WorldWideScience

Sample records for safe sustainable carbon-free

  1. Scalable and sustainable synthesis of carbon microspheres via a purification-free strategy for sodium-ion capacitors

    Science.gov (United States)

    Wang, Shijie; Wang, Rutao; Zhang, Yabin; Jin, Dongdong; Zhang, Li

    2018-03-01

    Sodium-based energy storage receives a great deal of interest due to the virtually inexhaustible sodium reserve, while the scalable and sustainable strategies to synthesize carbon-based materials with suitable interlayer spaces and large sodium storage capacities are yet to be fully investigated. Carbon microspheres, with regular geometry, non-graphitic characteristic, and stable nature are promising candidates, yet the synthetic methods are usually complex and energy consuming. In this regard, we report a scalable purification-free strategy to synthesize carbon microspheres directly from 5 species of fresh juice. As-synthesized carbon microspheres exhibit dilated interlayer distance of 0.375 nm and facilitate Na+ uptake and release. For example, such carbon microsphere anodes have a specific capacity of 183.9 mAh g-1 at 50 mA g-1 and exhibit ultra-stability (99.0% capacity retention) after 10000 cycles. Moreover, via facile activation, highly porous carbon microsphere cathodes are fabricated and show much higher energy density at high rate than commercial activated carbon. Coupling the compelling anodes and cathodes above, novel sodium-ion capacitors show the high working potential up to 4.0 V, deliver a maximum energy density of 52.2 Wh kg-1, and exhibit an acceptable capacity retention of 85.7% after 2000 cycles.

  2. 76 FR 12719 - Safe Schools/Healthy Students Program; Office of Safe and Drug-Free Schools; Safe Schools/Healthy...

    Science.gov (United States)

    2011-03-08

    ... DEPARTMENT OF EDUCATION Safe Schools/Healthy Students Program; Office of Safe and Drug- Free Schools; Safe Schools/Healthy Students Program; Catalog of Federal Domestic Assistance (CFDA) Numbers: 84... priorities, requirements, and definitions under the Safe Schools/Healthy Students (SS/HS) program. Since...

  3. Blood, donors and dollars: Rethinking financial sustainability of safe blood services in Tanzania

    Directory of Open Access Journals (Sweden)

    Kahabi Ganka Isangula

    2016-01-01

    Full Text Available Introduction Collection, processing and distribution of safe blood in Tanzania occurs within a free-for-service context, that is, a collection from non-remunerated blood donors and distributing freely to the needy people through health facilities. The safe blood services in the country appear to be crippled with many challenges and cannot meet the demand for blood and its products. As such, a need for rethinking collection methods, financial models and possible mechanisms for donor remuneration is evident. Methods In this paper, we venture on multi-stakeholder meetings and ongoing discussions regarding the internal mechanisms of safe blood transfusion financing. The intent is to offer a perspective on the considerations for self- sustaining safe blood services in the country and the extent to which they may be implemented or not. Results We suggest that despite huge demand, the external donor dependent financing mechanisms for safe blood services in the country are ineffective. Therefore, we discuss two potential ‘internal’ financing mechanisms that have been identified in recent shareholders forums 1 introducing a blood processing fee accompanied by policy change to allow direct charging of either recipients or hospitals or 2 influencing the introduction of ‘blood services’ within the current insurance schemes. Conclusion We conclude that there is a need for constructing alternative financial mechanisms to sustain the demand of safe blood in the country. We discuss two cost recovery mechanisms, blood processing fee and insurance schemes; however, warning is noted that their implementation warrants structural adjustments, massive community sensitization and optimum stakeholder engagement to maximize acceptability within the country.

  4. The journey from safe yield to sustainability.

    Science.gov (United States)

    Alley, William M; Leake, Stanley A

    2004-01-01

    Safe-yield concepts historically focused attention on the economic and legal aspects of ground water development. Sustainability concerns have brought environmental aspects more to the forefront and have resulted in a more integrated outlook. Water resources sustainability is not a purely scientific concept, but rather a perspective that can frame scientific analysis. The evolving concept of sustainability presents a challenge to hydrologists to translate complex, and sometimes vague, socioeconomic and political questions into technical questions that can be quantified systematically. Hydrologists can contribute to sustainable water resources management by presenting the longer-term implications of ground water development as an integral part of their analyses.

  5. How do light railways fit Sustainably-Safe?

    NARCIS (Netherlands)

    2006-01-01

    Light rail vehicles (tram-like trains or train-like trams) are a new vehicle type that falls outside the current sustainably safe vehicle types. Because of the increase in the number of light rail vehicles, there will be an increase in the number of crashes if they mix with other traffic. Light rail

  6. Sustainable materials for low carbon buildings

    OpenAIRE

    B.V. Venkatarama Reddy

    2009-01-01

    This paper focuses on certain issues pertaining to energy, carbon emissions and sustainability of building construction with particular reference to the Indian construction industry. Use of sustainable natural materials in the past, related durability issues, and the implications of currently used energy-intensive materials on carbon emissions and sustainability are discussed. Some statistics on the Indian construction sector regarding materials produced in bulk quantities and the energy impl...

  7. Carbon offsetting: sustaining consumption?

    OpenAIRE

    Heather Lovell; Harriet Bulkeley; Diana Liverman

    2009-01-01

    In this paper we examine how theories of sustainable and ethical consumption help us to understand a new, rapidly expanding type of consumer product designed to mitigate climate change: carbon offsets. The voluntary carbon offset market grew by 200% between 2005 and 2006, and there are now over 150 retailers of voluntary carbon offsets worldwide. Our analysis concentrates on the production and consumption of carbon offsets, drawing on ideas from governmentality and political ecology about how...

  8. Safe and Sustainable: Optimizing Material Flows in a Circular Economy

    DEFF Research Database (Denmark)

    Fantke, Peter

    (unsustainable). When maximizing resource use efficiency and reducing carbon and other emissions through recycling (sustainable), direct consumer exposure is often increased through cross-contamination of recycled materials (unsafe). Hence, circular economy currently fails to unite the required expertise...... to imultaneously increase sustainability and reduce exposure to chemicals in materials reused across life cycles of different products. For a way out of this dilemma, a paradigm shift is needed towards a comprehensive and quantitative assessment framework.......Increasing the sustainability of a globally connected economy is gaining wide attention in a world with limited natural resources and growing chemical pollution. The circular economy has emerged as away to reduce carbon and other emissions, while increasing resource efficiency over several product...

