rates can be augmented to NLO precision in a straightforward way. As a proof of concept, we present an implementation in the publicly available VINCIA plug-in to the PYTHIA 8 event generator, for hadronic $Z^0$ decays including tree-level matrix elements through ${\\cal O}(\\alpha_s^4)$.

  17. Radio detection of cosmic ray air showers with LOPES

    Energy Technology Data Exchange (ETDEWEB)

    Huege, T.; Apel, W.D. [IK, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Asch, T. [IPE, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Badea, A.F. [IK, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Baehren, L. [ASTRON, 7990 AA Dwingeloo (Netherlands); Bekk, K. [IK, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Bercuci, A. [Nat. Inst. of Physics and Nuclear Eng., 7690 Bucharest (Romania); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie, 53121 Bonn (Germany); Bluemer, J. [IK, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); IEKP, Universitaet Karlsruhe, 76021 Karlsruhe (Germany); Bozdog, H. [IK, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Brancus, I.M. [Nat. Inst. of Physics and Nuclear Eng., 7690 Bucharest (Romania); Buitink, S. [Dpt. Astrophysics, Radboud Univ., 6525 ED Nijmegen (Netherlands); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen, 57072 Siegen (Germany); Butcher, H. [ASTRON, 7990 AA Dwingeloo (Netherlands); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Cossavella, F. [IEKP, Universitaet Karlsruhe, 76021 Karlsruhe (Germany); Daumiller, K. [IK, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Di Pierro, F. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy)] (and others)

    2007-03-15

    In the last few years, radio detection of cosmic ray air showers has experienced a true renaissance, becoming manifest in a number of new experiments and simulation efforts. In particular, the LOPES project has successfully implemented modern interferometric methods to measure the radio emission from extensive air showers. LOPES has confirmed that the emission is coherent and of geomagnetic origin, as expected by the geosynchrotron mechanism, and has demonstrated that a large scale application of the radio technique has great potential to complement current measurements of ultra-high energy cosmic rays. We describe the current status, most recent results and open questions regarding radio detection of cosmic rays and give an overview of ongoing research and development for an application of the radio technique in the framework of the Pierre Auger Observatory.

  18. Recent results of KASCADE phenomenology of extensive air showers

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, G. E-mail: bgschatz@t-online.de; Antoni, T.; Apel, W.D.; Badea, F.; Bekk, K.; Bernloehr, K.; Bluemer, H.; Bollmann, E.; Bozdog, H.; Brancus, I.M.; Buettner, C.; Chilingarian, A.; Daumiller, K.; Doll, P.; Engler, J.; Fessler, F.; Gils, H.J.; Glasstetter, R.; Haeusler, R.; Hafemann, W.; Haungs, A.; Heck, D.; Hoerandel, J.R.; Holst, T.; Kampert, K.-H.; Kempa, J.; Klages, H.O.; Knapp, J.; Martello, D.; Mathes, H.J.; Matussek, P.; Mayer, H.J.; Milke, J.; Muehlenberg, D.; Oehlschlaeger, J.; Petcu, M.; Rebel, H.; Risse, M.; Roth, M.; Thouw, T.; Ulrich, H.; Vardanyan, A.; Vulpescu, B.; Weber, J.H.; Wentz, J.; Wiegert, T.; Wochele, J.; Zabierowski, J.; Zagromski, S

    2001-04-01

    KASCADE (KArlsruhe Shower Core and Array DEtector) is a multi-detector setup to observe the electromagnetic, muonic and hadronic air shower components simultaneously in the energy region around the 'knee' of the primary spectrum. Its main aim is to determine energy spectrum and composition of hadrons in primary cosmic rays. This is attempted by registering a large number of observables for each EAS including measurements of electrons, muons and hadrons. This contribution gives a short description of the experiment and then presents some results on the lateral distributions of various particle types and on the spectrum of hadrons. The status of our analyses to determine mass composition is presented in an accompanying contribution by A. Haungs.

  19. Combining states without scale hierarchies with ordered parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Nadine [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); Prestel, Stefan [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    2017-09-15

    We present a parameter-free scheme to combine fixed-order multi-jet results with parton-shower evolution. The scheme produces jet cross sections with leading-order accuracy in the complete phase space of multiple emissions, resumming large logarithms when appropriate, while not arbitrarily enforcing ordering on momentum configurations beyond the reach of the parton-shower evolution equation. This requires the development of a matrix-element correction scheme for complex phase-spaces including ordering conditions as well as a systematic scale-setting procedure for unordered phase-space points. The resulting algorithm does not require a merging-scale parameter. We implement the new method in the Vincia framework and compare to LHC data. (orig.)

  20. Matching fully differential NNLO calculations and parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Alioli, Simone; Bauer, Christian W.; Berggren, Calvin; Walsh, Jonathan R.; Zuberi, Saba [California Univ., Berkeley, CA (United States). Ernest Orlando Lawrence Berkeley National Laboratory; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-11-15

    We present a general method to match fully differential next-to-next-to-leading (NNLO) calculations to parton shower programs. We discuss in detail the perturbative accuracy criteria a complete NNLO+PS matching has to satisfy. Our method is based on consistently improving a given NNLO calculation with the leading-logarithmic (LL) resummation in a chosen jet resolution variable. The resulting NNLO+LL calculation is cast in the form of an event generator for physical events that can be directly interfaced with a parton shower routine, and we give an explicit construction of the input ''Monte Carlo cross sections'' satisfying all required criteria. We also show how other proposed approaches naturally arise as special cases in our method.

  1. qq-production at NLO merged with parton-shower

    Energy Technology Data Exchange (ETDEWEB)

    Hangst, Christian; Muehlleitner, Margarete [KIT - Institut fuer Theoretische Physik (Germany); Kraemer, Michael [RWTH Aachen University, Institut fuer Theoretische Teilchenphysik und Kosmologie (Germany); Popenda, Eva; Spira, Michael [Paul Scherrer Institut - Theory Group LTP (Switzerland)

    2013-07-01

    Precise predictions for the production of SUSY-particles at the LHC require the combination of fixed-order NLO-calculations and parton-showers. This so-called merging can be achieved via the POWHEG-method. I present some results obtained with this method for qq-production, based on the implementation of this process in the program-package POWHEG-BOX.

  2. The AMY experiment: Microwave emission from air shower plasmas

    Directory of Open Access Journals (Sweden)

    Alvarez-Muñiz J.

    2016-01-01

    Full Text Available You The Air Microwave Yield (AMY experiment investigate the molecular bremsstrahlung radiation emitted in the GHz frequency range from an electron beam induced air-shower. The measurements have been performed at the Beam Test Facility (BTF of Frascati INFN National Laboratories with a 510 MeV electron beam in a wide frequency range between 1 and 20 GHz. We present the apparatus and the results of the tests performed.

  3. On the Impact of Tsallis Statistics on Cosmic Ray Showers

    Directory of Open Access Journals (Sweden)

    M. Abrahão

    2016-01-01

    Full Text Available We investigate the impact of the Tsallis nonextensive statistics introduced by intrinsic temperature fluctuations in p-Air ultrahigh energy interactions on observables of cosmic ray showers, such as the slant depth of the maximum Xmax and the muon number on the ground Nμ. The results show that these observables are significantly affected by temperature fluctuations and agree qualitatively with the predictions of Heitler model.

  4. Shower Water Reuse System-Expanded Operations to Laundry Water

    Science.gov (United States)

    2014-09-01

    Laundry rinse water carries dilute soaps and dirt. Detergents, bleaches, and disinfectants are a significant risk to plants and soils, while some...sulfate is designated as a hazardous substance 311(b)(2)(A) of the Federal Water Pollution Control Act and further regulated by the Clean Water Act...Footprint Camp Program September 2014 Shower Water Reuse System- Expanded Operations to Laundry Water Work Unit WW13-01 Prepared by Valerie H. Adams, Ph.D

  5. The Effect of New Shower Facilities on Physical Activity Behaviors of Employees: A Quasi-experiment.

    Science.gov (United States)

    Nehme, Eileen K; Pérez, Adriana; Ranjit, Nalini; Amick, Benjamin C; Kohl, Harold W

    2017-02-01

    This quasi-experimental study assessed the effects of new workplace showers on physical activity behaviors in a sample of downtown employees in Austin, TX. The study design was quasi-experimental with 2 comparison groups. Data were collected via internet-based surveys before and 4 months after shower installation at 1 worksite. Differences across study groups in the ranks of change in past-week minutes of physical activity from baseline to follow-up were assessed. Adjusted odds ratios and 95% confidence intervals for reporting an increase of ≥10 min past-week physical activity and workday physical activity among those with new showers and existing showers relative to those with no showers were also assessed. No significant differences in changes in physical activity from baseline to follow-up across study groups were found. One-quarter of participants with new workplace showers and 46.9% of those with existing workplace showers at baseline reported ever using the showers. This prospective study did not find significant changes in employee physical activity 4 months after installation of worksite showers. Worksite shower users were highly active at baseline, suggesting a possible early adopter effect, with potential for diffusion. Future studies may benefit from longer exposure times and larger samples.

  6. Status of air-shower measurements with sparse radio arrays

    Science.gov (United States)

    Schröder, Frank G.

    2017-03-01

    This proceeding gives a summary of the current status and open questions of the radio technique for cosmic-ray air showers, assuming that the reader is already familiar with the principles. It includes recent results of selected experiments not present at this conference, e.g., LOPES and TREND. Current radio arrays like AERA or Tunka-Rex have demonstrated that areas of several km2 can be instrumented for reasonable costs with antenna spacings of the order of 200m. For the energy of the primary particle such sparse antenna arrays can already compete in absolute accuracy with other precise techniques, like the detection of air-fluorescence or air-Cherenkov light. With further improvements in the antenna calibration, the radio detection might become even more accurate. For the atmospheric depth of the shower maximum, Xmax, currently only the dense array LOFAR features a precision similar to the fluorescence technique, but analysis methods for the radio measurement of Xmax are still under development. Moreover, the combination of radio and muon measurements is expected to increase the accuracy of the mass composition, and this around-the-clock recording is not limited to clear nights as are the light-detection methods. Consequently, radio antennas will be a valuable add-on for any air shower array targeting the energy range above 100 PeV.

  7. Status of air-shower measurements with sparse radio arrays

    Directory of Open Access Journals (Sweden)

    Schröder Frank G.

    2017-01-01

    Full Text Available This proceeding gives a summary of the current status and open questions of the radio technique for cosmic-ray air showers, assuming that the reader is already familiar with the principles. It includes recent results of selected experiments not present at this conference, e.g., LOPES and TREND. Current radio arrays like AERA or Tunka-Rex have demonstrated that areas of several km2 can be instrumented for reasonable costs with antenna spacings of the order of 200m. For the energy of the primary particle such sparse antenna arrays can already compete in absolute accuracy with other precise techniques, like the detection of air-fluorescence or air-Cherenkov light. With further improvements in the antenna calibration, the radio detection might become even more accurate. For the atmospheric depth of the shower maximum, Xmax, currently only the dense array LOFAR features a precision similar to the fluorescence technique, but analysis methods for the radio measurement of Xmax are still under development. Moreover, the combination of radio and muon measurements is expected to increase the accuracy of the mass composition, and this around-the-clock recording is not limited to clear nights as are the light-detection methods. Consequently, radio antennas will be a valuable add-on for any air shower array targeting the energy range above 100 PeV.

  8. Meteor Showers in the Ancient Maya Hieroglyphic Codices

    Science.gov (United States)

    Kinsman, J. H.

    2014-07-01

    Researchers of the ancient Maya culture have long been fascinated with the Maya obsession concerning cyclical calendars and precise visual observations of astronomical bodies and phenomena, in particular the Sun, Moon, visible planets, and solar and lunar eclipses. Although considered possible, heretofore no record of specific sightings of comets or meteor showers in the Maya inscriptions has been firmly established by scholars. Besides difficulties with decipherment of the hieroglyphic script, investigators have had to grapple with an ancient Maya calendar that has not been accurately correlated to the European calendar. Recent examination by this researcher has found that it may be possible to recognize written accounts of meteor showers embedded in the hieroglyphic corpus, especially the codices, the screen-fold books that were the tools of the astronomer-priests of that day. By proposing an alternative decipherment of an astronomical sign and using the accompanying hieroglyphic texts and illustrations with appropriate dates, this researcher believes it is possible to demonstrate that the Maya may have recorded meteor showers occurring in the seventh through the tenth centuries AD.

  9. Air shower simulation for background estimation in muon tomography of volcanoes

    OpenAIRE

    Béné, S.; Boivin, P.; Busato, E.; Cârloganu, C.; Combaret, C.; P. Dupieux; Fehr, F.; Gay, P.; Labazuy, P; Laktineh, I.; Lénat, J.-F.; Miallier, D.; Mirabito, L.; Niess, V.; Portal, A.

    2013-01-01

    International audience; One of the main sources of background for the radiography of volcanoes using atmospheric muons comes from the accidental coincidences produced in the muon telescopes by charged particles belonging to the air shower generated by the primary cosmic ray. In order to quantify this background effect, Monte Carlo simulations of the showers and of the detector are developed by the TOMUVOL collaboration. As a first step, the atmospheric showers were simulated and investigated ...

  10. Direct tests of micro channel plates as the active element of a new shower maximum detector

    Energy Technology Data Exchange (ETDEWEB)

    Ronzhin, A., E-mail: ronzhin@fnal.gov [Fermilab, Batavia, IL 60510 (United States); Los, S.; Ramberg, E. [Fermilab, Batavia, IL 60510 (United States); Apresyan, A.; Xie, S.; Spiropulu, M. [California Institute of Technology, Pasadena, CA (United States); Kim, H. [University of Chicago, Chicago, IL 60637 (United States)

    2015-09-21

    We continue the study of micro channel plates (MCP) as the active element of a shower maximum (SM) detector. We present below test beam results obtained with MCPs detecting directly secondary particles of an electromagnetic shower. The MCP efficiency to shower particles is close to 100%. The time resolution obtained for this new type of the SM detector is at the level of 40 ps.

  11. Parton-shower uncertainties with Herwig 7: benchmarks at leading order

    Energy Technology Data Exchange (ETDEWEB)

    Bellm, Johannes; Schichtel, Peter [Durham University, Department of Physics, IPPP, Durham (United Kingdom); Nail, Graeme [University of Manchester, Particle Physics Group, School of Physics and Astronomy, Manchester (United Kingdom); Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany); Plaetzer, Simon [Durham University, Department of Physics, IPPP, Durham (United Kingdom); University of Manchester, Particle Physics Group, School of Physics and Astronomy, Manchester (United Kingdom); Siodmok, Andrzej [CERN, TH Department, Geneva (Switzerland); Polish Academy of Sciences, The Henryk Niewodniczanski Institute of Nuclear Physics in Cracow, Krakow (Poland)

    2016-12-15

    We perform a detailed study of the sources of perturbative uncertainty in parton-shower predictions within the Herwig 7 event generator. We benchmark two rather different parton-shower algorithms, based on angular-ordered and dipole-type evolution, against each other. We deliberately choose leading order plus parton shower as the benchmark setting to identify a controllable set of uncertainties. This will enable us to reliably assess improvements by higher-order contributions in a follow-up work. (orig.)

  12. Regular and transitory showers of comet C/1979 Y1 (Bradfield)

    Science.gov (United States)

    Hajduková, M.; Neslušan, L.

    2017-09-01

    Aims: We intend to map the whole meteor complex of the long-period comet C/1979 Y1 (Bradfield), which is a proposed parent body of the July Pegasids, No. 175 in the list of meteor showers established by the Meteor Data Center (MDC) of the International Astronomical Union (IAU). Methods: For five perihelion passages of the parent comet in the past, we model associated theoretical stream, its parts, each consisting of 10 000 test particles, and follow the dynamical evolution of these parts up to the present. Subsequently, we analyze the mean orbital characteristics of those particles of the parts that approach the Earth's orbit and, thus, create a shower or showers. The showers are compared with their observed counterparts separated from photographic, radio, and several video databases. Results: The modeled stream of C/1979 Y1 approaches the Earth's orbit in two filaments that correspond to two regular (annual) showers. We confirm the generic relationship between the studied parent comet and 175 July Pegasids. The other predicted shower is a daytime shower with the mean radiant situated symmetrically to the July Pegasids with respect to the apex of the Earth's motion. This shower is not in the IAU MDC list, but we separated it from the Cameras-for-Allsky-Meteor-Surveillance (CAMS) and SonotaCo video data as a new shower. We suggest naming it α-Microscopiids. The stronger influence of the Poynting-Robertson drag deflects the stream away from the Earth's orbit in those sections that correspond to the July Pegasids and the predicted daytime shower, but it makes the stream cross the Earth's orbit in other sections. Corresponding showers are, however, only expected to survive during a limited period and to consist of particles of sizes in a narrow interval. We identified one of these "transitory" filaments to the 104 γ-Bootids in the IAU MDC list of meteor showers.

  13. Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter

    CERN Document Server

    Bilki, B.; Xia, L.; Eigen, G.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Lima, J.G.R.; Salcido, R.; Zutshi, V.; Salvatore, F.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Suehara, T.; Tomita, T.; Ueno, H.; Yoshioka, T.; Apostolakis, J.; Dannheim, D.; Folger, G.; Ivantchenko, V.; Klempt, W.; Lucaci-Timoce, A. -I.; Ribon, A.; Schlatter, D.; Sicking, E.; Uzhinskiy, V.; Giraud, J.; Grondin, D.; Hostachy, J. -Y.; Morin, L.; Brianne, E.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Tran, H.L.; Buhmann, P.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Schultz-Coulon, H. -Ch.; Shen, W.; Stamen, R.; Norbeck, E.; Northacker, D.; van Doren, B.; Wilson, G.W.; Wing, M.; Combaret, C.; Caponetto, L.; Eté, R.; Grenier, G.; Han, R.; Ianigro, J.C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Antequera, J. Berenguer; Calvo Alamillo, E.; Fouz, M. -C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Corriveau, F.; Bobchenko, B.; Chistov, R.; Chadeeva, M.; Danilov, M.; Drutskoy, A.; Epifantsev, A.; Markin, O.; Mironov, D.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Popova, E.; Gabriel, M.; Kiesling, C.; van der Kolk, N.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Conforti Di Lorenzo, S.; Cornebise, P.; Dulucq, F.; Fleury, J.; Frisson, T.; Martin-Chassard, G.; Poschl, R.; Raux, L.; Richard, F.; Pöschl, R.; Rouëné, J.; Seguin-Moreau, N.; de la Taille, Ch.; Anduze, M.; Boudry, V.; Brient, J-C.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Matthieu, A.; Mora de Freitas, P.; Musat, G.; Ruan, M.; Videau, H.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Jeans, D.; Weber, S.

    2015-01-01

    Showers produced by positive hadrons in the highly granular CALICE scintillatorsteel analogue hadronic calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using GEANT4 version 9.6 are compared.

  14. The Use of D-Criteria to Assess Meteor Shower Significance

    Science.gov (United States)

    Moorhead, Althea V.

    2017-01-01

    In theory, a meteor shower can be distinguished from the sporadic meteor background by its short duration and orbital similarity. In practice, the duration and strength of a shower and the orbital similarity between its constituent meteors varies widely between showers. Further complicating matters is the anisotropy of the sporadic background. These combined factors make it difficult to distinguish between shower and sporadic meteors with a single, static set of criteria. The orbital similarity, or D-, parameters are often used to assess the relationship between meteors [1,2,3]. The more dissimilar two orbits are, the higher their computed D value will be; generally, meteors are considered related if their D-parameter falls below some cutoff value [4]. However, this approach will include some sporadic meteors, and when a weak shower lies near a sporadic source, the false positive rate for shower association can be quite high. Additionally, this cutoff approach does not assess whether the shower itself is significant. We present a method for using D-parameters to extract showers from a dataset that automatically takes shower strength into account and tests for significance [5]. We accomplish this by calculating the false positive rate for shower association using "shower analogs," which are identical to the original shower except in solar longitude. This method is applied to a set of more than 30,000 meteors detected by the NASA All-Sky Fireball Network [6] and the Southern Ontario Meteor Network (SOMN) [7]. We previously detected 29 showers in our data using this method [5]; now, with another year of data, we have several additional detections. Figure 1 presents one example: the 2016 July gamma Draconid outburst. There are several benefits to using our method. First, it provides a test of shower significance (see Fig. 2 for an example of a non-detection). Second, it quantifies the probability that a meteor belongs to a given shower as a function of D

  15. Test results on re-use of reclaimed shower water: Summary. [space stations

    Science.gov (United States)

    Verostko, C. E.; Garcia, R.; Sauer, R.; Linton, A. T.; Elms, T.; Reysa, R. P.

    1988-01-01

    A microgravity whole body shower (WBS) and waste water recovery systems (WWRS) were evaluated in three separate closed loop tests. Following a protocol similar to that anticipated for the U.S. Space Station, test subjects showered in a prototype whole body shower. The WWRS processes evaluated during the test series were phase change and reverse osmosis (RO). A preprototype Thermoelectric Integrated Hollow Fiber Membrane Evaporation Subsystem phase change process was used for the initial test with chemical pretreatment of the shower water waste input. The second and third tests concentrated on RO technologies. The second test evaluated a dynamic RO membrane consisting of zirconium oxide polyacrylic acid (ZOPA) membranes deposited on the interior diameter of 316L porous stainless steel tubes while the final test employed a thin semipermeable RO membrane deposited on the interior surface of polysulfone hollow fibers. All reclaimed water was post-treated for purity using ion exchange and granular activated carbon beds immediately followed by microbial control treatment using both heat and iodine. The test hardware, controls exercised for whole body showering, types of soaps evaluated, shower subject response to reclaimed water showering, and shower water collection and chemical pretreatment (if required) for microbial control are described. The WWRS recovered water performance and the effectiveness of the reclaimed water post-treatment techniques used for maintaining water purity and microorganism control are compared. Results on chemical and microbial impurity content of the water samples obtained from various locations in the shower water reuse system are summarized.

  16. First detection of extensive air showers with the EEE experiment

    CERN Document Server

    Abbrescia, M; Fabbri, F L; Bressan, E; Librizzi, F; Sartorelli, G; Piragino, G; Ferroli, R Baldini; Maggiora, A; Siddi, E; Zuyeuski, R; Frolov, V; Serci, S; Selvi, M; Zichichi, A; Romano, F; La Rocca, P; Williams, M C S; Cicalo, C; D'Incecco, M; Panareo, M; Menghetti, H; Garbini, M; Moro, R; Cifarelli, L; Riggi, F; Hatzifotiadou, D; Scapparone, E; Chiavassa, A; Gustavino, C; De Gruttola, D; Coccetti, F; Bencivenni, C; Miozzi, S; De Pasquale, S

    2010-01-01

    The Extreme Energy Events (EEE) Project is devoted to the study of extremely high energy cosmic rays by means of an array of particle detectors distributed all over the Italian territory. Each element of the array (called telescope in the following) is installed in a High School, with the further goal to introduce students to particle and astroparticle physics, and consists of three Multigap Resistive Plate Chambers (MRPC), that have excellent time resolution and good tracking capability. In this paper the first results on the detection of extensive air showers by means of time coincidences between two telescopes are presented.

  17. First detection of extensive air showers with the EEE experiment

    Science.gov (United States)

    Moro, R.

    2011-03-01

    The Extreme Energy Events (EEE) Project is devoted to the study of extremely high energy cosmic rays by means of an array of particle detectors distributed all over the Italian territory. Each element of the array (called telescope in the following) is installed in a High School, with the further goal to introduce students to particle and astroparticle physics, and consists of three Multigap Resistive Plate Chambers (MRPC), that have excellent time resolution and good tracking capability. In this paper the first results on the detection of extensive air showers by means of time coincidences between two telescopes are presented.

  18. The Air-Shower Experiment KASCADE-Grande

    Energy Technology Data Exchange (ETDEWEB)

    Haungs, A., E-mail: haungs@ik.fzk.d [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Apel, W.D. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Badea, F.; Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Bluemer, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, P.O. Box Mg-6, RO-7690 Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen, 57068 Siegen (Germany); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Istituto di Fisica dello Spazio Interplanetario, INAF, 10133 Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Souza, V. de [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Di Pierro, F. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Doll, P.; Engel, R.; Engler, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany)

    2009-12-15

    KASCADE-Grande is an extensive air shower experiment at the Forschungszentrum Karlsruhe, Germany. Main parts of the experiment are the Grande array spread over an area of 700x700m{sup 2}, the original KASCADE array covering 200x200m{sup 2} with unshielded and shielded detectors, and additional muon tracking devices. This multi-detector system allows to investigate the energy spectrum, composition, and anisotropies of cosmic rays in the energy range up to 1 EeV. An overview on the performance of the apparatus and first results will be given.

  19. Open b production at LHC and Parton Shower Effects

    CERN Document Server

    Jung, H.; Lipatov, A.V.; Zotov, N.P.

    2011-01-01

    We present hadron-level predictions from the Monte Carlo generator Cascade and numerical level calculations of beauty quark and inclusive b-jet production in the framework of the kT -factorization QCD approach for CERN LHC energies. The unintegrated gluon densities in a proton are determined using the CCFM evolution equation and the Kimber- Martin-Ryskin (KMR) prescription. We study the theoretical uncertainties of our calcula- tions and investigate the effects coming from parton showers in initial and final states. Our predictions are compared with the recent data taken by the CMS collaboration.

  20. Martian Atmospheric Methane Plumes from Meteor Shower Infall: A Hypothesis

    Science.gov (United States)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.

    2016-01-01

    Methane plumes in the martian atmosphere have been detected using Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. To date, none of these phenomena have been found to reliably correlate with the detection of methane plumes. An additional source exists, however: meteor showers could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, depositing freshly disaggregated meteor shower material in a regional concentration. The material generates methane via UV photolysis, resulting in a localized "plume" of short-lived methane.

  1. Muons in air showers at the Pierre Auger Observatory : Measurement of atmospheric production depth

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Luis, P. Facal San; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fox, B. D.; Fratu, O.; Froehlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Bravo, A. Gascon; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Albarracin, F. Gomez; Berisso, M. Gomez; Vitale, P. F. Gomez; Goncalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Horandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui De Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Meza, J. J. Masias; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rojo, J. Rodriguez; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Machado, D. Torres; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Silva, M. Zimbres; Ziolkowski, M.

    2014-01-01

    The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is

  2. 16 CFR 1201.40 - Interpretation concerning bathtub and shower doors and enclosures.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Interpretation concerning bathtub and shower... Policy and Interpretation § 1201.40 Interpretation concerning bathtub and shower doors and enclosures. (a) Purpose and background. The purpose of this section is to clarify the scope of the terms “bathtub doors...

  3. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers

    NARCIS (Netherlands)

    Schellart, P.; Trinh, Gia; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Scholten, O.; ter Veen, S.; Thoudam, S.; Ebert, U.; Koehn, C.; Rutjes, C.; Alexov, A.; Anderson, J. M.; Avruch, I. M.; Bentum, M. J.; Bernardi, G.; Best, P.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; de Geus, E.; de Vos, M.; Duscha, S.; Eislöffel, J.; Fallows, R. A.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Heald, G.; Hessels, J. W. T.; Hoeft, M.; Holties, H. A.; Juette, E.; Kondratiev, V. I.; Kuniyoshi, M.; Kuper, G.; Mann, G.; McFadden, R.; McKay-Bukowski, D.; McKean, J. P.; Mevius, M.; Moldon, J.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Scaife, A. M. M.; Schwarz, D. J.; Serylak, M.; Smirnov, O.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tasse, C.; Toribio, M. C.; van Weeren, R. J.; Vermeulen, R.; Vocks, C.; Wise, M. W.; Wucknitz, O.; Zarka, P.

    2015-01-01

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the

  4. Parton-shower matching systematics in vector-boson-fusion WW production

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Michael [Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany); Plaetzer, Simon [Durham University, Institute for Particle Physics Phenomenology, Durham (United Kingdom); University of Manchester, School of Physics and Astronomy, Manchester (United Kingdom)

    2017-05-15

    We perform a detailed analysis of next-to-leading order plus parton-shower matching in vector-boson-fusion WW production including leptonic decays. The study is performed in the Herwig 7 framework interfaced to VBFNLO 3, using the angular-ordered and dipole-based parton-shower algorithms combined with the subtractive and multiplicative-matching algorithms. (orig.)

  5. Meteor Shower observations from the Indian Sub-Continent (Visual Photographic and Radio)

    Science.gov (United States)

    Dabhade, R.; Savant, V.; Belapure, J.

    2011-01-01

    We review the present status of meteor shower observing from the Indian sub-continent. Some amateur groups are active in visual observations, although they are restricted by the lack of good observing sites. Ham radio appears to be promising as a technique to monitor the major meteor showers in this region. We present radio observations of the 2006 Quadrantids.

  6. Direct tests of a pixelated microchannel plate as the active element of a shower maximum detector

    Energy Technology Data Exchange (ETDEWEB)

    Apresyan, A. [California Institute of Technology, Pasadena, CA (United States); Los, S. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Pena, C.; Presutti, F. [California Institute of Technology, Pasadena, CA (United States); Ronzhin, A. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Spiropulu, M.; Xie, S. [California Institute of Technology, Pasadena, CA (United States)

    2016-08-21

    One possibility to make a fast and radiation resistant shower maximum detector is to use a secondary emitter as an active element. We report our studies of microchannel plate photomultipliers (MCPs) as the active element of a shower-maximum detector. We present test beam results obtained using Photonis XP85011 to detect secondary particles of an electromagnetic shower. We focus on the use of the multiple pixels on the Photonis MCP in order to find a transverse two-dimensional shower distribution. A spatial resolution of 0.8 mm was obtained with an 8 GeV electron beam. A method for measuring the arrival time resolution for electromagnetic showers is presented, and we show that time resolution better than 40 ps can be achieved.

  7. Direct tests of a pixelated microchannel plate as the active element of a shower maximum detector

    Science.gov (United States)

    Apresyan, A.; Los, S.; Pena, C.; Presutti, F.; Ronzhin, A.; Spiropulu, M.; Xie, S.

    2016-08-01

    One possibility to make a fast and radiation resistant shower maximum detector is to use a secondary emitter as an active element. We report our studies of microchannel plate photomultipliers (MCPs) as the active element of a shower-maximum detector. We present test beam results obtained using Photonis XP85011 to detect secondary particles of an electromagnetic shower. We focus on the use of the multiple pixels on the Photonis MCP in order to find a transverse two-dimensional shower distribution. A spatial resolution of 0.8 mm was obtained with an 8 GeV electron beam. A method for measuring the arrival time resolution for electromagnetic showers is presented, and we show that time resolution better than 40 ps can be achieved.

  8. Meteor Shower Forecast Improvements from a Survey of All-Sky Network Observations

    Science.gov (United States)

    Moorhead, Althea V.; Sugar, Glenn; Brown, Peter G.; Cooke, William J.

    2015-01-01

    Meteoroid impacts are capable of damaging spacecraft and potentially ending missions. In order to help spacecraft programs mitigate these risks, NASA's Meteoroid Environment Office (MEO) monitors and predicts meteoroid activity. Temporal variations in near-Earth space are described by the MEO's annual meteor shower forecast, which is based on both past shower activity and model predictions. The MEO and the University of Western Ontario operate sister networks of all-sky meteor cameras. These networks have been in operation for more than 7 years and have computed more than 20,000 meteor orbits. Using these data, we conduct a survey of meteor shower activity in the "fireball" size regime using DBSCAN. For each shower detected in our survey, we compute the date of peak activity and characterize the growth and decay of the shower's activity before and after the peak. These parameters are then incorporated into the annual forecast for an improved treatment of annual activity.

  9. First Experimental Characterization of Microwave Emission from Cosmic Ray Air Showers.

    Science.gov (United States)

    Smída, R; Werner, F; Engel, R; Arteaga-Velázquez, J C; Bekk, K; Bertaina, M; Blümer, J; Bozdog, H; Brancus, I M; Chiavassa, A; Cossavella, F; Di Pierro, F; Doll, P; Fuchs, B; Fuhrmann, D; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Huber, D; Huege, T; Kampert, K-H; Kang, D; Klages, H; Kleifges, M; Krömer, O; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Mathys, S; Mayer, H J; Melissas, M; Morello, C; Neunteufel, P; Oehlschläger, J; Palmieri, N; Pekala, J; Pierog, T; Rautenberg, J; Rebel, H; Riegel, M; Roth, M; Salamida, F; Schieler, H; Schoo, S; Schröder, F G; Sima, O; Stasielak, J; Toma, G; Trinchero, G C; Unger, M; Weber, M; Weindl, A; Wilczyński, H; Will, M; Wochele, J; Zabierowski, J

    2014-11-28

    We report the first direct measurement of the overall characteristics of microwave radio emission from extensive air showers. Using a trigger provided by the KASCADE-Grande air shower array, the signals of the microwave antennas of the Cosmic-Ray Observation via Microwave Emission experiment have been read out and searched for signatures of radio emission by high-energy air showers in the GHz frequency range. Microwave signals have been detected for more than 30 showers with energies above 3×10^{16}  eV. The observations presented in this Letter are consistent with a mainly forward-directed and polarized emission process in the GHz frequency range. The measurements show that microwave radiation offers a new means of studying air showers at E≥10^{17}  eV.

  10. Energy dependent fractal dimension in lateral electron distribution of extensive air showers

    Directory of Open Access Journals (Sweden)

    D. Purmohammad

    2008-12-01

    Full Text Available   Secondary electrons at ground level of simulated extensive air showers have been analyzed using a wavelet transform based technique, in order to investigate the variation of fractal dimensions of the lateral distribution of the electrons with shower energy and primary particle mass number. The fractal dimension is shown to increase with shower energy and seems to saturate to constant values near the core of the shower at higher energies. Using the fractal dimension properties at different core distances, a multi-parameter separation technique is then applied to the data. It has been shown that the technique has good accuracy at high energy, provided the energy of the shower is obtained independently.

  11. Tracking within Hadronic Showers in the CALICE SDHCAL prototype using a Hough Transform Technique

    Science.gov (United States)

    Deng, Z.; Li, Y.; Wang, Y.; Yue, Q.; Yang, Z.; Boumediene, D.; Carloganu, C.; Français, V.; Cho, G.; Kim, D.-W.; Lee, S. C.; Liu, Z.; Park, W.; Vallecorsa, S.; Cauwenbergh, S.; Tytgat, M.; Pingault, A.; Zaganidis, N.; Bach, O.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Hartbrich, O.; Irles, A.; Kotera, K.; Krivan, F.; Krüger, K.; Lu, S.; Neubüser, C.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Sudo, Y.; Tran, H. L.; Hirai, H.; Kawagoe, K.; Suehara, T.; Sumida, H.; Yoshioka, T.; Cortina Gil, E.; Mannai, S.; Buridon, V.; Combaret, C.; Caponetto, L.; Eté, R.; Garillot, G.; Grenier, G.; Han, R.; Ianigro, J. C.; Kieffer, R.; Kurca, T.; Laktineh, I.; Li, B.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Marin, J.; Navarrete, J.; Puerta-Pelayo, J.; Verdugo, A.; Corriveau, F.; Chadeeva, M.; Gabriel, M.; Goecke, P.; Graf, C.; Israeli, Y.; van der Kolk, N.; Simon, F.; Szalay, M.; Windel, H.; Bilokin, S.; Bonis, J.; Pöschl, R.; Thiebault, A.; Richard, F.; Zerwas, D.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J.-C.; Cornat, R.; Gastaldi, F.; Haddad, Y.; Magniette, F.; Nanni, J.; Ruan, M.; Rubio-Roy, M.; Shpak, K.; Tran, T. H.; Videau, H.; Yu, D.; Callier, S.; Dulucq, F.; de la Taille, Ch.; Martin-Chassard, G.; Raux, L.; Seguin-Moreau, N.; Cvach, J.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Polak, I.; Smolik, J.; Vrba, V.; Zalesak, J.; Zuklin, J.

    2017-05-01

    The high granularity of the CALICE Semi-Digital Hadronic CALorimeter (SDHCAL) provides the capability to reveal the track segments present in hadronic showers. These segments are then used as a tool to probe the behaviour of the active layers in situ, to better reconstruct the energy of these hadronic showers and also to distinguish them from electromagnetic ones. In addition, the comparison of these track segments in data and the simulation helps to discriminate among the different shower models used in the simulation. To extract the track segments in the showers recorded in the SDHCAL, a Hough Transform is used after being adapted to the presence of the dense core of the hadronic showers and the SDHCAL active medium structure.

  12. A deep learning-based reconstruction of cosmic ray-induced air showers

    Science.gov (United States)

    Erdmann, M.; Glombitza, J.; Walz, D.

    2018-01-01

    We describe a method of reconstructing air showers induced by cosmic rays using deep learning techniques. We simulate an observatory consisting of ground-based particle detectors with fixed locations on a regular grid. The detector's responses to traversing shower particles are signal amplitudes as a function of time, which provide information on transverse and longitudinal shower properties. In order to take advantage of convolutional network techniques specialized in local pattern recognition, we convert all information to the image-like grid of the detectors. In this way, multiple features, such as arrival times of the first particles and optimized characterizations of time traces, are processed by the network. The reconstruction quality of the cosmic ray arrival direction turns out to be competitive with an analytic reconstruction algorithm. The reconstructed shower direction, energy and shower depth show the expected improvement in resolution for higher cosmic ray energy.

  13. Extensive Air Showers: from the muonic smoking guns to the hadronic backbone

    Directory of Open Access Journals (Sweden)

    Cazon L.

    2013-06-01

    Full Text Available Extensive Air Showers are complex macroscopic objects initiated by single ultra-high energy particles. They are the result of millions of high energy reactions in the atmosphere and can be described as the superposition of hadronic and electromagnetic cascades. The hadronic cascade is the air shower backbone, and it is mainly made of pions. Decays of neutral pions initiate electromagnetic cascades, while the decays of charged pions produce muons which leave the hadronic core and travel many kilometers almost unaffected. Muons are smoking guns of the hadronic cascade: the energy, transverse momentum, spatial distribution and depth of production are key to reconstruct the history of the air shower. In this work, we overview the phenomenology of muons on the air shower and its relation to the hadronic cascade. We briefly review the experimental efforts to analyze muons within air showers and discuss possible paths to use this information.

  14. IAU Meteor Data Center-the shower database: A status report

    Science.gov (United States)

    Jopek, Tadeusz Jan; Kaňuchová, Zuzana

    2017-09-01

    Currently, the meteor shower part of Meteor Data Center database includes: 112 established showers, 563 in the working list, among them 36 have the pro tempore status. The list of shower complexes contains 25 groups, 3 have established status and 1 has the pro tempore status. In the past three years, new meteor showers submitted to the MDC database were detected amongst the meteors observed by CAMS stations (Cameras for Allsky Meteor Surveillance), those included in the EDMOND (European viDeo MeteOr Network Database), those collected by the Japanese SonotaCo Network, recorded in the IMO (International Meteor Organization) database, observed by the Croatian Meteor Network and on the Southern Hemisphere by the SAAMER radar. At the XXIX General Assembly of the IAU in Honolulu, Hawaii in 2015, the names of 18 showers were officially accepted and moved to the list of established ones. Also, one shower already officially named (3/SIA the Southern iota Aquariids) was moved back to the working list of meteor showers. At the XXIX GA IAU the basic shower nomenclature rule was modified, the new formulation predicates ;The general rule is that a meteor shower (and a meteoroid stream) should be named after the constellation that contains the nearest star to the radiant point, using the possessive Latin form;. Over the last three years the MDC database was supplemented with the earlier published original data on meteor showers, which permitted verification of the correctness of the MDC data and extension of bibliographic information. Slowly but surely new database software options are implemented, and software bugs are corrected.

  15. Investigation of beauty production and parton shower effects at LHC

    CERN Document Server

    Jung, H.; Lipatov, A.V.; Zotov, N.P.

    2011-01-01

    We present hadron-level predictions from the Monte Carlo generator Cascade and parton level calculations of open b quark, b-flavored hadron and inclusive b-jet production in the framework of the kt-factorization QCD approach for the LHC energies. The unintegrated gluon densities in a proton are determined using the CCFM evolution equation and the Kimber-Martin-Ryskin (KMR) prescription. Our predictions are compared with the first data taken by the CMS and LHCb collaborations at 7 TeV. We study the theoretical uncertainties of our calculations and investigate the effects coming from parton showers in initial and final states. The special role of initial gluon transverse momenta in description of the data is pointed out.

  16. The performance of the LHCf detector for hadronic showers

    CERN Document Server

    Kawade, K.; Bonechi, L.; Bongi, M.; Castellini, G.; DAlessandro, R.; Del Prete, M.; Haguenauer, M.; Itow, Y.; Kasahara, K.; Makino, Y.; Masuda, K.; Matsubayashi, E.; Menjo, H.; Mitsuka, G.; Muraki, Y.; Papini, P.; Perrot, A-L.; Ricciarini, S.; Sako, T.; Sakurai, N.; Shimizu, Y.; Suzuki, T.; Tamura, T.; Torii, S.; Tricomi, A.; Turner, W.C.

    2014-01-01

    The Large Hadron Collider forward (LHCf) experiment has been designed to use the LHC to benchmark the hadronic interaction models used in cosmic-ray physics. The LHCf experiment measures neutral particles emitted in the very forward region of LHC collisions. In this paper, the performances of the LHCf detectors for hadronic showers was studied with MC simulations and beam tests. The detection efficiency for neutrons is from 60% to 70% above 500 GeV. The energy resolutions are about 40% and the position resolution is 0.1 to 1.3mm depend on the incident energy for neutrons. The energy scale determined by the MC simulations and the validity of the MC simulations were examined using 350 GeV proton beams at the CERN-SPS.

  17. The new South Pole air shower experiment - SPASE-2

    CERN Document Server

    Dickinson, J E; Gaisser, T K; Gill, J R; Hart, S P; Hinton, J A; Lloyd-Evans, J; Martello, D; Miller, T C; Ogden, P A; Patel, M; Rochester, K; Spiczak, G M; Stanev, T; Watson, A A

    2000-01-01

    This paper describes a new coincidence experiment designed to improve understanding of the composition of the primary cosmic-ray beam around the knee of the spectrum. The experiment consists of an air shower array on the surface (SPASE-2), which works in coincidence with an array of air-Cherenkov detectors (VULCAN), and the Antarctic Muon and Neutrino Detector Array (AMANDA) deep in the ice. The experiment must cover the energy range from approx 10 sup 1 sup 4 to approx 3x10 sup 1 sup 6 eV to overlap with direct measurements at lower energy and encompass the regions of the knee and beyond in the cosmic ray spectrum.

  18. Ground detectors for the study of cosmic ray showers

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, H [Facultad de Ciencias Fisico-Matematicas, BUAP, Puebla, Pue., 72000 (Mexico); Villasenor, L [Instituto de Fisica y Matematicas, UMSNH, Morelia, Michoacan, 58040 (Mexico)], E-mail: villasen@ifm.umich.mx

    2008-06-01

    We describe the work that we have done over the last decade to design and construct instruments to measure properties of cosmic rays in Mexico. We describe the detection of decaying and crossing muons in a water Cherenkov detector and discuss an application of these results to calibrate water Cherenkov detectors. We also describe a technique to separate isolated isolated muons and electrons in water Cherenkov detector. Next we describe the design and performance of a hybrid extensive air shower detector array built on the Campus of the University of Puebla (19 deg. N, 90 deg. W, 800 g/cm{sup 2}) to measure the energy, arrival direction and composition of primary cosmic rays with energies around 1 PeV.

  19. Simulation of radio emission from air showers in atmospheric electric fields

    OpenAIRE

    Buitink, S.

    2010-01-01

    We study the effect of atmospheric electric fields on the radio pulse emitted by cos- mic ray air showers. Under fair weather conditions the dominant part of the radio emission is driven by the geomagnetic field. When the shower charges are acceler- ated and deflected in an electric field additional radiation is emitted. We simulate this effect with the Monte Carlo code REAS2, using CORSIKA-simulated showers as input. In both codes a routine has been implemented that treats the effect of the ...

  20. On the transverse momentum in Z-boson production in a virtually ordered parton shower

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science

    2009-12-15

    Cross sections for physical processes that involve very different momentum scales in the same process will involve large logarithms of the ratio of the momentum scales when calculated in perturbation theory. One goal of calculations using parton showers is to sum these large logarithms. We ask whether this goal is achieved for the transverse momentum distribution of a Z-boson produced in hadron-hadron collisions when the shower is organized with higher virtuality parton splittings coming first, followed successively by lower virtuality parton splittings. We find that the virtuality ordered shower works well in reproducing the known QCD result. (orig.)

  1. Track segments in hadronic showers in a highly granular scintillator-steel hadron calorimeter

    CERN Document Server

    Adloff, C.; Chefdeville, M.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Koletsou, I.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Eigen, G.; Mikami, Y.; Watson, N.K.; Mavromanolakis, G.; Thomson, M.A.; Ward, D.R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dannheim, D.; Dotti, A.; Folger, G.; Ivantchenko, V.; Klempt, W.; Kraaij, E.van der; Lucaci-Timoce, A.-I; Ribon, A.; Schlatter, D.; Uzhinskiy, V.; Cârloganu, C.; Gay, P.; Manen, S.; Royer, L.; Tytgat, M.; Zaganidis, N.; Blazey, G.C.; Dyshkant, A.; Lima, J.G.R.; Zutshi, V.; Hostachy, J.-Y; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Feege, N.; Garutti, E.; Laurien, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Sudo, Y.; Yoshioka, T.; Dauncey, P.D.; Magnan, A.-M; Bartsch, V.; Wing, M.; Salvatore, F.; Gil, E.Cortina; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Negra, R.Della; Grenier, G.; Han, R.; Ianigro, J-C; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Donckt, M.Vander; Zoccarato, Y.; Alamillo, E.Calvo; Fouz, M.-C; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Callier, S.; Lorenzo, S.Conforti di; Cornebise, P.; Doublet, Ph; Dulucq, F.; Fleury, J.; Frisson, T.; der Kolk, N.van; Li, H.; Martin-Chassard, G.; Richard, F.; Taille, Ch de la; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J-C; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T.H.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Takeshita, T.; Uozumi, S.; Jeans, D.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2013-01-01

    We investigate the three dimensional substructure of hadronic showers in the CALICE scintillator-steel hadronic calorimeter. The high granularity of the detector is used to find track segments of minimum ionising particles within hadronic showers, providing sensitivity to the spatial structure and the details of secondary particle production in hadronic cascades. The multiplicity, length and angular distribution of identified track segments are compared to GEANT4 simulations with several different shower models. Track segments also provide the possibility for in-situ calibration of highly granular calorimeters.

  2. Top-quark pair-production with one jet and parton showering at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Alioli, Simone [LBNL and UC Berkeley, CA (United States); Fuster, Juan; Irles, Adrian; Vos, Marcel [IFIC, Univ. de Valencia - CSIC, Paterna (Spain); Moch, Sven-Olaf [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Uwer, Peter [Humboldt-Universitaet, Berlin (Germany)

    2012-06-15

    We present heavy-flavor production in association with one jet in hadronic collisions matched to parton shower Monte Carlo predictions at next-to-leading order QCD with account of top-quark decays and spin correlations. We use the POWHEG BOX for the interface to the parton shower programs PYTHIA or HERWIG. Phenomenological studies for the LHC and the Tevatron are presented with particular emphasis on the inclusion of spin-correlation effects in top decay and the impact of the parton shower on the top-quark charge asymmetries. As a novel application of the present calculation the measurement of the top-quark mass is discussed.

