WorldWideScience

Sample records for safety assessment waste

  1. The Safety Case and Safety Assessment for the Disposal of Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    This Safety Guide provides guidance and recommendations on meeting the safety requirements in respect of the safety case and supporting safety assessment for the disposal of radioactive waste. The safety case and supporting safety assessment provide the basis for demonstration of safety and for licensing of radioactive waste disposal facilities and assist and guide decisions on siting, design and operations. The safety case is also the main basis on which dialogue with interested parties is conducted and on which confidence in the safety of the disposal facility is developed. This Safety Guide is relevant for operating organizations preparing the safety case as well as for the regulatory body responsible for developing the regulations and regulatory guidance that determine the basis and scope of the safety case. Contents: 1. Introduction; 2. Demonstrating the safety of radioactive waste disposal; 3. Safety principles and safety requirements; 4. The safety case for disposal of radioactive waste; 5. Radiological impact assessment for the period after closure; 6. Specific issues; 7. Documentation and use of the safety case; 8. Regulatory review process.

  2. Safety assessment of radioactive wastes storage 'Mironova Gora'

    International Nuclear Information System (INIS)

    Serbryakov, B.; Karamushka, V.; Ostroborodov, V.

    2000-01-01

    A project of transforming the radioactive wastes storage 'Mironova Gora' is under development. A safety assessment of this storage facility was performed to gain assurance on the design decision. The assessment, which was based on the safety assessment methods developed for radioactive wastes repositories, is presented in this paper. (author)

  3. Probabilistic Safety Assessment of Waste from PyroGreen Processes

    International Nuclear Information System (INIS)

    Ju, Hee Jae; Ham, In hye; Hwang, Il Soon

    2016-01-01

    The main object of PyroGreen processes is decontaminating SNFs into intermediate level waste meeting U.S. WIPP contact-handled (CH) waste characteristics to achieve long-term radiological safety of waste disposal. In this paper, radiological impact of PyroGreen waste disposal is probabilistically assessed using domestic input parameters for safety assessment of disposal. PyroGreen processes is decontamination technology using pyro-chemical process developed by Seoul National University in collaboration with KAERI, Chungnam University, Korea Hydro-Nuclear Power and Yonsei University. Advanced Korean Reference Disposal System (A-KRS) design for vitrified waste is applied to develop safety assessment model using GoldSim software. The simulation result shows that PyroGreen vitrified waste is expected to satisfy the regulatory dose limit criteria, 0.1 mSv/yr. With small probability, however, radiological impact to public can be higher than the expected value after 2E5-year. Although the result implies 100 times safety margin even in that case, further study will be needed to assess the sensitivity of other input parameters which can affect the radiological impact for long-term.

  4. Probabilistic Safety Assessment of Waste from PyroGreen Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hee Jae; Ham, In hye; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    The main object of PyroGreen processes is decontaminating SNFs into intermediate level waste meeting U.S. WIPP contact-handled (CH) waste characteristics to achieve long-term radiological safety of waste disposal. In this paper, radiological impact of PyroGreen waste disposal is probabilistically assessed using domestic input parameters for safety assessment of disposal. PyroGreen processes is decontamination technology using pyro-chemical process developed by Seoul National University in collaboration with KAERI, Chungnam University, Korea Hydro-Nuclear Power and Yonsei University. Advanced Korean Reference Disposal System (A-KRS) design for vitrified waste is applied to develop safety assessment model using GoldSim software. The simulation result shows that PyroGreen vitrified waste is expected to satisfy the regulatory dose limit criteria, 0.1 mSv/yr. With small probability, however, radiological impact to public can be higher than the expected value after 2E5-year. Although the result implies 100 times safety margin even in that case, further study will be needed to assess the sensitivity of other input parameters which can affect the radiological impact for long-term.

  5. Waste isolation safety assessment program

    International Nuclear Information System (INIS)

    Brandstetter, A.; Harwell, M.A.

    1979-05-01

    Associated with commercial nuclear power production in the United States is the generation of potentially hazardous radioactive wastes. The Department of Energy (DOE), through the National Waste Terminal Storage (NWTS) Program, is seeking to develop nuclear waste isolation systems in geologic formations that will preclude contact with the biosphere of waste radionuclides in concentrations which are sufficient to cause deleterious impact on humans or their environments. Comprehensive analyses of specific isolation systems are needed to assess the expectations of meeting that objective. The Waste Isolation Safety Assessment Program (WISAP) has been established at the Pacific Northwest Laboratory (operated by Battelle Memorial Institute) for developing the capability of making those analyses. Among the analyses required for isolation system evaluation is the detailed assessment of the post-closure performance of nuclear waste repositories in geologic formations. This assessment is essential, since it is concerned with aspects of the nuclear power program which previously have not been addressed. Specifically, the nature of the isolation systems (e.g., involving breach scenarios and transport through the geosphere), and the time-scales necessary for isolation, dictate the development, demonstration and application of novel assessment capabilities. The assessment methodology needs to be thorough, flexible, objective, and scientifically defensible. Further, the data utilized must be accurate, documented, reproducible, and based on sound scientific principles

  6. Rad waste disposal safety analysis / Integrated safety assessment of a waste repository

    International Nuclear Information System (INIS)

    Jeong, Jongtae; Choi, Jongwon; Kang, Chulhyung

    2012-04-01

    We developed CYPRUS+and adopted PID and RES method for the development of scenario. Safety performance assessment program was developed using GoldSim for the safety assessment of disposal system for the disposal of spnet fuels and wastes resulting from the pyrpoprocessing. Biosphere model was developed and verified in cooperation with JAEA. The capability to evaluate post-closure performance and safety was added to the previously developed program. And, nuclide migration and release to the biosphere considering site characteristics was evaluated by using deterministic and probabilistic approach. Operational safety assessment for drop, fire, and earthquake was also statistically evaluated considering well-established input parameter distribution. Conservative assessment showed that dose rate is below the limit value of low- and intermediate-level repository. Gas generation mechanism within engineered barrier was defined and its influence on safety was evaluated. We made probabilistic safety assessment by obtaining the probability distribution functions of important input variables and also made a sensitivity analysis. The maximum annual dose rate was shown to be below the safety limit value of 10 mSv/yr. The structure and element of safety case was developed to increase reliability of safety assessment methodology for a deep geological repository. Finally, milestone for safety case development and implementation strategy for each safety case element was also proposed

  7. Probabilistic safety assessment in radioactive waste disposal

    International Nuclear Information System (INIS)

    Robinson, P.C.

    1987-07-01

    Probabilistic safety assessment codes are now widely used in radioactive waste disposal assessments. This report gives an overview of the current state of the field. The relationship between the codes and the regulations covering radioactive waste disposal is discussed and the characteristics of current codes is described. The problems of verification and validation are considered. (author)

  8. Training courses on integrated safety assessment modelling for waste repositories

    International Nuclear Information System (INIS)

    Mallants, D.

    2007-01-01

    Near-surface or deep repositories of radioactive waste are being developed and evaluated all over the world. Also, existing repositories for low- and intermediate-level waste often need to be re-evaluated to extend their license or to obtain permission for final closure. The evaluation encompasses both a technical feasibility as well as a safety analysis. The long term safety is usually demonstrated by means of performance or safety assessment. For this purpose computer models are used that calculate the migration of radionuclides from the conditioned radioactive waste, through engineered barriers to the environment (groundwater, surface water, and biosphere). Integrated safety assessment modelling addresses all relevant radionuclide pathways from source to receptor (man), using in combination various computer codes in which the most relevant physical, chemical, mechanical, or even microbiological processes are mathematically described. SCK-CEN organizes training courses in Integrated safety assessment modelling that are intended for individuals who have either a controlling or supervising role within the national radwaste agencies or regulating authorities, or for technical experts that carry out the actual post-closure safety assessment for an existing or new repository. Courses are organised by the Department of Waste and Disposal

  9. Methodology for Safety Assessment Applied to Predisposal Waste Management. Report of the Results of the International Project on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) 2004–2010)

    International Nuclear Information System (INIS)

    2015-12-01

    Report of the Results of the International Project on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) (2004–2010) The IAEA’s progamme on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) focused on approaches and mechanisms for application of safety assessment methodologies for the predisposal management of radioactive waste. The initial outcome of the SADRWMS Project was achieved through the development of flowcharts, which have since been incorporated into IAEA Safety Standards Series No. GSG-3, Safety Case and Safety Assessment for Predisposal Management of Radioactive Waste. In 2005, an initial specification was developed for the Safety Assessment Framework (SAFRAN) software tool to apply the SADRWMS flowcharts. In 2008, an in-depth application of the SAFRAN tool and the SADRWMS methodology was carried out on the predisposal management facilities of the Thailand Institute of Nuclear Technology Radioactive Waste Management Centre (TINT Facility). This publication summarizes the content and outcomes of the SADRWMS programme. The Chairman’s Report of the SADRWMS Project and the Report of the TINT test case are provided on the CD-ROM which accompanies this report

  10. The waste isolation safety assessment programme

    International Nuclear Information System (INIS)

    Brandstetter, A.; Harwell, M.A.

    1980-01-01

    Associated with commercial nuclear power production in the USA is the generation of potentially hazardous radioactive wastes. The Department of Energy (DOE), through the National Waste Terminal Storage (NWTS) Programme, is seeking to develop nuclear waste isolation systems in geologic formations that will preclude contact with the biosphere of waste radionuclides in concentrations which are sufficient to cause deleterious impact on humans or their environments. Comprehensive analyses of specific isolation systems are needed to assess the expectations of meeting that objective. The Waste Isolation Safety Assessment Programme (WISAP) has been established at the Pacific Northwest Laboratory (operated by Battelle Memorial Institute) for developing the capability of making those analyses. Among the analyses required for isolation system evaluation is the detailed assessment of the post-closure performance of nuclear waste repositories in geologic formations. This assessment is essential, since it is concerned with aspects of the nuclear power programme which previously have not been addressed. Specifically, the nature of the isolation systems (e.g. involving breach scenarios and transport through the geosphere), and the time-scales necessary for isolation, dictate the development, demonstration and application of novel assessment capabilities. The assessment methodology needs to be thorough, flexible, objective, and scientifically defensible. Further, the data utilized must be accurate, documented, reproducible, and based on sound scientific principles. (author)

  11. Safety assessment for the underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This document is addressed to authorities and specialists responsible for or involved in planning, performing and reviewing safety assessments of underground radioactive waste repositories. It introduces and discusses in a general manner approaches and areas to be considered in making such safety assessments; its emphasis is on repositories for long-lived radioactive wastes in deep geological formations. It is hoped that this document will contribute to providing a base for a common understanding among the authorities and specialists concerned with the numerous studies involving a variety of scientific disciplines. While providing guidance, the document is also intended to stimulate further international discussion on this subject. It is the intention of the IAEA to develop more specific reports providing examples for the application of safety analyses for underground waste disposal

  12. Safety assessment for the underground disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This document is addressed to authorities and specialists responsible for or involved in planning, performing and reviewing safety assessments of underground radioactive waste repositories. It introduces and discusses in a general manner approaches and areas to be considered in making such safety assessments; its emphasis is on repositories for long-lived radioactive wastes in deep geological formations. It is hoped that this document will contribute to providing a base for a common understanding among the authorities and specialists concerned with the numerous studies involving a variety of scientific disciplines. While providing guidance, the document is also intended to stimulate further international discussion on this subject. It is the intention of the IAEA to develop more specific reports providing examples for the application of safety analyses for underground waste disposal.

  13. Safety assessment driving radioactive waste management solutions (SADRWMS Methodology) implemented in a software tool (SAFRAN)

    Energy Technology Data Exchange (ETDEWEB)

    Kinker, M., E-mail: M.Kinker@iaea.org [International Atomic Energy Agency (IAEA), Vienna (Austria); Avila, R.; Hofman, D., E-mail: rodolfo@facilia.se [FACILIA AB, Stockholm (Sweden); Jova Sed, L., E-mail: jovaluis@gmail.com [Centro Nacional de Seguridad Nuclear (CNSN), La Habana (Cuba); Ledroit, F., E-mail: frederic.ledroit@irsn.fr [IRSN PSN-EXP/SSRD/BTE, (France)

    2013-07-01

    In 2004, the International Atomic Energy Agency (IAEA) organized the International Project on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) to examine international approaches to safety assessment for predisposal management of radioactive waste. The initial outcome of the SADRWMS Project was achieved through the development of flowcharts which could be used to improve the mechanisms for applying safety assessment methodologies to predisposal management of radioactive waste. These flowcharts have since been incorporated into DS284 (General Safety Guide on the Safety Case and Safety Assessment for Predisposal Management of Radioactive Waste), and were also considered during the early development stages of the Safety Assessment Framework (SAFRAN) Tool. In 2009 the IAEA presented DS284 to the IAEA Waste Safety Standards Committee, during which it was proposed that the graded approach to safety case and safety assessment be illustrated through the development of Safety Reports for representative predisposal radioactive waste management facilities and activities. To oversee the development of these reports, it was agreed to establish the International Project on Complementary Safety Reports: Development and Application to Waste Management Facilities (CRAFT). The goal of the CRAFT project is to develop complementary reports by 2014, which the IAEA could then publish as IAEA Safety Reports. The present work describes how the DS284 methodology and SAFRAN Tool can be applied in the development and review of the safety case and safety assessment to a range of predisposal waste management facilities or activities within the Region. (author)

  14. Safety assessment driving radioactive waste management solutions (SADRWMS Methodology) implemented in a software tool (SAFRAN)

    International Nuclear Information System (INIS)

    Kinker, M.; Avila, R.; Hofman, D.; Jova Sed, L.; Ledroit, F.

    2013-01-01

    In 2004, the International Atomic Energy Agency (IAEA) organized the International Project on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) to examine international approaches to safety assessment for predisposal management of radioactive waste. The initial outcome of the SADRWMS Project was achieved through the development of flowcharts which could be used to improve the mechanisms for applying safety assessment methodologies to predisposal management of radioactive waste. These flowcharts have since been incorporated into DS284 (General Safety Guide on the Safety Case and Safety Assessment for Predisposal Management of Radioactive Waste), and were also considered during the early development stages of the Safety Assessment Framework (SAFRAN) Tool. In 2009 the IAEA presented DS284 to the IAEA Waste Safety Standards Committee, during which it was proposed that the graded approach to safety case and safety assessment be illustrated through the development of Safety Reports for representative predisposal radioactive waste management facilities and activities. To oversee the development of these reports, it was agreed to establish the International Project on Complementary Safety Reports: Development and Application to Waste Management Facilities (CRAFT). The goal of the CRAFT project is to develop complementary reports by 2014, which the IAEA could then publish as IAEA Safety Reports. The present work describes how the DS284 methodology and SAFRAN Tool can be applied in the development and review of the safety case and safety assessment to a range of predisposal waste management facilities or activities within the Region. (author)

  15. Safety assessment for radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Thanaletchumy Karuppiah; Mohd Abdul Wahab Yusof; Nik Marzuki Nik Ibrahim; Nurul Wahida Ahmad Khairuddin

    2008-08-01

    Safety assessments are used to evaluate the performance of a radioactive waste disposal facility and its impact on human health and the environment. This paper presents the overall information and methodology to carry out the safety assessment for a long term performance of a disposal system. A case study was also conducted to gain hands-on experience in the development and justification of scenarios, the formulation and implementation of models and the analysis of results. AMBER code using compartmental modeling approach was used to represent the migration and fate of contaminants in this training. This safety assessment is purely illustrative and it serves as a starting point for each development stage of a disposal facility. This assessment ultimately becomes more detail and specific as the facility evolves. (Author)

  16. Types of safety assessments of near surface repository for radioactive waste

    International Nuclear Information System (INIS)

    Mateeva, M.

    2004-01-01

    The purpose of this article is to presents the classification of different types safety assessments of near surface repository for low and intermediate level radioactive waste substantiated with results of safety assessments generated in Bulgaria. The different approach of safety assessments applied for old existing repository as well as for site selection for construction new repository is outlined. The regulatory requirements in Bulgaria define three main types of assessments: Safety assessment; Technical substation of repository safety; Assessment of repository influence on environment that is in form of report prepared from the Ministry of environment and waters on the base of results obtained in two first types of assessments. Additionally first type is subdivided in three categories - preliminary safety assessment, safety assessment and post closure safety assessment, which are generated using deterministic approach. The technical substation of repository safety is generated using probabilistic approach. Safety assessment results that are presented here are based on evaluation of existing old repository type 'Radon' in Novi Han and real site selection procedure for new near surface repository for low and intermediate level radioactive waste from nuclear power station in Kozloduy. The important role of safety assessment for improvement the repository safety as well as for repository licensing, correct site selection and right choice of engineer barriers and repository design is discussed using generated results. (author)

  17. Recent Trends In The Methods Of Safety Assessment Of Rad Waste Treatment And Disposal

    International Nuclear Information System (INIS)

    Mahmoud, N.S.

    2012-01-01

    Radioactive waste management system involves a huge variety of processes and activities. This includes; collection and segregation, pretreatment, treatment, conditioning, storage and finally disposal. To assure the safety of the different facility of each step in the waste management system, the operator should prepare a safety analysis report to be assessed by the national regulatory body. The content of the safety analysis report must include all data about the site, facility design, operational phase, waste materials, and safety assessment methodologies. Safety assessment methodologies are iterative processes involving site-specific, prospective modeling evaluations of the pre-operational, operational, and post-closure time in case of disposal facilities. The safety assessment focuses primarily on a decision about compliance with performance objectives, rather than the much more difficult problem of predicting actual radiological impacts on the public at far future times. The recent organization processes of the safety assessment are improved by the ISAM working group from IAEA for waste disposal site. These safety assessment methodologies have been modified within SADRWMS IAEA project for the establishment of safety methodologies for the pre-disposal facilities (treatment and storage facilities) and the disposal site.

  18. Safety assessment of geologic repositories for nuclear waste

    International Nuclear Information System (INIS)

    Bartlett, J.W.; Burkholder, H.C.; Winegardner, W.K.

    1977-01-01

    Consideration of geologic isolation for final disposition of radioactive wastes has led to the need for evaluation of the safety of the concept. Such evaluations require consideration of factors not encountered in conventional risk analysis: consequences at times and places far removed from the repository site; indirect, complex, and alternative pathways between the waste and the point of potential consequences; a highly limited data base; and limited opportunity for experimental verification of results. R and D programs to provide technical safety evaluations are under way. Three methods are being considered for the probabilistic aspects of the evaluations: fault tree analysis, repository simulation analysis, and system stability analysis. Nuclide transport models, currently in a relatively advanced state of development, are used to evaluate consequences of postulated loss of geologic isolation. This paper outlines the safety assessment methods, unique features of the assessment problem that affect selection of methods and reliability of results, and available results. It also discusses potential directions for future work

  19. Climate Considerations in Long-Term Safety Assessments for Nuclear Waste Repositories

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, Jens-Ove; Brandefelt, Jenny; Claesson Liljedahl, Lillemor [Svensk Kaernbraenslehantering AB, Stockholm (Sweden)], E-mail: jens-ove.naslund@skb.se

    2013-05-15

    For a deep geological repository for spent nuclear fuel planned in Sweden, the safety assessment covers up to 1 million years. Climate scenarios range from high-end global warming for the coming 100 000 years, through deep permafrost, to large ice sheets during glacial conditions. In contrast, in an existing repository for short-lived waste the activity decays to low levels within a few tens of thousands of years. The shorter assessment period, 100 000 years, requires more focus on climate development over the coming tens of thousands of years, including the earliest possibility for permafrost growth and freezing of the engineered system. The handling of climate and climate change in safety assessments must be tailor-made for each repository concept and waste type. However, due to the uncertain future climate development on these vast time scales, all safety assessments for nuclear waste repositories require a range of possible climate scenarios.

  20. Safety assessment for Area 5 radioactive-waste-management site

    International Nuclear Information System (INIS)

    Hunter, P.H.; Card, D.H.; Horton, K.

    1982-09-01

    The Area 5 Radioactive Waste Management Safety Assessment Document contains evaluations of site characteristics, facilities, and operating practices that contribute to the safe handling, storage, and disposal of low-level radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. A separate section considers facilities and operating practices such as monitoring, storage/disposal criteria, site maintenance, equipment, and support. The section also considers the transportation and waste handling requirements supporting the new Greater Confinement Disposal Facility (GCDF), GCDF demonstration project, and other requirements for the safe handling, storage, and disposal of low-level radioactive wastes. Finally, the document provides an analysis of releases and an assessment of the near-term operational impacts and dose commitments to operating personnel and the general public from normal operations and anticipated accidental occurrences. The conclusion of this report is that the Area 5 Radioactive Waste Management Site is suitable for low-level radioactive waste handling, storage, and disposal. Also, the new GCDF demonstration project will not affect the overall safety of the Area 5 Radioactive Waste Management Site

  1. Specifications of the International Atomic Energy Agency's international project on safety assessment driven radioactive waste management solutions

    International Nuclear Information System (INIS)

    Ghannadi, M.; Asgharizadeh, F.; Assadi, M. R.

    2008-01-01

    Radioactive waste is produced in the generation of nuclear power and the production and use of radioactive materials in the industry, research, and medicine. The nuclear waste management facilities need to perform a safety assessment in order to ensure the safety of a facility. Nuclear safety assessment is a structured and systematic way of examining a proposed facility, process, operation and activity. In nuclear waste management point of view, safety assessment is a process which is used to evaluate the safety of radioactive waste management and disposal facilities. In this regard the International Atomic Energy Agency is planed to implement an international project with cooperation of some member states. The Safety Assessment Driving Radioactive Waste Management Solutions Project is an international programme of work to examine international approaches to safety assessment in aspects of p redisposal r adioactive waste management, including waste conditioning and storage. This study is described the rationale, common aspects, scope, objectives, work plan and anticipated outcomes of the project with refer to International Atomic Energy Agency's documents, such as International Atomic Energy Agency's Safety Standards, as well as the Safety Assessment Driving Radioactive Waste Management Solutions project reports

  2. Climate considerations in long-term safety assessments for nuclear waste repositories.

    Science.gov (United States)

    Näslund, Jens-Ove; Brandefelt, Jenny; Liljedahl, Lillemor Claesson

    2013-05-01

    For a deep geological repository for spent nuclear fuel planned in Sweden, the safety assessment covers up to 1 million years. Climate scenarios range from high-end global warming for the coming 100 000 years, through deep permafrost, to large ice sheets during glacial conditions. In contrast, in an existing repository for short-lived waste the activity decays to low levels within a few tens of thousands of years. The shorter assessment period, 100 000 years, requires more focus on climate development over the coming tens of thousands of years, including the earliest possibility for permafrost growth and freezing of the engineered system. The handling of climate and climate change in safety assessments must be tailor-made for each repository concept and waste type. However, due to the uncertain future climate development on these vast time scales, all safety assessments for nuclear waste repositories require a range of possible climate scenarios.

  3. Safety assessment methodology for waste repositories in deep geological formations

    International Nuclear Information System (INIS)

    Chapuis, A.M.; Lewi, J.; Pradel, J.; Queniart, D.; Raimbault, P.; Assouline, M.

    1986-06-01

    The long term safety of a nuclear waste repository relies on the evaluation of the doses which could be transferred to man in the future. This implies a detailed knowledge of the medium where the waste will be confined, the identification of the basic phenomena which govern the migration of the radionuclides and the investigation of all possible scenarios that may affect the integrity of the barriers between the waste and the biosphere. Inside the Institute of protection and nuclear safety of the French Atomic Energy Commission (CEA/IPSN), the Department of the Safety Analysis (DAS) is currently developing a methodology for assessing the safety of future geological waste repositories, and is in charge of the modelling development, while the Department of Technical Protection (DPT) is in charge of the geological experimental studies. Both aspects of this program are presented. The methodology for risk assessment stresses the needs for coordination between data acquisition and model development which should result in the obtention of an efficient tool for safety evaluation. Progress needs to be made in source and geosphere modelling. Much more sophisticated models could be used than the ones which is described; however sensitivity analysis will determine the level of sophistication which is necessary to implement. Participation to international validation programs are also very important for gaining confidence in the approaches which have been chosen

  4. Post-disposal safety assessment of toxic and radioactive waste: waste types, disposal practices, disposal criteria, assessment methods and post-disposal impacts

    International Nuclear Information System (INIS)

    Torres, C.; Simon, I.; Little, R.H.; Charles, D.; Grogan, H.A.; Smith, G.M.; Sumerling, T.J.; Watkins, B.M.

    1993-01-01

    The need for safety assessments of waste disposal stems not only from the implementation of regulations requiring the assessment of environmental effects, but also from the more general need to justify decisions on protection requirements. As waste-disposal methods have become more technologically based, through the application of more highly engineered design concepts and through more rigorous and specific limitations on the types and quantities of the waste disposed, it follows that assessment procedures also must become more sophisticated. It is the overall aim of this study to improve the predictive modelling capacity for post-disposal safety assessments of land-based disposal facilities through the development and testing of a comprehensive, yet practicable, assessment framework. This report records all the work which has been undertaken during Phase 1 of the study. Waste types, disposal practices, disposal criteria and assessment methods for both toxic and radioactive waste are reviewed with the purpose of identifying those features relevant to assessment methodology development. Difference and similarities in waste types, disposal practices, criteria and assessment methods between countries, and between toxic and radioactive wastes are highlighted and discussed. Finally, an approach to identify post-disposal impacts, how they arise and their effects on humans and the environment is described

  5. Development of a quality assurance safety assessment database for near surface radioactive waste disposal

    International Nuclear Information System (INIS)

    Park, J. W.; Kim, C. L.; Park, J. B.; Lee, E. Y.; Lee, Y. M.; Kang, C. H.; Zhou, W.; Kozak, M. W.

    2003-01-01

    A quality assurance safety assessment database, called QUARK (QUality Assurance program for Radioactive waste management in Korea), has been developed to manage both analysis information and parameter database for safety assessment of Low- and Intermediate-Level radioactive Waste (LILW) disposal facility in Korea. QUARK is such a tool that serves QA purposes for managing safety assessment information properly and securely. In QUARK, the information is organized and linked to maximize the integrity of information and traceability. QUARK provides guidance to conduct safety assessment analysis, from scenario generation to result analysis, and provides a window to inspect and trace previous safety assessment analysis and parameter values. QUARK also provides default database for safety assessment staff who construct input data files using SAGE(Safety Assessment Groundwater Evaluation), a safety assessment computer code

  6. Safety assessment of Novi Han radioactive waste repository - features, problems, results and perspectives

    International Nuclear Information System (INIS)

    Mateeva, M.

    2000-01-01

    This paper summarizes the work done and the achievements reached in the Novi Han radioactive waste repository safety assessment within the IAEA Model Project 'Increasing the safety of Novi Han radioactive waste repository BUL 4/005'. The overall safety assessment has a wide context, but the work reported here relates only to some details and results concerning the development and implementation of the appropriate methodology approach, model and computer code used for the calculations. Different steps and procedures are included for a better practical understanding of the obtained results during the safety assessment performance. The methodology approach is widely based on an international experience in safety analysis and implemented for evaluation computer code AMBER, which is one of the recommended from the safety assessments experts. (author)

  7. Safety indicators for the safety assessment of radioactive waste disposal. Sixth report of the Working Group on Principles and Criteria for Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    2003-09-01

    The report describes a few indicators that are considered to be the most promising for assessing the long term safety of disposal systems. The safety indicators that are discussed here may be applicable to a range of disposal systems for different waste types, including near surface disposal facilities for low level waste. The appropriateness of the different indicators may, however, vary depending on the characteristics of the waste, the facility and the assessment context. The focus of the report is thus on the use of time-scales of containment and transport, and radionuclide concentrations and fluxes, as indicators of disposal system safety, that may complement the more usual safety indicators of dose and risk. Summarised are the broad elements that a safety case for an underground radioactive waste disposal facility should possess and the role and use of performance and safety indicators within these elements. An overview of performance and safety indicators is given. The use is discussed of dose and risk as safety indicators and, in particular, problems that can arise in their use. Also presented are some specific indicators that have the potential to be used as complementary safety indicators. Discussed is also how fluxes of naturally occurring elements and radionuclides due to the operation of natural processes such as erosion and groundwater discharge may be quantified for comparison with fluxes of waste derived contaminants

  8. United States program for the safety assessment of geologic disposal of commercial radioactive wastes

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1977-01-01

    The safe disposal of commercial radioactive wastes in deep geologic formations is the goal of the National Waste Terminal Storage (NWTS) Program. A comprehensive safety assessment program has been established which will proceed on a schedule consistent with the start-up of two waste repositories in late 1985. Safety assessment begins with selection of a disposal site; that is, all geologic and hydrologic factors must indicate long-term stability of the formation and prospective isolation of wastes from circulating around waters for hundreds of thousands of years. The long-term stability of each site must be demonstrated by sophisticated rock mechanics analyses. To help provide answers on the mechanism and consequences of an unlikely breach in the integrity of the repository, a Waste Isolation Safety Assessment Program (WISAP) is being sponsored at the Battelle Pacific Northwest Laboratories. Methods and data necessary to characterize the safety of generic geological waste disposal concepts, which are to be applied in the assessment of specific sties, will be developed. Other long-term safety-related studies that complement WISAP are in progress, for example, borehole plugging, salt dissolutioning, and salt transport in vertical boreholes. Requirements for licensing are in the process of being formulated by the NRC

  9. Waste isolation safety assessment program. Summary of FY-77 progress

    International Nuclear Information System (INIS)

    Burkholder, H.C.; Greenborg, J.; Stottlemyre, J.A.; Bradley, D.J.; Raymond, J.R.; Serne, R.J.

    1977-11-01

    Objective is to provide long-term safety information for the National Waste Terminal Storage Program. Work in FY 77 supported the development of the generic assessment method (release scenario analysis, release consequence analysis) and of the generic data base (waste form release rate data, radionuclide geochemical interaction data)

  10. Radiological safety assessment of transporting radioactive waste to the Gyeongju disposal facility in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Baik, Min Hoon; Kang, Mun Ja; Ahn, Hong Joo; Hwang, Doo Seong; Hong, Dae Seok; Jeong, Yong Hwan; Kim, Kyung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI), Daejeon, Korea. We considered two kinds of wastes: (1) operation wastes generated from the routine operation of facilities; and (2) decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incident-free (normal) transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

  11. Radiological Safety Assessment of Transporting Radioactive Wastes to the Gyeongju Disposal Facility in Korea

    Directory of Open Access Journals (Sweden)

    Jongtae Jeong

    2016-12-01

    Full Text Available A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI, Daejeon, Korea. We considered two kinds of wastes: (1 operation wastes generated from the routine operation of facilities; and (2 decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incident-free (normal transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

  12. Safety Assessment Context for Croatian Low and Intermediate Level Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Levanat, I.; Lokner, V.

    1998-01-01

    Safety assessments in a small country are usually performed to support the national waste management strategy, demonstrating compliance with national regulation for a particular facility. However, this assessment should - quite generally - provide reasonable assurance both to the public and to decision makers than the Croatian share of LILW from NPP Krsko can be safely disposed in Croatia. More specifically, assessment should clearly present all realistic options and compare the associated long term repository performances, demonstrating that desirable safety goals can be archived by an appropriate choice of (a) location, (b) facility design, (c) institutional control period and (d) waste acceptance criteria. As relevant national legislation is presently under review, generally recognized international safety standards, criteria and recommendations (e.g. as presented in the recent IAEA publications) should provide guidance for the assessment evaluation, since it is expected that they will be incorporated in the new national regulations. Finally, since Croatian radioactive waste management strategy is yet to be developed, such an assessment may contribute to its formulation and facilitate some specific decisions. (author)

  13. Probabilistic safety assessment for Hanford high-level waste tanks

    International Nuclear Information System (INIS)

    MacFarlane, D.R.; Stack, D.S.; Kindinger, J.P.; Deremer, R.K.

    1995-01-01

    This paper gives results from the first comprehensive level-3 probabilistic safety assessment (PSA), including consideration of external events, for the Hanford tank farm (HTF). This work was sponsored by the U.S. Department of Energy/Environmental Restoration and Waste Management Division (DOE/EM). At the HTF, there are 177 underground tanks in 18 separate tank farms containing accumulated liquid/sludge/saltcake radioactive wastes from 50 yr of weapons materials production activities. The total waste volume is ∼60 million gal, containing ∼200 million Ci of radioactivity

  14. Proceedings of the Task 2 workshop Waste Isolation Safety Assessment Program

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1979-01-01

    The reports from the workshop on waste form release rate analysis are presented. The workshop started with overview presentations on the Office of Nuclear Waste Isolation (ONWI), the Waste Isolation Safety Assessment Program (WISAP), WISAP Task 2 (Waste Form Release Rate Analysis), and WISAP Task 4 (Sorption/Desorption Analysis). Technical presentations followed in these areas: leaching studies on spent fuels, leaching studies on high-level waste glass, waste form surface science experiments, radiation effects, and leach modeling. Separate abstracts were prepared for each

  15. Proceedings of the Task 2 workshop Waste Isolation Safety Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.

    1979-01-01

    The reports from the workshop on waste form release rate analysis are presented. The workshop started with overview presentations on the Office of Nuclear Waste Isolation (ONWI), the Waste Isolation Safety Assessment Program (WISAP), WISAP Task 2 (Waste Form Release Rate Analysis), and WISAP Task 4 (Sorption/Desorption Analysis). Technical presentations followed in these areas: leaching studies on spent fuels, leaching studies on high-level waste glass, waste form surface science experiments, radiation effects, and leach modeling. Separate abstracts were prepared for each.

  16. Development of the safety assessment technology for the radioactive waste disposal

    International Nuclear Information System (INIS)

    Kim, Chang Lak; Choi, Kwang Sub; Cho, Chan Hee; Lee, Myung Chan; Kim, Jhin Wung

    1992-03-01

    The major goal of this project is to develop a source-term model for the safety assessment of a low- and intermediate-level radioactive waste repository as follows: 1) estimation of the arising of low- and intermediate-level radioactive wastes, 2) development of inventory data base, 3) development of a source-term code for shallow-land disposal, and 4) improvement of the REPS source-term code for rock cavern type disposal developed already in 1990 and conservative safety assessment for an imaginary repository. In addition, the source of C-14 in the inventory is assessed by two methods: decontamination factor and scaling factor. The source-term code for shallow-land disposal include the following submodels: surface water penetration into the repository, concrete degradation, corrosion of container drums, leaching of radionuclides from waste forms, and migration of radionuclides from engineered disposal facility is estimated by this code. (Author)

  17. Safety assessment for the above ground storage of Cadmium Safety and Control Rods at the Solid Waste Management Facility

    International Nuclear Information System (INIS)

    Shaw, K.W.

    1993-11-01

    The mission of the Savannah River Site is changing from radioisotope production to waste management and environmental restoration. As such, Reactor Engineering has recently developed a plan to transfer the safety and control rods from the C, K, L, and P reactor disassembly basin areas to the Transuranic (TRU) Waste Storage Pads for long-term, retrievable storage. The TRU pads are located within the Solid Waste Management Facilities at the Savannah River Site. An Unreviewed Safety Question (USQ) Safety Evaluation has been performed for the proposed disassembly basin operations phase of the Cadmium Safety and Control Rod Project. The USQ screening identified a required change to the authorization basis; however, the Proposed Activity does not involve a positive USQ Safety Evaluation. A Hazard Assessment for the Cadmium Safety and Control Rod Project determined that the above-ground storage of the cadmium rods results in no change in hazard level at the TRU pads. A Safety Assessment that specifically addresses the storage (at the TRU pads) phase of the Cadmium Safety and Control Rod Project has been performed. Results of the Safety Assessment support the conclusion that a positive USQ is not involved as a result of the Proposed Activity

  18. Tank waste remediation system nuclear criticality safety inspection and assessment plan

    International Nuclear Information System (INIS)

    VAIL, T.S.

    1999-01-01

    This plan provides a management approved procedure for inspections and assessments of sufficient depth to validate that the Tank Waste Remediation System (TWRS) facility complies with the requirements of the Project Hanford criticality safety program, NHF-PRO-334, ''Criticality Safety General, Requirements''

  19. Safety assessment and geosphere transport methodology for the geologic isolation of nuclear waste materials

    International Nuclear Information System (INIS)

    Burkholder, H.C.; Stottlemyre, J.A.; Raymond, J.R.

    1977-01-01

    As part of the National Waste Terminal Storage Program in the United States, the Waste Isolation Safety Assessment Program (WISAP) is underway to develop and demonstrate the methods and obtain the data necessary to assess the safety of geologic isolation repositories and to communicate the assessment results to the public. This paper reviews past analysis efforts, discusses the WISAP technical approach to the problem, and points out areas where work is needed

  20. Safety assessments for centralized waste treatment and disposal facility in Puspokszilagy Hungary

    International Nuclear Information System (INIS)

    Berci, K.; Hauszmann, Z.; Ormai, P.

    2002-01-01

    The centralized waste treatment and disposal facility Puspokszilagy is a shallow land, near surface engineered type disposal unit. The site, together with its geographic, geological and hydrogeological characteristics, is described. Data are given on the radioactive inventory. The operational safety assessment and the post-closure safety assessment is outlined. (author)

  1. The United States program for the safety assessment of geologic disposal of commercial radioactive wastes

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1977-01-01

    The safe disposal of commercial radioactive wastes in deep geologic formations is the goal of the National Waste Terminal Storage (NWTS) Program. Safety assessment begins with selection of a disposal site; that is, all geologic and hydrologic factors must indicate long-term stability of the formation and prospective isolation of wastes from circulating ground waters for hundreds of thousands of years. The long-term stability of each site under thermal loading must then be demonstrated by sophisticated rock mechanic analyses. Therefore, it can be expected that the sites that are chosen will effectively isolate the waste for a very long period of time. However, to help provide answers on the mechanisms and consequences of an unlikely breach in the integrity of the repository, a Waste Isolation Safety Assessment Program (WISAP) is studied. The overall objective of this program is an assessment of the safety associated with the long-term disposal of high-level radioactive waste in a geologic formation. This objective will be achieved by developing methods and generating data necessary to characterize the safety of generic geological waste disposal concepts, which are to be applied in the assessment of specific sites. It is expected that no one particular model will suffice. Both deterministic and probabilistic approaches will be used, and the entire spectrum of phenomena that could influence geologic isolation will be considered

  2. Risk-informed approaches to assess ecological safety of facilities with radioactive waste

    International Nuclear Information System (INIS)

    Vashchenko, V.N.; Zlochevskij, V.V.; Skalozubov, V.I.

    2011-01-01

    Ingenious risk-informed methods to assess ecological safety of facilities with radioactive waste are proposed in the paper. Probabilistic norms on lethal outcomes and reliability of safety barriers are used as safety criteria. Based on the probability measures, it is established that ecological safety conditions are met for the standard criterion of lethal outcomes

  3. Area 5 Radioactive Waste Management Site Safety Assessment Document

    International Nuclear Information System (INIS)

    Horton, K.K.; Kendall, E.W.; Brown, J.J.

    1980-02-01

    The Area 5 Radioactive Waste Management Safety Assessment Document evaluates site characteristics, facilities and operating practices which contribute to the safe handling and storage/disposal of radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. Also considered, as a separate section, are facilities and operating practices such as monitoring; storage/disposal criteria; site maintenance, equipment, and support; transportation and waste handling; and others which are adequate for the safe handling and storage/disposal of radioactive wastes. In conclusion, the Area 5 Radioactive Waste Management Site is suitable for radioactive waste handling and storage/disposal for a maximum of twenty more years at the present rate of utilization

  4. Extended biosphere dataset for safety assessment of radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Kato, Tomoko; Suzuki, Yuji

    2007-01-01

    JAEA has an on-going programme of research and development relating to the safety assessment of the deep geological disposal systems of high-level radioactive waste (HLW) and transuranic waste (TRU). In the safety assessment of HLW and TRU disposal systems, biosphere assessment is necessary to estimate future radiological impacts on human beings (e.g. radiation dose). In order to estimate radiation dose, consideration needs to be given to the biosphere into which future releases of radionuclides might occur and to the associated future human behaviour. The data of some biosphere parameters needed to be updated by appropriate data sources for generic and site-specific biosphere assessment to improve reliability for the biosphere assessment, because some data published in the 1980's or the early 90's were found to be inappropriate for the recent biosphere assessment. Therefore, data of the significant parameters (especially for element-dependent) were set up on the basis of recent information, to update the generic biosphere dataset. (author)

  5. National Waste Repository Novi Han operational safety analysis report. Safety assessment methodology

    International Nuclear Information System (INIS)

    2003-01-01

    The scope of the safety assessment (SA), presented includes: waste management functions (acceptance, conditioning, storage, disposal), inventory (current and expected in the future), hazards (radiological and non-radiological) and normal and accidental modes. The stages in the development of the SA are: criteria selection, information collection, safety analysis and safety assessment documentation. After the review the facilities functions and the national and international requirements, the criteria for safety level assessment are set. As a result from the 2nd stage actual parameters of the facility, necessary for safety analysis are obtained.The methodology is selected on the base of the comparability of the results with the results of previous safety assessments and existing standards and requirements. The procedure and requirements for scenarios selection are described. A radiological hazard categorisation of the facilities is presented. Qualitative hazards and operability analysis is applied. The resulting list of events are subjected to procedure for prioritization by method of 'criticality analysis', so the estimation of the risk is given for each event. The events that fall into category of risk on the boundary of acceptability or are unacceptable are subjected to the next steps of the analysis. As a result the lists with scenarios for PSA and possible design scenarios are established. PSA logical modeling and quantitative calculations of accident sequences are presented

  6. New safety performance indicators for safety assessment of radioactive waste disposal facilities. Cuban experience

    International Nuclear Information System (INIS)

    Peralta Vital, J.L.; Castillo, R.G.; Olivera, J.

    2002-01-01

    The paper shows the Cuban experience on implementing geological disposal of radioactive waste and the necessity for identifying new safety performance indicators for the safety assessment (SA) of radioactive waste disposal facilities. The selected indicator was the concentration of natural radioactive elements (U, Ra, Th, K) in the Cuban geologic environment. We have carried out a group of investigations, which have allowed characterising the concentration for the whole Country, creating a wide database where this indicator is associated with the lithology. The main lithologies in Cuba are: the sedimentary rocks (70 percent of national occurrence), which are present in the three regions (limestone and lutite), and finally the igneous and metamorphic rocks. The results show the concentrations ranges of the natural radionuclides associated fundamentally to the variation in the lithology and geographical area of the Country. In Cuba, the higher concentration (ppm) of Uranium and Radium are referenced to the Central region associated to Skarn, while for Thorium (ppm) and Potassium (%), in the East region the concentration peaks in Tuffs have been found. The concentrations ranges obtained are preliminary, they characterise the behaviour of this parameter for the Cuban geology, but they do not represent limits for safety assessment purposes yet. Also other factors should be taken into account as the assessment context, time scales and others assumptions before establishing the final concentration limits for the natural radionuclides as a radiological and nuclear safety performance indicator complementary to dose and risk for safety assessment for radiological and nuclear facilities. (author)

  7. Waste Isolation Safety Assessment Program. Technical progress report for FY-1978

    International Nuclear Information System (INIS)

    Brandstetter, A.; Harwell, M.A.; Howes, B.W.; Benson, G.L.; Bradley, D.J.; Raymond, J.R.; Serne, R.J.; Schilling, A.H.

    1979-07-01

    Associated with commercial nuclear power production in the United States is the generation of potentially hazardous radioactive wastes. The Department of Energy (DOE) is seeking to develop nuclear waste isolation systems in geologic formations that will preclude contact with the biosphere of waste radionuclides in concentrations which are sufficient to cause deleterious impact on humans or their environments. Comprehensive analyses of specific isolation systems are needed to assess the expectations of meeting that objective. The Waste Isolation Safety Assessment Program (WISAP) has been established at the Pacific Northwest Laboratory (operated by Battelle Memorial Institute) for developing the capability of making those analyses. Progress on the following tasks is reported: release scenario analysis, waste form release rate analysis, release consequence analysis, sorption-desorption analysis, and societal acceptance analysis

  8. Safety Assessment Methodologies and Their Application in Development of Near Surface Waste Disposal Facilities--ASAM Project

    International Nuclear Information System (INIS)

    Batandjieva, B.; Metcalf, P.

    2003-01-01

    Safety of near surface disposal facilities is a primary focus and objective of stakeholders involved in radioactive waste management of low and intermediate level waste and safety assessment is an important tool contributing to the evaluation and demonstration of the overall safety of these facilities. It plays significant role in different stages of development of these facilities (site characterization, design, operation, closure) and especially for those facilities for which safety assessment has not been performed or safety has not been demonstrated yet and the future has not been decided. Safety assessments also create the basis for the safety arguments presented to nuclear regulators, public and other interested parties in respect of the safety of existing facilities, the measures to upgrade existing facilities and development of new facilities. The International Atomic Energy Agency (IAEA) has initiated a number of research coordinated projects in the field of development and improvement of approaches to safety assessment and methodologies for safety assessment of near surface disposal facilities, such as NSARS (Near Surface Radioactive Waste Disposal Safety Assessment Reliability Study) and ISAM (Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities) projects. These projects were very successful and showed that there is a need to promote the consistent application of the safety assessment methodologies and to explore approaches to regulatory review of safety assessments and safety cases in order to make safety related decisions. These objectives have been the basis of the IAEA follow up coordinated research project--ASAM (Application of Safety Assessment Methodologies for Near Surface Disposal Facilities), which will commence in November 2002 and continue for a period of three years

  9. Radioactive waste storage facilities, involvement of AVN in inspection and safety assessment

    International Nuclear Information System (INIS)

    Simenon, R.; Smidts, O.

    2006-01-01

    The legislative and regulatory framework in Belgium for the licensing and the operation of radioactive waste storage buildings are defined by the Royal Decree of 20 July 2001 (hereby providing the general regulations regarding to the protection of the population, the workers and the environment against the dangers of ionising radiation). This RD introduces in the Belgian law the radiological protection and ALARA-policy concepts. The licence of each nuclear facility takes the form of a Royal Decree of Authorization. It stipulates that the plant has to be in conformity with its Safety Analysis Report. This report is however not a public document but is legally binding. Up to now, the safety assessment for radioactive waste storage facilities, which is implemented in this Safety Analysis Report, has been judged on a case-by-case basis. AVN is an authorized inspection organisation to carry out the surveillance of the Belgian nuclear installations and performs hereby nuclear safety assessments. AVN has a role in the nuclear safety and radiation protection during all the phases of a nuclear facility: issuance of licenses, during design and construction phase, operation (including reviewing and formal approval of modifications) and finally the decommissioning. Permanent inspections are performed on a regular basis by AVN, this by a dedicated site inspector, who is responsible for a site of an operator with nuclear facilities. Besides the day-to-day inspections during operation there are also the periodic safety reviews. AVN assesses the methodological approaches for the analyses, reviews and approves the final studies and results. The conditioned waste in Belgium is stored on the Belgoprocess' sites (region Mol-Dessel) for an intermediate period (about 80 years). In the meantime, a well-defined inspection programme is being implemented to ensure that the conditioned waste continues to be stored safely during this temporary storage period. This programme was draw up by

  10. Overview of waste isoltaion safety assessment program and description of source term characterization task at PNL

    International Nuclear Information System (INIS)

    Bradley, D.

    1977-01-01

    A project is being conducted to develop and illustrate the methods and obtain the data necessary to assess the safety of long-term disposal of high-level radioactive waste in geologic formations. The methods and data will initially focus on generic geologic isolation systems but will ultimately be applied to the long-term safety assessment of specific candidate sites that are selected in the NWTS Program. The activities of waste isolation safety assessment (WISAP) are divided into six tasks: (1) Safety Assessment Concepts and Methods, (2) Disruptive Event Analysis, (3) Source Characterization, (4) Transport Modeling, (5) Transport Data and (6) Societal Acceptance

  11. Mathematical simulation for safety assessment of nuclear waste repositories

    International Nuclear Information System (INIS)

    Brandstetter, A.; Raymond, J.R.; Benson, G.L.

    1979-01-01

    Mathematical models are being developed as part of the Waste Isolation Safety Assessment Program (WISAP) for assessing the post-closure safety of nuclear waste storage in geologic formations. The objective of this program is to develop the methods and data necessary to determine potential events that might disrupt the integrity of a waste repository and provide pathways for radionuclides to reach the bioshpere, primarily through groundwater transport. Four categories of mathematical models are being developed to assist in the analysis of potential release scenarios and consequences: (1) release scenario analysis models; (2) groundwater flow models; (3) contaminant transport models; and (4) radiation dose models. The development of the release scenario models is in a preliminary stage; the last three categories of models are fully operational. The release scenario models determine the bounds of potential future hydrogeologic changes, including potentially disruptive events. The groundwater flow and contaminant transport models compute the flowpaths, travel times, and concentrations of radionuclides that might migrate from a repository in the event of a breach and potentially reach the biosphere. The dose models compute the radiation doses to future populations. Reference site analyses are in progress to test the models for application to different geologies, including salt domes, bedded salt, and basalt

  12. Waste Isolation Safety Assessment Program. Technical progress report for FY-1978

    Energy Technology Data Exchange (ETDEWEB)

    Brandstetter, A.; Harwell, M.A.; Howes, B.W.; Benson, G.L.; Bradley, D.J.; Raymond, J.R.; Serne, R.J.; Schilling, A.H.

    1979-07-01

    Associated with commercial nuclear power production in the United States is the generation of potentially hazardous radioactive wastes. The Department of Energy (DOE) is seeking to develop nuclear waste isolation systems in geologic formations that will preclude contact with the biosphere of waste radionuclides in concentrations which are sufficient to cause deleterious impact on humans or their environments. Comprehensive analyses of specific isolation systems are needed to assess the expectations of meeting that objective. The Waste Isolation Safety Assessment Program (WISAP) has been established at the Pacific Northwest Laboratory (operated by Battelle Memorial Institute) for developing the capability of making those analyses. Progress on the following tasks is reported: release scenario analysis, waste form release rate analysis, release consequence analysis, sorption-desorption analysis, and societal acceptance analysis. (DC)

  13. Safety assessment methodologies and their application in development of near surface waste disposal facilities - the ASAM project

    International Nuclear Information System (INIS)

    Metcalf, P.

    2003-01-01

    The scope of ASAM project covers near surface disposal facilities for all types of low and intermediate level wastes with emphasis of the post-closure safety assessment.The objectives are to explore practical application to a range of disposal facilities for a number of purposes e.g. development of design concepts, safety re-assessment, upgrading safety and to develop practical approaches to assist regulators, operators and other experts in review of safety assessment. The task of the Co-ordination Group are: reassessment of existing facilities - use of safety assessment in decision making on selection of options (volunteer site Hungary); disused sealed sources - evaluation of disposability of disused sealed sources in near surface facilities (volunteer site Saratov, Russia); mining and minerals processing waste - evaluation of long-term safety (volunteer site pmc S. Africa). An agreement on the scope and objectives of the project are reached and the further consideration, such as human intrusion/institutional control/security; waste from oil/gas industry; very low level waste; categorization of sealed sources coordinated with other IAEA activities are outlined

  14. A Deterministic Safety Assessment of a Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae; Choi, Jong Won

    2012-01-01

    A GoldSim template program for a safety assessment of a hybrid-typed repository system, called 'A-KRS', in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been deterministically assessed with 5 various normal and abnormal scenarios associated with nuclide release and transport in and around the repository. Dose exposure rates to the farming exposure group have been evaluated in accordance with all the scenarios and then compared among other.

  15. Safety and performance assessment of geologic disposal systems for nuclear wastes

    International Nuclear Information System (INIS)

    Peltonen, E.

    1987-01-01

    This thesis presents a methodology for the safety and performance assesment of final disposal of nuclear wastes into crystalline bedrock. The applicability of radiation protection objectives is discussed, as well as the goals of the assessment in the various repository system development phases. Due consideration is given to the description of the pertinent analysis methods and to the comprehensive model system. The methodology has been applied to assess the acceptability of the basic disposal concepts and to study the possibilities for the optimization of protection. Furthermore, performance of different components in the multiple barrier disposal systems is estimated. The waste types dealt with are low- and intermediate-level waste as well as high-level spent nuclear fuel from a nuclear power plant. In addition, an option of high-level vitrified waste from reprocessing of spent fuel is taken into account. On the basis of the various analyses carried out it can be concluded that the disposal of different nuclear wastes in the Finnish bedrock in properly designed repositories meets the radiation protection objectives with good confidence. In addition, the studies indicate that the safety margins are considerable. This is due to the fact that the overall performance of the multiple barrier disposal systems analysed is not sensitive to possible unfavourable changes in barrier properties. From the optimization of protection point of view it can be concluded that there is no need to develop more effective repository designs than those analysed in this thesis. In fact, the results indicate that the most sophisticated designs have already gone beyond an optimal level of safety

  16. Probabilistic safety assessment for high-level waste tanks at Hanford

    International Nuclear Information System (INIS)

    Sullivan, L.H.; MacFarlane, D.R.; Stack, D.W.

    1996-01-01

    Los Alamos National Laboratory has performed a comprehensive probabilistic safety assessment (PSA), including consideration of external events, for the 18 tank farms at the Hanford Tank Farm (HTF). This work was sponsored by the Department of Energy/Environmental Restoration and Waste Management Division (DOE/EM)

  17. Biosphere models for safety assessment of radioactive waste disposal

    International Nuclear Information System (INIS)

    Proehl, G.; Olyslaegers, G.; Zeevaert, T.; Kanyar, B.; Bergstroem, U.; Hallberg, B.; Mobbs, S.; Chen, Q.; Kowe, R.

    2004-01-01

    The aim of the BioMoSA project has been to contribute in the confidence building of biosphere models, for application in performance assessments of radioactive waste disposal. The detailed objectives of this project are: development and test of practical biosphere models for application in long-term safety studies of radioactive waste disposal to different European locations, identification of features, events and processes that need to be modelled on a site-specific rather than on a generic base, comparison of the results and quantification of the variability of site-specific models developed according to the reference biosphere methodology, development of a generic biosphere tool for application in long term safety studies, comparison of results from site-specific models to those from generic one, Identification of possibilities and limitations for the application of the generic biosphere model. (orig.)

  18. Initialization of Safety Assessment Process for the Croatian Radioactive Waste repository on Trgovska gora

    International Nuclear Information System (INIS)

    Lokner, V.; Levanat, I.; Subasic, D.

    2000-01-01

    An iterative process of safety assessment, presently focusing on the site-specific evaluation of the post-closure phase for the prospective LILW repository on Trgovska gora in Croatia, has recently been initiated. The primary aim of the first assessment iterations is to provide the experts involved, the regulators and the general public with a reasonable assurance that the applicable long term performance and safety objectives can be met. Another goal is to develop a sufficient understanding of the system behavior to support decisions about the site investigation, the facility design, the waste acceptance criteria and the closure conditions. In this initial phase, the safety assessment is structured in a manner following closely methodology of the ISAM. The International Programme for Improving Long Term Safety Assessment Methodologies for Near Surface Radioactive Waste Disposal Facilities the IAEA coordinated research program started in 1997. Results of the safety assessment first iteration will be organized and presented in the form of a preliminary safety analysis report (PSAR), expected to be completed in the second part of the year 2000. As the first report on the initiated safety assessment activities, the PSAR will describe the concept and aims of the assessment process. Particular emphasis will be placed on description of the key elements of a safety assessment approach by: a) defining the assessment context; b) providing description of the disposal system; c) developing and justifying assessment scenarios; d) formulating and implementing models; and e) interpreting the scoping calculations. (author)

  19. PROBABILISTIC SAFETY ASSESSMENT OF OPERATIONAL ACCIDENTS AT THE WASTE ISOLATION PILOT PLANT

    International Nuclear Information System (INIS)

    Rucker, D.F.