  9. CarbonSAFE Illinois - Macon County

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, Steve [University of Illinois; Illinois State Geological Survey

    2017-08-03

    CarbonSAFE Illinois is a a Feasibility study to develop an established geologic storage complex in Macon County, Illinois, for commercial-scale storage of industrially sourced CO2. Feasibility activities are focused on the Mt. Simon Storage Complex; a step-out well will be drilled near existing storage sites (i.e., the Midwest Geological Sequestration Consortium’s Illinois Basin – Decatur Project and the Illinois Industrial Carbon Capture and Storage Project) to further establish commercial viability of this complex and to evaluate EOR potential in a co-located oil-field trend. The Archer Daniels Midland facility (ethanol plant), City Water, Light, and Power in Springfield, Illinois (coal-fired power station), and other regional industries are potential sources of anthropogenic CO2 for storage at this complex. Site feasibility will be evaluated through drilling results, static and dynamic modeling, and quantitative risk assessment. Both studies will entail stakeholder engagement, consideration of infrastructure requirements, existing policy, and business models. Project data will help calibrate the National Risk Assessment Partnership (NRAP) Toolkit to better understand the risks of commercial-scale carbon storage.

  10. Safe and Sustainable Tall Buildings - State of the Art

    Directory of Open Access Journals (Sweden)

    Mendis P.

    2012-01-01

    Full Text Available Tall buildings are becoming very popular around the world. Asia will have most of the tall buildings in this century. Both safety and sustainability aspects are important in planning and designing these buildings. The design and construction of tall buildings present many challenges for the design team, from engineers, architect through to the builder. Although structural systems could be developed and construction solutions could be found to design and construct very tall buildings in excess of 1 km (even 1 mile, other aspects such as fire and egress, long-term movements, environmental wind and perception of motion (including damping for dynamic effects, transportation (lifts issues, sustainability, durability and maintenance will govern and may even restrict the heights. Current practices and important issues related to design of safe and sustainable design of tall buildings are discussed in this paper.

  11. Organising a safe space for navigating social-ecological transformations to sustainability.

    Science.gov (United States)

    Pereira, Laura; Karpouzoglou, Timothy; Doshi, Samir; Frantzeskaki, Niki

    2015-05-28

    The need for developing socially just living conditions for the world's growing population whilst keeping human societies within a 'safe operating space' has become a modern imperative. This requires transformative changes in the dominant social norms, behaviours, governance and management regimes that guide human responses in areas such as urban ecology, public health, resource security (e.g., food, water, energy access), economic development and biodiversity conservation. However, such systemic transformations necessitate experimentation in public arenas of exchange and a deepening of processes that can widen multi-stakeholder learning. We argue that there is an emergent potential in bridging the sustainability transitions and resilience approaches to create new scientific capacity that can support large-scale social-ecological transformations (SETs) to sustainability globally, not just in the West. In this article, we elucidate a set of guiding principles for the design of a 'safe space' to encourage stronger interactions between these research areas and others that are relevant to the challenges faced. We envisage new opportunities for transdisciplinary collaboration that will develop an adaptive and evolving community of practice. In particular, we emphasise the great opportunity for engaging with the role of emerging economies in facilitating safe space experimentation.

  12. Conceptualizations of sustainability in carbon markets

    DEFF Research Database (Denmark)

    Karavai, Maryna; Hinostroza, Miriam L.

    2013-01-01

    This paper focuses on market responses to climate change, specifically a particular example of voluntary carbon market development, in sub-Saharan Africa, and seeks to identify the principles of sustainability that carbon markets draw upon. We explore how key discourses and their application...... in the context of the carbon market construct a vision of sustainability. We argue that the prevalence of neoliberal and technocratic ideas and values preferring weak ecological modernization, coupled with the contemporary climate regime, marginalize alternative perspectives on climate-constrained development......, thus weakening prospects of averting the dangerous impacts of a changing climate. The analysis is based on the evaluation of 78 projects in the voluntary market across supply chains in 23 countries in the region....

  13. Low carbon transition and sustainable development path of tourism industry

    Science.gov (United States)

    Zhu, Hongbing; Zhang, Jing; Zhao, Lei; Jin, Shenglang

    2017-05-01

    The low carbon transition is as much a transformative technology shift as it represents a response to global environment challenges. The low carbon paradigm presents a new direction of change for tourism industry. However, the lack of theoretical frameworks on low carbon transformation in tourism industry context provides a significant knowledge gap. This paper firstly investigates the relationships between low carbon and sustainable development, followed by exploring the existing challenges of tourism sustainable development. At last, this paper presents a sustainable development path framework for low carbon transition of tourism industry, which include accelerating deployment of renewable energy, energy-saving green building construction, improving green growth investment, and adopting a sustainable consumption and production system, in order to promote energy and water efficiency, waste management, GHG emissions mitigation and eventually enhance its sustainability.

  14. Free Publishing Culture. Sustainable Models?

    Directory of Open Access Journals (Sweden)

    Silvia Nanclares Escudero

    2013-03-01

    Full Text Available As a result of the collective research on the possibilities for publishing production and distribution offered nowadays by the Free Culture scenario, we present here a mapping of symptoms in order to propose a transitory diagnostic of the question: Is it possible to generate an economically sustainable publishing model based on the uses and customs generated and provided by Free Culture? Data, intuitions, experiences and ideas attempt to back up our affirmative answer.