  3. Air shower simulation for background estimation in muon tomography of volcanoes

    Directory of Open Access Journals (Sweden)

    S. Béné

    2013-01-01

    Full Text Available One of the main sources of background for the radiography of volcanoes using atmospheric muons comes from the accidental coincidences produced in the muon telescopes by charged particles belonging to the air shower generated by the primary cosmic ray. In order to quantify this background effect, Monte Carlo simulations of the showers and of the detector are developed by the TOMUVOL collaboration. As a first step, the atmospheric showers were simulated and investigated using two Monte Carlo packages, CORSIKA and GEANT4. We compared the results provided by the two programs for the muonic component of vertical proton-induced showers at three energies: 1, 10 and 100 TeV. We found that the spatial distribution and energy spectrum of the muons were in good agreement for the two codes.

  4. Computing the electric field from extensive air showers using a realistic description of the atmosphere

    Science.gov (United States)

    Gaté, F.; Revenu, B.; García-Fernández, D.; Marin, V.; Dallier, R.; Escudié, A.; Martin, L.

    2018-03-01

    The composition of ultra-high energy cosmic rays is still poorly known and constitutes a very important topic in the field of high-energy astrophysics. Detection of ultra-high energy cosmic rays is carried out via the extensive air showers they create after interacting with the atmosphere constituents. The secondary electrons and positrons within the showers emit a detectable electric field in the kHz-GHz range. It is possible to use this radio signal for the estimation of the atmospheric depth of maximal development of the showers Xmax , with a good accuracy and a duty cycle close to 100%. This value of Xmax is strongly correlated to the nature of the primary cosmic ray that initiated the shower. We show in this paper the importance of using a realistic atmospheric model in order to correct for systematic errors that can prevent a correct and unbiased estimation of Xmax.

  5. Risk Factors for Intracranial Haemorrhage in Accidents Associated with the Shower or Bathtub: e0141812

    National Research Council Canada - National Science Library

    Thomas C Sauter; Jannes Kreher; Meret E Ricklin; Dominik G Haider; Aristomenis K Exadaktylos

    2015-01-01

      Background There has been little research on bathroom accidents. It is unknown whether the shower or bathtub are connected with special dangers in different age groups or whether there are specific risk factors for adverse outcomes...

  6. Extensive Air Showers High Energy Phenomena and Astrophysical Aspects - A Tutorial, Reference Manual and Data Book

    CERN Document Server

    Grieder, Peter K.F

    2010-01-01

    Extensive air showers are a very unique phenomenon. In the more than six decades since their discovery by Auger et al. we have learned a great deal about these extremely energetic events and gained deep insights into high-energy phenomena, particle physics and astrophysics. In this Tutorial, Reference Manual and Data Book Peter K. F. Grieder provides the reader with a comprehensive view of the phenomenology and facts of the various types of interactions and cascades, theoretical background, experimental methods, data evaluation and interpretation, and air shower simulation. He discusses astrophysical aspects of the primary radiation and addresses the questions that continue to puzzle researchers. The book is divided into two parts, each in its own separate volume: Part I in Volume I deals mainly with the basic theoretical framework of the processes that determine an air shower and ends with a summary of ways to extract information on the primary radiation from air shower observations. It also presents a compi...

  7. Long-Term Continuous Double Station Observation of Faint Meteor Showers

    National Research Council Canada - National Science Library

    Stanislav Vítek; Petr Pata; Pavel Koten; Karel Fliegel

    2016-01-01

    ... (Meteor Automatic Imager and Analyzer) system has been in continuous operation since 2013 and has successfully captured hundreds of meteors belonging to different meteor showers, as well as sporadic meteors...

  8. Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the average depth of shower maximum and its fluctuations with the Pierre Auger Observatory; (2) Study of the nuclear mass composition of UHECR with the surface detectors of the Pierre Auger Observatory; (3) Comparison of data from the Pierre Auger Observatory with predictions from air shower simulations: testing models of hadronic interactions; (4) A Monte Carlo exploration of methods to determine the UHECR composition with the Pierre Auger Observatory; (5) The delay of the start-time measured with the Pierre Auger Observatory for inclined showers and a comparison of its variance with models; (6) UHE neutrino signatures in the surface detector of the Pierre Auger Observatory; and (7) The electromagnetic component of inclined air showers at the Pierre Auger Observatory.

  9. Water Use Patterns in Vietnamese Hotels: Modeling Toilet and Shower Usage

    Directory of Open Access Journals (Sweden)

    Kanako Toyosada

    2016-03-01

    Full Text Available Water saving is a key issue in rapidly developing countries, such as Vietnam, that face various water resource management challenges. This study investigated water-use patterns in a hotel in Ho Chi Minh City in Vietnam. It aimed to quantify the efficiency of water-saving devices through modeling toilet and shower usage patterns, including water consumption. The shift in hourly consumption of cold and hot water was also identified. Analysis revealed that, on average, a full toilet flush occurs 3.3 times/day, a half flush 3.0 times/day, water consumption due to shower usage is 48.1 L/day, showering time is 7.3 min/day and the shower water temperature is 37.7 °C. Shifting levels of hot and cold water use revealed high activity in the morning time and that there are two peaks, occurring in the morning and at night.

  10. ANN based Estimation of Ultra High Energy (UHE) Shower Size using Radio Data

    Science.gov (United States)

    Sinha, Kalpana Roy; Datta, Pranayee; Sarma, Kandarpa Kumar

    2013-02-01

    Size estimation is a challenging area in the field of Ultra High Energy (UHE) showers where actual measurements are always associated with uncertainty of events and imperfections in detection mechanisms. The subtle variations resulting out of such factors incorporate certain random behaviour in the readings provided by shower detectors for subsequent processing. Field strength recorded by radio detectors may also be affected by this statistical nature. Hence there is a necessity of development of a system which can remain immune to such random behaviour and provide resilient readings to subsequent stages. Here, we propose a system based on Artificial Neural Network (ANN) which accepts radio field strength recorded by radio detectors and provides estimates of shower sizes in the UHE region. The ANN in feed-forward form is trained with a range of shower events with which it can effectively handle the randomness observed in the detector reading due to imperfections in the experimental apparatus and related set-up.

  11. Deep Mapping of Small Solar System Bodies with Galactic Cosmic Ray Secondary Particle Showers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our Phase I study demonstrated that muons, the long-range charged component of GCR showers, can penetrate SSBs on the order of a km in diameter or less,...

  12. Interpretation of the cosmic-ray air shower signal in Askaryan radio detectors

    Directory of Open Access Journals (Sweden)

    de Vries Krijn D.

    2017-01-01

    Full Text Available We discuss the radio emission from a cosmic-ray air shower propagating in air before it hits an air-ice boundary after which it completes its propagation inside the ice. The in-air emission, the in-ice emission, as well as the transition radiation from the shower crossing the boundary is considered. We discuss the interpretation of the radio signal observed by an in-ice observer.

  13. The wavefront of the radio signal emitted by cosmic ray air showers

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.D.; Bekk, K.; Blümer, J.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R. [Institut für Kernphysik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Arteaga-Velázquez, J.C. [Instituto de Física y Matemáticas, Universidad Michoacana, Edificio C-3, Cd. Universitaria, C.P. 58040 Morelia, Michoacán (Mexico); Bähren, L.; Falcke, H. [ASTRON, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo (Netherlands); Bertaina, M.; Cantoni, E.; Chiavassa, A.; Pierro, F. Di [Dipartimento di Fisica, Università degli Studi di Torino, Via Giuria 1, 10125 Torino (Italy); Biermann, P.L. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Str. Reactorului no. 30, P.O. Box MG-6, Bucharest-Magurele (Romania); De Souza, V. [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense 400, Pq. Arnold Schmidt, São Carlos (Brazil); Fuchs, B. [Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gemmeke, H. [Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Grupen, C., E-mail: frank.schroeder@kit.edu [Faculty of Natural Sciences and Engineering, Universität Siegen, Walter-Flex-Straße 3, 57072 Siegen (Germany); and others

    2014-09-01

    Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above 10{sup 17} eV and zenith angles smaller than 45{sup o}, we find that the radio wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The simulations predict a slightly steeper wavefront towards East than towards West, but this asymmetry is negligible against the measurement uncertainties of LOPES. At axis distances ∼> 50 m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is limited by measurement uncertainties to approximately 140 g/c {sup 2}. But the simulations indicate that under better conditions this method might yield an accuracy for the atmospheric depth of the shower maximum, X{sub max}, better than 30 g/c {sup 2}. This would be competitive with the established air-fluorescence and air-Cherenkov techniques, where the radio technique offers the advantage of a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be used to reconstruct the shower geometry more accurately, which potentially allows a better reconstruction of all other shower parameters, too.

  14. The Effect of Cold Showering on Health and Work: A Randomized Controlled Trial

    Science.gov (United States)

    Sierevelt, Inger N.; van der Heijden, Bas C. J. M.; Dijkgraaf, Marcel G.; Frings-Dresen, Monique H. W.

    2016-01-01

    Purpose The aim of this study was to determine the cumulative effect of a routine (hot-to-) cold shower on sickness, quality of life and work productivity. Methods Between January and March 2015, 3018 participants between 18 and 65 years without severe comorbidity and no routine experience of cold showering were randomized (1:1:1:1) to a (hot-to-) cold shower for 30, 60, 90 seconds or a control group during 30 consecutive days followed by 60 days of showering cold at their own discretion for the intervention groups. The primary outcome was illness days and related sickness absence from work. Secondary outcomes were quality of life, work productivity, anxiety, thermal sensation and adverse reactions. Results 79% of participants in the interventions groups completed the 30 consecutive days protocol. A negative binomial regression model showed a 29% reduction in sickness absence for (hot-to-) cold shower regimen compared to the control group (incident rate ratio: 0.71, P = 0.003). For illness days there was no significant group effect. No related serious advents events were reported. Conclusion A routine (hot-to-) cold shower resulted in a statistical reduction of self-reported sickness absence but not illness days in adults without severe comorbidity. Trial Registration Netherlands National Trial Register NTR5183 PMID:27631616

  15. Modeling RF Emissions from Particle Showers in Dense Mediums

    Science.gov (United States)

    Hyneman, Rachel; Belov, Konstantin; Wissel, Stephanie

    2014-03-01

    The Antarctic Impulsive Transient Antenna (ANITA) experiment has recorded multiple Ultra High Energy Cosmic Ray (UHECR) events via radio-frequency emissions from secondary particle showers in the Earth's atmosphere. The energy of these UHECR particles is reconstructed using Monte Carlo simulations based on first principles. The goal of the SLAC T-510 experiment is to validate these simulations and to provide an energy calibration for ANITA data analysis. We incorporated an RF emission simulation based on ZHS code into the GEANT4 toolkit, used for modeling the passage of particles in accelerator experiments. We predict strong radio emissions at the Cherenkov angle from a cascade of secondary particles in a polyethylene target in moderate magnetic fields. We see a strong dependence of the horizontally polarized component of the electric field on top of the Cherenkov cone on the magnetic field strength. We also observe a skewing of the Cherenkov cone as the magnetic field increases, which we believe to be an indication of the Askaryan effect. Special thanks to the National Science Foundation and the Research Experience for Undergraduates program.

  16. Energy Sources for Yotta-TeV Iceberg Showers

    Energy Technology Data Exchange (ETDEWEB)

    MacAyeal, Douglas [University of Chicago

    2013-05-01

    In late February of 2002, warming climate along the Antarctic Peninsula triggered a macroscopic particle acceleration event that smashed a 350 Gkg floating ice shelf, called the Larsen B. The particle shower released by the acceleration involved on the order of >10^6 iceberg particles accelerated to an aggregate total kinetic energy of ~10^17 J (100 Mt TNT equivalent). The explosion was so extreme that it caught glaciological science by surprise (an injury to the egos of glaciologists worldwide) and caused glaciers of the Antarctic Peninsula formerly buttressed by the missing ice shelf to surge (yielding a small increment to sea level rise). In this presentation, I shall describe research, both experimental and field oriented, that has revealed the energy source for this explosive event. I shall also describe how climate warming has the capacity to trigger this type of ice-shelf collapse. A review of the geologic record of ice-rafted debris on the ocean floor suggests that extreme, explosive ice-shelf collapse may be a ubiquitous catastrophe that has happened regularly in the past as part of glacial/interglacial climate cycles.

  17. An ionization chamber shower detector for the LHC luminosity monitor

    CERN Document Server

    Beche, J F; Datte, P S; Haguenauer, Maurice; Manfredi, P F; Millaud, J E; Placidi, Massimo; Ratti, L; Re, V; Riot, V J; Schmickler, Hermann; Speziali, V; Turner, W C

    2000-01-01

    The front IR quadrupole absorbers (TAS) and the IR neutral particle absorbers (TAN) in the high luminosity insertions of the Large Hadron Collider (LHC) each absorb approximately 1.8 TeV of forward collision products on average per pp interaction (~235 W at design luminosity 10/sup 34/ cm/sup -2/ s/sup -1/). This secondary particle flux can be exploited to provide a useful storage ring operations tool for optimization of luminosity. A novel segmented, multi-gap, pressurized gas ionization chamber is being developed for sampling the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The system design choices have been strongly influenced by optimization of signal to noise ratio and by the very high radiation environment. The ionization chambers are instrumented with low noise, fast, pulse shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. Data on each bunch are to be separately accumulated over multiple bunch crossings until the desire...

  18. The Leonids: The Lion King of Meteor Showers

    Science.gov (United States)

    Rao, J.

    1995-08-01

    The night of November 12-13, 1833, sparked awareness of the Leonids meteor shower as well as the birth of meteor astronomy: from much of North America that night, a rain of shooting stars, a shower of flashing light, spread over the entire sky. More than one superstitious person on that spectacular night was certain that the end of the world had come. People kept repeating that the meteors were falling "like snowflakes". In the aftermath of the display, it was realized that meteors could be produced by an extraterrestrial source: streams or swarms of particle that travel around the Sun in more or less well-defined orbits, grazing, at least at one point, the orbit of our Earth. In 1866, G. Schiaparelli established the orbit of the stream of particles that produce the Leonids, and soon others independently noted a striking resemblance of the Leonids with the orbit of periodic comet Tempel-Tuttle. The comet and meteor stream were subsequently found to be following nearly identical orbits with periods of roughly 33 years. A few years earlier (in 1863) it was discovered similarly spectacular Leonid meteor displays had occured prior to 1833, with accounts of the Leonids traceable as far back as A.D. 902. Based solely on the 33-year cycle, a prediction for a meteor storm in the year 1866 verified. In 1899 a re-enactment of the 1833 storm was confidently expected, despite calculations that demonstrated that the orbit of P/Tempel-Tuttle (and probably the associated Leonid particles) were likely perturbed by the planets Jupiter and Saturn. The failure of a storm to materialize seriously damaged the credibility of astronomers in the eyes of the general public. Since 1899, the Leonids have been following a rather erratic and unpredictable schedule: meteor storms unexpectedly occurred in 1900 and 1901; no storm was noted in 1931 and 1932, leading many to believe that Leonid activity had significantly declined. But during the 1960s, they again revived, capped by a short

  19. The Field Shower Wastewater Recycling System: Development of a Program of Instruction and Preliminary Analysis of Its Potential Health Implications.

    Science.gov (United States)

    1987-02-01

    showers taken during the test. Skin Cancer It is unlikely that contact with recycled shower water would cause epithelial cell mutations leading to...skin cancer . None of the chemicals judged likely to remain in treated water have been epidemiologically associated with skin cancers . Also, standard...other toiletries used in the showering process * Topically applied cosmetic and health care products, such as antiperspirants , aftershave lotions

  20. Experimental Investigation of Wood Decking Assemblies Exposed to Firebrand Showers.

    Science.gov (United States)

    Manzello, Samuel L; Suzuki, Sayaka

    2017-09-01

    Wildland-Urban Interface (WUI) fires have become a problem of great concern across multiple continents. An important mechanism of structure ignition in WUI fires and urban fires is the production of firebrands. During WUI fires, decking assemblies have been observed to be an ignition vulnerability based on post-fire damage surveys conducted by NIST and elsewhere. The authors have conducted scoping experiments and demonstrated the dangers of the dynamic process of continual, wind-driven firebrand showers landing on decking assemblies for wind speeds of 6 m/s. In this study, eight full-scale experiments were conducted with wood decking assemblies under a wind speed of 8 m/s. The basis for these new investigations was twofold: observe possible vulnerabilities of wood decking assemblies to continuous, wind-driven firebrands at higher wind speed as firebrand accumulation patterns were expected to be influenced by wind speed, and examine if wall ignition occurred due to the burning decking assembly. To this end, sections of wood decking assemblies (1.2 m by 1.2 m) were constructed and attached to a reentrant corner assembly. The deck/reentrant corner assembly was then exposed to continuous, wind-driven firebrand bombardment generated by a full-scale Continuous Feed Firebrand Generator installed in the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Japan. The mass of firebrands required for flaming ignitions under a wind speed of 8 m/s was considerably less compared with those under a wind speed of 6 m/s. This result is postulated to be due to higher firebrand surface temperatures as the wind speed was increased. For the decking assembly to wall ignition studies, the interface between the decking assembly and the wall appeared to be a weak point; this is not addressed in the current test methods.

  1. Chloramine-induced anaphylaxis while showering: a case report

    Directory of Open Access Journals (Sweden)

    D’Alò Simona

    2012-09-01

    Full Text Available Abstract Introduction Sodium-N-chlorine-p-toluene sulfonamide, commonly known as chloramine-T, is a derivative of chlorine which is widely used as a disinfectant. For many years, chloramine-T has been described as a cause of immediate-type hypersensitivity, especially with regard to asthma and rhinitis, and as a cause of occupational dermatoses in cleaning personnel in hospitals, although no anaphylactic reaction has yet been reported. Hence, to the best of our knowledge we present the first case of anaphylaxis to chloramine-T with evidence of specific immunoglobulin E antibodies. Case presentation We describe the case of a 25-year-old Caucasian woman who was in good health and with a negative history for atopy, including no respiratory symptoms of rhinitis or asthma, and with no professional exposure to chloramine-T. She, while showering, applied a chloramine-T solution to a skin area with folliculitis on her leg, and within a few minutes developed generalized urticaria and angioedema, followed by vomiting and collapse with loss of consciousness. A skin prick test with a chloramine-T solution at 10mg/mL concentration was positive, and specific immunoglobulin E to chloramine-T was quantified at a value of 2.9 optical density as measured by the enzyme allergosorbent test technique. Conclusion The strict cause-effect relationship and the results of the skin test and the in vitro test make certain the causative role of chloramine-T in this case of anaphylaxis. This suggests that chloramine-T, based on its wide use as a disinfectant, should be considered a possible cause in anaphylaxis of unknown origin.

  2. Chloramine-induced anaphylaxis while showering: a case report.

    Science.gov (United States)

    D'Alò, Simona; De Pasquale, Tiziana; Incorvaia, Cristoforo; Illuminati, Ilenia; Mistrello, Gianni; Roncarolo, Daniela; Pucci, Stefano

    2012-09-25

    Sodium-N-chlorine-p-toluene sulfonamide, commonly known as chloramine-T, is a derivative of chlorine which is widely used as a disinfectant. For many years, chloramine-T has been described as a cause of immediate-type hypersensitivity, especially with regard to asthma and rhinitis, and as a cause of occupational dermatoses in cleaning personnel in hospitals, although no anaphylactic reaction has yet been reported. Hence, to the best of our knowledge we present the first case of anaphylaxis to chloramine-T with evidence of specific immunoglobulin E antibodies. We describe the case of a 25-year-old Caucasian woman who was in good health and with a negative history for atopy, including no respiratory symptoms of rhinitis or asthma, and with no professional exposure to chloramine-T. She, while showering, applied a chloramine-T solution to a skin area with folliculitis on her leg, and within a few minutes developed generalized urticaria and angioedema, followed by vomiting and collapse with loss of consciousness. A skin prick test with a chloramine-T solution at 10mg/mL concentration was positive, and specific immunoglobulin E to chloramine-T was quantified at a value of 2.9 optical density as measured by the enzyme allergosorbent test technique. The strict cause-effect relationship and the results of the skin test and the in vitro test make certain the causative role of chloramine-T in this case of anaphylaxis. This suggests that chloramine-T, based on its wide use as a disinfectant, should be considered a possible cause in anaphylaxis of unknown origin.

  3. Investigating cosmic rays and air shower physics with IceCube/IceTop

    Directory of Open Access Journals (Sweden)

    Dembinski Hans

    2017-01-01

    Full Text Available IceCube is a cubic-kilometer detector in the deep ice at South Pole. Its square-kilometer surface array, IceTop, is located at 2800 m altitude. IceTop is large and dense enough to cover the cosmic-ray energy spectrum from PeV to EeV energies with a remarkably small systematic uncertainty, thanks to being close to the shower maximum. The experiment offers new insights into hadronic physics of air showers by observing three components: the electromagnetic signal at the surface, GeV muons in the periphery of the showers, and TeV muons in the deep ice. The cosmic-ray flux is measured with the surface signal. The mass composition is extracted from the energy loss of TeV muons observed in the deep ice in coincidence with signals at the surface. The muon lateral distribution is obtained from GeV muons identified in surface signals in the periphery of the shower. The energy spectrum of the most energetic TeV muons is also under study, as well as special events with laterally separated TeV muon tracks which originate from high-pT TeV muons. A combination of all these measurements opens the possibility to perform powerful new tests of hadronic interaction models used to simulate air showers. The latest results will be reviewed from this perspective.

  4. The wavefront of the radio signal emitted by cosmic ray air showers

    CERN Document Server

    Apel, W D; Bähren, L; Bekk, K; Bertaina, M; Biermann, P L; Blümer, J; Bozdog, H; Brancus, I M; Cantoni, E; Chiavassa, A; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Fuchs, B; Gemmeke, H; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huber, D; Huege, T; Isar, P G; Kampert, K -H; Kang, D; Krömer, O; Kuijpers, J; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Melissas, M; Morello, C; Oehlschläger, J; Palmieri, N; Pierog, T; Rautenberg, J; Rebel, H; Roth, M; Rühle, C; Saftoiu, A; Schieler, H; Schmidt, A; Schröder, F G; Sima, O; Toma, G; Trinchero, G C; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A

    2014-01-01

    Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above $10^{17}$eV and zenith angles smaller than $45^\\circ$, we find that the radio wavefront of cosmic-ray air showers is of hyperbolic shape. At axis distances $\\gtrsim 50$m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is lim...

  5. Simulating Terrestrial Gamma Ray Flashes due to cosmic ray shower electrons and positrons

    Science.gov (United States)

    Connell, Paul

    2017-04-01

    The University of Valencia has developed a software simulator LEPTRACK to simulate the relativistic runaway electron avalanches, RREA, that are presumed to be the cause of Terrestrial Gamma Ray Flashes and their powerful accompanying Ionization/Excitation Flashes. We show here results of LEPTRACK simulations of RREA by the interaction of MeV energy electrons/positrons and photons in cosmic ray showers traversing plausible electric field geometries expected in storm clouds. The input beams of MeV shower products were created using the CORSIKA software package from the Karlsruhe Institute of Technology. We present images, videos and plots showing the different Ionization, Excitation and gamma-ray photon density fields produced, along with their time and spatial profile evolution, which depend critically on where the line of shower particles intercept the electric field geometry. We also show a new effect of incoming positrons in the shower, which make up a significant fraction of shower products, in particular their apparent "orbiting" within a high altitude negative induced shielding charge layer, which has been conjectured to produce a signature microwave emission, as well as a short range 511 keV annihilation line. The interesting question posed is if this conjectured positron emission can be observed and correlated with TGF orbital observations to show if a TGF originates in the macro E-fields of storm clouds or the micro E-fields of lightning leaders where this positron "orbiting" is not likely to occur.

  6. Cosmic-ray air-shower thickness timing analyses: expanding a small array's acceptance

    Science.gov (United States)

    DuVernois, Michael A.

    2003-02-01

    A new, small-scale, detector utilizing the finite thickness of air-shower "pancakes" has been developed and operated on the roof of the physics building at the University of Minnesota. (MR. CRATE = Minnesota Rooftop Cosmic-Ray Air-shower Timing Experiment). Such techniques were pioneered by Linsley and collaborators, carried forth in a variety of forms through the 1970s-80s, and with differing technologies by Watson and colleagues. The primary interest in such detector is the ability to use timing of the air shower to allow the array to trigger on events that fall outside of the array. In principal, one can use a single detector to observe air showers out to a distance at which the detector runs out of statistics. The Mark-I detector was simply that. More extensive detectors using these techniques have also been designed and built with an eye towards incorporating them into existing underground or surface air shower detectors. Preliminary results and design studies will be discussed.

  7. Radio morphing - towards a full parametrisation of the radio signal from air showers

    Science.gov (United States)

    Zilles, A.; Charrier, D.; Kotera, K.; Le Coz, S.; Martineau-Huynh, O.; Medina, C.; Niess, V.; Tueros, M.; de Vries, K.

    2017-12-01

    Over the last decades, radio detection of air showers has been established as a detection technique for ultra-high-energy cosmic-rays impinging on the Earth's atmosphere with energies far beyond LHC energies. Today’s second-generation of digital radio-detection experiments, as e.g. AERA or LOFAR, are becoming competitive in comparison to already standard techniques e.g. fluorescence light detection. Thanks to a detailed understanding of the physics of the radio emission in extensive air showers, simulations of the radio signal are already successfully tested and applied in the reconstruction of cosmic rays. However the limits of the computational power resources are easily reached when it comes to computing electric fields at the numerous positions requested by large or dense antenna arrays. In the case of mountainous areas as e.g. for the GRAND array, where 3D shower simulations are necessary, the problem arises with even stronger acuity. Therefore we developed a full parametrisation of the emitted radio signal on the basis of generic shower simulations which will reduce the simulation time by orders of magnitudes. In this talk we will present this concept after a short introduction to the concept of the radio detection of air-shower induced by cosmic rays.

  8. Showering effectiveness for human hair decontamination of the nerve agent VX.

    Science.gov (United States)

    Josse, Denis; Wartelle, Julien; Cruz, Catherine

    2015-05-05

    In this work, our goals were to establish whether hair decontamination by showering one hour post-exposure to the highly toxic organophosphate nerve agent VX was effective, whether it required the addition of a detergent to water and, if it could be improved by using the adsorbent Fuller's Earth (FE) or the Reactive Skin Decontamination Lotion (RSDL) 30 min prior to showering. Hair exposure to VX and decontamination was performed by using an in vitro model. Hair showering led to 72% reduction of contamination. Addition of detergent to water slightly increased the decontamination effectiveness. Hair treatment with FE or RSDL improved the decontamination rate. Combination of FE use and showering, which yielded a decontamination factor of 41, was demonstrated to be the most effective hair decontamination procedure. Hair wiping after showering was shown to contribute to hair decontamination. Altogether, our results highlighted the importance of considering hair decontamination as an important part of body surface decontamination protocols. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Fγ: A new observable for photon-hadron discrimination in hybrid air shower events

    Science.gov (United States)

    Niechciol, M.; Risse, M.; Ruehl, P.; Settimo, M.; Younk, P. W.; Yushkov, A.

    2018-01-01

    To search for ultra-high-energy photons in primary cosmic rays, air shower observables are needed that allow a good separation between primary photons and primary hadrons. We present a new observable, Fγ, which can be extracted from ground-array data in hybrid events, where simultaneous measurements of the longitudinal and the lateral shower profile are performed. The observable is based on a template fit to the lateral distribution measured by the ground array with the template taking into account the complementary information from the measurement of the longitudinal profile, i.e. the primary energy and the geometry of the shower. Fγ shows a very good photon-hadron separation, which is even superior to the separation given by the well-known Xmax observable (the atmospheric depth of the shower maximum). At energies around 1 EeV (10 EeV), Fγ provides a background rejection better than 97.8 % (99.9 %) at a signal efficiency of 50 %. Advantages of the observable Fγ are its technical stability with respect to irregularities in the ground array (i.e. missing or temporarily non-operating stations) and that it can be applied over the full energy range accessible to the air shower detector, down to its threshold energy. Furthermore, Fγ complements nicely to Xmax such that both observables can well be combined to achieve an even better discrimination power, exploiting the rich information available in hybrid events.

  10. Response of microchannel plates to single particles and to electromagnetic showers

    Energy Technology Data Exchange (ETDEWEB)

    Brianza, L. [Università di Milano Bicocca and INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Cavallari, F.; Del Re, D.; Gelli, S. [Sapienza Università di Roma and INFN, Sezione di Roma 1, P.le A. Moro 1, I-00044 Rome (Italy); Ghezzi, A.; Gotti, C.; Govoni, P. [Università di Milano Bicocca and INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Jorda Lopez, C. [Sapienza Università di Roma and INFN, Sezione di Roma 1, P.le A. Moro 1, I-00044 Rome (Italy); Martelli, A.; Marzocchi, B. [Università di Milano Bicocca and INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Meridiani, P.; Organtini, G.; Paramatti, R.; Pernié, L. [Sapienza Università di Roma and INFN, Sezione di Roma 1, P.le A. Moro 1, I-00044 Rome (Italy); Pigazzini, S. [Università di Milano Bicocca and INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Rahatlou, S.; Rovelli, C.; Santanastasio, F. [Sapienza Università di Roma and INFN, Sezione di Roma 1, P.le A. Moro 1, I-00044 Rome (Italy); Tabarelli de Fatis, T., E-mail: tommaso.tabarelli@mib.infn.it [Università di Milano Bicocca and INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Trevisani, N. [Università di Milano Bicocca and INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy)

    2015-10-11

    We report on the response of microchannel plates (MCPs) to single relativistic particles and to electromagnetic showers. Particle detection by means of secondary emission of electrons at the MCP surface has long been proposed and is used extensively in ion time-of-flight mass spectrometers. What has not been investigated in depth is their use to detect the ionizing component of showers. The time resolution of MCPs exceeds anything that has been previously used in calorimeters and, if exploited effectively, could aid in the event reconstruction at high luminosity colliders. Several prototypes of photodetectors with the amplification stage based on MCPs were exposed to cosmic rays and to 491 MeV electrons at the INFN-LNF Beam-Test Facility. The time resolution and the efficiency of the MCPs are measured as a function of the particle multiplicity, and the results used to model the response to high-energy showers.

  11. Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-07-01

    The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60° and different energies of the primary particle. From these distributions, we define Xmaxμ as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of Xmaxμ as a useful observable to infer the mass composition of ultrahigh-energy cosmic rays. Likewise, we assess its ability to constrain hadronic interaction models.

  12. The time development of hadronic showers and the T3B experiment

    Energy Technology Data Exchange (ETDEWEB)

    Soldner, Christian

    2013-06-06

    The compact linear collider (CLIC) is a future linear e{sup +}e{sup -} collider operated at a center of mass energy of up to 3 TeV and with a collision rate of particle bunches of up to 2 GHz. This poses challenging requirements on the detector system. The accumulation of background events, such as {gamma}{gamma}{yields}hadrons resulting from Beamstrahlung, must be minimized through a precise time stamping capability in all subdetector systems. In the event reconstruction, the energy depositions within the calorimeters will be used to assign events precisely to a small set of consecutive bunch crossings. The finite time evolution of hadronic showers, on the other hand, requires an extended integration time to achieve a satisfactory energy resolution in the calorimeter. The energy resolution is also deteriorated by the leakage of shower particles. Tungsten is foreseen as dense absorber material, but the time evolution of hadron showers within such a calorimeter is not sufficiently explored yet. In the context of this thesis, the T3B experiment (short for Tungsten Timing Test Beam) was designed and constructed. It is optimized to measure the time development and the contribution of delayed energy depositions within hadronic cascades. The T3B experiment consists of 15 scintillator cells assembled in a strip. The scintillation light generated within the cells is detected by novel silicon photomultiplier whose signal is read out with fast oscilloscopes providing a sampling rate of 1.25 GHz. This strip was positioned behind two different calorimeter prototypes of the CALICE collaboration which use a tungsten and steel (for comparison) absorber structure. T3B was part of the CALICE test beam campaign 2010/2011 carried out at the PS and SPS at CERN and acquired data on hadronic showers in an energy range of 2-300 GeV. A test beam optimized data acquisition software was developed from scratch. With the development and application of a novel waveform decomposition algorithm

  13. Radio emission of energetic cosmic ray air showers: Polarization measurements with LOPES

    Energy Technology Data Exchange (ETDEWEB)

    Isar, P.G. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany)], E-mail: gina.isar@ik.fzk.de; Apel, W.D. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Asch, T. [Inst. Prozessdatenverarbeitung und Elektronik, Forschungszentrum Karlsruhe (Germany); Auffenberg, J. [Fachbereich Physik, Universitaet Wuppertal (Germany); Badea, F. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Baehren, L. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie Bonn (Germany); Bluemer, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen (Germany); Buitink, S. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Istituto di Fisica dello Spazio Interplanetario, INAF Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany)] (and others)

    2009-06-01

    LOPES is a radio antenna array co-located with the Karlsruhe Shower Core and Array DEtector, KASCADE-Grande in Forschungszentrum Karlsruhe, Germany, which provides well-calibrated trigger information and air shower parameters for primary energies up to 10{sup 18}eV. By the end of 2006, the radio antennas were re-configured to perform polarization measurements of the radio signal of cosmic ray air showers, recording in the same time both, the East-West and North-South polarization directions of the radio emission. The main goal of these measurements is to reconstruct the polarization characteristics of the emitted signal. This will allow a detailed comparison with theoretical predictions. The current status of these measurements is reported here.

  14. Muon Production Height investigated by the Air-Shower Experiment KASCADE-Grande

    Energy Technology Data Exchange (ETDEWEB)

    Doll, P., E-mail: doll@ik.fzk.d [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Apel, W.D. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe D-76021 Karlsruhe (Germany); Badea, F.; Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Bluemer, H. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe D-76021 Karlsruhe (Germany); Institut fuer Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, 7690 Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen, 57068 Siegen (Germany); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Instituto di Fisica dello Spazio Interplanetario, INAF, 10133 Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe D-76021 Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Souza, V. de [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe D-76021 Karlsruhe (Germany); Di Pierro, F. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Engel, R.; Engler, J.; Finger, M. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany)

    2009-12-15

    A large area (128m{sup 2}) Muon Tracking Detector (MTD), located within the KASCADE experiment, has been built with the aim to identify muons (E{sub m}u>0.8GeV) and their directions in extensive air showers by track measurements under more than 18 r.l. shielding. The orientation of the muon track with respect to the shower axis is expressed in terms of the radial- and tangential angles. By means of triangulation the muon production height H{sub m}u is determined. By means of H{sub m}u, a transition from light to heavy cosmic ray primary particles with increasing shower energy E{sub o} from 1-10 PeV is observed.

  15. The influence of the atmospheric refractive index on radio Xmax measurements of air showers

    Directory of Open Access Journals (Sweden)

    Corstanje Arthur

    2017-01-01

    Full Text Available The refractive index of the atmosphere, which is n ≈ 1:0003 at sea level, varies with altitude and with local temperature, pressure and humidity. When performing radio measurements of air showers, natural variations in n will change the radio lateral intensity distribution, by changing the Cherenkov angle. Using CoREAS simulations, we have evaluated the systematic error on measurements of the shower maximum Xmax due to variations in n. It was found that a 10% increase in refractivity (n – 1 leads to an underestimation of Xmax between 8 and 22 g/cm2 for proton-induced showers at zenith angles from 15 to 45 degrees, respectively.

  16. Extensive Air Shower Detector Array at the Universidad Autonoma de Puebla

    Science.gov (United States)

    Cotzomi, J.; Moreno, E.; Aguilar, S.; Palma, B.; Martinez, O.; Salazar, H.; Villasenor, L.

    2002-07-01

    We describe the operation of an Extensive Air Shower Array located at the campus of the FCFM-BUAP. The array consists of 8 liquid scintillation detectors with a surface of 1 m2 each and a detector spacing of 20 m in a square grid. The array was designed to measure the energy and arrival direction of primary particles that generate extensive air showers (EAS) in the region of 1013 eV - 1016 eV. The angular distribution measured with this array, Cos8(Theta) xSin(Theta), agrees very well with the literature. We also present the measured energies of a number of vertical showers in the range of 5 x1012 eV to 5 x1013 eV.

  17. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    collaboration, The Pierre Augur

    2014-08-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.

  18. Luminous Efficiency of Hypervelocity Meteoroid Impacts on the Moon Derived from the 2015 Geminid Meteor Shower

    Science.gov (United States)

    Moser, D. E.; Suggs, R. M.; Ehlert, S. R.

    2017-01-01

    Meteoroids cannot be observed directly because of their small size. In-situ measurements of the meteoroid environment are rare and have very small collecting areas. The Moon, in contrast, has a large collecting area and therefore can be used as a large meteoroid detector for gram-kilogram sized particles. Meteoroids striking the Moon create an impact flash observable by Earth-based telescopes. Their kinetic energy is converted to luminous energy with some unknown luminous efficiency ?(v), which is likely a function of meteoroid velocity (among other factors). This luminous efficiency is imperative to calculating the kinetic energy and mass of the meteoroid, as well as meteoroid fluxes, and it cannot be determined in the laboratory at meteoroid speeds and sizes due to mechanical constraints. Since laboratory simulations fail to resolve the luminous efficiency problem, observations of the impact flash itself must be utilized. Meteoroids associated with specific meteor showers have known speed and direction, which simplifies the determination of the luminous efficiency. NASA has routinely monitored the Moon for impact flashes since early 2006 [1]. During this time, several meteor showers have produced multiple impact flashes on the Moon, yielding a sufficient sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. [2, 3] and further described by Moser et al. [4], utilizing Earth-based measurements of the shower flux and mass index. The Geminid meteor shower has produced the most impact flashes in the NASA dataset to date with over 80 detections. More than half of these Geminids were recorded in 2015 (locations pictured in Fig. 1), and may represent the largest single-shower impact flash sample known. This work analyzes the 2015 Geminid lunar impacts and calculates their luminous efficiency. The luminous efficiency is then applied to calculate the kinetic energies and mass-es of these shower

  19. Risk from exposure to trihalomethanes during shower: Probabilistic assessment and control

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Shakhawat [Department of Civil Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada)], E-mail: Shakhawat@ce.queensu.ca; Champagne, Pascale [Department of Civil Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada)

    2009-02-15

    Exposure to trihalomethanes (THMs) through inhalation and dermal contact during showering and bathing may pose risks to human health. During showering and bathing, warm water (35 deg. C - 45 deg. C) is generally used. Warming of chlorinated supply water may increase THMs formation through enhanced reactions between organics and residual chlorine. Exposure assessment using THMs concentrations in cold water may under-predict the possible risks to human health. In this study, THMs concentrations in warm water were estimated by developing a THMs formation rate model. Using THMs in warm water, cancer and non-cancer risks to human health were predicted for three major cities in Ontario (Canada). The parameters for risk assessments were characterized by statistical distributions. The total cancer risks from exposure to THMs during showering were predicted to be 7.6 x 10{sup -6}, 6.3 x 10{sup -6} and 4.3 x 10{sup -6} for Ottawa, Hamilton and Toronto respectively. The cancer risks exceedance probabilities were estimated to be highest in Ottawa at different risk levels. The risks through inhalation exposure were found to be comparable (2.1 x 10{sup -6}-3.7 x 10{sup -6}) to those of the dermal contact (2.2 x 10{sup -6}-3.9 x 10{sup -6}) for the cities. This study predicted 36 cancer incidents from exposure to THMs during showering for these three cities, while Toronto contributed the highest number of possible cancer incidents (22), followed by Ottawa (10) and Hamilton (4). The sensitivity analyses showed that health risks could be controlled by varying shower stall volume and/or shower duration following the power law relationship.

  20. Electron-photon shower distribution function tables for lead, copper and air absorbers

    CERN Document Server

    Messel, H

    2013-01-01

    Electron-Photon Shower Distribution Function: Tables for Lead, Copper and Air Absorbers presents numerical results of the electron-photon shower distribution function for lead, copper, and air absorbers. Electron or photon interactions, including Compton scattering, elastic Coulomb scattering, and the photo-electric effect, are taken into account in the calculations. This book consists of four chapters and begins with a review of both theoretical and experimental work aimed at deducing the characteristics of the cascade produced from the propagation of high energy electrons and photons through

  1. Measuring the muon content of air showers with IceTop

    Directory of Open Access Journals (Sweden)

    Gonzalez Javier G.

    2015-01-01

    Full Text Available IceTop, the surface component of the IceCube detector, has been used to measure the energy spectrum of cosmic ray primaries in the range between 1.58 PeV and 1.26 EeV. It can also be used to study the low energy muons in air showers by looking at large distances (> 300 m from the shower axis. We will show the muon lateral distribution function at large lateral distances as measured with IceTop and discuss the implications of this measurement. We will also discuss the prospects for low energy muon studies with IceTop.

  2. Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory

    CERN Document Server

    Aab, A; Aglietta, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Ambrosio, M; Anastasi, G A; Anchordoqui, L; Andrada, B; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Badescu, A M; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Biteau, J; Blaess, S G; Blanco, A; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Botti, A M; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Briechle, F L; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Cancio, A; Canfora, F; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Clay, R W; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Coutu, S; Covault, C E; Cronin, J; Dallier, R; D'Amico, S; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; Neto, J R T de Mello; De Mitri, I; de Oliveira, J; de Souza, V; Debatin, J; del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Castro, M L Díaz; Diogo, F; Dobrigkeit, C; D'Olivo, J C; Dorofeev, A; Anjos, R C dos; Dova, M T; Dundovic, A; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; Fuster, A; Gallo, F; García, B; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Berisso, M Gómez; Vitale, P F Gómez; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Hasankiadeh, Q; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huege, T; Hulsman, J; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Mezek, G Kukec; Kunka, N; Awad, A Kuotb; LaHurd, D; Latronico, L; Lauscher, M; Lautridou, P; Lebrun, P; Legumina, R; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; Casado, A López; Lucero, A; Malacari, M; Mallamaci, M; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Bravo, O Martínez; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Mockler, D; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Müller, G; Muller, M A; Müller, S; Naranjo, I; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, H; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pedreira, F; Pękala, J; Pelayo, R; Peña-Rodriguez, J; Pepe, I M; Pereira, L A S; Perrone, L; Petermann, E; Peters, C; Petrera, S; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; de Carvalho, W Rodrigues; Rojo, J Rodriguez; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salazar, H; Saleh, A; Greus, F Salesa; Salina, G; Gomez, J D Sanabria; Sánchez, F; Sanchez-Lucas, P; Santos, E M; Santos, E; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Strafella, F; Stutz, A; Suarez, F; Durán, M Suarez; Sudholz, T; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Timmermans, C; Peixoto, C J Todero; Tomankova, L; Tomé, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Valbuena-Delgado, A; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; Berg, A M van den; van Vliet, A; Varela, E; Cárdenas, B Vargas; Varner, G; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weindl, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yelos, D; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zong, Z; Zuccarello, F

    2016-01-01

    Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (E_CM = 110-170 TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33 +- 0.16 (1.61 +- 0.21) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.

  3. Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J. D.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J. C.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; del Peral, L.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G. R.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gallo, F.; García, B.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lautridou, P.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pekala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pepe, I. M.; Pereira, L. A. S.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Strafella, F.; Stutz, A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valbuena-Delgado, A.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yelos, D.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; Pierre Auger Collaboration

    2016-11-01

    Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (ECM=110 - 170 TeV ), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33 ±0.16 (1.61 ±0.21 ) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.

  4. Detailed Measurements of Shower Properties in a High Granularity Digital Electromagnetic Calorimeter arXiv

    CERN Document Server

    INSPIRE-00290589

    The MAPS prototype of the proposed ALICE Forward Calorimeter (FoCal) is the highest granularity electromagnetic calorimeter, with 39 million pixels of $30 \\times 30 \\mu$m$^{2}$. Particle showers can be studied with unprecedented detail with this prototype. Electromagnetic showers at energies between 2 GeV and 244 GeV have been studied and compared to Geant4 simulations. Simulation models can be tested in more detail than ever before and the differences observed between FoCal data and Geant4 simulations illustrates that improvements in electromagnetic models are still possible.

  5. Cherenkov Radiation from e+e- Pairs and Its Effect on nu e InducedShowers

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sourav K.; Klein, Spencer R.; Jackson, J. David

    2005-06-08

    We calculate the Cherenkov radiation from an e{sup +}e{sup -} pair at small separations, as occurs shortly after a pair conversion. The radiation is reduced (compared to that from two independent particles) when the pair separation is smaller than the wavelength of the emitted light. We estimate the reduction in light in large electromagnetic showers, and discuss the implications for detectors that observe Cherenkov radiation from showers in the Earth's atmosphere, as well as in oceans and Antarctic ice.

  6. QGSJET-II: physics, recent improvements, and results for air showers

    Directory of Open Access Journals (Sweden)

    Ostapchenko S.

    2013-06-01

    Full Text Available Modeling of high energy hadronic and nuclear interactions by the QGSJET-II generator is discussed. Recent updates related to the treatment of nonlinear effects inthe interaction dynamics and to the model calibration with new LHC data are described. A special attention is devoted to the predictions of the new model version forcharacteristics of extensive air showers initiated by high energy cosmic rays. In particular, an improved description of charge exchange processes in pion collisionsis discussed and the respective enhancement of the shower muon content is analyzed.

  7. The cosmic-ray energy spectrum above 1016 eV measured with the LOFAR radboud air shower array

    NARCIS (Netherlands)

    Thoudam, S.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; Ter Veen, S.; Trinh, T. N G; Van Kessel, L.

    2015-01-01

    The LOFAR Radboud Air Shower Array (LORA) is an array of 20 plastic scintillation detectors installed in the center of the LOFAR radio telescope in the Netherlands to measure extensive air showers induced by cosmic rays in the Earth's atmosphere. The primary goals of LORA are to trigger the read-out

  8. A measurement of the muon number in showers using inclined events detected at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Rodriguez G.

    2013-06-01

    Full Text Available The average muon content of measured showers with zenith angles between 62∘ and 80∘ detected at the Pierre Auger Observatory is obtained as a function of shower energy using a reconstruction method specifically designed for inclined showers and the hybrid character of the detector. The reconstruction of inclined showers relies on a comparison between the measured signals at ground and reference patterns at ground level from which an overall normalization factor is obtained. Since inclined showers are dominated by muons this factor gives the relative muon size. It can be calibrated using a subsample of showers simultaneously recorded with the fluorescence detector (FD and the surface detector (SD which provides an independent calorimetric measurement of the energy. The muon size obtained for each shower becomes a measurement of the relative number of muons with respect to the reference distributions. The precision of the measurement is assessed using simulated events which are reconstructed using exactly the same procedure. We compare the relative number of muons versus energy as obtained to simulations. Proton simulations with QGSJETII show a factor of 2.13 ± 0.04(stat ± 0.11(sys at 1019eV without significant variations in the energy range explored between 4 × 1018eV to 7 × 1019eV. We find that none of the current shower models, neither for proton nor for iron primaries, are able to predict as many muons as are observed.

  9. The influence of physicochemical properties on the internal dose of trihalomethanes in humans following a controlled showering exposure.