    2000-01-01

    This report presents a probabilistic safety assessment of radioactive doses as consequences from accident scenarios to complement the deterministic assessment presented in the Waste Isolation Pilot Plant (WIPP) Safety Analysis Report (SAR). The International Council of Radiation Protection (ICRP) recommends both assessments be conducted to ensure that ''an adequate level of safety has been achieved and that no major contributors to risk are overlooked'' (ICRP 1993). To that end, the probabilistic assessment for the WIPP accident scenarios addresses the wide range of assumptions, e.g. the range of values representing the radioactive source of an accident, that could possibly have been overlooked by the SAR. Routine releases of radionuclides from the WIPP repository to the environment during the waste emplacement operations are expected to be essentially zero. In contrast, potential accidental releases from postulated accident scenarios during waste handling and emplacement could be substantial, which necessitates the need for radiological air monitoring and confinement barriers (DOE 1999). The WIPP Safety Analysis Report (SAR) calculated doses from accidental releases to the on-site (at 100 m from the source) and off-site (at the Exclusive Use Boundary and Site Boundary) public by a deterministic approach. This approach, as demonstrated in the SAR, uses single-point values of key parameters to assess the 50-year, whole-body committed effective dose equivalent (CEDE). The basic assumptions used in the SAR to formulate the CEDE are retained for this report's probabilistic assessment. However, for the probabilistic assessment, single-point parameter values were replaced with probability density functions (PDF) and were sampled over an expected range. Monte Carlo simulations were run, in which 10,000 iterations were performed by randomly selecting one value for each parameter and calculating the dose. Statistical information was then derived from the 10,000 iteration

  20. PROBABILISTIC SAFETY ASSESSMENT OF OPERATIONAL ACCIDENTS AT THE WASTE ISOLATION PILOT PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Rucker, D.F.

    2000-09-01

    This report presents a probabilistic safety assessment of radioactive doses as consequences from accident scenarios to complement the deterministic assessment presented in the Waste Isolation Pilot Plant (WIPP) Safety Analysis Report (SAR). The International Council of Radiation Protection (ICRP) recommends both assessments be conducted to ensure that ''an adequate level of safety has been achieved and that no major contributors to risk are overlooked'' (ICRP 1993). To that end, the probabilistic assessment for the WIPP accident scenarios addresses the wide range of assumptions, e.g. the range of values representing the radioactive source of an accident, that could possibly have been overlooked by the SAR. Routine releases of radionuclides from the WIPP repository to the environment during the waste emplacement operations are expected to be essentially zero. In contrast, potential accidental releases from postulated accident scenarios during waste handling and emplacement could be substantial, which necessitates the need for radiological air monitoring and confinement barriers (DOE 1999). The WIPP Safety Analysis Report (SAR) calculated doses from accidental releases to the on-site (at 100 m from the source) and off-site (at the Exclusive Use Boundary and Site Boundary) public by a deterministic approach. This approach, as demonstrated in the SAR, uses single-point values of key parameters to assess the 50-year, whole-body committed effective dose equivalent (CEDE). The basic assumptions used in the SAR to formulate the CEDE are retained for this report's probabilistic assessment. However, for the probabilistic assessment, single-point parameter values were replaced with probability density functions (PDF) and were sampled over an expected range. Monte Carlo simulations were run, in which 10,000 iterations were performed by randomly selecting one value for each parameter and calculating the dose. Statistical information was then derived

  1. Safety assessments for deep geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Lyon, R.B.

    1984-01-01

    The objective of safety assessment for deep geological disposal of radioactive wastes is to evaluate how well the engineered barriers and geological setting inhibit radionuclide migration and prevent radiation dose to man. Safety assessment is influenced through interaction with the regulatory agencies, research groups, the public and the various levels of government. Under the auspices of the IAEA, a generic disposal system description has been developed to facilitate international exchange and comparison of data and results, and to enable development and comparison of performance for all components of the disposal system. It is generally accepted that a systems modelling approach is required and that safety assessment can be considered on two levels. At the systems level, all components of the system are taken into account to evaluate the risk to man. At the systems level, critical review and quality assurance on software provide the major validation techniques. Risk is a combination of dose estimate and probability of that dose. For analysis of the total system to be practical, the components are usually represented by simplified models. Recently, assessments have been taking uncertainties in the input data into account. At the detailed level, large-scale, complex computer programs model components of the system in sufficient detail that validation by comparison with field and laboratory measurements is possible. For example, three-dimensional fluid-flow, heat-transport and solute-transport computer programs have been used. Approaches to safety assessment are described, with illustrations from safety assessments performed in a number of countries. (author)

  2. Safe disposal of radioactive waste. Post-closure safety assessment of permanent repository in Novi han

    International Nuclear Information System (INIS)

    Mateeva, M.

    2007-01-01

    A presented material is the third part of the monograph with title 'Safe disposal of radioactive waste. Post-closure safety assessment of the permanent repository in Novi Han'. This part deals with review of the scenario selection procedure. The process system of permanent repository for radioactive waste is describing in details for different levels. Preliminary screening process of features, events and processes is presented here. Interaction matrixes for basic disposal system components are constructed. Final selection and grouping between the included features, events and processes is done. Selected and defined scenarios for post-closure safety assessment are presented too. Key words: post-closure safety assessment, scenario generation procedure, process system, process influence diagram, and interaction matrix

  3. Radioactive wastes. Safety of storage facilities

    International Nuclear Information System (INIS)

    Devillers, Ch.

    2001-01-01

    A radioactive waste storage facility is designed in a way that ensures the isolation of wastes with respect to the biosphere. This function comprises the damping of the gamma and neutron radiations from the wastes, and the confinement of the radionuclides content of the wastes. The safety approach is based on two time scales: the safety of the insulation system during the main phase of radioactive decay, and the assessment of the radiological risks following this phase. The safety of a surface storage facility is based on a three-barrier concept (container, storage structures, site). The confidence in the safety of the facility is based on the quality assurance of the barriers and on their surveillance and maintenance. The safety of a deep repository will be based on the site quality, on the design and construction of structures and on the quality of the safety demonstration. This article deals with the safety approach and principles of storage facilities: 1 - recall of the different types of storage facilities; 2 - different phases of the life of a storage facility and regulatory steps; 3 - safety and radiation protection goals (time scales, radiation protection goals); 4 - safety approach and principles of storage facilities: safety of the isolation system (confinement system, safety analysis, scenarios, radiological consequences, safety principles), assessment of the radiation risks after the main phase of decay; 5 - safety of surface storage facilities: safety analysis of the confinement system of the Aube plant (barriers, scenarios, modeling, efficiency), evaluation of radiological risks after the main phase of decay; experience feedback of the Manche plant; variants of surface storage facilities in France and abroad (very low activity wastes, mine wastes, short living wastes with low and average activity); 6 - safety of deep geological disposal facilities: legal framework of the French research; international context; safety analysis of the confinement system

  4. Waste isolation safety assessment program. Task 4. Third contractor information meeting

    International Nuclear Information System (INIS)

    1980-06-01

    The Contractor Information Meeting (October 14 to 17, 1979) was part of the FY-1979 effort of Task 4 of the Waste Isolation Safety Assessment Program (WISAP): Sorption/Desorption Analysis. The objectives of this task are to: evaluate sorption/desorption measurement methods and develop a standardized measurement procedure; produce a generic data bank of nuclide-geologic interactions using a wide variety of geologic media and groundwaters; perform statistical analysis and synthesis of these data; perform validation studies to compare short-term laboratory studies to long-term in situ behavior; develop a fundamental understanding of sorption/desorption processes; produce x-ray and gamma-emitting isotopes suitable for the study of actinides at tracer concentrations; disseminate resulting information to the international technical community; and provide input data support for repository safety assessment. Conference participants included those subcontracted to WISAP Task 4, representatives and independent subcontractors to the Office of Nuclear Waste Isolation, representatives from other waste disposal programs, and experts in the area of waste/geologic media interaction. Since the meeting, WISAP has been divided into two programs: Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) (modeling efforts) and Waste/Rock Interactions Technology (WRIT) (experimental work). The WRIT program encompasses the work conducted under Task 4. This report contains the information presented at the Task 4, Third Contractor Information Meeting. Technical Reports from the subcontractors, as well as Pacific Northwest Laboratory (PNL), are provided along with transcripts of the question-and-answer sessions. The agenda and abstracts of the presentations are also included. Appendix A is a list of the participants. Appendix B gives an overview of the WRIT program and details the WRIT work breakdown structure for 1980

  5. Waste isolation safety assessment program. Task 4. Third contractor information meeting

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The Contractor Information Meeting (October 14 to 17, 1979) was part of the FY-1979 effort of Task 4 of the Waste Isolation Safety Assessment Program (WISAP): Sorption/Desorption Analysis. The objectives of this task are to: evaluate sorption/desorption measurement methods and develop a standardized measurement procedure; produce a generic data bank of nuclide-geologic interactions using a wide variety of geologic media and groundwaters; perform statistical analysis and synthesis of these data; perform validation studies to compare short-term laboratory studies to long-term in situ behavior; develop a fundamental understanding of sorption/desorption processes; produce x-ray and gamma-emitting isotopes suitable for the study of actinides at tracer concentrations; disseminate resulting information to the international technical community; and provide input data support for repository safety assessment. Conference participants included those subcontracted to WISAP Task 4, representatives and independent subcontractors to the Office of Nuclear Waste Isolation, representatives from other waste disposal programs, and experts in the area of waste/geologic media interaction. Since the meeting, WISAP has been divided into two programs: Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) (modeling efforts) and Waste/Rock Interactions Technology (WRIT) (experimental work). The WRIT program encompasses the work conducted under Task 4. This report contains the information presented at the Task 4, Third Contractor Information Meeting. Technical Reports from the subcontractors, as well as Pacific Northwest Laboratory (PNL), are provided along with transcripts of the question-and-answer sessions. The agenda and abstracts of the presentations are also included. Appendix A is a list of the participants. Appendix B gives an overview of the WRIT program and details the WRIT work breakdown structure for 1980.

  6. Methodology of safety assessment for radioactive waste disposal

    International Nuclear Information System (INIS)

    Matsuzuru, Hideo; Kimura, Hideo

    1991-01-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting an extensive R and D program to develop a safety assessment methodology to evaluate environmental consequences associated with geological disposal of a high-level radioactive waste, and also to elucidate a generic feasibility of the geological disposal in Japan. The paper describes the current R and D activities in the JAERI to develop an interim version of the methodology based on a normal evolution scenario, and also to validate models used in the methodology. (author)

  7. Current researches on safety assessment of radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    Tasaka, Hiroshi; Kiyose, Ryohei

    1980-01-01

    Recently, the problem of safe disposal of radioactive waste generated from nuclear fuel cycle becomes more important in Japan. On the other hand, many researches on shallow land burial of low-level wastes and geologic isolation of high-level wastes have been carried out in the United States of America. In this report, the researches on the safety assessment of radioactive waste disposal in the United States of America were briefly introduced with emphasis on the studies on behavior and migration of radionuclide from disposed waste in geosphere. (author)

  8. Safety cases for the co-ordinated research project on improvement of safety assessment methodologies for near surface radioactive waste disposal facilities (ISAM)

    International Nuclear Information System (INIS)

    Kozak, M.W.; Torres-Vidal, C.; Kelly, E.; Guskov, A.; Blerk, J. van

    2002-01-01

    A Co-ordinated Research Project (CRP) has recently been completed on the Improvement of Safety Assessment Methodologies for Near-Surface Radioactive Waste Disposal Facilities (ISAM). A major aspect of the project was the use of safety cases for the practical application of safety assessment. An overview of the ISAM safety cases is given in this paper. (author)

  9. A Probabilistic Safety Assessment of a Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2012-01-01

    A GoldSim template program for a safety assessment of a hybrid-typed repository system, called A-KRS, in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been probabilistically assessed with 9 selected input parameters, each of which has its own statistical distribution for a normal release and transport scenario associated with nuclide release and transport in and around the repository. Probabilistic dose exposure rates to the farming exposure group have been evaluated. A sensitivity of 9 selected parameters to the result has also been investigated to see which parameter is more sensitive and important to the exposure rates.

  10. Low- and Intermediate Level Radioactive Waste Disposal Environmental and Safety Assessment Activities in Slovenia

    International Nuclear Information System (INIS)

    Marc, D.; Loose, A.; Urbanc, J.

    1998-01-01

    The protection of the environment is one of the main concerns in the management of radioactive waste, especially in repository planning. In different stages of repository lifetime the environmental assessment has different functions: it can be used as a decision making process and as a planning, communication and management tool. Safety assessment as a procedure for evaluating the performance of a disposal system, and its potential radiological impact on human health and environment, is also required. Following the international recommendations and Slovene legislation, a presentation is given of the role and importance of the environmental and safety assessment activities in the early stages following concept development and site selection for a low- and intermediate level radioactive waste (LILW) repository in Slovenia. As a case study, a short overview is also given of the preliminary safety assessment that has been carried out in the analysis of possibilities for long-lived LILW disposal in Slovenia. (author)

  11. Safety assessment of complex engineered and natural systems: radioactive waste disposal

    International Nuclear Information System (INIS)

    McNeish, J.A.; Vallikat, V.; Atkins, J.; Balady, M.A.

    1997-01-01

    Evaluation of deep, geologic disposal of nuclear waste requires the probabilistic safety assessment of a complex system from the coupling of various processes and sub-systems, parameter and model uncertainties, spatial and temporal variabilities, and the multiplicity of designs and scenarios. Both the engineered and natural system are included in the evaluation. Each system has aspects with considerable uncertainty both in important parameters and in overall conceptual models. The study represented herein provides a probabilistic safety assessment of a potential respository system for multiple engineered barrier system (EBS) design and conceptual model configurations (CRWMS M and O, 1996a) and considers the effects of uncertainty on the overall results. The assessment is based on data and process models available at the time of the study and doesnt necessarily represent the current safety evaluation. In fact, the percolation flux through the repository system is now expected to be higher than the estimate used for this study. The potential effects of higher percolation fluxes are currently under study. The safety of the system was assessed for both 10,000 and 1,000,000 years. Use of alternative conceptual models also produced major improvement in safety. For example, use of a more realistic engineered system release model produced improvement of over an order of magnitude in safety. Alternative measurement locations for the safety assessment produced substantial increases in safety, through the results are based on uncertain dilution factors in the transporting groundwater. (Author)

  12. Safety Assessment of Radioactive waste Repositories

    International Nuclear Information System (INIS)

    1991-01-01

    It is planned to dispose of high-level radioactive wastes in deep geological formations. To access the long-term safety of radioactive waste disposal systems, mathematical models are used to describe groundwater flow, chemistry and potential radionuclide migration through these formations. Establishing the validity of such models is important in order to obtain the necessary confidence in the safety of the disposal method. The papers in these proceedings of the GEOVAL'90 Symposium describe the current state of knowledge on the validation of geosphere flow and transport models. This symposium, divided into five sessions, contains 65 technical papers: session 1 - Necessity of validation. Session 2 - Progress in validation of flow and transport models in orystalline rock, unsaturated media, salt media or clay. Session 3 - Progress in validation of geochemical models. Session 4 - Progress in validation of coupled thermo-hydro-mechanical effects. Session 5 - Validation strategy

  13. Reference biospheres for the long term safety assessment of radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Crossland, I.G.; Torres, C.

    2002-01-01

    Regulatory guidance on the safety assessment of radioactive waste disposals usually requires the consequences of any radionuclide releases to be considered in terms of their potential impact on human health. This requires consideration of the prevailing biosphere and the habits of the potentially exposed humans within it. However, it could take many thousands of years for migrating radionuclides to reach the surface environment. In these circumstances, an assessment model that was based on the present-day biosphere could be inappropriate while future biospheres would be unpredictable. These and other considerations suggest that a standardised, or reference biosphere, approach may be useful. Theme 1 of the IAEA BIOMASS project was established to develop the concept of reference biospheres into a practical system that can be applied to the assessment of the long term safety of geological disposal facilities for radioactive waste. The technical phase of the project lasted for four years until November 2000 and brought together disparate interests from many countries including waste disposal agencies, regulators and technical experts. Building on the experience from earlier BIOMOVS projects, a methodology was constructed for the logical and defensible construction of mathematical biosphere models that can be used in the total system performance assessment of radioactive waste disposal. The methodology was then further developed through the creation of a series of BIOMASS Example Reference Biospheres ('Examples'). These are stylised biosphere models that, in addition to illustrating the methodology, are intended to be useful assessment tools in their own right. (author)

  14. Radioactive waste disposal system for Cuba. Safety assessment for the long term

    International Nuclear Information System (INIS)

    Peralta Vital, J.L.; Gil Castillo, R.; Mirta Torrez, B.

    1998-01-01

    The present work is performed within the frame of evaluating the radiological impact of the post-closure stage of the facility for disposal of the radioactive wastes generated in Cuba, including a description of the waste disposal systems defined in the country, and taking account of significant elements of their long term safety. The Methodology for Safety Assessment includes: the definition of possible scenarios for evaluation, the identification of principal present uncertainties, the model simulating the release of the radionuclides of the facility, their transport through the geosphere, and their final access to man, evaluating ultimately the radiological impact of the disposal system considering the dose for a critical group. The results obtained allow to demonstrate the radiological safety of the nominative barrier in the design of the system for the particular conditions of Cuba. (author)

  15. Waste Isolation Pilot Plant Safety Analysis Report

    International Nuclear Information System (INIS)

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions'' (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.'' This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment

  16. Waste Isolation Pilot Plant Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  17. Safety indicators in different time frames for the safety assessment of underground radioactive waste repositories. First report of the INWAC subgroup on principles and criteria for radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-10-01

    Principles and criteria for the disposal of long lived radioactive waste involve issues which go beyond those normally considered in the basic system of radiation protection. Safety criteria based on radiation risk an dose limitation are commonly accepted as the principal basis for judging the acceptability of radioactive waste repositories. However, the long time-scales of interest mean that risks or doses to future individuals cannot be predicted with any certainty as they depend, amongst other things, on assumptions made about the integrity of the waste matrix, the man-made barriers, the geology, the dispersion of groundwater, etc. and future biospheric conditions and human lifestyles. This document discusses various safety indicators and their applicability in the context of the future time-scales which have to be considered in safety assessments of deep geologic repositories. Quantitative assessment are based on numerical estimates of consequences (e.g. risk or dose) and the assessment is made against numerical criteria. Qualitative assessments are based on estimates of hazard potential which are not exact or absolute and the assessment is made against criteria which may not be numerically defined. Examples of such criteria are the convenient reference values provided by levels of radionuclides in the natural environment. Refs, figs and tabs

  18. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumed to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely

  19. 340 Waste Handling Facility interim safety basis

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1995-01-01

    This document establishes the interim safety basis (ISB) for the 340 Waste Handling Facility (340 Facility). An ISB is a documented safety basis that provides a justification for the continued operation of the facility until an upgraded final safety analysis report is prepared that complies with US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports. The ISB for the 340 Facility documents the current design and operation of the facility. The 340 Facility ISB (ISB-003) is based on a facility walkdown and review of the design and operation of the facility, as described in the existing safety documentation. The safety documents reviewed, to develop ISB-003, include the following: OSD-SW-153-0001, Operating Specification Document for the 340 Waste Handling Facility (WHC 1990); OSR-SW-152-00003, Operating Limits for the 340 Waste Handling Facility (WHC 1989); SD-RE-SAP-013, Safety Analysis Report for Packaging, Railroad Liquid Waste Tank Cars (Mercado 1993); SD-WM-TM-001, Safety Assessment Document for the 340 Waste Handling Facility (Berneski 1994a); SD-WM-SEL-016, 340 Facility Safety Equipment List (Berneski 1992); and 340 Complex Fire Hazard Analysis, Draft (Hughes Assoc. Inc. 1994)

  20. Disposal of radioactive waste: can long-term safety be evaluated

    International Nuclear Information System (INIS)

    1991-01-01

    The long-term safety of any hazardous waste disposal system must be convincingly shown prior to its implementation. For radioactive wastes, safety assessments over timescales far beyond the normal horizon of social and technical planning have already been conducted in many countries. These assessments provide the principal means to investigate, quantify, and explain long-term safety of each selected disposal concept and site for the appropriate authorities and the public. Such assessments are based on four main elements: definition of the disposal system and its environment, identification of possible processes and events that may affect the integrity of the disposal system, quantification of the radiological impact by predictive modelling, and description of associated uncertainties. The NEA Radioactive Waste Management Committee and the IAEA International Radioactive Waste Management Advisory Committee have carefully examined the current scientific methods for safety assessments of radioactive waste disposal systems, as briefly summarized in this report. The Committees have also reviewed the experience now available from using safety assessment methods in many countries, for different disposal concepts and formations, and in the framework of both nationally and internationally conducted studies, as referenced in this report [fr

  1. Long term safety requirements and safety indicators for the assessment of underground radioactive waste repositories

    International Nuclear Information System (INIS)

    Vovk, Ivan

    1998-01-01

    This presentation defines: waste disposal, safety issues, risk estimation; describes the integrated waste disposal process including quality assurance program. Related to actinides inventory it shows the main results of calculated activity obtained by deterministic estimation. It includes the Radioactive Waste Safety Standards and requirements; features related to site, design and waste package characteristics, as technical long term safety criteria for radioactive waste disposal facilities. Fundamental concern regarding the safety of radioactive waste disposal systems is their radiological impact on human beings and the environment. Safety requirements and criteria for judging the level of safety of such systems have been developed and there is a consensus among the international community on their basis within the well-established system of radiological protection. So far, however, little experience has been gained in applying long term safety criteria to actual disposal systems; consequently, there is an international debate on the most appropriate nature and form of the criteria to be used, taking into account the uncertainties involved. Emerging from the debate is the increasing conviction that the combined use of a variety of indicators would be advantageous in addressing the issue of reasonable assurance in the different time frames involved and in supporting the safety case for any particular repository concept. Indicators including risk, dose, radionuclide concentration, transit time, toxicity indices, fluxes at different points within the system, and barrier performance have all been identified as potentially relevant. Dose and risk are the indicators generally seen as most fundamental, as they seek directly to describe the radiological impact of a disposal system, and these are the ones that have been incorporated into most national standards to date. There are, however, certain problems in applying them. Application of a variety of different indicators

  2. Development of the NIREX generic transport safety assessment to assist in the provision of waste packaging advice

    International Nuclear Information System (INIS)

    Hutchinson, D.L.; Marrison, A.R.; Sievwright, R.W.T.

    2002-01-01

    The current Nirex Mission is to provide the United Kingdom with safe, environmentally sound and publicly acceptable options for the long-term management of radioactive materials. As part of this role, Nirex has developed a phased deep geological disposal concept which is defined by six 'generic documents' that describe systems, processes and safety assessments that are not specific to any one location or geology. These generic documents give access to detailed information about the ideas and approaches that underpin the phased disposal concept, and have been published with an invitation to enter into dialogue with Nirex regarding these issues. The generic documents identify the requirements for an integrated transport system that would be necessary for the management of the intermediate-level (ILW) and low-level (LLW) wastes within Nirex's remit - the so-called reference case volume. This has involved Nirex in the development of transport hardware and associated safety reports and modelling and assessment tools for transport system logistics and system safety. Although the phased disposal concept is only one option for the long-term management of waste, the integrated transport system and associated modelling tools, is likely to be of equal relevance to other options. The safety assessment of the generic transport operation for the movement of ILW and LLW waste from waste producers' sites to a future radioactive waste disposal facility is described in one of the generic documents - the generic transport safety assessment (GTSA). The GTSA demonstrates that the transport operation is compliant with Nirex safety principles, and that the nuclear and non-nuclear risks to the public and workers from routine transport and from accidents are acceptable. This paper describes the types of risk that are calculated, and discusses the data requirements and calculation methodology. The verification and validation methodology is outlined, together with a discussion of the results

  3. Waste management safety

    International Nuclear Information System (INIS)

    Boehm, H.

    1983-01-01

    All studies carried out by competent authors of the safety of a waste management concept on the basis of reprocessing of the spent fuel elements and storage in the deep underground of the radioactive waste show that only a minor technical risk is involved in this step. This also holds true when evaluating the accidents which have occurred in waste management facilities. To explain the risk, first the completely different safety aspects of nuclear power plants, reprocessing plants and repositories are outlined together with the safety related characteristics of these plants. Also this comparison indicates that the risk of waste management facilities is considerably lower than the, already very small, risk of nuclear power plants. For the final storage of waste from reprocessing and for the direct storage of fuel elements, the results of safety analyses show that the radiological exposure following an accident with radioactivity releases, even under conservative assumptions, is considerably below the natural radiation exposure. The very small danger to the environment arising from waste management by reprocessing clearly indicates that aspects of technical safety alone will hardly be a major criterion for the decision in favor of one or the other waste management approach. (orig.) [de

  4. Waste convention regulatory impact on planning safety assessment for LILW disposal in Croatia

    International Nuclear Information System (INIS)

    Valcic, I.; Subasic, D.; Lokner, V.

    2000-01-01

    Preparations for establishment of a LILW repository in Croatia have reached a point where a preliminary safety assessment for the prospective facility is being planned. The planning is not based upon the national regulatory framework, which does not require such an assessment at this early stage, but upon the interagency BSS and the IAEA RADWASS programme recommendations because the national regulations are being revised with express purpose to conform to the most recent international standards and good practices. The Waste Convention, which Croatia has ratified in the meantime, supports this approach in principle, but does not appear to have more tangible regulatory relevance for the safety assessment planning. Its actual requirements regarding safety analyses for a repository fall short of the specific assessment concepts practiced in this decade, and could have well been met by the old Croatian regulations from the mid-eighties. (author)

  5. ASAM - The international programme on application of safety assessment methodologies for near surface radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Batandjieva, B.

    2002-01-01

    The IAEA has launched a new Co-ordinated Research Project (CRP) on Application of Safety Assessment Methodologies for Near Surface Waste Disposal Facilities (ASAM). The CRP will focus on the practical application of the safety assessment methodology, developed under the ISAM programme, for different purposes, such as developing design concepts, licensing, upgrading existing repositories, reassessment of operating disposal facilities. The overall aim of the programme is to assist safety assessors, regulators and other specialists involved in the development and review of safety assessment for near surface disposal facilities in order to achieve transparent, traceable and defendable evaluation of safety of these facilities. (author)

  6. Derivation methods for clearance levels and safety assessments for very low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Okoshi, Minoru

    2001-01-01

    The clearance level was evaluated by the dose of concrete and metal when they would be recycled and reused from shallow land burial of radioactive facilities. The state of waste after clearance is not specified, so that we studied large scale of exposure pathways. The parameter values used for safety assessment were determined as the average values under the consideration of natural and social environment in Japan. Propriety of these values was confirmed by a probability analysis. On the safety assessment of very low-level waste disposal facility, the disposer pathway and parameters were determined under the consideration of special site conditions (natural and social environment) and properties of waste. However, the same exposure pathway of them used the same model for external (exposure by sky shine' s ray) and internal exposure. The calculation results of estimated pathway showed 1.2x10 -5 mSv/y the largest dose for the external exposure pathway by sky shine's ray. (S.Y.)

  7. Safety Assessment of the New Very Low-Level Waste Disposal Installation at El Cabril, Spain

    International Nuclear Information System (INIS)

    Lopez, I.; Navarro, M.; Zuloaga, P.

    2009-01-01

    The sixth General Radioactive Waste Plan approved by the Spanish government in 2006, foresees important volumes of wastes with a very low content of radioactivity mainly coming from the dismantling of nuclear power plants, along with the occurrence of some radiological industrial incidents in the past. This fact has boosted the construction of a new disposal installation, specifically designed for this category of waste. This new installation is part of the existing low and intermediate level waste (LILW) disposal facility at El Cabril, and includes four cells with a total capacity of around 130,000 m 3 . The design of the cells is consistent with the European Directive for the disposal of hazardous waste and fulfils the same basic safety criteria as the present facility for LILW. The safety assessment methodology applied for the very low level waste (VLLW) installation is fully coherent with the approach adopted for the existing disposal facility for low and intermediate level waste (concrete vaults disposal system) and takes into account the potential impact of the new installation during both the operational and long-term periods. The license for the VLLW installation was granted by the Spanish Ministry of Industry, Tourism and Commerce (MITYC) in July 2008, following technical approval by the Nuclear Safety Council (CSN), and the first disposal operation occurred in October 2008. (authors)

  8. International intercomparison and harmonization projects for demonstrating the safety of radioactive waste management, decommissioning and radioactive waste disposal

    International Nuclear Information System (INIS)

    Metcalf, Phil; O'Donnell, Patricio; Jova Sed, Luis; Batandjieva, Borislava; Rowat, John; Kinker, Monica

    2008-01-01

    Full text: The Joint Convention on the safety of spent fuel management and the safety of radioactive waste management and the international safety standards on radioactive waste management, decommissioning and radioactive waste disposal call for assessment and demonstration of the safety of facilities and activities; during siting, design and construction prior to operation, periodically during operation and at the end of lifetime or upon closure of a waste disposal facility. In addition, more recent revisions of the international safety standards require the development of a safety case for such facilities and activities, documentation presenting all the arguments supporting the safety of the facilities and activities covering site and engineering features, quantitative safety assessment and management systems. Guidance on meeting these safety requirements also indicates the need for a graded approach to safety assessment, with the extent and complexity of the assessment being proportional to the complexity of the activity or facility, and its propensity for radiation hazard. Safety assessment approaches and methodologies have evolved over several decades and international interest in these developments has been considerable as they can be complex and often subjective, which has led to international projects being established aimed at harmonization. The IAEA has sponsored a number of such initiatives, particularly in the area of disposal facility safety, but more recently in the areas of pre disposal waste management and decommissioning, including projects known as ISAM, ASAM, SADRWMS and DeSa. The projects have a number of common aspects including development of standardized methodological approaches, application on test cases and assessment review; they also have activity and facility specific elements. The paper presents an overview of the projects, the outcomes from the projects to date and their future direction aimed very much at practical application of

  9. Predisposal Management of Low and Intermediate Level Radioactive Waste. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    The objective of this Safety Guide is to provide regulatory bodies and the operators that generate and manage radioactive waste with recommendations on how to meet the principles and requirements established for the predisposal management of low and intermediate level waste. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Roles and responsibilities; 4. General safety considerations; 5. Safety features for the predisposal management of LILW; 6. Record keeping and reporting; 7. Safety assessment; 8. Quality assurance; Annex I: Nature and sources of LILW from nuclear facilities; Annex II: Development of specifications for waste packages; Annex III: Site conditions, processes and events for consideration in a safety assessment (external natural phenomena); Annex IV: Site conditions, processes and events for consideration in a safety assessment (external human induced phenomena); Annex V: Postulated initiating events for consideration in a safety assessment (internal phenomena).

  10. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2010-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  11. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  12. Final disposal of high-level radioactive waste. State of knowledge and development for safety assessment

    International Nuclear Information System (INIS)

    Sato, Seichi; Muraoka, Susumu; Murano, Toru

    1995-01-01

    In Europe and USA, the formation disposal of high level radioactive waste entered the stage of doing the activities aiming at its execution. Also in Japan, the storage of high level waste began in the spring of 1995. Regarding the utilization of nuclear power, the establishment of the technology for disposing radioactive waste is the subject of fist priority, and the stage that requires its social recognition has set in. There are the features of formation disposal in that the disposal is in the state of confining extremely large amount of radioactivity, and that the assessment of long term safety exceeding tens of thousands years is demanded. The amount of occurrence and the main nuclides of high level radioactive waste, the disposal as seen in the Coady report and in the IAEA standard, the selection of dispersion or confinement and the selection of passive system or long term human participation, the reason why formation disposal is selected, the features of formation disposal and the way of advancing the research, the general techniques of safety assessment, artificial barriers and natural barriers for formation disposal, and the subjects of formation disposal are described. (K.I.) 57 refs

  13. Scenario Analysis for the Safety Assessment of Nuclear Waste Repositories: A Critical Review.

    Science.gov (United States)

    Tosoni, Edoardo; Salo, Ahti; Zio, Enrico

    2018-04-01

    A major challenge in scenario analysis for the safety assessment of nuclear waste repositories pertains to the comprehensiveness of the set of scenarios selected for assessing the safety of the repository. Motivated by this challenge, we discuss the aspects of scenario analysis relevant to comprehensiveness. Specifically, we note that (1) it is necessary to make it clear why scenarios usually focus on a restricted set of features, events, and processes; (2) there is not yet consensus on the interpretation of comprehensiveness for guiding the generation of scenarios; and (3) there is a need for sound approaches to the treatment of epistemic uncertainties. © 2017 Society for Risk Analysis.

  14. The Safety Assessment Framework Tool (SAFRAN) - Description, Overview and Applicability

    International Nuclear Information System (INIS)

    Alujevic, Luka

    2014-01-01

    The SAFRAN tool (Safety Assessment Framework) is a user-friendly software application that incorporates the methodologies developed in the SADRWMS (Safety Assessment Driven Radioactive Waste Management Solutions) project. The International Atomic Energy Agency (IAEA) organized the International Project on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) to examine international approaches to safety assessment for predisposal management of all types of radioactive waste, including disused sources, small volumes, legacy and decommissioning waste, operational waste, and large volume naturally occurring radioactive material residues. SAFRAN provides aid in: Describing the predisposal RW management activities in a systematic way, Conducting the SA (safety assessment) with clear documentation of the methodology, assumptions, input data and models, Establishing a traceable and transparent record of the safety basis for decisions on the proposed RW management solutions, Demonstrating clear consideration of and compliance with national and international safety standards and recommendations. The SAFRAN tool allows the user to visibly, systematically and logically address predisposal radioactive waste management and decommissioning challenges in a structured way. It also records the decisions taken in such a way that it constitutes a justifiable safety assessment of the proposed management solutions. The objective of this paper is to describe the SAFRAN architecture and features, properly define the terms safety case and safety assessment, and to predict the future development of the SAFRAN tool and assess its applicability to the construction of a future LILW (Low and Intermediate Level Waste) storage facility and repository in Croatia, taking into account all the capabilities and modelling features of the SAFRAN tool. (author)

  15. Probabilistic safety assessment for a generic deep geological repository for high-level waste and long-lived intermediate-level waste in clay

    International Nuclear Information System (INIS)

    Resele, G.; Holocher, J.; Mayer, G.; Hubschwerlen, N.; Niemeyer, M.; Beushausen, M.; Wollrath, J.

    2010-01-01

    Document available in extended abstract form only. In the selection procedure for the search of a final site location for the disposal of radioactive wastes, the comparison and evaluation of different potentially suitable repository systems in different types of host rocks will be an essential and crucial step. Since internationally accepted guidelines on how to perform such quantitative comparisons between repository systems with regard to their long-term safety behaviour are still lacking, in 2007 the German Federal Office for Radiation Protection launched the project 'VerSi' (Vergleichende Sicherheitsanalysen - Comparing Safety Assessments) that aims at the development of a methodology for the comparison of long-term safety assessments. A vital part of the VerSi project is the performance of long-term safety assessments for the comparison of two repository systems. The comparison focuses on a future repository for heat-generating, i.e. high-level and long-lived intermediate-level radioactive wastes in Germany. Rock salt is considered as a potential host rock for such a repository, and one repository system in VerSi is defined similarly to the potential site located in the Gorleben salt dome. Another suitable host rock formation may be clay. A generic location within the lower Cretaceous clays in Northern Germany is therefore chosen for the comparison of safety assessments within the VerSi project. The long-term safety assessment of a repository system for heat-generating radioactive waste at the generic clay location comprises different steps, amongst others: - Identifying the relevant processes in the near-field, in the geosphere and in the biosphere which are relevant for the long-term safety behaviour. - Development of a safety concept for the repository system. - Deduction of scenarios of the long-term evolution of the repository system. - Definition of statistic weights, i. e. the likelihood of occurrence of the scenarios. - Performance of a

  16. Safety assessment of the liquid-fed ceramic melter process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Partain, W.L.

    1980-08-01

    As part of its development program for the solidification of high-level nuclear waste, Pacific Northwest Laboratory assessed the safety issues for a complete liquid-fed ceramic melter (LFCM) process. The LFCM process, an adaption of commercial glass-making technology, is being developed to convert high-level liquid waste from the nuclear fuel cycle into glass. This safety assessment uncovered no unresolved or significant safety problems with the LFCM process. Although in this assessment the LFCM process was not directly compared with other solidification processes, the safety hazards of the LFCM process are comparable to those of other processes. The high processing temperatures of the glass in the LFCM pose no additional significant safety concerns, and the dispersible inventory of dried waste (calcine) is small. This safety assessment was based on the nuclear power waste flowsheet, since power waste is more radioactive than defense waste at the time of solidification, and all accident conditions for the power waste would have greater radiological consequences than those for defense waste. An exhaustive list of possible off-standard conditions and equipment failures was compiled. These accidents were then classified according to severity of consequence and type of accident. Radionuclide releases to the stack were calculated for each group of accidents using conservative assumptions regarding the retention and decontamination features of the process and facility. Two recommendations that should be considered by process designers are given in the safety assessment

  17. Comprehensive development plans for the low- and intermediate-level radioactive waste disposal facility in Korea and preliminary safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kang Il; Kim, Jin Hyeong; Kwon, Mi Jin; Jeong, Mi Seon; Hong, Sung Wook; Park, Jin Beak [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-12-15

    The disposal facility in Gyeongju is planning to dispose of 800,000 packages of low- and intermediate- level radioactive waste. This facility will be developed as a complex disposal facility that has various types of disposal facilities and accompanying management. In this study, based on the comprehensive development plan of the disposal facility, a preliminary post-closure safety assessment is performed to predict the phase development of the total capacity for the 800,000 packages to be disposed of at the site. The results for each scenario meet the performance target of the disposal facility. The assessment revealed that there is a significant impact of the inventory of intermediate-level radionuclide waste on the safety evaluation. Due to this finding, we introduce a disposal limit value for intermediate-level radioactive waste. With stepwise development of safety case, this development plan will increase the safety of disposal facilities by reducing uncertainties within the future development of the underground silo disposal facilities.

  18. Confidence building in safety assessments

    International Nuclear Information System (INIS)

    Grundfelt, Bertil

    1999-01-01

    Future generations should be adequately protected from damage caused by the present disposal of radioactive waste. This presentation discusses the core of safety and performance assessment: The demonstration and building of confidence that the disposal system meets the safety requirements stipulated by society. The major difficulty is to deal with risks in the very long time perspective of the thousands of years during which the waste is hazardous. Concern about these problems has stimulated the development of the safety assessment discipline. The presentation concentrates on two of the elements of safety assessment: (1) Uncertainty and sensitivity analysis, and (2) validation and review. Uncertainty is associated both with respect to what is the proper conceptual model and with respect to parameter values for a given model. A special kind of uncertainty derives from the variation of a property in space. Geostatistics is one approach to handling spatial variability. The simplest way of doing a sensitivity analysis is to offset the model parameters one by one and observe how the model output changes. The validity of the models and data used to make predictions is central to the credibility of safety assessments for radioactive waste repositories. There are several definitions of model validation. The presentation discusses it as a process and highlights some aspects of validation methodologies

  19. Comprehensive safety cases for radioactive waste management facilities

    International Nuclear Information System (INIS)

    Woollam, P.B.; Cameron, H.M.; Davies, A.R.; Hiscox, A.W.

    1995-01-01

    Probabilistic safety assessment methodology has been applied by Nuclear Electric plc (NE) to the development of comprehensive safety cases for the radioactive waste management processing and accumulation facilities associated with its 26 reactor systems. This paper describes the methodology and the safety case assessment criteria employed by NE. An overview of the results is presented, together with more detail of a specific safety analysis: storage of fuel element debris. No risk to the public greater than 10 -6 /y has been identified and the more significant risks arise from the potential for radioactive waste fires. There are no unacceptable risks from external hazards such as flooding, aircrash or seismic events. Some operations previously expected to have significant risks in fact have negligible risks, while the few faults with risks exceeding the assessment criteria were only identified as a result of this study

  20. Safety and performance indicators for the assessment of long-term safety of deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Hugi, M.; Schneider, J.W.; Dorp, F. van; Zuidema, P.

    2005-01-01

    The evaluation of the ability to isolate radioactive waste and the assessment of the long-term safety of a deep geological repository is usually done in terms of the calculated dose and/or risk for an average individual of the population which is potentially most affected by the potential impacts of the repository. At present, various countries and international organisations are developing so-called complementary indicators to supplement such calculations. These indicators are called ''safety indicators'' if they refer to the safety of the whole repository system; if they address the isolation capability of individual system components or the whole system from a more technical perspective, they are called ''performance indicators''. The need for complementary indicators follows from the long time frames which characterise the safety assessment of a geological repository, and the corresponding uncertainty of the calculated radiation dose. The main reason for these uncertainties is associated with the uncertain long-term prognosis of the surface environment and the related human behaviour. (orig.)

  1. Uncertainty analysis in safety assessment

    International Nuclear Information System (INIS)

    Lemos, Francisco Luiz de; Sullivan, Terry

    1997-01-01

    Nuclear waste disposal is a very complex subject which requires the study of many different fields of science, like hydro geology, meteorology, geochemistry, etc. In addition, the waste disposal facilities are designed to last for a very long period of time. Both of these conditions make safety assessment projections filled with uncertainty. This paper addresses approaches for treatment of uncertainties in the safety assessment modeling due to the variability of data and some current approaches used to deal with this problem. (author)

  2. Developing international safety standards for the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Metcalf, P.

    2001-01-01

    In the context of the International Atomic Energy Agency's (IAEA) programme to create a corpus of internationally accepted Radioactive Waste Safety Standards (RADWASS), focus is currently being placed on establishing standards for the 'geological disposal of radioactive waste'. This is a challenging task and to help the standards development process there is a need to stimulate discussion of some of the associated scientific and technical issues. A number of position papers developed in recent years by a subgroup of the Waste Safety Standards Committee (WASSC), the subgroup on Principles and Criteria for Radioactive Waste Disposal, address many of the relevant issues. These include a common safety based framework for radioactive waste disposal, appropriate time frames for safety assessment, different possible indicators of long-term safety, the safety implications of reversibility and retrievability, the assessment of possible human intrusion into the repository, the role and limitations of institutional control, establishing reference critical groups and biospheres for long-term assessment, and what is meant by 'compliance' with the standards. These papers will be discussed at a Specialists Meeting to be held at the IAEA in June 2001 as a means of establishing the extent to which they enjoy the general support of experts. In order to broaden that consensus, the conclusions reached at the Specialists Meeting on the issues listed above will be presented and discussed with participants at a number of international meetings. Later this year, a draft safety standard on the geological disposal of radioactive waste which takes account of the consensus positions reached through the various consultations will be submitted for the consideration of Waste Safety Standards Committee (WASSC), the officially approved body within the IAEA for the review and approval of waste safety standards. The Committee is made up of government appointed radioactive waste regulators

  3. Safety Assessment Approach for Decision Making Related to Remedial Measures and Radioactive Waste Management

    International Nuclear Information System (INIS)

    Rybalka, Nataliia; Kondratyev, Sergiy; Alekseeva, Zoya

    2016-01-01

    Conclusions: At each particular case of “legacy” radioactive waste management facilities the optimized remedial measures should be justified taken into account: • results of facility investigations; • site status and characteristics; • safety assessment; • economical reasons; • societal factors; • timeframes; • available technologies and techniques

  4. Deep repository for long-lived low- and intermediate-level waste. Preliminary safety assessment

    International Nuclear Information System (INIS)

    1999-11-01

    A preliminary safety assessment has been performed of a deep repository for long-lived low- and intermediate-level waste, SFL 3-5. The purpose of the study is to investigate the capacity of the facility to act as a barrier to the release of radionuclides and toxic pollutants, and to shed light on the importance of the location of the repository site. A safety assessment (SR 97) of a deep repository for spent fuel has been carried out at the same time. In SR 97, three hypothetical repository sites have been selected for study. These sites exhibit fairly different conditions in terms of hydrogeology, hydrochemistry and ecosystems. To make use of information and data from the SR 97 study, we have assumed that SFL 3-5 is co-sited with the deep repository for spent fuel. A conceivable alternative is to site SFL 3-5 as a completely separate repository. The focus of the SFL 3-5 study is a quantitative analysis of the environmental impact for a reference scenario, while other scenarios are discussed and analyzed in more general terms. Migration in the repository's near- and far-field has been taken into account in the reference scenario. Environmental impact on the three sites has also been calculated. The calculations are based on an updated forecast of the waste to be disposed of in SFL 3-5. The forecast includes radionuclide content, toxic metals and other substances that have a bearing on a safety assessment. The safety assessment shows how important the site is for safety. Two factors stand out as being particularly important: the water flow at the depth in the rock where the repository is built, and the ecosystem in the areas on the ground surface where releases may take place in the future. Another conclusion is that radionuclides that are highly mobile and long-lived, such as 36 Cl and 93 Mo , are important to take into consideration. Their being long-lived means that barriers and the ecosystems must be regarded with a very long time horizon

  5. Technical report on design base events related to the safety assessment of a Low-level Waste Storage Facility (LWSF)

    International Nuclear Information System (INIS)

    Karino, Motonobu; Uryu, Mitsuru; Miyata, Kazutoshi; Matsui, Norio; Imamoto, Nobuo; Kawamata, Tatsuo; Saito, Yasuo; Nagayama, Mineo; Wakui, Yasuyuki

    1999-07-01

    The construction of a new Low-level Waste Storage Facility (LWSF) is planned for storage of concentrated liquid waste from existing Low-level Radioactive Waste Treatment Facility in Tokai Reprocessing Plant of JNC. An essential base for the safety designing of the facility is correctly implemented the adoption of the defence in depth principle. This report summarized criteria for judgement, selection of postulated events, major analytical conditions for anticipated operational occurrences and accidents for the safety assessment and evaluation of each event were presented. (Itami, H.)

  6. Comprehensive safety cases for radioactive waste management facilities

    International Nuclear Information System (INIS)

    Woollam, P.B.

    1993-01-01

    Probabilistic safety assessment methodology is being applied by Nuclear Electric plc (NE) to the development of comprehensive safety cases for the radioactive waste management processing and accumulation facilities associated with its 26 reactor systems. This paper describes the methodology and the safety case assessment criteria employed by NE. An overview of the results from facilities used by the first 16 reactors is presented, together with more detail of a specific safety analysis: storage of fuel element debris. No risk to the public greater than 10 -6 /y has been identified and the more significant risks arise from the potential for radioactive waste fires. There are no unacceptable risks from external hazards such as flooding, aircrash or seismic events. Some operations previously expected to have significant risks in fact have negligible risks, while the few faults with risks exceeding the assessment criteria were only identified as a result of this study

  7. Study on improvement in reliability of inventory assessment in vitrified waste for long-term safety of geological disposal

    International Nuclear Information System (INIS)

    Ishikawa, Masumi; Kaneko, Satoru; Kitayama, Kazumi; Ishiguro, Katsuhiko; Ueda, Hiroyoshi; Wakasugi, Keiichiro; Shinohara, Nobuo; Okumura, Keisuke; Chino, Masamichi; Moriya, Noriyasu

    2009-01-01

    Since quality control issues for vitrified waste are defined mainly with the focus on the transport and interim storage of the waste rather than the long-term safety of geological disposal, they do not cover inventories of long-lived nuclides that are of most interest in the safety assessment of geological disposal. Therefore, we suggest a flow chart for the assessment of inventories of long-lived nuclides in the vitrified waste focusing on the measured values. This includes an indirect assessment with indicative nuclides that have been already measured in the returned vitrified wastes from abroad. In order to apply this flow chart for commercial operation, its applicability should be examined for cases with a variation in burn-up history and with an uncertainty associated with carry-over fraction at reprocessing. We started an R and D program to examine the applicability as well as to improve the reliability of the nuclide generation/decay code and the nuclear data library using liquid waste from spent fuel with a clear irradiation history. To solve the issue of quality control for vitrified waste, a comprehensive study is needed in aspects not only of geological disposal field but also of operation of a nuclear power plant, reprocessing of spent fuel and vitrification of liquid waste. This study is a pioneering study conducted to integrate them. (author)

  8. The assessment of the safety and the radiological risks associated with the transport of radioactive wastes in Romania

    International Nuclear Information System (INIS)

    Vieru, G.

    2000-01-01

    Problems related to the handling, treatment, packaging, storage, transportation, and disposal of radioactive wastes (radwastes) are very important and the responsibility for the safe management of radioactive wastes for the protection of human health and the environment has long been recognized. Safety and public welfare are to be considered within the radioactive waste management, particularly in the field of transportation because of the potential risk that it could pose to the public and to the environment. The IAEA regulations ensure safety in the transport of Radioactive Materials (RAM) by laying down detailed requirements, appropriate to the degree of hazard represented by the respective material, taking into account its form and quantity. Risk assessment provides a basis for routing radwastes and developing mitigation plans, prioritizing initiatives and enacting legislation to protect human beings and the environment. Factors such as shipment cost, distance, population exposed, environmental impacts or sensitivity, time in transit and infrastructure related issues, could be included in the terms of safety and risk. The paper presents risk assessment activities aimed to evaluate risk categories and the radiological consequences that may arise during normal (accident free) transport and those resulting from transport accidents involving waste shipments in Romania. (author)

  9. Novi Han Radioactive Waste Repository post-closure safety assessment, ver.2

    International Nuclear Information System (INIS)

    Mateeva, M.

    2003-01-01

    The methodology for the post-closure safety assessment is presented. The assessment context includes regulatory framework (protection principles); scope and time frame; radiological and technical requirements; modeling etc. The description of the Novi Han disposal system contains site location. meteorological, hydrological and seismological characteristics; waste and repository description and human activities characteristics. The next step in the methodology is scenario development and justification. The systematic generation os exposure scenarios is considered as central to the post-closure safety assessment. The most important requirements for the systematic scenario generation approach are: transparency, comprehensiveness (all possible FEPs influencing the the disposal system and the radionuclide release should be considered); relevant future evolutions; identification of critical issues and investigation of the robustness of the system. For the source-pathway-receptor analysis the Process System is divided into near-field, geosphere/atmosphere and biosphere, describing the key facets controlling the potential radionuclide migration to the environment. The schematic division of the Novi Han near-field Process System into lower-level conceptual features is presented and discussed. As a result of the examinations of the FEPs three classes of scenarios are identified for the Novi Han post-closure safety assessment: Environmental evolution scenarios (geological change and climate change); future human action scenarios (human intrusion and archaeological action); Scenarios with very low probability (terrorism, crashes, explosions). The safety assessment iteration leads to identification of a modern scenario generation approach, assessment of key radionuclide releases, geological and hydrological evaluation, identification of the key parameters from sensitivity analysis etc. Examples of conceptual models are given. For the mathematical modeling the AMBER code is used

  10. Probabilistic safety assessment of the dual-cooled waste transmutation blanket for the FDS-I

    International Nuclear Information System (INIS)

    Hu, L.; Wu, Y.

    2006-01-01

    The subcritical dual-cooled waste transmutation (DWT) blanket is one of the key components of fusion-driven subcritical system (FDS-I). The probabilistic safety assessment (PSA) can provide valuable information on safety characteristics of FDS-I to give recommendations for the optimization of the blanket concepts and the improvement of the design. Event tree method has been adopted to probabilistically analyze the safety of the DWT blanket for FDS-I using the home-developed PSA code RiskA. The blanket melting frequency has been calculated and compared with the core melting frequencies of PWRs and a fast reactor. Sensitivity analysis of the safety systems has been performed. The results show that the current preliminary design of the FDS-I is very attractive in safety

  11. Uncertainty analysis in safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Francisco Luiz de [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Sullivan, Terry [Brookhaven National Lab., Upton, NY (United States)

    1997-12-31

    Nuclear waste disposal is a very complex subject which requires the study of many different fields of science, like hydro geology, meteorology, geochemistry, etc. In addition, the waste disposal facilities are designed to last for a very long period of time. Both of these conditions make safety assessment projections filled with uncertainty. This paper addresses approaches for treatment of uncertainties in the safety assessment modeling due to the variability of data and some current approaches used to deal with this problem. (author) 13 refs.; e-mail: lemos at bnl.gov; sulliva1 at bnl.gov

  12. Risk-based approach to long-term safety assessment for near surface disposal of radioactive waste in Korea

    International Nuclear Information System (INIS)

    Jeong, C.W.; Kim, K.I.; Lee, J.I.

    2000-01-01

    This paper presents the Korean regulatory approach to safety assessment consistent with probabilistic, risk-based long-term safety requirements for near surface disposal facilities. The approach is based on: (1) From the standpoint of risk limitation, normal processes and probabilistic disruptive events should be integrated in a similar manner in terms of potential exposures; and (2) The uncertainties inherent in the safety assessment should be reduced using appropriate exposure scenarios. In addition, this paper emphasizes the necessity of international guidance for quantifying potential exposures and the corresponding risks from radioactive waste disposal. (author)

  13. The use of safety indicators in the assessment of radioactive waste disposal

    International Nuclear Information System (INIS)

    Wingefors, S.; Westerlind, M.; Gera, F.

    1999-01-01

    The most widely used criteria for disposal are limits or constraints on individual dose or risk, and these have been introduced in most national legal frameworks. There is general agreement that future generations have the right to the same level of protection as the current generation. Even if quantitative criteria corresponding to the required level of protection can be (and have been) defined, it is a great challenge to demonstrate compliance with these criteria. The difficulties are to large extent due to the long time-scales needed to be considered in radioactive waste disposal. The future cannot be predicted in detail but instead different scenarios, with different probabilities of occurrence, must be assessed. Some parts of a disposal system can be predicted or analysed with high confidence for very long periods of time, e.g. geological formations, while for example the evolution of the biosphere, and in particular the society, become quite uncertain within less than one thousand years. Thus, there may be considerable uncertainty in doses (or risks) derived from the safety assessment of a repository. Due to these unavoidable uncertainties it is believed advantageous to use multiple approaches in the safety assessment and to identify different indicators for the repository safety ('multiple-lines-of-reasoning'). The most fundamental safety indicators are dose/risk but complementary indicators have been suggested, in particular flux and environmental concentration of radionuclides. This presentation is focussed on fluxes and concentrations as complementary safety indicators. Other safety indicators, e.g. transfer times, are mentioned only briefly

  14. Safety Assessment for Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-15

    In the past few decades, international guidance has been developed on methods for assessing the safety of predisposal and disposal facilities for radioactive waste. More recently, it has been recognized that there is also a need for specific guidance on safety assessment in the context of decommissioning nuclear facilities. The importance of safety during decommissioning was highlighted at the International Conference on Safe Decommissioning for Nuclear Activities held in Berlin in 2002 and at the First Review Meeting of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management in 2003. At its June 2004 meeting, the Board of Governors of the IAEA approved the International Action Plan on Decommissioning of Nuclear Facilities (GOV/2004/40), which called on the IAEA to: ''establish a forum for the sharing and exchange of national information and experience on the application of safety assessment in the context of decommissioning and provide a means to convey this information to other interested parties, also drawing on the work of other international organizations in this area''. In response, in November 2004, the IAEA launched the international project Evaluation and Demonstration of Safety for Decommissioning of Facilities Using Radioactive Material (DeSa) with the following objectives: -To develop a harmonized approach to safety assessment and to define the elements of safety assessment for decommissioning, including the application of a graded approach; -To investigate the practical applicability of the methodology and performance of safety assessments for the decommissioning of various types of facility through a selected number of test cases; -To investigate approaches for the review of safety assessments for decommissioning activities and the development of a regulatory approach for reviewing safety assessments for decommissioning activities and as a basis for regulatory decision making; -To provide a forum

  15. Safety Aspects in Radioactive Waste Management

    Directory of Open Access Journals (Sweden)

    Peter W. Brennecke

    2007-01-01

    Full Text Available In recent years, within the framework of national as well as international programmes, notable advances and considerable experience have been reached, particularly in minimising of the production of radioactive wastes, conditioning and disposal of short-lived, low and intermediate level waste, vitrification of fission product solutions on an industrial scale and engineered storage of long-lived high level wastes, i.e. vitrified waste and spent nuclear fuel. Based on such results, near-surface repositories have successfully been operated in many countries. In contrast to that, the disposal of high level radioactive waste is still a scientific and technical challenge in many countries using the nuclear power for the electricity generation. Siting, planning and construction of repositories for the high level wastes in geological formations are gradually advancing. The site selection, the evaluation of feasible sites as well as the development of safety cases and performance of site-specific safety assessments are essential in preparing the realization of such a repository. In addition to the scientific-technical areas, issues regarding economical, environmental, ethical and political aspects have been considered increasingly during the last years. Taking differences in the national approaches, practices and the constraints into account, it is to be recognised that future developments and decisions will have to be extended in order to include further important aspects and, finally, to enhance the acceptance and confidence in the safety-related planning work as well as in the proposed radioactive waste management and disposal solutions.