  15. Organising a Safe Space for Navigating Social-Ecological Transformations to Sustainability

    Directory of Open Access Journals (Sweden)

    Laura Pereira

    2015-05-01

    Full Text Available The need for developing socially just living conditions for the world’s growing population whilst keeping human societies within a ‘safe operating space’ has become a modern imperative. This requires transformative changes in the dominant social norms, behaviours, governance and management regimes that guide human responses in areas such as urban ecology, public health, resource security (e.g., food, water, energy access, economic development and biodiversity conservation. However, such systemic transformations necessitate experimentation in public arenas of exchange and a deepening of processes that can widen multi-stakeholder learning. We argue that there is an emergent potential in bridging the sustainability transitions and resilience approaches to create new scientific capacity that can support large-scale social-ecological transformations (SETs to sustainability globally, not just in the West. In this article, we elucidate a set of guiding principles for the design of a ‘safe space’ to encourage stronger interactions between these research areas and others that are relevant to the challenges faced. We envisage new opportunities for transdisciplinary collaboration that will develop an adaptive and evolving community of practice. In particular, we emphasise the great opportunity for engaging with the role of emerging economies in facilitating safe space experimentation.

  16. Organising a Safe Space for Navigating Social-Ecological Transformations to Sustainability

    Science.gov (United States)

    Pereira, Laura; Karpouzoglou, Timothy; Doshi, Samir; Frantzeskaki, Niki

    2015-01-01

    The need for developing socially just living conditions for the world’s growing population whilst keeping human societies within a ‘safe operating space’ has become a modern imperative. This requires transformative changes in the dominant social norms, behaviours, governance and management regimes that guide human responses in areas such as urban ecology, public health, resource security (e.g., food, water, energy access), economic development and biodiversity conservation. However, such systemic transformations necessitate experimentation in public arenas of exchange and a deepening of processes that can widen multi-stakeholder learning. We argue that there is an emergent potential in bridging the sustainability transitions and resilience approaches to create new scientific capacity that can support large-scale social-ecological transformations (SETs) to sustainability globally, not just in the West. In this article, we elucidate a set of guiding principles for the design of a ‘safe space’ to encourage stronger interactions between these research areas and others that are relevant to the challenges faced. We envisage new opportunities for transdisciplinary collaboration that will develop an adaptive and evolving community of practice. In particular, we emphasise the great opportunity for engaging with the role of emerging economies in facilitating safe space experimentation. PMID:26030471

  17. From safe yield to sustainable development of water resources - The Kansas experience

    Science.gov (United States)

    Sophocleous, M.

    2000-01-01

    This paper presents a synthesis of water sustainability issues from the hydrologic perspective. It shows that safe yield is a flawed concept and that sustainability is an idea that is broadly used but perhaps not well understood. In general, the sustainable yield of an aquifer must be considerably less than recharge if adequate amounts of water are to be available to sustain both the quantity and quality of streams, springs, wetlands, and ground-water-dependent ecosystems. To ensure sustainability, it is imperative that water limits be established based on hydrologic principles of mass balance. To establish water-use policies and planning horizons, the transition curves of aquifer systems from ground-water storage depletion to induced recharge of surface water need to be developed. Present-day numerical models are capable of generating such transition curves. Several idealized examples of aquifer systems show how this could be done. Because of the complexity of natural systems and the uncertainties in characterizing them, the current philosophy underlying sustainable management of water resources is based on the interconnected systems approach and on adaptive management. Examples of water-resources management from Kansas illustrate some of these concepts in a real-world setting. Some of the hallmarks of Kansas water management are the formation of local ground-water management districts, the adoption of minimum streamflow standards, the use of modified safe-yield policies in some districts, the implementation of integrated resource planning by the City of Wichita, and the subbasin water-resources management program in potential problem areas. These are all appropriate steps toward sustainable development. The Kansas examples show that local decision-making is the best way to fully account for local variability in water management. However, it is imperative that public education and involvement be encouraged, so that system complexities and constraints are better

  18. Sustainable Low Carbon Transport Scenarios for India

    DEFF Research Database (Denmark)

    Shukla, P.R.; Dhar, Subash; Mittal, Shivika

    2014-01-01

    and local air quality that can be accrued by mainstreaming climate change polices into national sustainable development goals and sectoral plans are also estimated. There is no silver bullet that would enable the transition towards low carbon transport. An optimal mix of policies that includes fuel economy...... standards, modal shifts and cleaner energy supply is required to align climate and sustainable development goals in the long-term....... are delineated that would facilitate the sustainable low carbon transformation of India’s transport sector. The long term energy and emission trajectory of India’s transport sector is assessed under alternate scenarios using the integrated assessment modelling framework. Co-benefits like energy security...

  19. Materials towards carbon-free, emission-free and oil-free mobility: hydrogen fuel-cell vehicles--now and in the future.

    Science.gov (United States)

    Hirose, Katsuhiko

    2010-07-28

    In the past, material innovation has changed society through new material-induced technologies, adding a new value to society. In the present world, engineers and scientists are expected to invent new materials to solve the global problem of climate change. For the transport sector, the challenge for material engineers is to change the oil-based world into a sustainable world. After witnessing the recent high oil price and its adverse impact on the global economy, it is time to accelerate our efforts towards this change. Industries are tackling global energy issues such as oil and CO2, as well as local environmental problems, such as NO(x) and particulate matter. Hydrogen is the most promising candidate to provide carbon-free, emission-free and oil-free mobility. As such, engineers are working very hard to bring this technology into the real society. This paper describes recent progress of vehicle technologies, as well as hydrogen-storage technologies to extend the cruise range and ensure the easiness of refuelling and requesting material scientists to collaborate with industry to fight against global warming.

  20. The research of a method for determination of total carbon, combination carbon and free carbon in beryllium metal

    International Nuclear Information System (INIS)

    Yang Xingzhong; Zhu Xiaohong

    1996-02-01

    A method for determination of total carbon, combination carbon and free carbon in beryllium metal with LECO CS-344 carbon/sulphur determinant has been studied. Tungsten-copper mixed pellets are used as flux to the determination of total carbon. Ratio of weight of the flux to the sample is greater than 20:1. Good analytical results are got. By this method the relative standard deviation is <10% when the content of total carbon in the range of 0.050%∼0.080% in beryllium. A standard steel sample of carbon is added into beryllium, the recoveries are 94%∼106%. For determination of free carbon, the sample are decomposed with 3 mol/L HCl, filtered and followed determination. By this method the relative standard deviation is ≤10% when the content of free carbon in the range of 0.006%∼0.020% in beryllium. the balance of total carbon and free carbon is equal to combination carbon. The method is used to determine the sample of content of total carbon in the range of 0.050%∼1.00%, free carbon in the range of 0.006%∼0.500% in metal beryllium. (6 refs., 1 fig., 13 tabs.)