    Science.gov (United States)

    Silva, Lalith K; Backer, Lorraine C; Ashley, David L; Gordon, Sydney M; Brinkman, Marielle C; Nuckols, John R; Wilkes, Charles R; Blount, Benjamin C

    2013-01-01

    Although disinfection of domestic water supply is crucial for protecting public health from waterborne diseases, this process forms potentially harmful by-products, such as trihalomethanes (THMs). We evaluated the influence of physicochemical properties of four THMs (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) on the internal dose after showering. One hundred volunteers showered for 10 min in a controlled setting with fixed water flow, air flow, and temperature. We measured THMs in shower water, shower air, bathroom air, and blood samples collected at various time intervals. The geometric mean (GM) for total THM concentration in shower water was 96.2 μg/l. The GM of total THM in air increased from 5.8 μg/m(3) pre shower to 351 μg/m(3) during showering. Similarly, the GM of total-blood THM concentration increased from 16.5 ng/l pre shower to 299 ng/l at 10 min post shower. THM levels were significantly correlated between different matrices (e.g. dibromochloromethane levels) in water and air (r=0.941); blood and water (r=0.845); and blood and air (r=0.831). The slopes of best-fit lines for THM levels in water vs air and blood vs air increased with increasing partition coefficient of water/air and blood/air. The slope of the correlation plot of THM levels in water vs air decreased in a linear (r=0.995) fashion with increasing Henry's law constant. The physicochemical properties (volatility, partition coefficients, and Henry's law constant) are useful parameters for predicting THM movement between matrices and understanding THM exposure during showering.

  10. The shape of the radio wavefront of extensive air showers as measured with LOFAR

    NARCIS (Netherlands)

    Corstanje, A.; et al., [Unknown; Swinbank, J.

    2015-01-01

    Extensive air showers, induced by high energy cosmic rays impinging on the Earth’s atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical, conical or

  11. Radio detection of air showers with the ARIANNA experiment on the Ross Ice Shelf

    Science.gov (United States)

    Barwick, S. W.; Besson, D. Z.; Burgman, A.; Chiem, E.; Hallgren, A.; Hanson, J. C.; Klein, S. R.; Kleinfelder, S. A.; Nelles, A.; Persichilli, C.; Phillips, S.; Prakash, T.; Reed, C.; Shively, S. R.; Tatar, J.; Unger, E.; Walker, J.; Yodh, G.

    2017-04-01

    The ARIANNA hexagonal radio array (HRA) is an experiment in its pilot phase designed to detect cosmogenic neutrinos of energies above 1016 eV. The most neutrino-like background stems from the radio emission of air showers. This article reports on dedicated efforts of simulating and detecting the signals of cosmic rays. A description of the fully radio self-triggered data-set, the properties of the detected air shower signals in the frequency range of 100-500 MHz and the consequences for neutrino detection are given. 38 air shower signals are identified by their distinct waveform characteristics, are in good agreement with simulations and their signals provide evidence that neutrino-induced radio signals will be distinguishable with high efficiency in ARIANNA. The cosmic ray flux at a mean energy of 6.5-1.0+1.2 ×1017 eV is measured to be 1.1-0.7+1.0 ×10-16 eV-1 km-2 sr-1 yr-1 and one five-fold coincident event is used to illustrate the capabilities of the ARIANNA detector to reconstruct arrival direction and energy of air showers.

  12. Influence of atmospheric electric fields on the radio emission from extensive air showers

    DEFF Research Database (Denmark)

    Trinh, T. N. G.; Scholten, O.; Buitink, S.

    2016-01-01

    The atmospheric electric fields in thunderclouds have been shown to significantly modify the intensity and polarization patterns of the radio footprint of cosmic-ray-induced extensive air showers. Simulations indicated a very nonlinear dependence of the signal strength in the frequency window of ...

  13. A model of non-perturbative gluon emission in an initial state parton shower

    CERN Document Server

    Gieseke, Stefan; Siódmok, Andrzej

    2008-01-01

    We consider a model of transverse momentum production in which non-perturbative smearing takes place throughout the perturbative evolution, by a simple modification to an initial state parton shower algorithm. We find a reasonable description of data over a wide range of energy and discuss the extrapolation to the LHC.

  14. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J. J.; Matthews, A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration, [No Value

    2015-01-01

    We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence

  15. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    NARCIS (Netherlands)

    Pierre Auger Collaboration, [No Value; Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; D\\'\\iaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; Garc\\'\\ia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agëra, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Mart\\'\\inez Bravo, O.; Martraire, D.; Mas\\'\\ias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodr\\'\\iguez-Fr\\'\\ias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiał kowski, A.; Šm\\'\\ida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2014-01-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade

  16. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertania, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Luis, P. Facal San; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fox, B. D.; Fratu, O.; Froehlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gonzalez, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hoerandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morello, C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Mueller, S.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.

    2014-01-01

    Using the data taken at the Pierre Auger Observatory between December 2004 and December 2012, we have examined the implications of the distributions of depths of atmospheric shower maximum (X-max), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the

  17. Analysis of the muon spectra for inclined air showers measured with the KASCADE-grande experiment

    Energy Technology Data Exchange (ETDEWEB)

    Arteaga-Velazquez, Juan Carlos [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany)

    2008-07-01

    The solving of the mystery of the second knee in the cosmic ray spectrum is one of the main objectives of the KASCADE-grande observatory. KASCADE-grande is a ground array composed of different subsystems of detectors that, as a whole, allows to study simultaneously the electromagnetic and penetrating component of cosmic ray air showers in the energy range between 100 TeV and 1 EeV. Vertical showers (with zenith angles below 40 ) are studied in detail at KASCADE-grande. Now, the analyses are being extended to higher zenith angles as a way to study the muon content of air showers and to increase the statistics of the experiment. In this talk, the muon spectra reconstructed for vertical and inclined air showers measured by the KASCADE-grande observatory are presented and also confronted with Monte Carlos simulations based on the hadronic interaction models QGSJET II and EPOS. In addition, the result of the analysis of the observed spectra with the ''constant intensity cut method'' is shown. This method was applied in a first attempt to understand the origin of a systematic discrepancy found between the predicted and measured muon spectra, which increases with the zenith angle.

  18. EVALUATION OF STYRENE EMISSIONS FROM A SHOWER STALL/BATHTUB MANUFACTURING FACILITY

    Science.gov (United States)

    The report gives results of emissions measurements carried out at a representative facility (Eljer Plumbingware in Wilson, NC) that manufactures polyester-resin-reinforced shower stalls and bathtubs by spraying styrene-based resins onto molds in vented, open, spray booths. Styren...

  19. High-precision measurements of extensive air showers with the SKA

    NARCIS (Netherlands)

    Huege, T.; Bray, J. D.; Buitink, S.; Dallier, R.; Ekers, R. D.; Falcke, H.; Haungs, A.; James, C. W.; Martin, L.; Revenu, B.; Scholten, O.; Schröder, F. G.; Zilles, A.

    2015-01-01

    As of 2023, the Square Kilometre Array will constitute the world's largest radio telescope, offering unprecedented capabilities for a diverse science programme in radio astronomy. At the same time, the SKA will be ideally suited to detect extensive air showers initiated by cosmic rays in the Earth's

  20. Reconstruction of 10(exp 20)ev Showers in EUSO and JEM EUSO

    Science.gov (United States)

    Andreev, V.; Adams, J.; Cline, D.

    2007-01-01

    We describe the procedure to reconstruct 10(exp 20) ev showers in Extreme Universe Space Observatory (EUSO). We show the angular and energy resolution is excellent. We now apply this to the newly proposed Japanese JEM-EUSO and will present results at the meeting.

  1. Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory

    NARCIS (Netherlands)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anticic, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Baughman, B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K.H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S.H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R.M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Diaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; San Luis, P. Facal; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Froehlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Horandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Kotera, K.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Aguera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Niggemann, T.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschlaeger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Ruehle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovanek, P.; Schroeder, F.; Schulz, J.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Tascau, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Machado, D. Torres; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Martin, L.

    To interpret the mean depth of cosmic ray air shower maximum and its dispersion, we parametrize those two observables as functions of the first two moments of the ln A distribution. We examine the goodness of this simple method through simulations of test mass distributions. The application of the

  2. A study of the radio frequency spectrum emitted by high-energy air showers with LOFAR

    NARCIS (Netherlands)

    Rossetto, L.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Nelles, A.; Rachen, J. P.; Schellart, P.; Scholten, O.; Ter Veen, S.; Thoudam, S.; Trinh, T. N G

    2015-01-01

    The LOw Frequency ARray (LOFAR) is a multipurpose radio antenna array aimed to detect radio signals in the frequency range 10 - 240 MHz, covering a large surface in Northern Europe with a higher density in the Northern Netherlands. The detection of the radio signal emitted by extensive air showers

  3. A general framework for implementing NLO calculations in shower Monte Carlo programs. The POWHEG BOX

    Energy Technology Data Exchange (ETDEWEB)

    Alioli, Simone [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Nason, Paolo [INFN, Milano-Bicocca (Italy); Oleari, Carlo [INFN, Milano-Bicocca (Italy); Milano-Bicocca Univ. (Italy); Re, Emanuele [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology

    2010-02-15

    In this work we illustrate the POWHEG BOX, a general computer code framework for implementing NLO calculations in shower Monte Carlo programs according to the POWHEG method. Aim of this work is to provide an illustration of the needed theoretical ingredients, a view of how the code is organized and a description of what a user should provide in order to use it. (orig.)

  4. Measuring the radio emission of cosmic ray air showers with LOPES

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F.G., E-mail: Frank.Schroeder@kit.ed [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Apel, W.D. [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Asch, T. [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruhe Institute of Technology (KIT) (Germany); Badea, F. [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Baehren, L. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Bekk, K. [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie Bonn (Germany); Bluemer, J. [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Institut fuer Experimentelle Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Bozdog, H. [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen (Germany); Buitink, S. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Istituto di Fisica dello Spazio Interplanetario, INAF Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Daumiller, K. [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Souza, V. de [Institut fuer Experimentelle Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany)

    2010-05-21

    When ultra high energy cosmic rays hit the atmosphere, they produce a shower of millions of secondary particles. Thereby the charged particles in the shower emit a radio pulse whilst deflected in the Earth's magnetic field. LOPES is a digital antenna array measuring these radio pulses in the frequency range from 40 to 80 MHz. It is located at the site of and triggered by the air shower experiment KASCADE-Grande at Karlsruhe Institute of Technology (KIT), Germany. In its present configuration, it consists of 15 east-west-polarized and 15 north-south-polarized, absolutely calibrated short dipole antennas, as well as 10 LPDAs (with two channels each). Furthermore, it serves as a test bench for technological developments, like new antenna types or a radio-based self-triggering (LOPES{sup STAR}). To achieve a good angular reconstruction and to digitally form a beam into the arrival direction of the shower, it has a precise time calibration.

  5. Test of the hadronic interaction model EPOS with KASCADE air shower data

    Energy Technology Data Exchange (ETDEWEB)

    Hoerandel, J.R., E-mail: j.horandel@astro.ru.n [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Apel, W.D. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Badea, F.; Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Bluemer, J. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, P.O. Box Mg-6, RO-7690 Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen, 57068 Siegen (Germany); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Istituto di Fisica dello Spazio Interplanetario, INAF, 10133 Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Souza, V. de [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Di Pierro, F. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Doll, P.; Engel, R.; Engler, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany)

    2009-12-15

    Predictions of the hadronic interaction model EPOS 1.61 as implemented in the air shower simulation program CORSIKA are compared to observations with the KASCADE experiment. The investigations reveal that the predictions of EPOS are not compatible with KASCADE measurements. The discrepancies seen are most likely due to use of a set of inelastic hadronic cross sections that are too high.

  6. The Time Structure of Hadronic Showers in Calorimeters with Scintillator and with Gas Readout

    CERN Document Server

    Szalay, M

    2015-01-01

    The time structure of hadronic showers is characterized by apromptcomponent from relativistic particles and by late components predominantly connected to neutrons in the cascade.The sensitivity to this late component thus depends on the choice of the active medium for hadronic calorimeters.

  7. Application of thermoluminescence for detection of cascade shower 1: Hardware and software of reader system

    Science.gov (United States)

    Akashi, M.; Kawaguchi, S.; Watanabe, Z.; Misaki, A.; Niwa, M.; Okamoto, Y.; Fujinaga, T.; Ichimura, M.; Shibata, T.; Dake, S.

    1985-01-01

    A reader system for the detection of cascade showers via luminescence induced by heating sensitive material (BaSO4:Eu) is developed. The reader system is composed of following six instruments: (1) heater, (2) light guide, (3) image intensifier, (4) CCD camera, (5) image processor, (6) microcomputer. The efficiency of these apparatuses and software application for image analysis is reported.

  8. Detection of Extensive Cosmic Air Showers by Small Scintillation Detectors with Wavelength-Shifting Fibres

    Science.gov (United States)

    Aiola, Salvatore; La Rocca, Paola; Riggi, Francesco; Riggi, Simone

    2012-01-01

    A set of three small scintillation detectors was employed to measure correlated events due to the passage of cosmic muons originating from extensive air showers. The coincidence rate between (any) two detectors was extracted as a function of their relative distance. The difference between the arrival times in three non-aligned detectors was used…

  9. Polarized radio emission and radio wavefront shape of extensive air showers

    NARCIS (Netherlands)

    Corstanje, A.; Buitink, S.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; Ter Veen, S.; Thoudam, S.; Trinh, T. N G

    2015-01-01

    The LOFAR radio telescope located in the north of the Netherlands offers a high density of omnidirectional radio antennas. The LOFAR key science project Cosmic Rays is therefore well suited for detailed studies of the radio signal from air showers, and has been measuring since mid-2011 at primary

  10. New additional material of meteor showers during 9th -19th centuries in the Islamic history

    CERN Document Server

    Basurah, Hassan M

    2012-01-01

    This article presents twelve records of meteor showers in Arabic chronicles covering period from the 9th to the 19th century. The observations were in Egypt, Morocco, Syria and Yemen. These new addition historical records are considered to be important events which indicate a serious current interest in astronomy.

  11. Circular polarization of radio emission from air showers in thunderstorm conditions

    NARCIS (Netherlands)

    T.N.G. Trinh (Gia); O. Scholten; Bonardi (A.); S. Buitink; A. Corstanje; U. Ebert (Ute); J.E. Enriquez; H. Falcke; J.R. Hörandel; P. Mitra; K. Mulrey; A. Nelles; S. Thoudam; J.P. Rachen; L. Rossetto; C. Rutjes (Casper); P. Schellart; S. ter Veen (Sander); T. Winchen

    2016-01-01

    textabstractWe present measured radio emission from cosmic-ray-induced air showers under thunderstorm conditions. We observe for these events large differences in intensity, linear polarization and circular polarization from the events measured under fair-weather conditions. This can be explained by

  12. The presence and growth of Legionella species in thermostatic shower mixer taps: an exploratory field study

    NARCIS (Netherlands)

    Joost van Hoof; P.W.J.J. van der Wielen; L. Hornstra; E. van der Blom; O.W.W. Nuijten

    2014-01-01

    Legislation in the Netherlands requires routine analysis of drinking water samples for cultivable Legionella species from high-priority installations. A field study was conducted to investigate the presence of Legionella species in thermostatic shower mixer taps. Water samples and the interior of

  13. The air shower maximum probed by Cherenkov effects from radio emission

    NARCIS (Netherlands)

    de Vries, Krijn D.; Scholten, Olaf; Werner, Klaus

    Radio detection of cosmic-ray-induced air showers has come to a flight the last decade. Along with the experimental efforts, several theoretical models were developed. The main radio-emission mechanisms are established to be the geomagnetic emission due to deflection of electrons and positrons in

  14. The Hisparc cosmic ray experiment : data acquisition and reconstruction of shower direction

    NARCIS (Netherlands)

    Fokkema, D.; Fokkema, D.

    2012-01-01

    The field of cosmic ray physics is a century old and an exciting area of research. When cosmic ray particles enter our atmosphere they collide with air molecules creating new high-energy particles. These particles participate in further collisions and the entire process is known as an air shower.

  15. Measurement of the muon content in air showers at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Veberič Darko

    2016-01-01

    Full Text Available The muon content of extensive air showers produced by ultra-high energy cosmic rays is an observable sensitive to the composition of primary particles and to the properties of hadronic interactions governing the evolution of air-shower cascades. We present different methods for estimation of the number of muons at the ground and the muon production depth. These methods use measurements of the longitudinal, lateral, and temporal distribution of particles in air showers recorded by the detectors of the Pierre Auger Observatory. The results, obtained at about 140 TeV center-of-mass energy for proton primaries, are compared to the predictions of LHC-tuned hadronic-interaction models used in simulations with different primary masses. The models exhibit a deficitin the predicted muon content. The combination of these results with other independent mass composition analyses, such as those involving the depth of shower maximum observablemax, provide additional constraints on hadronic-interaction models for energies beyond the reach of the LHC.

  16. Measurement of the ultra high energy cosmic ray flux from data of very inclined showers at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, Hans Peter

    2009-12-03

    This work describes the derivation of the energy dependent flux of ultra-high energy cosmic rays from data of very inclined air showers observed with the Pierre Auger Observatory. It focuses on the event class of very inclined air showers with zenith angles larger than 60 . The lateral ground profile of these showers is muon dominated and not radially symmetric around the shower axis due to geomagnetic deflections and other effects. The dependency of this profile on the direction, energy and mass of the cosmic ray is discussed with a mixture of detailed Monte-Carlo simulations and a simplified analytical model of the air shower cascade. It is found in agreement with other studies that the normalized shape of the muon density profile is approximately universal over the range of cosmic ray energies and masses measured at the Pierre Auger Observatory, that the amplitude of the profile is almost proportional to the cosmic ray energy, and that its shower-to-shower fluctuations are sensitive to the mass composition of the cosmic rays. (orig.)

  17. Swimming pools and health-related behaviours: results of an Italian multicentre study on showering habits among pool users.

    Science.gov (United States)

    Pasquarella, C; Veronesi, L; Napoli, C; Castaldi, S; Pasquarella, M L; Saccani, E; Colucci, M E; Auxilia, F; Gallè, F; Di Onofrio, V; Tafuri, S; Signorelli, C; Liguori, G

    2013-07-01

    Showering before entering a swimming pool is highly recommended to reduce the risk of biological and chemical contamination. This study evaluated the behaviour of indoor swimming pool users; analysed the variables associated with lack of showering; and assessed awareness of the importance of showering. Cross-sectional study. A self-administered questionnaire was used to collect data about users of swimming pools located in five different Italian cities. The association between specific variables and the lack of showering was assessed. P swim showering was 'to wash oneself' (50.5%); or 'to get used to the temperature of the water' (44.3%); and 5.2% answered 'for both reasons'. Risk factors significantly associated with lack of showering were: female sex (odds ratio (OR) 1.37, 95% confidence interval (CI) 1.2-1.59), age 14-17 years (OR 5.09, 95% CI 3.40-7.64); not reading the swimming pool rules (OR 1.24, 95% CI 1.10-1.41); living in Central Italy (OR 3.3, 95% CI 2.65-4.1) or Southern Italy (OR 1.35, 95% CI 1.18-1.55); and previous/current attendance of a swimming course (OR 1.7, 95% CI 1.48-1.97). The results revealed low compliance with the rule of showering before entering a swimming pool, and little awareness of the preventive role of showering in the hygienic management of swimming pools. There is a need for targeted educational interventions to inform swimming pool users of the reasons for the importance of showering before entering a pool. Copyright © 2013 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  18. Systematic study of atmosphere-induced influences and uncertainties on shower reconstruction at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Prouza, Michael; Collaboration, for the Pierre Auger

    2007-06-01

    A wide range of atmospheric monitoring instruments is employed at the Pierre Auger Observatory : two laser facilities, elastic lidar stations, aerosol phase function monitors, a horizontal attenuation monitor, star monitors, weather stations, and balloon soundings. We describe the impact of analyzed atmospheric data on the accuracy of shower reconstructions, and in particular study the effect of the data on the shower energy and the depth of shower maximum (X{sub max}). These effects have been studied using the subset of 'golden hybrid' events--events observed with high quality in the fluorescence and surface detector -- used in the calibration of the surface detector energy spectrum.

  19. Oxygen safety

    Science.gov (United States)

    COPD - oxygen safety; Chronic obstructive pulmonary disease - oxygen safety; Chronic obstructive airways disease - oxygen safety; Emphysema - oxygen safety; Heart failure - oxygen-safety; Palliative care - oxygen safety; Hospice - oxygen safety

  20. Haptic characterization of human skin in vivo in response to shower gels using a magnetic levitation device.

    Science.gov (United States)

    Yardley, R; Fan, A; Masters, J; Mascaro, S

    2016-02-01

    Skin products such as shower gels have a direct impact on skin health and wellness. Although qualitative haptic characterization through explicit, verbal measures in consumer studies are often sufficient for general comparison on consumer perceived skin feel, a quantitative approach is desired to characterize minute changes in skin condition in response to various skin products. Prior research has sought to characterize the haptic properties of human skin in vitro and in vivo, but very few studies have compared the haptic effects of commercial skin products having relatively similar formulations. In addition, related studies have typically utilized simple, low-precision devices and fixtures. The purpose of this study was to use a precision magnetic levitation haptic device to characterize the frictional properties of human skin in vivo before, during, and after treatment with commercially available shower gels, to capture the entire cycle of consumer experience on skin feel. A hybrid force-position control algorithm was used to control a precision magnetic levitation haptic device with silicone tactor to stroke the human skin (on the volar forearm) in vivo. Position and force data were collected from 32 human subjects using eight different commercially available shower gels, while stroking the skin before, during, and after treatment. The data were analyzed to produce coefficients of friction and viscous damping constant, which were used as metrics for comparing the effects of each shower gel type. Other factors investigated include skin test location, order, and subject age and gender. Results showed significant differences between the effects of eight various shower gels, especially after accounting for variance between subjects. Most notably, Shower Gel four with high level of petrolatum, along with Shower Gels five and six with low levels of castoryl maleate (a skin lipid analog), as well as Shower Gel two with high levels of vegetable oils yielded higher skin

  1. Study of the shower maximum depth by the method of detection of the EAS Cerenkov light pulse shape

    Science.gov (United States)

    Aliev, N.; Alimov, T.; Kakhkharov, M.; Khakimov, N.; Makhmudov, B. M.; Rakhimova, N.; Tashpulatov, R.; Khristiansen, G. B.; Prosin, V. V.; Zhukov, V. Y.

    1985-01-01

    The results of processing the data on the shape of the EAS Cerenkov light pulses recorded by the extensive air showers (EAS) array are presented. The pulse FWHM is used to find the mean depth of EAS maximum.

  2. Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, J.; /Buenos Aires, CONICET; Abreu, P.; /Lisbon, IST; Aglietta, M.; /Turin U. /INFN, Turin; Ahn, E.J.; /Fermilab; Allard, D.; /APC, Paris; Allekotte, I.; /Centro Atomico Bariloche /Buenos Aires, CONICET; Allen, J.; /New York U.; Alvarez-Muniz, J.; /Santiago de Compostela U.; Ambrosio, M.; /Naples U.; Anchordoqui, L.; /Wisconsin U., Milwaukee; Andringa, S.; /Lisbon, IST /Boskovic Inst., Zagreb

    2010-02-01

    We describe the measurement of the depth of maximum, X{sub max}, of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10{sup 18} eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106{sub -21}{sup +35}) g/cm{sup 2}/decade below 10{sup 18.24 {+-} 0.05}eV, and (24 {+-} 3) g/cm{sup 2}/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm{sup 2}. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.

  3. Measurement of the depth of maximum of extensive air showers above 10{18} eV.

    Science.gov (United States)

    Abraham, J; Abreu, P; Aglietta, M; Ahn, E J; Allard, D; Allekotte, I; Allen, J; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anticić, T; Anzalone, A; Aramo, C; Arganda, E; Arisaka, K; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avila, G; Bäcker, T; Badagnani, D; Balzer, M; Barber, K B; Barbosa, A F; Barroso, S L C; Baughman, B; Bauleo, P; Beatty, J J; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; Benzvi, S; Berat, C; Bergmann, T; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Bohácová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Busca, N G; Caballero-Mora, K S; Caramete, L; Caruso, R; Castellina, A; Catalano, O; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Clay, R W; Colombo, E; Coluccia, M R; Conceição, R; Contreras, F; Cook, H; Cooper, M J; Coppens, J; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; de Jong, S J; De La Vega, G; de Mello Junior, W J M; de Mello Neto, J R T; De Mitri, I; de Souza, V; de Vries, K D; Decerprit, G; Del Peral, L; Deligny, O; Della Selva, A; Delle Fratte, C; Dembinski, H; Di Giulio, C; Diaz, J C; Díaz Castro, M L; Diep, P N; Dobrigkeit, C; D'Olivo, J C; Dong, P N; Dorofeev, A; Dos Anjos, J C; Dova, M T; D'Urso, D; Dutan, I; Duvernois, M A; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Etchegoyen, A; Facal San Luis, P; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferrero, A; Fick, B; Filevich, A; Filipcic, A; Fleck, I; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fröhlich, U; Fulgione, W; Gamarra, R F; Gambetta, S; García, B; García Gámez, D; Garcia-Pinto, D; Garrido, X; Gelmini, G; Gemmeke, H; Ghia, P L; Giaccari, U; Giller, M; Glass, H; Goggin, L M; Gold, M S; Golup, G; Gomez Albarracin, F; Gómez Berisso, M; Gonçalves, P; Gonzalez, D; Gonzalez, J G; Góra, D; Gorgi, A; Gouffon, P; Gozzini, S R; Grashorn, E; Grebe, S; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Hague, J D; Halenka, V; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hojvat, C; Holmes, V C; Homola, P; Hörandel, J R; Horneffer, A; Hrabovský, M; Huege, T; Hussain, M; Iarlori, M; Insolia, A; Ionita, F; Italiano, A; Jiraskova, S; Kadija, K; Kaducak, M; Kampert, K H; Karova, T; Kasper, P; Kégl, B; Keilhauer, B; Keivani, A; Kelley, J; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D-H; Krieger, A; Krömer, O; Kruppke-Hansen, D; Kuehn, F; Kuempel, D; Kulbartz, K; Kunka, N; Kusenko, A; La Rosa, G; Lachaud, C; Lago, B L; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; Lee, J; Leigui de Oliveira, M A; Lemiere, A; Letessier-Selvon, A; Lhenry-Yvon, I; López, R; Lopez Agüera, A; Louedec, K; Lozano Bahilo, J; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Maris, I C; Marquez Falcon, H R; Marsella, G; Martello, D; Martínez Bravo, O; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; McEwen, M; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Meurer, C; Micanović, S; Micheletti, M I; Miller, W; Miramonti, L; Mollerach, S; Monasor, M; Monnier Ragaigne, D; Montanet, F; Morales, B; Morello, C; Moreno, E; Moreno, J C; Morris, C; Mostafá, M; Mueller, S; Muller, M A; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nhung, P T; Nierstenhoefer, N; Nitz, D; Nosek, D; Nozka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Pacheco, N; Pakk Selmi-Dei, D; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parizot, E; Parlati, S; Parra, A; Parrisius, J; Parsons, R D; Pastor, S; Paul, T; Pavlidou, V; Payet, K; Pech, M; Pekala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Piegaia, R; Pierog, T; Pimenta, M; Pirronello, V; Platino, M; Ponce, V H; Pontz, M; Privitera, P; Prouza, M; Quel, E J; Rautenberg, J; Ravel, O; Ravignani, D; Redondo, A; Revenu, B; Rezende, F A S; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rivière, C; Rizi, V; Robledo, C; Rodriguez, G; Rodriguez Martino, J; Rodriguez Rojo, J; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Schmidt, F; Schmidt, T; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schroeder, F; Schulte, S; Schüssler, F; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Siffert, B B; Sigl, G; Smiałkowski, A; Smída, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Stasielak, J; Stephan, M; Strazzeri, E; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Susa, T; Sutherland, M S; Swain, J; Szadkowski, Z; Tamashiro, A; Tamburro, A; Tapia, A; Tarutina, T; Taşcău, O; Tcaciuc, R; Tcherniakhovski, D; Tegolo, D; Thao, N T; Thomas, D; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Todero Peixoto, C J; Tomé, B; Tonachini, A; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Valdés Galicia, J F; Valiño, I; Valore, L; van den Berg, A M; Vázquez, J R; Vázquez, R A; Veberic, D; Venters, T; Verzi, V; Videla, M; Villaseñor, L; Vorobiov, S; Voyvodic, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Warner, D; Watson, A A; Westerhoff, S; Whelan, B J; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Williams, C; Winchen, T; Winnick, M G; Wundheiler, B; Yamamoto, T; Younk, P; Yuan, G; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Ziolkowski, M

    2010-03-05

    We describe the measurement of the depth of maximum, X{max}, of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10;{18} eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106{-21}{+35}) g/cm{2}/decade below 10{18.24+/-0.05} eV, and (24+/-3) g/cm{2}/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm{2}. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.

  4. Reduction in 24-Hour Plasma Testosterone Levels in Subjects Who Showered 15 or 30 Minutes After Application of Testosterone Gel

    NARCIS (Netherlands)

    de Ronde, W.; Vogel, S.; Bui, H.N.; Heijboer, A.C.

    2011-01-01

    Study Objective. To investigate whether showering, to prevent the involuntary transfer of testosterone to others through skin contact, either 15 or 30 minutes after application of testosterone gel would significantly affect plasma testosterone levels. Design. Prospective 3-way crossover trial.

  5. Numerical study of the electron and muon lateral distribution in atmospheric showers of high energy cosmic rays

    Directory of Open Access Journals (Sweden)

    Georgios Atreidis

    2017-01-01

    Full Text Available The lateral distribution of an atmospheric shower depends on the characteristics of the high energy interactions and the type of the primary particle. The influence of the primary particle in the secondary development of the shower into the atmosphere, is studied by analyzing the lateral distribution of electron and muon showers having as primary particle, proton, photon or iron nucleus. This study of the lateral distribution can provide useful conclusions for the mass and energy of the primary particle. This paper compares the data that we get from simulations with CORSIKA program with experimental data and the theoretical NKG function expressing lateral electron and muon distribution. Then we modify the original NKG function to fit better to the simulation data and propose a method for determining the mass of the original particle started the atmospheric shower.

  6. Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter

    CERN Document Server

    Eigen, G.; Watson, N.K.; Marshall, J.S.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Hostachy, J.Y.; Morin, L.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Neubüser, C.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H.L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schröder, S.; Briggl, K.; Eckert, P.; Munwes, Y.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Doren, B.van; Wilson, G.W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Wing, M.; Bonnevaux, A.; Combaret, C.; Caponetto, L.; Grenier, G.; Han, R.; Ianigro, J.C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Steen, A.; Antequera, J.Berenguer; Alamillo, E.Calvo; Fouz, M.C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Bobchenko, B.; Markin, O.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Besson, D.; Buzhan, P.; Chadeeva, M.; Danilov, M.; Drutskoy, A.; Ilyin, A.; Mironov, D.; Mizuk, R.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; der Kolk, N.van; Simon, F.; Szalay, M.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J.C.; Cizel, J.B.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Magniette, F.; de Freitas, P.Mora; Musat, G.; Pavy, S.; Rubio-Roy, M.; Ruan, M.; Videau, H.; Callier, S.; Dulucq, F.; Martin-Chassard, G.; Raux, L.; Seguin-Moreau, N.; Taille, Ch.de la; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-06-23

    The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics lists from Geant4 version 9.6. The parameters extracted from data and simulated samples are compared for the two types of hadrons. The response to pions and the ratio of the non-electromagnetic to the electromagnetic calorimeter response, h/e, are estimated using the extrapolation and decomposition of the longitudinal profiles.

  7. PENELOPE, an algorithm and computer code for Monte Carlo simulation of electron-photon showers

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, F.; Fernandez-Varea, J.M.; Baro, J.; Sempau, J.

    1996-07-01

    The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from 1 keV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm. (Author) 108 refs.

  8. Impact of the choice of physics list on GEANT4 simulations of hadronic showers in tungsten

    CERN Document Server

    Speckmayer, P

    2010-01-01

    The development of pion induced showers in a large block of matter (tungsten, lead, iron) is simulated for pions from 1 to 50GeV. Two GEANT4 physics lists (QGSP BERT and QGSP BERT HP) are compared. The deposited energy at each step of the simulation is identified as visible, invisible or escaped. It will be shown, that for tungsten in most of the hadronic showers more than 90% of the energy is deposited visibly if QGSP BERT is used. This fraction drops to only 60% for QGSP BERT HP. The latter fraction is similar to lead, even when QGSP BERT is used for the simulation. The impact of this behaviour on the energy resolution of a sampling calorimeter with scintillator as active material is shown. Although more energy is deposited visibly for QGSP BERT than for QGSP BERT HP, the reconstructed energy resolution is about 5 to 10% percent better for the latter.

  9. Radio detection of cosmic-ray air showers and high-energy neutrinos

    Science.gov (United States)

    Schröder, Frank G.

    2017-03-01

    In the last fifteen years radio detection made it back to the list of promising techniques for extensive air showers, firstly, due to the installation and successful operation of digital radio experiments and, secondly, due to the quantitative understanding of the radio emission from atmospheric particle cascades. The radio technique has an energy threshold of about 100 PeV, which coincides with the energy at which a transition from the highest-energy galactic sources to the even more energetic extragalactic cosmic rays is assumed. Thus, radio detectors are particularly useful to study the highest-energy galactic particles and ultra-high-energy extragalactic particles of all types. Recent measurements by various antenna arrays like LOPES, CODALEMA, AERA, LOFAR, Tunka-Rex, and others have shown that radio measurements can compete in precision with other established techniques, in particular for the arrival direction, the energy, and the position of the shower maximum, which is one of the best estimators for the composition of the primary cosmic rays. The scientific potential of the radio technique seems to be maximum in combination with particle detectors, because this combination of complementary detectors can significantly increase the total accuracy for air-shower measurements. This increase in accuracy is crucial for a better separation of different primary particles, like gamma-ray photons, neutrinos, or different types of nuclei, because showers initiated by these particles differ in average depth of the shower maximum and in the ratio between the amplitude of the radio signal and the number of muons. In addition to air-shower measurements, the radio technique can be used to measure particle cascades in dense media, which is a promising technique for detection of ultra-high-energy neutrinos. Several pioneering experiments like ARA, ARIANNA, and ANITA are currently searching for the radio emission by neutrino-induced particle cascades in ice. In the next years

  10. PENELOPE, and algorithm and computer code for Monte Carlo simulation of electron-photon showers

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, F.; Fernandez-Varea, J.M.; Baro, J.; Sempau, J.

    1996-10-01

    The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from similar{sub t}o 1 KeV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm.

  11. ZZ production in gluon fusion at NLO matched to parton-shower

    CERN Document Server

    Alioli, Simone

    2017-01-01

    We present a calculation of the next-to-leading order (NLO) QCD corrections to the hadroproduction process $gg\\to ZZ \\to e^+e^- \\mu^+ \\mu^-$, matched to the parton shower in the POWHEG framework. We take advantage of the POWHEG BOX tool for the implementation and rely on PYTHIA 8 for the showering and hadronization stages. We fully include $\\gamma^*/Z$ interference effects, while also covering the single-resonant region. For this phenomenological study we focus on four lepton production as a signal process, neglecting all quark mass effects as well as the Higgs-mediated contributions, which are known to be subdominant in this case. We provide predictions from our simulations for the 13 TeV LHC Run II setup, including realistic experimental cuts.

  12. Correlation of high energy muons with primary composition in extensive air shower

    Science.gov (United States)

    Chou, C.; Higashi, S.; Hiraoka, N.; Ozaki, S.; Sato, T.; Suwada, T.; Takahasi, T.; Umeda, H.

    1985-01-01

    An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed.

  13. Muon density spectra as a probe of the muon component predicted by air shower simulations

    Energy Technology Data Exchange (ETDEWEB)

    Haungs, A. E-mail: andreas.haungs@ik.fzk.de; Antoni, T.; Apel, W.D.; Badea, F.; Bekk, K.; Bercuci, A.; Bluemer, H.; Bozdog, H.; Brancus, I.M.; Buettner, C.; Chilingarian, A.; Daumiller, K.; Doll, P.; Engler, J.; Fessler, F.; Gils, H.J.; Glasstetter, R.; Haeusler, R.; Heck, D.; Hoerandel, J.R.; Iwan, A.; Kampert, K.-H.; Klages, H.O.; Maier, G.; Mathes, H.J.; Mayer, H.J.; Milke, J.; Mueller, M.; Obenland, R.; Oehlschlaeger, J.; Ostapchenko, S.; Petcu, M.; Rebel, H.; Risse, M.; Roth, M.; Schatz, G.; Schieler, H.; Scholz, J.; Thouw, T.; Ulrich, H.; Weber, J.H.; Weindl, A.; Wentz, J.; Wochele, J.; Zabierowski, J

    2003-07-01

    The KASCADE experiment measures local muon densities of air-showers in the knee region at various core distances for two different muon energy thresholds. Muon density spectra have been reconstructed for the total EAS sample, as well as for particular subsamples with enhanced light and heavy induced EAS, classified on the basis of the shower size ratio N{sub {mu}}/N{sub e}. By comparing these spectra for different muon energy detection thresholds and core distances with detailed Monte Carlo simulations each spectrum should result in the same primary energy spectrum. This allows a comprehensive test of the simulation procedures of the muon lateral distribution and the muon energy spectrum by various Monte Carlo codes. Different combinations of high-energy and low-energy interaction models in the frame of the CORSIKA code are used for comparisons.

  14. The Time Structure of Hadronic Showers in Highly Granular Calorimeters with Tungsten and Steel Absorbers

    CERN Document Server

    Adloff, C.; Chefdeville, M.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Koletsou, I.; Prast, J.; Vouters, G.; Repond, J.; Schlereth, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Eigen, G.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Arfaoui, A.; Benoit, M.; Dannheim, D.; Elsener, K.; Folger, G.; Grefe, C.; Ivantchenko, V.; Killenberg, M.; Klempt, W.; van der Kraaij, E.; Linssen, L.; Lucaci-Timoce, A.-I.; Münnich, A.; Poss, S.; Ribon, A.; Roloff, P.; Sailer, A.; Schlatter, D.; Sicking, E.; Strube, J.; Uzhinskiy, V.; Carloganu, C.; Gay, P.; Manen, S.; Royer, L.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Feege, N.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Fagot, A.; Tytgat, M.; Zaganidis, N.; Hostachy, J.-Y.; Morin, L.; Garutti, E.; Laurien, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Ueno, H.; Yoshioka, T.; Dauncey, P.D.; Cortina Gil, E.; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Ete, R.; Grenier, G.; Han, R.; Ianigro, J-C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander Donckt, M.; Zoccarato, Y.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kozlov, V.; Soloviev, Y.; Besson, D.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Popova, E.; Tikhomirov, V.; Gabriel, M.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Conforti di Lorenzo, S.; Cornebise, P.; Fleury, J.; Frisson, T.; van der Kolk, N.; Richard, F.; Pöschl, R.; Rouene, J.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Ruan, M.; Tran, T.H.; Videau, H.; Callier, S.; Dulucq, F.; Martin-Chassard, G.; de la Taille, Ch.; Raux, L.; Seguin-Moreau, N.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Ono, H.; Takeshita, T.; Uozumi, S.; Chai, J.S.; Song, H.S.; Lee, S.H.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2014-01-01

    The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.

  15. Constraints on violation of Lorentz invariance from atmospheric showers initiated by multi-TeV photons

    CERN Document Server

    Rubtsov, Grigory

    2017-05-25

    We discuss the effect of hypothetical violation of Lorentz invariance at high energies on the formation of atmospheric showers by very-high-energy gamma rays. In the scenario where Lorentz invariance violation leads to a decrease of the photon velocity with energy the formation of the showers is suppressed compared to the Lorentz invariant case. Absence of such suppression in the high-energy part of spectrum of the Crab nebula measured independently by HEGRA and H.E.S.S. collaborations is used to set lower bounds on the energy scale of Lorentz invariance violation. These bounds are competitive with the strongest existing constraints obtained from timing of variable astrophysical sources and the absorption of TeV photons on the extragalactic background light. They will be further improved by the next generation of multi-TeV gamma-ray observatories.

  16. Initial test results of an ionization chamber shower detector for a LHC luminosity monitor

    CERN Document Server

    Datte, P S; Haguenauer, Maurice; Manfredi, P F; Manghisoni, M; Millaud, J E; Placidi, Massimo; Ratti, L; Riot, V J; Schmickler, Hermann; Speziali, V; Traversi, G; Turner, W C

    2003-01-01

    A novel segmented multigap pressurized gas ionization chamber is being developed for optimization of the luminosity of the Large Hadron Collider (LHC). The ionization chambers are to be installed in the front quadrupole and 0 degrees neutral particle absorbers in the high luminosity interaction regions (IRs) and sample the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The ionization chambers are instrumented with low noise, fast pulse-shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. In this paper, we report the initial results of our second test of this instrumentation in a super proton synchrotron (SPS) external proton beam. Single 300 GeV protons are used to simulate the hadronic/electromagnetic showers produced by the forward collision products from the interaction regions of the LHC. The capability of instrumentation to measure the luminosity of individual bunches in a 40 MHz bunch train is demonstrated. (10 refs) .

  17. Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory.

    Science.gov (United States)

    Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Al Samarai, I; Albuquerque, I F M; Allekotte, I; Allen, J D; Allison, P; Almela, A; Alvarez Castillo, J; Alvarez-Muñiz, J; Ambrosio, M; Anastasi, G A; Anchordoqui, L; Andrada, B; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Badescu, A M; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Biteau, J; Blaess, S G; Blanco, A; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Botti, A M; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Briechle, F L; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Cancio, A; Canfora, F; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chirinos Diaz, J C; Chudoba, J; Clay, R W; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Coutu, S; Covault, C E; Cronin, J; Dallier, R; D'Amico, S; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; de Mello Neto, J R T; De Mitri, I; de Oliveira, J; de Souza, V; Debatin, J; Del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Díaz Castro, M L; Diogo, F; Dobrigkeit, C; D'Olivo, J C; Dorofeev, A; Dos Anjos, R C; Dova, M T; Dundovic, A; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G R; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; Fuster, A; Gallo, F; García, B; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Gómez Berisso, M; Gómez Vitale, P F; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Hasankiadeh, Q; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huege, T; Hulsman, J; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Kukec Mezek, G; Kunka, N; Kuotb Awad, A; LaHurd, D; Latronico, L; Lauscher, M; Lautridou, P; Lebrun, P; Legumina, R; Leigui de Oliveira, M A; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; López Casado, A; Lucero, A; Malacari, M; Mallamaci, M; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Martínez Bravo, O; Masías Meza, J J; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Müller, G; Muller, M A; Müller, S; Naranjo, I; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, H; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Pakk Selmi-Dei, D; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pedreira, F; Pękala, J; Pelayo, R; Peña-Rodriguez, J; Pepe, I M; Pereira, L A S; Perrone, L; Petermann, E; Peters, C; Petrera, S; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; Rodrigues de Carvalho, W; Rodriguez Rojo, J; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salazar, H; Saleh, A; Salesa Greus, F; Salina, G; Sanabria Gomez, J D; Sánchez, F; Sanchez-Lucas, P; Santos, E M; Santos, E; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Strafella, F; Stutz, A; Suarez, F; Suarez Durán, M; Sudholz, T; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Timmermans, C; Todero Peixoto, C J; Tomankova, L; Tomé, B; Tonachini, A; Torralba Elipe, G; Torres Machado, D; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Valbuena-Delgado, A; Valdés Galicia, J F; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; van den Berg, A M; van Vliet, A; Varela, E; Vargas Cárdenas, B; Varner, G; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weindl, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yelos, D; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zong, Z; Zuccarello, F

    2016-11-04

    Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (E_{CM}=110-170  TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33±0.16 (1.61±0.21) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.

  18. Successful twilight observations of eta-Aquarid shower in "Unified Churyumov Network"

    Science.gov (United States)

    Steklov, E. A.; Kruchynenko, V. G.; Steklov, A. F.; Vidmachenko, A. P.; Dashkiev, G. N.

    2017-05-01

    On March 29 2013, on the left bank of the Dnieper in Kiev, young amateur astronomers, in the evening twilight, observed almost simultaneous invasion of three large fragments of meteoroid. Then four images were obtained. It was proposed to create a "Club of Fireball tracks observers". As a result, in Kiev region a network of photo hunters on twilight and daytime tracks of dangerous invasions into the sky above us - was formed. This "Unified Churyumov Network" has been in operation for four years. From April 19 to May 28, we are actively observing a meteor shower of eta-Aquarids. The particles of this meteor shower are fragments of nucleus of the famous Halley comet. In May 10 at the same time four observers photographed very interesting trail of invasion from four points of Kiev. In the last few years, the authors have registered several hundred small and dozens of larger invasions in the sky over Kiev and Kiev region.

  19. Study of TeV Neutrinos with Upward Showering Muons in Super-Kamiokande

    CERN Document Server

    Desai, S

    2007-01-01

    A subset of neutrino-induced upward through-going muons in the Super-Kamiokande detector consists of high energy muons which lose energy through radiative processes such as bremsstrahlung, e^{+} e^{-} pair production and photonuclear interactions. These ``upward showering muons'' comprise an event sample whose mean parent neutrino energy is approximately 1 TeV. We show that the zenith angle distribution of upward showering muons is consistent with negligible distortion due to neutrino oscillations, as expected of such a high-energy neutrino sample. We present astronomical searches using these high energy events, such as those from WIMP annihilations in the Sun, Earth and Galactic Center, some suspected point sources, as well as searches for diffuse flux from the interstellar medium.

  20. Calculation of the TeV prompt muon component in very high energy cosmic ray showers

    Energy Technology Data Exchange (ETDEWEB)

    Battistoni, G. [INFN, Milan (Italy); Bloise, C.; Forti, C. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Greco, M. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)]|[Rome Univ. III (Italy). Dip. di Fisica; Ranft, J. [LAPP, Annecy-le-Vieux (France); Tanzini, A. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica

    1995-07-01

    HEMAS-DPM is a Monte Carlo for the simulation of very high energy cosmic ray showers, which includes the DPMJET-II code based on the two component Dual Parton Model. DPMJET-II provides also charm production in agreement with data and, for p exceeding 5 GeV/c, with perturbative QCD results in hadron-nucleus and nucleus-nucleus interactions. In this respect, a new scheme has been considered for the inclusive production of D mesons at large p in hadronic collisions in the frame work of perturbative fragmentation functions, allowing an analysis at the NLO (next to leading order) level which goes beyond the fixed O({alpha}{sub s}{sup 3}) perturbative theory of open charm production. HEMAS-DPM has been applied to the calculation of the prompt muon component for E{sub {mu}}{>=}1 TeV in air showers considering the two extreme cases of primary protons and Fe nuclei.

  1. Preliminary Screening a Potential AChE Inhibitor in Thai Golden Shower (Leguminosae mimosoideae Extracts

    Directory of Open Access Journals (Sweden)

    Jakkaphun Nanuam

    2013-07-01

    Full Text Available Pesticides are used to control pests of agriculture products in many countries including Thailand. Since they can exert harmful effects not only on target pests but also on other useful organisms, alternative agents are investigated. We studied the capacity of the Thai golden shower (Leguminosae mimosoideae extracts (root and pod to inhibit acetyl cholinestarese (AChE in the golden apple snail (Pomacea canaliculata as a pest representative. The results showed that the percentage of AChE inhibition increased with increasing in exposure times. The inhibition expressed the same trend in both male and female apple snails. AChE inhibition was higher in extracts from root than from pod. Chromatography-Mass Spectrometer (GC-MS chromatograms demonstrated anthraquinone, an AChE inhibitor, in extracts of golden shower. Our data indicate that a potential AChE inhibitor tends to accumulate more in the root part than in the pod.