  16. Nuclear safety requirements for upgrading the National Repository for Radioactive Wastes-Baita Bihor

    International Nuclear Information System (INIS)

    Vladescu, Gabriela; Necula, Daniela

    2000-01-01

    The upgrading project of National Repository for Radioactive Wastes-Baita Bihor is based on the integrated concept of nuclear safety. Its ingredients are the following: A. The principles of nuclear safety regarding the management of radioactive wastes and radioprotection; B. Safety objectives for final disposal of low- and intermediate-level radioactive wastes; C. Safety criteria for final disposal of low- and intermediate-level radioactive wastes; D. Assessment of safety criteria fulfillment for final disposal of low- and intermediate-level radioactive wastes. Concerning the nuclear safety in radioactive waste management the following issues are considered: population health protection, preventing transfrontier contamination, future generation radiation protection, national legislation, control of radioactive waste production, interplay between radioactive waste production and management, radioactive waste repository safety. The safety criteria of final disposal of low- and intermediate-level radioactive wastes are discussed by taking into account the geological and hydrogeological configuration, the physico-chemical and geochemical characteristics, the tectonics and seismicity conditions, extreme climatic potential events at the mine location. Concerning the requirements upon the repository, the following aspects are analyzed: the impact on environment, the safety system reliability, the criticality control, the filling composition to prevent radioactive leakage, the repository final sealing, the surveillance. Concerning the radioactive waste, specific criteria taken into account are the radionuclide content, the chemical composition and stability, waste material endurance to heat and radiation. The waste packaging criteria discussed are the mechanical endurance, materials toughness and types as related to deterioration caused by handling, transportation, storing or accidents. Fulfillment of safety criteria is assessed by scenarios analyses and analyses of

  17. A Post Closure Safety Assessment for Radioactive Wastes from Advanced nuclear fuel Cycle

    International Nuclear Information System (INIS)

    Kang, Chul Hyung; Hwang, Yong Soo

    2010-01-01

    KAERI has developed the KIEP-21 (Korean, Innovative, Environmentally Friendly, and Proliferation Resistant System for the 21st Century). It is an advanced nuclear fuel cycle option with a pyro-process and a GEN-IV SFR. A pyro-process consists of two distinctive processes, an electrolytic reduction process and an electro-refining and winning process. When the pyro-process is applied, it generates five streams of wastes. To compare pyro-process advantage over the direct disposal of Spent Nuclear Fuel (SNF), the PWR SNF of the 45,000 MWD burn-up has been assumed. A safety assessment model for pyro-process wastes and representative results are presented in this report

  18. Regulatory review of safety cases and safety assessments - associated challenges

    International Nuclear Information System (INIS)

    Bennett, D.G.; Ben Belfadhel, M.; Metcalf, P.E.

    2006-01-01

    Regulatory reviews of safety cases and safety assessments are essential for credible decision making on the licensing or authorization of radioactive waste disposal facilities. Regulatory review also plays an important role in developing the safety case and in establishing stakeholders' confidence in the safety of the facility. Reviews of safety cases for radioactive waste disposal facilities need to be conducted by suitably qualified and experienced staff, following systematic and well planned review processes. Regulatory reviews should be sufficiently comprehensive in their coverage of issues potentially affecting the safety of the disposal system, and should assess the safety case against clearly established criteria. The conclusions drawn from a regulatory review, and the rationale for them should be reproducible and documented in a transparent and traceable way. Many challenges are faced when conducting regulatory reviews of safety cases. Some of these relate to issues of project and programme management, and resources, while others derive from the inherent difficulties of assessing the potential long term future behaviour of engineered and environmental systems. The paper describes approaches to the conduct of regulatory reviews and discusses some of the challenges faced. (author)

  19. Deep repository for long-lived low- and intermediate-level waste. Preliminary safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A preliminary safety assessment has been performed of a deep repository for long-lived low- and intermediate-level waste, SFL 3-5. The purpose of the study is to investigate the capacity of the facility to act as a barrier to the release of radionuclides and toxic pollutants, and to shed light on the importance of the location of the repository site. A safety assessment (SR 97) of a deep repository for spent fuel has been carried out at the same time. In SR 97, three hypothetical repository sites have been selected for study. These sites exhibit fairly different conditions in terms of hydrogeology, hydrochemistry and ecosystems. To make use of information and data from the SR 97 study, we have assumed that SFL 3-5 is co-sited with the deep repository for spent fuel. A conceivable alternative is to site SFL 3-5 as a completely separate repository. The focus of the SFL 3-5 study is a quantitative analysis of the environmental impact for a reference scenario, while other scenarios are discussed and analyzed in more general terms. Migration in the repository's near- and far-field has been taken into account in the reference scenario. Environmental impact on the three sites has also been calculated. The calculations are based on an updated forecast of the waste to be disposed of in SFL 3-5. The forecast includes radionuclide content, toxic metals and other substances that have a bearing on a safety assessment. The safety assessment shows how important the site is for safety. Two factors stand out as being particularly important: the water flow at the depth in the rock where the repository is built, and the ecosystem in the areas on the ground surface where releases may take place in the future. Another conclusion is that radionuclides that are highly mobile and long-lived, such as {sup 36}Cl and {sup 93}Mo , are important to take into consideration. Their being long-lived means that barriers and the ecosystems must be regarded with a very long time horizon.

  20. Probabilistic safety assessment for Hanford high-level waste tank 241-SY-101

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W. [Los Alamos National Lab., NM (United States); Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J. [PLG, Inc., Newport Beach, CA (United States)

    1994-05-01

    Los Alamos National Laboratory (Los Alamos) is performing a comprehensive probabilistic safety assessment (PSA), which will include consideration of external events for the 18 tank farms at the Hanford Site. This effort is sponsored by the Department of Energy (DOE/EM, EM-36). Even though the methodology described herein will be applied to the entire tank farm, this report focuses only on the risk from the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases ({open_quotes}burps{close_quotes}) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed first because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is being conducted in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. At the Hanford Site there are 177 underground tanks in 18 separate tank farms containing accumulated liquid/sludge/salt cake radioactive wastes from 50 yr of weapons materials production activities. The total waste volume is about 60 million gal., which contains approximately 120 million Ci of radioactivity.

  1. Probabilistic safety assessment for Hanford high-level waste tank 241-SY-101

    International Nuclear Information System (INIS)

    MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W.; Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J.

    1994-05-01

    Los Alamos National Laboratory (Los Alamos) is performing a comprehensive probabilistic safety assessment (PSA), which will include consideration of external events for the 18 tank farms at the Hanford Site. This effort is sponsored by the Department of Energy (DOE/EM, EM-36). Even though the methodology described herein will be applied to the entire tank farm, this report focuses only on the risk from the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases (open-quotes burpsclose quotes) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed first because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is being conducted in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. At the Hanford Site there are 177 underground tanks in 18 separate tank farms containing accumulated liquid/sludge/salt cake radioactive wastes from 50 yr of weapons materials production activities. The total waste volume is about 60 million gal., which contains approximately 120 million Ci of radioactivity

  2. Study on Safety Assessment for TINT- Pre disposal Radioactive Waste Management Facilities by the Application of SAFRAN Software

    International Nuclear Information System (INIS)

    Ya-anant, Nanthavan

    2011-06-01

    Full text: The Radioactive Waste Management Center, Thailand Institute of Nuclear Technology (TINT) provides a centralized radioactive waste management (RWM) service in the country. The pre disposal RWM facilities are composed of low and intermediate level waste treatment and storage facilities. The benefits of this study are (1) to improve the safety of pre disposal RWM facilities (2) to experience with the SAFRAN software tool for the safety assessment of pre disposal RWM facilities, which has been developed following to the methodology from International Atomic Energy Agency (IAEA). The work was performed on collecting all waste management data, the diagram of facilities, buildings, location, procedure, waste classification, waste form, radiological/chemical/physical properties including scenarios in normal and accidental conditions. The result of normal condition is that the effective dose per year of worker and public is less than 20 mSv and 1 mSv respectively. So the TINT-RWM operation is safe, as referred to the regulation

  3. NUMO's approach for long-term safety assessment - 59404

    International Nuclear Information System (INIS)

    Ebashi, Takeshi; Kaku, Kenichi; Ishiguro, Katsuhiko

    2012-01-01

    One of NUMO's policies for ensuring safety is staged and flexible project implementation and decision-making based on iterative confirmation of safety. The safety assessment takes the central role in multiple lines of reasoning and argumentation by providing a quantitative evaluation of long-term safety; a key aspect is uncertainty management. This paper presents NUMO's basic strategies for long-term safety assessment based on the above policy. NUMO's approach considering Japanese boundary conditions is demonstrated as a starting-point for evaluating the long-term safety of an actual site. In Japan, the Act on Final Disposal of Specified Radioactive Waste states that the siting process shall consist of three stages. The Nuclear Waste Management Organization of Japan (NUMO) is responsible for geological disposal of vitrified high-level waste and some types of TRU waste. NUMO has chosen to implement a volunteer approach to siting. NUMO decided to prepare the so-called 2010 technical report, which sets out three safety policies, one of which is staged project implementation and decision-making based on iterative confirmation of safety. Based on this policy, NUMO will gradually integrate relevant interdisciplinary knowledge to build a safety case when a formal volunteer application is received that would allow site investigations to be initiated. The safety assessment takes the central role in multiple lines of reasoning and argumentation by providing a quantitative evaluation of long-term safety; one of a key aspect is uncertainty management. This paper presents the basic strategies for NUMO's long-term safety assessment based on the above policy. In concrete terms, the common procedures involved in safety assessment are applied in a stepwise manner, based on integration of knowledge obtained from site investigations/evaluations and engineered measures. The results of the safety assessment are then reflected in the planning of site investigations and engineered

  4. The International Atomic Energy Agency (IAEA) research program to improve safety assessment methodologies for near-surface radioactive waste disposal facilities (ISAM)

    International Nuclear Information System (INIS)

    Torres-Vidal, C.; Kozak, M.W.

    2000-01-01

    The International Atomic Energy Agency (IAEA) launched a Coordinated Research Program in November 1997 on Improvement of Safety Assessment Methodologies for Near Surface Radioactive Waste Disposal Facilities (ISAM). The purpose of this paper is to describe the program and its goals, and to describe achievements of the program to date. The main objectives of the ISAM program are outlined. The primary focus of ISAM is on the practical application of safety assessment methodologies. Three kinds of practical situations are being addressed in the program: safety assessments for large vaults typical of those in Western Europe and North America, smaller vaults for medium and industrial wastes typical in eastern Europe and the former Soviet Union, and a proposed borehole technology for disposal of spent sources in low-technology conditions. (author)

  5. Nirex safety assessment research programme: 1987/88

    International Nuclear Information System (INIS)

    George, D.; Hodgkinson, D.P.

    1987-01-01

    The Nirex Safety Assessment Research programme's objective is to provide information for the radiological safety case for disposing low-level and intermediate-level radioactive wastes in underground repositories. The programme covers a wide range of experimental studies and mathematical modelling for the near and far field. It attempts to develop a quantitative understanding of events and processes which have an impact on the safety of radioactive waste disposal. (U.K.)

  6. Biosphere modeling for safety assessment to high-level radioactive waste geological disposal. Application of reference biosphere methodology to safety assesment of geological disposal

    International Nuclear Information System (INIS)

    Baba, Tomoko; Ishihara, Yoshinao; Ishiguro, Katsuhiko; Suzuki, Yuji; Naito, Morimasa

    2000-01-01

    In the safety assessment of a high-level radioactive waste disposal system, it is required to estimate future radiological impacts on human beings. Consideration of living habits and the human environment in the future involves a large degree of uncertainty. To avoid endless speculation aimed at reducing such uncertainty, an approach is applied for identifying and justifying a 'reference biosphere' for use in safety assessment in Japan. considering a wide range of Japanese geological environments, saline specific reference biospheres' were developed using an approach consistent with the BIOMOVS II reference biosphere methodology. (author)

  7. Safety assessment for facilities and activities. General safety requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF 6 ; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  8. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  9. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2010-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  10. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation.? read more The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are

  11. Radioactive safety analysis and assessment of waste rock pile site in uranium tailings

    International Nuclear Information System (INIS)

    Liu Changrong; Liu Zehua; Wang Zhiyong; Zhou Xinghuo

    2007-01-01

    Based on theoretical calculation and in-situ test results, distribution and emissions of radioactive nuclides of uranium tailings impoundment and waste rock pile sites are analyzed in this paper. It is pointed out that 222 Rn is the main nuclide of uranium tailings impoundment and waste rock pile site. Also 222 Rn is the main source term of public dose. 222 Rn concentrations in the atmospheric environment around and individual dose to Rn gradually decrease with increasing distances to uranium tailings impoundment and waste rock pile site. Based on in-situ tests on five uranium tailings impoundment and waste rock pile sites, a decisive method and safety protection distance are presented, which can be used to guide the validation and design of radioactive safety protection in uranium tailings impoundment and waste rock pile sites. (authors)

  12. Confidence improvement of disosal safety bydevelopement of a safety case for high-level radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Min Hoon; Ko, Nak Youl; Jeong, Jong Tae; Kim, Kyung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    Many countries have developed a safety case suitable to their own countries in order to improve the confidence of disposal safety in deep geological disposal of high-level radioactive waste as well as to develop a disposal program and obtain its license. This study introduces and summarizes the meaning, necessity, and development process of the safety case for radioactive waste disposal. The disposal safety is also discussed in various aspects of the safety case. In addition, the status of safety case development in the foreign countries is briefly introduced for Switzerland, Japan, the United States of America, Sweden, and Finland. The strategy for the safety case development that is being developed by KAERI is also briefly introduced. Based on the safety case, we analyze the efforts necessary to improve confidence in disposal safety for high-level radioactive waste. Considering domestic situations, we propose and discuss some implementing methods for the improvement of disposal safety, such as construction of a reliable information database, understanding of processes related to safety, reduction of uncertainties in safety assessment, communication with stakeholders, and ensuring justice and transparency. This study will contribute to the understanding of the safety case for deep geological disposal and to improving confidence in disposal safety through the development of the safety case in Korea for the disposal of high-level radioactive waste.

  13. Developing of Radioactive Wastes Management Safety at Baldone Repository Radons

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Abramenkova, G.; Klavins, M.

    2008-01-01

    The near surface radioactive wastes repository Radons near the Baldone city was put in operation in 1962. The safety assessment of repository was performed during 2000-2001 under the PHARE project to evaluate the recommended upgrades of repository. The outline design for new vaults and interim storage for long lived radioactive wastes was elaborated during 2003-2004 years. The Environmental Impact Assessment (EIA) for upgrade of Baldone repository was performed during 2004-2005 years. Additional evaluations of radioactive wastes management safety were performed during 2006 year by the experts of ENRESA, Spain. It was shown, that the additional efforts were spent for improving of radioactive wastes cementation in concrete containers. The results of tritium and Cs 137 leaching studies are presented and discussed. It was shown, that additives can significantly reduce the migration of radionuclides in ground water. The leaching coefficients for tritium and Cs 137 were determined to supply with the necessary data the risk assessment calculations for operation of Baldone repository R adons

  14. Safety assessment of near surface radioactive waste disposal facilities: Model intercomparison using simple hypothetical data (Test Case 1). First report of NSARS. Part of the co-ordinated research programme on the safety assessment of near surface radioactive waste disposal facilities (NSARS)

    International Nuclear Information System (INIS)

    1995-11-01

    In many countries near surface disposal is the preferred option for the comparatively large volumes of low and intermediate level wastes which arise during nuclear power plant operations, nuclear fuel reprocessing and also for the wastes arising from radionuclide applications in hospitals and research establishments. Near surface disposal is also widely practised in the case of hazardous wastes from chemical industries. It is obviously necessary to show that waste disposal methods are safe and that both man and the environment will be adequately protected. Following a previous related Co-ordinated Research Programme (CRP) on ''Migration and Biological Transfer of Radionuclides from Shallow Land Burial'' during 1985 to 1989 (IAEA-TECDOC-579, Vienna, 1990), the issue of reliability of safety assessments was identified as an important topic for further support and development. A new CRP was formulated with the acronym NSARS (Near Surface Radioactive Waste Disposal Safety Assessment Reliability Study). This technical document is the first report of from the CRP and contains the intercomparison of results of the first test exercise (Test Case 1) on modelling of potential radiation exposures as a result of near surface disposal. Test Case 1 is based on entirely hypothetical data and includes consideration of exposures due to leaching and as a result of human intrusion into the site. Refs, figs and tabs

  15. Safety assessment of near surface radioactive waste disposal facilities: Model intercomparison using simple hypothetical data (Test Case 1). First report of NSARS. Part of the co-ordinated research programme on the safety assessment of near surface radioactive waste disposal facilities (NSARS)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    In many countries near surface disposal is the preferred option for the comparatively large volumes of low and intermediate level wastes which arise during nuclear power plant operations, nuclear fuel reprocessing and also for the wastes arising from radionuclide applications in hospitals and research establishments. Near surface disposal is also widely practised in the case of hazardous wastes from chemical industries. It is obviously necessary to show that waste disposal methods are safe and that both man and the environment will be adequately protected. Following a previous related Co-ordinated Research Programme (CRP) on ``Migration and Biological Transfer of Radionuclides from Shallow Land Burial`` during 1985 to 1989 (IAEA-TECDOC-579, Vienna, 1990), the issue of reliability of safety assessments was identified as an important topic for further support and development. A new CRP was formulated with the acronym NSARS (Near Surface Radioactive Waste Disposal Safety Assessment Reliability Study). This technical document is the first report of from the CRP and contains the intercomparison of results of the first test exercise (Test Case 1) on modelling of potential radiation exposures as a result of near surface disposal. Test Case 1 is based on entirely hypothetical data and includes consideration of exposures due to leaching and as a result of human intrusion into the site. Refs, figs and tabs.

  16. RADWASS update. Radioactive Waste Safety Standards Programme

    International Nuclear Information System (INIS)

    Delattre, D.

    2000-01-01

    By the late 1980s, the issue of radioactive wastes and their management was becoming increasingly politically important. The IAEA responded by establishing a high profile family of safety standards, the Radioactive Waste Safety Standards (RADWASS). By this means, the IAEA intended to draw attention to the fact that well-established procedures for the safe management of radioactive wastes already were in place. The programme was intended to establish an ordered structure for safety documents on waste management and to ensure comprehensive coverage of all relevant subject areas. RADWASS documents are categorized under four subject areas - discharges, predisposal, disposal, and environmental restoration. The programme is overseen through a formalized review and approval mechanism that was established in 1996 for all safety standards activities. The Waste Safety Standards Committee (WASSC) is a standing body of senior regulatory officials with technical expertise in radioactive waste safety. To date, three Safety Requirements and seven Safety Guides have been issued

  17. Solid waste burial grounds interim safety analysis

    International Nuclear Information System (INIS)

    Saito, G.H.

    1994-01-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment

  18. Solid waste burial grounds interim safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  19. Safety and cost evaluation of nuclear waste management

    International Nuclear Information System (INIS)

    Vieno, T.; Hautojaervi, A.; Korhonen, R.

    1989-11-01

    The report introduces the results of the nuclear waste management safety and cost evaluation research carried out in the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) during the years 1984-1988. The emphasis is on the description of the state-of-art of performance and cost evaluation methods. The report describes VTT's most important assessment models. Development, verification and validation of the models has largely taken place within international projects, including the Stripa, HYDROCOIN, INTRACOIN, INTRAVAL, PSACOIN and BIOMOVS projects. Furthermore, VTT's other laboratories are participating in the Natural Analogue Working Group,k the CHEMVAL project and the CoCo group. Resent safety analyses carried out in the Nuclear Engineering Laboratory include a concept feasibility study of spent fuel disposal, safety analyses for the Preliminary Safety Analysis Reports (PSAR's) of the repositories to be constructed for low and medium level operational reactor waste at the Olkiluoto and Loviisa power plants as well as safety analyses of disposal of decommissioning wastes. Appendix 1 contains a comprehensive list of the most important publications and technical reports produced. They present the content and results of the research in detail

  20. Safety standards for near surface disposal and the safety case and supporting safety assessment for demonstrating compliance with the standards

    International Nuclear Information System (INIS)

    Metcalf, P.

    2003-01-01

    The report presents the safety standards for near surface disposal (ICRP guidance and IAEA standards) and the safety case and supporting safety assessment for demonstrating compliance with the standards. Special attention is paid to the recommendations for disposal of long-lived solid radioactive waste. The requirements are based on the principle for the same level of protection of future individuals as for the current generation. Two types of exposure are considered: human intrusion and natural processes and protection measures are discussed. Safety requirements for near surface disposal are discussed including requirements for protection of human health and environment, requirements or safety assessments, waste acceptance and requirements etc

  1. Safety in the final disposal of radioactive waste. Final report

    International Nuclear Information System (INIS)

    Broden, K.; Carugati, S.; Brodersen, K.

    1997-12-01

    During 1994-1997 a project on the disposal of radioactive waste was carried out as part of the NKS program. The objective of the project was to give authorities and waste producers in the Nordic countries background material for determinations about the management and disposal of radioactive waste. The project NKS/AFA-1 was divided into three sub-projects: AFA-1.1, AFA-1.2 and AFA-1.3. AFA-1.1 dealt with waste characterisation, AFA-1.2 dealt with performance assessment for repositories and AFA-1.3 dealt with Environmental Impact Assessment (EIA). The studies mainly focused on the management of long-lived low- and intermediate-level radioactive waste from research, hospitals and industry. The AFA-1.1 study included an overview on waste categories in the Nordic countries and methods to determine or estimate the waste content. The results from the AFA-1.2 study include a short overview of different waste management systems existing and planned in the Nordic countries. However, the main emphasis of the study was a general discussion of methodologies developed and employed for performance assessments of waste repositories. Some of the phenomena and interactions relevant for generic types of repository were discussed as well. Among the different approaches for the development of scenarios for safety and performance assessments one particular method, the Rock Engineering System (RES), was chosen to be tested by demonstration. The possible interactions and their safety significance were discussed, employing a simplified and generic Nordic repository system as the reference system. New regulations for the inventory of a repository may demand new assessments of old radioactive waste packages. The existing documentation of a waste package is then the primary information source although additional measurements may be necessary. (EG)

  2. Safety in the final disposal of radioactive waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Broden, K.; Carugati, S.; Brodersen, K. [and others

    1997-12-01

    During 1994-1997 a project on the disposal of radioactive waste was carried out as part of the NKS program. The objective of the project was to give authorities and waste producers in the Nordic countries background material for determinations about the management and disposal of radioactive waste. The project NKS/AFA-1 was divided into three sub-projects: AFA-1.1, AFA-1.2 and AFA-1.3. AFA-1.1 dealt with waste characterisation, AFA-1.2 dealt with performance assessment for repositories and AFA-1.3 dealt with Environmental Impact Assessment (EIA). The studies mainly focused on the management of long-lived low- and intermediate-level radioactive waste from research, hospitals and industry. The AFA-1.1 study included an overview on waste categories in the Nordic countries and methods to determine or estimate the waste content. The results from the AFA-1.2 study include a short overview of different waste management systems existing and planned in the Nordic countries. However, the main emphasis of the study was a general discussion of methodologies developed and employed for performance assessments of waste repositories. Some of the phenomena and interactions relevant for generic types of repository were discussed as well. Among the different approaches for the development of scenarios for safety and performance assessments one particular method, the Rock Engineering System (RES), was chosen to be tested by demonstration. The possible interactions and their safety significance were discussed, employing a simplified and generic Nordic repository system as the reference system. New regulations for the inventory of a repository may demand new assessments of old radioactive waste packages. The existing documentation of a waste package is then the primary information source although additional measurements may be necessary. (EG) 33 refs.

  3. Long-term safety of the maintenance and decommissioning waste of the encapsulation plant

    International Nuclear Information System (INIS)

    Nummi, O.; Kylloenen, J.; Eurajoki, T.

    2012-12-01

    This report, Long-term safety of the maintenance and decommissioning waste of the encapsulation plant, presents the disposal concept for the low and intermediate level waste (L/ILW) that is generated during the operation and decommissioning of the encapsulation plant, and assesses the long-term safety of the disposal of the waste. Radioactive waste originates from the spent nuclear fuel transferred and dried in the encapsulation plant. Radioactive waste accumulates also in the maintenance of the components and systems of the encapsulation plant. The waste is collected, exempted from control if possible and treated for final disposal if necessary. The waste is disposed of in the L/ILW hall which is currently planned to be located at a depth of -180 meters along the access tunnel to the repository for spent fuel. The main engineered barrier in the L/ILW hall is a concrete basin that encases the dried liquid waste. The safety concept of L/ILW disposal is based on the slow release of radioactivity from the L/ILW hall and its limited transport through the bedrock into biosphere. The release and transport of the radioactivity is described by the assessment scenarios, which include expected evolution and unlikely events affecting the long-term safety. The scenarios act as guidelines according to which the conceptual and mathematical models are formed. The long-term safety of the L/ILW hall is assessed using deterministic and probabilistic modeling. Special issues such as human intrusion and radiation effects on other biota are also assessed. The most significant contributor to the dose rates is the short-lived radionuclide 90 Sr followed by long-lived nuclides 129 I and 108 mAg. The annual doses to the public, and release rates of radioactive substances stay below the regulatory constraints in all analyzed scenarios. (orig.)

  4. Waste Tank Safety Screening Module: An aspect of Hanford Site tank waste characterization

    International Nuclear Information System (INIS)

    Hill, J.G.; Wood, T.W.; Babad, H.; Redus, K.S.

    1994-01-01

    Forty-five (45) of the 149 Hanford single-shell tanks have been designated as Watch-List tanks for one or more high-priority safety issues, which include significant concentrations of organic materials, ferrocyanide salts, potential generation of flammable gases, high heat generation, criticality, and noxious vapor generation. While limited waste characterization data have been acquired on these wastes under the original Tri-Party Agreement, to date all of the tank-by-tank assessments involved in these safety issue designations have been based on historical data rather than waste on data. In response to guidance from the Defense Nuclear Facilities Safety Board (DNFSB finding 93-05) and related direction from the US Department of Energy (DOE), Westinghouse Hanford Company, assisted by Pacific Northwest Laboratory, designed a measurements-based screening program to screen all single-shell tanks for all of these issues. This program, designated the Tank Safety Screening Module (TSSM), consists of a regime of core, supernatant, and auger samples and associated analytical measurements intended to make first-order discriminations of the safety status on a tank-by-tank basis. The TSSM combines limited tank sampling and analysis with monitoring and tank history to provide an enhanced measurement-based categorization of the tanks relative to the safety issues. This program will be implemented beginning in fiscal year (FY) 1994 and supplemented by more detailed characterization studies designed to support safety issue resolution

  5. Performance assessment for underground radioactive waste disposal systems

    International Nuclear Information System (INIS)

    1985-01-01

    A waste disposal system comprises a number of subsystems and components. The performance of most systems can be demonstrated only indirectly because of the long period that would be required to test them. This report gives special attention to performance assessment of subsystems within the total waste disposal system, and is an extension of an IAEA report on Safety Assessment for the Underground Disposal of Radioactive Wastes

  6. The Environmental Agency's Assessment of the Post-Closure Safety Case for the BNFL DRIGG Low Level Radioactive Waste Disposal Facility

    International Nuclear Information System (INIS)

    Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.

    2002-01-01

    The Environment Agency is responsible, in England and Wales, for authorization of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorized by the Environment Agency to dispose of solid low level radioactive waste at its site at Drigg, near Sellafield, NW England. As part of a planned review of this authorization, the Environment Agency is currently undertaking an assessment of BNFL's Post-Closure Safety Case Development Programme for the Drigg disposal facility. This paper presents an outline of the review methodology developed and implemented by the Environment Agency specifically for the planned review of BNFL's Post-Closure Safety Case. The paper also provides an overview of the Environment Agency's progress in its on-going assessment programme

  7. Low-level waste disposal performance assessments - Total source-term analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wilhite, E.L.

    1995-12-31

    Disposal of low-level radioactive waste at Department of Energy (DOE) facilities is regulated by DOE. DOE Order 5820.2A establishes policies, guidelines, and minimum requirements for managing radioactive waste. Requirements for disposal of low-level waste emplaced after September 1988 include providing reasonable assurance of meeting stated performance objectives by completing a radiological performance assessment. Recently, the Defense Nuclear Facilities Safety Board issued Recommendation 94-2, {open_quotes}Conformance with Safety Standards at Department of Energy Low-Level Nuclear Waste and Disposal Sites.{close_quotes} One of the elements of the recommendation is that low-level waste performance assessments do not include the entire source term because low-level waste emplaced prior to September 1988, as well as other DOE sources of radioactivity in the ground, are excluded. DOE has developed and issued guidance for preliminary assessments of the impact of including the total source term in performance assessments. This paper will present issues resulting from the inclusion of all DOE sources of radioactivity in performance assessments of low-level waste disposal facilities.

  8. The safety case for deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Kwong, Gloria

    2014-01-01

    The concept of a 'safety case' for a deep geological repository for radioactive waste was first introduced by the NEA Expert Group on Integrated Performance Assessment (IPAG). It was further developed in the NEA report entitled Confidence in the Long-term Safety of Deep Geological Repositories (1999), and since then it has been taken up in international safety standards as promulgated by the International Atomic Energy Agency (IAEA, 2006, 2011) and more recently in recommendations by the International Commission on Radiological Protection on the application of the system of radiological protection in geological disposal (ICRP, 2013). Many national radioactive waste disposal programmes and regulatory guides are also applying this concept. The NEA has used the safety case as a guide in several international peer reviews of national repository programmes and safety documentation. In Europe, the EU Directive 2011/70/ Euratom (EU, 2011) establishes a framework to ensure responsible and safe management of spent fuel and radioactive waste by member states that, inter alia, requires a decision-making process based on safety evidence and arguments that mirror the safety case concept. In 2007, the NEA, the IAEA and the European Commission (EC) organised a symposium on Safety Cases for the Deep Disposal of Radioactive Waste: Where Do We Stand? Since this time, however, there have been some major developments in a number of national geological disposal programmes and significant experience in preparing and reviewing cases for the operational and long-term safety of proposed and operating geological repositories. A symposium on The Safety Case for Deep Geological Disposal of Radioactive Waste: 2013 State of the Art was thus organised to assess developments since 2007 in the practice, understanding and roles of the safety case, as applied internationally at all stages of repository development, including the interplay of technical, regulatory and societal issues. The symposium

  9. Safety analysis of the proposed Canadian geologic nuclear waste repository

    International Nuclear Information System (INIS)

    Prowse, D.R.

    1977-01-01

    The Canadian program for development and qualification of a geologic repository for emplacement of high-level and long-lived, alpha-emitting waste from irradiated nuclear fuel has been inititiated and is in its initial development stage. Fieldwork programs to locate candidate sites with suitable geological characteristics have begun. Laboratory studies and development of models for use in safety analysis of the emplaced nuclear waste have been initiated. The immediate objective is to complete a simplified safety analysis of a model geologic repository by mid-1978. This analysis will be progressively updated and will form part of an environmental Assessment Report of a Model Fuel Center which will be issued in mid-1979. The long-term objectives are to develop advanced safety assessment models of a geologic repository which will be available by 1980

  10. ORNL results for Test Case 1 of the International Atomic Energy Agency's research program on the safety assessment of Near-Surface Radioactive Waste Disposal Facilities

    International Nuclear Information System (INIS)

    Thorne, D.J.; McDowell-Boyer, L.M.; Kocher, D.C.; Little, C.A.; Roemer, E.K.

    1993-01-01

    The International Atomic Energy Agency (IAEA) started the Coordinated Research Program entitled '''The Safety Assessment of Near-Surface Radioactive Waste Disposal Facilities.'' The program is aimed at improving the confidence in the modeling results for safety assessments of waste disposal facilities. The program has been given the acronym NSARS (Near-Surface Radioactive Waste Disposal Safety Assessment Reliability Study) for ease of reference. The purpose of this report is to present the ORNL modeling results for the first test case (i.e., Test Case 1) of the IAEA NSARS program. Test Case 1 is based on near-surface disposal of radionuclides that are subsequently leached to a saturated-sand aquifer. Exposure to radionuclides results from use of a well screened in the aquifer and from intrusion into the repository. Two repository concepts were defined in Test Case 1: a simple earth trench and an engineered vault

  11. A comparative assessment of alternative waste management procedures for selected reprocessing wastes

    International Nuclear Information System (INIS)

    Hickford, G.E.; Plews, M.J.

    1983-07-01

    This report, which has been prepared by Associated Nuclear Services for the Department of the Environment, presents the results of a study and comparative assessment of management procedures for low and intermediate level solid waste streams arising from current and future fuel reprocessing operations on the Sellafield site. The characteristics and origins of the wastes under study are discussed and a reference waste inventory is presented, based on published information. Waste management strategy in the UK and its implications for waste conditioning, packaging and disposal are discussed. Wastes currently arising which are not suitable for Drigg burial or sea dumping are stored in an untreated form. Work is in hand to provide additional and improved disposal facilities which will accommodate all the waste streams under study. For each waste stream viable procedures are identified for further assessment. The procedures comprise a series of on-site operations-recovery from storage, pre-treatment, treatment, encapsulation, and packaging, prior to storage or disposal of the conditioned waste form. Assessments and comparisons of each procedure for each waste are presented. These address various process, operational, economic, radiological and general safety factors. The results are presented in a series of tables with supporting text. For the majority of wastes direct encapsulation with minimal treatment appears to be a viable procedure. Occupational exposure and general safety are not identified as significant factors governing the choice of procedures. The conditioned wastes meet the general requirements for safe handling during storage and transportation. The less active wastes suitable for disposal by currently available routes meet the appropriate disposal criteria. It is not possible to consider in detail the suitability for disposal of the more active wastes for which disposal facilities are not yet available. (Author)

  12. Evaluation of health and safety impacts of defense high-level waste in geologic repositories

    International Nuclear Information System (INIS)

    Smith, E.D.; Kocher, D.C.; Witherspoon, J.P.

    1985-02-01

    Pursuant to the requirement of the Nuclear Waste Policy Act of 1982 that the President evaluate the use of commercial high-level waste repositories for the disposal of defense high-level wastes, a comparative assessment has been performed of the potential health and safety impacts of disposal of defense wastes in commercial or defense-only repositories. Simplified models were used to make quantitative estimates of both long- and short-term health and safety impacts of several options for defense high-level waste disposal. The results indicate that potential health and safety impacts are not likely to vary significantly among the different disposal options for defense wastes. Estimated long-term health and safety impacts from all defense-waste disposal options are somewhat less than those from commercial waste disposal, while short-term health and safety impacts appear to be insensitive to the differences between defense and commercial wastes. In all cases, potential health and safety impacts are small because of the need to meet stringent standards promulgated by the US Environmental Protection Agency and the US Nuclear Regulatory Commission. We conclude that health and safety impacts should not be a significant factor in the choice of a disposal option for defense high-level wastes. 20 references, 14 tables

  13. DOE high-level waste tank safety program Final report, Task 002

    International Nuclear Information System (INIS)

    1998-01-01

    The overall objective of the work on Task 002 was to provide LANL with support to the DOE High-Level Waste Tank Safety program. The objective of the work was to develop safety documentation in support of the unsafe tank mitigation activities at Hanford. The work includes the development of safety assessment and an environmental assessment. All tasks which were assigned under this Task Order were completed. Descriptions of the objectives of each task and effort performed to complete each objective are provided. The two tasks were: Task 2.1--safety assessment for instrumentation insertion; and Task 2.2--environmental assessment

  14. Preliminary post-closure safety assessment of repository concepts for low level radioactive waste at the Bruce Site, Ontario

    International Nuclear Information System (INIS)

    Little, R.H.; Penfold, J.S.S.; Egan, M.J.; Leung, H.

    2005-01-01

    The preliminary post-closure safety assessment of permanent repository concepts for low-level radioactive waste (LLW) at the Ontario Power Generation (OPG) Bruce Site is described. The study considered the disposal of both short and long-lived LLW. Four geotechnically feasible repository concepts were considered (two near-surface and two deep repositories). An approach consistent with best international practice was used to provide a reasoned and comprehensive analysis of post-closure impacts of the repository concepts. The results demonstrated that the deep repository concepts in shale and in limestone, and the surface repository concept on sand should meet radiological protection criteria. For the surface repository concept on glacial till, it appears that increased engineering such as grouting of waste and voids should be considered to meet the relevant dose constraint. Should the project to develop a permanent repository for LLW proceed, it is expected that this preliminary safety assessment would need to be updated to take account of future site-specific investigations and design updates. (author)

  15. Radioactive waste management in France: safety demonstration fundamentals.

    Science.gov (United States)

    Ouzounian, G; Voinis, S; Boissier, F

    2012-01-01

    The main challenge in development of the safety case for deep geological disposal is associated with the long periods of time over which high- and intermediate-level long-lived wastes remain hazardous. A wide range of events and processes may occur over hundreds of thousands of years. These events and processes are characterised by specific timescales. For example, the timescale for heat generation is much shorter than any geological timescale. Therefore, to reach a high level of reliability in the safety case, it is essential to have a thorough understanding of the sequence of events and processes likely to occur over the lifetime of the repository. It then becomes possible to assess the capability of the repository to fulfil its safety functions. However, due to the long periods of time and the complexity of the events and processes likely to occur, uncertainties related to all processes, data, and models need to be understood and addressed. Assessment is required over the lifetime of the radionuclides contained in the radioactive waste. Copyright © 2012. Published by Elsevier Ltd.

  16. Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities

    International Nuclear Information System (INIS)

    Batandjieva, B.; Torres-Vidal, C.

    2002-01-01

    The International Atomic Energy Agency (IAEA) Coordinated research program ''Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities'' (ISAM) has developed improved safety assessment methodology for near surface disposal facilities. The program has been underway for three years and has included around 75 active participants from 40 countries. It has also provided examples for application to three safety cases--vault, Radon type and borehole radioactive waste disposal facilities. The program has served as an excellent forum for exchange of information and good practices on safety assessment approaches and methodologies used worldwide. It also provided an opportunity for reaching broad consensus on the safety assessment methodologies to be applied to near surface low and intermediate level waste repositories. The methodology has found widespread acceptance and the need for its application on real waste disposal facilities has been clearly identified. The ISAM was finalized by the end of 2000, working material documents are available and an IAEA report will be published in 2002 summarizing the work performed during the three years of the program. The outcome of the ISAM program provides a sound basis for moving forward to a new IAEA program, which will focus on practical application of the safety assessment methodologies to different purposes, such as licensing radioactive waste repositories, development of design concepts, upgrading existing facilities, reassessment of operating repositories, etc. The new program will also provide an opportunity for development of guidance on application of the methodology that will be of assistance to both safety assessors and regulators

  17. The IAEA radioactive waste safety standards programme

    International Nuclear Information System (INIS)

    Tourtellotte, James R.

    1995-01-01

    The IAEA is currently reviewing more than thirty publications in its Safety Series with a view toward consolidating and organizing information pertaining to radioactive waste. the effort is entitled Radioactive Waste Safety Standards programme (RADWASS). RADWASS is a significant undertaking and may have far reaching effects on radioactive waste management both in the international nuclear community and in individual nuclear States. This is because IAEA envisions the development of a consensus on the final document. In this circumstance, the product of RADWASS may ultimately be regarded as an international norm against which future actions of Member States may be measured. This program is organized in five subjects: planning, pre-disposal, disposal, uranium and thorium waste management and decommissioning, which has four levels: safety fundamentals, safety standards, safety guides and safety practices. (author)

  18. Safety assessment and licensing issues of low level radioactive waste disposal facilities in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Fearnley, I. G. [British Nuclear Fuels Ltd., Sellafield (United Kingdom)

    1997-12-31

    More than 90% of radioactive waste generated in the United Kingdom is classified as low level and is disposed of in near surface repositories. BNFL owns and operates the principal facility for the disposal of this material at Drigg in West Cumbria. In order to fully optimise the use of the site and effectively manage this `national` resource a full understanding and assessment of the risks associated with the performance of the repository to safely contain the disposed waste must be achieved to support the application for the site authorization for disposal. This paper describes the approaches adopted by BNFL to reviewing these risks by the use of systematic Safety and Engineering Assessments supported in turn by experimental programmes and computations models. (author). 6 refs., 1 tab., 4 figs.

  19. Safety assessment and licensing issues of low level radioactive waste disposal facilities in the United Kingdom

    International Nuclear Information System (INIS)

    Fearnley, I. G.

    1997-01-01

    More than 90% of radioactive waste generated in the United Kingdom is classified as low level and is disposed of in near surface repositories. BNFL owns and operates the principal facility for the disposal of this material at Drigg in West Cumbria. In order to fully optimise the use of the site and effectively manage this 'national' resource a full understanding and assessment of the risks associated with the performance of the repository to safely contain the disposed waste must be achieved to support the application for the site authorization for disposal. This paper describes the approaches adopted by BNFL to reviewing these risks by the use of systematic Safety and Engineering Assessments supported in turn by experimental programmes and computations models. (author). 6 refs., 1 tab., 4 figs

  20. Development of a computer code for low-and intermediate-level radioactive waste disposal safety assessment

    International Nuclear Information System (INIS)

    Park, J. W.; Kim, C. L.; Lee, E. Y.; Lee, Y. M.; Kang, C. H.; Zhou, W.; Kozak, M. W.

    2002-01-01

    A safety assessment code, called SAGE (Safety Assessment Groundwater Evaluation), has been developed to describe post-closure radionuclide releases and potential radiological doses for low- and intermediate-level radioactive waste (LILW) disposal in an engineered vault facility in Korea. The conceptual model implemented in the code is focused on the release of radionuclide from a gradually degrading engineered barrier system to an underlying unsaturated zone, thence to a saturated groundwater zone. The radionuclide transport equations are solved by spatially discretizing the disposal system into a series of compartments. Mass transfer between compartments is by diffusion/dispersion and advection. In all compartments, radionuclides are decayed either as a single-member chain or as multi-member chains. The biosphere is represented as a set of steady-state, radionuclide-specific pathway dose conversion factors that are multiplied by the appropriate release rate from the far field for each pathway. The code has the capability to treat input parameters either deterministically or probabilistically. Parameter input is achieved through a user-friendly Graphical User Interface. An application is presented, which is compared against safety assessment results from the other computer codes, to benchmark the reliability of system-level conceptual modeling of the code

  1. Research and development of technologies for safe and environmentally optimal recovery and disposal of explosive wastes. Task 2, Preliminary impact assessment for environment, health and safety (EIA)

    Energy Technology Data Exchange (ETDEWEB)

    Duijm, N.J.; Markert, F. [Risoe (Denmark); Larsen, S.G. [DEMEX A/S (Denmark)

    1998-09-01

    As described in the project proposal `Research and Development of Technologies for Safe and Environmentally optimal recovery and Disposal of Explosive Wastes`, dated 31. May 1996, the objective of Task 2, Preliminary Impact Assessment for Environment, Health and Safety, is to: Analyse the environmental impact of noise and emissions to air, water and soil; Assess the risk of hazards to workers` health and safety and to the public. Task 2, Preliminary Impact Assessment for Environment, Health and Safety (EIA), has been performed from August 1997 to September 1998. First, a methodology has been established, based on Multi-Criteria Decision Analysis (MCDA), to select the `best` technology on the basis of clearly defined objectives, including minimal impacts on environment, health and safety. This included a review of different types of explosive waste with a focus on the environment implications, identifying the issues relevant to defining the criteria or objectives with respect to environment and safety in the framework of explosive waste, as well as the preliminary definition of objectives for the final impact assessment. Second, the previously identified recovery and disposal technologies (Task 1) have been qualitatively assessed on the basis of the relevant objectives. This qualitative assessment includes also economic considerations and an attempt to rank the technologies in an MCDA framework. (au)

  2. Safety assessment guidance in the International Atomic Energy Agency RADWASS Program

    Energy Technology Data Exchange (ETDEWEB)

    Vovk, I.F.; Seitz, R.R.

    1995-12-31

    The IAEA RADWASS programme is aimed at establishing a coherent and comprehensive set of principles and standards for the safe management of waste and formulating the guidelines necessary for their application. A large portion of this programme has been devoted to safety assessments for various waste management activities. Five Safety Guides are planned to be developed to provide general guidance to enable operators and regulators to develop necessary framework for safety assessment process in accordance with international recommendations. They cover predisposal, near surface disposal, geological disposal, uranium/thorium mining and milling waste, and decommissioning and environmental restoration. The Guide on safety assessment for near surface disposal is at the most advanced stage of preparation. This draft Safety Guide contains guidance on description of the disposal system, development of a conceptual model, identification and description of relevant scenarios and pathways, consequence analysis, presentation of results and confidence building. The set of RADWASS publications is currently undergoing in-depth review to ensure a harmonized approach throughout the Safety Series.

  3. Definition of the OPERA safety case for radioactive waste disposal in the Netherlands

    International Nuclear Information System (INIS)

    Hart, Jaap; Wildenborg, Ton; Davis, Paul; Becker, Dirk-Alexander; Verhoef, Ewoud

    2014-01-01

    This paper first gives a short introduction on OPERA, the current Dutch five-year research programme on disposal of radioactive waste. It then zooms in on OPERA WP (Work Package) 2 Safety Case - the OSCAR project, and presents (preliminary) results on the structure of the OPERA safety case, the subject of safety statements, and the OPERA safety assessment methodology. The structure of the initial long-term, post-closure safety case for a disposal facility for radioactive waste in Boom Clay in the Netherlands is being developed in the OSCAR project. Hereto a selection of relevant national and international efforts concerning the set-up of a safety case for geological disposal of radioactive waste (safety case structure, safety assessment methodology, FEP database) has been reviewed considering the objectives and outlines of the OPERA programme described in the OPERA research plan. Not surprisingly, it turned out that the guidelines and databases of the IAEA and NEA developed by the international community pretty well covered all aspects of nationally developed safety cases. Although in OPERA only 'initial and conditional' safety cases (for disposal in low permeable clay and rock salt) will be developed, the programme objective is detailing a first road-map for the long-term research on geological disposal of radioactive waste in the Netherlands. The safety case being developed will serve as a basis for the further development of the subsequent stages of the Dutch radioactive waste disposal programme. The focus of OSCAR is, therefore, to develop and propose a 'future proof' structure for the safety case, drawing on the NEA and IAEA/PRISM methodologies. The OPERA safety case structure being developed will encompass all relevant aspects, or components, of a modern safety case and will link the different components in a practical and transparent way. It will assist in steering the flow of information generated within the different OPERA and as such provide a structured

  4. The use of safety indicators, complementary to dose and risk, in the assessment of radioactive waste disposal

    International Nuclear Information System (INIS)

    Gera, F.; Vovk, I.; Wingefors, S.

    1998-01-01

    The use of safety indicators, other than dose and risk, to complement the safety assessment of disposal systems for radioactive waste, is not a new idea. Several possible approaches have been proposed through the years, including a discussion in an IAEA document of 1994. The present paper reviews critically the various proposed indicators, identifies the most promising ones and suggests a possible approach for the assessment of their viability. In particular it suggests that a Coordinated Research Project should be organized with the main objectives of assembling, reviewing and generating the necessary scientific information on natural values, particularly fluxes and concentrations of pollutants, and on their impacts on public health and environmental quality. (author)

  5. The role of performance assessment in radioactive waste disposal

    International Nuclear Information System (INIS)

    Stenhouse, M.J.

    1998-01-01

    Performance assessment has many applications in the field of radioactive waste management, none more important than demonstrating the suitability of a particular repository system for waste disposal. The role of performance assessment in radioactive waste disposal is discussed with reference to assessments performed in civilian waste management programmes. The process is, however, relevant, and may be applied directly to the disposal of defence-related wastes. When used in an open and transparent manner, performance assessment is a powerful methodology not only for convincing the authorities of the safety of a disposal concept, but also for gaining the wider acceptance of the general public for repository siting. 26 refs

  6. Management of waste from the use of radioactive material in medicine, industry, agriculture, research and education safety guide

    CERN Document Server

    2005-01-01

    This Safety Guide provides recommendations and guidance on the > fulfilment of the safety requirements established in Safety Standards > Series No. WS-R-2, Predisposal Management of Radioactive Waste, > Including Decommissioning. It covers the roles and responsibilities of > different bodies involved in the predisposal management of radioactive > waste and in the handling and processing of radioactive material. It > is intended for organizations generating and handling radioactive > waste or handling such waste on a centralized basis for and the > regulatory body responsible for regulating such activities.  > Contents: 1. Introduction; 2. Protection of human health and the > environment; 3. Roles and responsibilities; 4. General safety > considerations; 5. Predisposal management of radioactive waste; 6. > Acceptance of radioactive waste in disposal facilities; 7. Record > keeping and reporting; 8. Management systems; Appendix I: Fault > schedule for safety assessment and environmental impact assessment; > Ap...

  7. International conference on the safety of radioactive waste disposal. Contributed papers

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of the Conference is to foster information exchange on the safety of radioactive waste disposal covering; the choice of appropriate waste disposal options, safety standards, safety cases for presenting safety arguments and demonstrating compliance with standards, safety assessment methodologies and their application, dealing with uncertainty, regulatory review and decision making, the derivation of limits, controls and conditions to be applied to the development and operation of disposal facilities to ensure safety and the communication of safety issues to all interested stakeholders and confidence development. The conference will consider all possible disposal options available, drawing from experience in Member States with near surface and geological disposal facilities and those at intermediate depths and giving consideration to any multilateral approach that may be adopted. Each of the contributed papers is indexed separately

  8. International conference on the safety of radioactive waste disposal. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The objective of the Conference is to foster information exchange on the safety of radioactive waste disposal covering; the choice of appropriate waste disposal options, safety standards, safety cases for presenting safety arguments and demonstrating compliance with standards, safety assessment methodologies and their application, dealing with uncertainty, regulatory review and decision making, the derivation of limits, controls and conditions to be applied to the development and operation of disposal facilities to ensure safety and the communication of safety issues to all interested stakeholders and confidence development. The conference will consider all possible disposal options available, drawing from experience in Member States with near surface and geological disposal facilities and those at intermediate depths and giving consideration to any multilateral approach that may be adopted. Each of the contributed papers is indexed separately.

  9. LISA. A code for safety assessment in nuclear waste disposals program description and user guide

    International Nuclear Information System (INIS)

    Saltelli, A.; Bertozzi, G.; Stanners, D.A.

    1984-01-01

    The code LISA (Long term Isolation Safety Assessment), developed at the Joint Research Centre, Ispra is a useful tool in the analysis of the hazard due to the disposal of nuclear waste in geological formations. The risk linked to preestablished release scenarios is assessed by the code in terms of dose rate to a maximum exposed individual. The various submodels in the code simulate the system of barriers -both natural and man made- which are interposed between the contaminants and man. After a description of the code features a guide for the user is supplied and then a test case is presented

  10. The main ecological principles of ensuring safety of man and biosphere in the handling of radioactive wastes

    International Nuclear Information System (INIS)

    Kryshev, I.I.; Sazykina, T.G.

    1999-01-01

    This paper provides an assessment of ecological safety in the handling of radioactive wastes in the territory of Russia. The following problems are considered: the main sources of radioactive wastes and spent nuclear fuel; assessments of collective dose from the enterprises of the nuclear fuel cycle in Russia; and principles and criteria for ensuring ecological safety when handling radioactive wastes

  11. Safety of geologic disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Zaitsu, Tomohisa; Ishiguro, Katsuhiko; Masuda, Sumio

    1992-01-01

    This article introduces current concepts of geologic disposal of high level radioactive waste and its safety. High level radioactive waste is physically stabilized by solidifying it in a glass form. Characteristics of deep geologic layer are presented from the viewpoint of geologic disposal. Reconstruction of multi-barrier system receives much attention to secure the safety of geologic disposal. It is important to research performance assessment of multi-barrier system for preventing dissolution or transfer of radionuclides into the ground water. Physical and chemical modeling for the performance assessment is outlined in the following terms: (1) chemical property of deep ground water, (2) geochemical modeling of artificial barrier spatial water, (3) hydrology of deep ground water, (4) hydrology of the inside of artificial barrier, and (5) modeling of radionuclide transfer from artificial barrier. (N.K.)

  12. Safety assessment of HLW geological disposal system

    International Nuclear Information System (INIS)

    Naito, Morimasa

    2006-01-01

    In accordance with the Japanese nuclear program, the liquid waste with a high level of radioactivity arising from reprocessing is solidified in a stable glass matrix (vitrification) in stainless steel fabrication containers. The vitrified waste is referred to as high-level radioactive waste (HLW), and is characterized by very high initial radioactivity which, even though it decreases with time, presents a potential long-term risk. It is therefore necessary to thoroughly manage HLW from human and his environment. After vitrification, HLW is stored for a period of 30 to 50 years to allow cooling, and finally disposed of in a stable geological environment at depths greater than 300 m below surface. The deep underground environment, in general, is considered to be stable over geological timescales compared with surface environment. By selecting an appropriate disposal site, therefore, it is considered to be feasible to isolate the waste in the repository from man and his environment until such time as radioactivity levels have decayed to insignificance. The concept of geological disposal in Japan is similar to that in other countries, being based on a multibarrier system which combines the natural geological environment with engineered barriers. It should be noted that geological disposal concept is based on a passive safety system that does not require any institutional control for assuring long term environmental safety. To demonstrate feasibility of safe HLW repository concept in Japan, following technical steps are essential. Selection of a geological environment which is sufficiently stable for disposal (site selection). Design and installation of the engineered barrier system in a stable geological environment (engineering measures). Confirmation of the safety of the constructed geological disposal system (safety assessment). For site selection, particular consideration is given to the long-term stability of the geological environment taking into account the fact

  13. Nirex Safety Assessment Research Programme bibliography, 1990

    International Nuclear Information System (INIS)

    Cooper, M.J.

    1990-10-01

    This bibliography lists reports and papers written as part of the Nirex Safety Assessment Research Programme, which is concerned with disposal of low-level and intermediate-level waste (LLW and ILW) and associated radiological assessments. (author)

  14. Preliminary safety assessment of the WIPP facility

    International Nuclear Information System (INIS)

    Balestri, R.J.; Torres, B.W.; Pahwa, S.B.; Brannen, J.P.

    1979-01-01

    This paper summarizes the efforts to perform a safety assessment of the Waste Isolation Pilot Plant (WIPP) facility being proposed for southeastern New Mexico. This preliminary safety assessment is limited to a consequence assessment in terms of the dose to a maximally exposed individual as a result of introducing the radionuclides into the biosphere. The extremely low doses to the organs as a result of the liquid breach scenarios are contrasted with the background radiation

  15. Tank waste remediation system nuclear criticality safety program management review

    International Nuclear Information System (INIS)

    BRADY RAAP, M.C.