  1. Successful, safe and sustainable cities: towards a New Urban Agenda

    Directory of Open Access Journals (Sweden)

    David Satterthwaite

    2017-04-01

    Full Text Available There is a growing interest among national governments and international agencies in the contribution of urban centres to sustainable development. The paper outlines the new global agendas to guide this: the Sustainable Development Goals, the Paris Agreement and the New Urban Agenda. It then sets out the key challenges and opportunities facing urban governments across the Commonwealth in implementing these agendas and achieving inclusive, safe, resilient and sustainable cities. This is hampered by significant infrastructure deficits (especially in provision for water and sanitation and a lack of funding. After outlining the commitments agreed by national governments in these global agendas, the paper discusses the vital role in meeting these of city leadership, financing and investment, urban planning and local economic development. Whilst it is good to see recognition of the importance of cities to national economies, economic success in any city does not automatically contribute to a healthier city, a more inclusive city or a sustainable city. This needs capable and accountable urban governments working closely with local civil society, and the redirection of public funds and development assistance to support them.

  2. Carbon Finance – A Platform for Development of Sustainable Business in Kuwait

    Directory of Open Access Journals (Sweden)

    Ahmed Nahar AL-HUSSAINI

    2016-09-01

    Full Text Available Since 1880, the temperature of global has increased by 0.85 degree Celsius. Due to the increase in temperature, the impact of climate change is constantly increasing, which is known as global warming. The increase in temperature is due to emission of greenhouse gases. Carbon dioxide is a major greenhouse gas, which is capable of causing serious hazardous influence to the environment. Carbon emission reduction and low-carbon economy development have become global targets and national policy in both developing and developed countries. Carbon finance is a tool for reducing greenhouse gas (GHG emissions using a process called capture and storage (CCS. Using this process, the carbon dioxide is captured and stored for further usage as a renewable resource. Carbon finance has a high impact on the growth of sustainable business development. This research analyzes the various possibilities of developing sustainable business through carbon trading in Kuwait and the strategic options offered by both government, as well as private sectors for carbon trading in Kuwait. The central focus of research is to discover the role of carbon finance in developing sustainable business and environmental quality. Since no previous research is conducted on the specific role of carbon finance in developing a sustainable business preferably in Kuwait, the influence of carbon financing in sustainable business development and environmental quality are analyzed in this research.

  3. Carbon-free production of 2-deoxy-scyllo-inosose (DOI) in cyanobacterium Synechococcus elongatus PCC 7942.

    Science.gov (United States)

    Watanabe, Satoru; Ozawa, Hiroaki; Kato, Hiroaki; Nimura-Matsune, Kaori; Hirayama, Toshifumi; Kudo, Fumitaka; Eguchi, Tadashi; Kakinuma, Katsumi; Yoshikawa, Hirofumi

    2018-01-01

    Owing to their photosynthetic capabilities, there is increasing interest in utilizing cyanobacteria to convert solar energy into biomass. 2-Deoxy-scyllo-inosose (DOI) is a valuable starting material for the benzene-free synthesis of catechol and other benzenoids. DOI synthase (DOIS) is responsible for the formation of DOI from d-glucose-6-phosphate (G6P) in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics such as neomycin and butirosin. DOI fermentation using a recombinant Escherichia coli strain has been reported, although a carbon source is necessary for high-yield DOI production. We constructed DOI-producing cyanobacteria toward carbon-free and sustainable DOI production. A DOIS gene derived from the butirosin producer strain Bacillus circulans (btrC) was introduced and expressed in the cyanobacterium Synechococcus elongatus PCC 7942. We ultimately succeeded in producing 400 mg/L of DOI in S. elongatus without using a carbon source. DOI production by cyanobacteria represents a novel and efficient approach for producing benzenoids from G6P synthesized by photosynthesis.

  4. Tracking development paths: Monitoring driving forces and the impact of carbon-free energy sources in Spain

    International Nuclear Information System (INIS)

    O’ Mahony, Tadhg; Dufour, Javier

    2015-01-01

    Highlights: • The development path of Spain is analysed using an extended Kaya identity. • Effect of carbon free energy sources separated. • Nuclear energy acted to increase emissions as it declined in share. • Renewable energy penetration recently began to reduce carbon emissions. • Future policy must address wider factors of sustainable development. - Abstract: The evolution of the national development path has gravity in determining the future emissions outcomes of all nations. Deep reductions in emissions require a focus not just on energy and mitigation policy but on factors underlying this development. The Kaya identity has been recommended to track national progress with respect to sustainability and carbon emissions in the development path. This study applies an extended Kaya identity to the energy-related carbon emissions of Spain. Implemented through a divisia index decomposition annually from 1990 to 2011, it highlights the impact of factors such as affluence and energy intensity. A marked departure from previous studies is the separation of the effects of the carbon-free energy sources; both renewables and nuclear as fundamental mitigation measures. The results show that affluence and population have acted to increase emissions and energy intensity was increasing until recent years. Fuel substitution has acted to decrease emissions but while renewable energy has reduced emissions with the increasing importance of biomass, wind and solar, the decline in share of nuclear has acted to increase emissions. Implications for the development path and policy are discussed and lessons are relevant both for industrialised and industrialising nations

  5. Sustaining the emerging carbon trading industry development: A business ecosystem approach of carbon traders

    International Nuclear Information System (INIS)

    Hu, Guangyu; Rong, Ke; Shi, Yongjiang; Yu, Jing

    2014-01-01

    This paper explores how carbon traders nurture the business ecosystem to sustain the emerging carbon trading industry development. We collected primary data from a multinational carbon trader and its ecosystem partners in China, through the construction of interviews and documentary. The research findings show the carbon trading industry has experienced four-stage evolution with different driving forces; the carbon trader attracted and organized ecosystem partners to facilitate the CDM project owners to create carbon credits and trade them; a systematic business ecosystems approach through the lens of Context, Cooperation and Configuration, initiated by carbon traders, has facilitated the industry development. Our findings also implicate to industrial practitioners and policymakers for sustaining the emerging industry development at both the current- and the post-Kyoto protocol periods. - Highlights: • The carbon trader is a catalyst to link CDM project owner and trading market in China • The evolution of carbon trading industry has four stages with various driving forces. • Nurturing business ecosystems facilitates the carbon trading industry development. • The ecosystem approach works via the lens of Context, Configuration and Cooperation. • The ecosystem approach implicates to carbon trading industry at the post-Kyoto era

  6. Carbon dioxide angiography: a simple and safe system of delivery

    International Nuclear Information System (INIS)

    Cronin, P.; Patel, J.V.; Kessel, D.O.; Robertson, I.; McPherson, S.J.