  2. Space-Time Development of Electromagnetic and Hadronic Showers and Perspectives for Novel Calorimetric Techniques

    CERN Document Server

    Benaglia, Andrea; Lecoq, Paul; Wenzel, Hans; Para, Adam

    2016-01-01

    The performance of hadronic calorimeters will be a key parameter at the next generation of High Energy Physics accelerators. A detector combining fine granularity with excellent timing information would prove beneficial for the reconstruction of both jets and electromagnetic particles with high energy resolution. In this work, the space and time structure of high energy showers is studied by means of a Geant4-based simulation toolkit. In particular, the relevant time scales of the different physics phenomena contributing to the energy loss are investigated. A correlation between the fluctuations of the energy deposition of high energy hadrons and the time development of the showers is observed, which allows for an event-by-event correction to be computed to improve the energy resolution of the calorimeter. These studies are intended to set the basic requirements for the development of a new-concept, total absorption time-imaging calorimeter, which seems now within reach thanks to major technological advanceme...

  3. Search for large-scale coincidences in network observation of cosmic ray air showers

    CERN Document Server

    Ochi, N; Kimura, H; Konishi, T; Nakamura, T; Nakatsuka, T; Ohara, S; Ohmori, N; Okei, K; Saitoh, K; Takahashi, N; Tsuji, S; Wada, T; Yamamoto, I; Yamashita, Y; Yanagimoto, Y

    2003-01-01

    The Large Area Air Shower (LAAS) group has been performing a network observation of extensive air showers (EAS) since 1996 in Japan. Eight compact EAS arrays (ten in the near future) are operating simultaneously and independently at distant stations (up to approx 1000 km), constituting a gigantic detector system as a whole. Using five stations' datasets, large-scale coincidences of EAS have been searched for with the aim of detecting signals from extremely short bursts in the universe. By comparing arrival times and arrival directions of all registered EAS, three coincident and parallel EAS pairs were extracted out of a sea of background cosmic rays. One of them was observed almost from the direction of the Crab Nebula, a previously reported ultra-high-energy gamma-ray source. The first application reported here allows the analysis techniques to be tested and demonstrates the potential of observations with the full operation of the network detector system.

  4. Shower development of particles with momenta from 10 to 100 GeV in the CALICE Scintillator-Tungsten HCAL

    CERN Document Server

    Lucaci-Timoce, A

    2013-01-01

    We present a study of the showers initiated by high momentum (10 ≤ pbeam ≤ 100 GeV) electrons, pions and protons in the highly granular CALICE analogue scintillator-tungsten hadronic calorimeter. The data were taken at the CERN SPS in 2011. The analysis includes measurements of the calorimeter response to each particle type and studies of the longitudinal and radial shower development. The results are compared to several GEANT4 simulation models.

  5. Shower development of particles with momenta from 1 to 10 GeV in the CALICE Scintillator-Tungsten HCAL

    CERN Document Server

    LUCACI TIMOCE, A.

    2012-01-01

    We present a study of the showers initiated by low momentum (p 10 GeV) electrons, pions and protons in the highly granular CALICE scintillator-tungsten HCAL. The data were taken at the CERN PS in September-October 2010. The analysis includes energy resolution measurements for each particle type and studies of the longitudinal shower development. The results are compared with several GEANT4 models.

  6. Search for neutrino-induced particle showers with IceCube-40

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2014-01-01

    We report on the search for neutrino-induced particle-showers, so-called cascades, in the IceCube-40 detector. The data for this search was collected between April 2008 and May 2009 when the first 40 IceCube strings were deployed and operational. Three complementary searches were performed, each......-only hypothesis. Our observation of neutrino event candidates above 100 TeV complements IceCube's recently observed evidence for high-energy astrophysical neutrinos....

  7. The effect of selected supercritical CO2 plant extract addition on user properties of shower gels

    OpenAIRE

    Vogt Otmar; Sikora Elżbieta; Ogonowski Jan

    2014-01-01

    The formulations of washing cosmetics i.e. shower gels, containing extracts obtained during supercritical CO2 extraction process as active ingredient, were developed. The subject of the study was the analysis of the physicochemical and user properties of the obtained products. In the work supercritical CO2 extracts of black currant seeds, strawberry seeds, hop cones and mint leafs were used. The formulation contains a mixture of surfactants (disodium cocoamphodiacetate, disodium laureth sulfo...

  8. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2014-01-01

    Roč. 90, č. 12 (2014), "122006-1"-"122006-12" ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG13007; GA MŠk(CZ) 7AMB14AR005; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * air-shower * fluorescence telescopes Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  9. Muons in air showers at the Pierre Auger Observatory: mean number in highly inclined events

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2015-01-01

    Roč. 91, č. 3 (2015), , "032003-1"-"032003-12" ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG13007; GA MŠk(CZ) 7AMB14AR005; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * air showers * ultrahigh energies * cosmic rays * detector Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  10. Muons in air showers at the Pierre Auger Observatory: measurement of atmospheric production depth

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2014-01-01

    Roč. 90, č. 1 (2014), "012012-1"-"012012-15" ISSN 1550-7998 R&D Projects: GA ČR(CZ) GA14-17501S; GA MŠk(CZ) 7AMB14AR005; GA MŠk(CZ) LG13007 Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * detector * cosmic rays * muons * air showers Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  11. Time correlation measurements from extensive air showers detected by the EEE telescopes

    Science.gov (United States)

    Abbrescia, M.; Agocs, A.; Aiola, S.; Antolini, R.; Avanzini, C.; Baldini Ferroli, R.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Frolov, V.; Garbini, M.; Gemme, G.; Gnesi, I.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Li, S.; Librizzi, F.; Maggiora, A.; Massai, M.; Miozzi, S.; Panareo, M.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Regano, A.; Riggi, F.; Righini, G. C.; Sartorelli, G.; Scapparone, E.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Spandre, G.; Squarcia, S.; Taiuti, M.; Tosello, F.; Votano, L.; Williams, M. C. S.; Yanez, G.; Zichichi, A.; Zouyevski, R.

    2013-12-01

    Time correlated events due to cosmic muons from extensive air showers have been detected by means of telescope pairs of the EEE (Extreme Energy Events) Project array. The coincidence rate, properly normalized for detector acceptance, efficiency and altitude location, has been extracted as a function of the relative distance between the telescopes. The results have been also compared with additional measurements carried out by small scintillator detectors at various distances.

  12. Time correlation measurements from extensive air showers detected by the EEE telescopes

    CERN Document Server

    Abbrescia, M; Fabbri, F L; Gnesi, I; Bressan, E; Tosello, F; Librizzi, F; Coccia, E; Paoletti, R; Yanez, G; Li, S; Votano, L; Scribano, A; Avanzini, C; Piragino, G; Perasso, L; Regano, A; Ferroli, R Baldini; De Gruttola, D; Sartorelli, G; Siddi, E; Cifarelli, L; Di Giovanni, A; Frolov, V; Serci, S; Selvi, M; Zouyevski, R; Dreucci, M; Squarcia, S; Righini, G C; Agocs, A; Zichichi, A; La Rocca, P; Pilo, F; Miozzi, S; Massai, M; Cicalo, C; D'Incecco, M; Panareo, M; Gemme, G; Garbini, M; Aiola, S; Riggi, F; Hatzifotiadou, D; Scapparone, E; Chiavassa, A; Maggiora, A; Bencivenni, G; Gustavino, C; Spandre, G; Taiuti, M; Williams, M C S; Bossini, E; De Pasquale, S

    2013-01-01

    Time correlated events due to cosmic muons from extensive air showers have been detected by means of telescope pairs of the EEE (Extreme Energy Events) Project array. The coincidence rate, properly normalized for detector acceptance, efficiency and altitude location, has been extracted as a function of the relative distance between the telescopes. The results have been also compared with additional measurements carried out by small scintillator detectors at various distances.

  13. Longitudinal development of giant air showers and problem of estimating primary cosmic particle energy

    CERN Document Server

    Antonov, E E; Fedunin, E Y; Kirillov, A A; Roganova, T M; Fedorova, G F

    2002-01-01

    The attenuation length of the parameter rho sub 6 sub 0 sub 0 may differ as such as 40-50 % from the adopted one in experiments for the individual giant air showers. Thus the reliability of the experimental estimates of the primary-cosmic-particle energy in the region of superhigh energies may be doubtful. Cascade curves for electron and muon densities and similar cascade curves for total number of particles are built. Individual and mean cascade curves are approximated

  14. A shower before bedtime may improve the sleep onset latency of youth soccer players.

    Science.gov (United States)

    Whitworth-Turner, Craig; Di Michele, Rocco; Muir, Ian; Gregson, Warren; Drust, Barry

    2017-10-01

    During the competitive season, soccer players are likely exposed to numerous factors that may disrupt the process of sleep. The current investigation looked to evaluate a practical sleep hygiene strategy (10-min showering at ∼40°C before lights out), within a group of 11 youth soccer players in comparison to normal sleeping conditions (control). Each condition consisted of three days within a randomised crossover trial design. Sleep information was collected using a commercial wireless bedside sleep monitor. Measures of skin temperature were evaluated using iButton skin thermistors to establish both distal and proximal skin temperatures and distal to proximal gradient. The shower intervention elevated distal skin temperature by 1.1°C (95% CI: 0.1-2.1°C, p = .04) on average prior to lights out. The elevation in distal temperature was also present during the first 30-min following lights out (1.0°C, 95% CI: 0.4-1.6°C, p < .01). The distal to proximal gradient also showed a significant effect between the conditions within the first 30-min after lights out (0.7°C, 95% CI: 0.3-1.2°C, p < .01). On average the sleep latency of the youth soccer players was -7-min lower (95% CI: -13 to -2 min, p < .01) and sleep efficiency +2% higher (95% CI: 1-3%; p < .01) in the shower condition. These findings demonstrate that a warm shower performed before lights out may offer a practical strategy to promote thermoregulatory changes that may advance sleep onset latency and improve sleep efficiency in athletes.

  15. Radio Observations of the Moon During Leonid Meteor Showers in 1999 and 2001

    Science.gov (United States)

    Berezhnoy, A. A.; Hasebe, N.; Fujimura, A.; Khavroshkin, O. B.; Mizutani, H.; Osaki, H.; Volvach, A. E.; Yamashita, N.

    Results of observations of the Moon at 3.6 cm at Kashima (Japan) and at 6.2 cm and 3.56 cm at Simeiz (Ukraine) are presented. There is no evidence of the influence of the Leonid meteor shower on the lunar radio flux. The search for impact-produced radio flashes was also unsuccessful. Future study of seismic activity of the Moon by l Lunar-A and l Selene spacecrafts is discussed.

  16. NLO Corrections to Hard Process in Parton Shower MC - KrkNLO Method

    CERN Document Server

    Jadach, S; Sapeta, S; Siódmok, A; Skrzypek, M

    2015-01-01

    A new method of combining an NLO-corrected hard process with an LO parton shower Monte Carlo, nicknamed {\\sf KrkNLO}, was proposed recently. It is simpler than well-established two other methods: {\\sf MC@NLO} and {\\sf POWHEG}. In this contribution, we present some results of extensive numerical tests of the new method for single $Z$-boson production at hadron colliders and numerical comparisons with two other methods as well as with NNLO calculations.

  17. Meteor showers associated with the low-albedo Near-Earth Asteroid 2000 PG3

    Science.gov (United States)

    Babadzhanov, P. B.

    Using mid infrared and visible photometry, Fernandez et al. (2001) derived new effective radius and geometric albedo for NEO 2000 PG_3, moving on comet-like orbit, equal to 3.08 km and 0.021 accordingly. We investigated the orbital evolution of 2000 PG_3 under gravitational action of six planets (Mercury to Saturn) over one cycle of variation of perihelion argument. According to the method published (see e.g. Babadzhanov 2001), the theoretical geocentric radiants and velocities of four possible meteor showers associated with this object are determined. Using published data, the theoretically predicted showers are identified with the observed ones, namely, night-time Northern and Southern δ-Piscids, and associations 35 and 41 from the catalogue of Kashcheev et al. (1967). The character of the orbit and low albedo of 2000 PG_3, and the existence of observed meteor showers associated with 2000 PG_3 provide evidence supporting the conjecture that this object may be of cometary nature. References Babadzhanov, P.B. 2001, A&A 371, 329-335 Fernandez, Y.R., Jewitt, D.C., & Shepard, S.S. 2001, AphJ 553: L197-L200 Kashcheev, B.L., Lebedinets, V.N., & Lagutin, M.F. 1967, Meteoric Phenomena in the Earth atmosphere, Nauka. Moscow

  18. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J. J.; Matthews, A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2015-02-01

    We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019 eV shower with a zenith angle of 67°, which arrives at the surface detector array at an altitude of 1450 m above sea level, contains on average (2.68 ±0.04 ±0.48 (sys))×107 muons with energies larger than 0.3 GeV. The logarithmic gain d ln Nμ/d ln E of muons with increasing energy between 4 ×1018 eV and 5 ×1019 eV is measured to be (1.029 ±0.024 ±0.030 (sys)) .

  19. The time development of hadronic showers and the T3B experiment

    CERN Document Server

    Soldner, Christian

    The compact linear collider (CLIC) is a future linear e+e- collider operated at a center of mass energy of up to 3 TeV and with a collision rate of particle bunches of up to 2 GHz. This poses challenging requirements on the detector system. The accumulation of background events, such as gamma gamma -> hadrons resulting from Beamstrahlung, must be minimized through a precise time stamping capability in all subdetector systems. In the event reconstruction, the energy depositions within the calorimeters will be used to assign events precisely to a small set of consecutive bunch crossings. The finite time evolution of hadronic showers, on the other hand, requires an extended integration time to achieve a satisfactory energy resolution in the calorimeter. The energy resolution is also deteriorated by the leakage of shower particles. Tungsten is foreseen as dense absorber material, but the time evolution of hadron showers within such a calorimeter is not sufficiently explored yet. In the context of this thesis, the...

  20. A study of radio frequency spectrum emitted by high energy air showers with LOFAR

    Science.gov (United States)

    Rossetto, Laura; Bonardi, Antonio; Buitink, Stijn; Corstanje, Arthur; Enriquez, J. Emilio; Falcke, Heino; Hörandel, Jörg R.; Mitra, Pragati; Mulrey, Katie; Nelles, Anna; Rachen, Jörg P.; Schellart, Pim; Scholten, Olaf; Thoudam, Satyendra; Trinh, Gia; ter Veen, Sander; Winchen, Tobias

    2017-03-01

    The high number density of radio antennas at the LOFAR core in Northern Netherlands allows to detect radio signals emitted by cosmic ray induced air showers, and to characterize the geometry of the observed cascade in a detailed way. We present here a study of the radio frequency spectrum in the 30 - 80 MHz regime, and its correlation with some geometrical parameters of the extensive air shower. An important goal of this study is to find a correlation between the frequency spectrum and the primary particle type. Preliminary results on how the frequency spectrum changes as function of distance to the shower axis, and as function of primary particles mass composition are shown. The final aim of this study is to find a method to infer information of primary cosmic rays in an independent way from the well-established fluorescence and surface detector techniques, in view of affirming the radio detection technique as reliable method for the study of high energy cosmic rays.

  1. LOPES-3D: An antenna array for full signal detection of air-shower radio emission

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.D. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik (Germany); Arteaga, J.C. [Karlsruhe Institute of Technology (KIT), Institut fuer Experimentelle Kernphysik (Germany); Baehren, L. [Radboud University Nijmegen, Department of Astrophysics (Netherlands); Bekk, K. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie Bonn (Germany); Bluemer, J. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik (Germany); Karlsruhe Institute of Technology (KIT), Institut fuer Experimentelle Kernphysik (Germany); Bozdog, H. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Buchholz, P. [Universitaet Siegen, Fachbereich Physik (Germany); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); INAF Torino, Instituto di Fisica dello Spazio Interplanetario (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Daumiller, K. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik (Germany); Souza, V. de [Karlsruhe Institute of Technology (KIT), Institut fuer Experimentelle Kernphysik (Germany); and others

    2012-12-22

    To better understand the radio signal emitted by extensive air-showers and to further develop the radio detection technique of high-energy cosmic rays, the LOPES experiment was reconfigured to LOPES-3D. LOPES-3D is able to measure all three vectorial components of the electric field of radio emission from cosmic ray air showers. The additional measurement of the vertical component ought to increase the reconstruction accuracy of primary cosmic ray parameters like direction and energy, provides an improved sensitivity to inclined showers, and will help to validate simulation of the emission mechanisms in the atmosphere. LOPES-3D will evaluate the feasibility of vectorial measurements for large scale applications. In order to measure all three electric field components directly, a tailor-made antenna type (tripoles) was deployed. The change of the antenna type necessitated new pre-amplifiers and an overall recalibration. The reconfiguration and the recalibration procedure are presented and the operationality of LOPES-3D is demonstrated.

  2. Development, construction, and content validation of a questionnaire to test mobile shower commode usability.

    Science.gov (United States)

    Friesen, Emma L; Theodoros, Deborah G; Russell, Trevor G

    2015-01-01

    Usability is an emerging domain of outcomes measurement in assistive technology provision. Currently, no questionnaires exist to test the usability of mobile shower commodes (MSCs) used by adults with spinal cord injury (SCI). To describe the development, construction, and initial content validation of an electronic questionnaire to test mobile shower commode usability for this population. The questionnaire was constructed using a mixed-methods approach in 5 phases: determining user preferences for the questionnaire's format, developing an item bank of usability indicators from the literature and judgement of experts, constructing a preliminary questionnaire, assessing content validity with a panel of experts, and constructing the final questionnaire. The electronic Mobile Shower Commode Assessment Tool Version 1.0 (eMAST 1.0) questionnaire tests MSC features and performance during activities identified using a mixed-methods approach and in consultation with users. It confirms that usability is complex and multidimensional. The final questionnaire contains 25 questions in 3 sections. The eMAST 1.0 demonstrates excellent content validity as determined by a small sample of expert clinicians. The eMAST 1.0 tests usability of MSCs from the perspective of adults with SCI and may be used to solicit feedback during MSC design, assessment, prescription, and ongoing use. Further studies assessing the eMAST's psychometric properties, including studies with users of MSCs, are needed.

  3. Development of the mesospheric Na layer at 69° N during the Geminids meteor shower 2010

    Directory of Open Access Journals (Sweden)

    T. Dunker

    2013-01-01

    Full Text Available The ECOMA sounding rocket campaign in 2010 was performed to investigate the charge state and number density of meteoric smoke particles during the Geminids meteor shower in December 2010. The ALOMAR Na lidar contributed to the campaign with measurements of sodium number density, temperature and line-of-sight wind between 80 and 110 km altitude over Andøya in northern Norway. This paper investigates a possible connection between the Geminids meteor shower and the mesospheric sodium layer. We compare with data from a meteor radar and from a rocket-borne in situ particle instrument on three days. Our main result is that the sodium column density is smaller during the Geminids meteor shower than the winter average at the same latitude. Moreover, during two of the three years considered, the sodium column density decreased steadily during these three weeks of the year. Both the observed decrease of Na column density by 30% and of meteoric smoke particle column density correlate well with a corresponding decrease of sporadic meteor echoes. We found no correlation between Geminids meteor flux rates and sodium column density, nor between sporadic meteors and Na column density (R = 0.25. In general, we found the Na column density to be at very low values for winter, between 1.8 and 2.6 × 1013 m−2. We detected two meteor trails containing sodium, on 13 December 2010 at 87.1 km and on 19 December 2010 at 84 km. From these meteor trails, we estimate a global meteoric Na flux of 121 kg d−1 and a global total meteoric influx of 20.2 t d−1.

  4. Development of the mesospheric Na layer at 69° N during the Geminids meteor shower 2010

    Directory of Open Access Journals (Sweden)

    T. Dunker

    2013-01-01

    Full Text Available The ECOMA sounding rocket campaign in 2010 was performed to investigate the charge state and number density of meteoric smoke particles during the Geminids meteor shower in December 2010. The ALOMAR Na lidar contributed to the campaign with measurements of sodium number density, temperature and line-of-sight wind between 80 and 110 km altitude over Andøya in northern Norway. This paper investigates a possible connection between the Geminids meteor shower and the mesospheric sodium layer. We compare with data from a meteor radar and from a rocket-borne in situ particle instrument on three days. Our main result is that the sodium column density is smaller during the Geminids meteor shower than the winter average at the same latitude. Moreover, during two of the three years considered, the sodium column density decreased steadily during these three weeks of the year. Both the observed decrease of Na column density by 30% and of meteoric smoke particle column density correlate well with a corresponding decrease of sporadic meteor echoes. We found no correlation between Geminids meteor flux rates and sodium column density, nor between sporadic meteors and Na column density (R = 0.25. In general, we found the Na column density to be at very low values for winter, between 1.8 and 2.6 × 1013 m−2. We detected two meteor trails containing sodium, on 13 December 2010 at 87.1 km and on 19 December 2010 at 84 km. From these meteor trails, we estimate a global meteoric Na flux of 121 kg d−1 and a global total meteoric influx of 20.2 t d−1.

  5. Matching next-to-leading order predictions to parton showers in supersymmetric QCD

    Energy Technology Data Exchange (ETDEWEB)

    Degrande, Céline [Institute for Particle Physics Phenomenology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Fuks, Benjamin, E-mail: fuks@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7589, LPTHE, F-75005 Paris (France); CNRS, UMR 7589, LPTHE, F-75005 Paris (France); Hirschi, Valentin [SLAC, National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025-7090 (United States); Proudom, Josselin [Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble Cedex (France); Shao, Hua-Sheng [CERN, PH-TH, CH-1211 Geneva 23 (Switzerland)

    2016-04-10

    We present a fully automated framework based on the FEYNRULES and MADGRAPH5-aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.

  6. Matching next-to-leading order predictions to parton showers in supersymmetric QCD

    Directory of Open Access Journals (Sweden)

    Céline Degrande

    2016-04-01

    Full Text Available We present a fully automated framework based on the FeynRules and MadGraph5_aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.

  7. Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Pedro; et al.

    2013-02-01

    To interpret the mean depth of cosmic ray air shower maximum and its dispersion, we parametrize those two observables as functions of the first two moments of the ln A distribution. We examine the goodness of this simple method through simulations of test mass distributions. The application of the parameterization to Pierre Auger Observatory data allows one to study the energy dependence of the mean ln A and of its variance under the assumption of selected hadronic interaction models. We discuss possible implications of these dependences in term of interaction models and astrophysical cosmic ray sources.

  8. New Fast Shower Max Detector Based on MCP as an Active Element

    OpenAIRE

    Ronzhin, A; Los, S; Ramberg, E.; Spiropulu, M.; Apresyan, A.; Xie, S; Kim, H.; Zatserklyaniy, A.

    2015-01-01

    One possibility to make a fast and radiation resistant shower maximum (SM) detector is to use a secondary emitter as an active element. We present below test beam results, obtained with different types of photo detectors based on micro channel plates (MCP) as secondary emitter. The SM time resolution – we obtained for this new type of detector is at the level of 20-30 ps. We estimate that a significant contribution to the detector response originates from secondary emission of the MCP.

  9. Matching next-to-leading order predictions to parton showers in supersymmetric QCD

    CERN Document Server

    Degrande, Celine; Fuks, Benjamin; Hirschi, Valentin; Proudom, Josselin; Shao, Hua-Sheng

    2016-01-01

    We present a fully automated framework based on the FeynRules and MadGraph5 aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.

  10. Machine-induced showers entering the ATLAS and CMS detectors in the LHC

    CERN Document Server

    Bruce, R; Boccone, V; Burkhardt, H; Cerutti, F; Ferrari, A; Huhtinen, M; Kozanecki, W; Levinsen, Y; Mereghetti, A; Rossi, A; Mokhov, N V; Weiler, T

    2011-01-01

    One source of experimental background in the LHC is showers induced by particles hitting the upstream collimators or particles that have been scattered on the residual gas. We estimate the flux and distribution of particles entering the ATLAS and CMS detectors through FLUKA simulations starting either in the tertiary collimators or with inelastic beam-gas interactions. Comparisons to MARS15 results are also presented. Our results can be used as a source term for further simulations of the machine-induced background in the experimental detectors.

  11. New simpler method of matching NLO corrections with parton shower Monte Carlo

    CERN Document Server

    Jadach, Stanislaw; Sapeta, Sebastian; Siodmok, Andrzej Konrad; Skrzypek, Maciej

    2016-01-01

    Next steps in development of the KrkNLO method of implementing NLO QCD corrections to hard processes in parton shower Monte Carlo programs are presented. This new method is a simpler alternative to other well-known approaches, such as MC@NLO and POWHEG. The KrkNLO method owns its simplicity to the use of parton distribution functions (PDFs) in a new, so-called Monte Carlo (MC), factorization scheme which was recently fully defined for the first time. Preliminary numerical results for the Higgs-boson production process are also presented.

  12. Camelopardalids in 2019 (meteor shower of the comet 209P/LINEAR)

    Science.gov (United States)

    Maslov, Mikhail

    2017-03-01

    After an outburst of Camelopardalids shower in 2014, the next interesting year is 2019, when two small outbursts are possible. The first one with ZHR up to 10 is expected from the 1939 trail of the comet 209P/LINEAR at 7h44m UT on 24 May, the second with ZHR up to 5 could be produced by the 1994-2009 trails around 11h UT on 24 May. Details are here: http://feraj.ru/Radiants/Predictions/209p-ids2019eng.html

  13. arXiv NLO predictions for Higgs boson pair production with full top quark mass dependence matched to parton showers

    CERN Document Server

    Heinrich, G.; Kerner, M.; Luisoni, G.; Vryonidou, E.

    2017-08-21

    We present the first combination of NLO QCD matrix elements for di-Higgs production, retaining the full top quark mass dependence, with a parton shower. Results are provided within both the POWHEG-BOX and MadGraph5_aMC@NLO Monte Carlo frameworks. We assess in detail the theoretical uncertainties and provide differential results. We find that, as expected, the shower effects are relatively large for observables like the transverse momentum of the Higgs boson pair, which are sensitive to extra radiation. However, these shower effects are still much smaller than the differences between the Born-improved HEFT approximation and the full NLO calculation in the tails of the distributions.

  14. Measurements of energy flow distributions of 10 GeV/c hadronic showers in iron and in aluminium

    CERN Document Server

    Friend, B; Kiss, D; Niebergall, F; Schmidt-Parzefall, W; Wilmsen, W; Winter, Klaus

    1976-01-01

    The lateral distribution of the energy of hadron showers initiated by 10 GeV/c pi /sup -/ and protons has been measured at various depths in Fe and Al absorbers. It is found to scale with the density of the absorber. The energy flow is characterized by a cone of +or-65 mrad opening angle. The direction of the energy flow can be determined by two points, the vertex of the primary interaction and the centre of gravity of the energy deposited by the shower. The fluctuation of the centre of gravity has been measured using a fine-grained calorimeter and is found to give the shower direction with an r.m.s. spread of 60 mrad. (9 refs).

  15. NLO predictions for Higgs boson pair production with full top quark mass dependence matched to parton showers

    Science.gov (United States)

    Heinrich, G.; Jones, S. P.; Kerner, M.; Luisoni, G.; Vryonidou, E.

    2017-08-01

    We present the first combination of NLO QCD matrix elements for di-Higgs production, retaining the full top quark mass dependence, with a parton shower. Results are provided within both the POWHEG-BOX and MadGraph5_aMC@NLO Monte Carlo frameworks. We assess in detail the theoretical uncertainties and provide differential results. We find that, as expected, the shower effects are relatively large for observables like the transverse momentum of the Higgs boson pair, which are sensitive to extra radiation. However, these shower effects are still much smaller than the differences between the Born-improved HEFT approximation and the full NLO calculation in the tails of the distributions.

  16. Detection of airborne Legionella while showering using liquid impingement and fluorescent in situ hybridization (FISH).

    Science.gov (United States)

    Deloge-Abarkan, Magali; Ha, Thi-Lan; Robine, Enric; Zmirou-Navier, Denis; Mathieu, Laurence

    2007-01-01

    Aerosols of water contaminated with Legionella bacteria constitute the only mode of exposure for humans. However, the prevention strategy against this pathogenic bacteria risk is managed through the survey of water contamination. No relationship linked the Legionella bacteria water concentration and their airborne abundance. Therefore, new approaches in the field of the metrological aspects of Legionella bioaerosols are required. This study was aimed at testing the main principles for bioaerosol collection (solid impaction, liquid impingement and filtration) and the in situ hybridization (FISH) method, both in laboratory and field assays, with the intention of applying such methodologies for airborne Legionella bacteria detection while showering. An aerosolization chamber was developed to generate controlled and reproducible L. pneumophila aerosols. This tool allowed the identification of the liquid impingement method as the most appropriate one for collecting airborne Legionella bacteria. The culturable fraction of airborne L. pneumophila recovered with the liquid impingement principle was 4 and 700 times higher compared to the impaction and filtration techniques, respectively. Moreover, the concentrations of airborne L. pneumophila in the impinger fluid were on average 7.0 x 10(5) FISH-cells m(-3) air with the fluorescent in situ hybridization (FISH) method versus 9.0 x 10(4) CFU m(-3) air with the culture method. These results, recorded under well-controlled conditions, were confirmed during the field experiments performed on aerosols generated by hot water showers in health institutions. This new approach may provide a more accurate characterization of aerobiocontamination by Legionella bacteria.

  17. NOx removal characteristics of corona radical shower with ammonia and methylamine radical injections

    Energy Technology Data Exchange (ETDEWEB)

    Urashima, K.; Ara, M.; Chang, J.S. [McMaster Univ., Hamilton, ON (Canada). Dept. of Engineering Physics; Uchida, Y. [Aichi Inst. of Technology, (Japan). Dept. of Engineering

    2010-07-01

    Air pollutants such as nitrogen oxides (NOx) and sulfur oxides (SOx) are the major cause of acid rain. There are different types of NOx and SOx conversion techniques such as wet scrubber, selective catalytic reactor, sorbent injection, and low NOx burner. Non-thermal plasma techniques have also been utilized in commercial plants, but the energy efficiency of the non-thermal plasma reactors have not yet been optimized. The direct plasma treatments of flue gases including, the electron beam, barrier discharge and pulsed corona reactors, may lose input energy to activate unwanted components of flue gases such as carbon dioxide (CO{sub 2}) and nitrogen (N{sub 2}). The corona discharge ammonia radical shower system has demonstrated significant NOx removal with higher energy efficiency for large bench scale and pilot plant tests for combustion exhausts. An experiment has also demonstrated that methane can replace ammonia as an injection gas with less NOx removal efficiency. This paper presented an experimental investigation that compared methylamine radical injection with traditional ammonia and methane radical injections. The paper discussed the bench scale test facilities and corona radical shower plasma reactor. It was concluded that the processes to form ammonium nitrate could be observed from trace white solid particles deposited on the reactor wall as observed by scanning electron microscopy pictures. 10 refs., 5 figs., 2 appendices.

  18. Gamma-ray astronomy by the air shower technique: performance and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Cronin, J.W. [Chicago, Univ. of Chicago (United States). Dept. of Phisycs and Enrico Fermi Inst.

    1996-11-01

    The techniques for {gamma}-ray astronomy at energies {>=}10 TeV using air shower detectors are discussed. The results, based on a number of large arrays, are negative, with no point sources being identified. While the contributions to {gamma}-ray astronomy so far have been only upper limits, these arrays in the future will make significant progress in the understanding of cosmic rays in the energy range 10{sup 13} eV to 10{sup 16} eV. Also, contributions to solar physics are being made by observations of shape and time dependence of the shadow of the Sun as observed in cosmic rays. For the advancement of {gamma}-ray astronomy a greater sensitivity is required in the energy region of 10 TeV. A number of promising techniques to accomplish a greater sensitivity are discussed. They include the enlargement of the Tibet array at 4300 meters altitude, the array of open photomultipliers at La Palma (AIROBICC), which views the shower by the Cherenkov photons produced in the atmosphere, and the instrumentation of a pond at Los Alamos with photomultipliers (Milagro).

  19. Reinterpreting the development of extensive air showers initiated by nuclei and photons

    Energy Technology Data Exchange (ETDEWEB)

    Domenico, Manlio De [Laboratorio sui Sistemi Complessi, Scuola Superiore di Catania, Via Valdisavoia 9, 95123 Catania (Italy); Settimo, Mariangela [Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, Paris (France); Riggi, Simone [INAF, Osservatorio Astrofisico di Catania (Italy); Bertin, Eric, E-mail: manlio.dedomenico@ct.infn.it, E-mail: mariangela.settimo@gmail.com, E-mail: simone.riggi@ct.infn.it, E-mail: eric.bertin@ens-lyon.fr [Université de Lyon, Laboratoire de Physique, École Normale Supérieure de Lyon, CNRS, 46 allée d' Italie, F-69007 Lyon (France)

    2013-07-01

    Ultra-high energy cosmic rays (UHECRs) interacting with the atmosphere generate extensive air showers (EAS) of secondary particles. The depth corresponding to the maximum development of the shower, X{sub max}, is a well-known observable for determining the nature of the primary cosmic ray which initiated the cascade process. In this paper, we present an empirical model to describe the distribution of X{sub max} for EAS initiated by nuclei, in the energy range from 10{sup 17} eV up to 10{sup 21} eV, and by photons, in the energy range from 10{sup 17} eV up to 10{sup 19.6} eV. Our model adopts the generalized Gumbel distribution motivated by the relationship between the generalized Gumbel statistics and the distribution of the sum of non-identically distributed variables in dissipative stochastic systems. We provide an analytical expression for describing the X{sub max} distribution for photons and for nuclei, and for their first two statistical moments, namely (X{sub max}) and σ{sup 2}(X{sub max}). The impact of the hadronic interaction model is investigated in detail, even in the case of the most up-to-date models accounting for LHC observations. We also briefly discuss the differences with a more classical approach and an application to the experimental data based on information theory.

  20. The effect of selected supercritical CO2 plant extract addition on user properties of shower gels

    Directory of Open Access Journals (Sweden)

    Vogt Otmar

    2014-12-01

    Full Text Available The formulations of washing cosmetics i.e. shower gels, containing extracts obtained during supercritical CO2 extraction process as active ingredient, were developed. The subject of the study was the analysis of the physicochemical and user properties of the obtained products. In the work supercritical CO2 extracts of black currant seeds, strawberry seeds, hop cones and mint leafs were used. The formulation contains a mixture of surfactants (disodium cocoamphodiacetate, disodium laureth sulfosuccinate, cocoamide DEA, cocoamidepropyl betaine, Sodium Laureth Sulfate. Various thickener agents were applied to the obtained desired rheological properties of the cosmetics. Among others, sorbitol acetal derivatives, methylhydroxypropylcellulose and C10-30 alkyl acrylate crosspolymer were used. For stable products, the effect of extracts addition (black currants seeds, strawberries seeds, mint and hops, obtained from supercritical CO2 extraction process on the cosmetics properties, such as pH, viscosity, detergency and foam ability, were determined. The obtained results showed that the extracts could be used as components of shower gels.

  1. NLO QCD+EW predictions for HV and HV +jet production including parton-shower effects

    Science.gov (United States)

    Granata, F.; Lindert, J. M.; Oleari, C.; Pozzorini, S.

    2017-09-01

    We present the first NLO QCD+EW predictions for Higgs boson production in association with a ℓν ℓ or ℓ + ℓ - pair plus zero or one jets at the LHC. Fixed-order NLO QCD+EW calculations are combined with a QCD+QED parton shower using the recently developed resonance-aware method in the POWHEG framework. Moreover, applying the improved MiNLO technique to Hℓν ℓ +jet and Hℓ + ℓ - +jet production at NLO QCD+EW, we obtain predictions that are NLO accurate for observables with both zero or one resolved jet. This approach permits also to capture higher-order effects associated with the interplay of EW corrections and QCD radiation. The behavior of EW corrections is studied for various kinematic distributions, relevant for experimental analyses of Higgsstrahlung processes at the 13 TeV LHC. Exact NLO EW corrections are complemented with approximate analytic formulae that account for the leading and next-to-leading Sudakov logarithms in the high-energy regime. In the tails of transverse-momentum distributions, relevant for analyses in the boosted Higgs regime, the Sudakov approximation works well, and NLO EW effects can largely exceed the ten percent level. Our predictions are based on the POWHEG BOX RES+OpenLoops framework in combination with the Pythia 8.1 parton shower.

  2. Characterization of the bacterial community in shower water before and after chlorination

    KAUST Repository

    Peters, Marjolein C. F. M.

    2017-12-22

    Bathers release bacteria in swimming pool water, but little is known about the fate of these bacteria and potential risks they might cause. Therefore, shower water was characterized and subjected to chlorination to identify the more chlorine-resistant bacteria that might survive in a chlorinated swimming pool and therefore could form a potential health risk. The total community before and after chlorination (1 mg Cl2 L−1 for 30 s) was characterized. More than 99% of the bacteria in the shower water were Gram-negative. The dominant bacterial families with a relative abundance of ≥10% of the total (non-chlorinated and chlorinated) communities were Flavobacteriaceae (24–21%), Xanthomonadaceae (23–24%), Moraxellaceae (12–11%) and Pseudomonadaceae (10–22%). The relative abundance of Pseudomonadaceae increased after chlorination and increased even more with longer contact times at 1 mg Cl2L−1. Therefore, Pseudomonadaceae were suggested to be relatively more chlorine resistant than the other identified bacteria. To determine which bacteria could survive chlorination causing a potential health risk, the relative abundance of the intact cell community was characterized before and after chlorination. The dominant bacterial families in the intact community (non-chlorinated and chlorinated) were Xanthomonadaceae (21–17%) and Moraxellaceae (48–57%). Moraxellaceae were therefore more chlorine resistant than the other identified intact bacteria present.

  3. Physics and Beam Monitoring with Forward Shower Counters (FSC) in CMS

    CERN Document Server

    Bell, Alan James; Hall-Wilton, Richard; Veres, Gabor Istvan; Khoze, Valery; Albrow, Michael; Mokhov, Nikolai; Rakhno, Igor; Brucken, Erik; Lamsa, Jerry; Lauhakangas, Rauno; Orava, Risto; Debbins, Paul; Norbeck, Edwin; Onel, Yasar; Schmidt, Ianos; Grachov, Oleg; Murray, Michael; Gronberg, Jeffrey; Hollar, Jonathan; Snow, Gregory R; Sobol, Andrei; Samoylenko, Vladimir; Penzo, Aldo

    2010-01-01

    We propose to add forward shower counters, FSC, to CMS along the beam pipes, with 59 m $\\lesssim z \\lesssim$ 140 m. These will detect showers from very forward particles with $7 \\lesssim \\eta \\lesssim 11$ interacting in the beam pipe and surrounding material. They increase the total rapidity coverage of CMS to nearly $\\Delta\\Omega = 4\\pi$, thus detecting most of the inelastic cross section $\\sigma_{inel}$, including low mass diffraction. They will help increase our understanding of all high cross section processes, which is important for understanding the ``underlying event'' backgrounds to most physics searches. To the extent that the luminosity is well known, they may (together with all of CMS) provide the best measurement of $\\sigma_{inel}$ at the LHC. They are most useful when the luminosity per bunch crossing is still low enough to provide single (no pile-up) collisions. They will allow measurements of single diffraction: $p+p\\rightarrow p \\oplus X$ (where $\\oplus$ means a rapidity gap) for lower mass...

  4. The longitudinal development of showers induced by high-energy hadrons in an iron-sampling calorimeter

    CERN Document Server

    Milke, J; Apel, W D; Badea, F; Bekk, K; Bercuci, A; Bertaina, M; Blümer, H; Bozdog, H; Büttner, C; Chiavassa, A; Daumiller, K; Di Pierro, F; Dolla, P; Engel, R; Engler, J; Fessler, F; Ghia, P L; Gils, H J; Glasstetter, R; Haungs, A; Heck, D; Hörandel, J R; Kampert, K H; Klages, H O; Kolotaev, Yu; Maier, G; Mathes, H J; Mayer, H J; Mitrica, B; Morello, C; Müller, M; Navarra, G; Obenland, R; Oehlschläger, J; Ostapchenko, S; Over, S; Petcu, M; Plewnia, S; Rebel, H; Risse, A; Roth, M; Schieler, H; Scholz, J; Stümpert, M; Thouw, T; Toma, G; Trinchero, G C; Ulrich, H; Valchierotti, S; Van Buren, J; Walkowiak, W; Weindl, A; Wochele, J; Zabierowski, J; Zagromski, S; Zimmermann, D

    2005-01-01

    Occasionally cosmic-ray induced air showers result in single, unaccompanied hadrons at ground level. Such events are investigated with the 300 m2 hadron calorimeter of the KASCADE-Grande experiment. It is an iron sampling calorimeter with a depth of 11 hadronic interaction lengths read out by warm-liquid ionization chambers. The longitudinal shower development is discussed as function of energy up to 30 TeV and the results are compared with simulations using the GEANT/FLUKA code. In addition, results of test measurements at a secondary particle beam of the Super Proton Synchrotron at CERN up to 350 GeV are discussed.

  5. An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope

    NARCIS (Netherlands)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coelho, C.O.A.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhofer, A.; Felis, I.; Folger, F.; Fusco, L.A.; Galata, S.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefevre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martinez-Mora, J.A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Nezri, E.; Organokov, M.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sanchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D.F.E.; Sanguineti, M.; Sapienza, P.; Schussler, F.; Sieger, C.; Spurio, M.; Stolarczyk, T.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J.D.; Zuniga, J.

    2017-01-01

    A novel algorithm to reconstruct neutrino-induced particle showers within the ANTARES neutrino telescope is presented. The method achieves a median angular resolution of 6∘ for shower energies below 100 TeV. Applying this algorithm to 6 years of data taken with the ANTARES detector, 8 events with

  6. Research-Based Development of a Lesson Plan on Shower Gels and Musk Fragrances Following a Socio-Critical and Problem-Oriented Approach to Chemistry Teaching

    Science.gov (United States)

    Marks, Ralf; Eilks, Ingo

    2010-01-01

    A case is described of the development of a lesson plan for 10th grade (age range 15-16) chemistry classes on the chemistry of shower gels. The lesson plan follows a socio-critical and problem-oriented approach to chemistry teaching. This means that, aside from learning about the basic chemistry of the components making up modern shower gels in…

  7. Measurement of the cosmic-ray energy spectrum above 1016 eV with the LOFAR Radboud Air Shower Array

    NARCIS (Netherlands)

    Thoudam, S.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; ter Veen, S.; Trinh, T.N.G.; van Kessel, L.

    2016-01-01

    The energy reconstruction of extensive air showers measured with the LOFAR Radboud Air Shower Array (LORA) is presented in detail. LORA is a particle detector array located in the center of the LOFAR radio telescope in the Netherlands. The aim of this work is to provide an accurate and independent

  8. An investigation of mass composition of ultra-high energy cosmic rays with energies above 1019 eV via the study of extensive air showers

    Directory of Open Access Journals (Sweden)

    Doostmohammadi S.

    2012-01-01

    Full Text Available The electron and muon components of extensive air shower (EAS with energies above 1019 eV are analyzed via various giant EAS arrays. A varying property of showers is observed for two energy ranges; higher and lower than (3 − 4 x 1019 eV. The age parameter, zenith angle, shower size dependence on muon size and shower size dependence on primary energy show an increment of mass composition (MC above (3−4x 1019eV. Comparison of the observed EAS results with the simulations of Capdevielle et al. (2000 and Shinozaki et al. (2005 gives at most 20% photon fraction for primary energies above 1019 eV. The arrival directions of showers above 4x1019 eV indicate an increasing concentration towards the super galactic plane.

  9. Early versus delayed post-operative bathing or showering to prevent wound complications.

    Science.gov (United States)

    Toon, Clare D; Sinha, Sidhartha; Davidson, Brian R; Gurusamy, Kurinchi Selvan

    2015-07-23

    Many people undergo surgical operations during their life-time, which result in surgical wounds. After an operation the incision is closed using stiches, staples, steri-strips or an adhesive glue. Usually, towards the end of the surgical procedure and before the patient leaves the operating theatre, the surgeon covers the closed surgical wound using gauze and adhesive tape or an adhesive tape containing a pad (a wound dressing) that covers the surgical wound. There is currently no guidance about when the wound can be made wet by post-operative bathing or showering. Early bathing may encourage early mobilisation of the patient, which is good after most types of operation. Avoiding post-operative bathing or showering for two to three days may result in accumulation of sweat and dirt on the body. Conversely, early washing of the surgical wound may have an adverse effect on healing, for example by irritating or macerating the wound, and disturbing the healing environment. To compare the benefits (such as potential improvements to quality of life) and harms (potentially increased wound-related morbidity) of early post-operative bathing or showering (i.e. within 48 hours after surgery, the period during which epithelialisation of the wound occurs) compared with delayed post-operative bathing or showering (i.e. no bathing or showering for over 48 hours after surgery) in patients with closed surgical wounds. We searched The Cochrane Wounds Group Specialised Register (30th June 2015); The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library); The Database of Abstracts of Reviews of Effects (DARE) (The Cochrane Library); Ovid MEDLINE; Ovid MEDLINE (In-Process & Other Non-Indexed Citations); Ovid EMBASE; EBSCO CINAHL; the metaRegister of Controlled Trials (mRCT) and the International Clinical Trials Registry Platform (ICTRP). We considered all randomised trials conducted in patients who had undergone any surgical procedure and had surgical closure of

  10. A Complex Exposure History of the Gold Basin L4-Chondrite Shower from Cosmogenic Radionuclides and Noble Gases

    Science.gov (United States)

    Welten, K. C.; Nishiizumi, K.; Caffee, M. W.; Masarik, J.; Wieler, R.

    2001-01-01

    Cosmogenic radionuclides and noble gases in samples of the Gold Basin L-chondrite shower indicate a complex exposure history, with a first stage exposure on the parent body, followed by a second stage of approx. 19 Myr in a meteoroid 3-4 m in radius. Additional information is contained in the original extended abstract.

  11. Evaluating the Efficiency of Air Shower in Removing Lead from Army Combat Uniform Swatches Loaded with Gunshot Residue

    Science.gov (United States)

    2016-03-25

    range users and employees reported in firing range studies were metallic taste, intermittent headache and abdominal pain, and leg numbness (19; 31; 48... pediatrics 43:845-9 26. Hirasawa K, Sudo E, Isobe Y. Particle removing efficiency of air showers on clean room garment. Proc. 7th International

  12. Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory

    NARCIS (Netherlands)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anticic, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Diaz, J. Chirinos; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Rio, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; San Luis, P. Facal; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Froehlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hoerandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D-H; Kotera, K.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; LaHurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschlaeger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Cabo, I.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Ruehle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovanek, P.; Schroeder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Tascau, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Charrier, D.; Denis, L.; Hilgers, G.; Mohrmann, L.; Philipps, B.; Seeger, O.; Martin, L.