    1999-01-01

    This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999

  16. Safety research activities on radioactive waste management in JNES

    International Nuclear Information System (INIS)

    Otsuka, Ichiro; Aoki, Hiroomi; Suko, Takeshi; Onishi, Yuko; Masuda, Yusuke; Kato, Masami

    2010-01-01

    Research activities in safety regulation of radioactive waste management are presented. Major activities are as follows. As for the geological disposal, major research areas are, developing 'safety indicators' to judge the adequacy of site investigation results presented by an implementer (NUMO), compiling basic requirements of safety design and safety assessment needed to make a safety review of the license application and developing an independent safety assessment methodology. In proceeding research, JNES, Japan Atomic Energy Agency (JAEA) and the National Institute of Advanced Industrial Science and Technology (AIST) signed an agreement of cooperative study on geological disposal in 2007. One of the ongoing joint studies under this agreement has been aimed at investigating regional-scale hydrogeological modeling using JAEA's Horonobe Underground Research Center. In the intermediate depth disposal, JNES conducted example analysis of reference facility and submitted the result to Nuclear Safety Commission of Japan (NSC). JNES is also listing issues to be addressed in the safety review of the license application and tries to make criteria of the review. Furthermore, JNES is developing analysis tool to evaluate long term safety of the facility and conducting an experiment to investigate long term behavior of engineered barrier system. In the near surface disposal of waste package, it must be confirmed by a regulatory inspector whether each package meets safety requirements. JNES continuously updates the confirmation methodology depending on new processing technologies. The clearance system was established in 2005. Two stages of regulatory involvement were adapted, 1) approval for measurement and judgment methods developed by the nuclear operator and 2) confirmation of measurement and judgment results based on approved methods. JNES is developing verification methodology for each stage. As for decommissioning, based on the regulatory needs and a research program

  17. Safety assessment for a disposal option of TENORM wastes coming from the electric generation in Cuba

    International Nuclear Information System (INIS)

    Leyva, Dennys; Gil, Reinaldo; Peralta, Jose L.; Odalys Ramos

    2008-01-01

    The aim of the present paper was the safety assessment for a disposal option of ashes wastes coming from the electric generation in Cuba. The ashes are planned to be disposed as subsurface layer, covered with soil under controlled conditions. The composition of theses wastes are TENORM ( 226 Ra and 224 Ra) and heavy metals (vanadium, chromium, zinc), therefore, their disposal should accomplish the national and international defined regulations. The adopted safety assessment methodology, allowed the identification and selection of the main scenarios to evaluate, the mathematical models to apply and the comparison against the assessment criteria. According to the assessment context and the site characteristics, the atmospheric and groundwater scenarios were evaluated. During the modelling stage were included the identification of the main exposure pathways and the most relevant assessment processes were modelled (transport of contaminants, radioactive decay, etc.). For atmospheric dispersion, the SCREEN3 model was adopted, including the radioactive decay and other radiological properties. The DRAF model was used for the groundwater scenario. The doses for inhalation, external irradiation and foodstuff ingestion were obtained using several dosimetric models. The results showed that the 226 Ra concentration values were higher than the 228 Ra in the evaluation points, for atmospheric and groundwater scenarios. This behaviour is influenced by the small radioactive inventory, the shorter half life of the 228 Ra and the distance between the disposal site and the evaluation points. The obtained external doses were always below the dose limits for the members of the public and for all scenarios, including the more conservatives. The lower dose (by ingestion) values were associated to the scenarios of radionuclides transport through the geosphere. According the safety assessment and the established scenarios, the evaluated disposal practice does not represent a relevant

  18. Safety in waste management plants: An Indian perspective

    International Nuclear Information System (INIS)

    Shekhar, P.; Ozarde, P.D.; Gandhi, P.M.

    2000-01-01

    Assurance of safety of public and plant workers and protection of the environment are prime objectives in the design and construction of Waste Management Plants. In India, waste management principles and strategies have been evolved in accordance with national and international regulations and standards for radiation protection. The regulations governing radiation protection have a far-reaching impact on the management of the radioactive waste. The wastes arise at each stages of the fuel cycle with varying chemical nature, generation rate and specific activity levels depending upon the type of the facility. Segregation of waste based on its chemical nature and specific activity levels is an essential feature, as its aids in selection of treatment and conditioning process. Selection of the process, equipment and materials in the plant, are governed by safety consideration alongside factors like efficiency and simplicity. The plant design considerations like physical separation, general arrangement, ventilation zoning, access control, remote handling, process piping routing, decontamination etc. have major role in realizing waste safety. Stringent quality control measures during all stages of construction have helped in achieving the design intended safety. These aspects together with operating experience gained form basis for the improved safety features in the design and construction of waste management plants. The comprehensive safety is derived from adoption of waste management strategies and appropriate plant design considerations. The paper briefly brings safety in waste management programme in India, in its current perspective. (author)

  19. Contributions to safety assessment of the radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Ilie, Petre; Didita, Liana; Ionescu, Alice; Deaconu, Viorel

    2003-01-01

    The paper presents the progress in the frame of the safety assessments related to the potential near-surface Romanian National Repository, as well as to the geological repository in salt rock for CANDU spent fuel. The safety assessment of the near-surface repository follows the ISAM methodology. The repository design consists of a vault, in which the wastes resulted from the operation and decommissioning of the CANDU reactor from Cernavoda Nuclear Power Plant (CNPP) are disposed off. The repository is located nearby the CNPP. A layered unsaturated zone overlying a variable thickness confined aquifer, which consists of barremian limestones, characterizes the site. The interface with biosphere is considered to be the Danube-Black Sea Channel. The paper summarizes the results of the post-closure safety assessment for the design scenario and the prediction of the radionuclide release in the liquid phase. As to the final disposal of the CANDU spent fuel from the CNPP, we assumed that the repository is built in a salt dome. Romania has important salt formations, some of them being potentially suitable for hosting a repository. Up to now there are no detailed characterization studies of such formations in Romania, from the point of view of the suitability as a repository site. Therefore, generic data for hydrogeological characterization of the site have been used, coming from the Gorleben site in Germany. The spent fuel containers are disposed off in galleries, somewhere 500 m bellow the cap rock of the salt dome. The temporal loading scheme of the repository is based on a sequential filing of the disposal fields, with a delay of 10 years between filling of two neighbouring disposal areas. The disposal fields are accessed via a shaft. After filling of a disposal gallery, the remaining space is backfilled with salt powder and the gallery is sealed with compacted salt bricks. The access galleries are also backfilled and sealed. Only the reference scenario is considered, in

  20. Geological disposal of radioactive waste. Safety requirements

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Requirements publication is concerned with providing protection to people and the environment from the hazards associated with waste management activities related to disposal, i.e. hazards that could arise during the operating period and following closure. It sets out the protection objectives and criteria for geological disposal and establishes the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management. It is intended for use by those involved in radioactive waste management and in making decisions in relation to the development, operation and closure of geological disposal facilities, especially those concerned with the related regulatory aspects. This publication contains 1. Introduction; 2. Protection of human health and the environment; 3. The safety requirements for geological disposal; 4. Requirements for the development, operation and closure of geological disposal facilities; Appendix: Assurance of compliance with the safety objective and criteria; Annex I: Geological disposal and the principles of radioactive waste management; Annex II: Principles of radioactive waste management

  1. A study on safety assessment methodology for a vitrification plant

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y. C.; Lee, G. S.; Choi, Y. C.; Kim, G. H. [Yonsei Univ., Seoul (Korea, Republic of)

    2002-03-15

    In this study, the technical and regulatory status of radioactive waste vitrification technologies in foreign and domestic plants is investigated and analyzed, and then significant factors are suggested which must be contained in the final technical guideline or standard for the safety assessment of vitrification plants. Also, the methods to estimate the stability of vitrified waste forms are suggested with property analysis of them. The contents and scope of the study are summarized as follows : survey of the status on radioactive waste vitrification technologies in foreign and domestic plants, survey of the characterization methodology for radioactive waste form, analysis of stability for vitrified waste forms, survey and analysis of technical standards and regulations concerned with them in foreign and domestic plants, suggestion of significant factors for the safety assessment of vitrification plants, submission of regulated technical standard on radioactive waste vitrification plats.

  2. Safety assessment methodologies for near surface disposal facilities. Results of a co-ordinated research project (ISAM). Volume 1: Review and enhancement of safety assessment approaches and tools. Volume 2: Test cases

    International Nuclear Information System (INIS)

    2004-07-01

    For several decades, countries have made use of near surface facilities for the disposal of low and intermediate level radioactive waste. In line with the internationally agreed principles of radioactive waste management, the safety of these facilities needs to be ensured during all stages of their lifetimes, including the post-closure period. By the mid 1990s, formal methodologies for evaluating the long term safety of such facilities had been developed, but intercomparison of these methodologies had revealed a number of discrepancies between them. Consequently, in 1997, the International Atomic Energy Agency launched a Co-ordinated Research Project (CRP) on Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities (ISAM). The particular objectives of the CRP were to provide a critical evaluation of the approaches and tools used in post-closure safety assessment for proposed and existing near-surface radioactive waste disposal facilities, enhance the approaches and tools used and build confidence in the approaches and tools used. The CRP ran until 2000 and resulted in the development of a harmonized assessment methodology (the ISAM project methodology), which was applied to a number of test cases. Over seventy participants from twenty-two Member States played an active role in the project and it attracted interest from around seven hundred persons involved with safety assessment in seventy-two Member States. The results of the CRP have contributed to the Action Plan on the Safety of Radioactive Waste Management which was approved by the Board of Governors and endorsed by the General Conference in September 2001. Specifically, they contribute to Action 5, which requests the IAEA Secretariat to 'develop a structured and systematic programme to ensure adequate application of the Agency's waste safety standards', by elaborating on the Safety Requirements on 'Near Surface Disposal of Radioactive Waste' (Safety Standards Series No. WS-R-1) and

  3. Obtention to the methodology for evaluation to the confirmation of the hazardous wastes safety isolation

    International Nuclear Information System (INIS)

    Peralta, J.L.; Gil, R.; Castillo, R.; Leyva, D.

    2003-01-01

    Taking into account, the practical experience of the safety assessment in the radioactive wastes management, the International Atomic Energy Agency (IAEA) recommendations in this topics, the norms and national and international legislation about noxious substances to the environment and their restriction limits, the best international practices and approaches of isolation hazardous wastes sites, a Methodology is developed (Cuba particular conditions) to obtaining and/or confirmation of the hazardous wastes safety isolation, as a tool able to carry out the assessment of facilities to build and all installation and/or place where hazardous wastes isolated from the environment. The Methodology, embraces the evaluation of technical, economic and social topics, allowing to develop an integral safety assessment which allows to estimate the environment possible impact for hazardous waste isolation (radioactive and non radioactive); Just are shown in this paper the selection approaches for the obtaining and/or evaluation of the best site, the steps description to continue for the definition of the main scenarios and the models to take into account in the valuation of the possible liberation and pathway to the environment of the non radioactive pollutants. The main contribution of this Methodology resides in the creation of a scientific-technique necessary guide for the evident demand of carrying out the most organized, effective and hazardous wastes safety management

  4. Management of Radioactive Waste from the Mining and Milling of Ores. Safety Guide (Spanish ed.)

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide provides recommendations and guidance on the safe management of radioactive waste resulting from the mining and milling of ores, with the purpose of protecting workers, the public and the environment from the consequences of these activities. It supplements Safety Standards Series No. WS-R-1, Near Surface Disposal of Radioactive Waste. Contents: 1. Introduction; 2. Administrative, legal and regulatory framework; 3. Protection of human health and the environment; 4. Strategy for waste management; 5. Safety considerations in different phases of operations; 6. Safety assessment; 7. Quality assurance; 8. Monitoring and surveillance; 9. Institutional control for the post-closure phase.

  5. Radioactive waste management: the contribution of expert assessments to the implementation of safe management channels

    International Nuclear Information System (INIS)

    Besnus, F.; Jouve, A.C.

    2011-01-01

    The national Radioactive Materials and Waste Management (PNGMDR) sets objectives and defines waste management channels for all radioactive wastes produced in France. Within this framework, IRSN (Institute for Radioprotection and Nuclear Safety) expertise aims at assessing the consistency and robustness of the technical solutions set in place by the plan. As a result of this assessment, the main safety issues and priorities for upgrading the safety of the various facilities that will receive and treat waste are identified on the one hand, while possible foreseen weaknesses in terms of storage or treatment capacities are put into light on the other hand. To carry out such assessment, IRSN backs on its 'in depth' knowledge of facilities, acquired through the examination of each major step of waste management facility life (creation, commissioning, re-examination of safety...). This knowledge feeds in turn the examination of the waste management strategies implemented by operators. In addition, special attention is given to the achievement of waste packages of favourable properties as well as to the conditions for their safe disposal, since these two aspects are most often key factors for optimizing the safety of the whole management channel. By its capacity to overlook all steps of waste management channels, from production to final disposal, IRSN intends to contribute to the objective of enhancing the global safety of the management of radioactive waste. (authors)

  6. The Nirex safety assessment research programme: annual report for 1986/87

    International Nuclear Information System (INIS)

    Cooper, M.J.; Hodgkinson, D.P.

    1987-05-01

    This report describes research relating to the underground disposal of low-level and intermediate-level radioactive wastes, to provide information for post-emplacement radiological safety assessment. Topics reported are solubility and sorption, organic degradation, microbial activity, leaching, the corrosion of containers, and radionuclide migration studies. Properties of clays, slates, colloids and uranium disequilibrium are studied. Mathematical modelling to support the safety assessment of radioactive waste disposal is also studied. (U.K.)

  7. The safety and environmental impact of nuclear wastes

    International Nuclear Information System (INIS)

    Luo Shanggeng

    2001-01-01

    Radioactive matters were discovered in 1989. Exploitation and using of nuclear energy and nuclear technologies bring mankind huge benefits, but the disposal of radioactive wastes is becoming one of the safety and environmental problems. The author describes six issues related to nuclear wastes. They are as follows: (1) The origin and characteristics of the nuclear wastes; (2) The principles of management of nuclear wastes established by the International Atomic Energy Agency (IAEA) as well as the Chinese '40 words principles' and the major tasks of Chinese nuclear waste management; (3) The treatment and disposal technologies of nuclear wastes and the emphasis on new technologies, waste minimization and exemption and clean release; (4) The safety management of spent radiation sources including technical and administrative measures; (5) The safety management of spent nuclear fuel and the emphasis on high level radioactive wastes to be safety disposed of; (6) The environmental impact of nuclear waste. The author takes the Qinshan Nuclear Power Plant and the Daya bay Nuclear Power Plant I, China, as two examples to prove that nuclear wastes can be safely controlled and managed to ensure environmental safety. The Chinese north-west disposal land of nuclear wastes under operation recently is also discussed. It is believed that the suggested disposal land can ensure the isolation of radioactive wastes and the surrounding environment according to the present standards. The north-west disposal land and the Beilong disposal land, Guangdong province, China, are built according to the international standard and advanced technologies

  8. Assessment of the long-term safety for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Greis Dahlberg, Christina; Vahlund, Frederik [Svensk Kaernbraenslehantering AB, Stockholm (Sweden)

    2015-07-01

    During operation and decommissioning of the Swedish nuclear facilities, radioactive waste is generated that must be disposed of. Besides waste from the nuclear facilities, some waste derives from other activities such as industry, research, medical care, etc. Short-lived low- and intermediate-level waste from these activities is disposed of in the final repository for short-lived radioactive waste, SFR, in Forsmark. The facility, which has been in operation since 1988, is owned and operated by Svensk Karnbranslehantering AB, SKB. The existing facility has neither sufficient space nor a license to receive decommissioning waste. SFR must therefore be extended so that shortlived low- and intermediate-level decommissioning waste from the nuclear facilities can also be received. The need for additional capacity has been accentuated by the closure of two reactors in Barseback. These reactors cannot be dismantled until the SFR facility has been extended. The existing repository is built to receive, and after closure serve as a passive repository for, low- and intermediate-level radioactive waste. The disposal rooms are situated in the bedrock beneath the sea floor, covered by about 60 metres of rock. The repository has been designed so that it can be abandoned after closure without requiring further measures to maintain its function. The extension of SFR, is done at the -120 m level immediately adjacent to, and within the same depth range as, the existing facility. The basic function of the existing SFR and of the extended one will be the same. However, a clear difference is the design of the tunnel and the rock vault that are required to permit transport and storage of whole reactor pressure vessels. The application for a license to build this extension includes an assessment of the long-term safety (post-closure safety) of the facility. The safety assessment also contains an updated assessment of the long-term safety of the existing facility. The safety assessment for

  9. Classification of Radioactive Waste. General Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-11-15

    This publication is a revision of an earlier Safety Guide of the same title issued in 1994. It recommends revised waste management strategies that reflect changes in practices and approaches since then. It sets out a classification system for the management of waste prior to disposal and for disposal, driven by long term safety considerations. It includes a number of schemes for classifying radioactive waste that can be used to assist with planning overall national approaches to radioactive waste management and to assist with operational management at facilities. Contents: 1. Introduction; 2. The radioactive waste classification scheme; Appendix: The classification of radioactive waste; Annex I: Evolution of IAEA standards on radioactive waste classification; Annex II: Methods of classification; Annex III: Origin and types of radioactive waste.

  10. Classification of Radioactive Waste. General Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This publication is a revision of an earlier Safety Guide of the same title issued in 1994. It recommends revised waste management strategies that reflect changes in practices and approaches since then. It sets out a classification system for the management of waste prior to disposal and for disposal, driven by long term safety considerations. It includes a number of schemes for classifying radioactive waste that can be used to assist with planning overall national approaches to radioactive waste management and to assist with operational management at facilities. Contents: 1. Introduction; 2. The radioactive waste classification scheme; Appendix: The classification of radioactive waste; Annex I: Evolution of IAEA standards on radioactive waste classification; Annex II: Methods of classification; Annex III: Origin and types of radioactive waste

  11. Radiation and waste safety: Strengthening national capabilities

    International Nuclear Information System (INIS)

    Barretto, P.; Webb, G.; Mrabit, K.

    1997-01-01

    For many years, the IAEA has been collecting information on national infrastructures for assuring safety in applications of nuclear and radiation technologies. For more than a decade, from 1984-95, information relevant to radiation safety particularly was obtained through more than 60 expert missions undertaken by Radiation Protection Advisory Teams (RAPATs) and follow-up technical visits and expert missions. The RAPAT programme documented major weaknesses and the reports provided useful background for preparation of national requests for IAEA technical assistance. Building on this experience and subsequent policy reviews, the IAEA took steps to more systematically evaluate the needs for technical assistance in areas of nuclear and radiation safety. The outcome was the development of an integrated system designed to more closely assess national priorities and needs for upgrading their infrastructures for radiation and waste safety

  12. Safety assessment for the transportation of NECSA's LILW to the Vaalputs waste disposal facility

    International Nuclear Information System (INIS)

    Maphoto, K.P.; Raubenheimer, E.; Swart, H.

    2008-01-01

    The transport safety assessment was carried out with a view to assess the impact on the environment and the people living in it, from exposure to radioactivity during transportation of the radioactive materials. It provides estimates of radiological risks associated with the envisaged transport scenarios for the road transport mode. This is done by calculating the human health impact and radiological risk from transportation of LILW along the R563 route, N14 and eventually to the Vaalputs National Waste Disposal Facility. Various parameters are needed by the RADTRAN code in calculating the human health impact and risk. These include: numbers of population densities following the routes undertaken, number of stops made, and the speed at which the transport will be traversing at towards the final destination. The human health impact with regard to the dose to the public, LCF and risk associated with transportation of Necsa's LILW to the Vaalputs Waste Disposal Facility by road have been calculated using RADTRAN 5 code. The results for both accident and incident free scenarios have shown that the overall risks are insignificant and can be associated with any non-radiological transportation. (authors)

  13. Fewer can be More: Nuclear Safety and Security Culture Self-Assessment in the Hungarian Public Ltd. for Radioactive Waste Management

    International Nuclear Information System (INIS)

    Horváth, K.; Solymosi, M.; Vass, G.

    2016-01-01

    The Hungarian regulator and operators show strong commitment towards robust nuclear safety and security culture. The paper discusses the evolution and the basis of the regulation of Hungarian safety and security culture. Because of security considerations nuclear safety incidents have always received and for sure will receive more publicity than malicious acts. That is probably the main reason behind that mostly nuclear safety incidents influence the common beliefs. This kind of primacy is noticeable as well in regulations and also in practice. Although there is a strong connection nuclear safety and security culture, their relationship has not been researched for a long time. The paper also presents an already achieved, combined nuclear safety and security culture survey type assessment. Survey is a well known type of organizational culture self assessment. The applied methods, relationship between these two cultures and of course some difficulties of the process are summarized. The presented method is appropriate to combine different guidance and characteristics to measure different attitude in a single survey. The method in practice is shown through the nuclear safety and security culture assessment conducted at Hungarian Public Ltd. Of Radioactive Waste Management. (author)

  14. Disposal of Radioactive Waste. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements applicable to all types of radioactive waste disposal facility. It is linked to the fundamental safety principles for each disposal option and establishes a set of strategic requirements that must be in place before facilities are developed. Consideration is also given to the safety of existing facilities developed prior to the establishment of present day standards. The requirements will be complemented by Safety Guides that will provide guidance on good practice for meeting the requirements for different types of waste disposal facility. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Safety requirements for planning for the disposal of radioactive waste; 4. Requirements for the development, operation and closure of a disposal facility; 5. Assurance of safety; 6. Existing disposal facilities; Appendices.

  15. Safety evaluation report of the Waste Isolation Pilot Plant safety analysis report: Contact-handled transuranic waste disposal operations

    International Nuclear Information System (INIS)

    1997-02-01

    DOE 5480.23, Nuclear Safety Analysis Reports, requires that the US Department of Energy conduct an independent, defensible, review in order to approve a Safety Analysis Report (SAR). That review and the SAR approval basis is documented in this formal Safety Evaluation Report (SER). This SER documents the DOE's review of the Waste Isolation Pilot Plant SAR and provides the Carlsbad Area Office Manager, the WIPP SAR approval authority, with the basis for approving the safety document. It concludes that the safety basis documented in the WIPP SAR is comprehensive, correct, and commensurate with hazards associated with planned waste disposal operations

  16. On safety of radioactive waste carrier

    International Nuclear Information System (INIS)

    Kondo, Toshikazu

    1995-01-01

    The waste generated by reprocessing the spent fuel from Japanese nuclear power stations in France and U.K. is to be returned to Japan. The first return transport was carried out from February to April when the waste management facility in Rokkasho, Aomori Prefecture, was completed. Most of this return transport was the sea transport using the exclusively used carrier, Pacific Pintail, from Cherbourg, France, to Mutsu Ogawara, Japan. Ministry of Transport carried out the examination on the safety of this method of transport including the safety of the carrier based on the rule for the sea transport and storage of dangerous substances. The international rule on the sea transport of high level radioactive waste, the course of adopting the INF code and its outline, and the Japanese safety standard for the carriers exclusively used for high level radioactive waste are explained. The Pacific Pintail is the ship of 5087 GT, which was built in 1987 as the carrier exclusively used for radioactive substances, owned by Pacific Nuclear Transport Ltd. of U.K. The main features related to the safety of the Pacific Pintail are explained, and the sufficient countermeasures are taken. (K.I.)

  17. The management system for the disposal of radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    The objective of this Safety Guide is to provide recommendations on developing and implementing management systems for all phases of facilities for the disposal of radioactive waste and related activities. It covers the management systems for managing the different stages of waste disposal facilities, such as siting, design and construction, operation (i.e. the activities, which can extend over several decades, involving receipt of the waste product in its final packaging (if it is to be disposed of in packaged form), waste emplacement in the waste disposal facility, backfilling and sealing, and any subsequent period prior to closure), closure and the period of institutional control (i.e. either active control - monitoring, surveillance and remediation; or passive control - restricted land use). The management systems apply to various types of disposal facility for different categories of radioactive waste, such as: near surface (for low level waste), geological (for low, intermediate and/or high level waste), boreholes (for sealed sources), surface impoundment (for mining and milling waste) and landfill (for very low level waste). It also covers management systems for related processes and activities, such as extended monitoring and surveillance during the period of active institutional control in the post-closure phase, safety and performance assessments and development of the safety case for the waste disposal facility and regulatory authorization (e.g. licensing). This Safety Guide is intended to be used by organizations that are directly involved in, or that regulate, the facilities and activities described in paras 1.15 and 1.16, and by the suppliers of nuclear safety related products that are required to meet some or all of the requirements established in IAEA Safety Standards Series No. GS-R-3 'The Management System for Facilities and Activities'. It will also be useful to legislators and to members of the public and other parties interested in the nuclear

  18. Nordic nuclear safety research 1994-1997. Project on disposal of radioactive waste

    International Nuclear Information System (INIS)

    Broden, Karin

    1999-01-01

    This presentation describes the Nordic Nuclear Safety Research (NKS) programme, which is a scientific co-operation programme in nuclear safety, radiation protection and emergence preparedness. The purpose of the programme is to carry out cost-effective Nordic projects, thus producing research results, exercises, information, manuals, recommendations, and other types of background material. This material is to serve decision-makers and other concerned staff members at authorities, research establishments and enterprises in the nuclear field. Three waste disposal projects under NKS are briefly described: (1) Waste characterisation, (2) Performance analysis of the engineered barrier system of the repositories for low- and intermediate-level waste, (3) Environmental impact assessment

  19. Safety analysis of sea transportation of solidified reactor wastes

    International Nuclear Information System (INIS)

    Devell, L.; Edlund, O.; Kjellbert, N.; Grundfelt, B.; Milchert, T.

    1980-06-01

    A central handling and storage facility (ALMA) for low- and medium-level reactor waste from Swedish nuclear power plants is being planned and the transportation to it will be by sea. A safety assessment devoted to the potential environmental impacts from the transportation is presented. (Auth.)

  20. Development of SAGE, A computer code for safety assessment analyses for Korean Low-Level Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Zhou, W.; Kozak, Matthew W.; Park, Joowan; Kim, Changlak; Kang, Chulhyung

    2002-01-01

    This paper describes a computer code, called SAGE (Safety Assessment Groundwater Evaluation) to be used for evaluation of the concept for low-level waste disposal in the Republic of Korea (ROK). The conceptual model in the code is focused on releases from a gradually degrading engineered barrier system to an underlying unsaturated zone, thence to a saturated groundwater zone. Doses can be calculated for several biosphere systems including drinking contaminated groundwater, and subsequent contamination of foods, rivers, lakes, or the ocean by that groundwater. The flexibility of the code will permit both generic analyses in support of design and site development activities, and straightforward modification to permit site-specific and design-specific safety assessments of a real facility as progress is made toward implementation of a disposal site. In addition, the code has been written to easily interface with more detailed codes for specific parts of the safety assessment. In this way, the code's capabilities can be significantly expanded as needed. The code has the capability to treat input parameters either deterministic ally or probabilistic ally. Parameter input is achieved through a user-friendly Graphical User Interface.

  1. Safety and Waste Management for SAM Pathogen Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the pathogens included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  2. Safety and Waste Management for SAM Biotoxin Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the biotoxins included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  3. The Nirex Safety Assessment Research Programme; annual report for 1988/89

    International Nuclear Information System (INIS)

    Cooper, M.J.

    1989-07-01

    This report summarises progress of the Nirex Safety Assessment Research Programme during 1988/89, in support of assessments of the post-emplacement radiological safety of a repository for the disposal of low-level and intermediate-level radioactive waste. During this period the assessments were concentrating on a comparative study of concepts and areas for deep emplacement of waste, in order to assist in the selection of preferred sites, and the research programme was therefore focussed on providing the data necessary for broad comparisons between different options to be made. (author)

  4. Safety and Waste Management for SAM Chemistry Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the chemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  5. Safety and Waste Management for SAM Radiochemical Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the radiochemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  6. Preliminary safety assessment and preliminary safety report for the treated radwaste store, Winfrith

    International Nuclear Information System (INIS)

    Staples, A.T.

    1992-06-01

    It is the purpose of this assessment to define the categorisation of the Treated Radwaste Store, TRS, B55 at the Winfrith Technology Centre. Its further purpose is to cover all relevant sections required for a Preliminary Safety Report (PSR) encompassing the TRS and the integral Quality Assessment Unit (QUA). The TRS is designed for the interim storage of intermediate level radioactive wastes. All waste material stored in the TRS will be contained within 500 litre stainless steel drums acceptable to NIREX. It is proposed that the TRS will receive 500 litre stainless steel NIREX drums containing either irradiated DRAGON fuel or encapsulated sludge waste. (author)

  7. Biosphere modelling for the safety assessment of high-level radioactive waste disposal in the Japanese H12 assessment

    International Nuclear Information System (INIS)

    Kato, Tomoko; Suzuki, Yuji; Ishiguro, Katsuhiko; Naito, Morimasa; Ishiguro, Katsuhiko; Ikeda, Takao; Little, Richard H.; Smith, Graham M.

    2002-01-01

    JNC has an on-going programme of research and development relating to the safety assessment of the deep geological disposal system of high-level radioactive waste (HLW). In the safety assessment of a HLW disposal system, it is often necessary to estimate future radiological impacts on human beings (e.g. radiation dose). In order to estimate dose, consideration needs to be given to the surface environment (biosphere) into which future releases of radionuclides might occur and to the associated future human behaviour. However, for a deep repository, such releases might not occur for many thousands of years after disposal. Over such timescales, it is not possible to predict with any certainty how the biosphere and human behaviour will evolve. To avoid endless speculation aimed at reducing such uncertainty, the reference biosphere le concept has been developed for use in the safety assessment of HLW disposal. The Reference Biospheres Methodology was originally developed by the BIOMOVS II Reference Biospheres Working Group and subsequently enhanced within Theme 1 of the BIOMASS programme. As the aim of the H12 assessment with a hypothetical HLW disposal system was to demonstrate the technical feasibility and reliability of the Japanese disposal concept for a range of geological and surface environments, some assessment specific reference biospheres were developed for the biosphere modelling in the H12 assessment using an approach consistent with the BIOMOVS II/BIOMASS approach. They have been used to derive factors to convert the radionuclide flux from a geosphere to a biosphere into a dose. The influx to dose conversion factor also have been derived for a range of different geosphere-biosphere interfaces (well, river and marine) and potential exposure groups (farming, freshwater-fishing and marine-fishing). This paper summarises the approach used for the derivation of the influx to dose conversion factor also for the range of geosphere-biosphere interfaces and

  8. Non-technical issues in safety assessments for nuclear disposal facilities

    International Nuclear Information System (INIS)

    Kallenbach-Herbert, Beate; Brohmann, Bettina

    2010-09-01

    The paper highlights that a comprehensive approach to safety affords the consideration of technology, organisation, personnel and social environment. In several safety relevant contexts of nuclear waste disposal these fields are closely interrelated. The approach for the consideration of socio-scientific aspects which is sketched in this paper supports the systematic treatment of safety relevant non-technical issues in the safety case or in safety assessments for a disposal project. Furthermore it may foster the dialogue among specialists from the technical, the natural- and the socio-scientific field on questions of disposal safety. In this way it may contribute to a better understanding among the affected scientific disciplines in nuclear waste disposal.

  9. Guidance on the safety assessment methodology for storage of radioactive waste

    International Nuclear Information System (INIS)

    Kinyanjui, M.N.

    2014-04-01

    This project on safety assessment on storage was carried out with the main objective of ensuring safety of human life and our environment. This is the fundamental principle of radiation protection. Safety assessment has been evaluated as a tool in the safety case in the pre-construction, operational and the post closure phase of storage. In particular the iterative process of evaluating and predicting safety scenarios at each stage of the process has proved to be prudent. It is important that this concept be adopted for this type of facility to ensure safety of mankind and the environment now and in the future.

  10. Accelerated safety analyses - structural analyses Phase I - structural sensitivity evaluation of single- and double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Becker, D.L.

    1994-11-01

    Accelerated Safety Analyses - Phase I (ASA-Phase I) have been conducted to assess the appropriateness of existing tank farm operational controls and/or limits as now stipulated in the Operational Safety Requirements (OSRs) and Operating Specification Documents, and to establish a technical basis for the waste tank operating safety envelope. Structural sensitivity analyses were performed to assess the response of the different waste tank configurations to variations in loading conditions, uncertainties in loading parameters, and uncertainties in material characteristics. Extensive documentation of the sensitivity analyses conducted and results obtained are provided in the detailed ASA-Phase I report, Structural Sensitivity Evaluation of Single- and Double-Shell Waste Tanks for Accelerated Safety Analysis - Phase I. This document provides a summary of the accelerated safety analyses sensitivity evaluations and the resulting findings

  11. Central waste complex interim safety basis

    International Nuclear Information System (INIS)

    Cain, F.G.

    1995-01-01

    This interim safety basis provides the necessary information to conclude that hazards at the Central Waste Complex are controlled and that current and planned activities at the CWC can be conducted safely. CWC is a multi-facility complex within the Solid Waste Management Complex that receives and stores most of the solid wastes generated and received at the Hanford Site. The solid wastes that will be handled at CWC include both currently stored and newly generated low-level waste, low-level mixed waste, contact-handled transuranic, and contact-handled TRU mixed waste

  12. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  13. Development of a methodology for the safety assessment of near surface disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    Simon, I.; Cancio, D.; Alonso, L.F.; Agueero, A.; Lopez de la Higuera, J.; Gil, E.; Garcia, E.

    2000-01-01

    The Project on the Environmental Radiological Impact in CIEMAT is developing, for the Spanish regulatory body Consejo de Seguridad Nuclear (CSN), a methodology for the Safety Assessment of near surface disposal facilities. This method has been developed incorporating some elements developed through the participation in the IAEA's ISAM Programme (Improving Long Term Safety Assessment Methodologies for Near Surface Radioactive Waste Disposal Facilities). The first step of the approach is the consideration of the assessment context, including the purpose of the assessment, the end-Points, philosophy, disposal system, source term and temporal scales as well as the hypothesis about the critical group. Once the context has been established, and considering the peculiarities of the system, an specific list of features, events and processes (FEPs) is produced. These will be incorporated into the assessment scenarios. The set of scenarios will be represented in the conceptual and mathematical models. By the use of mathematical codes, calculations are performed to obtain results (i.e. in terms of doses) to be analysed and compared against the criteria. The methodology is being tested by the application to an hypothetical engineered disposal system based on an exercise within the ISAM Programme, and will finally be applied to the Spanish case. (author)

  14. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    International Nuclear Information System (INIS)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment

  15. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

  16. The IAEA Biomass programme: reference biospheres for long-term safety assessment of high level waste disposal facilities

    International Nuclear Information System (INIS)

    Metcalf, Phil; Crossland, Ian; Torres, Carlos; Crossland, Ian J.

    2002-01-01

    Phil Metcalf and Ian Crossland presented the IAEA Biomass project. Phil Metcalf explained that the Biomass project, begun in 1996, by an international forum organised by the IAEA was a very good exercise for exchanging information through technical meetings and documentation such as Biomass newsletters or CD Rom. Ian Crossland continued by giving a presentation of the Biomass theme 1 that concerns the radioactive waste disposal topic. Its objective was mainly to develop the reference biosphere methodology and to demonstrate its usefulness through some exercises related to the development of a practical set of example biospheres such as: 1. drinking water well, 2. agricultural irrigation, with a well source and 3. Set of natural groundwater discharges to natural, semi-natural systems. Input data would always change to accommodate a given repository simulation and location. Thus this project must be seen as a good exercise for the application of a methodology and should be considered as a good source of reference biospheres that might be viewed as a benchmark for comparison with site-specific safety assessments for a selected number of radionuclides. The main conclusion from the Biomass theme 1 project was that there appears to be an international consensus on preparing generic reference biospheres for postclosure safety assessment but waste management organisations should also consider the specific requirements of regulators and other stakeholders

  17. Design, development and safety assessment of the IRUS repository for disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    Hardy, D.G.; Philipose, K.E.; Jarvis, R.G.

    1988-11-01

    A description is provided of IRUS (Intrusion Resistant Underground Structure), a belowground vault intended for LLRW with a hazardous lifetime of 500 years, and scheduled to start accepting wastes in 1991. The R and D programs in support of IRUS are concentrating on the optimization of barrier materials, such as concrete and buffer layers, and on understanding the chemistry and physics of the processing occurring within the vault. Safety assessments using the COSMOS S/D code have shown that the risks to the critical population from IRUS are well within regulatory limits

  18. Risky business: Assessing cleanup plans for waste sites

    International Nuclear Information System (INIS)

    Blaylock, B.

    1995-01-01

    ORNL was chosen to perform human health and ecological risk assessments for DOE because of its risk assessment expertise. The U.S. Department of Energy's many production and research sites contain radioactive and hazardous wastes. These waste sites pose potential risks to the health and safety of remediation and waste management workers and the public. The risks, however, vary from site to site. Some sites undoubtedly present larger risks than others and should be cleaned up first. However, before the cleanup begins, DOE is required by law to prepare an environmental impact statement on any actions that may significantly affect the environment-even actions that would clean it up

  19. Safety assessment on the human intrusion scenarios of near surface disposal facility for low and very low level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Wook; Park, Jin Baek [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of); Park, Sang Ho [Chungnam National University, Daejeon (Korea, Republic of)

    2016-03-15

    The second-stage near surface disposal facility for low and very low level radioactive waste's permanent disposal is to be built. During the institutional control period, the inadvertent intrusion of the general public is limited. But after the institutional control period, the access to the general public is not restricted. Therefore human who has purpose of residence and resource exploration can intrude the disposal facility. In this case, radioactive effects to the intruder should be limited within regulatory dose limits. This study conducted the safety assessment of human intrusion on the second-stage surface disposal facility through drilling and post drilling scenario. Results of drilling and post drilling scenario were satisfied with regulatory dose limits. The result showed that post-drilling scenario was more significant than drilling scenario. According to the human intrusion time and behavior after the closure of the facility, dominant radionuclide contributing to the intruder was different. Sensitivity analyses on the parameters about the human behavior were also satisfied with regulatory dose limits. Especially, manual redistribution factor was the most sensitive parameter on exposure dose. A loading plan of spent filter waste and dry active waste was more effective than a loading plan of spent filter waste and other wastes for the radiological point of view. These results can be expected to provide both robustness and defense in depth for the development of safety case further.

  20. Concepts and examples of safety analyses for radioactive waste repositories in continental geological formations

    International Nuclear Information System (INIS)

    1983-01-01

    This document is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of underground radioactive waste repositories. It is a companion to a general introductory document on the subject ''Safety Assessment for the Underground Disposal of Radioactive Wastes'', IAEA Safety Series No. 56, 1981, and reference to this earlier document will facilitate the reader's understanding of the present report. Since examples of safety analyses are summarized here, it is hoped that this document will contribute to providing a basis for a common understanding among authorities and specialists concerned with the numerous studies involving a variety of scientific disciplines. While providing technical information, this document is also intended to stimulate further international discussion. The purposes of this report are: a) to identify the factors to be taken into account in radiological safety analyses of deep geological repositories, indicating as far as possible their relative importance during the various phases of system development; b) to show how these factors have been analysed in various safety assessment studies; and c) to comment on the merits of the selected and alternative approaches

  1. Concepts and examples of safety analyses for radioactive waste repositories in continental geological formations

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    This document is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of underground radioactive waste repositories. It is a companion to a general introductory document on the subject ''Safety Assessment for the Underground Disposal of Radioactive Wastes'', IAEA Safety Series No. 56, 1981, and reference to this earlier document will facilitate the reader's understanding of the present report. Since examples of safety analyses are summarized here, it is hoped that this document will contribute to providing a basis for a common understanding among authorities and specialists concerned with the numerous studies involving a variety of scientific disciplines. While providing technical information, this document is also intended to stimulate further international discussion. The purposes of this report are: a) to identify the factors to be taken into account in radiological safety analyses of deep geological repositories, indicating as far as possible their relative importance during the various phases of system development; b) to show how these factors have been analysed in various safety assessment studies; and c) to comment on the merits of the selected and alternative approaches.

  2. The definition of commonly agreed stylized human intrusion scenarios for use in the long term safety assessments of radioactive waste disposal systems

    International Nuclear Information System (INIS)

    Carboneras, P.

    2002-01-01

    Recent international advice on the treatment of human intrusion in relation to the safety of radioactive waste repositories is reviewed. The outstanding issues which need to be resolved in order to establish an agreed international approach to assessing the consequences and judging the impact of human intrusion are summarized. Finally, a way forward towards an internationally agreed assessment approach is proposed. (author)

  3. A new assessment method for demonstrating the sufficiency of the safety assessment and the safety margins of the geological disposal system

    International Nuclear Information System (INIS)

    Ohi, Takao; Kawasaki, Daisuke; Chiba, Tamotsu; Takase, Toshio; Hane, Koji

    2013-01-01

    A new method for demonstrating the sufficiency of the safety assessment and safety margins of the geological disposal system has been developed. The method is based on an existing comprehensive sensitivity analysis method and can systematically identify the successful conditions, under which the dose rate does not exceed specified safety criteria, using analytical solutions for nuclide migration and the results of a statistical analysis. The successful conditions were identified using three major variables. Furthermore, the successful conditions at the level of factors or parameters were obtained using relational equations between the variables and the factors or parameters making up these variables. In this study, the method was applied to the safety assessment of the geological disposal of transuranic waste in Japan. Based on the system response characteristics obtained from analytical solutions and on the successful conditions, the classification of the analytical conditions, the sufficiency of the safety assessment and the safety margins of the disposal system were then demonstrated. A new assessment procedure incorporating this method into the existing safety assessment approach is proposed in this study. Using this procedure, it is possible to conduct a series of safety assessment activities in a logical manner. (author)

  4. The development and status of performance assessment in radioactive waste disposal

    International Nuclear Information System (INIS)

    McCombie, C.; Papp, T.; Coplan, S.

    1990-01-01

    The development of formal performance assessment in radioactive waste disposal has been in progress for around 10-15 years now. The time is particularly opportune for a review of the state-of-the-art because of current changes in the status of repository planning and implementation worldwide. Several major feasibility-type studies have been completed, the first full site-specific safety analyses are being performed for engineered underground disposal facilities for L/ILW, and - for HLW - the die are now being cast by implementers and regulatory determining how the safety analyses for licensing are to be performed and assessed. The article reviews the development of performance assessment and attempts to identify some key issues occupying safety analysts and regulatory reviewers involved in waste disposal today. (author) 7 figs

  5. Safety assessment of a vault-based disposal facility using the ISAM methodology

    International Nuclear Information System (INIS)

    Kelly, E.; Kim, C.-L.; Lietava, P.; Little, R.; Simon, I.

    2002-01-01

    As part of the IAEA's Co-ordinated Research Project (CRP) on Improving Long-term of Safety Assessment Methodologies for Near Surface Waste Disposal Facilities (ISAM), three example cases were developed. The aim was to testing the ISAM safety assessment methodology using as realistic as possible data. One of the Test Cases, the Vault Test Case (VTC), related to the disposal of low level radioactive waste (LLW) to a hypothetical facility comprising a set of above surface vaults. This paper uses the various steps of the ISAM safety assessment methodology to describe the work undertaken by ISAM participants in developing the VTC and provides some general conclusions that can be drawn from the findings of their work. (author)

  6. Predisposal management of high level radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste is generated in the generation of electricity in nuclear power plants and in the use of radioactive material in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized. The principles and requirements that govern the safety of the management of radioactive waste are presented in 'The Principles of Radioactive Waste Management', 'Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety' and 'Predisposal Management of Radioactive Waste, Including Decommissioning'. The objective of this Safety Guide is to provide regulatory bodies and the operators that generate and manage radioactive waste with recommendations on how to meet the principles and requirements established in Refs for the predisposal management of HLW. This Safety Guide applies to the predisposal management of HLW. For liquid HLW arising from the reprocessing of spent fuel the recommendations of this Safety Guide apply from when liquid waste from the first extraction process is collected for storage and subsequent processing. Recommendations and guidance on the storage of spent fuel, whether or not declared as waste, subsequent to its removal from the storage facility of a reactor are provided in Refs. For spent fuel declared as waste this Safety Guide applies to all activities subsequent to its removal from the storage facility of a reactor and prior to its disposal. Requirements pertaining to the transport of spent fuel, whether or not declared as waste, and of all forms of HLW are established. This Safety Guide provides recommendations on the safety aspects of managing HLW, including the planning, design, construction, commissioning, operation and decommissioning of equipment or facilities for the predisposal management of HLW. It addresses the following elements: (a) The characterization and processing (i.e. pretreatment

  7. Progress report on safety research of high-level waste management for the period April, 1982 to March, 1983

    International Nuclear Information System (INIS)

    Nakamura, Haruto; Tashiro, Shingo

    1983-06-01

    Main results obtained on Safety Research of High-Level waste Management in 1982 were editted. 1) The leaching mechanisms of the vitrified waste were studied to estimate the leach rate in disposal condition. 2) For the safety assessment of storage and disposal of the returning waste resulted from overseas reprocessing, properties of the glass simulating the composition by COGEMA are being measured. 3) In order to assess the integrity of the repository, influence of heat on the characteristics of rock mass and buffer materials was studied in underground drift. And also the retardation mechanism of the leached elements by rock mass was discussed. 4) The construction of Waste Safety Testing Facility (WASTEF) was completed, and vitrification test and near-field test using large radiation sources were initiated. (author)

  8. Review and assessment of nuclear facilities by the regulatory body. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The purpose of this Safety Guide is to provide recommendations for regulatory bodies on reviewing and assessing the various safety related submissions made by the operator of a nuclear facility at different stages (siting, design, construction, commissioning, operation and decommissioning or closure) in the facility's lifetime to determine whether the facility complies with the applicable safety objectives and requirements. This Safety Guide covers the review and assessment of submissions in relation to the safety of nuclear facilities such as: enrichment and fuel manufacturing plants. Nuclear power plants. Other reactors such as research reactors and critical assemblies. Spent fuel reprocessing plants. And facilities for radioactive waste management, such as treatment, storage and disposal facilities. This Safety Guide also covers issues relating to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation. Objectives, management, planning and organizational matters relating to the review and assessment process are presented in Section 2. Section 3 deals with the bases for decision making and conduct of the review and assessment process. Section 4 covers aspects relating to the assessment of this process. The Appendix provides a generic list of topics to be covered in the review and assessment process

  9. Review and assessment of nuclear facilities by the regulatory body. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this Safety Guide is to provide recommendations for regulatory bodies on reviewing and assessing the various safety related submissions made by the operator of a nuclear facility at different stages (siting, design, construction, commissioning, operation and decommissioning or closure) in the facility's lifetime to determine whether the facility complies with the applicable safety objectives and requirements. This Safety Guide covers the review and assessment of submissions in relation to the safety of nuclear facilities such as: enrichment and fuel manufacturing plants. Nuclear power plants. Other reactors such as research reactors and critical assemblies. Spent fuel reprocessing plants. And facilities for radioactive waste management, such as treatment, storage and disposal facilities. This Safety Guide also covers issues relating to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation. Objectives, management, planning and organizational matters relating to the review and assessment process are presented in Section 2. Section 3 deals with the bases for decision making and conduct of the review and assessment process. Section 4 covers aspects relating to the assessment of this process. The Appendix provides a generic list of topics to be covered in the review and assessment process

  10. Project safety studies - nuclear waste management (PSE)

    International Nuclear Information System (INIS)

    1981-10-01

    The project 'Safety Studies-Nuclear Waste Management' (PSE) is a research project performed by order of the Federal Minister for Research and Technology, the general purpose of which is to deepen and ensure the understanding of the safety aspects of the nuclear waste management and to prepare a risk analysis which will have to be established in the future. Owing to this the project is part of a series of projects which serve the further development of the concept of nuclear waste management and its safety, and which are set up in such a way as to accompany the realization of that concept. This report contains the results of the first stage of the project from 1978 to mid-1981. (orig./RW) [de

  11. Predisposal management of low and intermediate level radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2003-01-01

    Radioactive waste is generated in the generation of electricity in nuclear power reactors and in the use of radioactive material in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized. The principles and requirements that govern the safety of the management of radioactive waste are presented in 'The Principles of Radioactive Waste Management', 'Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety' and 'Predisposal Management of Radioactive Waste, Including Decommissioning'. The objective of this Safety Guide is to provide regulatory bodies and the operators that generate and manage radioactive waste with recommendations on how to meet the principles and requirements established in Refs for the predisposal management of LLW. This Safety Guide deals with the safety issues associated with the predisposal management of LLW from nuclear fuel cycle facilities, large research and development installations and radioisotope production facilities. This includes all steps and activities in the management of waste, from its initial generation to its final acceptance at a waste disposal facility or the removal of regulatory control. The predisposal management of radioactive waste includes decommissioning. The term 'decommissioning' encompasses both the process of decommissioning a facility and the management of the waste that results (prior to its disposal). Recommendations on the process of decommissioning are provided in Refs. Recommendations on the management of the waste resulting from decommissioning are included in this Safety Guide. Although the mining and milling of uranium and thorium ores is part of the nuclear fuel cycle, the management of the operational waste (e.g. waste rock, tailings and effluent treatment waste) from these activities is not within the scope of this Safety Guide. The LLW that is

  12. Joint SKI and SSI review of SKB preliminary safety assessment of repository for long-lived low- and intermediate-level waste. Review report

    International Nuclear Information System (INIS)

    2001-03-01

    included no discussion in the safety report as to which R and D activities they intend to prioritise. According to the current SKB timetable, siting and construction of SFL 3-5 will not begin for another 30 years. However, SKI and SSI do not consider this to be a reason to postpone essential R and D work. If a complete and thorough basis is not produced for assessing the long-term safety of an SFL 3-5 repository, the risk that these waste categories will have to undergo interim storage for an indefinite period of time increases. A future siting of SFL 3-5 based on our current level of knowledge is problematic. The present safety assessment points toward a substantial site-specific effect on the repository's protective capacity that can be related primarily to the local groundwater flow rate, but also to relevant geochemical conditions. Calculated doses for cases involving consumption of drinking water give the impression that the margins are small vis-a-vis the existing requirement framework, at least based on the methods used heretofore. In their main report, SKB discuss the possibility of improving the technical barriers to increase their impact on long-term safety (thereby mitigating the impact of site-specific factors). SKI and SSI feel that this approach is reasonable from the current preliminary perspective, but not for subsequent stages. SKB should in future formulate a proposed repository design that can be considered sufficiently robust with respect to the effects of the site-specific factors and their long-term evolution. The requirements and criteria that are relevant to the siting of SFL 3-5 must be addressed therein. In addition, more in-depth studies regarding the optimum storage depth for SFL 3-5 and the importance of the interactions between SFL 2 and SFL 3-5 should be undertaken relatively soon. The importance of these issues needs to be well documented in order to provide a basis for identifying suitable rock volumes for potential siting of SFL 3-5. Once

  13. Biosphere models for safety assesment of radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Proehl, G; Olyslaegers, G; Zeevaert, T [SCK/CEN, Mol (Belgium); Kanyar, B [University of Veszprem (Hungary). Dept. of Radiochemistry; Pinedo, P; Simon, I [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Bergstroem, U; Hallberg, B [Studsvik Ecosafe, Nykoeping (Sweden); Mobbs, S; Chen, Q; Kowe, R [NRPB, Chilton, Didcot (United Kingdom)

    2004-07-01

    The aim of the BioMoSA project has been to contribute in the confidence building of biosphere models, for application in performance assessments of radioactive waste disposal. The detailed objectives of this project are: development and test of practical biosphere models for application in long-term safety studies of radioactive waste disposal to different European locations, identification of features, events and processes that need to be modelled on a site-specific rather than on a generic base, comparison of the results and quantification of the variability of site-specific models developed according to the reference biosphere methodology, development of a generic biosphere tool for application in long term safety studies, comparison of results from site-specific models to those from generic one, Identification of possibilities and limitations for the application of the generic biosphere model. (orig.)

  14. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Larson, H L

    2007-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  15. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  16. Influence of climate on landscape characteristics in safety assessments of repositories for radioactive wastes.

    Science.gov (United States)

    Becker, J K; Lindborg, T; Thorne, M C

    2014-12-01

    In safety assessments of repositories for radioactive wastes, large spatial and temporal scales have to be considered when developing an approach to risk calculations. A wide range of different types of information may be required. Local to the site of interest, temperature and precipitation data may be used to determine the erosional regime (which may also be conditioned by the vegetation characteristics adopted, based both on climatic and other considerations). However, geomorphological changes may be governed by regional rather than local considerations, e.g. alteration of river base levels, river capture and drainage network reorganisation, or the progression of an ice sheet or valley glacier across the site. The regional climate is in turn governed by the global climate. In this work, a commentary is presented on the types of climate models that can be used to develop projections of climate change for use in post-closure radiological impact assessments of geological repositories for radioactive wastes. These models include both Atmosphere-Ocean General Circulation Models and Earth Models of Intermediate Complexity. The relevant outputs available from these models are identified and consideration is given to how these outputs may be used to inform projections of landscape development. Issues of spatial and temporal downscaling of climate model outputs to meet the requirements of local-scale landscape development modelling are also addressed. An example is given of how climate change and landscape development influence the radiological impact of radionuclides potentially released from the deep geological disposal facility for spent nuclear fuel that SKB (the Swedish Nuclear Fuel and Waste Management Company) proposes to construct at Forsmark, Sweden. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Documented Safety Analysis for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D

    2008-06-16

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  18. Additional safety assessments. Report by the Nuclear Safety Authority - December 2011

    International Nuclear Information System (INIS)

    2011-12-01

    The first part of this voluminous report proposes an assessment of targeted audits performed in French nuclear installations (water pressurized reactors on the one hand, laboratories, factories and waste and dismantling installations on the other hand) on issues related to the Fukushima accident. The examined issues were the protection against flooding and against earthquake, and the loss of electricity supplies and of cooling sources. The second part addresses the additional safety assessments of the reactors and the European resistance tests: presentation of the French electronuclear stock, earthquake, flooding and natural hazards (installation sizing, safety margin assessment), loss of electricity supplies and cooling systems, management of severe accidents, subcontracting conditions. The third part addresses the same issues for nuclear installations other than nuclear power reactors

  19. Disposal of Radioactive Waste. Specific Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  20. Reliability and safety program plan outline for the operational phase of a waste isolation facility

    International Nuclear Information System (INIS)

    Ammer, H.G.; Wood, D.E.

    1977-01-01

    A Reliability and Safety Program plan outline has been prepared for the operational phase of a Waste Isolation Facility. The program includes major functions of risk assessment, technical support activities, quality assurance, operational safety, configuration monitoring, reliability analysis and support and coordination meetings. Detailed activity or task descriptions are included for each function. Activities are time-phased and presented in the PERT format for scheduling and interactions. Task descriptions include manloading, travel, and computer time estimates to provide data for future costing. The program outlined here will be used to provide guidance from a reliability and safety standpoint to design, procurement, construction, and operation of repositories for nuclear waste. These repositories are to be constructed under the National Waste Terminal Storage program under the direction of the Office of Waste Isolation, Union Carbide Corp. Nuclear Division

  1. Methodology of safety assessment and sensitivity analysis for geologic disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Kimura, Hideo; Takahashi, Tomoyuki; Shima, Shigeki; Matsuzuru, Hideo

    1995-01-01

    A deterministic safety assessment methodology has been developed to evaluate long-term radiological consequences associated with geologic disposal of high-level radioactive waste, and to demonstrate a generic feasibility of geologic disposal. An exposure scenario considered here is based on a normal evolution scenario which excludes events attributable to probabilistic alterations in the environment. A computer code system GSRW thus developed is based on a non site-specific model, and consists of a set of sub-modules for calculating the release of radionuclides from engineered barriers, the transport of radionuclides in and through the geosphere, the behavior of radionuclides in the biosphere, and radiation exposures of the public. In order to identify the important parameters of the assessment models, an automated procedure for sensitivity analysis based on the Differential Algebra method has been developed to apply to the GSRW. (author)

  2. Safety assessment for the transportation of NECSA's LILW to the Vaalputs waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Maphoto, K.P.; Raubenheimer, E.; Swart, H. [Nuclear Liabilities Management, NECSA, P O Box 582, Pretoria, 0001 (South Africa)

    2008-07-01

    The transport safety assessment was carried out with a view to assess the impact on the environment and the people living in it, from exposure to radioactivity during transportation of the radioactive materials. It provides estimates of radiological risks associated with the envisaged transport scenarios for the road transport mode. This is done by calculating the human health impact and radiological risk from transportation of LILW along the R563 route, N14 and eventually to the Vaalputs National Waste Disposal Facility. Various parameters are needed by the RADTRAN code in calculating the human health impact and risk. These include: numbers of population densities following the routes undertaken, number of stops made, and the speed at which the transport will be traversing at towards the final destination. The human health impact with regard to the dose to the public, LCF and risk associated with transportation of Necsa's LILW to the Vaalputs Waste Disposal Facility by road have been calculated using RADTRAN 5 code. The results for both accident and incident free scenarios have shown that the overall risks are insignificant and can be associated with any non-radiological transportation. (authors)

  3. The Nirex safety assessment research programme

    International Nuclear Information System (INIS)

    Cooper, M.J.