    2005-01-01

    Carbon dioxide (CO 2 ) is an established alternate angiographic contrast agent, which can be delivered by pump or hand injection. We describe a simple, safe and inexpensive hand injection system that delivers a known volume of CO 2 at atmospheric pressure and prevents contamination with room air

  7. What promotes sustainability in Safe Community programmes?

    Science.gov (United States)

    Nordqvist, Cecilia; Timpka, Toomas; Lindqvist, Kent

    2009-01-08

    The theory and practice of safety promotion has traditionally focused on the safety of individuals. This study also includes systems, environments, and organizations. Safety promotion programmes are designed to support community health initiatives taking a bottom-up approach. This is a long-term and complex process. The aim of this study was to try to empirically identify factors that promote sustainability in the structures of programmes that are managed and coordinated by the local government. Four focus group sessions with local government politicians and administrators in designated Safe Communities were conducted and analyzed using qualitative content analysis. Collaboration was found to be the basis for sustainability. Networks, enabling municipalities to exchange ideas, were reported to positively influence the programmes. Personal contacts rather than organizations themselves, determine whether collaboration is sustained. Participants reported an increase in cross-disciplinary collaboration among staff categories. Administrators and politicians were reported to collaborate well, which was perceived to speed up decision-making and thus to facilitate the programme work. Support from the politicians and the county council was seen as a prerequisite. Participants reported an increased willingness to share information between units, which, in their view, supports sustainability. A structure in which all local authorities' offices were located in close proximity to one another was considered to support collaboration. Appointing a public health coordinator responsible for the programme was seen as a way to strengthen the relational resources of the programme. With a public health coordinator, the 'external' negotiating power was concentrated in one person. Also, the 'internal' programme strength increased when the coordination was based on a bureaucratic function rather than on one individual. Increased relational resources facilitated the transfer of information

  8. What promotes sustainability in Safe Community programmes?

    Directory of Open Access Journals (Sweden)

    Lindqvist Kent

    2009-01-01

    Full Text Available Abstract Background The theory and practice of safety promotion has traditionally focused on the safety of individuals. This study also includes systems, environments, and organizations. Safety promotion programmes are designed to support community health initiatives taking a bottom-up approach. This is a long-term and complex process. The aim of this study was to try to empirically identify factors that promote sustainability in the structures of programmes that are managed and coordinated by the local government. Methods Four focus group sessions with local government politicians and administrators in designated Safe Communities were conducted and analyzed using qualitative content analysis. Results Collaboration was found to be the basis for sustainability. Networks, enabling municipalities to exchange ideas, were reported to positively influence the programmes. Personal contacts rather than organizations themselves, determine whether collaboration is sustained. Participants reported an increase in cross-disciplinary collaboration among staff categories. Administrators and politicians were reported to collaborate well, which was perceived to speed up decision-making and thus to facilitate the programme work. Support from the politicians and the county council was seen as a prerequisite. Participants reported an increased willingness to share information between units, which, in their view, supports sustainability. A structure in which all local authorities' offices were located in close proximity to one another was considered to support collaboration. Appointing a public health coordinator responsible for the programme was seen as a way to strengthen the relational resources of the programme. Conclusion With a public health coordinator, the 'external' negotiating power was concentrated in one person. Also, the 'internal' programme strength increased when the coordination was based on a bureaucratic function rather than on one individual

  9. Anticipatory research for the design of a sustainable and safe road traffic system.

    NARCIS (Netherlands)

    Oppe, S.

    1993-01-01

    The new policy in the Netherlands is attempting to build a traffic system, based on clear design concepts and rules about how to use it. Such a system should be sustainable and safe. The design characteristics of the roads should be relevant to their functions. It should be clear which vehicles are

  10. Sustainable institutionalized punishment requires elimination of second-order free-riders

    Science.gov (United States)

    Perc, Matjaž

    2012-03-01

    Although empirical and theoretical studies affirm that punishment can elevate collaborative efforts, its emergence and stability remain elusive. By peer-punishment the sanctioning is something an individual elects to do depending on the strategies in its neighborhood. The consequences of unsustainable efforts are therefore local. By pool-punishment, on the other hand, where resources for sanctioning are committed in advance and at large, the notion of sustainability has greater significance. In a population with free-riders, punishers must be strong in numbers to keep the ``punishment pool'' from emptying. Failure to do so renders the concept of institutionalized sanctioning futile. We show that pool-punishment in structured populations is sustainable, but only if second-order free-riders are sanctioned as well, and to a such degree that they cannot prevail. A discontinuous phase transition leads to an outbreak of sustainability when punishers subvert second-order free-riders in the competition against defectors.

  11. Capacitance-Assisted Sustainable Electrochemical Carbon Dioxide Mineralisation.

    Science.gov (United States)

    Lamb, Katie J; Dowsett, Mark R; Chatzipanagis, Konstantinos; Scullion, Zhan Wei; Kröger, Roland; Lee, James D; Aguiar, Pedro M; North, Michael; Parkin, Alison

    2018-01-10

    An electrochemical cell comprising a novel dual-component graphite and Earth-crust abundant metal anode, a hydrogen producing cathode and an aqueous sodium chloride electrolyte was constructed and used for carbon dioxide mineralisation. Under an atmosphere of 5 % carbon dioxide in nitrogen, the cell exhibited both capacitive and oxidative electrochemistry at the anode. The graphite acted as a supercapacitive reagent concentrator, pumping carbon dioxide into aqueous solution as hydrogen carbonate. Simultaneous oxidation of the anodic metal generated cations, which reacted with the hydrogen carbonate to give mineralised carbon dioxide. Whilst conventional electrochemical carbon dioxide reduction requires hydrogen, this cell generates hydrogen at the cathode. Carbon capture can be achieved in a highly sustainable manner using scrap metal within the anode, seawater as the electrolyte, an industrially relevant gas stream and a solar panel as an effective zero-carbon energy source. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Selective free radical reactions using supercritical carbon dioxide.