    2012-01-01

    The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA

  13. A nation that loves to shower. Report on a representative opinion poll; Dusch- und Badeverhalten. Bericht zu einer Repraesentativumfrage. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Swiss love to shower. And when it comes to saving on water, that's not something that preoccupies the young. These are two findings of an 'opinion poll' on the subject of showering and bathing habits in Switzerland. The poll required interviewing 600 people of both sexes, aged between 10 and 70. Some 75% of the respondents were from German-speaking Switzerland and the remainder from the French-speaking region. The results indicate that on average Swiss men and women shower for 8.7 minutes, six times a week. For those who take baths - and 26% of the Swiss almost never do - the frequency is twice a week and the average duration is 25.1 minutes. It is safe to conclude for most Swiss a shower is always preferable to a bath. The poll found some interesting differences. For example, the average German-speaking Swiss, housewife and old-age pensioner likes a relatively quick shower but does so less frequently than the average French speaker, young man and single person. The longest and most frequent showers are taken by persons aged between 15 and 30. Retired people in particular seem to have an instinctive reflex to save energy. This is not at all the case for most young people. They do not think of the act of washing as a functional necessity to be completed efficiently, but rather in the context of enjoyment, comfort and relaxation, requiring a powerful spray, water that is nice and hot, and above all some good music. If that means wasting water, too bad. Young people take the fewest baths of any age group, but when they do take one, especially youngsters, the bath must be full to the brim. This does not mean that young people are averse to saving energy. Indeed they tend to give more thought to the question of wasting hot water (65%) than the average in all groups (56%). The most commonly cited source of general information on this subject is the media, except for young people, who tend to get their information through discussions with their peers

  14. Leonid Shower Probe of Aerothermochemistry in Meteoric Plasmas and Implication for the Origin of Life

    Science.gov (United States)

    Jenniskens, Peter S. I.; Packan, D.; Laux, C.; Wilson, Mike; Boyd, I. D.; Kruger, C. H.; Popova, O.; Fonda, M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The rarefied and high Mach number (up to 270) of the flow field of a typical meteoroid as it enters the Earth's atmosphere implies conditions of ablation and atmospheric chemistry that have proven to be as difficult to grasp as the proverbial shooting star. An airborne campaign was organized to study these processes during an intense Leonid shower. A probe of molecular band emission now demonstrates that the flash of light from a common meteor originates in the wake of the object rather than in the meteor head. A new theoretical approach using the direct simulation Monte Carlo technique demonstrates that the ablation process is critical in heating the air in that wake. Air molecules impinge on a dense cloud of ablated material in front of the meteoroid head into an extended wake that has the observed excitation temperatures. These processes determine what extraterrestrial materials may have been delivered to Earth at the time of the origin of life.

  15. Luminous Efficiency of Hypervelocity Meteoroid Impacts on the Moon Derived from the 2015 Geminid Meteor Shower

    Science.gov (United States)

    Moser, D. E.; Suggs, R. M.; Ehlert, S. R.

    2017-01-01

    Since early 2006 the Meteoroid Environment Office (MEO) at NASA's Marshall Space Flight Center has routinely monitored the Moon for impact flashes produced by meteoroids striking the lunar surface. Activity from the Geminid meteor shower (EM) was observed in 2015, resulting in the detection of 45 lunar impact flashes (roughly 10% of the NASA dataset), in about 10 hours of observation with peak R magnitudes ranging from 6.5 to 11. A subset of 30 of these flashes, observed 14-15 December, was analyzed in order to determine the luminous efficiency, the ratio of emitted luminous energy to the meteoroid's kinetic energy. The resulting luminous efficiency, found to range between n = 1.8 x 10(exp -4) and 3.3 x 10(exp -3), depending on the assumed mass index and flux, was than applied to calculate the masses of Geminid meteoroids striking the Moon in 2015.

  16. First upper limits on the radar cross section of cosmic-ray induced extensive air showers

    Science.gov (United States)

    Abbasi, R. U.; Abe, M.; Abou Bakr Othman, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Besson, D.; Blake, S. A.; Byrne, M.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Farhang-Boroujeny, B.; Fujii, T.; Fukushima, M.; Gillman, W. H.; Goto, T.; Hanlon, W.; Hanson, J. C.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jayanthmurthy, C.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kunwar, S.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Prohira, S.; Pshirkov, M. S.; Rezazadeh-Reyhani, A.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Schurig, D.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takai, H.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Venkatesh, S.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-01-01

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment colocated with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, Utah, U.S.A. The TARA detector combines a 40 kW, 54.1 MHz VHF transmitter and high-gain transmitting antenna which broadcasts the radar carrier over the SD array and within the FD field of view, towards a 250 MS/s DAQ receiver. TARA has been collecting data since 2013 with the primary goal of observing the radar signatures of extensive air showers (EAS). Simulations indicate that echoes are expected to be short in duration (∼ 10 μs) and exhibit rapidly changing frequency, with rates on the order 1 MHz/μs. The EAS radar cross-section (RCS) is currently unknown although it is the subject of over 70 years of speculation. A novel signal search technique is described in which the expected radar echo of a particular air shower is used as a matched filter template and compared to waveforms obtained by triggering the radar DAQ using the Telescope Array fluorescence detector. No evidence for the scattering of radio frequency radiation by EAS is obtained to date. We report the first quantitative RCS upper limits using EAS that triggered the Telescope Array Fluorescence Detector. The transmitter is under the direct control of experimenters, and in a radio-quiet area isolated from other radio frequency (RF) sources. The power and radiation pattern are known at all times. Forward power up to 40 kW and gain exceeding 20 dB maximize energy density in the radar field. Continuous wave (CW) transmission gives 100% duty cycle, as opposed to pulsed radar. TARA utilizes a high sample rate DAQ (250 MS/s). TARA is colocated with a large state-of-the-art conventional CR observatory, allowing the radar data stream to be sampled at the arrival times of known cosmic ray events. Each of these attributes of the TARA detector has been discussed in detail in the literature [8]. A map

  17. Muon production in extensive air showers and fixed target accelerator data

    CERN Document Server

    Meurer, C

    2007-01-01

    One of the most promising approaches to determine the energy spectrum and composition of cosmic rays with energies above 1 PeV is the measurement of the number of electrons and muons produced in extensive air showers (EAS). Therefore EAS simulations using electromagnetic and hadronic interaction models are necessary. These simulations show uncertainties which are mainly related to hadronic interaction models. The aim of this thesis is to improve the reliability of EAS simulations by investigating the role of hadronic interactions for muon production. The importance of low energy interactions is studied and it is argued that current fixed target experiments can help to reduce uncertainties in the low energy range. This is demonstrated by analyzing data of the CERN fixed target experiment HARP on proton and pion interactions with a carbon target and by comparing the obtained production spectra with model predictions. The simulation studies of the relevant energies and phase space regions of hadronic interaction...

  18. Machine-Induced Showers Entering the Atlas and CMS Detectors in the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, R.; Assmann, R.W.; Boccone, V.; Burkhardt, H.; Cerutti, F.; Ferrari, A.; Huhtinen, M.; Kozanecki, W.; Levinsen, Y.; Mereghetti, A.; Rossi, A.; /CERN /FERMILAB /Karlsruhe U., ITP

    2011-09-12

    One source of experimental background in the LHC is showers induced by particles hitting the upstream collimators or particles that have been scattered on the residual gas. We estimate the flux and distribution of particles entering the ATLAS and CMS detectors through FLUKA simulations starting either in the tertiary collimators or with inelastic beam-gas interactions. Comparisons to MARS15 results are also presented. Our results can be used as a source term for further simulations of the machine-induced background in the experimental detectors. To ensure optimal performance of the LHC experimental detectors, it is important to understand the background, which can come fromseveral sources. In this article we discuss machine-induced background, caused either by nearby beam losses or interactions between beam particles and the residual gas inside the vacuum pipe. Beam losses outside the experimental interaction regions (IRs) are unavoidable during collider operation. The halo is continuously repopulated and has to be cleaned by the collimation system, so that the losses in the cold magnets are kept at a safe level. The collimation system is located in two dedicated insertions (IR3 and IR7) but a small leakage of secondary and tertiary halo is expected to escape. Some particles make it to the experimental IRs, where they are intercepted by tertiary collimators (TCTs) that are installed in order to protect the inner triplet magnets. Some parts of the induced high-energy shower can escape and propagate into the detectors. Another source of background is beam-gas interactions. Beam protons can scatter elastically or inelastically on residual gas molecules. If an inelastic interaction occurs close to the detector, it causes a shower that could reach the detector. Elastic interactions can scatter protons directly onto the TCTs without passing IR7, which has to be treated separately from the beam-halo losses discussed above. Machine-induced background can also originate

  19. Future Extensive Air Shower arrays: From Gamma-Ray Astronomy to Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Sciascio Giuseppe Di

    2016-01-01

    Full Text Available Despite large progresses in building new detectors and in the analysis techniques, the key questions concerning the origin, acceleration and propagation of Galactic Cosmic Rays are still open. A number of new EAS arrays is in progress. The most ambitious and sensitive project between them is LHAASO, a new generation multi-component experiment to be installed at very high altitude in China (Daocheng, Sichuan province, 4400 m a.s.l.. The experiment will face the open problems through a combined study of photon- and charged particle-induced extensive air showers in the wide energy range 1011 – 1018 eV. In this paper the status of the experiment will be summarized, the science program presented and the outlook discussed in comparison with leading new projects.

  20. TIERRAS: A package to simulate high energy cosmic ray showers underground, underwater and under-ice

    Science.gov (United States)

    Tueros, Matías; Sciutto, Sergio

    2010-02-01

    In this paper we present TIERRAS, a Monte Carlo simulation program based on the well-known AIRES air shower simulations system that enables the propagation of particle cascades underground, providing a tool to study particles arriving underground from a primary cosmic ray on the atmosphere or to initiate cascades directly underground and propagate them, exiting into the atmosphere if necessary. We show several cross-checks of its results against CORSIKA, FLUKA, GEANT and ZHS simulations and we make some considerations regarding its possible use and limitations. The first results of full underground shower simulations are presented, as an example of the package capabilities. Program summaryProgram title: TIERRAS for AIRES Catalogue identifier: AEFO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 36 489 No. of bytes in distributed program, including test data, etc.: 3 261 669 Distribution format: tar.gz Programming language: Fortran 77 and C Computer: PC, Alpha, IBM, HP, Silicon Graphics and Sun workstations Operating system: Linux, DEC Unix, AIX, SunOS, Unix System V RAM: 22 Mb bytes Classification: 1.1 External routines: TIERRAS requires AIRES 2.8.4 to be installed on the system. AIRES 2.8.4 can be downloaded from http://www.fisica.unlp.edu.ar/auger/aires/eg_AiresDownload.html. Nature of problem: Simulation of high and ultra high energy underground particle showers. Solution method: Modification of the AIRES 2.8.4 code to accommodate underground conditions. Restrictions: In AIRES some processes that are not statistically significant on the atmosphere are not simulated. In particular, it does not include muon photonuclear processes. This imposes a limitation on the application of this package to a depth of

  1. Evidence for a Standardized Preadmission Showering Regimen to Achieve Maximal Antiseptic Skin Surface Concentrations of Chlorhexidine Gluconate, 4%, in Surgical Patients.

    Science.gov (United States)

    Edmiston, Charles E; Lee, Cheong J; Krepel, Candace J; Spencer, Maureen; Leaper, David; Brown, Kellie R; Lewis, Brian D; Rossi, Peter J; Malinowski, Michael J; Seabrook, Gary R

    2015-11-01

    To reduce the amount of skin surface bacteria for patients undergoing elective surgery, selective health care facilities have instituted a preadmission antiseptic skin cleansing protocol using chlorhexidine gluconate. A Cochrane Collaborative review suggests that existing data do not justify preoperative skin cleansing as a strategy to reduce surgical site infection. To develop and evaluate the efficacy of a standardized preadmission showering protocol that optimizes skin surface concentrations of chlorhexidine gluconate and to compare the findings with the design and methods of published studies on preoperative skin preparation. A randomized prospective analysis in 120 healthy volunteers was conducted at an academic tertiary care medical center from June 1, 2014, to September, 30, 2014. Data analysis was performed from October 13, 2014, to October 27, 2014. A standardized process of dose, duration, and timing was used to maximize antiseptic skin surface concentrations of chlorhexidine gluconate applied during preoperative showering. The volunteers were randomized to 2 chlorhexidine gluconate, 4%, showering groups (2 vs 3 showers), containing 60 participants each, and 3 subgroups (no pause, 1-minute pause, or 2-minute pause before rinsing), containing 20 participants each. Volunteers used 118 mL of chlorhexidine gluconate, 4%, for each shower. Skin surface concentrations of chlorhexidine gluconate were analyzed using colorimetric assay at 5 separate anatomic sites. Individual groups were analyzed using paired t test and analysis of variance. Preadmission showers using chlorhexidine gluconate, 4%. The primary outcome was to develop a standardized approach for administering the preadmission shower with chlorhexidine gluconate, 4%, resulting in maximal, persistent skin antisepsis by delineating a precise dose (volume) of chlorhexidine gluconate, 4%; duration (number of showers); and timing (pause) before rinsing. The mean (SD) composite chlorhexidine gluconate

  2. Drug Safety

    Science.gov (United States)

    ... over-the-counter drug. The FDA evaluates the safety of a drug by looking at Side effects ... clinical trials The FDA also monitors a drug's safety after approval. For you, drug safety means buying ...

  3. Effect of transportation and pre‐slaughter water shower spray with resting on AMP‐activated protein kinase, glycolysis and meat quality of broilers during summer

    National Research Council Canada - National Science Library

    Xing, Tong; Xu, Xinglian; Jiang, Nannan; Deng, ShaoLin

    2016-01-01

    The aim of this study was to determine the effects of pre‐slaughter transport during summer and subsequent water shower spray on stress, postmortem glycolysis, energy metabolism and adenosine monophosphate...

  4. Shower development of particles with momenta from 1 to 10 GeV in the CALICE Scintillator-Tungsten HCAL

    CERN Document Server

    Adloff, C.; Chefdeville, M.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Koletsou, I.; Prast, J.; Vouters, G.; Repond, J.; Schlereth, J.; Smith, J; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Eigen, G.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dannheim, D.; Dotti, A; Elsener, K.; Folger, G.; Grefe, C.; Ivantchenko, V.; Killenberg, M.; Klempt, W.; van der Kraaij, E.; Lam, C B; Linssen, L.; Lucaci-Timoce, A.-I.; Münnich, A.; Poss, S.; Ribon, A.; Sailer, A.; Schlatter, D.; Strube, J.; Uzhinskiy, V.; Carloganu, C.; Gay, P.; Manen, S.; Royer, L.; Tytgat, M; Zaganidis, N; Blazey, G C; Dyshkant, A; Lima, J G R; Zutshi, V; Hostachy, J-Y; Morin, L; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Feege, N.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Garutti, E.; Laurien, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Sudo, Y.; Yoshioka, T.; Dauncey, P.D.; Wing, M; Salvatore, F; Cortina Gil, E.; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Grenier, G.; Han, R.; Ianigro, J-C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander Donckt, M.; Zoccarato, Y.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P; Soloviev, Y.; Besson, D.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Callier, S; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Pöschl, R.; Raux, L.; Rouene, J.; Seguin-Moreau, N; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T.H.; Videau, H.; Bulanek, B; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Takeshita, T.; Uozumi, S.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2014-01-01

    Lepton colliders are considered as options to complement and to extend the physics programme at the Large Hadron Collider. The Compact Linear Collider (CLIC) is an $e^+e^-$ collider under development aiming at centre-of-mass energies of up to 3 TeV. For experiments at CLIC, a hadron sampling calorimeter with tungsten absorber is proposed. Such a calorimeter provides sufficient depth to contain high-energy showers, while allowing a compact size for the surrounding solenoid. A fine-grained calorimeter prototype with tungsten absorber plates and scintillator tiles read out by silicon photomultipliers was built and exposed to particle beams at CERN. Results obtained with electrons, pions and protons of momenta up to 10 GeV are presented in terms of energy resolution and shower shape studies. The results are compared with several GEANT4 simulation models in order to assess the reliability of the Monte Carlo predictions relevant for a future experiment at CLIC.

  5. The readout of the LHC beam luminosity monitor Accurate shower energy measurements at a 40 MHz repetition rate

    CERN Document Server

    Manfredi, P F; Speziali, V; Traversi, G; Manghisoni, M; Re, V; Denes, P; Placidi, Massimo; Ratti, A; Turner, W C; Datte, P S; Millaud, J E

    2004-01-01

    The LHC beam luminosity monitor is based on the following principle. The neutrals that originate in LHC at every PP interaction develop showers of minimum ionizing particles in the absorbers placed in front of the separation dipoles. The shower energy, measured by suitable detectors in the absorbers is proportional to the number of neutral particles and, therefore, to the luminosity. The principle lends itself to a luminosity measurement on a bunch-by-bunch basis. However, to make such a measurement feasible, the system must comply with extremely stringent requirements. Its speed of operation must match the 40 MHz bunch repetition rate of LHC. Besides, the detector must stand extremely high radiation doses. This paper discusses the solutions adopted to comply with these requirements.

  6. Measurements in the Forward Phase-Space with the CMS Experiment and their Impact on Physics of Extensive Air Showers

    CERN Document Server

    AUTHOR|(CDS)2083313; Quast, Günter; Ulrich, Ralf

    2015-11-18

    The astrophysical interpretation of ultra-high energy cosmic rays is based on detection of extensive air showers in indirect measurements. Hadronic interaction models that are needed for such analyses require parameters to be adjusted to collider data since soft particle production cannot be calculated from first principles. Within this work, the program CRMC was developed that unifies all air shower hadronic interaction models and supports the output formats used by collider experiments. Almost all LHC experiments have adopted the use these hadronic interaction models thanks to CRMC. The program can even be used in detector simulations to make direct comparison to reconstructed quantities from which the cosmic ray and the particle physics communities benefit immensely. Furthermore, nuclear effects were studied with the CMS experiments at the LHC. The production cross section was derived in recent proton-lead collision data at sqrt(s(NN)) = 5.02 TeV in order to study nuclear effects. The measurement constrain...

  7. Search for EAS radio-emission at the Tien-Shan shower installation at a height of 3340 m above sea level

    Science.gov (United States)

    Beisenova, A.; Boos, E.; Haungs, A.; Sadykov, T.; Salihov, N.; Shepetov, A.; Tautayev, Y.; Vildanova, L.; Zhukov, V.

    2017-06-01

    The complex EAS installation of the Tien Shan mountain cosmic ray station which is situated at a height of 3340 m above sea level includes the scintillation and Cherenkov detectors of charged shower particles, an ionization calorimeter and a set of neutron detectors for registering the hadronic component of the shower, and a number of underground detectors of the penetrative EAS component. Now it is intended to expand this installation with a promising method for detecting the radio-emission generated by the particles of the developing shower. The facility for radio-emission detection consists of a three crossed dipole antennae, one being set vertically, and another two - mutually perpendicularly in a horizontal plane, all of them being connected to a three-channel radio-frequency amplifier of German production. By the passage of an extensive air shower, which is defined by a scintillation shower detector system, the output signal of antenna amplifier is digitized by a fast multichannel DT5720 ADC of Italian production, and kept within computer memory. The further analysis of the detected signal anticipates its operation according to a special algorithm and a search for the pulse of radio-emission from the shower. A functional test of the radio-installation is made with artificial signals which imitate those of the shower, and with the use of a N1996A type wave analyzer of Agilent Technologies production. We present preliminary results on the registration of extensive air shower emission at the Tien Shan installation which were collected during test measurements held in Summer 2016.

  8. Survey costs associated with the replacement of electric showers for solar heaters; Levantamento de custos associados a substituicao de chuveiros eletricos por aquecedores solares

    Energy Technology Data Exchange (ETDEWEB)

    Belchior, Fernando Nunes [Universidade Federal de Itajuba (UFEI), MG (Brazil); Araujo, Jose Euripedes de

    2010-07-01

    This paper aims to explain the benefits of replacing electric shower for solar water heaters, and a consequent drop in peak demand for electric power generation and residential consumption in the economy. For this, will be shown the lifting of solar radiation per square meter in Brazil, studied in 250 locations, the most representative in terms of solar energy in this country. The costs presented are associated with replacement of 5 million, 10 million and 20 million electric showers. (author)

  9. Assessing human exposure and odor detection during showering with crude 4-(methylcyclohexyl)methanol (MCHM) contaminated drinking water.

    Science.gov (United States)

    Sain, Amanda E; Dietrich, Andrea M; Smiley, Elizabeth; Gallagher, Daniel L

    2015-12-15

    In 2014, crude (4-methylcyclohexyl)methanol (MCHM) spilled, contaminating the drinking water of 300,000 West Virginians and requiring "do not use" orders to protect human health. When the spill occurred, known crude MCHM physicochemical properties were insufficient to predict human inhalation and ingestion exposures. Objectives are (1) determine Henry's Law Constants (HLCs) for 4-MCHM isomers at 7, 25, 40, and 80°C using gas chromatography; (2) predict air concentrations of 4-MCHM and methyl-4-methylcyclohexanecarboxylate (MMCHC) during showering using an established shower model; (3) estimate human ingestion and inhalation exposure to 4-MCHM and MMCHC; and (4) determine if predicted air 4-MCHM exceeded odor threshold concentrations. Dimensionless HLCs of crude cis- and trans-4-MCHM were measured to be 1.42×10(-4)±6% and 3.08×10(-4)±3% at 25°C, respectively, and increase exponentially with temperature as predicted by the van't Hoff equation. Shower air concentrations for cis- and trans-4-MCHM are predicted to be 0.089 and 0.390ppm-v respectively after 10min, exceeding the US EPA's 0.01ppm-v air screening level during initial spill conditions. Human exposure doses were predicted using measured drinking water and predicted shower air concentrations and found to greatly exceed available guidance levels in the days directly following the spill. Odors would be rapidly detected by 50% of individuals at aqueous concentrations below analytical gas chromatographic detection limits. MMCHC, a minor odorous component (0.935%) of crude MCHM, is also highly volatile and therefore is predicted to contribute to inhalation exposures and odors experienced by consumers. Copyright © 2015. Published by Elsevier B.V.

  10. The Telescope Array RADAR (TARA) Project and the Search for the Radar Signature of Cosmic Ray Induced Extensive Air Showers

    Science.gov (United States)

    Prohira, Steven; TARA Collaboration; Telescope Array Collaboration

    2016-03-01

    The TARA (Telescope Array Radar) cosmic ray detector has been in operation since May 2013. It is the most ambitious effort to date to test an idea that originated in the 1940's: that ionization produced by cosmic ray extensive air showers should reflect electromagnetic radiation. The observation of this effect would open the possibility that remote-sensing radar technology could be used to detect and reconstruct extensive air showers, thus increasing the aperture available for the study of the highest-energy cosmic rays. TARA employs a bi-static radar configuration, consisting of a 25 kW, 5 MW ERP transmitter at 54.1 MHz broadcasting across the Telescope Array surface detector. 40 km distant, a set of log-periodic receiver antennas are read out by two independent data acquisition systems employing different techniques to select signals of the form expected for radar targets moving at close to the speed of light. In this talk, we describe the TARA detector and present the first quantitative limits on the radar cross-section of extensive air showers.

  11. CaloGAN: Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks

    Science.gov (United States)

    Paganini, Michela; de Oliveira, Luke; Nachman, Benjamin

    2018-01-01

    The precise modeling of subatomic particle interactions and propagation through matter is paramount for the advancement of nuclear and particle physics searches and precision measurements. The most computationally expensive step in the simulation pipeline of a typical experiment at the Large Hadron Collider (LHC) is the detailed modeling of the full complexity of physics processes that govern the motion and evolution of particle showers inside calorimeters. We introduce CaloGAN, a new fast simulation technique based on generative adversarial networks (GANs). We apply these neural networks to the modeling of electromagnetic showers in a longitudinally segmented calorimeter and achieve speedup factors comparable to or better than existing full simulation techniques on CPU (100 ×-1000 × ) and even faster on GPU (up to ˜105× ). There are still challenges for achieving precision across the entire phase space, but our solution can reproduce a variety of geometric shower shape properties of photons, positrons, and charged pions. This represents a significant stepping stone toward a full neural network-based detector simulation that could save significant computing time and enable many analyses now and in the future.

  12. Energy reconstruction of electromagnetic showers from $\\pi^0$ decays with the ICARUS T600 Liquid Argon TPC

    CERN Document Server

    Ankowski, A; Aprili, P G; Arneodo, F; Badertscher, A; Baibussinov, B; Baldo-Ceolin, M; Battistoni, G; Benetti, P; Brunetti, R; Bueno, A; Calligarich, E; Cambiaghi, M; Canci, N; Carbonara, F; Carmona, M C; Cavanna, F; Cennini, P; Centro, S; Cesana, A; Cieslik, K; Cline, D; Cocco, A G; Dabrowska, A; Dolfini, R; Farnese, C; Fava, A; Ferrari, A; Fiorillo, G; Galli, S; Gallo, V; Garcia-Gamez, D; Gibin, D; Gigli Berzolari, A; Graczyk, K; Guglielmi, A; Holeczek, J; Kielczewska, D; Kisiel, J; Kozlowski, T; Lagoda, J; Lantz, M; Lozano, J; Mannocchi, G; Markiewicz, M; Martinez de la Ossa, A; Mauri, F; Melgarejo, A J; Menegolli, A; Meng, G; Mijakowski, P; Montanari, C; Mortari, G Piano; Muraro, S; Navas, Sergio; Otwinowski, S; Palamara, O; Palczewski, T J; Periale, L; Piazzoli, A; Picchi, P; Pietropaolo, F; Polchlopek, W; Posiadala, M; Prata, M; Przewlocki, P; Rappoldi, A; Raselli, G L; Rondio, E; Rossella, M; Rubbia, A; Rubbia, C; Sala, P; Scannicchio, N; Scaramelli, A; Segreto, E; Sergiampietri, F; Sobczyk, J; Stefan, D; Stepaniak, J; Sulej, R; Szarska, M; Szeglowski, T; Szeptycka, M; Terrani, M; Varanini, F; Ventura, S; Vignoli, C; Wachala, T; Wang, H; Zalewska, A

    2010-01-01

    We discuss the ICARUS T600 detector capabilities in electromagnetic shower reconstruction through the analysis of a sample of 212 events, coming from the 2001 Pavia surface test run, of hadronic interactions leading to the production of $\\pi^{0}$ mesons. Methods of shower energy and shower direction measurements were developed and the invariant mass of the photon pairs was reconstructed. The ($\\gamma$,$\\gamma$) invariant mass was found to be consistent with the value of the $\\pi^0$ mass. The resolution of the reconstructed $\\pi^0$ mass was found to be equal to 27.3%. An improved analysis, carried out in order to clean the full event sample from the events measured in the crowded environment, mostly due to the trigger conditions, gave a $\\pi^0$ mass resolution of 16.1%, significantly better than the one evaluated for the full event sample. The trigger requirement of the coincidence of at least four photomultiplier signals favored the selection of events with a strong pile up of cosmic ray tracks and interactio...

  13. Sporadic-E associated with the Leonid meteor shower event of November 1998 over low and equatorial latitudes

    Directory of Open Access Journals (Sweden)

    H. Chandra

    2001-01-01

    Full Text Available Rapid radio soundings were made over Ahmedabad, a low latitude station during the period 16–20 November 1998 to study the sporadic-E layer associated with the Leonid shower activity using the KEL Aerospace digital ionosonde. Hourly ionograms for the period 11 November to 24 November were also examined during the years from 1994 to 1998. A distinct increase in sporadic-E layer occurrence is noticed on 17, 18 and 19 November from 1996 to 1998. The diurnal variations  of  f0Es and fbEs also show significantly enhanced values for the morning hours of 18 and 19 November 1998. The ionograms clearly show strong sporadic-E reflections at times of peak shower activity with multiple traces in the altitude range of 100–140 km in few ionograms. Sporadic-E layers with multiple structures in altitude are also seen in some of the ionograms (quarter hourly at Thumba, situated near the magnetic equator. Few of ionograms recorded at Kodaikanal, another equatorial station, also show sporadic- E reflections in spite of the transmitter power being significantly lower. These new results highlighting the effect of intense meteor showers in the equatorial and low latitude E-region are presented.Key words. Ionosphere (equatorial ionosphere – Radio science (ionospheric physics

  14. Top-Tagging with Shower Deconstruction and Search for Single Production of Vector-Like Quarks at ATLAS

    CERN Document Server

    AUTHOR|(SzGeCERN)704138

    The identification of high-$p_{\\mathrm{T}}$ top quarks is an essential ingredient of many searches for new physics. This thesis presents, for the first time, the performance of shower deconstruction, a new top-tagging algorithm, using data collected with the ATLAS detector at the LHC. The distribution of the shower deconstruction observable, the likelihood ratio $\\chi_{\\mathrm{SD}}$, is shown to be very well modelled by modern Monte Carlo generators, and is compared to several other algorithms and jet substructure observables. Shower deconstruction is shown to have the best quark- and gluon-jet background rejection over a wide range of signal efficiency. Vector-like quarks are a feature of several new physics models. As they do not gain their mass from a Yukawa coupling, they are still allowed by constraints set by Higgs production cross section measurements. These, so-called, fermionic-partners can play a role similar to that of bosonic-partners in supersymmetric models, providing a solution for the natura...

  15. Sporadic-E associated with the Leonid meteor shower event of November 1998 over low and equatorial latitudes

    Directory of Open Access Journals (Sweden)

    H. Chandra

    Full Text Available Rapid radio soundings were made over Ahmedabad, a low latitude station during the period 16–20 November 1998 to study the sporadic-E layer associated with the Leonid shower activity using the KEL Aerospace digital ionosonde. Hourly ionograms for the period 11 November to 24 November were also examined during the years from 1994 to 1998. A distinct increase in sporadic-E layer occurrence is noticed on 17, 18 and 19 November from 1996 to 1998. The diurnal variations 
    of  f0Es and fbEs also show significantly enhanced values for the morning hours of 18 and 19 November 1998. The ionograms clearly show strong sporadic-E reflections at times of peak shower activity with multiple traces in the altitude range of 100–140 km in few ionograms. Sporadic-E layers with multiple structures in altitude are also seen in some of the ionograms (quarter hourly at Thumba, situated near the magnetic equator. Few of ionograms recorded at Kodaikanal, another equatorial station, also show sporadic- E reflections in spite of the transmitter power being significantly lower. These new results highlighting the effect of intense meteor showers in the equatorial and low latitude E-region are presented.

    Key words. Ionosphere (equatorial ionosphere – Radio science (ionospheric physics

  16. An ET Origin for Stratospheric Particles Collected during the 1998 Leonids Meteor Shower

    Science.gov (United States)

    Noever, David A.; Phillips, James A.; Horack, John M.; Jerman, Gregory; Myszka, Ed

    1999-01-01

    On 17 November 1998, a helium-filled weather balloon was launched into tfle strato- sphere, equipped with a xerogel microparticle collector. The three-hour flight was designed to sample the dust environment in the stratosphere during the Leonid meteor shower, and possibly to capture Leonid meteoroids. Environmental Scanning Election Microscope analyses of the returned collectors revealed the capture of a -30-pm particle. with a smooth, multigranular shape, and partially melted, translucent rims; similar to known Antarctic micrometeorites. Energy-dispersive X-ray Mass Spectroscopy shows en- riched concentrations of the non-volatile elements, Mg, Al, and Fe. The particle possesses a high magnesium to iron ratio of 2.96, similar to that observed in 1998 Leonids meteors (Borovicka, et al. 1999) and sharply higher than the ratio expected for typical material from the earth's crust. A statistical nearest-neighbor analysis of the abundance ratios Mg/Si, Al/Si, and Fe/Si demonstrates that the particle is most similar in composition to cosmic spherules captured during airplane flights throucrh the stratosphere. The mineralogical class is consistent with a stony (S) type of silicates. olivine [(Mg, Fe)2SiO4] and pyroxene [(Mg,Fe)SiO3]-or oxides, herecynite [(Fe,Mg) Al2O4]. Attribution to the debris stream of the Leonids' parent body, comet Tempel-Tuttle, would make it the first such material from beyond the orbit of Uranus positively identified on Earth.

  17. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertania, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration*

    2014-12-01

    Using the data taken at the Pierre Auger Observatory between December 2004 and December 2012, we have examined the implications of the distributions of depths of atmospheric shower maximum (Xmax ), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the distributions with predictions from a variety of hadronic interaction models for variations in the composition of the primary cosmic rays and examining the quality of the fit. Regardless of what interaction model is assumed, we find that our data are not well described by a mix of protons and iron nuclei over most of the energy range. Acceptable fits can be obtained when intermediate masses are included, and when this is done consistent results for the proton and iron-nuclei contributions can be found using the available models. We observe a strong energy dependence of the resulting proton fractions, and find no support from any of the models for a significant contribution from iron nuclei. However, we also observe a significant disagreement between the models with respect to the relative contributions of the intermediate components.

  18. T3B - An Experiment to measure the Time Structure of Hadronic Showers

    CERN Document Server

    Simon,F; Weuste,L

    2013-01-01

    The goal of the T3B experiment is the measurement of the time structure of hadronic showers with nanosecond precision and high spatial resolution together with the CALICE hadron calorimeter prototypes, with a focus on the use of tungsten as absorber medium. The detector consists of a strip of 15 scintillator cells individually read out by silicon photomultipliers (SiPMs) and fast oscilloscopes with a PC-controlled data acquisition system. The data reconstruction uses an iterative subtraction technique which provides a determination of the arrival time of each photon on the light sensor with sub-nanosecond precision. The calibration is based on single photonequivalent dark pulses constantly recorded during data taking, automatically eliminating the temperature dependence of the SiPM gain. In addition, a statistical correction for SiPM afterpulsing is demonstrated. To provide the tools for a comparison of T3B data with GEANT4 simulations, a digitization routine, which accounts for the detector response to energ...

  19. Energy Response and Longitudinal Shower Profiles Measured in CMS HCAL and Comparison With Geant4

    CERN Document Server

    Baiatian, G; Emeliantchik, Igor; Massolov, V; Shumeiko, Nikolai; Stefanovich, R; Damgov, Jordan; Dimitrov, Lubomir; Genchev, Vladimir; Piperov, Stefan; Vankov, Ivan; Litov, Leander; Bencze, Gyorgy; Laszlo, Andras; Pal, Andras; Vesztergombi, Gyorgy; Zálán, Peter; Fenyvesi, Andras; Bawa, Harinder Singh; Beri, Suman Bala; Bhatnagar, Vipin; Kaur, Manjit; Kohli, Jatinder Mohan; Kumar, Arun; Singh, Jas Bir; Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Chendvankar, Sanjay; Dugad, Shashikant; Kalmani, Suresh Devendrappa; Katta, S; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Patil, Mandakini Ravindra; Reddy, L; Satyanarayana, B; Sharma, Seema; Sudhakar, Katta; Verma, Piyush; Hashemi, Majid; Mohammadi-Najafabadi, M; Paktinat, S; Golutvin, Igor; Kalagin, Vladimir; Kosarev, Ivan; Ladygin, Vladimir; Mescheryakov, G; Moissenz, P; Petrosian, A; Sergeyev, S; Smirnov, Vitaly; Vishnevskiy, Alexander; Volodko, Anton; Zarubin, Anatoli; Gavrilov, Vladimir; Gershtein, Yuri; Ilyina, N; Kaftanov, Vitali; Kisselevich, I; Kolossov, V; Krokhotin, Andrey; Kuleshov, Sergey; Litvintsev, Dmitri; Ulyanov, A; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Demianov, A; Gribushin, Andrey; Kodolova, Olga; Petrushanko, Sergey; Sarycheva, Ludmila; Teplov, V; Vardanyan, Irina; Yershov, A; Abramov, Victor; Goncharov, Petr; Kalinin, Alexey; Khmelnikov, Alexander; Korablev, Andrey; Korneev, Yury; Krinitsyn, Alexander; Kryshkin, V; Lukanin, Vladimir; Pikalov, Vladimir; Ryazanov, Anton; Talov, Vladimir; Turchanovich, L; Volkov, Alexey; Camporesi, Tiziano; De Visser, Theo; Vlassov, E; Aydin, Sezgin; Bakirci, Mustafa Numan; Cerci, Salim; Dumanoglu, Isa; Eskut, Eda; Kayis-Topaksu, A; Koylu, S; Kurt, Pelin; Onengüt, G; Ozkurt, Halil; Polatoz, A; Sogut, Kenan; Topakli, Huseyin; Vergili, Mehmet; Yetkin, Taylan; Cankocak, Kerem; Esendemir, Akif; Gamsizkan, Halil; Güler, M; Ozkan, Cigdem; Sekmen, Sezen; Serin-Zeyrek, M; Sever, Ramazan; Yazgan, Efe; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Dindar, Kamile; Gülmez, Erhan; Isiksal, Engin; Kaya, Mithat; Ozkorucuklu, Suat; Levchuk, Leonid; Sorokin, Pavel; Senchishin, V; Hauptman, John M; Abdullin, Salavat; Elias, John E; Elvira, D; Freeman, Jim; Green, Dan; Los, Serguei; O'Dell, Vivian; Ronzhin, Anatoly; Suzuki, Ichiro; Vidal, Richard; Whitmore, Juliana; Arcidy, M; Hazen, Eric; Heering, Arjan Hendrix; Lawlor, C; Lazic, Dragoslav; Machado, Emanuel; Rohlf, James; Varela, F; Wu, Shouxiang; Baden, Drew; Bard, Robert; Eno, Sarah Catherine; Grassi, Tullio; Jarvis, Chad; Kellogg, Richard G; Kunori, Shuichi; Mans, Jeremy; Skuja, Andris; Podrasky, V; Sanzeni, Christopher; Winn, Dave; Akgun, Ugur; Ayan, S; Duru, Firdevs; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Miller, Michael; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Schmidt, Ianos; Akchurin, Nural; Carrell, Kenneth Wayne; Gumus, Kazim; Kim, Heejong; Spezziga, Mario; Thomas, Ray; Baarmand, Marc M; Mermerkaya, Hamit; Ralich, Robert; Vodopiyanov, Igor; Kramer, Laird; Linn, Stephan; Markowitz, Pete; Cushman, Priscilla; Ma, Yousi; Sherwood, Brian; Cremaldi, Lucien Marcus; Reidy, Jim; Sanders, David A; Karmgard, Daniel John; Ruchti, Randy; Fisher, Wade Cameron; Tully, Christopher; Bodek, Arie; De Barbaro, Pawel; Budd, Howard; Chung, Yeon Sei; Haelen, T; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Barnes, Virgil E; Laasanen, Alvin T

    2007-01-01

    The response of the CMS combined electromagnetic and hadron calorimeter to beams of pions with momenta in the range 5-300 GeV/c has been measured in the H2 test beam at CERN. The raw response with the electromagnetic compartment calibrated to electrons and the hadron compartment calibrated to 300 GeV pions may be represented by sigma = (1.2) sqrt{E} oplus (0.095) E. The fraction of energy visible in the calorimeter ranges from 0.72 at 5 GeV to 0.95 at 300 GeV, indicating a substantial nonlinearity. The intrinsic electron to hadron ratios are fit as a function of energy and found to be in the range 1.3-2.7 for the electromagnetic compartment and 1.4-1.8 for the hadronic compartment. The fits are used to correct the non-linearity of the e pi response to 5% over the entire measured range resulting in a substantially improved resolution at low energy. Longitudinal shower profile have been measured in detail and compared to Geant4 models, LHEP-3.7 and QGSP-2.8. At energies below 30 GeV, the data, LHEP and QGSP are...

  20. On noise treatment in radio measurements of cosmic ray air showers

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F.G., E-mail: frank.schroeder@kit.edu [Karlsruhe Institute of Technology (KIT) - Campus North, Institut fuer Kernphysik (Germany); Apel, W.D. [Karlsruhe Institute of Technology (KIT) - Campus North, Institut fuer Kernphysik (Germany); Arteaga, J.C. [Karlsruhe Institute of Technology (KIT) - Campus South, Institut fuer Experimentelle Kernphysik (Germany); Asch, T. [Karlsruhe Institute of Technology (KIT) - Campus North, Institut fuer Prozessdatenverarbeitung und Elektronik (Germany); Baehren, L. [Radboud University Nijmegen, Department of Astrophysics (Netherlands); Bekk, K. [Karlsruhe Institute of Technology (KIT) - Campus North, Institut fuer Kernphysik (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell& #x27; Universita, Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie, Bonn (Germany); Bluemer, J. [Karlsruhe Institute of Technology (KIT) - Campus North, Institut fuer Kernphysik (Germany); Karlsruhe Institute of Technology (KIT) - Campus South, Institut fuer Experimentelle Kernphysik (Germany); Bozdog, H. [Karlsruhe Institute of Technology (KIT) - Campus North, Institut fuer Kernphysik (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Buchholz, P. [Universitaet Siegen, Fachbereich Physik (Germany); Buitink, S. [Radboud University Nijmegen, Department of Astrophysics (Netherlands); Cantoni, E. [Dipartimento di Fisica Generale dell& #x27; Universita, Torino (Italy); INAF Torino, Istituto di Fisica dello Spazio Interplanetario (Italy); and others

    2012-01-11

    Precise measurements of the radio emission by cosmic ray air showers require an adequate treatment of noise. Unlike to usual experiments in particle physics, where noise always adds to the signal, radio noise can in principle decrease or increase the signal if it interferes by chance destructively or constructively. Consequently, noise cannot simply be subtracted from the signal, and its influence on amplitude and time measurement of radio pulses must be studied with care. First, noise has to be determined consistently with the definition of the radio signal which typically is the maximum field strength of the radio pulse. Second, the average impact of noise on radio pulse measurements at individual antennas is studied for LOPES. It is shown that a correct treatment of noise is especially important at low signal-to-noise ratios: noise can be the dominant source of uncertainty for pulse height and time measurements, and it can systematically flatten the slope of lateral distributions. The presented method can also be transferred to other experiments in radio and acoustic detection of cosmic rays and neutrinos.

  1. Detection and imaging of atmospheric radio flashes from cosmic ray air showers.

    Science.gov (United States)

    Falcke, H; Apel, W D; Badea, A F; Bähren, L; Bekk, K; Bercuci, A; Bertaina, M; Biermann, P L; Blümer, J; Bozdog, H; Brancus, I M; Buitink, S; Brüggemann, M; Buchholz, P; Butcher, H; Chiavassa, A; Daumiller, K; de Bruyn, A G; de Vos, C M; Di Pierro, F; Doll, P; Engel, R; Gemmeke, H; Ghia, P L; Glasstetter, R; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huege, T; Kampert, K-H; Kant, G W; Klein, U; Kolotaev, Y; Koopman, Y; Krömer, O; Kuijpers, J; Lafebre, S; Maier, G; Mathes, H J; Mayer, H J; Milke, J; Mitrica, B; Morello, C; Navarra, G; Nehls, S; Nigl, A; Obenland, R; Oehlschläger, J; Ostapchenko, S; Over, S; Pepping, H J; Petcu, M; Petrovic, J; Plewnia, S; Rebel, H; Risse, A; Roth, M; Schieler, H; Schoonderbeek, G; Sima, O; Stümpert, M; Toma, G; Trinchero, G C; Ulrich, H; Valchierotti, S; van Buren, J; van Cappellen, W; Walkowiak, W; Weindl, A; Wijnholds, S; Wochele, J; Zabierowski, J; Zensus, J A; Zimmermann, D

    2005-05-19

    The nature of ultrahigh-energy cosmic rays (UHECRs) at energies >10(20) eV remains a mystery. They are likely to be of extragalactic origin, but should be absorbed within approximately 50 Mpc through interactions with the cosmic microwave background. As there are no sufficiently powerful accelerators within this distance from the Galaxy, explanations for UHECRs range from unusual astrophysical sources to exotic string physics. Also unclear is whether UHECRs consist of protons, heavy nuclei, neutrinos or gamma-rays. To resolve these questions, larger detectors with higher duty cycles and which combine multiple detection techniques are needed. Radio emission from UHECRs, on the other hand, is unaffected by attenuation, has a high duty cycle, gives calorimetric measurements and provides high directional accuracy. Here we report the detection of radio flashes from cosmic-ray air showers using low-cost digital radio receivers. We show that the radiation can be understood in terms of the geosynchrotron effect. Our results show that it should be possible to determine the nature and composition of UHECRs with combined radio and particle detectors, and to detect the ultrahigh-energy neutrinos expected from flavour mixing.

  2. Search for Gamma-Ray Bursts with the ARGO-YBJ Detector in Shower Mode

    Energy Technology Data Exchange (ETDEWEB)

    Bartoli, B.; Catalanotti, S.; Piazzoli, B. D’Ettorre; Girolamo, T. Di [Dipartimento di Fisica dell’Universitá di Napoli “Federico II,” Complesso Universitario di Monte Sant’Angelo, via Cinthia, I-80126 Napoli (Italy); Bernardini, P.; D’Amone, A.; Mitri, I. De [Dipartimento Matematica e Fisica “Ennio De Giorgi,” Universitá del Salento, via per Arnesano, I-73100 Lecce (Italy); Bi, X. J.; Cao, Z.; Chen, S. Z.; Feng, Zhaoyang; Gao, W.; Gou, Q. B. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918, 100049 Beijing (China); Chen, T. L.; Danzengluobu [Tibet University, 850000 Lhasa, Xizang (China); Cui, S. W. [Hebei Normal University, 050024 Shijiazhuang Hebei (China); Dai, B. Z. [Yunnan University, 2 North Cuihu Road, 650091 Kunming, Yunnan (China); Sciascio, G. Di [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Feng, C. F. [Shandong University, 250100 Jinan, Shandong (China); Feng, Zhenyong, E-mail: chensz@ihep.ac.cn, E-mail: zhouxx@swjtu.edu.cn [Southwest Jiaotong University, 610031 Chengdu, Sichuan (China); Collaboration: ARGO-YBJ Collaboration; and others

    2017-06-10

    The ARGO-YBJ detector, located at the Yangbajing Cosmic Ray Laboratory (4300 m a. s. l., Tibet, China), was a “full coverage” (central carpet with an active area of ∼93%) air shower array dedicated to gamma-ray astronomy and cosmic-ray studies. The wide field of view (∼2 sr) and high duty cycle (>86%), made ARGO-YBJ suitable to search for short and unexpected gamma-ray emissions like gamma-ray bursts (GRBs). Between 2007 November 6 and 2013 February 7, 156 satellite-triggered GRBs (24 of them with known redshift) occurred within the ARGO-YBJ field of view (zenith angle θ ≤ 45°). A search for possible emission associated with these GRBs has been made in the two energy ranges 10–100 GeV and 10–1000 GeV. No significant excess has been found in time coincidence with the satellite detections nor in a set of different time windows inside the interval of one hour after the bursts. Taking into account the EBL absorption, upper limits to the energy fluence at a 99% confidence level have been evaluated, with values ranging from ∼10{sup −5} erg cm{sup −2} to ∼10{sup −1} erg cm{sup −2}. The Fermi -GBM burst GRB 090902B, with a high-energy photon of 33.4 GeV detected by Fermi -LAT, is discussed in detail.

  3. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    Energy Technology Data Exchange (ETDEWEB)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertania, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D’Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.

    2014-12-01

    Using the data taken at the Pierre Auger Observatory between December 2004 and December 2012, we have examined the implications of the distributions of depths of atmospheric shower maximum (Xmax), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the distributions with predictions from a variety of hadronic interaction models for variations in the composition of the primary cosmic rays and examining the quality of the fit. Regardless of what interaction model is assumed, we find that our data are not well described by a mix of protons and iron nuclei over most of the energy range. Acceptable fits can be obtained when intermediate masses are included, and when this is done consistent results for the proton and iron-nuclei contributions can be found using the available models. We observe a strong energy dependence of the resulting proton fractions, and find no support from any of the models for a significant contribution from iron nuclei. However, we also observe a significant disagreement between the models with respect to the relative contributions of the intermediate components.

  4. Investigation of human exposure to triclocarban after showering, and preliminary evaluation of its biological effects

    Science.gov (United States)

    Schebb, Nils Helge; Inceoglu, Bora; Ahn, Ki Chang; Morisseau, Christophe; Gee, Shirley; Hammock, Bruce D.