    1988-07-01

    This report describes progress on the Nirex Safety Assessment Research Programme in 1987/88. The programme is concerned with research into the disposal of low-level waste (LLW) and intermediate-level waste (ILW) into underground repositories. At the beginning of 1987/88 a range of techniques for measuring and modelling far-field phenomena were being applied to near-surface disposal of low-level waste in clay. However, during the year the far-field studies were redirected to consider generic geological materials of interest for deep disposal of low and intermediate-level waste, which is now the preferred option in the UK. A substantial part of the programme is concerned with the effectiveness of near-field barriers to water-borne leakage of radionuclides from cementitious repositories. Considerable progress has been made in quantifying this and laying the foundations for robust and reliable radiological assessments to be made with appropriate models. New projects have also been initiated to study the evolution and migration of gases from an underground repository and to consider the contribution of the biosphere to the retardation of radionuclides. (author)

  4. The waste isolation pilot plant transuranic waste repository: A case study in radioactive waste disposal safety and risk

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Leif G. [GRAM, Inc., Albuquerque, NM (United States)

    1999-12-01

    The Waste Isolation Pilot Plant (WIPP) deep geological defense-generated transuranic radioactive waste (TRUW) repository in the United States was certified on the 13 of May 1998 and opened on the 26 of March 1999. Two sets of safety/performance assessment calculations supporting the certification of the WIPP TRUW repository show that the maximum annual individual committed effective dose will be 32 times lower than the regulatory limit and that the cumulative amount of radionuclide releases will be at least 10 times, more likely at least 20 times, lower than the regulatory limits. Yet, perceptions remain among the public that the WIPP TRUW repository imposes an unacceptable risk.

  5. The waste isolation pilot plant transuranic waste repository: A case study in radioactive waste disposal safety and risk

    International Nuclear Information System (INIS)

    Eriksson, Leif G.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) deep geological defense-generated transuranic radioactive waste (TRUW) repository in the United States was certified on the 13 of May 1998 and opened on the 26 of March 1999. Two sets of safety/performance assessment calculations supporting the certification of the WIPP TRUW repository show that the maximum annual individual committed effective dose will be 32 times lower than the regulatory limit and that the cumulative amount of radionuclide releases will be at least 10 times, more likely at least 20 times, lower than the regulatory limits. Yet, perceptions remain among the public that the WIPP TRUW repository imposes an unacceptable risk

  6. Involvement of AVN as TSO in the safety analysis of radioactive waste disposal

    International Nuclear Information System (INIS)

    Gelder, P. de; Nys, V.; Smidts, O.; Boeck, B. de

    2004-01-01

    In 1998, ONDRAF/NIRAS, the agency responsible for radioactive waste management in Belgium, was requested by the government to involve the nuclear safety authorities in its activities of safety evaluation of site-specific waste disposal options (deep or surface disposal) for the short-lived low-level waste. A working group was created in which ONDRAF/NIRAS, FANC (the Federal Agency for Nuclear Control) and AVN discuss different aspects of the ONDRAF/NIRAS program concerning the long-term management of short-lived low-level radioactive waste disposal. It includes also the review of technical safety assessments performed by ONDRAF/NIRAS or by contractors for ONDRAF/NIRAS. The involvement of AVN (the Belgian TSO) in the pre-project phase appears to be positive for all partners. Indeed, all felt the need for an independent actor, with a strong technical basis. Through this presentation, the experience and the topics discussed since 1998 will be developed. Mainly, the presentation will focus on the approach followed to develop competency in the radioactive waste field, on the discussions about the development of a regulatory framework adapted to final disposal of low-level radioactive waste, and on the technical regulatory positions developed so far. Also the experience related to the interaction with local stakeholders will be described. (orig.)

  7. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Part 3. Safety assessment for geological disposal systems

    International Nuclear Information System (INIS)

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, the part 3 of the progress report, concerns safety assessment for geological disposal systems definitely introduced in part 1 and 2 of this series and consists of 9 chapters. Chapter I concerns the methodology for safety assessment while Chapter II deals with diversity and uncertainty about the scenario, the adequate model and the required data of the systems above. Chapter III summarizes the components of the geological disposal system. Chapter IV refers to the relationship between radioactive wastes and human life through groundwater, i.e. nuclide migration. In Chapter V is made a reference case which characterizes the geological environmental data using artificial barrier specifications. (Ohno. S.)

  8. General safety guidelines for looking for a low mass activity-long life waste storage site

    International Nuclear Information System (INIS)

    2008-01-01

    The objective of this document is to define general guidelines which must be followed during the stages of search for a site and stages of design of a storage facility for low activity-long life radioactive wastes, in order to ensure its safety after closure. After having specified the considered wastes, geological shapes, and situations, this document defines the fundamental objective and the associated criteria (protection against chemical risk, radioprotection). It presents the design aspects related to safety (safety principles and functions, waste packages, public works engineering, geological environment, storage concepts). The last part deals with the safety demonstration after site closure which includes the control of some components, the assessment of disturbances in the storage facility or due to its presence, the taking of uncertainty and sensitivity studies into account, the influence of natural events

  9. Human factors in safety assessment. Safety culture assessment

    International Nuclear Information System (INIS)

    Zhang Li; Deng Zhiliang; Wang Yiqun; Huang Weigang

    1996-01-01

    This paper analyses the present conditions and problems in enterprises safety assessment, and introduces the characteristics and effects of safety culture. The authors think that safety culture must be used as a 'soul' to form the pattern of modern safety management. Furthermore, they propose that the human safety and synthetic safety management assessment in a system should be changed into safety culture assessment. Finally, the assessment indicators are discussed

  10. Technical Safety Requirements for the Waste Storage Facilities May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  11. Technical Safety Requirements for the Waste Storage Facilities May 2014

    International Nuclear Information System (INIS)

    Laycak, D. T.

    2014-01-01

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  12. Preliminary safety analysis report for the Waste Characterization Facility

    International Nuclear Information System (INIS)

    1994-10-01

    This safety analysis report outlines the safety concerns associated with the Waste Characterization Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are to: define and document a safety basis for the Waste Characterization Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume. 142 refs., 38 figs., 39 tabs

  13. Evolution of safety standards for the long-term management of nuclear waste, and their application in Ontario Power Generation

    International Nuclear Information System (INIS)

    Kempe, T.F.

    2006-01-01

    This paper examines the need to develop current radiation protection methodologies further in order to take account of the special features of long-term waste management. The need to expand the scope and nature of regulatory submissions is also addressed. It is concluded that an international consensus is emerging as to requirements for a safety case for long-term waste management, and on safety assessment approaches and criteria to be applied in the regulation of long-term waste management facilities. The application of some of this methodology in preliminary concept assessments carried out by OPG for long-term waste management facilities is described. (author)

  14. Waste Isolation Safety Assessment Program scenario analysis methods for use in assessing the safety of the geologic isolation of nuclear waste

    International Nuclear Information System (INIS)

    Greenborg, J.; Winegardner, W.K.; Pelto, P.J.; Voss, J.W.; Stottlemyre, J.A.; Forbes, I.A.; Fussell, J.B.; Burkholder, H.C.

    1978-11-01

    The relative utility of the various safety analysis methods to scenario analysis for a repository system was evaluated by judging the degree to which certain criteria are satisfied by use of the method. Six safety analysis methods were reviewed in this report for possible use in scenario analysis of nuclear waste repositories: expert opinion, perspectives analysis, fault trees/event trees, Monte Carlo simulation, Markov chains, and classical systems analysis. Four criteria have been selected. The criteria suggest that the methods: (1) be quantitative and scientifically based; (2) model the potential disruptive events and processes, (3) model the system before and after failure (sufficiently detailed to provide for subsequent consequence analysis); and (4) be compatible with the level of available system knowledge and data. Expert opinion, fault trees/event trees, Monte Carlo simulation and classical systems analysis were judged to have the greatest potential appliation to the problem of scenario analysis. The methods were found to be constrained by limited data and by knowledge of the processes governing the system. It was determined that no single method is clearly superior to others when measured against all the criteria. Therefore, to get the best understanding of system behavior, a combination of the methods is recommended. Monte Carlo simulation was judged to be the most suitable matrix in which to incorporate a combination of methods

  15. Radioactive waste disposal assessment - overview of biosphere processes and models

    International Nuclear Information System (INIS)

    Coughtrey, P.J.

    1992-09-01

    This report provides an overview of biosphere processes and models in the general context of the radiological assessment of radioactive waste disposal as a basis for HMIP's response to biosphere aspects of Nirex's submissions for disposal of radioactive wastes in a purpose-built repository at Sellafield, Cumbria. The overview takes into account published information from the UK as available from Nirex's safety and assessment research programme and HMIP's disposal assessment programme, as well as that available from studies in the UK and elsewhere. (Author)

  16. Nirex safety assessment research programme bibliography, 1991

    International Nuclear Information System (INIS)

    Cooper, M.J.

    1991-09-01

    This bibliography lists reports and papers written as part of the Nirex Safety Assessment Research Programme, which is concerned with disposal of low-level and intermediate-level waste (LLW and ILW) and associated radiological assessments. The bibliography has been divided into two sections, a list of Publications in roughly chronological order and an Author Index. The topics involved include near-field and far-field studies. The near-field includes the waste package, filling or sealing materials, and those parts of the host medium whose characteristics have been or could be altered by the repository or its content. The far-field is the rock formation outside the repository, including the surrounding strata, at a distance from the waste disposal site such that, for modelling purposes, the site may be considered as a single entity, and the effects of individual waste packages are indistinguishable in the effects of the whole. The far-field includes also the biosphere, into which radionuclides from the waste could conceivably migrate in the future. (author)

  17. The JAERI program for development of safety assessment models and acquisition of data needed for assessment of geological disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Matsuzuru, H.

    1991-01-01

    The JAERI is conducting R and D program for the development of safety assessment methodologies and the acquisition of data needed for the assessment of geologic disposal of high-level radioactive wastes, aiming at the elucidation of feasibility of geologic disposal in Japan. The paper describes current R and D activities to develop interim versions of both a deterministic and a probabilistic methodologies based on a normal evolution scenario, to collect data concerning engineered barriers and geologic media through field and laboratory experiments, and to validate the models used in the methodologies. 2 figs., 2 refs

  18. Preparation of safety analysis reports (SARs) for near surface radioactive waste disposal facilities. Format and content of SARs

    International Nuclear Information System (INIS)

    1995-02-01

    All facilities at which radioactive wastes are processed, stored and disposed of have the potential for causing hazards to humans and to the environment. Precautions must be taken in the siting, design and operation of the facilities to ensure that an adequate level of safety is achieved. The processes by which this is evaluated is called safety assessment. An important part of safety assessment is the documentation of the process. A well prepared safety analysis report (SAR) is essential if approval of the facility is to be obtained from the regulatory authorities. This TECDOC describes the format and content of a safety analysis report for a near surface radioactive waste disposal facility and will serve essentially as a checklist in this respect

  19. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Laycak, D.T.

    2010-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting

  20. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2008-06-16

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas

  1. Operational safety assessment of underground test facilities for mined geologic waste disposal

    International Nuclear Information System (INIS)

    Elder, H.K.

    1993-01-01

    This paper describes the operational safety assessment for the underground facilities for the exploratory studies facility (ESF) at the Yucca Mountain Project. The systematic identification and evaluation of hazards related to the ESF is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach based on the analysis of potential accidents was used since radiological safety analysis was not required. The risk assessment summarized credible accident scenarios and the design provides mitigation of the risks to a level that the facility can be constructed and operated with an adequate level of safety. The risk assessment also provides reasonable assurance that all identifiable major accident scenarios have been reviewed and design mitigation features provided to ensure an adequate level of safety

  2. Radioactive Waste Management Complex low-level waste radiological performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  3. Radioactive Waste Management Complex low-level waste radiological performance assessment

    International Nuclear Information System (INIS)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected

  4. Safety assessment for radiactive waste disposal

    International Nuclear Information System (INIS)

    Lewi, J.; Izabel, C.

    1989-11-01

    Whatever their type may be, radioactive waste disposals obey to the following principle: to isolate radioactive substances as long as their potential nocivity is significant. The isolation is obtained by confining barriers. The present paper recalls the role and the limits of the different barriers, for each type of disposal. It presents and comments site selection criteria and waste packages requirements [fr

  5. Nirex Safety Assessment Research Programme bibliography, 1988

    International Nuclear Information System (INIS)

    Cooper, M.J.

    1988-05-01

    This bibliography lists reports and papers written as part of the Nirex Safety Assessment Research Programme, which is concerned with disposal of low-level and intermediate-level waste (LLW and ILW) and associated radiological assessments. All work referred to has been funded, or partly funded, by UK Nirex Limited, previously known as the Nuclear Industry Radioactive Waste Executive (NIREX). The bibliography has been divided into two sections, a List of Publications in roughly chronological order and an Author Index. The topics involved include near-field and far-field studies. The near-field includes the waste, its immobilising medium, its container, the engineered structure in which the containers are emplaced, and the immediately adjacent geological formation disturbed by the construction of the repository. The far-field is the undisturbed geological formation between the near-field and the biosphere. (author)

  6. Progress report on safety research of high-level waste management for the period April 1986 to March 1987

    International Nuclear Information System (INIS)

    Nakamura, Haruto; Tashiro, Shingo

    1987-08-01

    Researches on high-level waste management at the High Level Waste Management Laboratory and the Waste Safety Testing Facility Operation Division of the Japan Atomic Energy Research Institute in the fiscal year of 1986 are reviewed in the report. Topics in the three sections are as follows: 1) Non-radioactive research has been continued on Synroc irradiation and modellings of waste form leaching. 2) Research results are described in the section of Safety Evaluation for Geological Disposal on engineered barriers, field tests, safety assessment models, migration, natural analogue, seabed disposal and conceptual design of a repository. 3) Adsorption behaviour of plutonium on leach-containers and migration of leached cesium in a rock column are described in the section of Safety Examination of Vitrified Forms in the Hot Cells of WASTEF. (author)

  7. Project SAFE. Update of the SFR-1 safety assessment. Phase 1

    International Nuclear Information System (INIS)

    Andersson, Johan; Riggare, P.; Skagius, K.

    1998-10-01

    SFR-1 is a facility for disposal of low-level radioactive operational waste from the nuclear power plants in Sweden. Low-level radioactive waste from industry, medicine, and research is also disposed in SFR-1. The facility is situated in bedrock beneath the Baltic Sea, 1 km off the coast near the Forsmark nuclear power plant. SFR-1 was built between the years 1983 and 1988. An assessment of the long-term performance of the facility was included in the vast documentation that was a part of the application for an operational license. The assessment was presented in the form of a final safety report. In the operational licence for SFR-1 it is stated that renewed safety assessments should be carried out at least each ten years. In order to meet this demand SKB has launched a special project, SAFE (Safety Assessment of Final Disposal of Operational Radioactive Waste). The aim of the project is to update the safety analysis and to prepare a safety report that will be presented to the Swedish authorities not later than year 2000. Project SAFE is divided into three phases. The first phase is a prestudy, and the results of the prestudy are given in this report. The aim of the prestudy is to identify issues where additional studies would improve the basis for the updated safety analysis as well as to suggest how these studies should be carried out. The work has been divided into six different topics, namely the inventory, the near field, the far field, the biosphere, radionuclide transport calculations and scenarios. For each topic the former safety reports and regulatory reviews are scrutinised and needs for additional work is identified. The evaluations are given in appendices covering the respective topics. The main report is a summary of the appendices with a more stringent description of the repository system and the processes that are of interest and therefore should be addressed in an updated safety assessment. However, it should be pointed out that one of the

  8. The safety case in support of the license application of the surface repository of low-level waste in Dessel, Belgium

    International Nuclear Information System (INIS)

    Wacquier, William; Cool, Wim

    2014-01-01

    The modern concept of the safety case, developed by the OECD/NEA for geological repositories of high- and medium-level waste has been successfully applied by ONDRAF/ NIRAS for a surface repository for Category A waste (i.e. low-level waste) in Belgium in the current project phase 2006-2012. This resulted in the submission on 31 January 2013 by ONDRAF/NIRAS of an application for a 'construction and operation license' to the safety authorities. The benefits of using the notion of the safety case have been that: i) safety has been incorporated in an integrated manner within all assessment basis, design and safety assessment activities; ii) the process of development of the license application has gained in clarity and traceability; iii) the documentation of the license application contains multiple lines of argumentation for safety rather than argumentation based only on quantitative radiological impact calculations. To offer a comprehensive view on the safety argumentation and its development, it has been found useful to develop the argumentation not only along a safety statements structure but also along the safety report structure. (authors)

  9. Existing and future international standards for the safety of radioactive waste disposal

    International Nuclear Information System (INIS)

    Linsley, G.

    1999-01-01

    In this paper the essential features of the current international safety standards are summarised and the issues being raised for inclusion in future standards are discussed. The safety standards of the IAEA are used as the basis for the review and discussion. The IAEA has established a process for establishing international standards of safety for radioactive waste management through its Radioactive Waste Safety Standards (RADWASS) programme. The RADWASS documents are approved by a comprehensive process involving regulatory and other experts from all concerned IAEA Member States. A system of committees for approving the IAEAs safety standards has been established. For radioactive waste safety the committee for review and approval is the Waste Safety Standards Advisory Committee (WASSAC). In 1995 the IAEA published 'The Principles of Radioactive Waste Management' as the top level document in the RADWASS programme. The report sets out the basis principles which most experts believe are fundamental to the safe management of radioactive wastes

  10. Long term safety assessment of geological waste disposal systems: issues on release scenarios

    International Nuclear Information System (INIS)

    Khan, S.A.; Qureshi, A.A.

    1995-01-01

    Geological insolation of high level nuclear waste is an attractive waste disposal concept. However, long term safety demonstration of this concept is a major challenge to the operators, regulators and the scientific community. Identification of the factors responsible for the release of radionuclides from geosphere to biosphere,is first step in this regard. Current understanding of the release scenarios indicates that faulting, ground after percolation, seismicity, volcanism and human intrusion are the dominating release factors for most of the candidate rock formations. The major source of uncertainties is the probability values of various release events due to random nature of catastrophic geological events and past poor historical records of the frequencies of such events. There is consensus among the experts that the waste release via human intrusion is the most unpredictable scenario at present state of the knowledge. (author)

  11. Pilot process waste assessment for the fireset area

    International Nuclear Information System (INIS)

    Cole, M.J.; Goethe, M.C.

    1992-08-01

    A pilot process waste assessment (WA) was conducted in the fireset area to develop methodology for conducting future process waste assessments. The study was conducted on trichloroethylene spray cleaning using the guidance for PWAs supplied by Environment, Safety, and Health (ES ampersand H). The first objective was to draw up a flow diagram (see Appendix A, worksheet 4) for the process. When this was done, a mass balance (see Appendix A, Worksheet 5) was conducted to determine the quantity of incoming material and where it was going during the process. The mass balance showed that a large quantity of trichloroethylene and all the isopropyl alcohol was being released to the atmosphere instead of being captured in the waste solvent container. Upon completion of the mass balance, waste minimization options where identified (see Appendix A, Worksheet 8) to reduce or eliminate the quantity of hazardous solvent used

  12. Modelling approach to LILW-SL repository safety evaluation for different waste packing options

    International Nuclear Information System (INIS)

    Perko, Janez; Mallants, Dirk; Volckaert, Geert; Towler, George; Egan, Mike; Virsek, Sandi; Hertl, Bojan

    2007-01-01

    The key objective of the work described here was to support the identification of a preferred disposal concept and packaging option for low and short-lived intermediate level waste (LILW-SL). The emphasis of the assessment, conducted on behalf of the Slovenian radioactive waste management agency (ARAO), was the consideration of several waste treatment and packaging options in an attempt to identify optimised containment characteristics that would result in safe disposal, taking into account the cost-benefit of alternative safety measures. Waste streams for which alternative treatment and packaging solutions were developed and evaluated include decommissioning waste and NPP operational wastes, including drums with unconditioned ion exchange resins in over-packed tube type containers (TTCs). For decommissioning wastes, the disposal options under consideration were either direct disposal of loose pieces grouted into a vault or use of high integrity containers (HIC). In relation to operational wastes, three main options were foreseen. The first is over-packing of resin containing TTCs grouted into high integrity containers, the second option is complete treatment with hydration, neutralization, and cementation of the dry resins into drums grouted into high integrity containers and the third is direct disposal of TTCs into high integrity containers without additional treatment. The long-term safety of radioactive waste repositories is usually demonstrated with the support of a safety assessment. This normally includes modelling of radionuclide release from a multi-barrier near-surface or deep repository to the geosphere and biosphere. For the current work, performance assessment models were developed for each combination of siting option, repository design and waste packaging option. Modelling of releases from the engineered containment system (the 'near-field') was undertaken using the AMBER code. Detailed unsaturated water flow modelling was undertaken using the

  13. Considerations in the safety assessment of sealed nuclear facilities

    International Nuclear Information System (INIS)

    1991-06-01

    This report is a part of the International Atomic Energy Agency's radioactive waste management programme, whose objective is to provide assistance to Member States in developing guidance for identifying safe alternatives for isolating radioactive waste from man and his environment. This report attempts to integrate information from the previous reports on decommissioning of nuclear facilities, mitigation of accidents at such facilities, and performance assessment of disposal systems to provide useful advice and qualitative guidance to those responsible for performance and safety assessments of sealed nuclear facilities by giving an overview of possible approaches and techniques for such assessments. In this context, the establishment of requirements and rules governing the radiological safety of personnel, the general public, and the environment for sealing and post-sealing activities will enable the choice of the most appropriated approach and help to promote consistency in both decommissioning and waste management standards. The near-field effects discussed in this document include gas generation, interactions of the groundwater and the residual water with other components of the system, thermal, thermo-mechanical, radiation effects and chemical and geochemical reactions. 59 refs, figs and tabs

  14. Confidence building in safety assessment

    International Nuclear Information System (INIS)

    Osthols, E.

    1999-01-01

    Engineered disposal systems are necessary to isolate radioactive waste from humans and the environment. It is essential to have access to basic thermochemical data relevant to varying geological environments for the radioactive elements involved. The OECD/NEA Thermochemical Data Base project (TDB) aims to make widely available basic thermochemical data of the type needed for safety assessment of nuclear storage facilities. The history and the present status of the project are presented. (K.A.)

  15. 18th GRS experts' meeting 1994. Seminar B: Safety of facilities and waste management. Technical papers

    International Nuclear Information System (INIS)

    1994-01-01

    The six papers deal with the scanning, recording and assessment of long-standing soil pollution emanating from mining activities in Saxonia, Sachsen-Anhalt and Thuringia, the computation of radioactivity levels of structural core components destined for ultimate disposal, and with safety aspects and safety criteria applied to waste repositories in Germany and abroad. Nuclide transport models used for providing evidence of safe radiological containment of waste repositories are presented and discussed. (DG) [de

  16. Safety of radioactive waste management. Proceedings of an international conference

    International Nuclear Information System (INIS)

    2000-01-01

    The principal objective of the Conference was to enable members of the scientific community and representatives of facilities which produce radioactive waste, of bodies responsible for radioactive waste management, of nuclear regulatory bodies and of public interest groups, among others, to engage in an open dialogue. The open dialogue which took place may, by providing policy and decision makers with a basis for political action, prove to be an important step in the search for the international consensus so essential in the area of radioactive waste management. The relevant policies and activities of the IAEA, the European Commission, the OECD Nuclear Energy Agency and the World Health Organization were presented. The evolution, under the aegis of the IAEA, of a de facto international radiation and nuclear safety regime was noted. In the area of radioactive waste safety, this regime consists of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, the body of international waste safety standards established by the IAEA and other international organizations, and the IAEA's mechanisms for providing for the application of those standards. The topics covered by the Conference were: Current international co-operative efforts; Recommendations from the International Commission on Radiological Protection; Recommendations from the International Nuclear Safety Advisory Group; Conclusions and recommendations of the International Symposium on the Restoration of Environments with Radioactive Residues; Siting of radioactive waste management facilities; Participation of interested parties; Legislative and general radiation safety aspects; Removal of material from regulatory control (exclusion, exemption and clearance); Predisposal management (dilution, recycling, transmutation, etc.); Near surface disposal; Residues from the mining and processing of radioactive ores; Long term institutional control; Geological disposal

  17. LANL Safety Conscious Work Environment (SCWE) Self-Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Barbara C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-29

    On December 21, 2012 Secretary of Energy Chu transmitted to the Defense Nuclear Facilities Safety Board (DNFSB) revised commitments on the implementation plan for Safety Culture at the Waste Treatment and Immobilization Plant. Action 2-5 was revised to require contractors and federal organizations to complete Safety Conscious Work Environment (SCWE) selfassessments and provide reports to the appropriate U.S. Department of Energy (DOE) - Headquarters Program Office by September 2013. Los Alamos National Laboratory (LANL) planned and conducted a Safety Conscious Work Environment (SCWE) Self-Assessment over the time period July through August, 2013 in accordance with the SCWE Self-Assessment Guidance provided by DOE. Significant field work was conducted over the 2-week period August 5-16, 2013. The purpose of the self-assessment was to evaluate whether programs and processes associated with a SCWE are in place and whether they are effective in supporting and promoting a SCWE.

  18. Criticality safety analysis of Hanford Waste Tank 241-101-SY

    International Nuclear Information System (INIS)

    Perry, R.T.; Sapir, J.L.; Krohn, B.J.

    1993-01-01

    As part of a safety assessment for proposed pump mixing operations to mitigate episodic gas releases in Tank 241-101-SY at the Hanford Site, Richland, Washington, a criticality safety analysis was made using the Sn transport code ONEDANT. The tank contains approximately one million gallons of waste and an estimated 910 G of plutonium. the criticality analysis considers reconfiguration and underestimation of plutonium content. The results indicate that Tank SY-101 does not present a criticality hazard. These methods are also used in criticality analyses of other Hanford tanks

  19. Long-Term Safety Analysis of Baldone Radioactive Waste Repository and Updating of Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2001-12-01

    The main objective of the project was to provide advice to the Latvian authorities on the safety enhancements and waste acceptance criteria for near surface radioactive waste disposal facilities of the Baldone repository. The project included the following main activities: Analysis of the current status of the management of radioactive waste in Latvia in general and, at the Baldone repository in particular Development of the short and long-term safety analysis of the Baldone repository, including: the planned increasing of capacity for disposal and long term storage, the radiological analysis for the post-closure period Development of the Environment Impact Statement, for the new foreseen installations, considering the non radiological components Proposal of recommendations for future updating of radioactive waste acceptance criteria Proposal of recommendations for safety upgrades to the facility. The work programme has been developed in phases and main tasks as follows. Phase 0: Project inception, Phase 1: Establishment of current status, plans and practices (Legislation, regulation and standards, Radioactive waste management, Waste acceptance criteria), Phase 2: Development of future strategies for long-term safety management and recommendations for safety enhancements. The project team found the general approach use at the installation, the basic design and the operating practices appropriate to international standards. Nevertheless, a number of items subject to potential improvements were also identified. These upgrading recommendations deal with general aspects of the management (mainly storage versus disposal of long-lived sources), site and environmental surveillance, packaging (qualification of containers, waste characterization requirements), the design of an engineered cap and strategies for capping. (author)

  20. Accelerator transmutation of wastes (ATW) - Prospects and safety

    International Nuclear Information System (INIS)

    Gudowski, W.; Pettersson, Kjell; Thedeen, T.

    1993-11-01

    Accelerator transmutation of nuclear waste (ATW) has during last years gained interest as a technologically possible method to transform radioactive wastes into short-lived or stable isotopes. Different ATW-projects are described from the physical and technical point of view. The principal sketch of the safety analysis of the ATW-idea is given. Due to the very limited technical data for existing ATW-projects the safety analysis can cause some risks for the health and environmental safety for the closest environment. General public should not be affected. 35 refs, 22 figs, 4 tabs

  1. Safety analysis report for the Waste Storage Facility. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  2. Performance assessment of an alpha waste deposit in a clay formation

    International Nuclear Information System (INIS)

    Quercia, F.; D'Alessandro, M.; Saltelli, A.

    1987-01-01

    The probabilistic code LISA (Long term Isolation Safety Assessment) has been used to assess the risk related to the disposal of alpha waste in a geological formation. The code has been modified to take into account waste form properties and leaching processes pertinent to alpha waste produced at fuel reprocessing plants. The exercise refers to a repository in a deep clay formation located at Harwell (U.K.) where some hydrogeological data were available. Radionuclide migration through repository and geological barriers has been simulated together with biosphere contamination. Results of the assessment are presented as dose rate (or risk) distributions; a sensitivity analysis on input parameters has been performed

  3. Radioactive wastes transport. A safety logic

    International Nuclear Information System (INIS)

    2005-01-01

    The safety principle which applies to transport operations of radioactive wastes obeys to a very strict regulation. For the conditioning of wastes in package, the organisation of shipments and the qualification of carriers, the ANDRA, the French national agency of radioactive wastes, has implemented a rigorous policy based on the respect of a quality procedure and on the mastery of delivery fluxes. This brochure presents in a simple, illustrated and detailed manner the different steps of these transports. (J.S.)

  4. Safety assessment of radioactive waste disposal into geological formations; a preliminary application of fault tree analysis to salt deposits

    International Nuclear Information System (INIS)

    Bertozzi, B.; D'Alessandro, M.; Girardi, F.; Vanossi, M.

    1978-01-01

    The methodology of the fault tree analysis (FTA) has been widely used at the Joint Research Centre of Ispra in nuclear reactor safety studies. The aim of the present work consisted in studying the applicability of this methodology to geological repositories of radioactive wastes, including criteria and approaches for the quantification of probalities of primary events. The present work has just an illustrative purpose. Two ideal cases of saline formations, I.E. a bedded salt and a diapir were chosen as potential disposal sites for radioactive waste. On the basis of arbitrarily assumed hydrogeological features of the salt formations and their surrounding environment, possible phenomena capable of causing the waste to be released from each formation have been discussed and gathered following the logical schemes of the FTA. The assessment of probability values for release events due to natural causes as well as to human actions, over different time periods, up to one million years, has been discussed

  5. The development and status of performance assessment in radioactive waste disposal

    International Nuclear Information System (INIS)

    McCombie, C.; Papp, T.; Coplan, S.

    1990-01-01

    The development of formal performance assessment in radioactive waste disposal has been in progress for around 10-15 years now. The time is particularly opportune for a review of the state-of-the-art because of current changes in the status of repository planning and implementation world-wide. Several major feasibility-type studies have been completed, the first full site-specific safety analyses are being performed for engineered underground disposal facilities for L/ILW, and - for HLW - the die are now being cast by implementers and regulators determining how the safety analyses for licensing are to be performed and assessed. This introductory paper reviews the development of performance assessment, including a reiteration of the aims and a recapitulation of the technical progress and achievements to date. The most important purpose, however, is to identify some key issues occupying safety analysts and regulatory reviewers involved in waste disposal today. The objective is to present the generally accepted consensus on the state of the art in performance assessment. 40 refs., 2 figs

  6. The impact of safety analyses on the design of the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Koppenaal, T.J.; Yee, A.K.; Reisdorf, J.B.; Hall, B.W.

    1993-04-01

    Accident analyses are being performed to evaluate and document the safety of the Hanford Waste Vitrification Plant (HWVP). The safety of the HWVP is assessed by evaluating worst-case accident scenarios and determining the dose to offsite and onsite receptors. Air dispersion modeling is done with the GENII computer code. Three accidents are summarized in this paper, and their effects on the safety and the design of the HWVP are demonstrated

  7. A case study on the safety assessment for groundwater pathway in a near-surface radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Park, Joo Wan; Chang, Keun Moo; Kim, Chang Lak

    2002-01-01

    A safety assessment is carried out for the near-surface radioactive waste disposal in the reference engineered vault facility. The analysis is mainly divided into two parts. One deals with the release and transport of radionuclide in the vault and unsaturated zone. The other deals with the transport of radionuclide in the vault and unsaturated zone. The other deals with the transport of radionuclide in the saturated zone and radiological impacts to a human group under well drinking water scenario. The parameters for source-term, geosphere and biosphere models are mainly obtained from the site specific data. The results show that the annual effective doses are dominated by long lived, mobile radionuclides and their associated daughters. And it is found that the total effective dose for drinking water is far below the general criteria of regulatory limit for radioactive waste disposal facility

  8. A study on the methodology of integrated safety assessment on low and intermediate level waste (LILW) managed in temporary storage facility at NPP

    International Nuclear Information System (INIS)

    Ahn, Min Ho

    2010-02-01

    Since 1978, the KHNP has been operating 20 NPPs (16 PWRs and 4 CANDUs) and generating about 67,000 drums (200 L) of LILW (as of December 31, 2005), which have been stored in the temporary storage facility (TSF) at each NPP due to the absence of a repository for the disposal of LILW. Therefore, the period of temporary storage of LILW is so long compared to other countries. Furthermore, the details with respect to the safety analyse on the TSF have not been considered in PSAR and FSAR. Especially, the risk assessment on the TSF has scarcely been conducted as opposed to many researches on the disposal of LILW. Since 2003, however, the IAEA has been recognized on the importance of predispoal management of LILW. And then, the regulatory frame of U.S. NRC was being shifted to risk-based regulation from the deterministic approach. Therefore, most of radioactive wastes including the LILW will be managed in terms of the risk-based graded approach to future regulation system called RIR (risk informed regulation). If the radioactive wastes do not quantitatively deal with the risk-based regulation, the radiological risk on some of radioactive wastes might be overestimated or underestimated regardless of the degree of the risk. According to a consequence of these situations, the numbers of the researches on the predisposal management of LILW have been required for the preparation on new regulatory frame. In this study, the main objective of this study is to establish the methodology of integrated safety assessment on LILW managed in the TSF at NPP, and to develop the integrated safety assessment code for routine operating condition and for for accident analysis on LILW managed in the TSF. In order to establish the methodology of integrated safety assessment on LILW managed in the TSF at NPP, three main parameters were considered: risk-based accident scenarios, radionuclide inventory, and atmospheric dispersion factor (χ/Q). Arbitrary accidents related to LILW management in the

  9. Initial Q-list for the prospective Yucca Mountain repository based on items important to safety and waste isolation

    International Nuclear Information System (INIS)

    Laub, T.W.; Jardine, L.J.

    1987-01-01

    A method for identifying items important to safety based on a probabilistic risk assessment approach was developed and implemented for the conceptual design of the Yucca Mountain repository. No items were classified as important to safety; however, six items were classified as potentially important to safety. These were the shipping cask, the cranes and the truck or rail-care vehicle stops in the cask receiving and preparation area, the hot cell structure of the waste packaging hot cells, the cranes in the waste packaging hot cells, and the waste-handling building fire protection system. In addition, a method for identifying items important to waste isolation was developed and implemented. Two hydrogeologic units of the Yucca Mountain site were classified as important to waste isolation: the Calico Hills nonwelded zeolitic unit and the Calico Hills nonwelded vitric unit. The preliminary Q-list for the Yucca Mountain repository is comprised of the two units of the site classified as important to waste isolation and contains no items important to safety

  10. Initial Q-list for the prospective Yucca Mountain repository based on items important to safety and waste isolation

    International Nuclear Information System (INIS)

    Laub, T.W.; Jardine, L.J.

    1987-01-01

    A method for identifying items important to safety based on a probabilistic risk assessment approach was developed and implemented for the conceptual design of the Yucca Mountain repository. No items were classified as important to safety; however, six items were classified as potentially important to safety. These were the shipping cask, the cranes and the truck or rail-car vehicle stops in the cask receiving and preparation area, the hot cell structure of the waste packaging hot cells, the cranes in the waste packaging hot cells, and the waste-handling building fire protection system. In addition, a method for identifying items important to waste isolation was developed and implemented. Two hydrogeologic units of the Yucca Mountain site were classified as important to waste isolation: the Calico Hills nonwelded zeolitic unit and the Calico Hills nonwelded vitric unit. The preliminary Q-list for the Yucca Mountain repository is comprised of the two units of the site classified as important to waste isolation and contains no items important to safety

  11. Retained gas sampler interim safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pasamehmetoglu, K.O.; Miller, W.O.; Unal, C.; Fujita, R.K.

    1995-01-13

    This safety assessment addresses the proposed action to install, operate, and remove a Retained Gas Sampler (RGS) in Tank 101-SY at Hanford. Purpose of the RGS is to help characterize the gas species retained in the tank waste; the information will be used to refine models that predict the gas-producing behavior of the waste tank. The RGS will take samples of the tank from top to bottom; these samples will be analyzed for gas constituents. The proposed action is required as part of an evaluation of mitigation concepts for eliminating episodic gas releases that result in high hydrogen concentrations in the tank dome space.

  12. Retained gas sampler interim safety assessment

    International Nuclear Information System (INIS)

    Pasamehmetoglu, K.O.; Miller, W.O.; Unal, C.; Fujita, R.K.

    1995-01-01

    This safety assessment addresses the proposed action to install, operate, and remove a Retained Gas Sampler (RGS) in Tank 101-SY at Hanford. Purpose of the RGS is to help characterize the gas species retained in the tank waste; the information will be used to refine models that predict the gas-producing behavior of the waste tank. The RGS will take samples of the tank from top to bottom; these samples will be analyzed for gas constituents. The proposed action is required as part of an evaluation of mitigation concepts for eliminating episodic gas releases that result in high hydrogen concentrations in the tank dome space

  13. The role of natural analogues in safety assessment and acceptability

    International Nuclear Information System (INIS)

    Papp, Toenis

    1987-01-01

    The safety assessment must evaluate the level of safety for a repository, the confidence that can be placed on the assessment and how well the repository can meet the acceptance criteria of the society. Many of the processes and phenomena that govern the long term performance of a deep geologic repository for radioactive waste also take place in nature. To investigate these natural analogues and try to validate the models on which the safety assessment are based is a main task in the effort to build of confidence in the safety assessments. The assessment of the safety of a repository can, however, not only be based on good models. The possible role of natural analogues or natural evidence in other parts of the safety assessment is discussed. Specially with regard to - the need to demonstrate that all relevant processes have been taken into account, and that the important ones have been validated to an acceptable level for relevant parameters spans, -the definition and analysis of external scenarios for the safety assessment and for the claim that all reasonable scenarios have been addressed, - the public confidence in the long-term relevance of the acceptance criteria. (author)

  14. Report of safety of the characterizing system of radioactive waste

    International Nuclear Information System (INIS)

    Angeles C, A.; Jimenez D, J.; Reyes L, J.

    1998-09-01

    Report of safety of the system of radioactive waste of the ININ: Installation, participant personnel, selection of the place, description of the installation, equipment. Proposed activities: operations with radioactive material, calibration in energy, calibration in efficiency, types of waste. Maintenance: handling of radioactive waste, physical safety. Organization: radiological protection, armor-plating, personal dosemeter, risks and emergency plan, environmental impact, medical exams. (Author)

  15. Environmental safety of the disposal system for radioactive substance-contaminated wastes

    International Nuclear Information System (INIS)

    Oosako, Masahiro

    2012-01-01

    In accordance with the full-scale enforcement of 'The Act on Special Measures concerning the Handling of Radioactive Pollution' in 2012, the collective efforts of entire Japan for dealing with radioactive pollutants began. The most important item for dealing with radioactive pollution is to control radioactive substances that polluted the global environment and establish a contaminated waste treatment system for risk reduction. On the incineration system and landfill disposal system of radioactive waste, this paper arranges the scientific information up to now, and discusses the safety of the treatment / disposal systems of contaminated waste. As for 'The Act on Special Measures concerning the Handling of Radioactive Pollution,' this paper discusses the points of the Act and basic policy, roadmap for the installation of interim storage facilities, and enforcement regulations (Ordinance of the Ministry of the Environment). About the safety of waste treatment system, it discusses the safety level of technical standards at waste treatment facilities, safety of incineration facilities, and safety of landfill disposal sites. (O.A.)

  16. Science for safety in nuclear waste handling; Aspects scientifiques de la surete des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, B. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN), 91 - Gif sur Yvette (France)

    2005-05-01

    A facility for disposing of nuclear waste has the objective of protecting mankind. It is shown how nuclear safety is taken into account in the definition of the facilities, particularly through the use of the multi-barriers concept. Elements on safety assessment are provided, with emphasis on the scenario (normal or altered approach; examples of research programs required by these assessment tasks, particularly by means of underground laboratories are given. (author)

  17. Possible role of plasma ceruloplasmin and erythrocyte sedimentation rate in assessing compliance with occupational hygiene and safety practices in waste management workers.

    Science.gov (United States)

    Odewabi, Adesina O; Ogundahunsi, Omobola A; Odewabi, Adenike A; Oritogun, Kolawole S; Ekor, Martins

    2013-05-01

    Work-related health and safety risks are common among waste management workers (WMWs). This study investigated the level of compliance with safety measures in relation to levels of inflammatory markers among WMWs in Sagamu, South-West Nigeria. WMWs comprising 30 cart pushers (CPs) and 50 truck users (TUs) were recruited alongside 45 people from the normal population as control. Data on health complaints were obtained from questionnaire surveys. Inflammation was assessed by measuring plasma ceruloplasmin (Cp), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and albumin. WMWs exhibited a significantly higher prevalence of respiratory and gastrointestinal symptoms and poor compliance with health and safety measures. Significant (P footwear between TUs and CPs. ESR, Cp, and CRP increased significantly (P safety measures. ESR and Cp may be useful predictors of occupational hygiene and compliance with safety measures among Nigerian WMWs.

  18. Aspects of nuclear safety in the management of the radioactive wastes

    International Nuclear Information System (INIS)

    Popescu, D.; Iliescu, E.

    1997-01-01

    The paper reviews aspects of nuclear safety which should be taken into account in the management of the radioactive wastes. The paper considers underlying criteria concerning the management, collecting, sorting transportation and treatment of radioactive wastes as well as safety engineering measures taken when designing a facility for the treatment of radioactive wastes. The paper also brings forward the removal radioactive wastes and some points on the policy of radioactive wastes management in Romania. (authors)

  19. Development of performance assessment methodology for establishment of quantitative acceptance criteria of near-surface radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. R.; Lee, E. Y.; Park, J. W.; Chang, G. M.; Park, H. Y.; Yeom, Y. S. [Korea Hydro and Nuclear Power Co., Ltd., Seoul (Korea, Republic of)

    2002-03-15

    The contents and the scope of this study are as follows : review of state-of-the-art on the establishment of waste acceptance criteria in foreign near-surface radioactive waste disposal facilities, investigation of radiological assessment methodologies and scenarios, investigation of existing models and computer codes used in performance/safety assessment, development of a performance assessment methodology(draft) to derive quantitatively radionuclide acceptance criteria of domestic near-surface disposal facility, preliminary performance/safety assessment in accordance with the developed methodology.

  20. Research on safety evaluation for TRU waste disposal

    International Nuclear Information System (INIS)

    Senoo, M.; Shirahashi, K.; Sakamoto, Y.; Moriyama, N.; Konishi, M.

    1989-01-01

    Studies on adsorption behavior of transuranic (TRU) elements have been performed from the view point of validating the data for safety assessment and investigating adsorption behavior of TRU elements. Distribution coefficient (Kd value) of plutonium between groundwater and soils sampled at the planning site of low level waste disposal facility were measured for safety assessment. Kd values measured were the order of 10 3 ml/g. For investigating adsorption behavior, pH dependency of Kd value of neptunium and Am for soils were studied. It was concluded that pH dependency of Kd value of neptunium was mainly owing to amount of surface charge of soils, on the other hand that of Am was due to chemical form of Am. Influence of carbonation of cement for adsorption behavior of neptunium and plutonium was also investigated and it was concluded that Kd value of carbonated cement was lower than that of fresh cement

  1. Eurosafe 2006 radioactive waste management: long term safety requirements and societal expectations

    International Nuclear Information System (INIS)

    2006-01-01

    The EUROSAFE Forum is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety, to share experiences, exchange technical and scientific opinions, and conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum 2006 focuses on 'Radioactive Waste Management: Long Term Safety Requirements and Societal Expectations' from the point of view of the authorities, TSOs and industry and presents the latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe. A high level of nuclear safety is a priority for Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining increasing recognition. This

  2. Eurosafe 2006 radioactive waste management: long term safety requirements and societal expectations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The EUROSAFE Forum is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety, to share experiences, exchange technical and scientific opinions, and conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum 2006 focuses on 'Radioactive Waste Management: Long Term Safety Requirements and Societal Expectations' from the point of view of the authorities, TSOs and industry and presents the latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe. A high level of nuclear safety is a priority for Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining increasing recognition. This

  3. Eurosafe 2006 radioactive waste management: long term safety requirements and societal expectations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The EUROSAFE Forum is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety, to share experiences, exchange technical and scientific opinions, and conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum 2006 focuses on 'Radioactive Waste Management: Long Term Safety Requirements and Societal Expectations' from the point of view of the authorities, TSOs and industry and presents the latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe. A high level of nuclear safety is a priority for Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining increasing recognition

  4. Safety cases for radioactive waste disposal facilities: guidance on confidence building and regulatory review IAEA-ASAM co-ordinated research project

    International Nuclear Information System (INIS)

    Ben Belfadhel, M.; Bennett, D.G.; Metcalf, P.; Nys, V.; Goldammer, W.

    2008-01-01

    The IAEA has been conducting two co-ordinated research programmes (CRPs) projects to develop and apply improved safety assessment methodologies for near-surface radioactive waste disposal facilities. The more recent of these projects, ASAM (application of safety assessment methodologies), included a Regulatory Review Working Group (RRWG) which has been working to develop guidance on how to gain confidence in safety assessments and safety cases, and on how to conduct regulatory reviews of safety assessments. This paper provides an overview of the ASAM project, focusing on the safety case and regulatory review. (authors)

  5. Review of safety assessment methods. A report of the performance assessment advisory group of the radioactive waste management committee OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    1991-01-01

    The disposal of radioactive waste is a major issue in the nuclear debate. This report provides a concise and accessible overview of the methods available for evaluating the long-term safety of radioactive waste disposal systems, particularly those to be built in deep geological formations

  6. The management and disposal of radioactive wastes - safety principles and guidelines

    International Nuclear Information System (INIS)

    Linsley, G.; Bell, M.; Saire, D.

    1991-01-01

    This paper describes the current plans for the establishment of the Radioactive Waste Safety Standards (RADWASS), a new series of IAEA documents in the Safety Series category intended to set out internationally agreed approaches to the safe management and disposal or radioactive waste. RADWASS is being implemented to document the harmonization which exists in the approaches to establishing safety in the field of radioactive waste management and disposal at the international level. (au)

  7. Dealing with uncertainties in the safety of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Devillers, Ch.

    2002-01-01

    Confidence in the safety assessment of a possible project of radioactive waste geological repository will only be obtained if the development of the project is closely guided by transparent safety strategies, acknowledging uncertainties and striving for limiting their effects. This paper highlights some sources of uncertainties, external or internal to the project, which are of particular importance for safety. It suggests safety strategies adapted to the uncertainties considered. The case of a possible repository project in the Callovo-Oxfordian clay layer of the French Bure site is examined from that point of view. The German project at Gorleben and the Swedish KBS-3 project are also briefly examined. (author)

  8. Modelling approach to evaluate safety of LILW-SL disposal in slovenia considering different waste packaging options

    International Nuclear Information System (INIS)

    Perko, J.; Mallants, D.

    2007-01-01

    The long-term safety of radioactive waste repositories is usually demonstrated by means of a safety assessment which normally includes modelling of radionuclide release from a multi-barrier surface or deep repository to the geosphere and biosphere. The present quantitative evaluation performed emphasizes on contrasting disposal options under consideration in Slovenia and concerns siting, disposal concept (deep versus surface), and waste packaging. The assessment has identified a number of conditions that would lead to acceptable waste disposal solutions, while at the same time results also revealed options that would result in exceeding the radiological criteria. Results presented are the output of a collective effort of a Quintessa-led Consortium with SCK-CEN and Belgatom, in the framework of a recent PHARE project. The key objective of this work was to identify the preferred disposal concept and packaging option from a number of alternatives being considered by the Slovenian radioactive waste management agency (ARAO) for low and intermediate level short-lived waste (LILW-SL). The emphasis of the assessment was the consideration of several waste treatment and packaging options in an attempt to identify the minimum required containment characteristics which would result in safe disposal and the cost-benefit of additional safety measures. Waste streams for which alternative treatment and packaging solutions were developed and evaluated include decommissioning waste and NPP operational wastes containing drums with unconditioned ion exchange resins in overpacked tube type containers (TTCs). For the former the disposal options under consideration were either direct disposal of loose pieces grouted into a vault or use of high integrity containers. For the latter three options were foreseen. The first is overpacking of resin containing TTCs grouted into high integrity containers, the second option is complete treatment with hydration, neutralisation, and cementation of

  9. Performance assessment studies for the long-term safety evaluation of radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Olteanu, M.; Bujoreanu, L.

    2008-01-01

    Especially during the last ten years, a part of Romanian research program 'Management of Radioactive Waste and Spent Fuel' was focused mainly on applicative research for the design of near-surface disposal facility, which intends to accommodate the low and intermediate radioactive waste generated from Cernavoda NPP. In this frame, our contribution was at the acquisition of technical data for the characterization of the future disposal facility. In the present, the project of the disposal facility, located on the Saligny site, near Cernavoda NPP, must be licensed. As regards to the safe disposal, the location of final disposal, the Saligny site, has been characterized through the five geological formations which contain potential routes for transport of radionuclide released from disposal facility, in the receiving zones(potential receiving zones), into liquid and gaseous phases. The technical characteristics of the disposal facility were adapted at the Romanian disposal concept using the reference data from IAEA technical report (IAEA,1999). Input parameters which characterized from physical and chemical point of view the disposal system, were partially taken from literature. The performance assessment studies, which follows the preliminary design development phases and the selection, describes how the source term is affected by the infiltration of water through the disposal facility, degradation process of engineering barriers (reflected in the distribution coefficient values) and solubility limit. The studies regard the evaluation of the source term, sensitivity and uncertainty analysis provide the information on 'how' and 'why' were evaluated, following: (i) radiological safety assessment of near-surface disposal facility on Saligny site; (ii) complexity standard assessment of the Engineering Barriers Systems (EBS); (iii) identification of the elements which must be elaborated for the increase of the disposal safety and the necessity for new technical data for

  10. Environment, safety and health progress assessment manual

    International Nuclear Information System (INIS)

    1992-12-01

    On June 27, 1989, the Secretary of Energy announced a 1O-Point Initiative to strengthen environment,safety, and health (ES ampersand H) programs, and waste management activities at involved conducting DOE production, research, and testing facilities. One of the points independent Tiger Team Assessments of DOE operating facilities. The Office of Special Projects (OSP), EH-5, in the Office of the Assistant Secretary for Environment, Safety and Health, EH-1, was assigned the responsibility to conduct the Tiger Team Assessments. Through June 1992, a total of 35 Tiger Team Assessments were completed. The Secretary directed that Corrective Action Plans be developed and implemented to address the concerns identified by the Tiger Teams. In March 1991, the Secretary approved a plan for assessments that are ''more focused, concentrating on ES ampersand H management, ES ampersand H corrective actions, self-assessment programs, and root-cause related issues.'' In July 1991, the Secretary approved the initiation of ES ampersand H Progress Assessments, as a followup to the Tiger Team Assessments, and in the continuing effort to institutionalize the self-assessment process and line management accountability in the ES ampersand H areas. This volume contains appendices to the Environment, Safety and Health Progress Assessment Manual

  11. The safety assessment of radioactive material transpotation at sea

    International Nuclear Information System (INIS)

    Satoh, K.; Ozaki, S.; Watabe, N.; Fukuda, S.; Iida, T.; Miyao, S.; Noguchi, K.; Nakajima, K.

    1989-01-01

    Large quantities of low level wastes are prepared for transportation by special use vessels from each power plant to the storage facility at Rokkasho-mura in Aomori Prefecture. Large quantities of reprocessed wastes are also planned for return by similar vessels to the same place from France and the UK. In this paper the authors describe the safety assessment in hypothetical accident conditions during such mass transportation at sea. Although the possibilities of the sinking of the special use vessels as shown in figure 1 are considered to be very low on account of their double-hull structure, it is necessary to estimate the radiological risks of the transportation in order to obtain public acceptance. In this study, the following procedure is taken: (i) assumption of accident; (ii) establishment of safety assessment procedure; (iii) determination of source terms; (iv) diffusion calculation of radionuclide; (v) estimation of radiation exposure of the public

  12. Waste Isolation Pilot Plant Safety Analysis Report. Volume 5

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  13. Waste Isolation Pilot Plant Safety Analysis Report. Volume 4

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  14. Waste Isolation Pilot Plant Safety Analysis Report. Volume 1

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection: Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating control and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  15. Waste Isolation Pilot Plant Safety Analysis Report. Volume 2

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  16. Transuranic-contaminated solid waste Treatment Development Facility. Final safety analysis report

    International Nuclear Information System (INIS)

    Warner, C.L.

    1979-07-01

    The Final Safety Analysis Report (FSAR) for the Transuranic-Contaminated Solid-Waste Treatment Facility has been prepared in compliance with the Department of Energy (DOE) Manual Chapter 0531, Safety of Nonreactor Nuclear Facilities. The Treatment Development Facility (TDF) at the Los Alamos Scientific Laboratory is a research and development facility dedicated to the study of radioactive-waste-management processes. This analysis addresses site assessment, facility design and construction, and the design and operating characteristics of the first study process, controlled air incineration and aqueous scrub off-gas treatment with respect to both normal and accident conditions. The credible accidents having potentially serious consequences relative to the operation of the facility and the first process have been analyzed and the consequences of each postulated credible accident are presented. Descriptions of the control systems, engineered safeguards, and administrative and operational features designed to prevent or mitigate the consequences of such accidents are presented. The essential features of the operating and emergency procedures, environmental protection and monitoring programs, as well as the health and safety, quality assurance, and employee training programs are described

  17. Transuranic-contaminated solid waste Treatment Development Facility. Final safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Warner, C.L. (comp.)

    1979-07-01

    The Final Safety Analysis Report (FSAR) for the Transuranic-Contaminated Solid-Waste Treatment Facility has been prepared in compliance with the Department of Energy (DOE) Manual Chapter 0531, Safety of Nonreactor Nuclear Facilities. The Treatment Development Facility (TDF) at the Los Alamos Scientific Laboratory is a research and development facility dedicated to the study of radioactive-waste-management processes. This analysis addresses site assessment, facility design and construction, and the design and operating characteristics of the first study process, controlled air incineration and aqueous scrub off-gas treatment with respect to both normal and accident conditions. The credible accidents having potentially serious consequences relative to the operation of the facility and the first process have been analyzed and the consequences of each postulated credible accident are presented. Descriptions of the control systems, engineered safeguards, and administrative and operational features designed to prevent or mitigate the consequences of such accidents are presented. The essential features of the operating and emergency procedures, environmental protection and monitoring programs, as well as the health and safety, quality assurance, and employee training programs are described.

  18. Regulatory review and confidence building in post-closure safety assessments and safety cases for near surface disposal facilities-IAEA ASAM coordinated research programme

    International Nuclear Information System (INIS)

    Gonzales, A.; Simeonov, G.; Bennett, D.G.; Nys, V.; Ben Belfadhel, M.