    Science.gov (United States)

    Cormier, Philip J; Clarke, Ryan M; McFadden, Ryan M L; Ghandi, Khashayar

    2014-02-12

    We report herein a means to modify the reactivity of alkenes, and particularly to modify their selectivity toward reactions with nonpolar reactants (e.g., nonpolar free radicals) in supercritical carbon dioxide near the critical point. Rate constants for free radical addition of the light hydrogen isotope muonium to ethylene, vinylidene fluoride, and vinylidene chloride in supercritical carbon dioxide are compared over a range of pressures and temperatures. Near carbon dioxide's critical point, the addition to ethylene exhibits critical speeding up, while the halogenated analogues display critical slowing. This suggests that supercritical carbon dioxide as a solvent may be used to tune alkene chemistry in near-critical conditions.

  13. Key factors of low carbon development strategy for sustainable transport

    Science.gov (United States)

    Thaveewatanaseth, K.; Limjirakan, S.

    2018-02-01

    Cities become more vulnerable to climate change impacts causing by urbanization, economic growth, increasing of energy consumption and carbon dioxide (CO2) emissions. People who live in the cities have already been affected from the impacts in terms of socioeconomic and environmental aspects. Sustainable transport plays the key role in CO2 mitigation and contributes positive impacts on sustainable development for the cities. Several studies in megacities both in developed and developing countries support that mass transit system is an important transportation mode in CO2 mitigation and sustainable transport development. This paper aims to study key factors of low carbon development strategy for sustainable transport. The Bangkok Mass Rapid Transit System (MRT) located in Bangkok was the study area. Data collection was using semi-structured in-depth interview protocol with thirty respondents consisting of six groups i.e. governmental agencies, the MRT operators, consulting companies, international organizations, non-profit organizations, and experts. The research findings highlighted the major factors and supplemental elements composing of institution and technical capacity, institutional framework, policy setting and process, and plan of implementation that would support more effective strategic process for low carbon development strategy (LCDS) for sustainable transport. The study would highly recommend on readiness of institution and technical capacities, stakeholder mapping, high-level decision- makers participation, and a clear direction of the governmental policies that are strongly needed in achieving the sustainable transport.

  14. SAFE Newsletter

    OpenAIRE

    2013-01-01

    The Center of Excellence SAFE – “Sustainable Architecture for Finance in Europe” – is a cooperation of the Center for Financial Studies and Goethe University Frankfurt. It is funded by the LOEWE initiative of the State of Hessen (Landes-Offensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz). SAFE brings together more than 40 professors and just as many junior researchers who are all dedicated to conducting research in support of a sustainable financial architecture. The Center has...

  15. Thermal motion of carbon clusters and production of carbon nanotubes by gravity-free arc discharge

    International Nuclear Information System (INIS)

    Mieno, T.; Takeguchi, M.

    2006-01-01

    Thermal and diffusion properties of hot gas around a dc arc discharge under a gravity-free condition are investigated using a jet plane in order to improve the arc production of carbon clusters. Spherically symmetric temperature distribution of He gas around the arc plasma and monotonic slow expansion of the high-temperature region are observed. By means of the passive-type Mie scattering method, random slow diffusion of carbon clusters around the arc plasma is clearly observed under the gravity-free condition. This indicates that carbon clusters including single-walled carbon nanotubes are synthesized around the arc plasma where the He temperature is higher than 1000 K. It is confirmed that large bundles of fatter single-walled carbon nanotubes are produced under the gravity-free condition

  16. Options of sustainable groundwater supply from safe aquifers in areas with elevated arsenic - a case study from Bangladesh

    Science.gov (United States)

    Jakariya, M.; Bhattacharya, P.; Bromssen, M. V.

    2008-05-01

    Access to safe drinking water is a basic human right. Several millions of people, mainly in developing countries are affected by arsenic in drinking water and the global impact now makes it a top priority water quality issue. A wide gap between the number of exposed people and the pace of mitigation programmes in rural areas of developing countries is the main problem in providing safe drinking water. The main challenge is to develop a sustainable mitigation option that rural and disadvantaged people can adopt and implement themselves to overcome possible public heath hazards. During the recent years, new approaches have emerged in Bangladesh, primarily emerging out of people's own initiative. The local drillers target presumed safe aquifers on the basis of colour and texture of the sediments. A recent study by our research group revealed a distinct correlation between the colour characteristics of the sediments and the groundwater redox conditions. The coupling between the colour of sediments and the redox characteristics of groundwater may thus be used as a tool to assess the risk for As mobilization from the aquifers. The study showed that it is possible to assess the relative risk of high concentrations of As in aquifers if the colour characteristics of the sediments are known and thus, local drillers may target safe aquifers. For validating the sustainability of this mitigation option geological, hydrogeological and microbiological investigations are needed. The sustainability of the aquifers needs to be assessed by combining results from various field and laboratory investigations and by running predictive models. There is also a need to raise the awareness and thereby create a platform for motivating the local drillers to be educated in installing safe tubewells. Awareness raising and community mobilisation are two top priorities for implementing a sustainable safe water project in rural village areas. Significant preparation, attention, and focus must be

  17. Cumulative emission budgets and their implications: the case for SAFE carbon

    Science.gov (United States)