    2012-01-01

    The antibacterial soap additive triclocarban (TCC) is widely used in personal care products. TCC has a high environmental persistence. We developed and validated a sensitive online solid phase extraction-LC-MS/MS method to rapidly analyze TCC and its major metabolites in urine and other biological samples to assess human exposure. We measured human urine concentrations 0–72 h after showering with a commercial bar soap containing 0.6% TCC. The major route of renal elimination was excretion as N-glucuronides. The absorption was estimated at 0.6% of the 70±15 mg TCC in the soap used. The TCC N-glucuronide urine concentration varied widely among the subjects and continuous daily use of the soap led to steady state levels of excretion. In order to assess potential biological effects arising from this exposure we screened TCC for the inhibition of human enzymes in vitro. We demonstrate that TCC is a potent inhibitor of the enzyme soluble epoxide hydrolase (sEH), whereas TCC′s major metabolites lack strong inhibitory activity. Topical administration of TCC at similar levels to rats in a preliminary in vivo study however failed to alter plasma biomarkers of sEH activity. Overall the analytical strategy described here revealed that use of TCC soap causes exposure levels that warrant further evaluation. PMID:21381656

  5. Extensive Air Shower Array at the University of Puebla (EAS-BUAP)

    Science.gov (United States)

    Salazar, H.; Martinez, O.; Moreno, E.; Cotzomi, J.; Villaseñor, L.

    2003-06-01

    We describe the design and operation of the first stage of the EAS-UAP extensive air shower array, as a detector of very high energy cosmic rays (1016 > Eo > 1014eV). The array is located at the Campus of Puebla University. It consist of 18 liquid scintillator detectors, with an active surface of 1 m2 each and a detector spacing of 20 m in a square grid. One Auger Water Cherenkov detector is also included as part of the array. In this report we discuss the stability, the calibration, the arrival direction and lateral distribution function reconstruction capabilities of the detector array, as derived from the 10 detectors in operation in the first stage. Our results shows that the angular accuracy in arrival direction is less than 5.5° in the range from 20° to 60°. The measurements in the Water Cherenkov Detector show us the possibility to separete electromagnetic and muon component. The main characteristics of the array allow us also to use it as educational and training facility.

  6. Auto Safety

    Science.gov (United States)

    ... to Talk to Your Child About the News Gun Safety Too Late for the Flu Vaccine? Eating ... many local health departments, public safety groups, hospitals, law enforcement agencies, and fire departments have technicians or ...

  7. Water Safety

    Science.gov (United States)

    ... School Counselors Kidney Stones Brain and Nervous System Water Safety KidsHealth > For Teens > Water Safety Print A ... tied to alcohol use. previous continue At the Water Park OK, so you do more splashing than ...

  8. Safety Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Swan Lake National Wildlife Refuge Safety Plan discusses policies for the safety of the station employees, volunteers, and public. This plan seeks to identify...

  9. Water Safety

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Water Safety KidsHealth / For Parents / Water Safety What's in ... remains your best measure of protection. Making Kids Water Wise It's important to teach your kids proper ...

  10. Fire safety

    Science.gov (United States)

    Robert H. White; Mark A. Dietenberger

    1999-01-01

    Fire safety is an important concern in all types of construction. The high level of national concern for fire safety is reflected in limitations and design requirements in building codes. These code requirements are discussed in the context of fire safety design and evaluation in the initial section of this chapter. Since basic data on fire behavior of wood products...

  11. Measurement of Pion and Proton Response and Longitudinal Shower Profiles up to 20 Nuclear Interaction Lengths with the ATLAS Tile Calorimeter

    CERN Document Server

    Adragna, P; Anderson, K; Antonaki, A; Arabidze, A; Batkova, L; Batusov, V; Beck, H P; Bergeaas Kuutmann, E; Biscarat, C; Blanchot, G; Bogush, A; Bohm, C; Boldea, V; Bosman, M; Bromberg, C; Budagov, J; Burckhart-Chromek, D; Caprini, M; Caloba, L; Calvet, D; Carli, T; Carvalho, J; Cascella, M; Castelo, J; Castillo, M V; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clement, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Corso-Radu, A; Cuenca, C; Damazio, D O; Davidek, T; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Djobava, T; Dobson, M; Dotti, A; Downing, R; Efthymiopoulos, I; Eriksson, D; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Febbraro, R; Fenyuk, A; Ferdi, C; Ferrer, A; Flaminio, V; Francis, D; Fullana, E; Gadomski, S; Gameiro, S; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; Gonzalez, V; Gorini, B; Grenier, P; Gris, P; Gruwe, M; Guarino, V; Guicheney, C; Gupta, A; Haeberli, C; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higon, E; Holmgren, S; Hurwitz, M; Huston, J; Iglesias, C; Isaev, A; Jen-La Plante, I; Jon-And, K; Joos, M; Junk, T; Karyukhin, A; Kazarov, A; Khandanyan, H; Khramov, J; Khubua, J; Kolos, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; LeCompte, T; Lefevre, R; Lehmann, G; Leitner, R; Lembesi, M; Lesser, J; Li, J; Liablin, M; Lokajicek, M; Lomakin, Y; Lupi, A; Maidanchik, C; Maio, A; Makouski, M; Maliukov, S; Manousakis, A; Mapelli, L; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F; Miagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Mosidze, M; Myagkov, A; Nemecek, S; Nessi, M; Nodulman, L; Nordkvist, B; Norniella, O; Novakova, J; Onofre, A; Oreglia, M; Pallin, D; Pantea, D; Petersen, J; Pilcher, J; Pina, J; Pinhao, J; Podlyski, F; Portell Bueso, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramstedt, M; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsev, V; Russakovich, N; Salto, O; Salvachua, B; Sanchis, E; Sanders, H; Santoni, C; Saraiva, J G; Sarri, F; Satsunkevitch, I; Says, L P; Schlager, G; Schlereth, J; Seixas, J M; Sellden, B; Shalanda, N; Shevtsov, P; Shochet, M; Silva, J; Da Silva, P; Simaitis, V; Simonyan, M; Sissakian, A; Sjolin, J; Solans, C; Solodkov, A; Soloviev, I; Solovyanov, O; Sosebee, M; Spano, F; Stanek, R; Starchenko, E; Starovoitov, P; Stavina, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Tremblet, L; Tsiareshka, P; Tylmad, M; Underwood, D; Unel, G; Usai, G; Valero, A; Valkar, S; Valls, J A; Vartapetian, A; Vazeille, F; Vichou, I; Vinogradov, V; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenine, A; Zenis, T

    2010-01-01

    The response of pions and protons in the energy range of 20 to 180 GeV produced at CERN's SPS H8 test beam line in the ATLAS iron-scintillator Tile hadron calorimeter has been measured. The test-beam configuration allowed to measure the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It is found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion to proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parameterization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parameterised as a function of the b...

  12. Measurement of cosmic ray air showers using MHz radio-detection techniques at the Pierre Auger Observatory

    Science.gov (United States)

    Kleifges, M.

    2013-08-01

    The measurement of radio signals from air showers is studied in detail with the Auger Engineering Radio Array (AERA) at the site of the Pierre Auger Observatory in Argentina. The first stage of AERA is in operation since March 2011 and consists of 24 autonomous radio detector stations. The design of the stations including the radio antennas, the electronics system and the communications system is presented. In the next 12 months AERA will grow to a size of 125 stations covering an area of about 16 km2. First results and improvements for this next stage of AERA will be discussed.

  13. Safety Training: Basic safety courses

    CERN Document Server

    Laetitia Laddada

    2004-01-01

    Safety Training: Basic safety courses Due to the 50th anniversary events, basic safety courses are cancelled  during  week 43. We remind that in general, courses take place each Tuesday morning in French and Tuesday afternoon in English in Bdg.65-1-003. The duration of the course is 1h30. There are two half day sessions: 9 a.m. and 11 a.m. in French, and 2 p.m. and 4 p.m. in English. Thanks for your  understanding.  SC-DI FORMATION EN SECURITE SAFETY TRAINING Laetitia Laddada 73811 - 79236 safety.training@cern.ch

  14. An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope.

    Science.gov (United States)

    Albert, A; André, M; Anghinolfi, M; Anton, G; Ardid, M; Aubert, J-J; Avgitas, T; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bourret, S; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Celli, S; Chiarusi, T; Circella, M; Coelho, J A B; Coleiro, A; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Deschamps, A; De Bonis, G; Distefano, C; Di Palma, I; Domi, A; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; El Bojaddaini, I; Elsässer, D; Enzenhöfer, A; Felis, I; Folger, F; Fusco, L A; Galatà, S; Gay, P; Giordano, V; Glotin, H; Grégoire, T; Gracia Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Hößl, J; Hofestädt, J; Hugon, C; Illuminati, G; James, C W; de Jong, M; Jongen, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lachaud, C; Lahmann, R; Lefèvre, D; Leonora, E; Lotze, M; Loucatos, S; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Mele, R; Melis, K; Michael, T; Migliozzi, P; Moussa, A; Nezri, E; Organokov, M; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Quinn, L; Racca, C; Riccobene, G; Sánchez-Losa, A; Saldaña, M; Salvadori, I; Samtleben, D F E; Sanguineti, M; Sapienza, P; Schüssler, F; Sieger, C; Spurio, M; Stolarczyk, Th; Taiuti, M; Tayalati, Y; Trovato, A; Turpin, D; Tönnis, C; Vallage, B; Van Elewyck, V; Versari, F; Vivolo, D; Vizzoca, A; Wilms, J; Zornoza, J D; Zúñiga, J

    2017-01-01

    A novel algorithm to reconstruct neutrino-induced particle showers within the ANTARES neutrino telescope is presented. The method achieves a median angular resolution of [Formula: see text] for shower energies below 100 TeV. Applying this algorithm to 6 years of data taken with the ANTARES detector, 8 events with reconstructed shower energies above 10 TeV are observed. This is consistent with the expectation of about 5 events from atmospheric backgrounds, but also compatible with diffuse astrophysical flux measurements by the IceCube collaboration, from which 2-4 additional events are expected. A [Formula: see text] C.L. upper limit on the diffuse astrophysical neutrino flux with a value per neutrino flavour of [Formula: see text] is set, applicable to the energy range from 23 TeV to 7.8 PeV, assuming an unbroken [Formula: see text] spectrum and neutrino flavour equipartition at Earth.

  15. Safety; Avertissement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This annual report of the Senior Inspector for the Nuclear Safety, analyses the nuclear safety at EDF for the year 1999 and proposes twelve subjects of consideration to progress. Five technical documents are also provided and discussed concerning the nuclear power plants maintenance and safety (thermal fatigue, vibration fatigue, assisted control and instrumentation of the N4 bearing, 1300 MW reactors containment and time of life of power plants). (A.L.B.)

  16. Visit safety

    CERN Multimedia

    2012-01-01

    Experiment areas, offices, workshops: it is possible to have co-workers or friends visit these places.     You already know about the official visits service, the VIP office, and professional visits. But do you know about the safety instruction GSI-OHS1, “Visits on the CERN site”? This is a mandatory General Safety Instruction that was created to assist you in ensuring safety for all your visits, whatever their nature—especially those that are non-official. Questions? The HSE Unit will be happy to answer them. Write to safety-general@cern.ch.   The HSE Unit

  17. Planet X and the origins of the shower and steady state flux of short-period comets

    Energy Technology Data Exchange (ETDEWEB)

    Matese, J.J.; Whitmire, D.P.

    1986-01-01

    An extensive analysis of the planet X model is presented. Unlike prior analyses, it takes into account the fact that only those comets scattered directly into the zones of influence (ZOI) of Saturn and Jupiter can contribute to a shower whose duration is in agreement with observation. It is predicted that some of the comets scattered directly into ZOI of Uranus and Neptune wiwll evolve on time scales of about 100 million years into the steady state flux of short-period comets. The absolute numbers of shower and steady state comets were found to be comparable with the known terrestrial cratering rate, assuming the existence of long-lived extinct comet cores. Canonical planet X model parameters are given, and it is suggested that planet X, in its present orbit, can create the requisite density gradient of comets near perihelion and aphelion during the lifetime of the solar system. It is concluded that the existence of planet X and the comet disk can explain the origin of the steady state flux of short-period comets over a wide range of parameters. 43 references

  18. Investigation of the S(500) distribution for large air showers detected with the KASCADE-Grande array

    Energy Technology Data Exchange (ETDEWEB)

    Toma, G., E-mail: toma@ik.fzk.d [National Institute of Physics and Nuclear Engineering, P.O. Box Mg-6, RO-7690 Bucharest (Romania); Apel, W.D. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Badea, F.; Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Bluemer, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, P.O. Box Mg-6, RO-7690 Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen, 57068 Siegen (Germany); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy) and Istituto di Fisica dello Spazio Interplanetario, INAF, 10133 Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Souza, V. de [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Di Pierro, F. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Doll, P.; Engel, R.; Engler, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany)

    2009-12-15

    Previous EAS investigations have shown that the charged particle density becomes independent of the primary mass at certain distances from the shower core and can be used as an estimator for the primary energy. In the context of the KASCADE-Grande experiment, the particular distance to shower core at which t his effect takes place is around 500 m, hence the study at this particular distance and the notation S(500) for the charged particle density. It has been shown that S(500) maps the primary energy. We present results of further investigations in this direction. An attenuation correction function can be derived from the S(500) attenuation with the EAS angle of incidence, allowing us to build an all event S(500) spectrum. In view of a future conversion of the recorded S(500) spectrum to the primary energy, based on simulations a calibration of the observed S(500) values with the primary energies has been worked out (in the energy range accessible to the KASCADE-Grande array, 10{sup 16}-10{sup 18}eV).

  19. Thermoluminescence Measurements on Meteorites from the Elephant Moraine Region: L6 Showers and Regional Ice Movements

    Science.gov (United States)

    Benoit, P. H.; Sears, D. W. G.

    1992-07-01

    As part of their initial characterization, we have completed natural and induced thermoluminescence (TL) measurements for over 800 Antarctic meteorites. We have previously discussed the implications of these data for pairing, terrestrial age, and meteorite concentration mechanism at the Lewis Cliff and Allan Hills sites (Benoit et al., 1992a,b). Here we report data for meteorites from the Elephant Moraine region (designated EET, see Huss, 1990, for description of region). Our present discussion is limited to meteorites collected in the 1986/87 and 1987/88 field seasons; measurement of samples from the 1990/91 field season are underway. The Elephant Moraine region encompasses at least five meteorite-bearing blue icefields, including Elephant Moraine proper (EM), Meteorite City (MC), Upper Meteorite City (UMC), Texas Bowl (TB), and the Northern Ice Patch (NIP). While MC, UMC, and TB are physically adjacent to each other, EM and NIP are separated from the others, the latter being approximately 40 km distant from UMC. We have previously identified numerous pairing groups within the EET database without regard for field location. While most pairing groups are found to be restricted to single fields, there are a significant number that span several fields. The howardite group EET87503 covers both TB and EM and several L6 groups either span TB and EM or span the physically adjacent TB, UMC, and MC icefields. Even the isolated NIP apparently shares a few pairing groups with UMC and TB, although the small number of samples from this field make comparison difficult. This result seems to indicate that, unlike the Allan Hills sites, the individual ice fields at EET are sampling the same meteorite population. Natural TL levels for EET meteorites (Fig. 1) are generally high, with a significant fraction having TL levels greater than 50 krad. This would suggest that, in general, these meteorites have small terrestrial ages, probably old L6 shower, but that the meteorites at the

  20. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 10(17.8) eV

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Luis, P. Facal San; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fox, B. D.; Fratu, O.; Froehlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gonzalez, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hoerandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morello, C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Mueller, S.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Peixoto, C. J. Todero; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.

    2014-01-01

    We report a study of the distributions of the depth of maximum, X-max, of extensive air-shower profiles with energies above 10(17.8) eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is

  1. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anastasi, G. A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Brogueira, P.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; dos Anjos, R. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Garcia, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glas, D.; Glaser, C.; Glass, H.; Golup, G.; Gomez Berisso, M.; Gomez Vitale, P. F.; Gonzalez, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Horandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Mezek, G. Kukec; Kunka, N.; Awad, A. W. Kuotb; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; Lopez, R.; Lopez Casado, A.; Louedec, K.; Lucero, A.; Malacari, M.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Mueller, S.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Nunez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Sanabria Gomez, J. D.; Sanchez, F.; Sanchez-Lucas, P.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suarez Duran, M.; Suomijarvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vasquez, R.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Welling, C.; Werner, F.; Widom, A.; Wiencke, L.; Wilczynski, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.

    2016-01-01

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 +/- 0.7 (stat) +/- 6.7 (syst) MeV for cosmic rays with an energy

  2. W+n-jet predictions at the Large Hadron Collider at next-to-leading order matched with a parton shower.

    Science.gov (United States)

    Höche, Stefan; Krauss, Frank; Schönherr, Marek; Siegert, Frank

    2013-02-01

    For the first time, differential cross sections for the production of W bosons in conjunction with up to three jets, computed at next-to leading order in QCD and including parton shower corrections, are presented and compared to recent experimental data from the Large Hadron Collider.

  3. Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Silver, E G [ed.

    1989-01-01

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  4. Life-cycle impacts of shower water waste heat recovery: case study of an installation at a university sport facility in the UK.

    Science.gov (United States)

    Ip, Kenneth; She, Kaiming; Adeyeye, Kemi

    2017-10-18

    Recovering heat from waste water discharged from showers to preheat the incoming cold water has been promoted as a cost-effective, energy-efficient, and low-carbon design option which has been included in the UK's Standard Assessment Procedure (SAP) for demonstrating compliance with the Building Regulation for dwellings. Incentivized by its carbon cost-effectiveness, waste water heat exchangers (WWHX) have been selected and incorporated in a newly constructed Sports Pavilion at the University of Brighton in the UK. This £2-m sports development serving several football fields was completed in August 2015 providing eight water- and energy-efficient shower rooms for students, staff, and external organizations. Six of the shower rooms are located on the ground floor and two on the first floor, each fitted with five or six thermostatically controlled shower units. Inline type of WWHX were installed, each consisted of a copper pipe section wound by an external coil of smaller copper pipe through which the cold water would be warmed before entering the shower mixers. Using the installation at Sport Pavilion as the case study, this research aims to evaluate the environmental and financial sustainability of a vertical waste heat recovery device, over a life cycle of 50 years, with comparison to the normal use of a PVC-u pipe. A heat transfer mathematical model representing the system has been developed to inform the development of the methodology for measuring the in-situ thermal performance of individual and multiple use of showers in each changing room. Adopting a system thinking modeling technique, a quasi-dynamic simulation computer model was established enabling the prediction of annual energy consumptions under different shower usage profiles. Data based on the process map and inventory of a functional unit of WWHX were applied to a proprietary assessment software to establish the relevant outputs for the life-cycle environmental impact assessment. Life-cycle cost

  5. Vaccine Safety

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search The CDC Vaccine Safety Note: Javascript is disabled or is not ... CDC.gov . Recommend on Facebook Tweet Share Compartir Vaccine Adverse Events Reporting System (VAERS) New website and ...

  6. Food safety

    Science.gov (United States)

    Poor food safety practices can lead to foodborne illness. Symptoms of foodborne illnesses vary. They usually include stomach problems or stomach upset. Foodborne illnesses may be severe and fatal. Young children, older ...

  7. Development of a New Fast Shower Maximum Detector Based on Microchannel Plates Photomultipliers (MCP-PMT) as an Active Element

    Energy Technology Data Exchange (ETDEWEB)

    Ronzhin, A. [Fermilab; Los, S. [Fermilab; Ramberg, E. [Fermilab; Spiropulu, M. [Caltech; Apresyan, A. [Caltech; Xie, S. [Caltech; Kim, H. [Chicago U.; Zatserklyaniy, A. [UC, Santa Cruz

    2014-09-21

    One possibility to make a fast and radiation resistant shower maximum (SM) detector is to use a secondary emitter as an active element. We present below test beam results, obtained with different types of photodetectors based on microchannel plates (MCPs) as the secondary emitter. We performed the measurements at the Fermilab Test Beam Facility with 120GeV proton beam and 12GeV and 32GeV secondary beams. The goal of the measurement with 120GeV protons was to determine time resolution for minimum ionizing particles (MIPs). The SM time resolution we obtained for this new type of detector is at the level of 20-30ps. We estimate that a significant contribution to the detector response originates from secondary emission of the MCP. This work can be considered as the first step in building a new type of calorimeter based on this principle.

  8. Performance of the lead/liquid argon shower counter system of the mark II detector at SPEAR

    CERN Document Server

    Abrams, G S; Breidenbach, M; Briggs, D D; Carithers, W C; Dieterle, W E; Dorfan, J M; Eaton, M W; Hanson, G; Hitlin, D G; Jenni, Peter; Lankford, A J; Lüth, V; Pang, C Y; Vella, E N

    1980-01-01

    The shower counter system of the SLAC-LBL Mark II detector is a large lead-liquid argon system of the type pioneered by Willis and Radeka (1974); however, it differs in most details and is much larger than other such detectors currently in operation. It contains, for example, 8000 liters of liquid argon and 3000 channels of low noise electronics, which is about eight times the size of the system of Willis et al. in the CERN ISR. The authors report, with little reference to design, on the operation and performance of the Mark II system during approximately a year and a half of operation at the Stanford Linear Accelerator Center's e/sup +/-e/sup -/ facility, SPEAR. The design and construction of the system have previously been described, Abrams et al. (1978) and a detailed discussion of all aspects-design, construction, operation, and performance-is in preparation. (8 refs).

  9. Robots' Safety

    OpenAIRE

    Pirttilahti, Juho

    2016-01-01

    Human-robot-collaboration is considered one of the answers to the flexible needs of more and more customizing manufacturing. Its purpose is to fit together the best qualities of both human and robots to reduce the cost and time of manufacturing. One of the key questions in this area is safety. The purpose of this thesis was to define the required safety functionality of cartesian, delta and articulated robots based on the current machine needs. Using the future robotic concepts investigat...

  10. Safety first!

    CERN Multimedia

    2016-01-01

    Among the many duties I assumed at the beginning of the year was the ultimate responsibility for Safety at CERN: the responsibility for the physical safety of the personnel, the responsibility for the safe operation of the facilities, and the responsibility to ensure that CERN acts in accordance with the highest standards of radiation and environmental protection.   The Safety Policy document drawn up in September 2014 is an excellent basis for the implementation of Safety in all areas of CERN’s work. I am happy to commit during my mandate to help meet its objectives, not least by ensuring the Organization makes available the necessary means to achieve its Safety objectives. One of the main objectives of the HSE (Occupational Health and Safety and Environmental Protection) unit in the coming months is to enhance the measures to minimise CERN’s impact on the environment. I believe CERN should become a role model for an environmentally-aware scientific research laboratory. Risk ...

  11. SAFETY INSTRUCTION AND SAFETY NOTE

    CERN Multimedia

    TIS Secretariat

    2002-01-01

    Please note that the SAFETY INSTRUCTION N0 49 (IS 49) and the SAFETY NOTE N0 28 (NS 28) entitled respectively 'AVOIDING CHEMICAL POLLUTION OF WATER' and 'CERN EXHIBITIONS - FIRE PRECAUTIONS' are available on the web at the following urls: http://edms.cern.ch/document/335814 and http://edms.cern.ch/document/335861 Paper copies can also be obtained from the TIS Divisional Secretariat, email: TIS.Secretariat@cern.ch

  12. System safety education focused on flight safety

    Science.gov (United States)

    Holt, E.

    1971-01-01

    The measures necessary for achieving higher levels of system safety are analyzed with an eye toward maintaining the combat capability of the Air Force. Several education courses were provided for personnel involved in safety management. Data include: (1) Flight Safety Officer Course, (2) Advanced Safety Program Management, (3) Fundamentals of System Safety, and (4) Quantitative Methods of Safety Analysis.

  13. Playground Safety.

    Science.gov (United States)

    Sipes, James L.

    2000-01-01

    Discusses the issues of risk, liability, and fun when landscaping playgrounds with safety in mind. The importance of playground surfaces and several preventive measures landscapers can use to reduce the risk of injury are discussed. Concluding comments address playground design features and liability. (GR)

  14. Safety Resources.

    Science.gov (United States)

    Hoot, James L.; Bartkowiak, Elaine T.

    1994-01-01

    Lists 72 organizations and programs that deal with child safety, grouped by the following categories: (1) general; (2) general violence; (3) gun violence; (4) media violence; (5) drugs and alcohol; (6) child abuse and at-risk children; (7) parenting programs; (8) community service programs; (9) leadership programs; (10) peer counseling; (11)…

  15. Patient safety

    African Journals Online (AJOL)

    medical error and patient harm. The patient safety movement is now 13 years old, led by the publication of the US. Institute of Medicine (IOM) Report To Err is Human.1 The basic premise at the time was that annually up to 98 000 Americans were estimated to have died because of medical error (although this calculation.

  16. An optimization of the FPGA trigger based on the artificial neural network for a detection of neutrino-origin showers

    Energy Technology Data Exchange (ETDEWEB)

    Szadkowski, Zbigniew; Glas, Dariusz [University of Lodz, Department of Physics and Applied Informatics, Faculty of High-Energy Astrophysics, 90-236 Lodz, Pomorska 149, (Poland); Pytel, Krzysztof [University of Lodz, Department of Physics and Applied Informatics, Faculty of Informatics, 90-236 Lodz, (Poland)

    2015-07-01

    Observations of ultra-high energy neutrinos became a priority in experimental astro-particle physics. Up to now, the Pierre Auger Observatory did not find any candidate on a neutrino event. This imposes competitive limits to the diffuse flux of ultra-high energy neutrinos in the EeV range and above. A very low rate of events potentially generated by neutrinos is a significant challenge for a detection technique and requires both sophisticated algorithms and high-resolution hardware. A trigger based on a artificial neural network was implemented into the Cyclone{sup R} V E FPGA 5CEFA9F31I7. The prototype Front-End boards for Auger-Beyond-2015 with Cyclone{sup R} V E can test the neural network algorithm in real pampas conditions in 2015. Showers for muon and tau neutrino initiating particles on various altitudes, angles and energies were simulated in CORSICA and Offline platforms giving pattern of ADC traces in Auger water Cherenkov detectors. The 3-layer 12-10-1 neural network was taught in MATLAB by simulated ADC traces according the Levenberg-Marquardt algorithm. Results show that a probability of a ADC traces generation is very low due to a small neutrino cross-section. Nevertheless, ADC traces, if occur, for 1-10 EeV showers are relatively short and can be analyzed by 16-point input algorithm. For 100 EeV range traces are much longer, but with significantly higher amplitudes, which can be detected by standard threshold algorithms. We optimized the coefficients from MATLAB to get a maximal range of potentially registered events and for fixed-point FPGA processing to minimize calculation errors. Currently used Front-End boards based on no-more produced ACEXR PLDs and obsolete Cyclone{sup R} FPGAs allow an implementation of relatively simple threshold algorithms for triggers. New sophisticated trigger implemented in Cyclone{sup R} V E FPGAs with large amount of DSP blocks, embedded memory running with 120 - 160 MHz sampling may support to discover neutrino events

  17. Full-Scale Experimental Investigation to Quantify Building Component Ignition Vulnerability from Mulch Beds Attacked by Firebrand Showers.

    Science.gov (United States)

    Manzello, Samuel L; Suzuki, Sayaka; Nii, Daisaku

    2017-03-01

    Structure ignition by wind-driven firebrand showers is an important fire spread mechanism in large outdoor fires. Experiments were conducted with three common mulch types (shredded hardwood mulch, Japanese Cypress wood chips, and pine bark nuggets) placed adjacent to realistic-scale reentrant corners. In the first series of experiments, mulch beds were placed adjacent to a re-entrant corner constructed with wood studs and lined with oriented strand board (OSB) as the sheathing. The premise behind conducting experiments with no siding treatments applied was predicated on the notion that bare OSB mulch contact would be a worst-case scenario, and therefore, a wall assembly in the most vulnerable state to mulch ignition. In the second series of experiments, vinyl siding was applied to the re-entrant corner assemblies (wood studs/OSB/moisture barrier/vinyl siding), and the influence of vertical separation distance (102 mm or 203 mm) on wall ignition from adjacent mulch beds was determined. The vertical separation distance was maintained by applying gypsum board to the base of the re-entrant corner. The siding itself did not influence the ignition process for the mulch beds, as the mulch beds were the first to ignite from the firebrand showers. In all experiments, it was observed that firebrands produced smoldering ignition in the mulch beds, this transitioned to flaming ignition, and the re-entrant corner assembly was exposed to the flaming mulch beds. With no siding treatments applied, the flaming mulch beds ignited the re-entrant corner, and ignition was observed to propagate to the back side of re-entrant corner assembly under all wind speeds (6 m/s to 8 m/s). With respect to the re-entrant corners fitted with vinyl siding, the mulch type, vertical separation distance, and wind speed were important parameters as to whether flaming ignition was observed to propagate to the back-side of a reentrant corner assembly. Mulches clearly pose an ignition hazard to structures

  18. Water Treatment Unit Breadboard: Ground test facility for the recycling of urine and shower water for one astronaut

    Science.gov (United States)

    Lindeboom, Ralph E. F.; Lamaze, Brigitte; Clauwaert, Peter; Christiaens, Marlies E. R.; Rabaey, Korneel; Vlaeminck, Siegfried; Vanoppen, Marjolein; Demey, Dries; Farinas, Bernabé Alonso; Coessens, Wout; De Paepe, Jolien; Dotremont, Chris; Beckers, Herman; Verliefde, Arne

    2016-07-01

    One of the major challenges for long-term manned Space missions is the requirement of a regenerative life support system. Average water consumption in Western Countries is >100 L d-1. Even when minimizing the amount of water available per astronauts to 13 L d-1, a mission of 6 crew members requires almost 30 ton of fresh water supplies per year. Note that the International Space Station (ISS) weighs approximately 400 ton. Therefore the development of an efficient water recovery system is essential to future Space exploration. The ISS currently uses a Vapor Compression Distillation (VCD) unit following the addition of chromic and sulphuric acid for the microbial stabilization of urine (Carter, Tobias et al. 2012), yielding a water recovery percentage of only 70% due to scaling control. Additionally, Vapor Compression Distillation of 1.5 L urine cap 1 d-1 has a significantly higher power demand with 6.5 W cap-1 compared to a combination of electrodialysis (ED) and reverse osmosis (RO) with 1.9 and 0.6 W cap-1 respectively (Udert and Wächter 2012). A Water Treatment Unit Breadboard (WTUB) has been developed which combines a physicochemical and biological treatment. The aim was to recover 90% of the water in urine, condensate and shower water produced by one crew member and this life support testbed facility was inspired by the MELiSSA loop concept, ESA's Life Support System. Our experimental results showed that: 1) using a crystallisation reactor prior to the nitrification reduced scaling risks by Ca2+- and Mg2+ removal 2) the stabilization of urine diluted with condensate resulted in the biological conversion of 99% of Total Kjeldahl nitrogen into nitrate in the biological nitrification reactor 3) salinity and nitrate produced could be removed by 60-80% by electrodialysis, 4) shower water contaminated with skin microbiota and Neutrogena soap ® could be mixed with electrodialysis diluate and filtered directly over a ceramic nanofiltration at 93% water recovery and 5

  19. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground Based Computation and Control Systems and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as on human health and safety, as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in earth surface, atmospheric flight, and space flight environments. Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools (e.g. ground based test methods as well as high energy particle transport and reaction codes) needed to design, test, and verify the safety and reliability of modern complex electronic systems as well as effects on human health and safety. The effects of primary cosmic ray particles, and secondary particle showers produced by nuclear reactions with spacecraft materials, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth's surface, especially if the net target area of the sensitive electronic system components is large. Accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO).

  20. Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    CERN Document Server

    Chefdeville, M.; Repond, J.; Schlereth, J.; Xia, L.; Eigen, G.; Marshall, J.S.; Thomson, M.A.; Ward, D.R.; Alipour Tehrani, N.; Apostolakis, J.; Dannheim, D.; Elsener, K.; Folger, G.; Grefe, C.; Ivantchenko, V.; Killenberg, M.; Klempt, W.; van der Kraaij, E.; Linssen, L.; Lucaci-Timoce, A.-I.; Münnich, A.; Poss, S.; Ribon, A.; Roloff, P.; Sailer, A.; Schlatter, D.; Sicking, E.; Strube, J.; Uzhinskiy, V.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Giraud, J.; Grondin, D.; Hostachy, J.-Y.; Brianne, E.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Karstensen, S.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Provenza, A.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Tran, H.L.; Vargas-Trevino, A.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schröder, S.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Schultz-Coulon, H. -Ch.; Shen, W.; Stamen, R.; Bilki, B.; Onel, Y.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Wing, M.; Calvo Alamillo, E.; Fouz, M. -C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Besson, D.; Buzhan, P.; Popova, E.; Gabriel, M.; Kiesling, C.; van der Kolk, N.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Cornebise, P.; Richard, F.; Pöschl, R.; Rouëné, J.; Thiebault, A.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J-C.; Cizel, J-B.; Cornat, R.; Frotin, M.; Gastaldi, F.; Haddad, Y.; Magniette, F.; Nanni, J.; Pavy, S.; Rubio-Roy, M.; Shpak, K.; Tran, T.H.; Videau, H.; Yu, D.; Callier, S.; Conforti di Lorenzo, S.; Dulucq, F.; Fleury, J.; Martin-Chassard, G.; de la Taille, Ch.; Raux, L.; Seguin-Moreau, N.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Chen, S.; Jeans, D.; Komamiya, S.; Kozakai, C.; Nakanishi, H.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2015-12-10

    We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE analogue scintillator-tungsten hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. The results are compared to Geant4 simulations (version 9.6.p02). In the study of the energy resolution we include previously published data with beam momenta from 1 GeV to 10 GeV recorded at the CERN Proton Synchrotron in 2010.

  1. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 1 017.8 eV

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2014-12-01

    We report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower profiles with energies above 1 017.8 eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the Xmax measurement and provide parametrizations thereof as a function of energy. The energy dependence of the mean and standard deviation of the Xmax distributions are compared to air-shower simulations for different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.

  2. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anastasi, G. A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Brogueira, P.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; dos Anjos, R. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A. W.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Louedec, K.; Lucero, A.; Malacari, M.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suarez Durán, M.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Welling, C.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2016-06-01

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 ±0.7 (stat)±6.7 (syst) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.

  3. Measurement of shower development and its Moli\\`ere radius with a four-plane LumiCal test set-up arXiv

    CERN Document Server

    Abramowicz, H.; Afanaciev, K.; Benhammou, Y.; Bortko, L.; Borysov, O.; Borysova, M.; Bozovic-Jelisavcic, I.; Chelkov, G.; Coca, C.; Daniluk, W.; Dannheim, D.; Dumitru, L.; Elsener, K.; Firlej, M.; Firu, E.; Fiutowski, T.; Ghenescu, V.; Gostkin, M.; Hempel, M.; Henschel, H.; Ignatenko, M.Idzik{$^j$},A.; Ishikawa, A.; Kananov, S.; Karacheban, O.; Klempt, W.; Kotov, S.; Kotula, J.; Kozhevnikov, D.; Kruchonok, V.; Krupa, B.; Kulis, Sz.; Lange, W.; Leonard, J.; Lesiak, T.; Levy, A.; Levy, I.; Lohmann, W.; Lukic, S.; Moron, J.; Moszczynski, A.; Neagu, A.T.; Nuiry, F.-X.; Orlandea, M.; Pandurovic, M.; Pawlik, B.; Preda, T.; Sailer, O.Rosenblat{$^a$},A.; Schumm, B.; Schuwalow, S.; Smiljanic, I.; Smolyanskiy, P.; Swientek, K.; Terlecki, P.; Uggerhoj, U.I.; Wistisen, T.N.; Yamamoto, T.Wojton{$^h$},H.; Zawiejski, L.; Zgura, I.S.; Zhemchugov, A.

    A prototype of a luminometer, designed for a future e+e- collider detector, and consisting at present of a four-plane module, was tested in the CERN PS accelerator T9 beam. The objective of this beam test was to demonstrate a multi-plane tungsten/silicon operation, to study the development of the electromagnetic shower and to compare it with MC simulations. The Moli\\`ere radius has been determined to be 24.0 +/- 0.6 (stat.) +/- 1.5 (syst.) mm using a parametrization of the shower shape. Very good agreement was found between data and a detailed Geant4 simulation. This value is significantly larger than the one obtained using the fomula based on the material composition.

  4. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy.

    Science.gov (United States)

    Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Al Samarai, I; Albuquerque, I F M; Allekotte, I; Allison, P; Almela, A; Alvarez Castillo, J; Alvarez-Muñiz, J; Alves Batista, R; Ambrosio, M; Aminaei, A; Anastasi, G A; Anchordoqui, L; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Awal, N; Badescu, A M; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S G; Blanco, A; Blanco, M; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Brogueira, P; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Cronin, J; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; de Mello Neto, J R T; De Mitri, I; de Oliveira, J; de Souza, V; Del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Diaz, J C; Díaz Castro, M L; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Dorosti Hasankiadeh, Q; Dos Anjos, R C; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; García, B; Garcia-Gamez, D; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Gómez Berisso, M; Gómez Vitale, P F; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Kukec Mezek, G; Kunka, N; Kuotb Awad, A W; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Le Coz, S; Lebrun, D; Lebrun, P; Leigui de Oliveira, M A; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; López Casado, A; Louedec, K; Lucero, A; Malacari, M; Mallamaci, M; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Martínez Bravo, O; Martraire, D; Masías Meza, J J; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Meissner, R; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Müller, S; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Pacheco, N; Pakk Selmi-Dei, D; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Petrov, Y; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Reinert, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; Rodrigues de Carvalho, W; Rodriguez Rojo, J; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salazar, H; Saleh, A; Salesa Greus, F; Salina, G; Sanabria Gomez, J D; Sánchez, F; Sanchez-Lucas, P; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Srivastava, Y N; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suarez Durán, M; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Timmermans, C; Todero Peixoto, C J; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Torralba Elipe, G; Torres Machado, D; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Valdés Galicia, J F; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; van den Berg, A M; van Velzen, S; van Vliet, A; Varela, E; Vargas Cárdenas, B; Varner, G; Vasquez, R; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Welling, C; Werner, F; Widom, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zuccarello, F

    2016-06-17

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8±0.7(stat)±6.7(syst)  MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.

  5. World's largest air shower array now on track of super-high-energy cosmic-rays Pierre Auger Observatory seeks source of highest-energy extraterrestrial particles

    CERN Multimedia

    2003-01-01

    "With the completion of its hundredth surface detector, the Pierre Auger Observatory, under construction in Argentina, this week became the largest cosmic-ray air shower array in the world. Managed by scientists at the Department of Energy's Fermi National Accelerator Laboratory, the Pierre Auger project so far encompasses a 70-square-mile array of detectors that are tracking the most violent-and perhaps most puzzling- processes in the entire universe" (1 page).

  6. Relative Contributions of Electrified Shower Clouds and Thunderstorms to the Global Circuit: Can 10 Years of TRMM Data Help Solve an Old Puzzle? (Invited)

    Science.gov (United States)

    Zipser, E. J.; Liu, C.; Williams, E.; Burns, G. B.

    2010-12-01

    The long-standing mainstay of support for C.T.R. Wilson’s global circuit hypothesis is the similarity between the diurnal variation of thunderstorm days in universal time, and the Carnegie curve of electrical potential gradient (Whipple, 1929). This rough agreement has sustained the widespread view that thunderstorms are the “batteries” for the global electrical circuit. This study utilizes 10 years of Tropical Rainfall Measuring Mission (TRMM) observations to quantify the global occurrence of thunderstorms with much better accuracy and validate the comparison by Whipple 80 years ago. The results support Wilson’s (1920) original ideas that both thunderstorms and electrified shower clouds contribute to the DC global circuit by virtue of negative charge carried downward by precipitation. First, the precipitation features (PFs) are defined by grouping the pixels with rain using 10 years of TRMM observations. Thunderstorms are identified from these PFs with lightning flashes observed by the Lightning Imaging Sensor. PFs without lightning flashes but with the 30 dBZ radar echo top temperature below -10oC over land and -17 oC over ocean are selected as possibly electrified shower clouds. The universal diurnal variation of rainfall, raining area from the thunderstorms and possibly electrified shower clouds in different seasons are derived and compared with the diurnal variations of the electric field observed at Vostok, Antarctica. The result shows a substantially better match from the updated diurnal variations of the thunderstorm area to the Carnegie curve than Whipple showed. One reason for the improvement is that the TRMM data are able to distinguish the relatively larger contributions from electrified shower clouds than thunderstorms over tropical oceans and over the Amazon. Potential further refinements to the current algorithm defining electrified convective cells are discussed.

  7. An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Albert, A.; Drouhin, D.; Racca, C. [GRPHE, Universite de Haute Alsace, Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit, BP 50568, Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Genoa (Italy); Anton, G.; Folger, F.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Sieger, C. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M. [Universitat Politecnica de Valencia, Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Gandia (Spain); Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Enzenhoefer, A.; Quinn, L.; Salvadori, I.; Turpin, D. [Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille (France); Avgitas, T.; Baret, B.; Bourret, S.; Coelho, J.A.B.; Creusot, A.; Galata, S.; Gregoire, T.; Gracia Ruiz, R.; Lachaud, C. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (France); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Toennis, C.; Zornoza, J.D.; Zuniga, J. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia) c/Catedratico Jose Beltran, 2, 46980, Paterna, Valencia (Spain); Basa, S.; Marcelin, M.; Nezri, E. [LAM, Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, Marseille Cedex 13 (France); Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A. [INFN, Laboratori Nazionali del Sud (LNS), Catania (Italy); Bormuth, R.; Jong, M. de; Samtleben, D.F.E. [Nikhef, Amsterdam (Netherlands); Universiteit Leiden, Huygens-Kamerlingh Onnes Laboratorium, Leiden (Netherlands); Bouwhuis, M.C.; Heijboer, A.J.; Jongen, M.; Michael, T. [Nikhef, Amsterdam (Netherlands); Bruijn, R.; Melis, K. [Nikhef, Amsterdam (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Capone, A.; De Bonis, G.; Di Palma, I.; Perrina, C.; Vizzoca, A. [INFN, Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Caramete, L.; Pavalas, G.E.; Popa, V. [Institute for Space Science, 077125, Bucharest, Magurele (Romania); Celli, S. [INFN, Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Chiarusi, T. [INFN, Sezione di Bologna, Bologna (Italy); Circella, M.; Sanchez-Losa, A. [INFN, Sezione di Bari, Bari (Italy); Coleiro, A. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (France); IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia) c/Catedratico Jose Beltran, 2, 46980, Paterna, Valencia (Spain); Deschamps, A.; Hello, Y. [CNRS, IRD, Observatoire de la Cote d' Azur, Geoazur, UCA, Sophia Antipolis (France); Domi, A.; Hugon, C.; Sanguineti, M.; Taiuti, M. [INFN-Sezione di Genova, Genoa (Italy); Dipartimento di Fisica dell' Universita, Genoa (Italy); Donzaud, C. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (France); Universite Paris-Sud, Orsay Cedex (France); Eberl, T. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); El Bojaddaini, I.; Moussa, A. [University Mohammed I, Laboratory of Physics of Matter and Radiations, B.P.717, Oujda (Morocco); Elsaesser, D.; Kadler, M.; Kreter, M. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M.; Versari, F. [INFN, Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica e Astronomia dell' Universita, Bologna (Italy); Gay, P. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (France); Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, Clermont Universite, BP 10448, Clermont-Ferrand (France); Giordano, V. [INFN, Sezione di Catania, Catania (Italy); Glotin, H. [LSIS, Aix Marseille Universite CNRS ENSAM LSIS UMR 7296, Marseille (France); Universite de Toulon CNRS LSIS UMR 7296, La Garde (France); Institut Universitaire de France, Paris (France); Haren, H. van [Royal Netherlands Institute for Sea Research (NIOZ), ' t Horntje (Texel) (Netherlands); Kouchner, A.; Van Elewyck, V. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite (France); Institut Universitaire de France, Paris (France); Kreykenbohm, I.; Wilms, J. [Universitaet Erlangen-Nuernberg, Dr. Remeis-Sternwarte and ECAP, Bamberg (Germany); Kulikovskiy, V. [Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille (France); Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (RU); Lefevre, D. [Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), Marseille Cedex 9 (FR); Universite du Sud Toulon-Var, CNRS-INSU/IRD UM 110, La Garde Cedex (FR); Leonora, E. [INFN, Sezione di Catania, Catania (IT); Dipartimento di Fisica ed Astronomia dell' Universita, Catania (IT); Loucatos, S.; Vallage, B. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (FR); Direction des Sciences de la Matiere, Institut de Recherche sur les Lois Fondamentales de l' Univers, Service de Physique des Particules, CEA Saclay, Gif-sur-Yvette (FR); Marinelli, A. [INFN, Sezione di Pisa, Pisa (IT); Dipartimento di Fisica dell' Universita, Pisa (IT); Mele, R.; Vivolo, D. [INFN, Sezione di Napoli, Naples (IT); Dipartimento di Fisica dell' Universita Federico II di Napoli, Naples (IT); Migliozzi, P. [INFN, Sezione di Napoli, Naples (IT); Organokov, M.; Pradier, T. [Universite de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg (FR); Schuessler, F.; Stolarczyk, T. [Direction des Sciences de la Matiere, Institut de Recherche sur les Lois Fondamentales de l' Univers, Service de Physique des Particules, CEA Saclay, Gif-sur-Yvette (FR); Tayalati, Y. [University Mohammed V in Rabat, Faculty of Sciences, Rabat (MA)

    2017-06-15

    A novel algorithm to reconstruct neutrino-induced particle showers within the ANTARES neutrino telescope is presented. The method achieves a median angular resolution of 6 {sup circle} for shower energies below 100 TeV. Applying this algorithm to 6 years of data taken with the ANTARES detector, 8 events with reconstructed shower energies above 10 TeV are observed. This is consistent with the expectation of about 5 events from atmospheric backgrounds, but also compatible with diffuse astrophysical flux measurements by the IceCube collaboration, from which 2-4 additional events are expected. A 90% C.L. upper limit on the diffuse astrophysical neutrino flux with a value per neutrino flavour of E{sup 2} . Φ{sup 90%} = 4.9 . 10{sup -8} GeV . cm{sup -2} . s{sup -1} . sr{sup -1} is set, applicable to the energy range from 23 TeV to 7.8 PeV, assuming an unbroken E{sup -2} spectrum and neutrino flavour equipartition at Earth. (orig.)

  8. Observations on Stratospheric-Mesospheric-Thermospheric temperatures using Indian MST radar and co-located LIDAR during Leonid Meteor Shower (LMS

    Directory of Open Access Journals (Sweden)

    R. Selvamurugan

    2002-11-01

    Full Text Available The temporal and height statistics of the occurrence of meteor trails during the Leonid meteor shower revealed the capability of the Indian MST radar to record large numbers of meteor trails. The distribution of radio meteor trails due to a Leonid meteor shower in space and time provided a unique opportunity to construct the height profiles of lower thermospheric temperatures and winds, with good time and height resolution. There was a four-fold increase in the meteor trails observed during the LMS compared to a typical non-shower day. The temperatures were found to be in excellent continuity with the temperature profiles below the radio meteor region derived from the co-located Nd-Yag LIDAR and the maximum height of the temperature profile was extended from the LIDAR to ~110 km. There are, how-ever, some significant differences between the observed profiles and the CIRA-86 model profiles. The first results on the meteor statistics and neutral temperature are presented and discussed below.  Key words. Atmospheric composition and structure (pres-sure, density, and temperature History of geophysics (at-mospheric sciences Meteorology and atmospheric dynamics (middle atmosphere dynamics

  9. Influence of transport conditions and pre-slaughter water shower spray during summer on protein characteristics and water distribution of broiler breast meat.