    2005-01-01

    Some years ago, the IAEA successfully concluded a Coordinated Research Program (CRP) called Islam, which focussed on the development of an Improved Safety Assessment Methodology for near-surface radioactive waste disposal facilities. In November 2002, and as an extension of ISAM, the IAEA launched a new CRP called ASAM, designed to test the Application of the Safety Assessment Methodology by considering a range of near-surface disposal facilities. The ASAM work programme is being implemented by three application working groups and two cross-cutting working groups. The application working groups are testing the applicability of the ISAM methodology by assessing an existing disposal facility in Hungary, a copper mine in South Africa, and a hypothetical facility containing heterogenous wastes, such as disused sealed sources. The first cross-cutting working group is addressing a number of technical issues that are common to all near-surface disposal facilities, while the second group, the Regulatory Review Working Group (RRWG) is developing guidance on how to gain confidence in safety assessments and safety cases, and on how to conduct regulatory reviews of safety assessments. This paper provides a brief overview of the work being conducted by the Regulatory Review Working Group. (author)

  19. Nuclear Facility Isotopic Content (NFIC) Waste Management System to provide input for safety envelope definition

    International Nuclear Information System (INIS)

    Genser, J.R.

    1992-01-01

    The Westinghouse Savannah River Company (WSRC) is aggressively applying environmental remediation and radioactive waste management activities at the US Department of Energy's Savannah River Site (SRS) to ensure compliance with today's challenging governmental laws and regulatory requirements. This report discusses a computer-based Nuclear Facility Isotopic Content (NFIC) Waste Management System developed to provide input for the safety envelope definition and assessment of site-wide facilities. Information was formulated describing the SRS ''Nuclear Facilities'' and their respective bounding inventories of nuclear materials and radioactive waste using the NFIC Waste Management System

  20. Current status and new trends in the methodology of safety assessment for near surface disposal facilities

    International Nuclear Information System (INIS)

    Ilie, Petre; Didita, Liana; Danchiv, Alexandru

    2008-01-01

    The main goal of this paper is to present the status of the safety assessment methodology at the end of IAEA CRP 'Application of Safety Assessment Methodology for Near-Surface Radioactive Waste Disposal Facilities (ASAM)', and the new trends outlined at the launch of the follow-up project 'Practical Implementation of Safety Assessment Methodologies in a Context of Safety Case of Near-Surface Facilities (PRISM)'. Over the duration of the ASAM project, the ISAM methodology was confirmed as providing a good framework for conducting safety assessment calculations. In contrast, ASAM project identified the limitations of the ISAM methodology as currently formulated. The major limitations are situated in the area of the use of safety assessment for informing practical decisions about alternative waste and risk management strategies for real disposal sites. As a result of the limitation of the ISAM methodology, the PRISM project is established as an extension of the ISAM and ASAM projects. Based on the outcomes of the ASAM project, the main objective of the PRISM project are: 1 - to develop an overview of what constitutes an adequate safety case and safety assessment with a view to supporting decision making processes; 2 - to provide practical illustrations of how the safety assessment methodology could be used for addressing some specific issues arising from the ASAM project and national cases; 3 - to support harmonization with the IAEA's international safety standards. (authors)

  1. NPP Krsko periodic safety review. Safety assessment and analyses

    International Nuclear Information System (INIS)

    Basic, I.; Spiler, J.; Thaulez, F.

    2002-01-01

    Definition of a PSR (Periodic Safety Review) project is a comprehensive safety review of a plant after ten years of operation. The objective is a verification by means of a comprehensive review using current methods that the plant remains safe when judged against current safety objectives and practices and that adequate arrangements are in place to maintain plant safety. The overall goals of the NEK PSR Program are defined in compliance with the basic role of a PSR and the current practice typical for most of the countries in EU. This practice is described in the related guides and good practice documents issued by international organizations. The overall goals of the NEK PSR are formulated as follows: to demonstrate that the plant is as safe as originally intended; to evaluate the actual plant status with respect to aging and wear-out identifying any structures, systems or components that could limit the life of the plant in the foreseeable future, and to identify appropriate corrective actions, where needed; to compare current level of safety in the light of modern standards and knowledge, and to identify where improvements would be beneficial for minimizing deviations at justifiable costs. The Krsko PSR will address the following safety factors: Operational Experience, Safety Assessment, EQ and Aging Management, Safety Culture, Emergency Planning, Environmental Impact and Radioactive Waste.(author)

  2. Knowledge, Attitude and Practice of Healthcare Managers to Medical Waste Management and Occupational Safety Practices: Findings from Southeast Nigeria.

    Science.gov (United States)

    Anozie, Okechukwu Bonaventure; Lawani, Lucky Osaheni; Eze, Justus Ndulue; Mamah, Emmanuel Johnbosco; Onoh, Robinson Chukwudi; Ogah, Emeka Onwe; Umezurike, Daniel Akuma; Anozie, Rita Onyinyechi

    2017-03-01

    Awareness of appropriate waste management procedures and occupational safety measures is fundamental to achieving a safe work environment, and ensuring patient and staff safety. This study was conducted to assess the attitude of healthcare managers to medical waste management and occupational safety practices. This was a cross-sectional study conducted among 54 hospital administrators in Ebonyi state. Semi-structured questionnaires were used for qualitative data collection and analyzed with SPSS statistics for windows (2011), version 20.0 statistical software (Armonk, NY: IBM Corp). Two-fifth (40%) of healthcare managers had received training on medical waste management and occupational safety. Standard operating procedure of waste disposal was practiced by only one hospital (1.9%), while 98.1% (53/54) practiced indiscriminate waste disposal. Injection safety boxes were widely available in all health facilities, nevertheless, the use of incinerators and waste treatment was practiced by 1.9% (1/54) facility. However, 40.7% (22/54) and 59.3% (32/54) of respondents trained their staff and organize safety orientation courses respectively. Staff insurance cover was offered by just one hospital (1.9%), while none of the hospitals had compensation package for occupational hazard victims. Over half (55.6%; 30/54) of the respondents provided both personal protective equipment and post exposure prophylaxis for HIV. There was high level of non-compliance to standard medical waste management procedures, and lack of training on occupational safety measures. Relevant regulating agencies should step up efforts at monitoring and regulation of healthcare activities and ensure staff training on safe handling and disposal of hospital waste.

  3. Documented Safety Analysis for the Waste Storage Facilities March 2010

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2010-03-05

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  4. Safety measures to address the year 2000 issue at radioactive waste management facilities

    International Nuclear Information System (INIS)

    1999-03-01

    This report evaluates eventual impacts of the date problem in computer-based systems, referred to as year 2000 or Y2K problem, on the safety of radioactive waste management. It addresses the various types of waste, their processing, storage and disposal, decommissioning activities and sealed sources in terms of the approach to the Y2K problem, eventual remediation or contingencies and regulatory considerations. It assesses also typical processes involved in radioactive waste management for their potential of being affected by the Y2K problem. It addresses also eventual impacts on records and data as well as instruments and measurements

  5. Recommendations: Procedure to develop a preliminary safety report as part of the radioactive waste repository construction licensing process

    International Nuclear Information System (INIS)

    2003-01-01

    The structure of a preliminary safety report for the title purpose should be as follows: A. Textual part: 1. General (Introduction, Basic information about the construction, Timetable); 2. Site information (Siting, Geography and demography, Meteorology and climatic situation, Hydrology, Geology and hydrogeology); 3. Repository design description (Basic function and performance requirements, Design, Auxiliary systems, Fire prevention/protection, Emergency plans); 4. Operation of the repository (Waste acceptance and inspection, Waste handling and interim storage, Waste disposal, Operating monitoring), 5. Health and environmental impact assessment (Radionuclide inventory, Radionuclide transport paths and mechanisms of release into the environment, Radionuclide release in normal and emergency situations, Radiation protection - health impact assessment and regulatory compliance, Draft operating limits and conditions, Proposed ways of assuring physical protection, Uncertainty assessment), 6. Safe repository shutdown/decommissioning concept, 7 Quality assurance assessment, 8. List of selected equipment. B. Annexes: Maps, Drawings, Diagrams, Miscellaneous; C. Documentation: Previous safety report amendments, Protocols, Miscellaneous. (P.A.)

  6. Project SAFE. Update of the SFR-1 safety assessment. Phase 1. Appendix A5: Radionuclide transport

    International Nuclear Information System (INIS)

    Moreno, L.

    1998-01-01

    A critical revision of the previous safety assessments made by SKB on the Final Repository for Radioactive Operational Waste, SFR is presented. The review of the Deepened Safety Assessment is also discussed. Based on this critical revision improvements are suggested. Hydrology, formation of complexes, and long-term behaviour of the barriers are some of the aspects where the safety assessment could be improved

  7. Safety and optimization aspects of radioactive waste long-term storage at the ''Vector'' site

    International Nuclear Information System (INIS)

    Tokarevs'kij, O.V.; Kondrat'jev, S.M.; Aleksjejeva, Z.M.; Ribalka, N.V.

    2015-01-01

    The paper analyzes links between the final disposal option and needs for long-term storage of radioactive waste taking into proposals on possible changes in radwaste classification as regards disposal. It considers the conceptual approach to design facilities for long-term storage of long-lived radioactive waste at the Vector site and approaches to apply requirements of regulatory documents, radiation safety principles and criteria for long-term storage of radwaste and safety assessment.

  8. Predisposal management of radioactive waste. General safety requirements. Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    The objective of this Safety Requirements publication is to establish, the requirements that must be satisfied in the predisposal management of radioactive waste. This publication sets out the objectives, criteria and requirements for the protection of human health and the environment that apply to the siting, design, construction, commissioning, operation and shutdown of facilities for the predisposal management of radioactive waste, and the requirements that must be met to ensure the safety of such facilities and activities. This Safety Requirements publication applies to the predisposal management of radioactive waste of all types and covers all the steps in its management from its generation up to its disposal, including its processing (pretreatment, treatment and conditioning), storage and transport. Such waste may arise from the commissioning, operation and decommissioning of nuclear facilities; the use of radionuclides in medicine, industry, agriculture, research and education; the processing of materials that contain naturally occurring radionuclides; and the remediation of contaminated areas. The introduction of the document (Section 1) informs about its objective, scope and structure. The protection of human health and the environment is considered in Section 2 of this publication. Section 3 establishes requirements for the responsibilities associated with the predisposal management of radioactive waste. Requirements for the principal approaches to and the elements of the predisposal management of radioactive waste are established in Section 4. Section 5 establishes requirements for the safe development and operation of predisposal radioactive waste management facilities and safe conduct of activities. The Annex presents a discussion of the consistency of the safety requirements established in this publication with the fundamental safety principles

  9. 340 waste handling facility interim safety basis

    Energy Technology Data Exchange (ETDEWEB)

    VAIL, T.S.

    1999-04-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

  10. 340 waste handling facility interim safety basis

    International Nuclear Information System (INIS)

    VAIL, T.S.

    1999-01-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people

  11. Progress report on safety research on radioactive waste management for the period April 1995 to March 1996

    International Nuclear Information System (INIS)

    Sekine, Keiichi; Muraoka, Susumu; Banba, Tsunetaka

    1997-03-01

    This report summarizes the research and development activities on radioactive waste management at the Engineered Barrier Materials Laboratory, Natural Barrier Laboratory and Environmental Geochemistry Laboratory of the Department of Environmental Safety Research during the fiscal year of 1995 (April 1, 1995 - March 31, 1996). The topics are as follows: 1) As for waste forms and engineered barrier material, performance assessment studies were carried out on various waste forms. 2) In the safety evaluation study for shallow land disposal, migration behavior of radionuclides in a soil layer was studied. 3) In the safety evaluation study for geological disposal, chemical behavior of radionuclides in water, nuclide migration in geosphere and groundwater flow system were studied. Migration of uranium series nuclides in uranium ore deposit was studied as a part of natural analog study. (author)

  12. Workshop on Regulatory Review and Safety Assessment Issues in Repository Licensing

    International Nuclear Information System (INIS)

    Wilmot, Roger D.

    2011-02-01

    The workshop described here was organised to address more general issues regarding regulatory review of SKB's safety assessment and overall review strategy. The objectives of the workshop were: - to learn from other programmes' experiences on planning and review of a license application for a nuclear waste repository, - to offer newly employed SSM staff an opportunity to learn more about selected safety assessment issues, and - to identify and document recommendations and ideas for SSM's further planning of the licensing review

  13. Criticality safety of high-level tank waste

    International Nuclear Information System (INIS)

    Rogers, C.A.

    1995-01-01

    Radioactive waste containing low concentrations of fissile isotopes is stored in underground storage tanks on the Hanford Site in Washington State. The goal of criticality safety is to ensure that this waste remains subcritical into the indefinite future without supervision. A large ratio of solids to plutonium provides an effective way of ensuring a low plutonium concentration. Since the first waste discharge, a program of audits and appraisals has ensured that operations are conducted according to limits and controls applied to them. In addition, a program of surveillance and characterization maintains watch over waste after discharge

  14. Fuzzy multi-objective decision making on a low and intermediate level waste repository safety assessment

    International Nuclear Information System (INIS)

    Lemos, Francisco Luiz de; Deshpande, Ashok; Guimaraes, Lamartine

    2002-01-01

    Low and intermediate waste disposal facilities safety assessment is comprised of several steps from site selection , construction and operation to post-closure performance assessment. This is a multidisciplinary and complex task , and can not be analyzed by one expert only. This high complexity can lead to ambiguity and vagueness in information and consequently in the decision making process. In order to make the decision process clear and objective, there is the need to provide the decision makers with a clear and comprehensive picture of the whole process and, at the same time, simple and easily understandable by the public. This paper suggests the development of an inference system based on fuzzy decision making methodology. Fuzzy logic tools are specially suited to deal with ambiguous data by using language expressions. This process would be capable of integrating knowledge from various fields of environmental sciences. It has an advantage of keeping record of reasoning for each intermediate decision that lead to the final results which makes it more dependable and defensible as well. (author)

  15. Nirex Safety Assessment Research Programme bibliography, 1987

    International Nuclear Information System (INIS)

    Cooper, M.J.; Hodgkinson, D.P.

    1987-06-01

    This bibliography lists reports and papers written as part of the Nirex Safety Assessment Research programme, which is concerned with disposal of low-level and intermediate-level waste (LLW and ILW). All work referred to has been funded, or partly funded, by UK Nirex Limited, previously known as the Nuclear Industry Radioactive Waste Executive (NIREX). The bibliography has been divided into two sections, a List of Publications in roughly chronological order and an Author Index. The topics involved include near-field and far-field studies. The near-field includes the waste, its immobilising medium, its container, the engineered structure in which the containers are emplaced, and the immediately adjacent geological formation disturbed by the construction of the repository. The far-field is the undisturbed geological formation between the near-field and the biosphere. (author)

  16. Safety Aspects of Nuclear Waste Treatment

    International Nuclear Information System (INIS)

    Glubrecht, H.

    1986-01-01

    In the nuclear fuel cycle - like in most other industrial processes - some waste is produced which can be harmful to the environment and has to be stored safely and isolated from the Biosphere. This radioactive waste can be compared with toxic chemical waste under many aspects, but it has some special features, some of which make its handling more difficult, others make it easier. The difficulties are that radioactive waste does not only affect living organisms after incorporation, but also from some distance through its radiation. Therefore this waste has not only to be encapsuled, but also shielded. At higher concentrations radioactive waste produces heat and this has to be continuously derived from the storage area. On the other hand the control of even extremely small amounts of radioactive waste is very much easier than that of toxic chemical waste due to the high sensitivity of radiation detection methods. Furthermore radioactive waste is not persistent like most of the chemical waste. Of course some components will decay only after millennia, but a high percentage of radioactive waste becomes inactive after days, weeks or years. An important feature of safety aspects related to nuclear waste is the fact that problems of its treatment and storage have been discussed from the very beginning of Nuclear Energy Technology - what has not been the case in relation to most other industrial wastes

  17. NSC confirms principles for safety review on Radioactive Waste Burial Facilities

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The Nuclear Safety Commission authorized the scope of Principles for Safety Examination on Radioactive Waste Burial Facilities as suitable, the draft report for which was established by the Special Committee on Safety Standards of Radioactive Waste (Chairman Prof. Masao Sago, Science University of Tokyo) and reported on March 10 to the NSC. The principles include the theory that the facility must be controlled step by step, corresponding to the amount of radioactivity over 300 to 400 years after the burial of low-level solid radioactive waste with site conditions safe even in the event of occurrence of a natural disaster. The principles will be used for administrative safety examination against the application of the business on low-level radioactive waste burial facility which Japan Nuclear Fuel Industries, Inc. is planning to install at Rokkashomura, Aomori Prefecture. (author)

  18. Implementation of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

    International Nuclear Information System (INIS)

    Stewart, L.; Tonkay, D.

    2004-01-01

    This paper discusses the implementation of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The Joint Convention: establishes a commitment with respect to safe management of spent nuclear fuel and radioactive waste; requires the Parties to ''take appropriate steps'' to ensure the safety of their spent fuel and waste management activities, but does not delineate standards the Parties must meet; and seeks to attain, through its Contracting Parties, a higher level of safety with respect to management of their spent nuclear fuel, disused sealed sources, and radioactive waste

  19. Comparison of potential health and safety impacts of different disposal options for defense high-level wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Smith, E.D.; Witherspoon, J.P.

    1984-01-01

    A comparative assessment has been performed of the potential long- and short-term health and safety impacts of different disposal options for defense high-level wastes. Conservative models and assumptions were used. The assessment suggests that considerations of health and safety will not be significant in choosing among disposal options, primarily because of the need to meet stringent standards in all cases. Rather, the ease and cost of assuring compliance of a particular disposal option with health and safety standards may be a more important factor. 11 references

  20. Review of computer models used for post closure safety assessment of nuclear waste repositories in the FRG

    International Nuclear Information System (INIS)

    Bogorinski, P.; Baltes, B.; Martens, K.H.

    1987-01-01

    In the FRG, disposal of nuclear wastes takes place in deep geologic formations. For longterm safety assessment of such a repository, groundwater transport provides a release scenario for the radionuclides to the biosphere. GRs reviewed a methodology that was implemented by the research group of PSE to simulate migration of radionuclides in the geosphere. The examination included the applicability of theoretical models, numerical experiments, comparison to results of diverse computer codes as well as experience from international intercomparison studies. The review concluded that the hydrological model may be applied to full extent unless density effects have to be considered whereas there are some restrictions in the use of the nuclide transport model

  1. Time depending assessment of low and intermediate radioactive waste characteristics from Cernavoda NPP

    International Nuclear Information System (INIS)

    Mateescu, S.; Pantazi, D.; Stanciu, M.

    2002-01-01

    Low and intermediate radioactive gaseous, liquid and solid waste produced at Cernavoda Nuclear Power Plant must be well known from the point of view of contained radionuclide activity, during all steps of their processing, storage and transport, to ensure the nuclear safety of radioactive waste management. As in intermediate storage stage, the waste activity changes by radioactive decay and nuclear transmutation, the evolution in time of these sources is necessary to be assessed, for the purpose of biological shielding determination at any time. On the other hand, during the transport of waste package at the repository, the external dose rates must meet the national and international requirements concerning radioactive materials transportation on public roads. In this paper, a calculation methodology for waste characterization based on external exposure rate measurement and on sample analysis results is presented. The time evolution of waste activity, as well as the corresponding shielding at different moments of management process, have been performed using MICROSHIELD-5 code. The spent resins proceeded from clean-up and purification systems and solutions from decontamination have been analyzed. The proposed methodology helps us to assess radiation protection during the handling of low and intermediate - level radioactive waste drums, ensuring safety conditions for the public and environment.(author)

  2. The long-term safety and performance analyses of the surface disposal facility for the Belgian category a waste at Dessel

    Energy Technology Data Exchange (ETDEWEB)

    Cool, Wim; Vermarien, Elise; Wacquier, William [ONDRAF/NIRAS Avenue des Arts 14, BE-1210 Bruxelles (Belgium); Perko, Janez [SCK-CEN Boeretang 200, BE-2400 Mol (Belgium)

    2013-07-01

    ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials, and its partners have developed long-term safety and performance analyses in the framework of the license application for a surface disposal facility for low level radioactive waste (category A waste) at Dessel, Belgium. This paper focusses on the methodology of the safety assessments and on key results from the application of this methodology. An overview is given (1) of the performance analyses for the containment safety function of the disposal system and (2) of the radiological impact analyses confirming that radiological impacts are below applicable reference values and constraints and leading to radiological criteria for the waste and the facility. In this discussion, multiple indicators for performance and safety are used to illustrate the multi-faceted nature of long-term performance and safety of the surface disposal. This contributes to the multiple lines of reasoning for confidence building that a positive decision to proceed to the next stage of construction is justified. (authors)

  3. Safety issues in established predisposal waste management practices

    International Nuclear Information System (INIS)

    Thomas, W.

    2000-01-01

    Radioactive wastes generated at various stages in the nuclear fuel cycle vary considerably in relation to volume, physical and chemical properties, and radioactivity. The management of these wastes prior to disposal has to be adapted to these conditions, which calls for suitable characterization and minimization, collection, interim storage and conditioning of the wastes. Experience gained over decades shows that current predisposal waste management practices are well advanced. Whereas problems related to inadequate waste management practices in the past have been encountered at several sites and need ongoing remedial actions, modern practices have good safety records. Considerable development and improvement of waste management practices have been achieved and as a consequence of delays in implementing repositories in several countries they remain important tasks. Decommissioning and dismantling of nuclear facilities also have to be taken into account. In most cases, these activities can be performed using existing technical means and practices. No significant safety concerns have been found for the long term storage of spent fuel and vitrified waste. Dry storage has reached technical maturity and appears to be attractive, especially for aged fuel. It has, however, to be stressed that long term storage is not the ultimate solution. Continued efforts to implement repositories are mandatory in order to maintain a credible and responsible strategy for waste management. (author)

  4. Health and Safety Procedures Manual for hazardous waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Thate, J.E.

    1992-09-01

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  5. Performance assessment of nuclear waste isolation systems

    International Nuclear Information System (INIS)

    Lee, W.L.

    1984-01-01

    A number of concepts have been proposed for the isolation of highly radioactive wastes, and it will be necessary to demonstrate the safety of such systems. In many countries including the U.S., the waste isolation system of choice is deep mined geologic repositories. Because of the complex nature of the multiple isolation barriers afforded by mined geologic disposal systems, and the long isolation periods involved, this demonstration can only be indirect. In recent years this indirect demonstration, mostly through mathematical modeling, is called performance assessment. Performance Assessment can be defined to mean the development, testing, and application of a series of mathematical models and computer codes which traces the movement of radionuclides from a waste isolation system to the biosphere and any resultant dose to man. In modeling such a repository system, it is often convenient to divide it into a number of subsystems, there may be several different processes that need to be modeled, individually and interactively. For instance, this waste package will probably consist of a waste form such as borosilicate glass containing the radioisotopes, a canister, an overpack material such as steel or copper, and a buffer material such as bentonite. The processes to be modeled at the waste package scale include radioisotope inventory and decay, thermal radiation, radiolysis effects, corrosion, leading and fluid flow. In tracing radionuclide transport through rock, the processes of importance are probably groundwater flow, and sorption and retardation of radionuclide movement

  6. Safety studies project on waste management. Final report. Chapters 2 and 3

    International Nuclear Information System (INIS)

    1985-01-01

    The report presents, in summary form, a mode of procedure for accident analysis in nuclear waste management facilities. New instruments for safety analysis have been developed and tested. The report describes exemplary safety analyses with the new instrumentation. The safety analyses were carried out in surface systems, i.e. reprocessing and waste treatment systems, and in underground nuclear waste storage road and rail transport of radioactive materials have been investigated. (EF) [de

  7. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) verification and validation plan. version 1.

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, Roscoe Ainsworth; Arguello, Jose Guadalupe, Jr.; Urbina, Angel; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Knupp, Patrick Michael; Wang, Yifeng; Schultz, Peter Andrew; Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); McCornack, Marjorie Turner

    2011-01-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. To meet this objective, NEAMS Waste IPSC M&S capabilities will be applied to challenging spatial domains, temporal domains, multiphysics couplings, and multiscale couplings. A strategic verification and validation (V&V) goal is to establish evidence-based metrics for the level of confidence in M&S codes and capabilities. Because it is economically impractical to apply the maximum V&V rigor to each and every M&S capability, M&S capabilities will be ranked for their impact on the performance assessments of various components of the repository systems. Those M&S capabilities with greater impact will require a greater level of confidence and a correspondingly greater investment in V&V. This report includes five major components: (1) a background summary of the NEAMS Waste IPSC to emphasize M&S challenges; (2) the conceptual foundation for verification, validation, and confidence assessment of NEAMS Waste IPSC M&S capabilities; (3) specifications for the planned verification, validation, and confidence-assessment practices; (4) specifications for the planned evidence information management system; and (5) a path forward for the incremental implementation of this V&V plan.

  8. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    2000-02-17

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  9. Criticality Safety Evaluation of Hanford Site High-Level Waste Storage Tanks

    International Nuclear Information System (INIS)

    ROGERS, C.A.

    2000-01-01

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions

  10. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    International Nuclear Information System (INIS)

    Fatell, L.B.; Woolsey, G.B.

    1993-01-01

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility's response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences

  11. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    Energy Technology Data Exchange (ETDEWEB)

    Fatell, L.B.; Woolsey, G.B.

    1993-04-15

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

  12. Performance assessment and the safety case: Lessons from recent international projects and areas for further development

    International Nuclear Information System (INIS)

    Galson, Daniel A.; Bailey, Lucy

    2014-01-01

    The European Commission (EC) PAMINA project - Performance Assessment Methodologies in Application to Guide the Development of the Safety Case - was conducted over the period 2006-2009 and brought together 27 organisations from 10 countries. PAMINA had the aim of improving and developing a common understanding of performance assessment (PA) methodologies for disposal concepts for spent fuel and other long-lived radioactive wastes in a range of geological environments. This was followed by a Nuclear Energy Agency (NEA) sponsored project on Methods for Safety Assessment of Geological Disposal Facilities for Radioactive Waste (MeSA), which was completed in 2012. This paper presents a selection of conclusions from these projects, in the context of general understanding developed on what would constitute an acceptable safety case for a geological disposal facility, and outlines areas for further development. The paper also introduces a new project on PA that is under consideration within the context of the EC Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP). (authors)

  13. Insights from the Probabilistic Safety Assessment Application to Subsurface Operations at the Preclosure Facilities

    International Nuclear Information System (INIS)

    Hwang, Mee Jeong; Jung, Jong Tae

    2009-01-01

    In this paper, we present the insights obtained through the PSA (Probabilistic Safety Assessment) application to subsurface operation at the preclosure facilities of the repository. At present, medium-low level waste repository has been constructed in Korea, and studies for disposal of high level wastes are under way. Also, safety analysis for repository operation has been performed. Thus, we performed a probabilistic safety analysis for surface operation at the preclosure facilities with PSA methodology for a nuclear power plant. Since we don't have a code to analyze the waste repository safety analysis, we used the codes, AIMS (Advanced Information Management System for PSA) and FTREX (Fault Tree Reliability Evaluation eXpert) which are developed for a nuclear power plant's PSA to develop ET (Event Tree) and FT (Fault Tree), and to quantify for an example analysis

  14. Progress report on safety research on radioactive waste management for the period April 1993 to March 1995

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, Keiichi; Muraoka, Susumu; Banba, Tsunetaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [eds.

    1996-03-01

    This report summarizes the research and development activities on radioactive waste management at the Engineered Barrier Materials Laboratory, Natural Barrier Laboratory and Environmental Geochemistry Laboratory of the Department of Environmental Safety Research during the fiscal years of 1993 and 1994 (April 1, 1993 - March 31, 1995). The topics are as follows: (1) As for waste forms and engineered barrier material, performance assessment studies were carried out on various waste forms, buffer materials and mortar. (2) In the safety evaluation study for shallow land disposal, migration behaviour of nuclides in the soil layer was studied. (3) In the safety evaluation study for geological disposal, chemical behaviour of radionuclides in water, nuclide migration in geosphere and groundwater flow system were studied. Migration of uranium series nuclides in uranium ore deposit was studied as a part of natural analogue study. (author).

  15. Progress report on safety research on radioactive waste management for the period April 1993 to March 1995

    International Nuclear Information System (INIS)

    Sekine, Keiichi; Muraoka, Susumu; Banba, Tsunetaka

    1996-03-01

    This report summarizes the research and development activities on radioactive waste management at the Engineered Barrier Materials Laboratory, Natural Barrier Laboratory and Environmental Geochemistry Laboratory of the Department of Environmental Safety Research during the fiscal years of 1993 and 1994 (April 1, 1993 - March 31, 1995). The topics are as follows: 1) As for waste forms and engineered barrier material, performance assessment studies were carried out on various waste forms, buffer materials and mortar. 2) In the safety evaluation study for shallow land disposal, migration behaviour of nuclides in the soil layer was studied. 3) In the safety evaluation study for geological disposal, chemical behaviour of radionuclides in water, nuclide migration in geosphere and groundwater flow system were studied. Migration of uranium series nuclides in uranium ore deposit was studied as a part of natural analogue study. (author)

  16. Progress report on safety research on radioactive waste management for the period April 1992 to March 1993

    International Nuclear Information System (INIS)

    Muraoka, Susumu; Senoo, Muneaki; Sekine, Keiichi

    1994-03-01

    This report summarizes the research and development activities on radioactive waste management at the Engineered Barrier Materials Laboratory, Shallow Land Migration Laboratory, Environmental Geochemistry Laboratory and Environmental Radiochemistry Laboratory of the Department of Environmental Safety Research during the fiscal year of 1992 (April 1, 1992-March 31, 1993). The topics are as follows: 1) As for waste forms and engineered barrier material, performance assessment studies were carried out on various waste forms, buffer materials and mortar. 2) In the safety evaluation study for shallow land disposal, migration behavior in the soil layer were studied. 3) In the safety evaluation study for geological disposal, chemical behavior of nuclide in water, nuclide migration and fixation in geosphere were studied. 4) Distribution of uranium and migration of uranium series nuclide in uranium ore were examined as a natural analogue study. (author)

  17. Software quality assurance procedures for radioactive waste risk assessment codes

    International Nuclear Information System (INIS)

    Hill, I.; Mayer, J.

    1990-01-01

    This support study for the evaluation of the safety of geological disposal systems is aimed at identifying the requirements for software quality assurance procedures for radioactive waste risk assessment codes, and to recommend appropriate procedures. The research covers: (i) the analysis of existing procedures and definition of requirements; (ii) a case study of the use of some existing procedures; (iii) the definition and the implementation of procedures. The report is supported by appendices that give more detail on the procedures recommended. It is intended to provide ideas on the steps that should be taken to ensure the quality of the programs used for assessment of the safety case for radioactive waste repositories, and does not represent the introduction of wholly new ideas or techniques. The emphasis throughout is on procedures that will be easily implemented, rather than on the fully rigorous procedures that are required for some application areas. The study has concentrated on measures that will increase the confidence in repository performance assessments among the wider scientific/engineering community, and the lay public

  18. Waste collection in developing countries - Tackling occupational safety and health hazards at their source

    Energy Technology Data Exchange (ETDEWEB)

    Bleck, Daniela, E-mail: bleck.daniela@baua.bund.de [Federal Institute for Occupational Safety and Health, Germany (BAuA), Friedrich Henkel Weg 1-25, 44149 Dortmund (Germany); Wettberg, Wieland, E-mail: wettberg.wieland@baua.bund.de [Federal Institute for Occupational Safety and Health, Germany (BAuA), Friedrich Henkel Weg 1-25, 44149 Dortmund (Germany)

    2012-11-15

    Waste management procedures in developing countries are associated with occupational safety and health risks. Gastro-intestinal infections, respiratory and skin diseases as well as muscular-skeletal problems and cutting injuries are commonly found among waste workers around the globe. In order to find efficient, sustainable solutions to reduce occupational risks of waste workers, a methodological risk assessment has to be performed and counteractive measures have to be developed according to an internationally acknowledged hierarchy. From a case study in Addis Ababa, Ethiopia suggestions for the transferral of collected household waste into roadside containers are given. With construction of ramps to dump collected household waste straight into roadside containers and an adaptation of pushcarts and collection procedures, the risk is tackled at the source.

  19. Hanford immobilized low-activity tank waste performance assessment

    International Nuclear Information System (INIS)

    Mann, F.M.

    1998-01-01

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  20. Hanford immobilized low-activity tank waste performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  1. The UK system for regulating the long-term safety of radioactive waste disposal

    International Nuclear Information System (INIS)

    Duncan, A.

    1997-01-01

    The general system is described for regulation of disposal of solid, long-lived radioactive wastes. The relevant Government policy is outlined, and the framework of legislation and arrangements for implementation, the associated guidance produced by regulatory bodies and the approach to assessment by regulators of a safety case for radioactive waste disposal are reported. Also, for the purposes of discussion in the Workshop, some of the practical issues are considered which are still in development in the UK in regard to regulatory methodology. (author)

  2. The International Atomic Energy Agency (IAEA) standards and recommendations on radioactive waste and transport safety

    International Nuclear Information System (INIS)

    Warnecke, E.; Rawl, R.

    1996-01-01

    The International Atomic Energy Agency (IAEA) publishes standards and recommendations on all aspects of nuclear safety in its Safety Series, which includes radioactive waste management and transport of radioactive materials. Safety Series documents may be adopted by a State into its national legal framework. Most of the States used the IAEA transport regulations (Safety Series No. 6) as a basis for their national regulation. The two highest ranking documents of the Radioactive Waste Safety Standards (RADWASS) programme, the Safety Fundamentals and the Safety Standard on the national waste management system, have been published. Both provide impetus into the waste management safety convention, a legally binding document for signatory states, which is being drafted. The already existing Convention on Nuclear Safety covers the management of radioactive waste at land-based civil nuclear power plants. (author) 1 fig., 18 refs

  3. Safety assessment of a borehole type disposal facility using the ISAM methodology

    International Nuclear Information System (INIS)

    Blerk, J.J. van; Yucel, V.; Kozak, M.W.; Moore, B.A.

    2002-01-01

    As part of the IAEA's Co-ordinated Research Project (CRP) on Improving Long-term of Safety Assessment Methodologies for Near Surface Waste Disposal Facilities (ISAM), three example cases were developed. The aim was to test the ISAM safety assessment methodology using as realistic as possible data. One of the Test Cases, the Borehole Test Case (BTC), related to a proposed future disposal option for disused sealed radioactive sources. This paper uses the various steps of the ISAM safety assessment methodology to describe the work undertaken by ISAM participants in developing the BTC and provides some general conclusions that can be drawn from the findings of their work. (author)

  4. WIPP [Waste Isolation Pilot Plant] test phase plan: Performance assessment

    International Nuclear Information System (INIS)

    1990-04-01

    The U.S. Department of Energy (DOE) is responsible for managing the disposition of transuranic (TRU) wastes resulting from nuclear weapons production activities of the United States. These wastes are currently stored nationwide at several of the DOE's waste generating/storage sites. The goal is to eliminate interim waste storage and achieve environmentally and institutionally acceptable permanent disposal of these TRU wastes. The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is being considered as a disposal facility for these TRU wastes. This document describes the first of the following two major programs planned for the Test Phase of WIPP: Performance Assessment -- determination of the long-term performance of the WIPP disposal system in accordance with the requirements of the EPA Standard; and Operations Demonstration -- evaluation of the safety and effectiveness of the DOE TRU waste management system's ability to emplace design throughput quantities of TRU waste in the WIPP underground facility. 120 refs., 19 figs., 8 tabs

  5. Development of a Code for the Long Term Radiological Safety Assessment of Radioactive Wastes from Advanced Nuclear Fuel Cycle Facilities in Republic of Korea

    International Nuclear Information System (INIS)

    Hwang, Yong Soo

    2010-01-01

    For the purpose of evaluating annual individual doses from a potential repository disposing of radioactive wastes from the operation of the prospective advanced nuclear fuel cycle facilities in Korea, the new safety assessment code based on the Goldsim has been developed. It was designed to compare the environmental impacts from many fuel cycle options such as direct disposal, wet and dry recycling. The code based on the compartment theory can be applied to assess both normal and what if scenarios

  6. Survey of systems safety analysis methods and their application to nuclear waste management systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Winegardner, W.K.; Gallucci, R.H.V.

    1981-11-01

    This report reviews system safety analysis methods and examines their application to nuclear waste management systems. The safety analysis methods examined include expert opinion, maximum credible accident approach, design basis accidents approach, hazard indices, preliminary hazards analysis, failure modes and effects analysis, fault trees, event trees, cause-consequence diagrams, G0 methodology, Markov modeling, and a general category of consequence analysis models. Previous and ongoing studies on the safety of waste management systems are discussed along with their limitations and potential improvements. The major safety methods and waste management safety related studies are surveyed. This survey provides information on what safety methods are available, what waste management safety areas have been analyzed, and what are potential areas for future study

  7. Survey of systems safety analysis methods and their application to nuclear waste management systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelto, P.J.; Winegardner, W.K.; Gallucci, R.H.V.

    1981-11-01

    This report reviews system safety analysis methods and examines their application to nuclear waste management systems. The safety analysis methods examined include expert opinion, maximum credible accident approach, design basis accidents approach, hazard indices, preliminary hazards analysis, failure modes and effects analysis, fault trees, event trees, cause-consequence diagrams, G0 methodology, Markov modeling, and a general category of consequence analysis models. Previous and ongoing studies on the safety of waste management systems are discussed along with their limitations and potential improvements. The major safety methods and waste management safety related studies are surveyed. This survey provides information on what safety methods are available, what waste management safety areas have been analyzed, and what are potential areas for future study.

  8. The Nirex safety assessment research programme for 1987/88

    International Nuclear Information System (INIS)

    Cooper, M.J.; Tasker, P.W.

    1987-10-01

    This report outlines the work of the Nirex Safety Assessment Research Programme during the period 1st April 1987 to 31st March 1988. The research programme has the specific objective of providing the information requirements of the post-emplacement radiological safety case for the disposal of low-level and intermediate-level radioactive waste in underground repositories. For convenience the programme has been divided into seven areas: physical containment, near-field radionuclide chemistry, evolution of the near-field aqueous environment, mass transfer in the geosphere, the biosphere, gas evolution and migration, and integrated studies. The near-field includes the waste, its immobilising medium, its container, the engineered structure in which the container is emplaced and the immediately adjacent geological formation disturbed by the construction of the repository. (author)

  9. Development of thermal conditioning technology for alpha-contaminated wastes: a study on leaching characteristics and long-term safety assessment of simulated waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Yong Chil [Yonsei University, Seoul (Korea); Lee, Sang Hoon; Yoo, Jong Ik; Choi, Yong Cheol [Yonsei University, Seoul (Korea)

    2001-04-01

    Radioactive wastes should be stabilized for safe management during several hundred years. To assess stability of solidified waste forms, mechanical properties and chemical durability of the waste forms should be analyzed. Chemical durability is one of the most important factors in the assessment of waste forms, which could be examined by leaching tests. Various methods in leaching test are suggested by different organizations, but a formal test method in Korea is not ready yet. Therefore, the leaching test method applicable to various constituents is necessary for the safe management of radioactive wastes In this study, leaching behavior and characteristics of components such as solidification materials, heavy metals and radioactive nuclids were analyzed for cement waste form and glassy waste form. 58 refs., 25 figs., 8 tabs. (Author)

  10. Current safety issues in the development of geological disposal of radioactive waste in France

    International Nuclear Information System (INIS)

    Raimbault, P.

    2002-01-01

    Deep geological disposal of high level and medium level long-lived waste in France is one of the three research paths defined by the law of 30th December 1991 on radioactive waste management. Research should be undertaken on: separation and transmutation of long-lived radionuclides in these waste; reversible or non reversible disposal in deep geological layers supported by investigations in underground laboratories; processes for conditioning and long term surface storage of these waste. In 2006, a global evaluation report on this research should be established by the Government and sent to the French Parliament. On this basis the Parliament should promulgate a law providing new objectives for the research and possibly presenting a framework for a deep disposal process. The French Nuclear Safety Authority has the responsibility to license the underground laboratories foreseen in the second research path and the nuclear facilities involved in the first and third research paths and make sure that existing high level and medium level long-lived waste currently produced are properly managed. It will give its advice on the safety aspects associated to the envisaged future management options. Its main concern is that results obtained in 2006 will be conclusive enough to take decisions for future orientations. Concerning the deep disposal option, under the responsibility of ANDRA (Agence Nationale pour la gestion des Dechets RAdioactifs), the construction of an underground laboratory has been authorized on the Bure site, in eastern France, and the shafts are under construction. The main issue is the level of investigations that may be performed in the host rock in order to support the feasibility study of a disposal concept on this site. Other issues are the elaboration of new safety standards to set a framework for a safety assessment of a disposal concept, the specifications for acceptance of waste packages in a future deep disposal, and relation of safety matters with

  11. Extended storage for radioactive wastes: relevant aspects related to the safety

    International Nuclear Information System (INIS)

    Castillo, Reinaldo G.; Peralta V, José L.P.; Estevez, Gema G. F.

    2013-01-01

    The safe management of radioactive waste is an issue of great relevance globally linked to the issue of the peaceful use of nuclear energy. Among the steps in the management of this waste, the safe storage is one of the most important. Given the high costs and uncertainties existing among other aspects of the variants of disposal of radioactive waste, the prolonged storage of these wastes for periods exceeding 50 years is an option that different countries more and more value. One of the fundamental problems to take into account is the safety of the stores, so in this work are evaluated different safety components associated with these facilities through a safety analysis methodology. Elements such as human intrusion, the construction site, the design of the facility, among others are identified as some of the key aspects to take into account when evaluating the safety of these types of facilities. Periods of activities planned for a long-term storage of radioactive waste exceed, in general, the useful life of existing storage facilities. This work identified new challenges to overcome in order to meet the requirements for the achievement of a safe management of radioactive waste without negative impacts on the environment and man

  12. Workshop on Regulatory Review and Safety Assessment Issues in Repository Licensing

    Energy Technology Data Exchange (ETDEWEB)

    Wilmot, Roger D. (Galson Sciences Limited (United Kingdom))

    2011-02-15

    The workshop described here was organised to address more general issues regarding regulatory review of SKB's safety assessment and overall review strategy. The objectives of the workshop were: - to learn from other programmes' experiences on planning and review of a license application for a nuclear waste repository, - to offer newly employed SSM staff an opportunity to learn more about selected safety assessment issues, and - to identify and document recommendations and ideas for SSM's further planning of the licensing review

  13. Preliminary safety evaluation for 241-C-106 waste retrieval, project W-320

    International Nuclear Information System (INIS)

    Conner, J.C.

    1994-01-01

    This document presents the Preliminary Safety Evaluation for Project W-320, Tank 241-C-106 Waste Retrieval Sluicing System (WRSS). The US DOE has been mandated to develop plans for response to safety issues associated with the waste storage tanks at the Hanford Site, and to report the progress of implementing those plans to Congress. The objectives of Project W-230 are to design, fabricate, develop, test, and operate a new retrieval system capable of removing a minimum of about 75% of the high-heat waste contained in C-106. It is anticipated that sluicing operations can remove enough waste to reduce the remaining radiogenic heat load to levels low enough to resolve the high-heat safety issue as well as allow closure of the tank safety issue

  14. Safety analysis methodologies for radioactive waste repositories in shallow ground

    International Nuclear Information System (INIS)

    1984-01-01

    The report is part of the IAEA Safety Series and is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of shallow ground radioactive waste repositories. It discusses approaches that are applicable for safety analysis of a shallow ground repository. The methodologies, analysis techniques and models described are pertinent to the task of predicting the long-term performance of a shallow ground disposal system. They may be used during the processes of selection, confirmation and licensing of new sites and disposal systems or to evaluate the long-term consequences in the post-sealing phase of existing operating or inactive sites. The analysis may point out need for remedial action, or provide information to be used in deciding on the duration of surveillance. Safety analysis both general in nature and specific to a certain repository, site or design concept, are discussed, with emphasis on deterministic and probabilistic studies

  15. Assessment by peer review of the effectiveness of a regulatory programme for radiation safety. Interim report for comment

    International Nuclear Information System (INIS)

    2002-06-01

    This document covers assessment of those aspects of a radiation protection and safety infrastructure that are implemented by the Regulatory Authority for radiation sources and practices using such sources and necessarily includes those ancillary technical services, such as dosimetry services, which directly affect the ability of the Regulatory Authority to discharge its responsibilities. The focus of the guidance in this TECDOC is on assessment of a regulatory programme intended to implement the BSS. The BSS address transportation and waste safety mainly by reference to other IAEA documents. When conducting an assessment, the Review Team members should be aware of the latest IAEA documents (or similar national documents) concerning transportation and waste safety and, if appropriate, nuclear safety, and take them into account to the extent applicable when assessing the effectiveness of the regulatory programme governing radiation protection and safety of radiation source practices in a particular State

  16. Assessment by peer review of the effectiveness of a regulatory programme for radiation safety. Interim report for comment

    International Nuclear Information System (INIS)

    2001-05-01

    This document covers assessment of those aspects of a radiation protection and safety infrastructure that are implemented by the Regulatory Authority for radiation sources and practices using such sources and necessarily includes those ancillary technical services, such as dosimetry services, which directly affect the ability of the Regulatory Authority to discharge its responsibilities. The focus of the guidance in this TECDOC is on assessment of a regulatory programme intended to implement the BSS. The BSS address transportation and waste safety mainly by reference to other IAEA documents. When conducting an assessment, the Review Team members should be aware of the latest IAEA documents (or similar national documents) concerning transportation and waste safety and, if appropriate, nuclear safety, and take them into account to the extent applicable when assessing the effectiveness of the regulatory programme governing radiation protection and safety of radiation source practices in a particular State

  17. Waste Tank Organic Safety Project organic concentration mechanisms task. FY 1994 progress report

    International Nuclear Information System (INIS)

    Gerber, M.A.

    1994-09-01

    The Pacific Northwest Laboratory (PNL), Waste Tank Organic Safety Project is conducting research to support Westinghouse Hanford Company's (WHC) Waste Tank Safety Program, sponsored by the U.S. Department of Energy's Tank Farm Project Office. The goal of PNL's program is to provide a scientific basis for analyzing organics in Hanford's underground storage tanks (USTs) and for determining whether they are at concentrations that pose a potentially unsafe condition. Part of this research is directed toward determining what organic concentrations are safe by conducting research on organic aging mechanisms and waste energetics to assess the conditions necessary to produce an uncontrolled energy release in tanks due to reactions between the organics and the nitrate and nitrate salts in the tank wastes. The objective of the Organic Concentration Mechanisms Task is to assess the degree of localized enrichment of organics to be expected in the USTs due to concentration mechanisms. This report describes the progress of research conducted in FY 1994 on two concentration mechanisms of interest to the tank safety project: (1) permeation of a separate organic liquid phase into the interstitial spaces of the tank solids during the draining of free liquid from the tanks; and (2) concentration of organics on the surfaces of the solids due to adsorption. Three experiments were conducted to investigate permeation of air and solvent into a sludge simulant that is representative of single-shell tank sludge. The permeation behavior of air and solvent into the sludge simulant can be explained by the properties of the fluid pairs (air/supernate and solvent supernate) and the sludge. One important fluid property is the interfacial tension between the supernate and either the solvent or air. In general, the greater the interfacial tension between two fluids, the more difficult it will be for the air or solvent to displace the supernate during dewatering of the sludge

  18. Assessment of the long-term safety of repositories. Scientific basis

    International Nuclear Information System (INIS)

    Noseck, Ulrich; Becker, Dirk; Fahrenholz, Christine

    2008-12-01

    The project contributed to increase the scientific knowledge on the long-term safety assessment and the safety cases of a radioactive waste repository. International guidelines and more recent safety cases from other countries were evaluated. The feasibility study of the three safety indicators ''individual dose rate'', ''radiotoxicity concentration in the biosphere water'' and ''radiotoxicity flux from the geosphere'' showed that due to the independently derived corresponding reference values these indicators describe three different safety statements. The combination of the three values can give a stronger argument for the safety of the repository system. Another important methodological aspect of the safety cases is the definition and selection of scenarios, one of these the human intrusion scenario. Various human intrusion scenarios are considered in the different nations, which differ significantly with respect to type and time scale, the exposition type and exposition pathway. Further progress has been achieved in how to treat human intrusion scenarios in a German post-closure safety case. Another port of the project dealt with the impact of specific geochemical processes on the long-term safety of the repository. The impact of climate changes on the long-term safety of a radioactive waste repository in rock salt was investigated with respect to processes in the overburden and the biosphere where highest impact is expected. Sofa simplified models and only discrete climate estates have been considered

  19. Safety Aspects of Radioactive Waste Management in Different Nuclear Fuel Cycle Policies, a Comparative Study

    International Nuclear Information System (INIS)

    Gad Allah, A.A.

    2009-01-01

    With the increasing demand of energy worldwide, and due to the depletion of conventional natural energy resources, energy policies in many countries have been devoted to nuclear energy option. On the other hand, adopting a safe and reliable nuclear fuel cycle concept guarantees future nuclear energy sustain ability is a vital request from environmental and economic point of views. The safety aspects of radioactive waste management in the nuclear fuel cycle is a topic of great importance relevant to public acceptance of nuclear energy and the development of nuclear technology. As a part of nuclear fuel cycle safety evaluation studies in the department of nuclear fuel cycle safety, National Center for Nuclear Safety and Radiation Control (NCNSRC), this study evaluates the radioactive waste management policies and radiological safety aspects of three different nuclear fuel cycle policies. The once-through fuel cycle (OT- fuel cycle) or the direct spent fuel disposal concept for both pressurized light water reactor ( PWR) and pressurized heavy water reactor (PHWR or CANDU) systems and the s elf-generated o r recycling fuel cycle concept in PWR have been considered in the assessment. The environmental radiological safety aspects of different nuclear fuel cycle options have been evaluated and discussed throughout the estimation of radioactive waste generated from spent fuel from these fuel cycle options. The decay heat stored in the spent fuel was estimated and a comparative safety study between the three fuel cycle policies has been implemented

  20. Regulatory safety aspects of nuclear waste management operations in India

    International Nuclear Information System (INIS)

    Sundararajan, A.R.

    2000-01-01

    The Department of Atomic Energy in India as part of its programme to harness the nuclear energy for generation of nuclear power has been operating a whole range of nuclear fuel cycle facilities including waste management plants for more than four decades. The waste management plants include three high level waste immobilisation plants, one in operation, one under commissioning and one more under construction. Atomic Energy Regulatory Board is mandated to review and authorise from the safety angle the siting, the design, the construction and the operation of the waste management plants. The regulatory procedures, which involve multi-tier review adopted for ensuring the safety of these facilities, are described in this paper. (author)

  1. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included.

  2. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    International Nuclear Information System (INIS)

    1994-09-01

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included

  3. Discussions about safety criteria and guidelines for radioactive waste management.

    Science.gov (United States)

    Yamamoto, Masafumi

    2011-07-01

    In Japan, the clearance levels for uranium-bearing waste have been established by the Nuclear Safety Commission (NSC). The criteria for uranium-bearing waste disposal are also necessary; however, the NSC has not concluded the discussion on this subject. Meanwhile, the General Administrative Group of the Radiation Council has concluded the revision of its former recommendation 'Regulatory exemption dose for radioactive solid waste disposal', the dose criteria after the institutional control period for a repository. The Standardization Committee on Radiation Protection in the Japan Health Physics Society (The Committee) also has developed the relevant safety criteria and guidelines for existing exposure situations, which are potentially applicable to uranium-bearing waste disposal. A new working group established by The Committee was initially aimed at developing criteria and guidelines specifically for uranium-bearing waste disposal; however, the aim has been shifted to broader criteria applicable to any radioactive wastes.

  4. Geological disposal of nuclear waste: II. From laboratory data to the safety analysis – Addressing societal concerns

    International Nuclear Information System (INIS)

    Grambow, Bernd; Bretesché, Sophie

    2014-01-01

    Highlights: • Models for repository safety can only partly be validated. • Long term risks need to be translated in the context of societal temporalities. • Social sciences need to be more strongly involved into safety assessment. - Abstract: After more than 30 years of international research and development, there is a broad technical consensus that geologic disposal of highly-radioactive waste will provide for the safety of humankind and the environment, now, and far into the future. Safety analyses have demonstrated that the risk, as measured by exposure to radiation, will be of little consequence. Still, there is not yet an operating geologic repository for highly-radioactive waste, and there remains substantial public concern about the long-term safety of geologic disposal. In these two linked papers, we argue for a stronger connection between the scientific data (paper I, Grambow et al., 2014) and the safety analysis, particularly in the context of societal expectations (paper II). In this paper (II), we assess the meaning of the technical results and derived models (paper I) for the determination of the long-term safety of a repository. We consider issues of model validity and their credibility in the context of a much broader historical, epistemological and societal context. Safety analysis is treated in its social and temporal dimensions. This perspective provides new insights into the societal dimension of scenarios and risk analysis. Surprisingly, there is certainly no direct link between increased scientific understanding and a public position for or against different strategies of nuclear waste disposal. This is not due to the public being poorly informed, but rather due to cultural cognition of expertise and historical and cultural perception of hazards to regions selected to host a geologic repository. The societal and cultural dimension does not diminish the role of science, as scientific results become even more important in distinguishing

  5. Long-term storage of radioactive waste: IAEA perspectives on safety and sustainability

    International Nuclear Information System (INIS)

    Rowat, J.H.; Louvat, D.; Metcalf, P.E.

    2006-01-01

    As the amounts of radioactive waste in surface storage have increased, concern has grown over the safety and sustainability of storage in the long term. In response to increasing concerns, the International Atomic Energy Agency (IAEA) has included an action to address the safety implications of the long-term storage (LTS) of radioactive waste in its action plan for waste safety; the action plan was endorsed by the IAEA's Member States in 2001. In 2003, the IAEA published a position paper on the safety and sustainability of LTS as part fulfilment of the action in question. A key theme of the position paper is the contrast of safety and sustainability implications of LTS with those of disposal. The present paper provides a summary of the position paper, describes current IAEA activities that deal with the subject of LTS, and discusses findings from the 2004 Cordoba symposium on disposal of low activity radioactive waste that pertain to LTS. (author)

  6. Improvement of safety approach for accident during operation of LILW disposal facility: Application for operational safety assessment of the near-surface LILW disposal facility in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Joo; Kim, Min Seong; Park, Jin Beak [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2017-06-15

    To evaluate radiological impact from the operation of a low- and intermediate-level radioactive waste disposal facility, a logical presentation and explanation of expected accidental scenarios is essential to the stakeholders of the disposal facility. The logical assessment platform and procedure, including analysis of the safety function of disposal components, operational hazard analysis, operational risk analysis, and preparedness of remedial measures for operational safety, are improved in this study. In the operational risk analysis, both design measures and management measures are suggested to make it possible to connect among design, operation, and safety assessment within the same assessment platform. For the preparedness of logical assessment procedure, classifcation logic of an operational accident is suggested based on the probability of occurrence and consequences of assessment results. The improved assessment platform and procedure are applied to an operational accident analysis of the Korean low- and intermediate-level radioactive waste disposal facility and partly presented in this paper.