    Allen, Myles; Bowerman, Niel; Frame, David; Mason, Charles

    2010-05-01

    The risk of dangerous long-term climate change due to anthropogenic carbon dioxide emissions is predominantly determined by cumulative emissions over all time, not the rate of emission in any given year or commitment period. This has profound implications for climate mitigation policy: emission targets for specific years such as 2020 or 2050 provide no guarantee of meeting any overall cumulative emission budget. By focusing attention on short-term measures to reduce the flow of emissions, they may even exacerbate the overall long-term stock. Here we consider how climate policies might be designed explicitly to limit cumulative emissions to, for example, one trillion tonnes of carbon, a figure that has been estimated to give a most likely warming of two degrees above pre-industrial, with a likely range of 1.6-2.6 degrees. Three approaches are considered: tradable emission permits with the possibility of indefinite emission banking, carbon taxes explicitly linked to cumulative emissions and mandatory carbon sequestration. Framing mitigation policy around cumulative targets alleviates the apparent tension between climate protection and short-term consumption that bedevils any attempt to forge global agreement. We argue that the simplest and hence potentially the most effective approach might be a mandatory requirement on the fossil fuel industry to ensure that a steadily increasing fraction of fossil carbon extracted from the ground is artificially removed from the active carbon cycle through some form of sequestration. We define Sequestered Adequate Fraction of Extracted (SAFE) carbon as a source in which this sequestered fraction is anchored to cumulative emissions, increasing smoothly to reach 100% before we release the trillionth tonne. While adopting the use of SAFE carbon would increase the cost of fossil energy much as a system of emission permits or carbon taxes would, it could do so with much less explicit government intervention. We contrast this proposal

  18. Economic analysis of the energy and carbon tax for the sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Oh, J.K.; Cho, G.L. [Korea Energy Economics Institute, Euiwang (Korea)

    2001-12-01

    The concept of 'Sustainable Development' has been playing a very important role since seventies. Countries all over the world, whether developed or developing, strive to achieve their economic development in a sustainable way. U.N Conference on Environment and Development held in 1992 at Rio was instrumental in the movement of the sustainable development. Korea is not an exception in this movement as Presidential Commission on Sustainable Development (PCSD) was established in September 2000. The Climate Change occupies the heart of the sustainable development. In response to the urgent need to protect global climate, the U.N. Convention on Climate Change (1992) and the Kyoto Protocol (1997) were adopted. An analysis is required to respond effectively and sustainedly to the issue of climate change. Energy sector is the main contributor to the emissions of greenhouse gases. Consequently, this study aims to analyse the implication of the energy{center_dot}carbon tax for the benefit of present and future generation, its impact on economy, industry, and energy. It also studies new elements related to the differential impact of energy carbon tax on income classes. We developed 'Overlapping Generation Equilibrium model' which consists of eleven industry, three income classes, time span of 100 years. Scenario analysis was performed for the case of the reduction of carbon dioxide emissions by 20 percent in 2010 and afterward in comparison with its 'Business As Usual' path. Three major analysis preformed are as follows: 1. Numerical computation was done on the differential impact of the carbon tax on three income classes. 2. The impact on various generation was calculated. 3. Most importantly, the hypothesis of 'Double Dividend' was tested. This study cautiously concludes that carbon tax recycling by the reduction of the corporate income tax may increase GDP despite the reduction of the emissions of carbon dioxides. The results of this

  19. Towards a carbon-negative sustainable bio-based economy.

    Science.gov (United States)

    Vanholme, Bartel; Desmet, Tom; Ronsse, Frederik; Rabaey, Korneel; Van Breusegem, Frank; De Mey, Marjan; Soetaert, Wim; Boerjan, Wout

    2013-01-01

    The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy.

  20. Towards a carbon-negative sustainable bio-based economy

    Directory of Open Access Journals (Sweden)

    Bartel eVanholme

    2013-06-01

    Full Text Available The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy towards sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green and industrial (white biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy.

  1. Towards a carbon-negative sustainable bio-based economy

    Science.gov (United States)

    Vanholme, Bartel; Desmet, Tom; Ronsse, Frederik; Rabaey, Korneel; Breusegem, Frank Van; Mey, Marjan De; Soetaert, Wim; Boerjan, Wout

    2013-01-01

    The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy. PMID:23761802

  2. Assessing Water and Carbon Footprints for Sustainable Water Resource Management

    Science.gov (United States)

    The key points of this presentation are: (1) Water footprint and carbon footprint as two sustainability attributes in adaptations to climate and socioeconomic changes, (2) Necessary to evaluate carbon and water footprints relative to constraints in resource capacity, (3) Critical...

  3. Determination of free and combined carbon in boron carbide

    International Nuclear Information System (INIS)

    Shankaran, P.S.; Kulkarni, Amit S.; Pandey, K.L.; Ramanjaneyulu, P.S.; Yadav, C.S.; Sayi, Y.S.; Ramakumar, K.L.

    2009-01-01

    A simple, sensitive and fast method for the determination of free and combined carbon in boron carbide samples, based on combustion in presence of oxygen at different temperatures, has been developed. Method has been standardized by analyzing mixture of two different boron carbide samples. Error associated with the method in the determination of free carbon is less than 5%. (author)

  4. Conductive Cotton Textile from Safely Functionalized Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mohammad Jellur Rahman

    2015-01-01

    Full Text Available Electroconductive cotton textile has been prepared by a simple dipping-drying coating technique using safely functionalized multiwalled carbon nanotubes (f-MWCNTs. Owing to the surface functional groups, the f-MWCNTs become strongly attached with the cotton fibers forming network armors on their surfaces. As a result, the textile exhibits enhanced electrical properties with improved thermal conductivity and therefore is demonstrated as a flexible electrothermal heating element. The fabricated f-MWCNTs/cotton textile can be heated uniformly from room temperature to ca. 100°C within few minutes depending on the applied voltage. The textile shows good thermal stability and repeatability during a long-term heating test.