    Science.gov (United States)

    Xing, Tong; Li, Yun Han; Li, Ming; Jiang, Nan Nan; Xu, Xing Lian; Zhou, Guang Hong

    2016-11-01

    This study investigated the effects of pre-slaughter transport during summer and subsequent water shower spray on broiler meat quality and protein characteristics. Arbor Acres broiler chickens (n = 126, 42 days old, mixed sex, 2.5-3 kg) were randomly categorized into three treatments: (i) control group without transport (C); (ii) 30 min transport (T); and (iii) 30 min transport followed by 10 min water shower spray and 20 min lairage (T/W). Each treatment consisted of six replicates with seven birds each. Ambient temperature was 32-35°C during transportation. Results indicated that transport during high ambient temperature denatured myosin and sarcoplasmic proteins, led to decreased protein solubility and resulted in glycogen phosphorylase precipitated to the myofibrillar fraction. Furthermore, meat quality in the transport group showed a pale, soft and exudative (PSE)-like syndrome. Water shower spray during lairage after transport reduced the degree of protein denaturation and lessened the deterioration of meat quality. © 2016 Japanese Society of Animal Science.

  10. The “Carpet-3” air shower array to search for diffuse gamma rays with energy Eγ>100TeV

    Science.gov (United States)

    Dzhappuev, D. D.; I, V. B. Petkov V.; Kudzhaev, A. U.; Lidvansky, A. S.; Volchenko, V. I.; Volchenko, G. V.; Gorbacheva, E. A.; Dzaparova, I. M.; Klimenko, N. F.; Kurenya, A. N.; Mikhilova, O. I.; Khadzhiev, M. M.; Yanin, A. F.

    2017-12-01

    At present an experiment for measuring the flux of cosmic diffuse gamma rays with energy higher than 100 TeV (experiment “Carpet-3”) is being prepared at the Baksan Neutrino Observatory of the Institute for Nuclear Research, Russian Academy of Sciences. The preparation of the experiment implies considerable enlargement of the area of both muon detector and surface part of the shower array. At the moment the plastic scintillation counters with a total continuous area of 410 m2 are installed in the muon detector (MD) underground tunnels, and they are totally equipped with electronics. Adjusting of the counters and their electronic circuits is in progress. Six modules of shower detectors (out of twenty planned to be installed) have already been placed on the surface of the MD absorber. A new liquid scintillation detector is developed for modules of the ground –surface part of the array, whose characteristics are presented. It is shown that the “Carpet-3” air shower array will have the best sensitivity to the flux of primary gamma rays with energies in the range 100TeV – 1PeV, being quite competitive in gamma-ray astronomy at such energies.

  11. Safety Note

    CERN Multimedia

    SC Secretariat

    2004-01-01

    Please note that the Safety Note no 29 (NS 29) entitled 'Fire Prevention for Insulating Core (Sandwich) Panel Structures for Inside Use Guidelines for Selection, Installation and Use' is available on the web at the following url: https://edms.cern.ch/document/475438/LAST_RELEASED Paper copies can also be obtained from the SC Unit secretariat, e-mail : sc.secretariat@cern.ch SC Secretariat

  12. Nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Nuclear Safety comprehends Radioprotection, Radioactive Waste Management and Nuclear Material Control. These activities are developed at the Nuclear Safety Directory. The Radioactive Waste Management Department (GRR) was formally created in 1983, to promote research and development, teaching and service activities in the field of radioactive waste. Its mission is to develop and employ technologies to manage safely the radioactive wastes generated at IPEN and at its customer’s facilities all over the country, in order to protect the health and the environment of today's and future generations. The Radioprotection Service (GRP) aims primarily to establish requirements for the protection of people, as workers, contractors, students, members of the general public and the environment from harmful effects of ionizing radiation. Furthermore, it also aims to establish the primary criteria for the safety of radiation sources at IPEN and planning and preparing for response to nuclear and radiological emergencies. The procedures about the management and the control of exposures to ionizing radiation are in compliance with national standards and international recommendations. Research related to the main activities is also performed. The Nuclear Material Control has been performed by the Safeguard Service team, which manages the accountability and the control of nuclear material at IPEN facilities and provides information related to these activities to ABACC and IAEA. (author)

  13. Northern Sky Galactic Cosmic Ray Anisotropy between 10 and 1000 TeV with the Tibet Air Shower Array

    Energy Technology Data Exchange (ETDEWEB)

    Amenomori, M. [Department of Physics, Hirosaki University, Hirosaki 036-8561 (Japan); Bi, X. J.; Chen, W. Y.; Ding, L. K.; Feng, Zhaoyang; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, H. B.; Huang, J. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, D. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Chen, T. L.; Danzengluobu; Hu, Haibing [Department of Mathematics and Physics, Tibet University, Lhasa 850000 (China); Cui, S. W.; He, Z. T. [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Feng, C. F. [Department of Physics, Shandong University, Jinan 250100 (China); Feng, Z. Y. [Institute of Modern Physics, Southwest Jiaotong University, Chengdu 610031 (China); Hibino, K. [Faculty of Engineering, Kanagawa University, Yokohama 221-8686 (Japan); Hotta, N. [Faculty of Education, Utsunomiya University, Utsunomiya 321-8505 (Japan); Collaboration: Tibet AS γ Collaboration; and others

    2017-02-20

    We report on the analysis of the 10–1000 TeV large-scale sidereal anisotropy of Galactic cosmic rays (GCRs) with the data collected by the Tibet Air Shower Array from 1995 October to 2010 February. In this analysis, we improve the energy estimate and extend the decl. range down to −30°. We find that the anisotropy maps above 100 TeV are distinct from that at a multi-TeV band. The so-called tail-in and loss-cone features identified at low energies get less significant, and a new component appears at ∼100 TeV. The spatial distribution of the GCR intensity with an excess (7.2 σ pre-trial, 5.2 σ post-trial) and a deficit (−5.8 σ pre-trial) are observed in the 300 TeV anisotropy map, in close agreement with IceCube’s results at 400 TeV. Combining the Tibet results in the northern sky with IceCube’s results in the southern sky, we establish a full-sky picture of the anisotropy in hundreds of TeV band. We further find that the amplitude of the first order anisotropy increases sharply above ∼100 TeV, indicating a new component of the anisotropy. All these results may shed new light on understanding the origin and propagation of GCRs.

  14. Hardware development for the "Weak ionization lead lepton interaction for air-shower investigations in Romania"- WILLI-AIR experiment

    Science.gov (United States)

    Bǎlǎceanu, A.; Brancus, I. M.; Dumitriu, D.; Gherghel-Lascu, A.; Haungs, A.; Mathes, H.-J.; Munteanu, A.; Mitrica, B.; Mosu, T.; Niculescu-Oglinzanu, M.; Saftoiu, A.; Stanca, D.

    2017-06-01

    WILLI-AIR experiment is designed to study the muon charge ratio in Extensive Air Showers (EAS) produced by primary cosmic particles with energy lower than 1015 eV. It consists in two parts represented by two existing experiments, WILLI detector and AIR mini-array. The WILLI calorimeter has been built with the aim to measure the atmospheric muons and to discriminate between µ+ and µ-. The experimental method is based on different behavior of negative and positive muons after stopping in the matter. The EAS are measured by the AIR array, composed of 24 stations, each with a detection surface of 1m2 read out by two photomultipliers. In order to use as best as we can the properties of both capabilities, the array configuration was previously established through CORSIKA simulations, being placed at about 50 m from WILLI electromagnetic calorimeter. Fast and integrated electronics have been developed in order to process the signals from PMT's. An MBS system was chosen as a fast DAQ. This document is presenting the evolution of the work on hardware and the current results regarding the electronics capability.

  15. Mass measurement of right-handed scalar quarks and time measurement of hadronic showers for the compact linear collider

    CERN Document Server

    Weuste, Lars

    The Compact Linear Collider (CLIC) is a concept for a 48.3km long e+ e- accelerator with a center-of-mass energy of 3TeV. Its purpose is the precise measurement of particles discovered by the LHC as well as the discovery of yet unknown particles. The International Large Detector (ILD) is one of its detector concepts which was specifically designed for the usage of the Particle Flow Algorithm. This thesis is divided into two parts, both within the context of CLIC. In the first part of this thesis the unprecedented measurement on time structure of hadronic showers in calorimeters with tungsten absorber material, which is used in the ILD concept for CLIC, will be presented. It shows the development and the construction of a small testbeam experiment called Tungsten Timing Testbeam (T3B) which consists of only 15 scintillator tiles of 30mm x 30mm x 5mm, read out with Silicon Photomultipliers which in turn were connected to USB oscilloscopes. T3B was placed downstream of the CALICE tungsten analog hadron calorimet...

  16. Numerical simulations of compact intracloud discharges as the Relativistic Runaway Electron Avalanche-Extensive Air Shower process

    Science.gov (United States)

    Arabshahi, S.; Dwyer, J. R.; Nag, A.; Rakov, V. A.; Rassoul, H. K.

    2014-01-01

    Compact intracloud discharges (CIDs) are sources of the powerful, often isolated radio pulses emitted by thunderstorms. The VLF-LF radio pulses are called narrow bipolar pulses (NBPs). It is still not clear how CIDs are produced, but two categories of theoretical models that have previously been considered are the Transmission Line (TL) model and the Relativistic Runaway Electron Avalanche-Extensive Air Showers (RREA-EAS) model. In this paper, we perform numerical calculations of RREA-EASs for various electric field configurations inside thunderstorms. The results of these calculations are compared to results from the other models and to the experimental data. Our analysis shows that different theoretical models predict different fundamental characteristics for CIDs. Therefore, many previously published properties of CIDs are highly model dependent. This is because of the fact that measurements of the radiation field usually provide information about the current moment of the source, and different physical models with different discharge currents could have the same current moment. We have also found that although the RREA-EAS model could explain the current moments of CIDs, the required electric fields in the thundercloud are rather large and may not be realistic. Furthermore, the production of NBPs from RREA-EAS requires very energetic primary cosmic ray particles, not observed in nature. If such ultrahigh-energy particles were responsible for NBPs, then they should be far less frequent than is actually observed.

  17. Food safety

    OpenAIRE

    VRABCOVÁ, Kateřina

    2012-01-01

    In the diploma thesis I was dealing with the issue of food safety in the Czech Republic and labeling of meat products. In the practical part were carried out two surveys, public opinion poll and survey of proper labeling of meat products. Opinion polls were attended by 462 consumers and analysis of proper labelling was subjected to 489 meat products in select retail chains in Prague. Survey results of labeling of meat products were not very positive, but can be expected to improve, as well as...

  18. Safety training

    CERN Document Server

    SC Unit

    2009-01-01

    Habilitation électrique A course entitled "Habilitation électrique pour personnel de laboratoire" (electrical safety qualification for laboratory personnel) will be held on 22 and 23 June. Registration by e-mail to isabelle.cusato@cern.ch. Explosion Hazards in the handling of flammable solvents and gases A course entitled "Explosion Hazards in the handling of flammable solvents and gases" given in French will be held on 18-19 June 2009. This course is obligatory for all FGSOs at CERN, and it is recommended for anyone handling flammable gas or solvents. To sign up please visit this page. For more information please contact Isabelle Cusato, tel. 73811.

  19. Safety first

    CERN Multimedia

    2012-01-01

    Safety is a priority for CERN. That is a message I conveyed in my New Year’s address and that I reiterated at one of the first Enlarged Directorate meetings of 2012 when I outlined five key safety objectives for the year, designed and implemented according to accepted international standards.   As we move from spring to summer, it’s time to take stock of how we are doing. Objective number one for 2012, which overarches everything else, is to limit the number of incidents in the workplace. That means systematically investigating and acting on every incident that involves work stoppage, along with all the most frequent workplace accidents: falls, trips and slips. The performance indicator we set ourselves is the percentage of investigations and follow-ups completed. Year on year, these figures are rising but we can never be complacent, and must strive to reach and sustain 100% follow-up. The second objective is to improve hazard control, with a focus in 2012 on chemical ha...

  20. Mass measurement of right-handed scalar quarks and time measurement of hadronic showers for the compact linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Weuste, Lars

    2013-06-12

    The Compact Linear Collider (CLIC) is a concept for a 48.3 km long e{sup +}e{sup -} accelerator with a center-of-mass energy of 3TeV. Its purpose is the precise measurement of particles discovered by the LHC as well as the discovery of yet unknown particles. The International Large Detector (ILD) is one of its detector concepts which was specifically designed for the usage of the Particle Flow Algorithm. This thesis is divided into two parts, both within the context of CLIC. In the first part of this thesis the unprecedented measurement on time structure of hadronic showers in calorimeters with tungsten absorber material, which is used in the ILD concept for CLIC, is presented. It shows the development and the construction of a small testbeam experiment called Tungsten Timing Testbeam (T3B) which consists of only 15 scintillator tiles of 30 x 30 x 5 mm{sup 3}, read out with Silicon Photomultipliers which in turn were connected to USB oscilloscopes. T3B was placed downstream of the CALICE tungsten analog hadron calorimeter (W-AHCal) during beam tests performed at CERN in 2010 and 2011. The resulting data is compared to simulation obtained with three different hadronic shower physics models of the Geant4 simulation toolkit: QGSPBERT, QGSPBERTHP and QBBC. The results from 60 GeV high statistics run show that QBBC and QGSPBERTHP are mostly consistent with the testbeam data, while QGSPBERT, which is lacking a sophisticated treatment of neutrons, overestimates the late energy depositions. The second part of this thesis presents one out of the six benchmark processes that were part of the CLIC Conceptual Design Report (CDR) to verify the detector performance at CLIC. This benchmark process is the measurement of the mass and cross-section of two supersymmetric right-handed scalar quarks. In the underlying SUSY model these almost exclusively decay into the lightest neutralino (missing energy) and the corresponding standard model quark (jet). Within this analysis pile

  1. Construction safety

    CERN Document Server

    Li, Rita Yi Man

    2013-01-01

    A close-to-ideal blend of suburb and city, speedy construction of towers of Babylon, the sparkling proportion of glass and steel buildings’ facade at night showcase the wisdom of humans. They also witness the footsteps, sweats and tears of architects and engineers. Unfortunately, these signatures of human civilizations are swathed in towering figures of construction accidents. Fretting about these on sites, different countries adopt different measures on sites. This book firstly sketches the construction accidents on sites, followed by a review on safety measures in some of the developing countries such as Bermuda, Egypt, Kuwait and China; as well as developed countries, for example, the United States, France and Singapore. It also highlights the enormous compensation costs with the courts’ experiences in the United Kingdom and Hong Kong.

  2. Safety first

    Energy Technology Data Exchange (ETDEWEB)

    Harvie, W.

    1997-06-01

    Expansion of international business opportunities for Canadian producers and service companies brings with it a dimension almost never considered on home base - security. It was pointed out that once abroad, safety and defence of people and equipment can become significant problems in many parts of the world. The nature of the security risks involved, and how best to deal with them, were discussed. The use of consultants, mostly foreign ones to date, and the kind of assistance they can provide, everything from written reports on the local situation to counter surveillance training, and bodyguard services, have been described. Examples of recent involvements with guerilla groups demanding `revolutionary war taxes`, kidnapping executives for ransom, due diligence investigations of potential partners, and the like, have been provided to illustrate the unique character of the problem, and the constant need for being alert, educated to risks, and being prepared to react to risk situations.

  3. Global safety

    Directory of Open Access Journals (Sweden)

    Dorien J. DeTombe

    2010-08-01

    Full Text Available Global Safety is a container concept referring to various threats such as HIV/Aids, floods and terrorism; threats with different causes and different effects. These dangers threaten people, the global economy and the slity of states. Policy making for this kind of threats often lack an overview of the real causes and the interventions are based on a too shallow analysis of the problem, mono-disciplinary and focus mostly only on the effects. It would be more appropriate to develop policy related to these issues by utilizing the approaches, methods and tools that have been developed for complex societal problems. Handling these complex societal problems should be done multidisciplinary instead of mono-disciplinary. In order to give politicians the opportunity to handle complex problems multidisciplinary, multidisciplinary research institutes should be created. These multidisciplinary research institutes would provide politicians with better approaches to handle this type of problem. In these institutes the knowledge necessary for the change of these problems can be created through the use of the Compram methodology which has been developed specifically for handling complex societal problems. In a six step approach, experts, actors and policymakers discuss the content of the problem and the possible changes. The framework method uses interviewing, the Group Decision Room, simulation models and scenario's in a cooperative way. The methodology emphasizes the exchange of knowledge and understanding by communication among and between the experts, actors and politicians meanwhile keeping emotion in mind. The Compram methodology will be further explained in relation to global safety in regard to terrorism, economy, health care and agriculture.

  4. Artificial Neural Network as the FPGA Trigger in the Cyclone V based Front-End for a Detection of Neutrino-Origin Showers

    Energy Technology Data Exchange (ETDEWEB)

    Szadkowski, Zbigniew; Glas, Dariusz [University of Lodz, Department of Physics and Applied Informatics, Faculty of High-Energy Astrophysics, 90-236 Lodz, Pomorska 149 (Poland); Pytel, Krzysztof [University of Lodz, Department of Physics and Applied Informatics, Faculty of Informatics, 90-236 Lodz (Poland)

    2015-07-01

    Neutrinos play a fundamental role in the understanding of the origin of ultra-high-energy cosmic rays. They interact through charged and neutral currents in the atmosphere generating extensive air showers. However, their a very low rate of events potentially generated by neutrinos is a significant challenge for a detection technique and requires both sophisticated algorithms and high-resolution hardware. A trigger based on a artificial neural network was implemented into the Cyclone{sup R} V E FPGA 5CEFA9F31I7 - the heart of the prototype Front-End boards developed for tests of new algorithms in the Pierre Auger surface detectors. Showers for muon and tau neutrino initiating particles on various altitudes, angles and energies were simulated in CORSICA and Offline platforms giving pattern of ADC traces in Auger water Cherenkov detectors. The 3-layer 12-8-1 neural network was taught in MATLAB by simulated ADC traces according the Levenberg-Marquardt algorithm. Results show that a probability of a ADC traces generation is very low due to a small neutrino cross-section. Nevertheless, ADC traces, if occur, for 1-10 EeV showers are relatively short and can be analyzed by 16-point input algorithm. We optimized the coefficients from MATLAB to get a maximal range of potentially registered events and for fixed-point FPGA processing to minimize calculation errors. New sophisticated triggers implemented in Cyclone{sup R} V E FPGAs with large amount of DSP blocks, embedded memory running with 120 - 160 MHz sampling may support a discovery of neutrino events in the Pierre Auger Observatory. (authors)

  5. Linking Safety Analysis to Safety Requirements

    DEFF Research Database (Denmark)

    Hansen, Kirsten Mark

    Software for safety critical systems must deal with the hazards identified by safety analysistechniques: Fault trees, event trees,and cause consequence diagrams can be interpreted as safety requirements and used in the design activity. We propose that the safety analysis and the system design use...... the same system model and that this model is formalized in a real-time, interval logic, based on a conventional dynamic systems model with a state over time. The three safety analysis techniques are interpreted in this model and it is shown how to derive safety requirements for components of a system....

  6. CERN's new safety policy

    CERN Multimedia

    2014-01-01

    The documents below, published on 29 September 2014 on the HSE website, together replace the document SAPOCO 42 as well as Safety Codes A1, A5, A9, A10, which are no longer in force. As from the publication date of these documents any reference made to the document SAPOCO 42 or to Safety Codes A1, A5, A9 and A10 in contractual documents or CERN rules and regulations shall be deemed to constitute a reference to the corresponding provisions of the documents listed below.   "The CERN Safety Policy" "Safety Regulation SR-SO - Responsibilities and organisational structure in matters of Safety at CERN" "General Safety Instruction GSI-SO-1 - Departmental Safety Officer (DSO)" "General Safety Instruction GSI-SO-2 - Territorial Safety Officer (TSO)" "General Safety Instruction GSI-SO-3 - Safety Linkperson (SLP)" "General Safety Instruction GSI-SO-4 - Large Experiment Group Leader In Matters of Safety (LEXGLI...

  7. Rebuilding a safety culture

    Science.gov (United States)

    Rodney, George A.

    1991-01-01

    The development of a culture of safety and NASA since the Challenger accident is reviewed. The technical elements of the strengthened NASA safety program are described, including problem reporting, risk/assessment/risk management, operational safety, and safety assurance are addressed. Future directions in the development of safety are considered.

  8. Reconstruction of extensive air showers and measurement of the cosmic ray energy spectrum in the range of 1 - 80 PeV at the South Pole

    Energy Technology Data Exchange (ETDEWEB)

    Klepser, Stefan

    2008-06-24

    IceTop is a km{sup 2} scale detector array for highly energetic cosmic radiation. It is a part of the IceCube Observatory that is presently being built at the geographic South Pole. It aims for the detection of huge particle cascades induced by PeV cosmic rays in the atmosphere. These extensive air showers are detected by cylindrical ice tanks that collect the Cherenkov light produced by penetrating particles. The main goal of IceTop is the investigation of the energy distribution and chemical composition of PeV to EeV cosmic rays. This thesis presents the first analysis of highly energetic cosmic ray data taken with IceTop. First, the light response of the IceTop tanks is parametrised as a function of energy and particle type. An expectation function for the distribution of shower signals in the detector plane is developed. The likelihood fit based on that can reconstruct the recorded shower events with resolutions of 1.5 in direction, 9m in location of the shower center, and 12% in energy. This is well competitive with other experiments. The resulting energy response of the array is studied to set up response matrices for different primary nuclei and inclinations. These allow for a deconvolution of the distribution of reconstructed energies to derive the real energy spectrum. Two unfolding algorithms are implemented and studied, and response matrices are modeled for four different composition assumptions. With each assumption, energy spectra are unfolded for three different bins in inclination, using a data sample with an exposure of 3.86.10{sup 11} m{sup 2} s sr, taken in August 2007. The range of the spectrum is 1-80 PeV. Finally, a new analysis method is developed that uses the fact that cosmic rays in the PeV range are expected to be isotropic. It is shown that this requirement can be used for a likelihood estimation that is sensitive to composition without using additional information from other detector components. The analysis shows a clear preference of

  9. Uncoverd-collector, solar water heater for swimming pool showers. Impianti solari con collettori scoperti per produzione stagionale di acqua calda in stabilimenti balneari

    Energy Technology Data Exchange (ETDEWEB)

    Bertocchi, A.; Caselli, G.; Maccari, A.

    1990-01-01

    The solar water heater, designed for use in climates such as that found on the Adriatic coastline, makes use of a single, or direct pass system (thus eliminating any need for storage tanks and thermostatic valves) to satisfy typical requirements such as 2,000 liters/day of 24-27 degrees C minimum/35 degrees maximum hot water for showers. This supply can be met by a 6.3 square meter, polypropylene collector surface area to heat 15 degree, network fed water. The basis of the system's design and its main performance characteristics, simulated and prototype, are outlined in this paper.

  10. Economic and market feasibility analysis, by the point of view of gas and electrical companies, for replacement of the electric powered showers by the natural gas powered showers in ABC Paulista area; Analise da viabilidade economica e do mercado, do ponto de vista das concessionarias de gas e de energia eletrica, pela substituicao de chuveiros eletricos por gas natural, na area do ABC paulista

    Energy Technology Data Exchange (ETDEWEB)

    Callari, Roberto [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Rosim, Sidney Olivieri [Rosim e Papaleo Consultoria e Participacoes Ltda. (Brazil)

    2008-07-01

    The possibility of an exchange of energy for heating residential water should be seen, by the point of view of the concessionaires, as a single market and exclusionary, in which the development of new customers by the concessionaire of electric energy directly involves the development of these non-customers for the distributor of natural gas. The study shows that, under the terms of concession of electricity, the loss of any part of the markets, current and expansion would be attractive only if the natural gas concessionaire could pass part of their earnings with customers users of electric showers that change their profile to the gas heaters, for electrical distribution. Under the terms of the concession to natural gas, the condition of massive investments replacement of electric showers and absorption of growth and expansion entrant with customers, increase the turnover to allow the search of a mechanism for transferring part of that revenue to absorb also customers of electricity. Thus, both the concessionaire of electricity preserve their revenue and, in turn, the concessionaire of natural gas would have an effective gain of revenue for the absorption of the customers of electric showers. (author.

  11. BFS Human Behaviour Model for Traffic Safety

    OpenAIRE

    Marija Molan; Gregor Molan

    2011-01-01

    The Butterfly Flower Shower (BFS) Human Behaviour Model describes human behaviour in each demanding, possible accidental situation. The BFS human behaviour model is presented for a traffic situation. The key elements (perception, cognition, reaction) of the human behaviour are identified. Also possible limitations and errors in all elements of human behaviour are presented. The model is presented as the butterfly on the flower under the shower of interventions. The flower is environment descr...

  12. A major safety overhaul

    CERN Multimedia

    2003-01-01

    A redefined policy, a revamped safety course, an environmental project... the TIS (Technical Inspection and Safety) Division has begun a major safety overhaul. Its new head, Wolfgang Weingarten, explains to the Bulletin why and how this is happening.

  13. Bathroom safety - adults

    Science.gov (United States)

    Older adult bathroom safety; Falls - bathroom safety ... You may need to have safety bars in your bathroom. These grab bars should be secured vertically or horizontally to the wall, not diagonally. DO NOT use ...

  14. Bromine Safety

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, B

    2001-04-09

    The production and handling in 1999 of about 200 million kilograms of bromine plus substantial derivatives thereof by Great Lakes Chemical Corp. and Albemarle Corporation in their southern Arkansas refineries gave OSHA Occupational Injury/Illness Rates (OIIR) in the range of 0.74 to 1.60 reportable OIIRs per 200,000 man hours. OIIRs for similar industries and a wide selection of other U.S. industries range from 1.6 to 23.9 in the most recent OSHA report. Occupational fatalities for the two companies in 1999 were zero compared to a range in the U.S.of zero for all computer manufacturing to 0.0445 percent for all of agriculture, forestry and fishing in the most recent OSHA report. These results show that bromine and its compounds can be considered as safe chemicals as a result of the bromine safety standards and practices at the two companies. The use of hydrobromic acid as an electrical energy storage medium in reversible PEM fuel cells is discussed. A study in 1979 of 20 megawatt halogen working fluid power plants by Oronzio de Nora Group found such energy to cost 2 to 2.5 times the prevailing base rate at that time. New conditions may reduce this relative cost. The energy storage aspect allows energy delivery at maximum demand times where the energy commands premium rates. The study also found marginal cost and performance advantages for hydrobromic acid over hydrochloric acid working fluid. Separate studies in the late 70s by General Electric also showed marginal performance advantages for hydrobromic acid.

  15. First results from the spectral DCT trigger implemented in the Cyclone V Front-End Board used for a detection of very inclined showers in the Pierre Auger surface detector Engineering Array

    Energy Technology Data Exchange (ETDEWEB)

    Szadkowski, Zbigniew [University of Lodz, Department of Physics and Applied Informatics, 90-236 Lodz, (Poland)

    2015-07-01

    The paper presents the first results from the trigger based on the Discrete Cosine Transform (DCT) operating in the new Front-End Boards with Cyclone V FPGA deployed in 8 test surface detectors in the Pierre Auger Engineering Array. The patterns of the ADC traces generated by very inclined showers were obtained from the Auger database and from the CORSIKA simulation package supported next by Offline reconstruction Auger platform which gives a predicted digitized signal profiles. Simulations for many variants of the initial angle of shower, initialization depth in the atmosphere, type of particle and its initial energy gave a boundary of the DCT coefficients used next for the on-line pattern recognition in the FPGA. Preliminary results have proven a right approach. We registered several showers triggered by the DCT for 120 MSps and 160 MSps. (authors)

  16. Eye Protection: Safety Glasses. Safety Spotlight

    Science.gov (United States)

    Deck, Anita; Roy, Ken

    2017-01-01

    When it comes to eye safety, there are some situations in which regular safety glasses will work adequately for the needs of the STEM education classroom or laboratory. However, there are certain instances in which safety goggles must be used for safer protection. Taking the time to analyze hazards and assess the risks prior to any activity in the…

  17. Nuclear criticality safety guide

    Energy Technology Data Exchange (ETDEWEB)

    Pruvost, N.L.; Paxton, H.C. [eds.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

  18. Farm Health and Safety

    Science.gov (United States)

    ... jobs in the United States. Farms have many health and safety hazards, including Chemicals and pesticides Machinery, ... equipment can also reduce accidents. Occupational Safety and Health Administration

  19. New Safety rules

    CERN Multimedia

    Safety Commission

    2008-01-01

    The revision of CERN Safety rules is in progress and the following new Safety rules have been issued on 15-04-2008: Safety Procedure SP-R1 Establishing, Updating and Publishing CERN Safety rules: http://cern.ch/safety-rules/SP-R1.htm; Safety Regulation SR-S Smoking at CERN: http://cern.ch/safety-rules/SR-S.htm; Safety Regulation SR-M Mechanical Equipment: http://cern.ch/safety-rules/SR-M.htm; General Safety Instruction GSI-M1 Standard Lifting Equipment: http://cern.ch/safety-rules/GSI-M1.htm; General Safety Instruction GSI-M2 Standard Pressure Equipment: http://cern.ch/safety-rules/GSI-M2.htm; General Safety Instruction GSI-M3 Special Mechanical Equipment: http://cern.ch/safety-rules/GSI-M3.htm. These documents apply to all persons under the Director General’s authority. All Safety rules are available at the web page: http://www.cern.ch/safety-rules The Safety Commission

  20. The role of large and small cometary showers in the changes of living conditions on the Earth

    Science.gov (United States)

    Churyumov, K. I.; Steklov, A. F.; Vidmachenko, A. P.; Dashkiev, G. N.; Stepahno, I. V.; Steklov, E. A.; Slipchenko, A. S.; Romaniuk, Ya. O.

    2016-10-01

    completely different parties of the well-known asteroid-comet hazard and, especially, of large and small cometary showers. 3. Structural elements "Churyumov Unified Network". Summarize our proposals on the organization of effective structures "Churyumov Unified Network" [1-3, 5, 7-12] for terrestrial Aerospace Monitoring Services (TAMS) traces of all kinds of dangerous intrusions into the skies over our cities and countries. Recall that astrophysicists are most interested traces of dangerous intrusion of fragments of comets and asteroids, meteoroids, fireballs destroying (DIFCAMFD). As a result, we have: 3.1. Churyumov Conceptual club. We create, organize creative associations, collectives of Wildlife Photography on traces of intrusion; we make out it as a Churyumov Conceptual club, groups of simply connected Wildlife Photography on daytime and twilight traces of all kinds of dangerous intrusion. In our "Churyumov Unified Network" this structure is successfully operating since March 2013 [10]. Special registration invasion of the area of the Brovary city near Kiev was made by assistant professor Stepahno IV in December 1998. This organization has given us more than 36000 pictures in our data base. 3.2. Basic services of SAO TAMS. In our works we have described the purpose and meaning of the creation of stationary astronomical observatory (of SAO) of terrestrial aerospace monitoring services. Modern technical design of facilities in observations should "lift" mathematical horizon above the true horizon at the installation site of the photographic automated unified (PGAU). 3.3. Special TAMS MAO services. Each of SAO TAMS services necessary to deploy 1-3 mobile astronomical observatories (MAO) TAMS services. These specialized vehicles at astronomical observatories significantly strengthen the chances of success at "catching" and photodetection of traces of dangerous intrusion in conditions of positional observations. We note the success and the fact of use on Dnieper River near

  1. Patient safety: Safety culture and patient safety ethics

    DEFF Research Database (Denmark)

    Madsen, Marlene Dyrløv

    2006-01-01

    Patient safety - the prevention of medical error and adverse events - and the initiative of developing safety cultures to assure patients from harm have become one of the central concerns in quality improvement in healthcare both nationally andinternationally. This subject raises numerous...... the problems, and suggest possible solutions for improving patient safety through the promotion of safety culture and ethics. I seek to illuminate theissues of patient safety from several perspectives; the organizational healthcare system, in particular the healthcare workers perspectives and experiences......, and those of patients who experience the physical effect of poor patient safety. The dissertationconsists of nine papers and an appendix. Paper 1 describes the results of doctors and nurses attitudes towards reporting and the handling of adverse events. Paper 2 is a study and “review” of the international...

  2. New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites

    DEFF Research Database (Denmark)

    Rycroft, Michael J.; Odzimek, Anna; Arnold, Neil F.

    2007-01-01

    Several processes acting below, in and above thunderstorms and in electrified shower clouds drive upward currents which close through the global atmospheric electric circuit, These are all simulated in a novel way using the software package PSpice. A moderate negative cloud-to-ground lightning di...... that conduction and convection currents associated with "batteries" within thunderclouds and electrified shower clouds contribute essentially equally (similar to 500 A each) to maintaining the ionospheric potential....... cloud-to-ground lightning discharge from the bottom of a thunderstorm decreases the ionospheric potential by 0.014%. Such a discharge may trigger a sprite, causing the ionospheric potential to decrease by similar to 1 V. The time scales for the recovery of the ionospheric potential are shown...... to be similar to 250 s, which is of the same order as the CR time constant for the global circuit. Knowing the global average rate of lightning discharges, it is found that negative cloud-to-ground discharges increase the ionospheric potential by only similar to 4%, and that positive cloud-to-ground discharges...

  3. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations

    CERN Document Server

    Alwall, J; Frixione, S; Hirschi, V; Maltoni, F; Mattelaer, O; Shao, H -S; Stelzer, T; Torrielli, P; Zaro, M

    2014-01-01

    We discuss the theoretical bases that underpin the automation of the computations of tree-level and next-to-leading order cross sections, of their matching to parton shower simulations, and of the merging of matched samples that differ by light-parton multiplicities. We present a computer program, MadGraph5_aMC@NLO, capable of handling all these computations -- parton-level fixed order, shower-matched, merged -- in a unified framework whose defining features are flexibility, high level of parallelisation, and human intervention limited to input physics quantities. We demonstrate the potential of the program by presenting selected phenomenological applications relevant to the LHC and to a 1-TeV $e^+e^-$ collider. While next-to-leading order results are restricted to QCD corrections to SM processes in the first public version, we show that from the user viewpoint no changes have to be expected in the case of corrections due to any given renormalisable Lagrangian, and that the implementation of these are well un...

  4. Underground water Cherenkov muon detector array with the Tibet air shower array for gamma-ray astronomy in the 100 TeV region

    Science.gov (United States)

    Amenomori, M.; Ayabe, S.; Bi, X. J.; Chen, D.; Cui, S. W.; Danzengluobu; Ding, L. K.; Ding, X. H.; Feng, C. F.; Feng, Zhaoyang; Feng, Z. Y.; Gao, X. Y.; Geng, Q. X.; Guo, H. W.; He, H. H.; He, M.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Huang, Q.; Jia, H. Y.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Labaciren; Le, G. M.; Li, A. F.; Li, J. Y.; Lu, H.; Lu, S. L.; Meng, X. R.; Mizutani, K.; Mu, J.; Munakata, K.; Nagai, A.; Nanjo, H.; Nishizawa, M.; Ohnishi, M.; Ohta, I.; Onuma, H.; Ouchi, T.; Ozawa, S.; Ren, J. R.; Saito, T.; Saito, T. Y.; Sakata, M.; Sako, T. K.; Sasaki, T.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Wang, B.; Wang, H.; Wang, X.; Wang, Y. G.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yan, C. T.; Yang, X. C.; Yasue, S.; Ye, Z. H.; Yu, G. C.; Yuan, A. F.; Yuda, T.; Zhang, H. M.; Zhang, J. L.; Zhang, N. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhaxisangzhu; Zhou, X. X.

    2007-06-01

    We propose to build a large water-Cherenkov-type muon-detector array (Tibet MD array) around the 37 000 m2 Tibet air shower array (Tibet AS array) already constructed at 4300 m above sea level in Tibet, China. Each muon detector is a waterproof concrete pool, 6 m wide × 6 m long × 1.5 m deep in size, equipped with a 20 inch-in-diameter PMT. The Tibet MD array consists of 240 muon detectors set up 2.5 m underground. Its total effective area will be 8640 m2 for muon detection. The Tibet MD array will significantly improve gamma-ray sensitivity of the Tibet AS array in the 100 TeV region (10 1000 TeV) by means of gamma/hadron separation based on counting the number of muons accompanying an air shower. The Tibet AS+MD array will have the sensitivity to gamma rays in the 100 TeV region by an order of magnitude better than any other previous existing detectors in the world.

  5. Response and Shower Topology of 2 to 180 GeV Pions Measured with the ATLAS Barrel Calorimeter at the CERN Test-beam and Comparison to Monte Carlo Simulations

    CERN Document Server

    Abat, E; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T P A; Aleksa, M; Alexa, C; Anderson, K; Andreazza, A; Anghinolfi, F; Antonaki, A; Arabidze, G; Arik, E; Atkinson, T; Baines, J; Baker, O K; Banfi, D; Baron, S; Barr, A J; Beccherle, R; Beck, H P; Belhorma, B; Bell, P J; Benchekroun, D; Benjamin, D P; Benslama, K; Bergeaas Kuutmann, E; Bernabeu, J; Bertelsen, H; Binet, S; Biscarat, C; Boldea, V; Bondarenko, V G; Boonekamp, M; Bosman, M; Bourdarios, C; Broklova, Z; Burckhart Chromek, D; Bychkov, V; Callahan, J; Calvet, D; Canneri, M; Capeans Garrido, M; Caprini, M; Cardiel Sas, L; Carli, T; Carminati, L; Carvalho, J; Cascella, M; Castillo, M V; Catinaccio, A; Cauz, D; Cavalli, D; Cavalli Sforza, M; Cavasinni, V; Cetin, S A; Chen, H; Cherkaoui, R; Chevalier, L; Chevallier, F; Chouridou, S; Ciobotaru, M; Citterio, M; Clark, A; Cleland, B; Cobal, M; Cogneras, E; Conde Muino, P; Consonni, M; Constantinescu, S; Cornelissen, T; Correard, S; Corso Radu, A; Costa, G; Costa, M J; Costanzo, D; Cuneo, S; Cwetanski, P; Da Silva, D; Dam, M; Dameri, M; Danielsson, H O; Dannheim, D; Darbo, G; Davidek, T; De, K; Defay, P O; Dekhissi, B; Del Peso, J; Del Prete, T; Delmastro, M; Derue, F; Di Ciaccio, L; Dita, S; Dittus, F; Djama, F; Djobava, T; Dobos, D; Dobson, M; Dolgoshein, B A; Dotti, A; Drake, G; Drasal, Z; Dressnandt, N; Driouchi, G; Drohan, J; Ebenstein, W L; Eerola, P; Eerola, P; Efthymiopoulos, I; Egorov, K; Eifert, T F; Einsweiler, K; El Kacimi, M; Elsing, M; Emelyanov, D; Escobar, C; Etienvre, A I; Fabich, A; Facius, K; Fakhr-Edine, A I; Fanti, M; Farbin, A; Farthouat, P; Fassouliotis, D; Fayard, L; Febbraro, R; Fedin, O L; Fenyuk, A; Fergusson, D; Ferrari, P; Ferrari, R; Ferreira, B C; Ferrer, A; Ferrere, D; Filippini, G; Flick, T; Fournier, D; Francavilla, P; Francis, D; Froeschl, R; Froidevaux, D; Fullana, E; Gadomski, S; Gagliardi, G; Gagnon, P; Gallas, M; Gallop, B J; Gameiro, S; Gan, K K; Garcia, R; Garcia, C; Gavrilenko, I L; Gemme, C; Gerlach, P; Ghodbane, N; Giakoumopoulou, V; Giangiobbe, V; Giokaris, N; Di Girolamo, B; Glonti, G; Goettfert, T; Golling, T; Gollub, N; Gomes, A; Gomez, M D; Gonzalez-Sevilla, S; Goodrick, M J; Gorfine, G; Gorini, B; Goujdami, D; Grahn, K J; Grenier, P; Grigalashvili, N; Grishkevich, Y; Grosse-Knetter, J; Gruwe, M; Guicheney, C; Gupta, A; Haeberli, C; Haertel, R; Hajduk, Z; Hakobyan, H; Hance, M; Hansen, D J; Hansen, P H; Hara, K; Harvey Jr, A; Hawkings, R J; Heinemann, F E W; Henriques Correia, A; Henss, T; Hervas, L; Higon, E; Hill, J C; Hoffman, J; Hostachy, J Y; Hruska, I; Hubaut, F; Huegging, F; Hulsbergen, W; Hurwitz, M; Iconomidou-Fayard, L; Jansen, E; Jen-La Plante, I; Johansson, P D C; Jon-And, K; Joos, M; Jorgensen, S; Joseph, J; Kaczmarska, A; Kado, M; Karyukhin, A; Kataoka, M; Kayumov, F; Kazarov, A; Keener, P T; Kekelidze, G D; Kerschen, N; Kersten, S; Khomich, A; Khoriauli, G; Khramov, E; Khristachev, A; Khubua, J; Kittelmann, T H; Klingenberg, R; Klinkby, E B; Kodys, P; Koffas, T; Kolos, S; Konovalov, S P; Konstantinidis, N; Kopikov, S; Korolkov, I; Kostyukhin, V; Kovalenko, S; Kowalski, T Z; Kruger, K; Kramarenko, V; Kudin, L G; Kulchitsky, Y; Le Bihan, A C; Lacasta, C; Lafaye, R; Laforge, B; Lampl, W; Lanni, F; Laplace, S; Lari, T; Latorre, S; Le Bihan, A C; Lechowski, M; Ledroit-Guillon, F; Lehmann, G; Leitner, R; Lelas, D; Lester, C G; Liang, Z; Lichard, P; Liebig, W; Lipniacka, A; Lokajicek, M; Louchard, L; Lourerio, K F; Lucotte, A; Luehring, F; Lund-Jensen, B; Lundberg, B; Ma, H; Mackeprang, R; Maio, A; Maleev, V P; Malek, F; Mandelli, L; Maneira, J; Mangin-Brinet, M; Manousakis, A; Mapelli, L; Marques, C; Marti i García, S; Martin, F; Mathes, M; Mazzanti, M; McFarlane, K W; McPherson, R; Mchedlidze, G; Mehlhase, S; Meirosu, C; Meng, Z; Meroni, C; Miagkov, A; Mialkovski, V; Mikulec, B; Milstead, D; Minashvili, I; Mindur, B; Mitsou, V A; Moed, S; Monnier, E; Moorhead, G; Morettini, P; Morozov, S V; Mosidze, M; Mouraviev, S V; Moyse, E W J; Munar, A; Nadtochi, A V; Nakamura, K; Nechaeva, P; Negri, A; Nemecek, S; Nessi, M; Nesterov, S Y; Newcomer, F M; Nikitine, I; Nikolaev, K; Nikolic-Audit, I; Ogren, H; Oh, S H; Oleshko, S B; Olszowska, J; Onofre, A; Padilla Aranda, C; Paganis, S; Pallin, D; Pantea, D; Paolone, V; Parodi, F; Parsons, J; Parzhitskiy, S; Pasqualucci, E; Passmore, M S; Pater, J; Patrichev, S; Peez, M; Perez Reale, V; Perini, L; Peshekhonov, V D; Petersen, J; Petersen, T C; Petti, R; Phillips, P W; Pilcher, J; Pina, J; Pinto, B; Podlyski, F; Poggioli, L; Poppleton, A; Poveda, J; Pralavorio, P; Pribyl, L; Price, M J; Prieur, D; Puigdengoles, C; Puzo, P; Rohne, O; Ragusa, F; Rajagopalan, S; Reeves, K; Reisinger, I; Rembser, C; Bruckman de Renstrom, P; Reznicek, P; Ridel, M; Risso, P; Riu, I; Robinson, D; Roda, C; Roe, S; Romaniouk, A; Rousseau, D; Rozanov, A; Ruiz, A; Rusakovich, N; Rust, D; Ryabov, Y F; Ryjov, V; Salto, O; Salvachua, B; Salzburger, A; Sandaker, H; Santamarina Rios, C; Santi, L; Santoni, C; Saraiva, J G; Sarri, F; Sauvage, G; Says, L P; Schaefer, M; Schegelsky, V A; Schiavi, C; Schieck, J; Schlager, G; Schlereth, J; Schmitt, C; Schultes, J; Schwemling, P; Schwindling, J; Seixas, J M; Seliverstov, D M; Serin, L; Sfyrla, A; Shalanda, N; Shaw, C; Shin, T; Shmeleva, A; Silva, J; Simion, S; Simonyan, M; Sloper, J E; Smirnov, S Yu; Smirnova, L; Solans, C; Solodkov, A; Solovianov, O; Soloviev, I; Sosnovtsev, V V; Spano, F; Speckmayer, P; Stancu, S; Stanek, R; Starchenko, E; Straessner, A; Suchkov, S I; Suk, M; Szczygiel, R; Tarrade, F; Tartarelli, F; Tas, P; Tayalati, Y; Tegenfeldt, F; Teuscher, R; Thioye, M; Tikhomirov, V O; Timmermans, C; Tisserant, S; Toczek, B; Tremblet, L; Troncon, C; Tsiareshka, P; Tyndel, M; Karagoez Unel, M; Unal, G; Unel, G; Usai, G; Van Berg, R; Valero, A; Valkar, S; Valls, J A; Vandelli, W; Vannucci, F; Vartapetian, A; Vassilakopoulos, V I; Vasilyeva, L; Vazeille, F; Vernocchi, F; Vetter-Cole, Y; Vichou, I; Vinogradov, V; Virzi, J; Vivarelli, I; De Vivie, J B; Volpi, M; Vu Anh, T; Wang, C; Warren, M; Weber, J; Weber, M; Weidberg, A R; Weingarten, J; Wells, P S; Werner, P; Wheeler, S; Wiessmann, M; Wilkens, H; Williams, H H; Wingerter-Seez, I; Yasu, Y; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zhang, H; Zhelezko, A; Zhou, N

    2010-01-01

    The response of the ATLAS barrel calorimeter to pions with momenta from $2$ to $180$~GeV~ is studied in a test--beam at the CERN H8 beam line. %Various methods to reconstruct the deposited pion energies are studied. The mean energy, the energy resolution and the longitudinal and radial shower profiles, and, various observables characterising the shower topology in the calorimeter are measured. The data are compared to Monte Carlo simulations based on a detailed description of the experimental set--up and on various models describing the interaction of particles with matter based on Geant4.

  6. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, Exploration, and Human Health and Safety

    Science.gov (United States)

    Koontz, Steve

    2015-01-01

    In this presentation a review of galactic cosmic ray (GCR) effects on microelectronic systems and human health and safety is given. The methods used to evaluate and mitigate unwanted cosmic ray effects in ground-based, atmospheric flight, and space flight environments are also reviewed. However not all GCR effects are undesirable. We will also briefly review how observation and analysis of GCR interactions with planetary atmospheres and surfaces and reveal important compositional and geophysical data on earth and elsewhere. About 1000 GCR particles enter every square meter of Earth’s upper atmosphere every second, roughly the same number striking every square meter of the International Space Station (ISS) and every other low- Earth orbit spacecraft. GCR particles are high energy ionized atomic nuclei (90% protons, 9% alpha particles, 1% heavier nuclei) traveling very close to the speed of light. The GCR particle flux is even higher in interplanetary space because the geomagnetic field provides some limited magnetic shielding. Collisions of GCR particles with atomic nuclei in planetary atmospheres and/or regolith as well as spacecraft materials produce nuclear reactions and energetic/highly penetrating secondary particle showers. Three twentieth century technology developments have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems and assess effects on human health and safety effects. The key technology developments are: 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems. Space and geophysical exploration needs drove the development of the instruments and analytical tools needed to recover compositional and structural data from GCR induced nuclear reactions and secondary particle showers. Finally, the

  7. Safety at CERN

    CERN Multimedia

    2009-01-01

    Safety is an integral part of our working lives, and should be in our minds whatever job we do at CERN. Ultimately, safety is the responsibility of the Director General – your safety is my concern. That’s why I have this week appointed a new Safety Policy Committee (SAPOCO) that reflects the new Organizational structure of CERN. CERN’s Staff Rules and Regulations clearly lay out in chapter 3 the scope of safety at CERN as well as my responsibilities and yours in safety matters. At CERN, safety is considered in the broadest sense, encompassing occupational Health and Safety, environmental protection, and the safety of equipment and installations. It is my responsibility to put appropriate measures in place to ensure that these conditions are met. And it is the responsibility of us all to ensure that we are fully conversant with safety provisions applicable in our areas of work and that we comply with them. The appointment of a n...