  7. Improvement of safety approach for accident during operation of LILW disposal facility: Application for operational safety assessment of the near-surface LILW disposal facility in Korea

    International Nuclear Information System (INIS)

    Kim, Hyun Joo; Kim, Min Seong; Park, Jin Beak

    2017-01-01

    To evaluate radiological impact from the operation of a low- and intermediate-level radioactive waste disposal facility, a logical presentation and explanation of expected accidental scenarios is essential to the stakeholders of the disposal facility. The logical assessment platform and procedure, including analysis of the safety function of disposal components, operational hazard analysis, operational risk analysis, and preparedness of remedial measures for operational safety, are improved in this study. In the operational risk analysis, both design measures and management measures are suggested to make it possible to connect among design, operation, and safety assessment within the same assessment platform. For the preparedness of logical assessment procedure, classifcation logic of an operational accident is suggested based on the probability of occurrence and consequences of assessment results. The improved assessment platform and procedure are applied to an operational accident analysis of the Korean low- and intermediate-level radioactive waste disposal facility and partly presented in this paper

  8. Waste minimization/pollution prevention at R ampersand D facilities: Implementing the SNL/NM Process Waste Assessment Program

    International Nuclear Information System (INIS)

    Kjeldgaard, E.A.; Stermer, D.L.; Saloio, J.H. Jr.; Lorton, G.A.

    1993-01-01

    The Sandia National Laboratories, New Mexico (SNL/NM) Process Waste Assessment (PWA) program began formally on November 2, 1992. This program represents the first laboratory-wide attempt to explicitly identify and characterize SNL/NM's waste generating processes for waste minimization purposes. This paper describes the major elements of the SNL/NM PWA program, the underlying philosophy for designing a PWA program at a highly diverse laboratory setting such as SNL/NM, and the experiences and insights gained from five months of implementing this living program. Specifically, the SNL/NM PWA program consists of four major, interrelated phases: (1) Process Definition, (2) Process Characterization, (3) Waste Minimization Opportunity Assessment, and (4) Project Evaluation, Selection, Implementation, and Tracking. This phased approach was developed to Provide a flexible, yet appropriate, level of detail to the multitude of different ''processes'' at SNL/NM. Using a staff infrastructure of approximately 60 Waste Minimization Network Representatives (MinNet Reps) and consulting support, the SNL/NM PWA program has become the linchpin of even more progressive and proactive environmental, safety, and health (ES ampersand H) initiatives such as: (1) cradle-to-grove material/waste tracking, (2) centralized ES ampersand H reporting, and (3) detailed baselining and tracking for measuring multi-media waste reduction goals. Specific examples from the SNL/NM PWA program are provided, including the results from Process Definition, Process Characterization, and Waste Minimization Opportunity Assessments performed for a typical SNL/NM process

  9. Environmental safety evaluation in test sea disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    1979-01-01

    The study results on the environmental safety in the test sea disposal of low-level wastes by Subcommittee on Radioactive Waste Safety Technology in Nuclear Safety Commission are given in connection with the test disposal of radioactive wastes into sea reported by the Nuclear Safety Bureau. The Subcommittee concludes that the effect of the test disposal of radioactive wastes into sea on the environment is extremely small. The contents are as follows. The full text of the report; attached data, (1) prediction of the concentrations of radioactive nuclides in sea, (2) calculation of the concentrations of radioactive nuclides in marine life with biological paths, and (3) estimation of exposure dose in general people; references (1) radiation exposure of the personnel engaged in sea disposal, (2) the effect of a sea disaster during ocean transport. (J.P.N.)

  10. Methodology of safety evaluation about land disposal of low level radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki

    1986-01-01

    Accompanying the progress of the construction project of low level radioactive waste storage facilities in Aomori Prefecture, the full scale land disposal of low level radioactive wastes shows its symptom also in Japan. In this report, the scientific methodology to explain the safety about the land disposal of low level radioactive wastes is discussed. The land disposal of general wastes by shallow burying has already had sufficient results. In the case of low level radioactive wastes, also the land disposal by shallow burying is considered. Low level radioactive wastes can be regarded as one form of industrial wastes, as there are many common parts in the scientific and theoretical base of the safety. Attention is paid most to the contamination of ground water. Low level radioactive wastes are solid wastes, accordingly the degree of contamination should be less. The space in which ground water existes, the phenomena of ground water movement, the phenomena of ground water dispersion and Fick's law, the adsorption effect of strata, and the evaluation of source term are explained. These are the method to analyze the degree of contamination from safety evaluation viewpoint. (Kako, I.)

  11. An approach for acquiring data for description of diffusion in safety assessment of radioactive waste repositories

    International Nuclear Information System (INIS)

    Vokal, A.; Vopalka, D.; Vecernik, P.; Institute of Chemical Technology in Prague, Prague

    2010-01-01

    Repositories for radioactive wastes are sited in the environment with very low permeability. One of the most important processes leading to the release of radionuclides to the environment is therefore diffusion of radionuclides in both natural and engineered barriers. Data for its description are crucial for the results of safety assessment of these repositories. They are obtained usually by comparison of the results of laboratory diffusion experiments with analytical and/or numerical solution of the diffusion equation with specified initial and boundary conditions. Results of the through-diffusion experiments are obviously evaluated by the 'time-lag' method that needs for most of sorbing species unfortunately very long time of the experiment duration. In this paper a modified approach is proposed for the evaluation of diffusion data for safety assessment, which decreases the influence of propagation uncertainties using incorrect data and reduces time for acquiring data for safety assessment. This approach consist in the following steps: (i) experimental measurement of material diffusion parameters under various conditions using non-sorbing tritiated water or chlorine for which it is easy to reach conditions under which the 'time-lag' method of evaluation of the result of the through-diffusion experiment is applicable - this step provides well established diffusion characteristics of materials for neutral species and anions, then (ii) to evaluate sorption isotherms for sorbing radionuclides from batch experiments under conditions corresponding to composition of material pore water, (iii) to assess the values of effective and apparent diffusion coefficients for sorbing radionuclides from well-defined diffusion coefficients of species in free water and (iv) to verify the obtained results using relatively short-term diffusion experiments with sorbing radionuclides, which will be evaluated using the time dependent decrease of the concentration in the input reservoir of

  12. Tank 241-C-106 past-practice sluicing waste retrieval, Hanford Site, Richland, Washington. Environmental Assessment

    International Nuclear Information System (INIS)

    1995-02-01

    The US Department of Energy (DOE) needs to take action to eliminate safety concerns with storage of the high-heat waste in Tank 241-C-106 (Tank C-106), and demonstrate a tank waste retrieval technology. This Environmental Assessment (EA) was prepared to analyze the potential impacts associated with the proposed action, past-practice sluicing of Tank C-106, an underground single-shell tank (SST). Past-practice sluicing is defined as the mode of waste retrieval used extensively in the past at the Hanford Site on the large underground waste tanks, and involves introducing a high-volume, low-pressure stream of liquid to mobilize sludge waste prior to pumping. It is proposed to retrieve the waste from Tank C-106 because this waste is classified not only as transuranic and high-level, but also as high-heat, which is caused by the radioactive decay of strontium. This waste characteristic has led DOE to place Tank C-106 on the safety ''Watchlist.''

  13. Assessment of microwave-based clinical waste decontamination unit.

    Science.gov (United States)

    Hoffman, P N; Hanley, M J

    1994-12-01

    A clinical waste decontamination unit that used microwave-generated heat was assessed for operator safety and efficacy. Tests with loads artificially contaminated with aerosol-forming particles showed that no particles were detected outside the machine provided the seals and covers were correctly seated. Thermometric measurement of a self-generated steam decontamination cycle was used to determine the parameters needed to ensure heat disinfection of the waste reception hopper, prior to entry for maintenance or repair. Bacterial and thermometric test pieces were passed through the machine within a full load of clinical waste. These test pieces, designed to represent a worst case situation, were enclosed in aluminium foil to shield them from direct microwave energy. None of the 100 bacterial test pieces yielded growth on culture and all 100 thermal test pieces achieved temperatures in excess of 99 degrees C during their passage through the decontamination unit. It was concluded that this method may be used to render safe the bulk of of ward-generated clinical waste.

  14. Waste Tank Organic Safety Project: Analysis of liquid samples from Hanford waste tank 241-C-103

    International Nuclear Information System (INIS)

    Pool, K.H.; Bean, R.M.

    1994-03-01

    A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unreviewed Safety Question concerning the potential for a floating organic layer in Hanford waste tank 241-C-103 to sustain a pool fire. The analysis program was the result of a Data Quality Objectives exercise conducted jointly with staff from Westinghouse Hanford Company and Pacific Northwest Laboratory (PNL). The organic layer has been analyzed for flash point, organic composition including volatile organics, inorganic anions and cations, radionuclides, and other physical and chemical parameters needed for a safety assessment leading to the resolution of the Unreviewed Safety Question. The aqueous layer underlying the floating organic material was also analyzed for inorganic, organic, and radionuclide composition, as well as other physical and chemical properties. This work was conducted to PNL Quality Assurance impact level III standards (Good Laboratory Practices)

  15. Development of risk assessment methodology applicable to radioactive waste isolation

    International Nuclear Information System (INIS)

    Campbell, J.E.; McGrath, P.E.; Cullingford, M.C.

    1978-01-01

    The risk from radioactive waste disposal in a deep geologic formation has not yet been completely assessed. A complete assessment should include credible estimates of the likelihood that radioactive materials would escape the repository and enter the human environment, and the magnitude of the resultant consequences in terms of human health effects. In addition, such an assessment should identify the dominant contributors to risk and, to the extent possible, quantify the uncertainties in risk estimates. A complete risk assessment may not be possible because of our limited knowledge of various aspects of geology and hydrogeology important to the long-term safety of a radioactive waste repository. The results of past analyses are not entirely consistent, perhaps as a direct result of the limited knowledge of the phenomena involved. It may, therefore, seem premature to attempt a rigorous risk analysis of radioactive waste disposal in deep, geologic media at the present time. However, the value of such analyses lies more in the insight and information they provide than in their prediction of absolute levels of risk

  16. Waste collection in developing countries – Tackling occupational safety and health hazards at their source

    International Nuclear Information System (INIS)

    Bleck, Daniela; Wettberg, Wieland

    2012-01-01

    Waste management procedures in developing countries are associated with occupational safety and health risks. Gastro-intestinal infections, respiratory and skin diseases as well as muscular-skeletal problems and cutting injuries are commonly found among waste workers around the globe. In order to find efficient, sustainable solutions to reduce occupational risks of waste workers, a methodological risk assessment has to be performed and counteractive measures have to be developed according to an internationally acknowledged hierarchy. From a case study in Addis Ababa, Ethiopia suggestions for the transferral of collected household waste into roadside containers are given. With construction of ramps to dump collected household waste straight into roadside containers and an adaptation of pushcarts and collection procedures, the risk is tackled at the source.

  17. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter Andrew

    2011-12-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  18. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC)

    International Nuclear Information System (INIS)

    Schultz, Peter Andrew

    2011-01-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M and S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V and V) is required throughout the system to establish evidence-based metrics for the level of confidence in M and S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V and V challenge at the subcontinuum scale, an approach to incorporate V and V concepts into subcontinuum scale modeling and simulation (M and S), and a plan to incrementally incorporate effective V and V into subcontinuum scale M and S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  19. Environmental Change in Post-closure Safety Assessment of Solid Radioactive Waste Repositories. Report of Working Group 3 Reference Models for Waste Disposal of EMRAS II Topical Heading Reference Approaches for Human Dose Assessment. Environmental Modelling for Radiation Safety (EMRAS II) Programme

    International Nuclear Information System (INIS)

    2016-08-01

    Environmental assessment models are used for evaluating the radiological impact of actual and potential releases of radionuclides to the environment. They are essential tools for use in the regulatory control of routine discharges to the environment and also in planning measures to be taken in the event of accidental releases. They are also used for predicting the impact of releases which may occur far into the future, for example, from underground radioactive waste repositories. It is important to verify, to the extent possible, the reliability of the predictions of such models by a comparison with measured values in the environment or with predictions of other models. The IAEA has been organizing programmes of international model testing since the 1980s. These programmes have contributed to a general improvement in models, in the transfer of data and in the capabilities of modellers in Member States. IAEA publications on this subject over the past three decades demonstrate the comprehensive nature of the programmes and record the associated advances which have been made. From 2009 to 2011, the IAEA organized a programme entitled Environmental Modelling for Radiation Safety (EMRAS II), which concentrated on the improvement of environmental transfer models and the development of reference approaches to estimate the radiological impacts on humans, as well as on flora and fauna, arising from radionuclides in the environment. Different aspects were addressed by nine working groups covering three themes: reference approaches for human dose assessment, reference approaches for biota dose assessment and approaches for assessing emergency situations. This publication describes the work of the Reference Models for Waste Disposal Working Group

  20. Environmental management assessment of the Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico

    International Nuclear Information System (INIS)

    1993-07-01

    This document contains the results of the Environmental Management Assessment of the Waste Isolation Pilot Plant (WIPP). This Assessment was conducted by EH-24 from July 19 through July 30, 1993 to advise the Secretary of Energy of the adequacy of management systems established at WIPP to ensure the protection of the environment and compliance with Federal, state, and DOE environmental requirements. The mission of WIPP is to demonstrate the safe disposal of transuranic (TRU) waste. During this assessment, activities and records were reviewed and interviews were conducted with personnel from the management and operating contractors. This assessment revealed that WIPP's environmental safety and health programs are satisfactory, and that all levels of the Waste Isolation Division (WID) management and staff consistently exhibit a high level of commitment to achieve environmental excellence

  1. Achievements and Perspectives of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

    International Nuclear Information System (INIS)

    Louvat, D.; Lacoste, A.C.

    2006-01-01

    The Joint Convention on the Safety of Spent Fuel management and on the Safety of Radioactive Waste Management is the first legal instrument to directly address the safety of spent fuel and radioactive waste management on a global scale. The Joint Convention entered into force in 2001. This paper describes its process and its main achievements to date. The perspectives to establish of a Global Waste Safety Regime based on the Joint Convention are also discussed. (authors)

  2. Waste minimization assessment procedure

    International Nuclear Information System (INIS)

    Kellythorne, L.L.

    1993-01-01

    Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative

  3. The IAEA safety standards for radiation, waste and nuclear safety

    International Nuclear Information System (INIS)

    Gonzalez, Abel J.

    1997-01-01

    This paper presents a brief description of the standards for radiation, waste and nuclear safety established by the International Atomic Energy Agency (IAEA). It provides a historical overview of their development and also summarizes the standards' current preparation and review process. The final paragraphs offer an outlook on future developments. (author)

  4. Implications of safety requirements for the treatment of THMC processes in geological disposal systems for radioactive waste

    Directory of Open Access Journals (Sweden)

    Frédéric Bernier

    2017-06-01

    Full Text Available The mission of nuclear safety authorities in national radioactive waste disposal programmes is to ensure that people and the environment are protected against the hazards of ionising radiations emitted by the waste. It implies the establishment of safety requirements and the oversight of the activities of the waste management organisation in charge of implementing the programme. In Belgium, the safety requirements for geological disposal rest on the following principles: defence-in-depth, demonstrability and the radiation protection principles elaborated by the International Commission on Radiological Protection (ICRP. Applying these principles requires notably an appropriate identification and characterisation of the processes upon which the safety functions fulfilled by the disposal system rely and of the processes that may affect the system performance. Therefore, research and development (R&D on safety-relevant thermo-hydro-mechanical-chemical (THMC issues is important to build confidence in the safety assessment. This paper points out the key THMC processes that might influence radionuclide transport in a disposal system and its surrounding environment, considering the dynamic nature of these processes. Their nature and significance are expected to change according to prevailing internal and external conditions, which evolve from the repository construction phase to the whole heating–cooling cycle of decaying waste after closure. As these processes have a potential impact on safety, it is essential to identify and to understand them properly when developing a disposal concept to ensure compliance with relevant safety requirements. In particular, the investigation of THMC processes is needed to manage uncertainties. This includes the identification and characterisation of uncertainties as well as for the understanding of their safety-relevance. R&D may also be necessary to reduce uncertainties of which the magnitude does not allow

  5. Role of waste packages in the safety of a high level waste repository in a deep geological formation

    International Nuclear Information System (INIS)

    Bretheau, F.; Lewi, J.

    1990-06-01

    The safety of a radioactive waste disposal facility lays on the three following barriers placed between the radioactive materials and the biosphere: the waste package; the engineered barriers; the geological barrier. The function assigned to each of these barriers in the performance assessment is an option taken by the organization responsible for waste disposal management (ANDRA in France), which must show that: expected performances of each barrier (confinement ability, life-time, etc.) are at least equal to those required to fulfill the assigned function; radiation protection requirements are met in all situations considered as credible, whether they be the normal situation or random event situations. The French waste management strategy is based upon two types of disposal depending on the nature and activity of waste packages: - surface disposal intended for low and medium level wastes having half-lives of about 30 years or less and alpha activity less than 3.7 MBq/kg (0.1 Ci/t), for individual packages and less than 0.37 MBq/kg (0.01 Ci/t) in the average. Deep geological disposal intended for TRU and high level wastes. The conditions of acceptance of packages in a surface disposal site are subject to the two fundamental safety rules no. I.2 and III.2.e. The present paper is only dealing with deep geological disposal. For deep geological repositories, three stages are involved: stage preceding definitive disposal (intermediate storage, transportation, handling, setting up in the disposal cavities); stage subsequent to definitive sealing of the disposal cavities but prior to the end of operation of the repository; stage subsequent to closure of the repository. The role of the geological barrier has been determined as the essential part of long term radioactivity confinement, by a working group, set up by the French safety authorities. Essential technical criteria relating to the choice of a site so defined by this group, are the following: very low permeability

  6. Parametric Criticality Safety Calculations for Arrays of TRU Waste Containers

    Energy Technology Data Exchange (ETDEWEB)

    Gough, Sean T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-26

    The Nuclear Criticality Safety Division (NCSD) has performed criticality safety calculations for finite and infinite arrays of transuranic (TRU) waste containers. The results of these analyses may be applied in any technical area onsite (e.g., TA-54, TA-55, etc.), as long as the assumptions herein are met. These calculations are designed to update the existing reference calculations for waste arrays documented in Reference 1, in order to meet current guidance on calculational methodology.

  7. Significance of actinide chemistry for the long-term safety of waste disposal

    International Nuclear Information System (INIS)

    Kim, Jae Il

    2006-01-01

    A geochemical approach to the long-term safety of waste disposal is discussed in connection with the significance of actinides, which shall deliver the major radioactivity inventory subsequent to the relatively short-term decay of fission products. Every power reactor generates transuranic (TRU) elements: plutonium and minor actinides (Np, Am, Cm), which consist chiefly of long-lived nuclides emitting alpha radiation. The amount of TRU actinides generated in a fuel life period is found to be relatively small (about 1 wt% or less in spent fuel) but their radioactivity persists many hundred thousands years. Geological confinement of waste containing TRU actinides demands, as a result, fundamental knowledge on the geochemical behavior of actinides in the repository environment for a long period of time. Appraisal of the scientific progress in this subject area is the main objective of the present paper. Following the introductory discussion on natural radioactivities, the nuclear fuel cycle is briefly brought up with reference to actinide generation and waste disposal. As the long-term disposal safety concerns inevitably with actinides, the significance of the aquatic actinide chemistry is summarized in two parts: the fundamental properties relevant to their aquatic behavior and the geochemical reactions in nanoscopic scale. The constrained space of writing allows discussion on some examples only, for which topics of the primary concern are selected, e.g. apparent solubility and colloid generation, colloid-facilitated migration, notable speciation of such processes, etc. Discussion is summed up to end with how to make a geochemical approach available for the long-term disposal safety of nuclear waste or for the Performance Assessment (PA) as known generally

  8. Preliminary safety analysis of the Baita Bihor radioactive waste repository, Romania

    International Nuclear Information System (INIS)

    Little, Richard; Bond, Alex; Watson, Sarah; Dragolici, Felicia; Matyasi, Ludovic; Matyasi, Sandor; Naum, Mihaela; Niculae, Ortenzia; Thorne, Mike

    2007-01-01

    A project funded under the European Commission's Phare Programme 2002 has undertaken an in-depth analysis of the operational and post-closure safety of the Baita Bihor repository. The repository has accepted low- and some intermediate-level radioactive waste from industry, medical establishments and research activities since 1985 and the current estimate is that disposals might continue for around another 20 to 35 years. The analysis of the operational and post-closure safety of the Baita Bihor repository was carried out in two iterations, with the second iteration resulting in reduced uncertainties, largely as a result taking into account new information on the hydrology and hydrogeology of the area, collected as part of the project. Impacts were evaluated for the maximum potential inventory that might be available for disposal to Baita Bihor for a number of operational and postclosure scenarios and associated conceptual models. The results showed that calculated impacts were below the relevant regulatory criteria. In light of the assessment, a number of recommendations relating to repository operation, optimisation of repository engineering and waste disposals, and environmental monitoring were made. (authors)

  9. Conceptualization and software development of a simulation environment for probalistic safety assessment of radioactive waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Ghofrani, Javad

    2016-05-26

    Uncertainty and sensitivity analysis of complex simulation models are prominent issues, both in scientific research and education. ReSUS (Repository Simulation, Uncertainty propagation and Sensitivity analysis) is an integrated platform to perform such analysis with numerical models that simulate the THMC (Thermal Hydraulical Mechanical and Chemical) coupled processes via different programs, in particular in the context of safety assessments for radioactive waste repositories. This thesis presents the idea behind the software platform ReSUS and its working mechanisms. Apart from the idea and the working mechanisms, the thesis describes applications related to the safety assessment of radioactive waste disposal systems. In this thesis, previous simulation tools (including the preceding version of ReSUS) are analyzed in order to provide a comprehensive view of the state of the art. In comparison to this state, a more sophisticated software tool is developed here, which provides features which are not offered by previous simulation tools. To achieve this objective, the software platform ReSUS provides a framework for handling probabilistic data uncertainties using deterministic external simulation tools, thus enhancing uncertainty and sensitivity analysis. This platform performs probabilistic simulations of various models, in particular THMC coupled processes, using stand-alone deterministic simulation software tools. The complete software development process of the ReSUS Platform is discussed in this thesis. ReSUS components are developed as libraries, which are capable of being linked to other code implementations. In addition, ASCII template files are used as means for uncertainty propagation into the input files of deterministic simulation tools. The embedded input sampler and analysis tools allow for sensitivity analysis in several kinds of simulation designs. The novelty of the ReSUS platform consists in the flexibility to assign external stand-alone software

  10. Conceptualization and software development of a simulation environment for probalistic safety assessment of radioactive waste repositories

    International Nuclear Information System (INIS)

    Ghofrani, Javad

    2016-01-01

    Uncertainty and sensitivity analysis of complex simulation models are prominent issues, both in scientific research and education. ReSUS (Repository Simulation, Uncertainty propagation and Sensitivity analysis) is an integrated platform to perform such analysis with numerical models that simulate the THMC (Thermal Hydraulical Mechanical and Chemical) coupled processes via different programs, in particular in the context of safety assessments for radioactive waste repositories. This thesis presents the idea behind the software platform ReSUS and its working mechanisms. Apart from the idea and the working mechanisms, the thesis describes applications related to the safety assessment of radioactive waste disposal systems. In this thesis, previous simulation tools (including the preceding version of ReSUS) are analyzed in order to provide a comprehensive view of the state of the art. In comparison to this state, a more sophisticated software tool is developed here, which provides features which are not offered by previous simulation tools. To achieve this objective, the software platform ReSUS provides a framework for handling probabilistic data uncertainties using deterministic external simulation tools, thus enhancing uncertainty and sensitivity analysis. This platform performs probabilistic simulations of various models, in particular THMC coupled processes, using stand-alone deterministic simulation software tools. The complete software development process of the ReSUS Platform is discussed in this thesis. ReSUS components are developed as libraries, which are capable of being linked to other code implementations. In addition, ASCII template files are used as means for uncertainty propagation into the input files of deterministic simulation tools. The embedded input sampler and analysis tools allow for sensitivity analysis in several kinds of simulation designs. The novelty of the ReSUS platform consists in the flexibility to assign external stand-alone software

  11. Methodology for safety assessment of near-surface radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Mateeva, M.

    1998-01-01

    The objective of the work is to present the conceptual model of the methodology of safety assessment of near-surface radioactive disposal facilities. The widely used mathematical models and approaches are presented. The emphasis is given on the mathematical models and approaches, which are applicable for the conditions in our country. The different transport models for analysis and safety assessment of migration processes are presented. The parallel between the Mixing-Cell Cascade model and model of Finite-Differences is made. In the methodology the basic physical and chemical processes and events, concerning mathematical modelling of the flow and the transport of radionuclides from the Near Field to Far Field and Biosphere are analyzed. Suitable computer codes corresponding to the ideology and appropriate for implementing of the methodology are shown

  12. Topical issues in nuclear, radiation and radioactive waste safety. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The IAEA International Conference on Topical Issues in Nuclear, Radiation and Radioactive Waste Safety was held in Vienna, Austria, 30 August - 4 September 1998 with the objective to foster the exchange of information on topical issues in nuclear, radiation and radioactive waste safety, with the aim of consolidating an international consensus on: the present status of these issues; priorities for future work; and needs for strengthening international co-operation, including recommendations for the IAEA`s future activities. The document includes 43 papers presented at the Conference dealing with the following topical issues: Safety Management; Backfitting, Upgrading and Modernization of NPPs; Regulatory Strategies; Occupational Radiation Protection: Trends and Developments; Situations of Chronic Exposure to Residual Radioactive Materials: Decommissioning and Rehabilitation and Reclamation of Land; Radiation Safety in the Far Future: The Issue of Long Term Waste Disposal. A separate abstract and indexing were provided for each paper. Refs, figs, tabs

  13. Topical issues in nuclear, radiation and radioactive waste safety. Contributed papers

    International Nuclear Information System (INIS)

    1998-08-01

    The IAEA International Conference on Topical Issues in Nuclear, Radiation and Radioactive Waste Safety was held in Vienna, Austria, 30 August - 4 September 1998 with the objective to foster the exchange of information on topical issues in nuclear, radiation and radioactive waste safety, with the aim of consolidating an international consensus on: the present status of these issues; priorities for future work; and needs for strengthening international co-operation, including recommendations for the IAEA's future activities. The document includes 43 papers presented at the Conference dealing with the following topical issues: Safety Management; Backfitting, Upgrading and Modernization of NPPs; Regulatory Strategies; Occupational Radiation Protection: Trends and Developments; Situations of Chronic Exposure to Residual Radioactive Materials: Decommissioning and Rehabilitation and Reclamation of Land; Radiation Safety in the Far Future: The Issue of Long Term Waste Disposal. A separate abstract and indexing were provided for each paper

  14. Predisposal Management of Radioactive Waste from Nuclear Fuel Cycle Facilities. Specific Safety Guide

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Guide provides guidance on the predisposal management of all types of radioactive waste (including spent nuclear fuel declared as waste and high level waste) generated at nuclear fuel cycle facilities. These waste management facilities may be located within larger facilities or may be separate, dedicated waste management facilities (including centralized waste management facilities). The Safety Guide covers all stages in the lifetime of these facilities, including their siting, design, construction, commissioning, operation, and shutdown and decommissioning. It covers all steps carried out in the management of radioactive waste following its generation up to (but not including) disposal, including its processing (pretreatment, treatment and conditioning). Radioactive waste generated both during normal operation and in accident conditions is considered

  15. Geological safety aspects of nuclear waste disposalin in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, L; Hakkarainen, V; Kaija, J; Kuivamaki, A; Lindberg, A; Paananen, M; Paulamaki, S; Ruskeeniemi, T

    2011-07-01

    The management of nuclear waste from Finnish power companies is based on the final geological disposal of encapsulated spent fuel at a depth of several hundreds of metres in the crystalline bedrock. Permission for the licence requires that the safety of disposal is demonstrated in a safety case showing that processes, events and future scenarios possibly affecting the performance of the deep repository are appropriately understood. Many of the safety-related issues are geological in nature. The Precambrian bedrock of Finland has a long history, even if compared with the time span considered for nuclear waste disposal, but the northern location calls for a detailed study of the processes related to Quaternary glaciations. This was manifested in an extensive international permafrost study in northern Canada, coordinated by GTK. Hydrogeology and the common existence of saline waters deep in the bedrock have also been targets of extensive studies, because water chemistry affects the chemical stability of the repository near-field, as well as radionuclide transport. The Palmottu natural analogue study was one of the international high-priority natural analogue studies in which transport phenomena were explored in a natural geological system. Currently, deep biosphere processes are being investigated in support of the safety of nuclear waste disposal. (orig.)

  16. Geo-scientific Information in the Radioactive Waste Management Safety Case Main Messages from the AMIGO Project

    International Nuclear Information System (INIS)

    2010-01-01

    Radioactive waste is associated with all phases of the nuclear fuel cycle as well as the use of radioactive materials in medicine, research and industry. For the most hazardous and long-lived waste, the solution being investigated worldwide is disposal in engineered repositories deep underground. The importance of geo-scientific information in selecting a site for geological disposal has long been recognised, but there has been growing acknowledgement of the broader role of this information in assessing and documenting the safety of disposal. The OECD/NEA Approaches and Methods for Integrating Geological Information in the Safety Case (AMIGO) project has demonstrated that geological data and understanding serve numerous roles in safety cases. The project, which ran from 2002 to 2008, underscored the importance of integrating geo-scientific information in the development of a disposal safety case and increasingly in the overall process of repository development, including, for example, siting decisions and ensuring the practical feasibility of repository layout and engineering. (authors)

  17. Basic safety principles of INSAG and their application in radioactive waste management

    International Nuclear Information System (INIS)

    Baer, A.J.

    2000-01-01

    The International Nuclear Safety Advisory Group (INSAG) has, in INSAG-11, attempted to show what safety principles are common to all applications of all sources of radiation. It has been considered that these general principles should apply to all industrial activities. A comparison of INSAG-11 with Article 11 of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) shows that the management of radioactive waste is but a special case of industrial activity and follows the same safety rules. The importance of the Joint Convention comes, however, from the fact that it is a politically important document, requiring ratification by the parliaments of the contracting parties. The safe management of radioactive waste implies that five types of issue must be taken into consideration, not only technical and ethical ones, but also socio-political, economic and ecological ones. By comparison, sustainable development in its three dimensions (temporal, spatial and sectorial) has five components (ecology, economics, ethics, socio-politics and technology), just like the safe management of radioactive waste. The consequence of this is that if management is treated as a particular case of sustainable development, it will not be accepted by society. The conclusions are that technology alone can not ensure the safety of radioactive waste management and that society will always give priority to socio-political issues over technological ones. Furthermore, it is crucial that people involved in the management of radioactive waste learn to communicate better and to listen more attentively. Their efforts will only succeed when they incorporate all the components that determine the fabric of our society. (author)

  18. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2c, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Europe via the Regional Project RER/9/109 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Greece and Belarus are key partners in the European region.

  19. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2d, June 2013

    International Nuclear Information System (INIS)

    2013-06-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Latin America via the Regional Project RLA/9/070 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Argentina and Brazil are key partners in the Latin-American region.

  20. International cooperation in the safety and environmental assessment for the ITER engineering design activities

    International Nuclear Information System (INIS)

    Gordon, C.; Baker, D.J.; Bartels, H-W.

    1998-01-01

    The ITER Project includes design and assessment activities to ensure the safety and environmental attractiveness of ITER and demonstrate that it can be sited in any of the sponsoring Parties with a minimum of site-specific redesign. This paper highlights some of the efforts to develop an international consensus approach for ITER safety design and assessment, including: development of general safety and environmental design criteria; development of quantitative dose-release assessment criteria; development of a radiation protection program; waste characterization; and development of safety analysis guidelines. The high level of interaction, cooperation and collaboration between the Joint Central Team and the Home Teams, and between the safety team and designers, and the spirit of consensus that has guided them have resulted in a safe design for ITER and a safety design and assessment that can meet the needs of the potential host countries. (author)

  1. Proceedings of the research conference on post-accident waste management safety (RCWM2016) and the technical seminar on safety research for radioactive waste storage

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Yamagishi, Isao

    2017-03-01

    Collaborative Laboratories for Advanced Decommissioning Science (CLADS) is responsible to promote international cooperation in the R and D activities on the decommissioning of Fukushima Daiichi Nuclear Power Station and to develop the necessary human resources. CLADS held the Research Conference on Post-accident Waste Management Safety (RCWM2016) on 7th November, 2016 and the Technical Seminar on Safety Research for Radioactive Waste Storage on 8th November, 2016. This report compiles the abstracts and the presentation materials in the above conference and seminar. (author)

  2. Legislation and regulatory infrastructure for the safety of radioactive waste management

    International Nuclear Information System (INIS)

    Hoegberg, L.

    2000-01-01

    The essential generic characteristics of a national legislative and regulatory system for the safety of radioactive waste management are defined and discussed. The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management as well as other relevant international legal instruments and guidelines are discussed. Special emphasis is given to the following characteristics of a national legislative and regulatory system: (i) definition of responsibilities, (ii) financing of future costs, (iii) nuclear and radiation safety requirements, (iv) siting and licensing procedures, (v) regulatory functions, and (vi) international co-operation. It is concluded that there exists an internationally endorsed basis for establishing effective national legislation and regulatory infrastructures for the safety of radioactive waste management. It is underlined that the continuing internationalization of the nuclear industry stresses the need for national legislation and regulatory infrastructure to be based on such internationally endorsed principles and standards. It is pointed out that regulators are accountable to the public and have to gain public trust by being active in the public arena, demonstrating their competence and integrity. Finally, prescriptive and goal-oriented international safety regimes are briefly discussed in the light of experience so far gained with the Convention on Nuclear Safety. (author)

  3. An assessment of partition and transmutation against UK requirements for radioactive waste management: supporting studies

    International Nuclear Information System (INIS)

    Cummings, R.; Crookshanks, C.E.; McAdams, R.; Rogers, J.M.; Sims, H.E.; Smith-Briggs, J.L.

    1996-06-01

    A study of partition and transmutation (P and T) has recently been reported: An Assessment of Partition and Transmutation Against UK Requirements for Radioactive Waste Management (DOE/RAS/96.007). The prospects were assessed for real safety or financial gains being made through the future use of partition and transmutation within the United Kingdom in radioactive waste management. The assessment was made by AEA Technology, on behalf of the Department of the Environment. The assessment was partly based on the results of a number of studies described here. (Author)

  4. First safety assessment objectives and content of the 2001 report

    International Nuclear Information System (INIS)

    Franco, Michel de

    2002-01-01

    Michel de Franco (ANDRA, France) described plans to report its first safety assessment of facility designs for disposal of high and intermediate level waste and spent fuel. This assessment will be the forerunner of a more detailed assessment that is required to be presented to the French government in 2005 and is intended to facilitate the formalization and testing of the assessment methodology intended to be used in the 2005 assessment report. The report will include information about the waste inventory, the materials used for the engineered barriers and current understanding of the geology and surface environment at the Bure site in eastern France. It will also describe the preliminary design concepts and the phenomena defining the evolution of the repository in different time frames as well as presenting the results of the initial performance assessment of the repository. The report will also include an analysis of the implications of the requirement for reversibility, taken to mean that each repository development step can be reversed

  5. [Problems of safety regulation under radioactive waste management in Russia].

    Science.gov (United States)

    Monastyrskaia, S G; Kochetkov, O A; Barchukov, V G; Kuznetsova, L I

    2012-01-01

    Analysis of the requirements of Federal Law N 190 "About radioactive waste management and incorporation of changes into some legislative acts of the Russian Federation", as well as normative-legislative documents actual and planned to be published related to provision of radiation protection of the workers and the public have been done. Problems of safety regulation raised due to different approaches of Rospotrebnadzor, FMBA of Russia, Rostekhnadzor and Minprirody with respect to classification and categorization of the radioactive wastes, disposal, exemption from regulatory control, etc. have been discussed in the paper. Proposals regarding improvement of the system of safety regulation under radioactive waste management and of cooperation of various regulatory bodies have been formulated.

  6. Study on the development of safety regulations for geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Wei Fangxin

    2012-01-01

    The development of regulations under Regulations on Safety Management of Radioactive Waste has become necessary as the issuance of it. The regulations related to geological disposal of high-level radioactive waste can promote the progress of research and development on geological disposal of high-level radioactive waste in China. This paper has present suggestions on development of regulations on geological disposal of high-level radioactive waste by analyzing development of safety regulations on geological disposal of high-level radioactive waste in foreign countries and problems occurred in China and discussed important issues related to the development of safety regulations on geological disposal of high-level radioactive waste. (author)

  7. Assessment of sharps waste management practices in a referral ...

    African Journals Online (AJOL)

    hospital (40.8 kg/day) was higher than values reported in district hospitals, but the sharps waste ... Key words: Sharps waste, sharps waste container, overfilled safety box, sharps waste proportion, .... requirements and availability of technology.

  8. Radioactive waste management services. Safety and technical advisory services available from the IAEA

    International Nuclear Information System (INIS)

    2000-09-01

    This brochure provides updated information about the services and assistance the International Atomic Energy Agency (IAEA) is able to render, upon request by Member States, in the area of radioactive waste management. The ultimate objective is to ensure that all wastes are managed safely and in a way which protects both individual and the environment, now and in the future. The IAEA is the sole global international organization with the statutory authority to establish safety standards for the protection of health against exposure to ionizing radiation. These include safety standards for radioactive waste management. A comprehensive set of such standards is being established, and continuously updated, under the Agency's aegis, which lay out the requirements for the safe management of all types of radioactive waste. The Agency has a further statutory obligation ro provide for the application of these standards at the request of States. The safety of radioactive waste management is not attainable through safety standards alone but requires special technology. An additional function of the IAEA is thus to foster the transfer of technology among States, including the specific technology needed to ensure safe radioactive waste management

  9. Second interim assessment of the Canadian concept for nuclear fuel waste disposal. Volume 3

    International Nuclear Information System (INIS)

    Johansen, K.; Donnelly, K.J.; Gee, J.H.; Green, B.J.; Nathwani, J.S.; Quinn, A.M.; Rogers, B.G.; Stevenson, M.A.; Dunford, W.E.; Tamm, J.A.

    1985-12-01

    The nuclear fuel waste disposal concept chosen for development and assessment in Canada involves the isolation of corrosion-resistant containers of waste in a vault located deep in plutonic rock. As the concept and the assessment tools are developed, periodic assessments are performed to permit evaluation of the methodology and provide feedback to those developing the concept. The ultimate goal of these assessments is to predict what impact the disposal system would have on man and the environment if the concept were implemented. The second such assessment was completed in 1984 and is documented in the Second Interim Assessment of the Canadian Concept for Nuclear Fuel Waste Disposal - Volumes 1-4. This, the third volume of the report, summarizes the pre-closure environmental and safety assessments completed by Ontario Hydro for Atomic Energy of Canada Limited. The preliminary results and their sigificance are discussed. 85 refs

  10. The safety of non-incineration waste disposal devices in four hospitals of Tehran.

    Science.gov (United States)

    Farshad, Aliasghar; Gholami, Hamid; Farzadkia, Mahdi; Mirkazemi, Roksana; Kermani, Majid

    2014-01-01

    The safe management of hospital waste is a challenge in many developing countries. The aim of this study was to compare volatile organic compounds (VOCs) emissions and the microbial disinfectant safety in non-incineration waste disposal devices. VOC emissions and microbial infections were measured in four non-incineration waste disposal devices including: autoclave with and without a shredder, dry heat system, and hydroclave. Using NIOSH and US EPA-TO14 guidelines, the concentration and potential risk of VOCs in emitted gases from four devices were assessed. ProSpore2 biological indicators were used to assess the microbial analysis of waste residue. There was a significant difference in the type and concentration of VOCs and microbial infection of residues in the four devices. Emissions from the autoclave with a shredder had the highest concentration of benzene, ethyl benzene, xylene, and BTEX, and emissions from the hydroclave had the highest concentration of toluene. The highest level of microbial infection was observed in the residues of the autoclave without a shredder. There is an increased need for proper regulation and control of non-incinerator devices and for monitoring and proper handling of these devices in developing countries.

  11. Performance assessment methodology (PAM) for low level radioactive waste (LLRW) disposal facilities

    International Nuclear Information System (INIS)

    Selander, W.N.

    1992-01-01

    An overview is given for Performance Assessment Methodology (PAM) for Low Level Radioactive Waste (LLRW) disposal technologies, as required for licensing and safety studies. This is a multi-disciplinary activity, emphasizing applied mathematics, mass transfer, geohydrology and radiotoxicity effects on humans. (author). 2 refs

  12. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2b, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Asia and the Pacific via the Regional project RAS/9/066 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Malaysia and Syrian Arabic Republic are key partners in the Asian and the Pacific region.

  13. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2a, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Africa via the Regional project RAF/9/04 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. AFRA Regional Designated Centres, in Algeria, Ghana and Morocco, equivalent to the IAEA's Regional Training Centres (RTCs) present in all the other regions, are key partners in the African region.

  14. Environment, Safety, Health and Waste Management Plan

    International Nuclear Information System (INIS)

    1988-01-01

    The mission of the Feed Materials Production Center (FMPC) is the production of high qaulity uranium metal for use by the US Department of Energy (DOE) in Defense Programs. In order to accomplish this mission and to maintain the FMPC as a viable facility in the DOE production complex, the facility must be brought into full compliance with all federal and state regulations and industry standards for environmental protection and worker safety. Where past practices have resulted in environmental insult, a comprehensive program of remediation must be implemented. The purpose of this combined Environment, Safety, Health and Waste Management Plan is to provide a road map for achieving needed improvements. The plan is structured to provide a comprehensive projection from the current fiscal year (FY) through FY 1994 of the programs, projects and funding required to achieve compliance. To do this, the plan is subdivided into chapters which discuss the applicable regulations;project schedules and funding requirements;details of the various programs for environment, safety, health and waste management;details of the ongoing National Environmental Policy Act (NEPA);the quality assurance program and the environmental monitoring program. 14 refs., 30 figs., 29 tabs

  15. Project Guarantee 1985. Final repository for high-level radioactive wastes: The system of safety barriers

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Final disposal of radioactive waste involves preventing the waste from returning from the repository location into the biosphere by means of successively arranged containment measures known as safety barriers. In the present volume NGB 85-04 of the series of reports for Project 'Guarantee' 1985, the safety barrier system for the type C repository for high-level waste is described. The barrier parameters which are relevant for safety analysis are quantified and associated error limits and data scatter are given. The aim of the report is to give a summary documentation of the safety analysis input data and their scientific background. For secure containment of radioactive waste safety barriers are used which effectively limit the release of radioactive material from the repository (release barriers) and effectively retard the entry of the original radioactive material into the biosphere (time barriers). Safety barriers take the form of both technically constructed containment measures and the siting of the repository in suitable geological formations. The technical safety barrier system in the case of high-level waste comprises: the waste solidification matrix (borosilicate glass), massive steel canisters, encasement of the waste canisters, encasement of the waste canisters in highly compacted bentonite, sealing of vacant storage space and access routes on repository closure. The natural geological safety barriers - the host rock and overlying formations provide sufficiently long deep groundwater flow times from the repository location to the earth's surface and for additional lengthening of radionuclide migration times by means of various chemical and physical retardation mechanisms. The stability of the geological formations is so great that hydrogeological system is protected for a sufficient length of time from deterioration caused, in particular, by erosion. Observations in the final section of the report indicate that input data for the type C repository safety

  16. Safety related aspects of ultimate disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Goemmel, R.

    1992-01-01

    Solutions and questions related to nuclear waste management are presented. In particular, long-term safety of repositories in Germany and Sweden is considered, with special attention being paid to methods of detection, geotechnical barriers and post-operational phase of salt dome repositories, and conditioning of wastes to make them fit for ultimate disposal. (DG) [de

  17. Redox processes in the safety case of deep geological repositories of radioactive wastes. Contribution of the European RECOSY Collaborative Project

    International Nuclear Information System (INIS)

    Duro, L.; Bruno, J.; Grivé, M.; Montoya, V.; Kienzler, B.; Altmaier, M.; Buckau, G.

    2014-01-01

    Highlights: • The RECOSY project produced results relevant for the Safety Case of nuclear disposal. • We classify the safety related features where RECOSY has contributed. • Redox processes effect the retention of radionuclides in all repository subsystems. - Abstract: Redox processes influence key geochemical characteristics controlling radionuclide behaviour in the near and far field of a nuclear waste repository. A sound understanding of redox related processes is therefore of high importance for developing a Safety Case, the collection of scientific, technical, administrative and managerial arguments and evidence in support of the safety of a disposal facility. This manuscript presents the contribution of the specific research on redox processes achieved within the EURATOM Collaborative Project RECOSY (REdox phenomena COntrolling SYstems) to the Safety Case of nuclear waste disposal facilities. Main objectives of RECOSY were related to the improved understanding of redox phenomena controlling the long-term release or retention of radionuclides in nuclear waste disposal and providing tools to apply the results to Performance Assessment and the Safety Case. The research developed during the project covered aspects of the near-field and the far-field aspects of the repository, including studies relevant for the rock formations considered in Europe as suitable for hosting an underground repository for radioactive wastes. It is the intention of this paper to highlight in which way the results obtained from RECOSY can feed the scientific process understanding needed for the stepwise development of the Safety Case associated with deep geological disposal of radioactive wastes

  18. Prediction of concentration and model validation - key issues in assessment of long term safety for radioactive waste disposal

    International Nuclear Information System (INIS)

    Xu, S.; Dverstorp, B.; Woerman, A.

    2008-01-01

    Post-closure safety assessments for nuclear waste repositories involve radioecological modelling for en,underground source term. In this paper we discuss critical aspects concerning process understanding and justification of simplified radioecological models used for such safety assessments. This study is part of the Swedish Radiation Protection Authority's (SSI) work on reviewing the Swedish Nuclear Fuel and Waste Management Co's (SKB) most recent safety assessment, SR-Can. One of the most challenging tasks in assessments of environmental doses and risk from an underground repository is to estimate radionuclide activity concentrations in various geologic strata in the future. For example, little is known about transport pathways through the quaternary deposits to the discharge points in surface waters and other recipients in the biosphere. Traditionally simplified compartmental models are used in safety assessment to describe the fate of radio-nuclides in surface environment. The possibility to test such models against more detailed process models and site specific data is of key importance for confidence in the safety assessment. As part of SSI's review of SR-Can, alternative modelling approaches were developed to explore the importance of transport process descriptions in the assessment models. The modelling results were compared with the Landscape Dose Factors (LDFs) derived by SKB in SR-Can. LDFs is a new methodology adapted by SKB in SR-Can. The LDFs are defined in the units of Sv/y per Bq/y and express all the radiological information about individual epository sites and ecosystems as a single, radionuclide-specific, number that relates geosphere releases to radiological dose. Further, we suggest a method for validating model parameters using data from field tracer tests. In two companion papers we present the underlying model framework for pathway analyses and a newly developed numerical module within the numerical software Ecolego Toolbox. Transport models

  19. Operating safety requirements for the intermediate level liquid waste system

    International Nuclear Information System (INIS)

    1980-07-01

    The operation of the Intermediate Level Liquid Waste (ILW) System, which is described in the Final Safety Analysis, consists of two types of operations, namely: (1) the operation of a tank farm which involves the storage and transportation through pipelines of various radioactive liquids; and (2) concentration of the radioactive liquids by evaporation including rejection of the decontaminated condensate to the Waste Treatment Plant and retention of the concentrate. The following safety requirements in regard to these operations are presented: safety limits and limiting control settings; limiting conditions for operation; and surveillance requirements. Staffing requirements, reporting requirements, and steps to be taken in the event of an abnormal occurrence are also described

  20. Thermodynamic sorption modelling in support of radioactive waste disposal safety cases - NEA sorption project phase III

    International Nuclear Information System (INIS)

    2012-01-01

    A central safety function of radioactive waste disposal repositories is the prevention or sufficient retardation of radionuclide migration to the biosphere. Performance assessment exercises in various countries, and for a range of disposal scenarios, have demonstrated that one of the most important processes providing this safety function is the sorption of radionuclides along potential migration paths beyond the engineered barriers. Thermodynamic sorption models (TSMs) are key for improving confidence in assumptions made about such radionuclide sorption when preparing a repository's safety case. This report presents guidelines for TSM development as well as their application in repository performance assessments. They will be of particular interest to the sorption modelling community and radionuclide migration modellers in developing safety cases for radioactive waste disposal Contents: 1 - Thermodynamic sorption models and radionuclide migration: Sorption and radionuclide migration; Applications of TSMs in radioactive waste disposal studies; Requirements for a scientifically defensible, calibrated TSM applicable to radioactive waste disposal; Current status of TSMs in radioactive waste management; 2 - Theoretical basis of TSMs and options in model development: Conceptual building blocks of TSMs and integration with aqueous chemistry; The TSM representation of sorption and relationship with Kd values; Theoretical basis of TSMs; Example of TSM for uranyl sorption; Options in TSM development; Illustration of TSM development and effects of modelling choices; Summary: TSMs for constraining Kd values - impact of modelling choices; 3 - Determination of parameters for TSMs: Overview of experimental determination of TSM parameters; Theoretical estimation methods of selected model parameters; Case study: sorption modelling of trivalent lanthanides/actinides on illite; Indicative values for certain TSM parameters; Parameter uncertainty; Illustration of parameter sensitivity

  1. Disposal of Radioactive Waste. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt... standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  2. Performance assessment of the disposal of vitrified high-level waste in a clay layer

    International Nuclear Information System (INIS)

    Mallants, Dirk; Marivoet, Jan; Sillen, Xavier

    2001-01-01

    Deep disposal is considered a safe solution to the management of high-level radioactive waste. The safety is usually demonstrated by means of a performance assessment. This paper discusses the methodological aspects and some of the results obtained for the performance assessment of the disposal of vitrified high-level waste in a clay layer in Belgium. The calculations consider radionuclide migration through the following multi-barrier components, all of which contribute to the overall safety: (1) engineered barriers and the host clay layer, (2) overlying aquifer, and (3) biosphere. The interfaces between aquifers and biosphere are limited to the well and river pathway. Results of the performance assessment calculations are given in terms of the time evolution of the dose rates of the most important fission and activation products and actinides. The role of the glass matrix in the overall performance of the repository is also discussed

  3. The ISRN has assessed the safety and radioprotection of the solid radioactive waste management area at CEA/Saclay; L'IRSN a expertise la surete et la radioprotection de la zone de gestion des dechets radioactifs solides du CEA/Saclay

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Completed by a report of a Permanent Group of Experts on the safety re-examination for the solid radioactive waste management area of the CEA/Saclay, this paper is a statement of the assessment by the IRSN (the French Institute of Radioprotection and Nuclear Safety) of this safety re-examination. It first recalls what a safety re-examination is for a nuclear installation and indicates the documents which have been transmitted by the CEA and analysed. Then, it briefly describes the activities which are performed in the concerned area: collecting, warehousing, conditioning, control and shipping of solid radioactive wastes or useless fuels. The IRSN comments the works done and to be done for the different operations on different types of waste (low or middle activity), and then the different aspects of the installation safety (radiations, confining, fire, climatic events, civil engineering)

  4. Increase of Technogenic Safety of a Waste Management Company

    Directory of Open Access Journals (Sweden)

    Cudečka-Puriņa Natālija

    2017-11-01

    Full Text Available Waste management is often recognised in the society as an activity sector possessing an extensive potential harm on technogenic safety. As most of the European Union countries have experienced at least theoretical shift from waste management to resource management, it is now extremely important to implement this shift in practice, moving from disposing waste or by-products to developing a cooperation network that allows different industries to use each other’s waste as resources. This shift will lead to saving of primary resources and raw materials and develop recycling and reuse, bringing them to a higher level.

  5. Contents and Sample Arguments of a Safety Case for Near Surface Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2017-06-01

    This publication arises from the results of two projects to assist Member States in understanding and developing safety cases for near-surface radioactive waste disposal facilities. The objective of the publication is to give detailed information on the contents of safety cases for radioactive waste disposal and the types of arguments that may be included. It is written for technical experts preparing a safety case, and decision makers in the regulatory body and government. The publication outlines the key uses and aspects of the safety case, its evolution in parallel with that of the disposal facility, the key decision steps in the development of the waste disposal facility, the components of the safety case, their place in the Matrix of Arguments for a Safety Case (the MASC matrix), and a detailed description of the development of sample arguments that might be included in a safety case for each of two hypothetical radioactive waste disposal facilities.

  6. Safety assessment of the disposal of sealed radiation sources in boreholes

    International Nuclear Information System (INIS)

    Oliveira, Rosana Lagua de; Vicente, Roberto; Hiromoto, Goro

    2009-01-01

    The Radioactive Waste Management Laboratory (RNML) at the Nuclear Energy Research Institute (NERI) in Sao Paulo, Brazil, is developing the concept of a repository for disused sealed radiation sources in a deep borehole. Several thousands disused sealed radiation sources are stored at NERI awaiting the decision on final disposal and tens of thousands are still under the possession of the licensees. A significant fraction of these sources are long-lived and will require final disposal in a geological repository. The purpose of this paper is to identify and discuss suitable safety assessment strategies for the repository concept and to illustrate a rational approach for a long-term safety assessment methodology. (author)

  7. Environment, safety and health progress assessment manual

    International Nuclear Information System (INIS)

    1992-12-01

    On June 27, 1989, the Secretary of Energy announced a 10-Point Initiative to strengthen environment, safety, and health (ES ampersand H) programs, and waste management activities at DOE production, research, and testing facilities. One of the points involved conducting dent Tiger Team Assessments of DOE operating facilities. The Office of Special independent Projects (OSP), EH-5, in the Office of the Assistant Secretary for Environment, Safety and Health, EH-1, was assigned the responsibility to conduct the Tiger Team Assessments. Through June 1992, a total of 35 Tiger Team Assessments were completed. The Secretary directed that Corrective Action Plans be developed and implemented to address the concerns identified by the Tiger Teams. In March 1991, the Secretary approved a plan for assessments that are ''more focused, concentrating on ES ampersand H management, ES ampersand H corrective actions, self-assessment programs, and root-cause related issues.'' In July 1991, the Secretary approved the initiation of ES ampersand H Progress Assessments, as a followup to the Tiger Team Assessments, and in the continuing effort to institutionalize the self-assessment process and line management accountability in the ES ampersand H areas. This manual documents the processes to be used to perform the ES ampersand H Progress Assessments. It was developed based upon the lessons learned from Tiger Team Assessments, the two pilot Progress Assessments, and Progress Assessments that have been completed. The manual will be updated periodically to reflect lessons learned or changes in policy

  8. Basic concept on safety regulation for land disposal of low level radioactive solid wastes

    International Nuclear Information System (INIS)

    1985-01-01

    As to the land disposal of low level radioactive solid wastes, to which the countermeasures have become the urgent problem at present, it is considered to be a realistic method to finally store the solid wastes concentratedly outside the sites of nuclear power stations and others, and effort has been exerted by those concerned to realize it. Besides, as for extremely low level radioactive solid wastes, the measures of disposing them corresponding to the radioactivity level are necessary, and the concrete method has been examined. The Committee on Safety Regulation for Radioactive Wastes has discussed the safety regulation for those since April, 1984, and the basic concept on the safety regulation was worked up. It is expected that the safety of the land disposal of low level radioactive solid wastes can be ensured when the safety regulation is carried out in conformity with this basic concept. The present status of the countermeasures to the land disposal of low level radioactive solid wastes is shown. As the concrete method, the disposal in shallow strate has been generally adopted. At present, the plan for the final storage in Aomori Prefecture is considered, and it will be started with the first stage of four-stage control. (Kako, I.)

  9. Pollution prevention opportunity assessment for the SNL/California waste management facilities

    International Nuclear Information System (INIS)

    Braye, S.; Phillips, N.M.