  8. TWRS safety program plan

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, L.M., Westinghouse Hanford

    1996-08-01

    Management of Nuclear Safety, Industrial Safety, Industrial Hygiene, and Fire Protection programs, functions, and field support resources for Tank Waste Remediation Systems (TWRS) has, until recently, been centralized in TWRS Safety, under the Emergency, Safety, and Quality organization. Industrial hygiene technician services were also provided to support operational needs related to safety basis compliance. Due to WHC decentralization of safety and reengineering efforts in West Tank Farms, staffing and safety responsibilities have been transferred to the facilities. Under the new structure, safety personnel for TWRS are assigned directly to East Tank Farms, West Tank Farms, and a core Safety Group in TWRS Engineering. The Characterization Project Operations (CPO) safety organization will remain in tact as it currently exists. Personnel assigned to East Tank Farms, West Tank Farms, and CPO will perform facility-specific or project-specific duties and provide field implementation of programs. Those assigned to the core group will focus on activities having a TWRS-wide or programmatic focus. Hanford-wide activities will be the responsibility of the Safety Center of Expertise. In order to ensure an effective and consistent safety program for TWRS under the new organization program functions, goals, organizational structure, roles, responsibilities, and path forward must be clearly established. The purpose of the TWRS Safety Program Plan is to define the overall safety program, responsibilities, relationships, and communication linkages for safety personnel under the new structure. In addition, issues associated with reorganization transition are addressed, including training, project ownership, records management, and dissemination of equipment. For the purpose of this document ``TWRS Safety`` refers to all safety professionals and technicians (Industrial Safety, Industrial Hygiene, Fire Protection, and Nuclear Safety) within the TWRS organization, regardless of their

  9. 40 CFR 170.235 - Posted pesticide safety information.

    Science.gov (United States)

    2010-07-01

    ..., and a hat or scarf). (iv) Wash/shower with soap and water, shampoo hair, and put on clean clothes... immediately in the nearest clean water if pesticides are spilled or sprayed on the body. As soon as possible, shower, shampoo, and change into clean clothes. (vii) Follow directions about keeping out of treated or...

  10. 40 CFR 170.135 - Posted pesticide safety information.

    Science.gov (United States)

    2010-07-01

    ... and socks, and a hat or scarf). (iv) Wash/shower with soap and water, shampoo hair, and put on clean...) Wash immediately in the nearest clean water if pesticides are spilled or sprayed on the body. As soon as possible, shower, shampoo, and change into clean clothes. (vii) Follow directions about keeping...

  11. Occupational safety motivation

    DEFF Research Database (Denmark)

    Pedersen, Louise; Kines, Pete

    2010-01-01

    Background: Motivation is one of the most important factors for safety behaviour and for implementing change in general. However, theoretical and psychometric studies of safety performance have traditionally treated safety motivation, safety compliance and safety participation unidimensionally....... At the same time many motivation questionnaire items are seldom founded on theory and/or do not account for the theories’ ontological and epistemological differences, e.g. of how knowledge, attitude and action are related. Present questionnaire items tap into occupational safety motivation in asking whether...... or not respondents ‘are’ motivated and whether they feel that safety is important or worthwhile. Another important aspect is ‘what’ motivates workers to comply to and participate in safety. The aim of this article is to introduce a new theory-based occupational safety motivation scale which is validated...

  12. Beyond safety accountability

    CERN Document Server

    Geller, E Scott

    2001-01-01

    Written in an easy-to-read conversational tone, Beyond Safety Accountability explains how to develop an organizational culture that encourages people to be accountable for their work practices and to embrace a higher sense of personal responsibility. The author begins by thoroughly explaining the difference between safety accountability and safety responsibility. He then examines the need of organizations to improve safety performance, discusses why such performance improvement can be achieved through a continuous safety process, as distinguished from a safety program, and provides the practic

  13. Safety-in-numbers

    DEFF Research Database (Denmark)

    Elvik, Rune; Bjørnskau, Torkel

    2017-01-01

    Highlights •26 studies of the safety-in-numbers effect are reviewed. •The existence of a safety-in-numbers effect is confirmed. •Results are consistent. •Causes of the safety-in-numbers effect are incompletely known.......Highlights •26 studies of the safety-in-numbers effect are reviewed. •The existence of a safety-in-numbers effect is confirmed. •Results are consistent. •Causes of the safety-in-numbers effect are incompletely known....

  14. Study of the timing performance of micro-channel plate photomultiplier for use as an active layer in a shower maximum detector

    Energy Technology Data Exchange (ETDEWEB)

    Ronzhin, A., E-mail: ronzhin@fnal.gov [Fermilab, Batavia, Il 60510 (United States); Los, S.; Ramberg, E. [Fermilab, Batavia, Il 60510 (United States); Apresyan, A.; Xie, S.; Spiropulu, M. [California Institute of Technology, Pasadena, CA 91126 (United States); Kim, H. [University of Chicago, Chicago, Il 60637 (United States)

    2015-09-21

    We continue the study of micro-channel plate photomultiplier (MCP-PMT) as the active element of a shower maximum (SM) detector. We present test beam results obtained with Photek 240 and Photonis XP85011 MCP-PMTs devices. For proton beams, we obtained a time resolution of 9.6 ps, representing a significant improvement over past results using the same time of flight system. For electron beams, the time resolution obtained for this new type of SM detector is measured to be at the level of 13 ps when we use Photek 240 as the active element of the SM. Using the Photonis XP85011 MCP-PMT as the active element of the SM, we performed time resolution measurements with pixel readout, and achieved a TR better than 30 ps, The pixel readout was observed to improve upon the TR compared to the case where the individual channels were summed.

  15. SEARCH FOR GAMMA RAYS ABOVE 100 TeV FROM THE CRAB NEBULA WITH THE TIBET AIR SHOWER ARRAY AND THE 100 m{sup 2} MUON DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Amenomori, M. [Department of Physics, Hirosaki University, Hirosaki 036-8561 (Japan); Bi, X. J.; Chen, W. Y.; Ding, L. K.; Feng, Zhaoyang; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, H. B.; Huang, J. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, D. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Chen, T. L.; Danzengluobu; Hu, Haibing [Department of Mathematics and Physics, Tibet University, Lhasa 850000 (China); Cui, S. W.; He, Z. T. [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Feng, C. F. [Department of Physics, Shandong University, Jinan 250100 (China); Feng, Z. Y. [Institute of Modern Physics, SouthWest Jiaotong University, Chengdu 610031 (China); Hibino, K. [Faculty of Engineering, Kanagawa University, Yokohama 221-8686 (Japan); Hotta, N. [Faculty of Education, Utsunomiya University, Utsunomiya 321-8505 (Japan); Collaboration: Tibet ASγ Collaboration; and others

    2015-11-10

    A 100 m{sup 2} muon detector (MD) was successfully constructed under the existing Tibet air shower (AS) array in the late fall of 2007. The sensitivity of the Tibet AS array to cosmic gamma rays can be improved by selecting muon-poor events with the MD. Our MC simulation of the MD response reasonably agrees with the experimental data in terms of the charge distribution for one-muon events and the background rejection power. Using the data collected by the Tibet AS array and the 100 m{sup 2} MD taken from 2008 March to 2010 February, we search for continuous gamma-ray emission from the Crab Nebula above ∼100 TeV. No significant excess is found, and the most stringent upper limit is obtained above 140 TeV.

  16. Road safety rhetoric versus road safety politics.

    Science.gov (United States)

    Køltzow, K

    1993-12-01

    In-depth interviews with top level decision makers in the road sector in Norway were conducted over a four-year period: Three principal impediments to safety interventions were identified: (i) Mobility is considered of primary importance; the "freedom of the car" is difficult to restrict, (ii) as a consequence there is much more lobbying for mobility than for safety, and (iii) road safety commitment and policies are weak, even among some of those responsible. For these reasons, efficient road safety work is often side-tracked at the top level, and substituted by nonbinding demands for road users' "change of attitude". In addition, road safety is often used as a proxy argument for measures that mainly promote mobility.

  17. Safety KPIs - Monitoring of safety performance

    Directory of Open Access Journals (Sweden)

    Andrej Lališ

    2014-09-01

    Full Text Available This paper aims to provide brief overview of aviation safety development focusing on modern trends represented by implementation of Safety Key Performance Indicators. Even though aviation is perceived as safe means of transport, it is still struggling with its complexity given by long-term growth and robustness which it has reached today. Thus nowadays safety issues are much more complex and harder to handle than ever before. We are more and more concerned about organizational factors and control mechanisms which have potential to further increase level of aviation safety. Within this paper we will not only introduce the concept of Key Performance Indicators in area of aviation safety as an efficient control mechanism, but also analyse available legislation and documentation. Finally we will propose complex set of indicators which could be applied to Czech Air Navigation Service Provider.

  18. Patient safety: Safety culture and patient safety ethics

    OpenAIRE

    Madsen, Marlene Dyrløv

    2006-01-01

    Patient safety - the prevention of medical error and adverse events - and the initiative of developing safety cultures to assure patients from harm have become one of the central concerns in quality improvement in healthcare both nationally andinternationally. This subject raises numerous challenging issues of systemic, organisational, cultural and ethical relevance, which this dissertation seeks to address through the application of different disciplinary approaches. The main focus of resear...

  19. National Safety Council

    Science.gov (United States)

    ... Practical Solutions & Training Tools Online Learning Safety Awards & Recognition Publications, Library & Research Get Support for Safety Membership Logos Networking & Additional Resources Member Appreciation Month NSC Division Networks Alcohol & Drug Impairment Business & ...

  20. Car Seat Safety

    Science.gov (United States)

    ... to Talk to Your Child About the News Gun Safety Too Late for the Flu Vaccine? Eating ... many local health departments, public safety groups, hospitals, law enforcement agencies, and fire departments have technicians or ...

  1. Flu Vaccine Safety Information

    Science.gov (United States)

    ... Types Seasonal Avian Swine/Variant Pandemic Other Flu Vaccine Safety Information Questions & Answers Language: English (US) Español ... of flu vaccines monitored? Egg Allergy Are flu vaccines safe? Flu vaccines have good safety record. Hundreds ...

  2. Fires and Food Safety

    Science.gov (United States)

    ... Standard Forms FSIS United States Department of Agriculture Food Safety and Inspection Service About FSIS District Offices Careers ... Viewer (JSR 286) Actions ${title} Loading... Fires and Food Safety Fire! Few words can strike such terror. Residential ...

  3. Freezing and Food Safety

    Science.gov (United States)

    ... Standard Forms FSIS United States Department of Agriculture Food Safety and Inspection Service About FSIS District Offices Careers ... Viewer (JSR 286) Actions ${title} Loading... Freezing and Food Safety What Can You Freeze? Is Frozen Food Safe? ...

  4. Fire Safety (For Parents)

    Science.gov (United States)

    ... of Braces Eating Disorders Mitral Valve Prolapse Arrhythmias Fire Safety KidsHealth > For Parents > Fire Safety Print A ... event of a fire emergency in your home. Fire Prevention Of course, the best way to practice ...

  5. Refrigeration and Food Safety

    Science.gov (United States)

    ... Forms Standard Forms FSIS United States Department of Agriculture Food Safety and Inspection Service About FSIS District ... 286) Actions ${title} Loading... Refrigeration and Food Safety History of Refrigeration Importance of Refrigeration Types of Bacteria ...

  6. National Patient Safety Foundation

    Science.gov (United States)

    ... News Member Testimonials Lifetime Members Stand Up for Patient Safety Welcome Stand Up Members Stand Up e-News ... PLS Webcast Archives Stand Up Templates and Logos Patient Safety Coalition Coalition Overview Coalition Member Roster Members-Only ...

  7. Water safety and drowning

    Science.gov (United States)

    ... among people of all ages. Learning and practicing water safety is important to prevent drowning accidents. ... Water safety tips for all ages include: Learn CPR . Never swim alone. Never dive into water unless ...

  8. Animal Product Safety Information

    Science.gov (United States)

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Product Safety ... for more information. How to report when your animal has a bad reaction to a drug the ...

  9. DOE handbook electrical safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  10. Electrical safety guidelines

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  11. General safety considerations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    This document presents the full filling of the Brazilian obligations under the Convention on Nuclear Safety. The Chapter 4 of the document contains some details about the priority to safety, financial and human resources, human factors, quality assurance, safety assessment and verification, radiation protection and emergency preparedness.

  12. Improving patient safety culture

    NARCIS (Netherlands)

    Hellings, Johan; Schrooten, Ward; Klazinga, Niek S.; Vleugels, Arthur

    2010-01-01

    PURPOSE: Improving hospital patient safety means an open and stimulating culture is needed. This article aims to describe a patient safety culture improvement approach in five Belgian hospitals. DESIGN/METHODOLOGY/APPROACH: Patient safety culture was measured using a validated Belgian adaptation of

  13. Leadership and safety culture. Leadership for safety

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Erwin; Nithack, Eckhard [PreussenElektra GmbH, Hannover (Germany)

    2016-08-15

    The meaning of leadership for safety in the nuclear industry is pointed out. This topic has became an increasing rank since the German ''Energiewende''. Despite the phase-out of the German NPP's nuclear safety and the belonging safety culture needs to be well maintained. A challenge for the whole organisation. Following the challenge to operate nuclear power plants towards Operational Excellence a highly skilled and motivated organisation is needed. Therefore Leadership is a valuable success factor.

  14. Safety culture : a significant influence on safety in transportation

    Science.gov (United States)

    2017-08-01

    An organizations safety culture can influence safety outcomes. Research and experience show that when safety culture is strong, accidents are less frequent and less severe. As a result, building and maintaining strong safety cultures should be a t...

  15. Nuclear safety in perspective

    DEFF Research Database (Denmark)

    Andersson, K.; Sjöberg, B.M.D.; Lauridsen, Kurt

    2003-01-01

    The aim of the NKS/SOS-1 project has been to enhance common understanding about requirements for nuclear safety by finding improved means of communicat-ing on the subject in society. The project, which has been built around a number of seminars, wassupported by limited research in three sub......-projects: Risk assessment Safety analysis Strategies for safety management The report describes an industry in change due to societal factors. The concepts of risk and safety, safety management and systems forregulatory oversight are de-scribed in the nuclear area and also, to widen the perspective, for other...

  16. Uncertain safety: allocating responsibilities for safety

    National Research Council Canada - National Science Library

    2009-01-01

    Flood prevention, food safety, the transport of hazardous substances, infectious diseases, the risk of new Technologies and many other threats to public health and the environment call for ongoing public alertness...

  17. Workplace Safety and Health Topics: Safety & Prevention

    Science.gov (United States)

    ... Childhood Agricultural Injury Prevention Control Banding Controls for Noise Exposure Cost-effective Rollover Protective Structures (CROPS) Direct Reading and Sensor Technologies Distracted Driving at Work Electrical Safety Electronic Health Records (EHRs) and Patient ...

  18. Safety in Cryogenics – Safety device sizing

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The calculation is separated in three operations: o The estimation of the loads arriving on the component to protect, o The calculation of the mass flow to evacuate, o And the sizing of the safety device.

  19. Patient Safety Culture

    DEFF Research Database (Denmark)

    Kristensen, Solvejg

    Patient safety is highly prioritised in the Danish health care system, never the less, patients are still exposed to risk and harmed every day. Implementation of a patient safety culture has been suggested an effective mean to protect patients against adverse events. Working strategically...... with assessment and development of the patient safety culture is in early days in Denmark. It depends upon valid, reliable and effective methods. The patient safety culture represents a wide range of social phenomena permeating the way of life in a health care. In essence, the safety culture is an aggregation...... of health care professional’s behaviour, habits, norms, values, and basic assumptions related to patient care; it is the way things are done. The patient safety culture guides the motivation, commitment to and know-how of the safety management, and how all members of a work place interact. This thesis...

  20. Formal Safety versus Real Safety: Quantitative and Qualitative Approaches to Safety Culture – Evidence from Estonia

    Directory of Open Access Journals (Sweden)

    Järvis Marina

    2016-10-01

    Full Text Available This paper examines differences between formal safety and real safety in Estonian small and medium-sized enterprises. The results reveal key issues in safety culture assessment. Statistical analysis of safety culture questionnaires showed many organisations with an outstanding safety culture and positive safety attitudes. However, qualitative data indicated some important safety weaknesses and aspects that should be included in the process of evaluation of safety culture in organisations.

  1. Reliability and safety engineering

    CERN Document Server

    Verma, Ajit Kumar; Karanki, Durga Rao

    2016-01-01

    Reliability and safety are core issues that must be addressed throughout the life cycle of engineering systems. Reliability and Safety Engineering presents an overview of the basic concepts, together with simple and practical illustrations. The authors present reliability terminology in various engineering fields, viz.,electronics engineering, software engineering, mechanical engineering, structural engineering and power systems engineering. The book describes the latest applications in the area of probabilistic safety assessment, such as technical specification optimization, risk monitoring and risk informed in-service inspection. Reliability and safety studies must, inevitably, deal with uncertainty, so the book includes uncertainty propagation methods: Monte Carlo simulation, fuzzy arithmetic, Dempster-Shafer theory and probability bounds. Reliability and Safety Engineering also highlights advances in system reliability and safety assessment including dynamic system modeling and uncertainty management. Cas...

  2. Safety objectives for 2014

    CERN Multimedia

    HSE Unit

    2014-01-01

    This is the third year in which the CERN Management has presented annual safety objectives for the Organization, the “HSE Objectives”.   The HSE objectives for 2014, which were announced by the Director-General at his traditional New Year’s address to the staff and were presented at the first Enlarged Directorate meeting of the year, have been drawn up and agreed in close collaboration between the DSOs, the HSE Unit and the DG himself. From safety in the workplace to radiation and environmental protection, the document emphasises that “Safety is a priority for CERN” and that safety policy is a key element in how the Organization is run. And, like all policies, it generates objectives that “serve as a general framework for action”. The HSE objectives are broken down into the following fields: occupational health and safety on sites and in the workplace, radiation protection, radiation safety, environmental protection, emerge...

  3. Safety advice sheets

    CERN Multimedia

    HSE Unit

    2013-01-01

    You never know when you might be faced with questions such as: when/how should I dispose of a gas canister? Where can I find an inspection report? How should I handle/store/dispose of a chemical substance…?   The SI section of the DGS/SEE Group is primarily responsible for safety inspections, evaluating the safety conditions of equipment items, premises and facilities. On top of this core task, it also regularly issues “Safety Advice Sheets” on various topics, designed to be of assistance to users but also to recall and reinforce safety rules and procedures. These clear and concise sheets, complete with illustrations, are easy to display in the appropriate areas. The following safety advice sheets have been issued so far: Other sheets will be published shortly. Suggestions are welcome and should be sent to the SI section of the DGS/SEE Group. Please send enquiries to general-safety-visits.service@cern.ch.

  4. Thermal reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  5. Hydrogen Technologies Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  6. Principles of electrical safety

    CERN Document Server

    Sutherland, Peter E

    2015-01-01

    Principles of Electrical Safety discusses current issues in electrical safety, which are accompanied by series' of practical applications that can be used by practicing professionals, graduate students, and researchers. .  Provides extensive introductions to important topics in electrical safety Comprehensive overview of inductance, resistance, and capacitance as applied to the human body Serves as a preparatory guide for today's practicing engineers

  7. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 10.sup.17.8./sup.  eV

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2014-01-01

    Roč. 90, č. 12 (2014), "122005-1"-"122005-25" ISSN 1550-7998 R&D Projects: GA MŠk(CZ) 7AMB14AR005; GA MŠk(CZ) LG13007; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : astroparticle physics * Pierre Auger Observatory * cosmic rays * air showers * depth of maximum * Xmax Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  8. Lift truck safety review

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

  9. FOOD SAFETY TESTING LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory develops screening assays, tests and modifies biosensor equipment, and optimizes food safety testing protocols for the military and civilian sector...

  10. Training safely, Training safety

    Directory of Open Access Journals (Sweden)

    Jianjun Wu

    2014-09-01

    Full Text Available It is the basic requirement of maritime safety education to guarantee the safety of teaching operation while training the crew's occupation safety capability. Marine Training Center of Shanghai Maritime University has undertaken the practical teaching of "marine survival" for many years and come up with the whole safety procedures of training. Based on the requirements of SOLAS convention and regulations of STCW over crew training, this paper introduces the safety allocation, utilization and maintenance of teaching equipments. Through the investigation of the safety situation of students' practical operation, the safety teaching method named "four in one" has been put forward, which includes the pre-teaching safety precaution, the whole monitor during the teaching process, the post-teaching summary evaluation, and the reset and standby of teaching facilities. Finally, during the learning and training of "marine survival", crews and students are called on to place priority on personal safety rather than acquisition of knowledge and skills. Only in this way can they be capable of self-protection and protection of others in the career of seafaring.

  11. Improved safety at CERN

    CERN Multimedia

    2006-01-01

    As announced in Weekly Bulletin No. 43/2006, a new approach to the implementation of Safety at CERN has been decided, which required taking some managerial decisions. The guidelines of the new approach are described in the document 'New approach to Safety implementation at CERN', which also summarizes the main managerial decisions I have taken to strengthen compliance with the CERN Safety policy and Rules. To this end I have also reviewed the mandates of the Safety Commission and the Safety Policy Committee (SAPOCO). Some details of the document 'Safety Policy at CERN' (also known as SAPOCO42) have been modified accordingly; its essential principles, unchanged, remain the basis for the safety policy of the Organisation. I would also like to inform you that I have appointed Dr M. Bona as the new Head of the Safety Commission until 31.12.2008, and that I will proceed soon to the appointment of the members of the new Safety Policy Committee. All members of the personnel are deemed to have taken note of the d...

  12. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  13. A Silent Safety Program

    Science.gov (United States)

    Goodin, James Ronald

    2006-01-01

    NASA's Columbia Accident Investigation Board (CAIB) referred 8 times to the NASA "Silent Safety Program." This term, "Silent Safety Program" was not an original observation but first appeared in the Rogers Commission's Investigation of the Challenger Mishap. The CAIB on page 183 of its report in the paragraph titled 'Encouraging Minority Opinion,' stated "The Naval Reactor Program encourages minority opinions and "bad news." Leaders continually emphasize that when no minority opinions are present, the responsibility for a thorough and critical examination falls to management. . . Board interviews revealed that it is difficult for minority and dissenting opinions to percolate up through the agency's hierarchy. . ." The first question and perhaps the only question is - what is a silent safety program? Well, a silent safety program may be the same as the dog that didn't bark in Sherlock Holmes' "Adventure of the Silver Blaze" because system safety should behave as a devil's advocate for the program barking on every occasion to insure a critical review inclusion. This paper evaluates the NASA safety program and provides suggestions to prevent the recurrence of the silent safety program alluded to in the Challenger Mishap Investigation. Specifically targeted in the CAM report, "The checks and balances the safety system was meant to provide were not working." A silent system safety program is not unique to NASA but could emerge in any and every organization. Principles developed by Irving Janis in his book, Groupthink, listed criteria used to evaluate an organization's cultural attributes that allows a silent safety program to evolve. If evidence validates Jams's criteria, then Jams's recommendations for preventing groupthink can also be used to improve a critical evaluation and thus prevent the development of a silent safety program.

  14. Extensive air shower Monte Carlo modeling at the ground and aircraft flight altitude in the South Atlantic Magnetic Anomaly and comparison with neutron measurements

    Science.gov (United States)

    Pazianotto, M. T.; Cortés-Giraldo, M. A.; Federico, C. A.; Hubert, G.; Gonçalez, O. L.; Quesada, J. M.; Carlson, B. V.

    2017-02-01

    Modeling cosmic-ray-induced particle fluxes in the atmosphere is very important for developing many applications in aeronautics, space weather and on ground experimental arrangements. There is a lack of measurements and modeling at flight altitude and on ground in the South Atlantic Magnetic Anomaly. In this work we have developed an application based on the Geant4 toolkit called gPartAt that is aimed at the analysis of extensive air shower particle spectra. Another application has been developed using the MCNPX code with the same approach in order to evaluate the models and nuclear data libraries used in each application. Moreover, measurements were performed to determine the ambient dose equivalent rate of neutrons at flight altitude in different regions and dates in the Brazilian airspace; these results were also compared with the simulations. The results from simulations of the neutron spectra at ground level were also compared to data from a neutron spectrometer in operation since February 2015 at the Pico dos Dias Observatory in Brazil, at 1864 m above sea level, as part of a collaboration between the Institute for Advanced Studies (IEAv) and the French Aerospace Lab (ONERA). This measuring station is being operated with support from the National Astrophysics Laboratory (LNA). The modeling approaches were also compared to the AtmoRad computational platform, QARM, EXPACS codes and with measurements of the neutron spectrum taken in 2009 at the Pico dos Dias Observatory.

  15. Access to Showers and Change Rooms at Work Associated With Active Commuting Among Older Workers: Findings From a National Population Survey.

    Science.gov (United States)

    Biswas, Aviroop; Smith, Peter M; Gignac, Monique A M

    2018-01-01

    Access to workplace showers and change rooms (WS/CR) has been found to be associated with active commuting (AC). Yet it is unclear whether this extends to older workers. We examined the association between WS/CR and AC (walking, cycling) comparing older and younger workers. Data came from 53,294 respondents to the 2007-2008 Canadian Community Health Survey. Associations between WS/CR and walking and cycling were analyzed for main effects and by age and sex using logistic regression. Compared with younger ages, workers 50 to 75 years old were more likely to cycle to work if WS/CR were available (odds ratio [OR] = 1.71, 95% confidence interval [CI] = [1.13, 2.58]), though the overall and sex-related associations between WS/CR and AC were nonsignificant. WS/CR may be a promising strategy to promote AC particularly among older workers. With large numbers of middle- and older-aged adults working longer, the implications of AC for sustaining good health may be considerable.

  16. Highway Safety Program Manual: Volume 3: Motorcycle Safety.

    Science.gov (United States)

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 3 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) concentrates on aspects of motorcycle safety. The purpose and specific objectives of a State motorcycle safety program are outlined. Federal authority in the highway safety area and general policies…

  17. Safety Training: basic safety and access courses

    CERN Multimedia

    2005-01-01

    Objective The purpose of the basic safety courses is to increase awareness for everyone working on the CERN site (CERN staff, associates, outside companies, students and apprentices) of the various hazards existing on site, and how to recognise and avoid them. Safety course changes The current organisation of basic safety courses is changing. There will be two main modifications: the organisation of the courses and the implementation of a specific new training course for the LHC machine during the LHC tests and hardware commissioning phase. Organisational changes This concerns the existing basic safety training, currently called level 1, level 2 and level 3. Under the new procedure, a video will be projected in registration building 55 and will run every day at 14.00 and 15.00 in English. The duration of the video will be 50 minutes. The course contents will be the same as the slides currently used, plus a video showing real situations. With this new organization, participants will systematically follow...

  18. Safety Training: Basic Safety and Access Courses

    CERN Multimedia

    Antonella Vignes

    2005-01-01

    Objective The purpose of the basic safety courses is to increase awareness for everyone working on the CERN site (CERN staff, associates, outside companies, students and apprentices) of the various existing on-site hazards, and how to recognize and avoid them. Safety course changes The current organization for basic safety courses is changing. There will be two main modifications: the organization of the courses and the implementation of a specific new training course for the LHC machine during the LHC tests and hardware commissioning phase. Organizational changes This concerns the existing basic safety training, currently called level1, level2 and level3. Under the new procedure, a video will be projected in registration building 55 and will run every day at 14.00 and 15.00 in English. The duration of the video will be 50 minutes. The course contents will be the same as the slides currently used, plus a video showing real situations. With this new organization, attendees will systematically follow the...

  19. Subjective safety in traffic.

    NARCIS (Netherlands)

    2012-01-01

    The term ‘subjective safety in traffic’ refers to people feeling unsafe in traffic or, more generally, to anxiety regarding being unsafe in traffic for oneself and/or others. Subjective safety in traffic can lead to road users limiting their mobility and social activities, which is one of the

  20. Aviation safety and ICAO

    NARCIS (Netherlands)

    Huang, Jiefang

    2009-01-01

    The thesis addresses the issue of aviation safety under the rule of law. Aviation safety is a global concern. While air transport is considered a safe mode of travel, it is susceptible to inherent risks of flight, the use of force, and terrorist acts. Consequently, within the framework of the

  1. Safety in Aquaculture

    Science.gov (United States)

    Durborow, Robert M.; Myers, Melvin L.

    2016-01-01

    In this article, occupational safety interventions for agriculture-related jobs, specifically in aquaculture, are reviewed. Maintaining quality of life and avoiding economic loss are two areas in which aquaculturists can benefit by incorporating safety protocols and interventions on their farms. The information in this article is based on farm…

  2. Nuclear safety in perspective

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, K. [Karinta-Konsult HB (Sweden); Sjoeberg, B.M.D. [Norwegian Univ. of Scince and Technology (Norway); Larudisen, K. [Risoe National Lab., Roskilde (Denmark); Wahlstroem, B. [VTT Automation (Finland)

    2002-06-01

    The aim of the NKS/SOS-1 project has been to enhance common understanding about requirements for nuclear safety by finding improved means of communicating on the subject in society. The project, which has been built around a number of seminars, was supported by limited research in three sub-projects: 1) Risk assessment, 2) Safety analysis, and 3) Strategies for safety management. The report describes an industry in change due to societal factors. The concepts of risk and safety, safety management and systems for regulatory oversight are described in the nuclear area and also, to widen the perspective, for other industrial areas. Transparency and public participation are described as key elements in good risk communication, and case studies are given. Environmental Impact Assessment and Strategic Environmental Assessment are described as important overall processes within which risk communication can take place. Safety culture, safety indicators and quality systems are important concepts in the nuclear safety area are very useful, but also offer important challenges for the future. They have been subject to special attention in the project. (au)

  3. Elements of nuclear safety

    CERN Document Server

    Libmann, Jacques

    1996-01-01

    This basically educational book is intended for all involved in nuclear facility safety. It dissects the principles and experiences conducive to the adoption of attitudes compliant with what is now known as "safety culture". This book is accessible to a wide range of readers.

  4. Safety analysis for `Fugen`

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The improvement of safety in nuclear power stations is an important proposition. Therefore also as to the safety evaluation, it is important to comprehensively and systematically execute it by referring to the operational experience and the new knowledge which is important for the safety throughout the period of use as well as before the construction and the start of operation of nuclear power stations. In this report, the results when the safety analysis for ``Fugen`` was carried out by referring to the newest technical knowledge are described. As the result, it was able to be confirmed that the safety of ``Fugen`` has been secured by the inherent safety and the facilities which were designed for securing the safety. The basic way of thinking on the safety analysis including the guidelines to be conformed to is mentioned. As to the abnormal transient change in operation and accidents, their definition, the events to be evaluated and the standards for judgement are reported. The matters which were taken in consideration at the time of the analysis are shown. The computation programs used for the analysis were REACT, HEATUP, LAYMON, FATRAC, SENHOR, LOTRAC, FLOOD and CONPOL. The analyses of the abnormal transient change in operation and accidents are reported on the causes, countermeasures, protective functions and results. (K.I.)

  5. Safety in cardiac surgery

    NARCIS (Netherlands)

    Siregar, S.

    2013-01-01

    The monitoring of safety in cardiac surgery is a complex process, which involves many clinical, practical, methodological and statistical issues. The objective of this thesis was to measure and to compare safety in cardiac surgery in The Netherlands using the Netherlands Association for

  6. Safety Behaviors and Stuttering

    Science.gov (United States)

    Lowe, Robyn; Helgadottir, Fjola; Menzies, Ross; Heard, Rob; O'Brian, Sue; Packman, Ann; Onslow, Mark

    2017-01-01

    Purpose: Those who are socially anxious may use safety behaviors during feared social interactions to prevent negative outcomes. Safety behaviors are associated with anxiety maintenance and poorer treatment outcomes because they prevent fear extinction. Social anxiety disorder is often comorbid with stuttering. Speech pathologists reported in a…

  7. K Basin safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Porten, D.R.; Crowe, R.D.

    1994-12-16

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  8. Formalizing Probabilistic Safety Claims

    Science.gov (United States)

    Herencia-Zapana, Heber; Hagen, George E.; Narkawicz, Anthony J.

    2011-01-01

    A safety claim for a system is a statement that the system, which is subject to hazardous conditions, satisfies a given set of properties. Following work by John Rushby and Bev Littlewood, this paper presents a mathematical framework that can be used to state and formally prove probabilistic safety claims. It also enables hazardous conditions, their uncertainties, and their interactions to be integrated into the safety claim. This framework provides a formal description of the probabilistic composition of an arbitrary number of hazardous conditions and their effects on system behavior. An example is given of a probabilistic safety claim for a conflict detection algorithm for aircraft in a 2D airspace. The motivation for developing this mathematical framework is that it can be used in an automated theorem prover to formally verify safety claims.

  9. Food Safety and Raw Milk

    Science.gov (United States)

    ... for Food Safety Get Ready to Grill Safely Protect Yourself When Eating Out Rules of the Game for Food Safety Safety Tips for Handling and Preparing Common Foods Steps to Safe and Healthy Fruits & Vegetables Social Media Graphics Food Safety Features Food Safety Newsletters Get ...

  10. Exploratory analysis of the safety climate and safety behavior relationship.

    Science.gov (United States)

    Cooper, M D; Phillips, R A

    2004-01-01

    Safety climate refers to the degree to which employees believe true priority is given to organizational safety performance, and its measurement is thought to provide an "early warning" of potential safety system failure(s). However, researchers have struggled over the last 25 years to find empirical evidence to demonstrate actual links between safety climate and safety performance. A safety climate measure was distributed to manufacturing employees at the beginning of a behavioral safety initiative and redistributed one year later. Multiple regression analysis demonstrated that perceptions of the importance of safety training were predictive of actual levels of safety behavior. The results also demonstrate that the magnitude of change in perceptual safety climate scores will not necessarily match actual changes (r=0.56, n.s.) in employee's safety behavior. This study obtained empirical links between safety climate scores and actual safety behavior. Confirming and contradicting findings within the extant safety climate literature, the results strongly suggest that the hypothesized climate-behavior-accident path is not as clear cut as commonly assumed. A statistical link between safety climate perceptions and safety behavior will be obtained when sufficient behavioral data is collected. The study further supports the use of safety climate measures as useful diagnostic tools in ascertaining employee's perceptions of the way that safety is being operationalized.

  11. Is Safety in Danger?

    DEFF Research Database (Denmark)

    Broncano-Berrocal, Fernando

    2014-01-01

    In “Knowledge Under Threat” (Philosophy and Phenomenological Research 2012), Tomas Bogardus proposes a counterexample to the safety condition for knowledge. Bogardus argues that the case demonstrates that unsafe knowledge is possible. I argue that the case just corroborates the well-known require...... offer a diagnosis of a common error about the kind of cases that are typically considered potential counterexamples to the necessity of the epistemic condition: proponents of the alleged counterexamples mistake a strong condition that I call super-safety for safety......In “Knowledge Under Threat” (Philosophy and Phenomenological Research 2012), Tomas Bogardus proposes a counterexample to the safety condition for knowledge. Bogardus argues that the case demonstrates that unsafe knowledge is possible. I argue that the case just corroborates the well......-known requirement that modal conditions like safety must be relativized to methods of belief formation. I explore several ways of relativizing safety to belief-forming methods and I argue that none is adequate: if methods were individuated in those ways, safety would fail to explain several much-discussed cases. I...

  12. Safety management practices and safety behaviour: assessing the mediating role of safety knowledge and motivation.

    Science.gov (United States)

    Vinodkumar, M N; Bhasi, M

    2010-11-01

    Safety management practices not only improve working conditions but also positively influence employees' attitudes and behaviours with regard to safety, thereby reducing accidents in workplace. This study measured employees' perceptions on six safety management practices and self-reported safety knowledge, safety motivation, safety compliance and safety participation by conducting a survey using questionnaire among 1566 employees belonging to eight major accident hazard process industrial units in Kerala, a state in southern part of India. The reliability and unidimesionality of all the scales were found acceptable. Path analysis using AMOS-4 software showed that some of the safety management practices have direct and indirect relations with the safety performance components, namely, safety compliance and safety participation. Safety knowledge and safety motivation were found to be the key mediators in explaining these relationships. Safety training was identified as the most important safety management practice that predicts safety knowledge, safety motivation, safety compliance and safety participation. These findings provide valuable guidance for researchers and practitioners for identifying the mechanisms by which they can improve safety of workplace. 2010 Elsevier Ltd. All rights reserved.

  13. Managing electrical safety

    CERN Document Server

    Wiggins, James H, Jr

    2001-01-01

    Managing Electrical Safety provides an overview of electric basics, hazards, and established standards that enables you to understand the hazards you are likely to encounter in your workplace. Focusing on typical industrial environments-which utilize voltages much higher than household or office circuits-the author identifies the eight key components of an electrical safety program and examines each using a model safety management process. You'll learn how to identify electrical hazards, how to prescribe necessary electrical Personal Protective Equipment, how to ensure that equipment is de-ene

  14. LTE for public safety

    CERN Document Server

    Liebhart, Rainer; Wong, Curt; Merkel , Jürgen

    2015-01-01

    The aim of the book is to educate government agencies, operators, vendors and other regulatory institutions how LTE can be deployed to serve public safety market and offer regulatory / public safety features. It is written in such a way that it can be understood by both technical and non-technical personnel with just introductory knowledge in wireless communication. Some sections and chapters about public safety services offered by LTE network are intended to be understood by anyone with no knowledge in wireless communication.

  15. Safety shutdown separators

    Science.gov (United States)

    Carlson, Steven Allen; Anakor, Ifenna Kingsley; Farrell, Greg Robert

    2015-06-30

    The present invention pertains to electrochemical cells which comprise (a) an anode; (b) a cathode; (c) a solid porous separator, such as a polyolefin, xerogel, or inorganic oxide separator; and (d) a nonaqueous electrolyte, wherein the separator comprises a porous membrane having a microporous coating comprising polymer particles which have not coalesced to form a continuous film. This microporous coating on the separator acts as a safety shutdown layer that rapidly increases the internal resistivity and shuts the cell down upon heating to an elevated temperature, such as 110.degree. C. Also provided are methods for increasing the safety of an electrochemical cell by utilizing such separators with a safety shutdown layer.

  16. Nuclear regulation and safety

    Energy Technology Data Exchange (ETDEWEB)

    Hendrie, J.M.

    1982-01-01

    Nuclear regulation and safety are discussed from the standpoint of a hypothetical country that is in the process of introducing a nuclear power industry and setting up a regulatory system. The national policy is assumed to be in favor of nuclear power. The regulators will have responsibility for economic, reliable electric production as well as for safety. Reactor safety is divided into three parts: shut it down, keep it covered, take out the afterheat. Emergency plans also have to be provided. Ways of keeping the core covered with water are discussed. (DLC)

  17. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport

  18. Systems Safety and Engineering Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Systems Safety and Engineering Division conducts engineering, research, and analysis to improve transportation safety, capacity, and resiliency. We provide...

  19. MRI Safety during Pregnancy

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z MRI Safety During Pregnancy Magnetic resonance imaging (MRI) Illness ... during the exam? Contrast material MRI during pregnancy Magnetic resonance imaging (MRI) If you are pregnant and your doctor ...

  20. Carbon Monoxide Safety

    Science.gov (United States)

    ... 189 KB Public service announcement: winter fire safety Stock photography Use these free, high resolution photos to ... Twitter Facebook Twitter Fire Prevention and Public Education Exchange The Exchange is a collection of national, state ...

  1. Vaccine Safety Datalink

    Science.gov (United States)

    The Vaccine Safety Datalink is part of the National Immunization Program within the Centers for Disease Control and Prevention and was started in recognition of gaps in the scientific knowledge of rare vaccine side effects.

  2. Medical Device Safety

    Science.gov (United States)

    ... Communication Date FDA Warns Against Use of Injectable Silicone for Body Contouring and Enhancement: FDA Safety Communication ... 03/18/17 Neurovascular Thrombus Retrieval Catheters and Guide Catheters Used During Neurological Interventional Procedures: Differences in ...

  3. Organizational Culture and Safety

    Science.gov (United States)

    Adams, Catherine A.

    2003-01-01

    '..only a fool perseveres in error.' Cicero. Humans will break the most advanced technological devices and override safety and security systems if they are given the latitude. Within the workplace, the operator may be just one of several factors in causing accidents or making risky decisions. Other variables considered for their involvement in the negative and often catastrophic outcomes include the organizational context and culture. Many organizations have constructed and implemented safety programs to be assimilated into their culture to assure employee commitment and understanding of the importance of everyday safety. The purpose of this paper is to examine literature on organizational safety cultures and programs that attempt to combat vulnerability, risk taking behavior and decisions and identify the role of training in attempting to mitigate unsafe acts.

  4. Laser safety in dentistry.

    Science.gov (United States)

    Sweeney, Caroline

    2008-01-01

    Although many regulations and standards relating to laser safety are in effect, there continue to be an average of 35 laser injuries per year. Laser safety professionals believe that this number under-represents the actual number of injuries and that many more accidents per year occur that are not documented with federal agencies. A review of these accidents has determined that failing to wear available eye protection is one of the most frequent contributing factors to laser injuries. As the purchase and use of lasers in dentistry continues to grow, so must concern for laser safety. This article provides basic information to advance the safe use of lasers in dentistry and to help establish laser safety protocols for the dental office.

  5. Injury & Safety Report - Legacy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Injury & Safety Report is a mandatory post trip legal document observers fill out to report any injuries they have incurred, illnesses they have had, or...

  6. Winter Weather: Outdoor Safety

    Science.gov (United States)

    ... or Traumatic Event Resources for Families Resources for Leaders Resources for State and Local Governments Emergency Responders: ... Emergency Wound Care Wound Management for Healthcare Pros Power Outages When the Power Goes Out Worker Safety ...

  7. Winter Weather: Indoor Safety

    Science.gov (United States)

    ... or Traumatic Event Resources for Families Resources for Leaders Resources for State and Local Governments Emergency Responders: ... Emergency Wound Care Wound Management for Healthcare Pros Power Outages When the Power Goes Out Worker Safety ...

  8. Practice Hospital Bed Safety

    Science.gov (United States)

    ... Updates Practice Hospital Bed Safety Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Hospital Bed Entrapment Zones An ... the side edge of the head or foot board 7. between the head or foot board and ...

  9. Aerospace Safety Advisory Panel

    Science.gov (United States)

    1984-01-01

    An assessment of NASA's safety performance for 1983 affirms that NASA Headquarters and Center management teams continue to hold the safety of manned flight to be their prime concern, and that essential effort and resources are allocated for maintaining safety in all of the development and operational programs. Those conclusions most worthy of NASA management concentration are given along with recommendations for action concerning; product quality and utility; space shuttle main engine; landing gear; logistics and management; orbiter structural loads, landing speed, and pitch control; the shuttle processing contractor; and the safety of flight operations. It appears that much needs to be done before the Space Transportation System can achieve the reliability necessary for safe, high rate, low cost operations.

  10. Swimming Pool Safety

    Science.gov (United States)

    ... Prevention Listen Español Text Size Email Print Share Swimming Pool Safety Page Content ​What is the best way to keep my child safe around swimming pools? An adult should actively watch children at ...

  11. Safety in paediatric imaging

    Energy Technology Data Exchange (ETDEWEB)

    Carter, D.; Filice, I.; Murray, D.; Thomas, K. [The Hospital for Sick Children, Toronto, Ontario (Canada)

    2006-01-01

    Those of us working in a dedicated paediatric environment are aware of the important safety issues with regard to paediatrics. Our goal when working with paediatric patients, the goal is to obtain the best quality images while keeping patients safe and their distress to a minimum. This article will discuss some of the issues regarding paediatric safety in a diagnostic imaging department, including radiation doses and the risk to paediatric patients, reducing medication errors, safe sedation practice and environmental safety. Also discussed are some conditions requiring special consideration to maintain patient safety such as epiglottitis and suspected child abuse. Promotion of a patient/family-centered care system will create an environment of trust where parents or guardians will know that their children are being well cared for in a safe, effective environment. (author)

  12. First Aid and Safety

    Science.gov (United States)

    ... Them Safely Preventing Dog Bites Selecting Safe Pets Sexting: What Parents Need to Know Taking Care of ... Vaccines Before Traveling? How to Choose & Use Sunscreen Sexting: What Parents Need to Know Printable Safety Guides ...

  13. Nanosensors for food safety.

    Science.gov (United States)

    Li, Zhixiong; Sheng, Chenxing

    2014-01-01

    This review summarizes recent research and development of nanosensors applied to the food safety. Since the food safety is directly related to the people's health and life, the food detection has received considerable attentions. However, this food security has emerged in China as a severe problem in recent years. Food safety problems frequently compromised due to formaldehyde, poison vegetables, excessive pesticide residues, etc. These kinds of food contaminations could not be detected efficiently by traditional methods. Applying nanotechnology and nanominerals, various food contaminations can be identified accurately. Therefore nanosensors have been widely used in the food detection. We introduce current research on nanosensors followed by the industrial application of nanosensors. Finally, the challenges for the future food safety using nanosensors are discussed.

  14. The development of substitute inks and controls for reducing workplace concentrations of organic solvent vapors in a vinyl shower curtain printing plant.

    Science.gov (United States)

    Piltingsrud, Harley V; Zimmer, Anthony T; Rourke, Aaron B

    2003-08-01

    During the summer of 1994, football players at a practice field reported noxious odors in the area. Ohio Environmental Protection Agency (OEPA) investigations of industries surrounding the field included a printing facility producing vinyl shower curtains with screen-printed designs. Though not the source of the odor, they were discharging volatile organic compounds directly to the environs in violation of OEPA regulations. To achieve compliance they installed a catalytic oxidizer for treating discharged air. Due to high equipment costs, the capacity of the installed catalytic oxidizer resulted in a substantial reduction in discharged air flow rates and increased solvent vapor concentrations within the workplace. Vapor levels caused worker discomfort, prompting a request for assistance from the Ohio Bureau of Workers Compensation. The vapor concentrations were found to exceed NIOSH, OSHA, and ACGIH acceptable exposure levels. The workers were then required to wear organic vapor removing respirators full-time while printing as a temporary protective measure. The company requested NIOSH assistance in finding methods to reduce solvent vapor concentrations. NIOSH studies included the identification of the sources and relative magnitude of solvent emissions from the printing process, the design of controls for the emissions, and the development of substitute inks using non-photochemically reactive solvents. The new ink system and controls allowed OEPA removal of the requirement for the treatment of discharged air and substantial increases in dilution ventilation. Increased venti