    1995-01-01

    SNL/California's waste management facilities, Bldgs. 961 and 962-2, generate a secondary stream of hazardous and radioactive waste. This waste stream is generated mainly during the processing and handling of hazardous, radioactive, and mixed wastes (primary waste stream), which are generated by the laboratories, and when cleaning up spills. The secondary waste stream begins with the removal of a generator's hazardous, radioactive, and mixed waste from specified collection areas. The waste stream ends when the containers of processed waste are loaded for shipment off-site. The total amount of secondary hazardous waste generated in the waste management facilities from January 1993 to July 1994 was 1,160.6 kg. The total amount of secondary radioactive waste generated during the same period was 1,528.8 kg (with an activity of 0.070 mCi). Mixed waste usually is not generated in the secondary waste stream. This pollution prevention opportunity assessment (PPOA) was conducted using the graded approach methodology developed by the Department of Energy (DOE) PPOA task group. The original method was modified to accommodate the needs of Sandia's site-specific processes. The options generated for potential hazardous waste minimization, cost savings, and environmental health and safety were the result of a waste minimization team effort. The results of the team efforts are summarized

  10. Project Guarantee 1985. Final repository for low- and intermediate level radioactive wastes: Safety report

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Storage of radioactive waste must delay the return of radionuclides to the biosphere for a long period of time and must maintain the release rates at a sufficiently low level for all time. This is achieved with the aid of a series of safety barriers which consist, on the one hand, of technical barriers in the repository and, on the other hand , of natural geological barriers as they occur at the repository location. In order to assess the efficiency of the barriers, the working methods of the technical barriers and the host rock must be understood. This understanding is transferred into quantitative models in order to calculate the safety of the repository. The individual barriers and the methods used to modelling their functions were described in volume NGB 85-07 of the Project Guarantee 1985 report series and the data necessary for modelling were given. The models and data are used in the safety analysis, the results of which are contained in the present report. Safety considerations show that models are available in Switzerland which allow, in principle, an assessment of the long-term behaviour of a repository for low- and intermediate-level waste. The evaluation of earlier studies and experimental work, suitable laboratory measurements and results from field research enable compilation of a representative data-set so that the requirements for quantitative statements on safety of final disposal are met from this side also. The safety calculations show that the radiation doses calculated for a base case scenario with realistic/conservative parameter values are negligibly low. Also, radiation doses which are clearly under the protection standard of 10 mrem per year result for conservative values and the cumulation of several conservative assumptions. Even assuming exposure of the repository by erosion, a radiotoxicity of the soil formed results which is under natural values

  11. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    International Nuclear Information System (INIS)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-01-01

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible

  12. Prediction of radionuclide invention for low-and intermediate-level radioactive waste by considering concentration limit of waste package

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kang Il; Kim, Min Seong; Jeong, Noh Gyeon; Park, Jin Beak [Korea Radioactive Waste Agency(KORAD), Daejeon (Korea, Republic of)

    2017-03-15

    The result of a preliminary safety assessment that was completed by applying the radionuclide inventory calculated on the basis of available data from radioactive waste generation agencies suggested that many difficulties are to be expected with regard to disposal safety and operation. Based on the results of the preliminary safety assessment of the entire disposal system, in this paper, a unit package exceeding the safety goal is selected that occupies a large proportion of radionuclides in intermediate-level radioactive waste. We introduce restrictions on the amount of radioactivity in a way that excludes the high surface dose rate of the package. The radioactivity limit for disposal will be used as the baseline data for establishing the acceptance criteria and the disposal criteria for each disposal facility to meet the safety standards. It is necessary to draw up a comprehensive safety development plan for the Gyeongju waste disposal facility that will contribute to the construction of a Safety Case for the safety optimization of radioactive waste disposal facilities.

  13. Annual plan of research on safety techniques against low level radioactive wastes, FY1994-FY1999

    International Nuclear Information System (INIS)

    1994-01-01

    The safety research on the disposal of low level radioactive waste has been promoted based on the annual plan decided by the committee on radiative waste safety regulation of the Nuclear Safety Commission. Hereafter, the disposal of low level radioactive waste in ocean is never selected. As to the subjects of the safety research which should be carried out for five years from 1994, the necessity, the contents of research, the organs that carry out the research and so on were deliberated, and the results are made into the annual plan, therefore, it is reported. The way of thinking on the safety research, the contents for which efforts should be exerted as the safety research, and the matters to which attention should be paid are shown. As for the annual plan of safety research, the necessity and the outline of the safety research on the disposal in strata, the concrete subjects and their contents, and the necessity and the outline of the safety research on the reuse, the concrete subjects and their contents are reported. The radioactive waste is those produced by the operation of nuclear reactor facilities, those containing TRU nuclides and RI waste. (K.I.)

  14. The safety concept of the Federal Government concerning waste management

    International Nuclear Information System (INIS)

    Pfaffelhuber, J.K.

    1976-01-01

    The safety concept of the FRG concerning waste management is based on the ultimate aim of having in operation until 1985 nuclear power plants with a capacity of approx. 45,000 MWe, i.e. 50 nuclear power plants with an annual fuel consumption of 1,500 tons. A critical survey shows that there is still a great number of questions to be solved, concerning the fuel cycle in particular in terms of industrial standards, and that various problems ought to be the subject of R and D activities. Activities in the field of waste management so far are concerned only with project studies and details of project definition studies. On the one hand, the principles of the safety concept for waste management are to make possible and to guarantee the operation of nuclear facilities, and on the other hand, they are to subject those facilities which serve the purpose of waste disposal to similar safety regulations as the nuclear power plants are subjected to. The integrated waste disposal system of the Federal government for CWRs until the mid eighties is described. R+D activities are still necessary, in particular concerning reprocessing techniques, techniques in the reprocessing of Pu, the conditioning of highly active wastes, testing final storage techniques, and in the field of retention of gaseous radioactive nuclides (iodine, krypton, tritium) and of safeguarding waste disposal parks against terrorists and sabotage. The legal basis for the protection of the citizen is the Atomic Energy Act and its ordinances, EURATOM basic standards, and ICRP recommendations, some of which were tightened up for the FRG. Some recommendations of the Strahlenschutzkommision - radiation exposure, storage and separation of 85 Kr, 129 J, 131 J, and 133 Xe - are dealt with in detail. (HPH/LN) [de

  15. Improvement of the safety regulations in the management of radioactive waste accumulated in the liquid radioactive waste water basins of the PO 'Majak' (Ozersk), the Siberian Chemical Plant (Seversk) and the Mining-Chemical Plant (Zheleznogorsk)

    International Nuclear Information System (INIS)

    Vishnevski, Y.G.; Kislov, A.I.; Irushkin, V.M.

    2002-01-01

    One of the most important problems of radiation safety in Russia is the decommissioning of the liquid radioactive waste water basins of the PO 'Majak' (Ozersk), Siberian Chemical Plant (Seversk) and Mining-Chemical Plant (Zheleznogorsk). The liquid radioactive waste water basins were constructed in 1950-1960 for the collection and storage of liquid waste from the radiochemical plants. The potential hazards of the liquid in the radioactive waste water basins are: migration of radionuclides into the soil of the liquid radioactive waste water basin floors; wind-induced carry-over of radionuclides from the liquid radioactive waste water basins; hazards (radiation included) to the environment and population arising in case physical barriers and hydraulic structures are damaged; and criticality hazards. The classification of the liquid radioactive waste water basins were developed based on the collection and analyzes of the information on liquid radioactive waste water basin characteristics and the method of multicriterion expert assessment of potential hazards. Three main directions for the improvement of safety regulation in the management of radioactive waste accumulated in the liquid radioactive waste water basins were defined: 1. Common directions for the improvement of safety regulation in the area of rehabilitation of the territories contaminated with radioactive substances. 2. Common directions for the improvement of safety regulation in the area of rehabilitation of the territories, such as the liquid radioactive waste water basins. 3. Special directions for the regulatory activities in the area of operation and decommissioning of the liquid radioactive waste water basins of the PO 'Majak' (Ozersk), Siberian Chemical Plant (Seversk) and Mining-Chemical Plant (Zheleznogorsk). As a result, concrete recommendations on safety regulation for the management of radioactive waste accumulated in the water basins were developed. (author)

  16. An assessment of the radiological impact of human intrusion at the UK Low Level Waste Repository (LLWR) - 59356

    International Nuclear Information System (INIS)

    Hicks, Tim; Baldwin, Tamara; Cummings, Richard; Sumerling, Trevor

    2012-01-01

    The UK Low Level Waste Repository Ltd submitted an Environmental Safety Case for the disposal of low-level waste (LLW) to the Environment Agency on the 1 May 2011. The Environmental Safety Case (ESC) presents a complete case for the environmental safety of the Low Level Waste Repository (LLWR) both during operations and in the long term (Cummings et al, in these proceedings). This includes an assessment of the long-term radiological safety of the facility, including an assessment of the potential consequences of human intrusion at the site. The human intrusion assessment is based on a cautiously realistic approach in defining intrusion cases and parameter values. A range of possible human intrusion events was considered based on present-day technologies and credible future uses of the site. This process resulted in the identification of geotechnical investigations, a housing development and a smallholding as requiring quantitative assessment. A particular feature of the site is that, because of its proximity to the coast and in view of expected global sea-level rise, it is vulnerable to coastal erosion. During such erosion, wastes and engineered barrier materials will be exposed, and could become targets for investigation or recovery. Therefore, human intrusion events have been included that are associated with such activities. A radiological assessment model has been developed to analyse the impacts of potential human intrusion at the site. A key feature of the model is the representation of the spatial layout of the disposal site, including the engineered cap design and the large-scale spatial heterogeneity of radionuclide concentrations within the repository. The model has been used to calculate the radiation dose to intruders and to others following intrusion at different times and at different locations across the site, for the each of the selected intrusion events, considering all relevant exposure modes. Potential doses due to radon and its daughters in

  17. Consideration on safety assessment methodologies applied to the near surface repository Baita Bihor

    International Nuclear Information System (INIS)

    Dogaru, D.

    2003-01-01

    The Romanian legislation in respect of RAW management is described. The waste facilities in the country are: for low and intermediate level waste - Radioactive Waste Treatment Plant - Bucharest Magurele; Radioactive Waste Treatment Plant - Pitesti; National Repository for Radioactive Waste - Baita Bihor. for spent fuel - Intermediate dry spent fuel storage facility (DICA) - CNE Cernavoda; Intermediate wet spent fuel storage facility WWR-S - Bucharest Magurele. A detailed description of the facilities and waste characterisation are given in the report. Due o insufficient and incomplete information about site characterisation and inventory a Phare project 'Preliminary Safety Analysis for the Low-Level Radioactive Waste Repository Baita Bihor, Romania' has been approved. The project purposes are: to achieve a database with specific parameters; validation of scenarios and conceptual models for normal and altered evolution of the disposal site; validation and qualification of existing calculation methods and identification of the complementary suitable computer codes to be installed in Romania; validation and analyses of the final results expertise PSAR final results; recommendation for further completion of Integrated Performance Assessment. The results, conclusions and recommendations of the project will be included in the Preliminary Safety Analyses Report to be sent to the Romanian Authority - CNCAN for licensing of the repository operation

  18. Safety guidebook relative to the disposal of radioactive wastes in deep geologic formation

    International Nuclear Information System (INIS)

    2008-01-01

    The French nuclear safety authority (ASN) initiated in 2003 a revision process of the objectives to be considered during the research and work steps of the implementation of a radioactive waste storage facility in deep geologic formations. The purpose of this document is to define the safety objectives that have to be retained at each step of this implementation, from the site characterization to the closure of the facility. This update takes into account the works carried out by the ANDRA (French national agency of radioactive wastes) in the framework of the law from December 30, 1991, and the advices of the permanent experts group about these works. It takes also into consideration the international research works in this domain and the choices defined in the program law no 2006-739 from June 28, 2006 relative to the sustainable management of radioactive materials and wastes. The main modifications concern: the notion of reversibility, the definition of the safety functions of disposal components, the safety goals and the design principles assigned to waste packages, the control of nuclear materials and the monitoring objectives of the facility. The documents treats of the following points: 1 - the objectives of public health and environment protection; 2 - the safety principles and the safety-related design bases of the facility; and 3 - the method used for demonstrating the disposal safety. (J.S.)

  19. FOOD QUALITY AND SAFETY ASSURANCE IN TERMS OF LOSS AND WASTE LIMITATION

    Directory of Open Access Journals (Sweden)

    Maria Śmiechowska

    2016-06-01

    Full Text Available One of the greatest challenges of 21st century is satisfying the food needs of the fast growing population of the world. Food must fulfill quality and safety standards.  The access to safe and appropriate food is not the same everywhere.  Food excess and, in consequence, food waste is present in many regions of the world. This study is meant to explain the causes of food waste on the basis of the author’s own research and study results of other scientists. The lack of authenticity and falsification belong to the new factors endangering food safety and food waste related thereto. This analysis proves that the authenticity of food improves its safety through the implementation of quality management systems, the appropriate system of food labelling and food identification by means of applicable law regulations, supervision and control systems. Main aim of this study is to address why, even though there are so many quality standards and systems, a significant problem with food loss and waste constantly occurs. Waste-causing factors have been determined on the example of bread and the handling of unconsumed bread has been attempted in this study. Waste limiting actions are necessary as food production is significantly overburdening the natural environment and generating increasing amount of waste, hazardous to the clean air. 

  20. Specification of safety requirements for waste packages with respect to practicable quality control measures

    International Nuclear Information System (INIS)

    Gruendler, D.; Wurtinger, W.

    1987-01-01

    Waste packages for disposal in a repository in the Federal Republic of Germany have to meet safety requirements derived from site specific safety analyses. The examination of the waste packages with regard to compliance with these requirements is the main objective of quality control measures. With respect to quality control the requirements have to be specified in a way that practicable control measures can be applied. This is dealt with for the quality control of the activity inventory and the quality control of the waste form. The paper discusses the determination of the activity of hard-to-measure radionuclides and the specification of safety related requirements for the waste form and the packaging using typical examples

  1. Program plan for evaluation of the Ferrocyanide Waste Tank safety issue at the Hanford Site

    International Nuclear Information System (INIS)

    Borsheim, G.L.; Meacham, J.E.; Cash, R.J.; Dukelow, G.T.

    1994-03-01

    This document describes the background, priorities, strategy and logic, and task descriptions for the Ferrocyanide Waste Tank Safety Program. The Ferrocyanide Safety Program was established in 1990 to provide resolution of a major safety issue identified for 24 high-level radioactive waste tanks at the Hanford Site

  2. Melodie: A global risk assessment model for radioactive waste repositories

    International Nuclear Information System (INIS)

    Lewi, J.; Assouline, M.; Bareau, J.; Raimbault, P.

    1987-03-01

    The Institute of Protection and Nuclear Safety (IPSN), which is part of the French Atomic Energy Commission (C.E.A.) develops since 1984 in collaboration with different groups inside and outside the C.E.A. a computer model for risk assessment of nuclear waste repositories in deep geological formations. The main characteristics of the submodels, the data processing structure and some examples of applications are presented

  3. Facts about Nuclear Waste Safety - How the issue is being treated in Ghana

    International Nuclear Information System (INIS)

    Glover, E.T.; Fletcher, J.J.

    2001-01-01

    The fear of radioactive discharges and releases particularly from severe nuclear accidents and radioactive waste is central to public concern about nuclear activities. This fear was witnessed when Ghana began to suffer shortage in electricity supply from the hydroelectric power station at Akosombo and debates began on Ghana's energy mix and alternate options. As in every country, dependable and continuous supply of electricity is a prerequisite for ensuring sustainable development. The Ghana Atomic Energy Commission was confronted at that time more than ever with the problem of public education on nuclear power safety to enhance public acceptance. This paper presents what the Ghana Atomic Energy Commission is doing to communicate facts and education about nuclear waste safety to the Ghanaian public and to facilitate the comparison of risk from nuclear reactors and disposal facilities with risks from other forms of technology. The paper also tells of the usefulness of and difficulties in using Jos Draiger and John Lakey's manual on Radiation and Radiation Protection to educate pupils in the Ghana Atomic Energy Commission Preparatory School. The difficulties in communication of facts about nuclear, radiation and waste safety in Ghana, because of the different languages and dialects used by Ghanaians in the rural areas of Ghana. As a large number of factors influence decision making in the energy sector. To assist energy planners, the Ghana Atomic Energy Commission carried out assessments of alternative energy sources, covering a broad range of technical, economic and environmental factors. Cost-benefit and risk-benefit analyses place the nuclear power option on a scale comparable to the other electricity generating technologies. How come then that nuclear power option has so much negative publicity? The conclusion is drawn that literacy in nuclear radiation and waste safety is needed at all levels of the Ghanaian society. As inadequate perception of radiation risk

  4. Safety Evaluation for Hull Waste Treatment Process in JNC

    International Nuclear Information System (INIS)

    Kojima, H.; Kurakata, K.

    2002-01-01

    Hull wastes and some scrapped equipment are typical radioactive wastes generated from reprocessing process in Tokai Reprocessing Plant (TRP). Because hulls are the wastes remained in the fuel shearing and dissolution, they contain high radioactivity. Japan Nuclear Cycle Development Institute (JNC) has started the project of Hull Waste Treatment Facility (HWTF) to treat these solid wastes using compaction and incineration methods since 1993. It is said that Zircaloy fines generated from compaction process might burn and explode intensely. Therefore explosive conditions of the fines generated in compaction process were measured. As these results, it was concluded that the fines generated from the compaction process were not hazardous material. This paper describes the outline of the treatment process of hulls and results of safety evaluation

  5. An assessment of partition and transmutation against UK requirements for radioactive waste management

    International Nuclear Information System (INIS)

    Cummings, R.; Bush, R.P.; Crookshanks, C.E.

    1996-06-01

    A review of partition and transmutation is made with the objective of assessing the prospects for real financial of safety gains being made from the future use of partition and transmutation within the UK. The assessment covers all the civil high-level waste (HLW) from reprocessing spent fuel, civil spent fuels where there are currently no plans or contracts for reprocessing, and intermediate-level waste (ILW). Both existing stocks and future arisings are included. The impact is also analysed of considering all the non-military uranium and plutonium extant in the UK as candidates for transmutation. The assessment takes full account of advances in technology since the earlier UK studies and changes in the UK situation. (Author)

  6. Ferrocyanide tank safety program: Cesium uptake capacity of simulated ferrocyanide tank waste. Final report

    International Nuclear Information System (INIS)

    Burgeson, I.E.; Bryan, S.A.

    1995-07-01

    The objective of this project is to determine the capacity for 137 Cs uptake by mixed metal ferrocyanides present in Hanford Site waste tanks, and to assess the potential for aggregation of these 137 Cs-exchanged materials to form ''hot-spots'' in the tanks. This research, performed at Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company, stems from concerns regarding possible localized radiolytic heating within the tanks. After ferrocyanide was added to 18 high-level waste tanks in the 1950s, some of the ferrocyanide tanks received considerable quantities of saltcake waste that was rich in 137 Cs. If radioactive cesium was exchanged and concentrated by the nickel ferrocyanide present in the tanks, the associated heating could cause tank temperatures to rise above the safety limits specified for the ferrocyanide-containing tanks, especially if the supernate in the tanks is pumped out and the waste becomes drier

  7. The safety of non-incineration waste disposal devices in four hospitals of Tehran

    Science.gov (United States)

    Farshad, Aliasghar; Gholami, Hamid; Farzadkia, Mahdi; Mirkazemi, Roksana; Kermani, Majid

    2014-01-01

    Background: The safe management of hospital waste is a challenge in many developing countries. Objectives: The aim of this study was to compare volatile organic compounds (VOCs) emissions and the microbial disinfectant safety in non-incineration waste disposal devices. Methods: VOC emissions and microbial infections were measured in four non-incineration waste disposal devices including: autoclave with and without a shredder, dry heat system, and hydroclave. Using NIOSH and US EPA-TO14 guidelines, the concentration and potential risk of VOCs in emitted gases from four devices were assessed. ProSpore2 biological indicators were used to assess the microbial analysis of waste residue. Results: There was a significant difference in the type and concentration of VOCs and microbial infection of residues in the four devices. Emissions from the autoclave with a shredder had the highest concentration of benzene, ethyl benzene, xylene, and BTEX, and emissions from the hydroclave had the highest concentration of toluene. The highest level of microbial infection was observed in the residues of the autoclave without a shredder. Conclusions: There is an increased need for proper regulation and control of non-incinerator devices and for monitoring and proper handling of these devices in developing countries. PMID:25000113

  8. Development of a natural analogue database to support the safety case of the Korean radioactive waste disposal program

    International Nuclear Information System (INIS)

    Baik, M.H.; Park, T.J.; Kim, I.Y.; Jeong, J.; Choi, K.W.

    2015-01-01

    In this study, the status of natural analogue studies in Korea is briefly summarized and applicability of existing natural analogue information to the Korean safety case has been evaluated. To enable effective application of natural analogue information to the overall evaluation of long-term safety (the 'safety case') for the geological disposal of radioactive wastes, a natural analogue database has been developed by collecting, classifying, and evaluating relevant data. The natural analogue data collected were classified into categories based on site information, components/processes of the disposal system, properties/phenomena, reference, safety case application, application method, and suitability to a safety case. Suitability of the natural analogue data to a specific safety case was evaluated based upon the importance and the applicability to the Korean safety case. As a result, 75 natural analogue datasets were selected as important for the Korean safety case. The database developed can now be utilized in the RD and D (Research, Development, and Demonstration) program development for natural analogue studies. In addition, the methodology developed and the database compiled in this study may assist in the development of safety case including safety assessment for high-level radioactive waste disposal in Korea as well as in other countries. (authors)

  9. Development of a natural analogue database to support the safety case of the Korean radioactive waste disposal program

    Energy Technology Data Exchange (ETDEWEB)

    Baik, M.H.; Park, T.J.; Kim, I.Y.; Jeong, J. [Korea Atomic Research Institute, Yuseong-Gu, Daejeon (Korea, Republic of); Choi, K.W. [Korea Institute of Nuclear Safety, Yuseong-Gu, Daejeon (Korea, Republic of)

    2015-06-15

    In this study, the status of natural analogue studies in Korea is briefly summarized and applicability of existing natural analogue information to the Korean safety case has been evaluated. To enable effective application of natural analogue information to the overall evaluation of long-term safety (the 'safety case') for the geological disposal of radioactive wastes, a natural analogue database has been developed by collecting, classifying, and evaluating relevant data. The natural analogue data collected were classified into categories based on site information, components/processes of the disposal system, properties/phenomena, reference, safety case application, application method, and suitability to a safety case. Suitability of the natural analogue data to a specific safety case was evaluated based upon the importance and the applicability to the Korean safety case. As a result, 75 natural analogue datasets were selected as important for the Korean safety case. The database developed can now be utilized in the RD and D (Research, Development, and Demonstration) program development for natural analogue studies. In addition, the methodology developed and the database compiled in this study may assist in the development of safety case including safety assessment for high-level radioactive waste disposal in Korea as well as in other countries. (authors)

  10. Long-term risk assessment of radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Girardi, F.; Bertozzi, G.; D'Alessandro, M.

    1978-01-01

    Methods for long-term safety analysis of waste from nuclear power production in the European Community are under study at the Joint Research Centre (JRC) at Ispra, Italy. Aim of the work is to develop a suitable methodology for long-term risk assessment. The methodology under study is based on the assessment of the quantitative value of a system of barriers which may be interposed between waste and man. The barriers considered are: a) quality of the segregation afforded by the geological formation, b) chemical and physical stability of conditioned waste, c) interaction with geological environments (subsoil retention), d) distribution in the biosphere. The methodology is presently being applied to idealized test cases based on the following assumptions: waste are generated during 30 years of operations in a nuclear park (reprocessing + refabrication plant) capable of treating 1000 ton/yr of LWR fuel. High activity waste is conditioned as borosilicate glass (HAW) while low- and medium-level wastes are bituminized (BIP). All waste is disposed off into a salt formation. Transport to the biosphere, following the containment failure occurs by groundwater, with no delay due to retention on adsorbing media. Distribution into the biosphere occurs according to the terrestrial model indicated. Under these assumptions, information was drawn concerning environmental contamination, its levels, contributing elements and pathways to man

  11. Consideration of timescales in post-closure safety of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2006-11-01

    A key challenge in the development of safety cases for geological repositories is associated with the long periods of time over which radioactive wastes that are disposed of in repositories remain hazardous. Over such periods, a wide range of events and processes characterised by many different timescales acts on a repository and its environment. These events and processes, their attendant uncertainties, and their possible impacts on repository evolution and performance must be identified, assessed and communicated in a safety case. The handling of issues related to timescales was discussed at an OECD/NEA workshop held in Paris in 2002 and a short report providing an account of the lessons learnt and issues raised at the workshop, was published in 2004. There is, however, an evolving understanding regarding the nature of the issues related to timescales and how they should be addressed, which provides the motivation for the present report. The report is based on the analysis of the responses to a questionnaire received from twenty-four organisations, representing both implementers and regulators from thirteen OECD member countries, as well as discussions that took place in several later meetings. The report is aimed at interested parties that already have some detailed background knowledge of safety assessment methodologies and safety cases, including safety assessment practitioners and regulators, project managers and scientific specialists in relevant disciplines. Its aims are: - to review the current status and ongoing discussions on the handling of issues related to timescales in the deep geological disposal of long-lived radioactive waste; - to highlight areas of consensus and points of difference between national programmes; and - to determine if there is room for further improvement in methodologies to handle these issues in safety assessment and in building and presenting safety cases. The handling of issues related to timescales in safety cases is affected

  12. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  13. Malaysian experiences in radiological safety assessment on norm wastes

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma Syed Ahmad; Khairuddin Mohamad Kontol

    2000-01-01

    Radiological Impact Assessments (RIAs) on proposed disposal sites for NORM wastes were performed in Malaysia. Analysis results were used to derive site specific guidelines for allowable residual concentrations of radionuclides in soil, calculation of doses and risks. Appropriate use scenarios and site specific parameters were used as much as possible so as to be realistic so that will reasonably ensure that individual dose limits and or constraints will be achieved. Disposals were performed to fulfil Atomic Energy Licensing Board of Malaysia (AELB) requirements for which the operator must carry out a radiological impact assessment. This is to demonstrate that no member of public will be exposed to more than 1 mSv/year from all activities. Fatal cancer risk factor is 5x10 -2 per man.Sv. Radionuclides of main concern are radium-226 and radium-228 which are considered as toxic. Sensitivity and uncertainty analyses were performed to show that the parameters used as input into the computer model were justified so as to improve confidence of the public and the AELB in respect of the results of the analysis. Case study to determine a proposed near surface disposal site for treated oil sludge was described. (author)

  14. Assessment of gas flammability in transuranic waste container

    International Nuclear Information System (INIS)

    Connolly, M.J.; Loehr, C.A.; Djordjevic, S.M.; Spangler, L.R.

    1995-01-01

    The Safety Analysis Report for the TRUPACT-II Shipping Package [Transuranic Package Transporter-II (TRUPACT-II) SARP] set limits for gas generation rates, wattage limits, and flammable volatile organic compound (VOC) concentrations in transuranic (TRU) waste containers that would be shipped to the Waste Isolation Pilot Plant (WIPP). Based on existing headspace gas data for drums stored at the Idaho National Engineering Laboratory (INEL) and the Rocky Flats Environmental Technology Site (RFETS), over 30 percent of the contact-handled TRU waste drums contain flammable VOC concentrations greater than the limit. Additional requirements may be imposed for emplacement of waste in the WIPP facility. The conditional no-migration determination (NMD) for the test phase of the facility required that flame tests be performed if significant levels of flammable VOCs were present in TRU waste containers. This paper describes an approach for investigating the potential flammability of TRU waste drums, which would increase the allowable concentrations of flammable VOCS. A flammability assessment methodology is presented that will allow more drums to be shipped to WIPP without treatment or repackaging and reduce the need for flame testing on drums. The approach includes experimental work to determine mixture lower explosive limits (MLEL) for the types of gas mixtures observed in TRU waste, a model for predicting the MLEL for mixtures of VOCS, hydrogen, and methane, and revised screening limits for total flammable VOCs concentrations and concentrations of hydrogen and methane using existing drum headspace gas data and the model predictions

  15. Application of FEPs analysis to identify research priorities relevant to the safety case for an Australian radioactive waste facility

    International Nuclear Information System (INIS)

    Payne, T.E.; McGlinn, P.J.

    2007-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has established a project to undertake research relevant to the safety case for the proposed Australian radioactive waste facility. This facility will comprise a store for intermediate level radioactive waste, and either a store or a near-surface repository for low-level waste. In order to identify the research priorities for this project, a structured analysis of the features, events and processes (FEPs) relevant to the performance of the facility was undertaken. This analysis was based on the list of 137 FEPs developed by the IAEA project on 'Safety Assessment Methodologies for Near Surface Disposal Facilities' (ISAM). A number of key research issues were identified, and some factors which differ in significance for the store, compared to the repository concept, were highlighted. For example, FEPs related to long-term groundwater transport of radionuclides are considered to be of less significance for a store than a repository. On the other hand, structural damage from severe weather, accident or human interference is more likely for a store. The FEPs analysis has enabled the scientific research skills required for the inter-disciplinary project team to be specified. The outcomes of the research will eventually be utilised in developing the design, and assessing the performance, of the future facility. It is anticipated that a more detailed application of the FEPs methodology will be undertaken to develop the safety case for the proposed radioactive waste management facility. (authors)

  16. Environmental and safety problems of waste management in nuclear engineering

    International Nuclear Information System (INIS)

    Schwibach, J.; Jacobi, W.

    1976-01-01

    The environmental and safety problems which waste management in nuclear technology poses are discussed under the aspects of the disposal of radioactive waste by nuclear facilities and the safety of radioactive waste disposal. The release and global distribution of long-lived radionuclides such as tritium, Kr-85, C-14, I-129, and Pu-239 as well as the radiation exposure of the world population resulting thereof are investigated, the authors starting from a specific production rate of the nuclides released from nuclear facilities. Definitions of the terms 'dose commitment' and 'collective dose commitment' are given. Furthermore, local radiation exposure in reprocessing plants is investigated and compared with regional and global radiation exposure. A recommendation is made to take measures which would reduce the nuclides tritium, Kr-85, and C-14 in order to achieve considerably smaller collective doses. (HR/LN) [de

  17. Waste Encapsulation and Storage Facility interim operational safety requirements

    CERN Document Server

    Covey, L I

    2000-01-01

    The Interim Operational Safety Requirements (IOSRs) for the Waste Encapsulation and Storage Facility (WESF) define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt and inspection of cesium and strontium capsules from private irradiators; decontamination of the capsules and equipment; surveillance of the stored capsules; and maintenance activities. Controls required for public safety, significant defense-in-depth, significant worker safety, and for maintaining radiological consequences below risk evaluation guidelines (EGs) are included.

  18. Climate change and landscape development in post-closure safety assessment of solid radioactive waste disposal: Results of an initiative of the IAEA.

    Science.gov (United States)

    Lindborg, T; Thorne, M; Andersson, E; Becker, J; Brandefelt, J; Cabianca, T; Gunia, M; Ikonen, A T K; Johansson, E; Kangasniemi, V; Kautsky, U; Kirchner, G; Klos, R; Kowe, R; Kontula, A; Kupiainen, P; Lahdenperä, A-M; Lord, N S; Lunt, D J; Näslund, J-O; Nordén, M; Norris, S; Pérez-Sánchez, D; Proverbio, A; Riekki, K; Rübel, A; Sweeck, L; Walke, R; Xu, S; Smith, G; Pröhl, G

    2018-03-01

    The International Atomic Energy Agency has coordinated an international project addressing climate change and landscape development in post-closure safety assessments of solid radioactive waste disposal. The work has been supported by results of parallel on-going research that has been published in a variety of reports and peer reviewed journal articles. The project is due to be described in detail in a forthcoming IAEA report. Noting the multi-disciplinary nature of post-closure safety assessments, here, an overview of the work is given to provide researchers in the broader fields of radioecology and radiological safety assessment with a review of the work that has been undertaken. It is hoped that such dissemination will support and promote integrated understanding and coherent treatment of climate change and landscape development within an overall assessment process. The key activities undertaken in the project were: identification of the key processes that drive environmental change (mainly those associated with climate and climate change), and description of how a relevant future may develop on a global scale; development of a methodology for characterising environmental change that is valid on a global scale, showing how modelled global changes in climate can be downscaled to provide information that may be needed for characterising environmental change in site-specific assessments, and illustrating different aspects of the methodology in a number of case studies that show the evolution of site characteristics and the implications for the dose assessment models. Overall, the study has shown that quantitative climate and landscape modelling has now developed to the stage that it can be used to define an envelope of climate and landscape change scenarios at specific sites and under specific greenhouse-gas emissions assumptions that is suitable for use in quantitative post-closure performance assessments. These scenarios are not predictions of the future, but

  19. The role of quantitative uncertainty in the safety analysis of flammable gas accidents in Hanford waste tanks

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1998-01-01

    which will solve the two basic difficulties of defining the bounding case and assessing the impact of controls. The refined safety analysis does this by explicitly quantifying the effects of the uncertainty in the state of knowledge about accident phenomena and data and providing a consistent basis for calculating the impact of alternative control strategies on parameters that affect accident risk. The refined analysis allows the assessment of the risk impact of the variability in conditions (e.g., waste inventory) among storage tanks in the TWRS. Finally, the refined flammable gas accident safety analysis supports sensitivity studies to examine the impact on the results of differences in flammable gas accident perspectives

  20. International Conference on the Safety of Radioactive Waste Management. Book of Papers

    International Nuclear Information System (INIS)

    2016-01-01

    The purpose of the conference was to highlight the importance of an integrated long term approach to the management of radioactive waste and spent fuel. The objectives of the conference were: • To foster information exchange between Member States, • To provide inputs that will promote further harmonization of safety in the fields of predisposal management and disposal of radioactive waste, • To highlight progress made in the safety of all types of radioactive waste. The conference served as a forum for discussing past experiences and future challenges. Furthermore, it seeked to identify Member States’ needs in order to assist them — through specific activities under future IAEA programmes in this area — to develop and implement safe solutions for the management of their entire radioactive waste inventory. The conference addressed all aspects of predisposal management and disposal of radioactive waste and spent fuel, including waste arising from accidental situations. The management of radioactive waste and residues from mining activities, as well as the control of discharges from nuclear facilities and activities, were, however, outside of its scope.

  1. Progress report on safety research on high-level waste management for the period April 1989 to March 1990

    International Nuclear Information System (INIS)

    Muraoka, Susumu; Senoo, Muneaki; Kobayashi, Yoshii

    1991-02-01

    Research on high-level waste management at the Engineered Barrier Materials Laboratory, Environmental Geochemistry Laboratory and Environmental Radiochemistry Laboratory of the Department of Environmental Safety Research, JAERI in the fiscal year of 1989 are described. The topics are as follows: 1) As for waste forms and engineered barrier material, performance assessment studies on glass and ceramic forms, and corrosion test of carbon steel were continued. 2) In the safety evaluation study for geological disposal, chemical behavior of nuclide in water, nuclide migration and retardation in geosphere were studied. New microspectrometers was developed to analyze the chemical form in rocks. 3) Distribution and migration of uranium in uranium ore were examined as a natural analogue study. (author)

  2. Progress report on safety research on high-level waste management for the period April 1991 to March 1992

    International Nuclear Information System (INIS)

    Muraoka, Susumu; Senoo, Muneaki; Kobayashi, Yoshii

    1993-03-01

    Research on high-level waste management at the Engineered Barrier Materials Laboratory, Environmental Geochemistry Laboratory and Environmental Radiochemistry Laboratory of the Department of Environmental Safety Research, JAERI in the fiscal year of 1991 are described. The topics are as follows: 1) As for waste forms and engineered barrier material, performance assessment studies on glass, ceramic and buffer materials were carried out. 2) In the safety evaluation study for geological disposal, behavior of radionuclide in deep underground water, nuclide migration in-situ and natural groundwater flow system were studied. 3) Changes in layer charge of smectite, alteration of uranium mineral and uranium fixation in uranium ore were examined as a natural analogue study. (author)

  3. Radiological safety and risk assessment

    International Nuclear Information System (INIS)

    Hunter, P.H.; Barg, D.C.; Baird, R.D.; Card, D.H.; de Souza, F.; Elder, J.; Felthauser, K.; Jensen, C.; Winkler, V.

    1982-02-01

    A brief radiological safety and risk assessment of a nuclear power generation center with an adjacent on-site waste disposal facility at a specific site in the State of Utah is presented. The assessment was conducted to assist in determining the feasibility and practicality of developing a nuclear energy center (NEC) in Utah consisting of nine 1250 MWe nuclear pressurized water reactor (PWR) electrical generating units arranged in 3 clusters of 3 units each known as triads. The site selected for this conceptual study is in the Horse Bench area about 15 miles directly south of the town of Green River, Utah. The radiological issues included direct radiation exposures to on-site workers and the off-site population, release of radioactive material, and effects of these releases for both normal operations and accidental occurrences. The basic finding of this study is that the concept of an NEC in the Green River area, specifically at the Horse Bench site, is radiologically feasible

  4. Safety assessment of OPG's used fuel for dry storage

    International Nuclear Information System (INIS)

    Roman, H.; Khan, A.

    2005-01-01

    'Full text:' Ontario Power Generation (OPG) operates the Pickering Waste Management Facility (PWMF) and Western Waste Management Facility (WWMF) where OPG has been storing 10-year or older used fuel in the Dry Storage Containers (DSCs) since 1996 and 2003 respectively. The construction licence for the Darlington Used Fuel Dry Storage Facility (DUFDSF) was obtained in August 2004. Safety assessment of the used fuel for dry storage is required to support each request for regulatory approval to construct and operate a dry storage facility. The objective of the safety assessment is to assess the used fuel performance under normal operation and postulated credible accident scenarios. A reference used fuel bundle is defined based on the operating history and data on fuel discharged from the reactors of the specific nuclear generating station. The characteristics of the reference used fuel bundle are used to calculate the nuclide inventory, source term and decay heat used for the assessment. When assessing malfunctions and accidents, postulated external and internal events are considered. Consideration is also given to the design basis accidents of the specific nuclear generating station that could affect the used fuel under dry storage. For those events deemed credible (i.e. probability > 10 -7 ), a bounding fuel failure consequence is predicted. Given the chemical characteristics of the radionuclides in used fuel, the design of the CANDU fuel and the conditions inside the DSC, in the event that a used fuel bundle should become damaged during used fuel dry storage operations, the only significant radionuclides species that are volatile are krypton-85 and tritium. Release of these radionuclides is considered in calculating public and worker doses. (author)

  5. Assessment of heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system for recycling heavy metals from crushed e-wastes.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2014-12-01

    Vacuum metallurgy separation (VMS) is a technically feasible method to recover Pb, Cd and other heavy metals from crushed e-wastes. To further determine the environmental impacts and safety of this method, heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system are evaluated in this article. The mass concentrations of total suspended particulate (TSP) and PM10 are 0.1503 and 0.0973 mg m(-3) near the facilities. The concentrations of Pb, Cd and Sn in TSP samples are 0.0104, 0.1283 and 0.0961 μg m(-3), respectively. Health risk assessments show that the hazard index of Pb is 3.25 × 10(-1) and that of Cd is 1.09 × 10(-1). Carcinogenic risk of Cd through inhalation is 1.08 × 10(-5). The values of the hazard index and risk indicate that Pb and Cd will not cause non-cancerous effects or carcinogenic risk on workers. The noise sources are mainly the mechanical vacuum pump and the water cooling pump. Both of them have the noise levels below 80 dB (A). The thermal safety assessment shows that the temperatures of the vacuum metallurgy separation system surface are all below 303 K after adopting the circulated water cooling and heat insulation measures. This study provides the environmental information of the vacuum metallurgy separation system, which is of assistance to promote the industrialisation of vacuum metallurgy separation for recovering heavy metals from e-wastes. © The Author(s) 2014.

  6. Pre-title I safety evaluation for the retrieval operations of transuranic waste drums in the Solid Waste Disposal Facility. Revision 2

    International Nuclear Information System (INIS)

    Rabin, M.S.

    1992-08-01

    Phase I of the Transuranic (TRU) Waste Facility Line Item Project includes the retrieval and safe storage of the pad drums that are stored on TRU pads 2-6 in the Solid Waste Disposal Facility (SWDF). Drums containing TRU waste were placed on these pads as early as 1974. The pads, once filled, were mounded with soil. The retrieval activities will include the excavation of the soil, retrieval of the pad drums, placing the drums in overpacks (if necessary) and venting and purging the retrieved drums. Once the drums have been vented and purged, they will be transported to other pads within the SWDF or in a designated area until they are eventually treated as necessary for ultimate shipment to the Waste Isolation Pilot Plant in Carlsbad, New Mexico. This safety evaluation provides a bounding assessment of the radiological risk involved with the drum retrieval activities to the maximally exposed offsite individual and the co-located worker. The results of the analysis indicate that the risk to the maximally exposed offsite individual and the co-located worker using maximum frequencies and maximum consequences are within the acceptance criteria defined in WSRC Procedural Manual 9Q. The purpose of this evaluation is to demonstrate the incremental risk from the SWDF due to the retrieval activities for use as design input only. As design information becomes available, this evaluation can be revised to satisfy the safety analysis requirements of DOE Orders 4700 and 5480.23

  7. Proposal for basic safety requirements regarding the disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    1980-04-01

    A working group commissioned to prepare proposals for basic safety requirements for the storage and transport of radioactive waste prepared its report to the Danish Agency of Environmental Protection. The proposals include: radiation protection requirements, requirements concerning the properties of high-level waste units, the geological conditions of the waste disposal location, the supervision of waste disposal areas. The proposed primary requirements for safety evaluation of the disposal of high-level waste in deep geological formations are of a general nature, not being tied to specific assumptions regarding the waste itself, the geological and other conditions at the place of disposal, and the technical methods of disposal. It was impossible to test the proposals for requirements on a working repository. As no country has, to the knowledge of the working group, actually disposed of hifg-level radioactive waste or approved of plans for such disposal. Methods for evaluating the suitability of geological formations for waste disposal, and background material concerning the preparation of these proposals for basic safety requirements relating to radiation, waste handling and geological conditions are reviewed. Appended to the report is a description of the phases of the fuel cycle that are related to the storage of spent fuel and the disposal of high-level reprocessing waste in a salt formation. It should be noted that the proposals of the working group are not limited to the disposal of reprocessed fuel, but also include the direct disposal of spent fuel as well as disposal in geological formations other than salt. (EG)

  8. An outline of Nirex's research and safety assessment programmes

    International Nuclear Information System (INIS)

    Saunders, P.A.H.

    1987-11-01

    This document outlines the safety studies being carried out by Nirex to ensure that radioactive wastes are disposed of in such a way that significant exposure of the public to radiation is at a minimum. The studies comprise experimental and theoretical work and mathematical modelling to predict performance over a long time-scale. Laboratory experiments are concerned with the immobilisation and packaging of wastes. Field studies provide information on radionuclide migration and the geology of possible repository sites. The results should ensure that waste disposal meets the exacting government safety standards. (U.K.)

  9. Performance assessment for low-level waste disposal in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, A.B. [UK Dept. of the Environment, London (United Kingdom)

    1995-12-31

    British Nuclear Fuels plc (BNFL) operate a site for the disposal of Low Level Radioactive Waste at Drigg in West Cumbria, in North-West England. HMIP are responsible for the regulation of the site with regard to environmental discharges of radioactive materials, both operational and post-closure. This paper is concerned with post-closure matters only. Two post-closure performance assessments have been carried out for this site: one by the National Radiological Protection Board (NRPB) in 1987; and a subsequent one carried out on behalf of HMIP, completed in 1991. Currently, BNFL are preparing a Safety Case for continued operation of the Drigg site, and it expected that the core of this Case will comprise BNFL`s own analysis of post-closure performance. HMIP has developed procedures for the assessment of this Case, based upon experience of the previous Drigg assessments, and also upon the experience of similar work carried out in the assessment of Intermediate Level Waste (ILW) disposal at both deep and shallow potential sites. This paper describes the more important features of these procedures.

  10. Manual on oil-gas industry waste utilization radioecological safety

    International Nuclear Information System (INIS)

    Kudryashev, V.A.; Lukashenko, S.N.; Tuleushev, A.Zh.; Marabaev, Zh.N.; Pasysaev, V.A.; Kayukov, P.G.; Kozhakhmetov, N.B.; Shevtsov, S.P.

    2003-01-01

    The development of a new document - 'Manual on radio-ecologically safe utilization of waste from oil-and-gas production' is carried out. This document regulates the whole cycle of environment protection measures at waste utilization for the named industry in Kazakhstan and is aimed on lowering the radiation risks and assurance of radioecological safety both at present and for the future. The document presents a set regulations necessary for radioactive wastes handling in the oil-gas industry. The normative document was agreed in both the Ministry of Health of the Republic of Kazakhstan (RK) and Ministry of Environment Protection of RK

  11. Radioactive wastes. Commune convention about the safety of spent fuel management and about the radioactive waste management

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    This common convention do not give detailed safety standards but general obligations whom objective is the development of a safety culture in the world. It concerns the spent fuels (valuable and valued by the reprocessing) and radioactive wastes (matter without any later use). (N.C.)

  12. Cigeo storage project - Examination of the Safety options file. Meeting of the Experts Permanent Groups for wastes and for laboratories and plants on the 18-19 May 2017

    International Nuclear Information System (INIS)

    2017-01-01

    This document contains a report in two volumes and several appendices with documents issues by other bodies than the IRSN (notably the ASN). The two volumes report a study made on the request of the ASN regarding safety options for the Cigeo project of deep geological storage of nuclear wastes. The first volume proposes a description of the Cigeo project (site, storage architecture, parcels, Cigeo timescale, storage closure, processes implemented within the installations, Cigeo adaptability to inventory evolution, safety functions), addresses the waste parcel inventory (parcel inventory, reference radiological and chemical inventories, storage planning, reserve wastes, spent fuels), presents elements related to the site itself (geological context, natural resources, geo-dynamic characterisation, host rock, hydro-geology of aquifer layers), discusses the evolution of storage components (parcel behaviour after storage closure, evolution of steels, of concretes and of clayey materials). The second volume proposes a detailed overview of the safety approach for the different phases (exploitation, and after closure), proposes an assessment of safety during the exploitation phase (internal risks from nuclear origin, internal aggressions like fire, flooding or explosion, or related to parcel transport and handling, external aggressions like earthquakes, external flooding, and issues related to exploitation effluents and wastes), and proposes a safety assessment after closure (risk analysis for underground installations, and assessment of the global confinement capacity)

  13. Initial emission assessment of hazardous-waste-incineration facilities

    International Nuclear Information System (INIS)

    Harrington, E.S.; Holton, G.A.; O'Donnell, F.R.

    1982-01-01

    Health and Safety Research Division, sponsored by EPA, conducted a study to quantify emission factors from stacks, spills, fugitives, storage, and treatment for a typical hazardous waste incinerator facility. Engineering participated in preparing flowsheets and providing calculations for fugitive emissions. Typical block-flow diagrams were developed two types of hazardous waste incinerators (rotary kiln and liquid-injector) and for three capacities (small: 1 MM Btu/hr, median: 10 MM Btu/hr, and large: 150 MM Btu/hr). Storage reqirements and support services were determined in more detail. Using the properties of a typical waste, fugitive emissions were determined, including emissions from pump leaks, valve leaks, flange leaks, and tank vents. An atmospheric dispersion model was then employed to calculate atmospheric concentration and population exposure estimates. With these estimates, an assessment was performed to determine the percentage of concentrations and exposure associated with selected emissions from each source at the incineration facility. Results indicated the relative importance of each source at the incineration facility. Results indicated the relative importance of each source both in terms of public health and pollution control requirements

  14. Some concepts of model uncertainty for performance assessments of nuclear waste repositories

    International Nuclear Information System (INIS)

    Eisenberg, N.A.; Sagar, B.; Wittmeyer, G.W.

    1994-01-01

    Models of the performance of nuclear waste repositories will be central to making regulatory decisions regarding the safety of such facilities. The conceptual model of repository performance is represented by mathematical relationships, which are usually implemented as one or more computer codes. A geologic system may allow many conceptual models, which are consistent with the observations. These conceptual models may or may not have the same mathematical representation. Experiences in modeling the performance of a waste repository representation. Experiences in modeling the performance of a waste repository (which is, in part, a geologic system), show that this non-uniqueness of conceptual models is a significant source of model uncertainty. At the same time, each conceptual model has its own set of parameters and usually, it is not be possible to completely separate model uncertainty from parameter uncertainty for the repository system. Issues related to the origin of model uncertainty, its relation to parameter uncertainty, and its incorporation in safety assessments are discussed from a broad regulatory perspective. An extended example in which these issues are explored numerically is also provided

  15. Self-assessment of safety culture in nuclear installations. Highlights and good practices

    International Nuclear Information System (INIS)

    2002-11-01

    This report summarizes the findings of two IAEA Technical Committee Meetings on Safety Culture Self-Assessment Highlights and Good Practices. The meetings took place on 3-5 June 1998 and 23-25 October 2000 in Vienna, and involved an international cross-section of representatives who participated both in plenary discussions and working groups. The purpose of the meetings was to discuss the practical implications of evolutionary changes in the development of safety culture, and to share international experience, particularly on the methods used for the assessment of safety culture and good practices for its enhancement in an organization. The working groups were allocated specific topics for discussion, which included the following: organizational factors influencing the implementation of actions to improve safety culture; how to measure, effectively, progress in implementing solutions to safety culture problems; the symptoms of a weakening safety culture; the suitability of different methods for assessing safety culture; the achievement of sustainable improvements in safety culture using the results of assessment; the potential threats to the continuation of a strong safety culture in an organization from the many challenges facing the nuclear industry. The working groups, when appropriate, considered issues from both the utility's and the regulator's perspectives. This report will be of interest to all organizations who wish to assess and achieve a strong and sustainable safety culture. This includes not only nuclear power plants, but also other sectors of the nuclear industry such as uranium mines and mills, nuclear fuel fabrication facilities, nuclear waste repositories, research reactors, accelerators, radiography facilities, etc. The report specifically supplements other IAEA publications on this subject

  16. Technical assessment of the bedrock waste storage at the Savannah River Plant

    International Nuclear Information System (INIS)

    Bradley, R.F.; Corey, J.C.

    1976-11-01

    An assessment of the safety and feasibility of ultimate storage of radioactive wastes produced at the Savannah River Plant (SRP) in horizontal tunnels excavated in the bedrock beneath the plant site is presented. Results indicate that a cavern with an excavated volume of 130 million gallons could contain 80 million gallons of concentrated radioactive SRP wastes with minimal risks if the cavern is located in the impermeable Triassic Basin underlying the Savannah River site. The cavern could be placed so that it would lie wholly within the boundaries of the plantsite. The document summarizes the general geological, hydrological, and chemical knowledge of the geological structures beneath the plantsite; develops evaluation guidelines; and utilizes mathematical models to conduct risk analyses. The risk models are developed from known soil and salt solution mechanics; from past, present, and future geological behavior of the onsite rock formations; and from known waste handling technology. The greatest risk is assessed to exist during transfer of the radioactive wastes to the cavern. When the cavern is filled and sealed, further population risks are asessed to be very low

  17. Environmental, safety, and health engineering

    International Nuclear Information System (INIS)

    Woodside, G.; Kocurek, D.

    1997-01-01

    A complete guide to environmental, safety, and health engineering, including an overview of EPA and OSHA regulations; principles of environmental engineering, including pollution prevention, waste and wastewater treatment and disposal, environmental statistics, air emissions and abatement engineering, and hazardous waste storage and containment; principles of safety engineering, including safety management, equipment safety, fire and life safety, process and system safety, confined space safety, and construction safety; and principles of industrial hygiene/occupational health engineering including chemical hazard assessment, personal protective equipment, industrial ventilation, ionizing and nonionizing radiation, noise, and ergonomics

  18. Waste disposal

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste, as a unavoidable remnant from the use of radioactive substances and nuclear technology. It is potentially hazardous to health and must therefore be managed to protect humans and the environment. The main bulk of radioactive waste must be permanently disposed in engineered repositories. Appropriate safety standards for repository design and construction are required along with the development and implementation of appropriate technologies for the design, construction, operation and closure of the waste disposal systems. As backend of the fuel cycle, resolving the issue of waste disposal is often considered as a prerequisite to the (further) development of nuclear energy programmes. Waste disposal is therefore an essential part of the waste management strategy that contributes largely to build confidence and helps decision-making when appropriately managed. The International Atomic Energy Agency provides assistance to Member States to enable safe and secure disposal of RW related to the development of national RWM strategies, including planning and long-term project management, the organisation of international peer-reviews for research and demonstration programmes, the improvement of the long-term safety of existing Near Surface Disposal facilities including capacity extension, the selection of potential candidate sites for different waste types and disposal options, the characterisation of potential host formations for waste facilities and the conduct of preliminary safety assessment, the establishment and transfer of suitable technologies for the management of RW, the development of technological solutions for some specific waste, the building of confidence through training courses, scientific visits and fellowships, the provision of training, expertise, software or hardware, and laboratory equipment, and the assessment of waste management costs and the provision of advice on cost minimisation aspects

  19. Joint SKI and SSI review of SKB preliminary safety assessment of repository for long-lived low- and intermediate-level waste. Review report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    that SKB have included no discussion in the safety report as to which R and D activities they intend to prioritise. According to the current SKB timetable, siting and construction of SFL 3-5 will not begin for another 30 years. However, SKI and SSI do not consider this to be a reason to postpone essential R and D work. If a complete and thorough basis is not produced for assessing the long-term safety of an SFL 3-5 repository, the risk that these waste categories will have to undergo interim storage for an indefinite period of time increases. A future siting of SFL 3-5 based on our current level of knowledge is problematic. The present safety assessment points toward a substantial site-specific effect on the repository's protective capacity that can be related primarily to the local groundwater flow rate, but also to relevant geochemical conditions. Calculated doses for cases involving consumption of drinking water give the impression that the margins are small vis-a-vis the existing requirement framework, at least based on the methods used heretofore. In their main report, SKB discuss the possibility of improving the technical barriers to increase their impact on long-term safety (thereby mitigating the impact of site-specific factors). SKI and SSI feel that this approach is reasonable from the current preliminary perspective, but not for subsequent stages. SKB should in future formulate a proposed repository design that can be considered sufficiently robust with respect to the effects of the site-specific factors and their long-term evolution. The requirements and criteria that are relevant to the siting of SFL 3-5 must be addressed therein. In addition, more in-depth studies regarding the optimum storage depth for SFL 3-5 and the importance of the interactions between SFL 2 and SFL 3-5 should be undertaken relatively soon. The importance of these issues needs to be well documented in order to provide a basis for identifying suitable rock volumes for potential

  20. National report of the Slovak Republic - proposal. Compiled in terms of the joint convention on the safety of spent fuel management and on the safety of radioactive waste management. Jun 2008

    International Nuclear Information System (INIS)

    Jurina, V.; Viktory, D.; Kobzova, D.; Petrik, T.; Sovcik, J.; Hekel, P.; Suess, J.; Tomek, J.; Lukacovic, J.; Hekel, P.; Ivan, J.; Ziakova, M.; Metke, E.; Pospisil, M.; Turner, M.; Homola, J.; Konecny, L.; Parimucha, F.; Vaclav, J.; Horvath, J.; Soos, F.; Betak, A.; Pospisil, P.; Mihaly, B.; Kubala, M.; Schmidtova, B.; Orihel, M.; Vasina, D.; Balaz, J.; Ehn, L.; Micovicova, D.; Vrtoch, M.; Mlcuch, L.; Granak, P.; Meleg, J.; Sedliak, D.; Bardy, M.; Gogoliak, J.; Prazska, M.; Burslova, J.

    2008-06-01

    A brief national safety report of the Slovak Republic compiled in terms of the joint convention on the safety of spent fuel management and on the safety of radioactive waste management in 2008 is presented. This safety report consists of following chapters: (A) Introduction; (B) Spent nuclear fuel (SNF) and radioactive waste (RAW) management conception; (C) Scope of application; (D) Spent nuclear fuel (SNF) and radioactive waste (RAW) management; (E) Legislation and regulatory framework; (F) General safety provisions; (G) Safety of spent nuclear fuel management; (H) Safety of radioactive waste management; (I) Transboundary movement of spent nuclear fuel and radioactive waste; (J) Discussed sealed radioactive sources; (K) Planned measures to improve safety; (L) Annexes