  5. The contribution of carbon pricing to sustainable mining

    Directory of Open Access Journals (Sweden)

    Sam Meng

    2014-09-01

    Full Text Available Reductions in greenhouse gas emissions are essential to reducing the rate and scale of anthropogenic climate change to levels that can sustain the planet’s biosphere. A carbon tax is a policy measure that is designed to reduce greenhouse gas emissions by increasing the prices of the highest carbon-polluting goods and services in an economy, thus encouraging substitution towards resultant relatively cheaper and less-polluting goods where possible. When Australia introduced such a tax in 2012, there was a fear that it could threaten the resources boom, considered the engine of Australian economic growth in recent years. By employing a computable general equilibrium model and an environmentally-extended Social Accounting Matrix, this paper demonstrates the effects of a carbon tax on the resources sector. The modelled results show that, in a flexible exchange rate regime, all resources within the sector will be affected negatively but to different degrees. The brown coal sector will be the hardest hit, with a 25.74 per cent decrease in output, 52.94 per cent decrease in employment and 89.37 per cent decrease in profitability. However, other resources in the sector would be only mildly affected. From the point of view of sustainability, the most significant results are that, under the carbon tax, the resources sector contributes considerably to the carbon emission reduction target of Australia. Given that brown coal accounts for only a small portion of the resources sector, it is reasonable to suggest that a carbon tax would not significantly affect the overall performance of the sector.

  6. Notification: Evaluation of Benefits and Use of Office of Research and Development's Safe and Sustainable Water Resources Research

    Science.gov (United States)

    Project #OPE-FY17-0021, August 1, 2017. The EPA OIG plans to begin preliminary research to assess the benefits and use of the Office of Research and Development’s (ORD) Safe and Sustainable Water Resources research.

  7. Sodium-ion hybrid electrolyte battery for sustainable energy storage applications

    Science.gov (United States)

    Senthilkumar, S. T.; Abirami, Mari; Kim, Junsoo; Go, Wooseok; Hwang, Soo Min; Kim, Youngsik

    2017-02-01

    Sustainable, safe, and low-cost energy storage systems are essential for large-scale electrical energy storage. Herein, we report a sodium (Na)-ion hybrid electrolyte battery with a replaceable cathode system, which is separated from the Na metal anode by a Na superionic conducting ceramic. By using a fast Na-ion-intercalating nickel hexacyanoferrate (NiHCF) cathode along with an eco-friendly seawater catholyte, we demonstrate good cycling performance with an average discharge voltage of 3.4 V and capacity retention >80% over 100 cycles and >60% over 200 cycle. Remarkably, such high capacity retention is observed for both the initial as well as replaced cathodes. Moreover, a Na-metal-free hybrid electrolyte battery containing hard carbon as the anode exhibits an energy density of ∼146 Wh kg-1 at a current density of 10 mA g-1, which is comparable to that of lead-acid batteries and much higher than that of conventional aqueous Na-ion batteries. These results pave the way for further advances in sustainable energy storage technology.

  8. The sustainable nuclear energy technology platform. A vision report

    International Nuclear Information System (INIS)

    2007-01-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain Europe's leadership in

  9. Towards Carbon Neutrality and Environmental Sustainability at CCSU

    Science.gov (United States)

    Button, Charles E.

    2009-01-01

    Purpose: The purpose of this paper is to provide information about past and present efforts undertaken at Central Connecticut State University (CCSU) to reduce its carbon footprint and to institute a campus culture centered on the principles of environmental sustainability. Provide some recommendations to other institutions of higher education…

  10. Interface Analyses Between a Case-Hardened Ingot Casting Steel and Carbon-Containing and Carbon-Free Refractories

    Science.gov (United States)

    Fruhstorfer, Jens; Dudczig, Steffen; Rudolph, Martin; Schmidt, Gert; Brachhold, Nora; Schöttler, Leandro; Rafaja, David; Aneziris, Christos G.

    2018-06-01

    Corrosion tests of carbon-free and carbon-containing refractories were performed. The carbon-free crucibles corroded, whereas the carbon-containing crucibles were negligibly attacked. On them, inclusions were attached. This study investigates melt oxygen contents, interface properties, and steel compositions with their non-metallic inclusions in order to explore the inclusion formation and deposition mechanisms. The carbon-free crucibles were based on alumina, mullite, and zirconia- and titania-doped alumina (AZT). The carbon-containing (-C) ones were alumina-C and AZT-C. Furthermore, nanoscaled carbon and alumina additives (-n) were applied in an AZT-C-n material. In the crucibles, the case-hardened steel 17CrNiMo7-6 was remelted at 1580 °C. It was observed that the melt and steel oxygen contents were higher for the tests in the carbon-free crucibles. Into these crucibles, the deoxidizing alloying elements Mn and Si diffused. Reducing contents of deoxidizing elements resulted in higher steel oxygen levels and less inclusions, mainly of the inclusion group SiO2-core-MnS-shell (2.5 to 8 μ m). These developed from smaller SiO2 nuclei. The inclusion amount in the steel was highest after remelting in AZT-C-n for 30 minutes but decreased strongly with increasing remelting time (60 minutes) due to inclusions' deposition on the refractory surface. The Ti from the AZT and the nanoadditives supported inclusion growth and deposition. Other inclusion groups were alumina and calcium aluminate inclusions. Their contents were high after remelting in carbon- or AZT-containing crucibles but generally decreased during remelting. On the AZT-C-n crucible, a dense layer formed from vitreous compositions including Al, Ca, Mg, Si, and Ti. To summarize, for reducing forming inclusion amounts, mullite is recommended as refractory material. For capturing formed inclusions, AZT-C-n showed a high potential.

  11. Truly quasi-solid-state lithium cells utilizing carbonate free polymer electrolytes on engineered LiFePO_4

    International Nuclear Information System (INIS)

    Nair, Jijeesh R.; Cíntora-Juárez, Daniel; Pérez-Vicente, Carlos; Tirado, José L.; Ahmad, Shahzada; Gerbaldi, Claudio

    2016-01-01

    Highlights: • Carbonate free truly quasi-solid-state polymer electrolytes for lithium batteries. • Simple and easy up scalable preparation by solvent free thermal curing. • LiFePO_4 cathode engineered by PEDOT:PSS interphase at the current collector. • Direct polymerization over the engineered electrode surface in one pot. • Stable lithium polymer cells operating in a wide temperature range. - Abstract: Stable and safe functioning of a Li-ion battery is the demand of modern generation. Herein, we are demonstrating the application of an in-situ free radical polymerisation process (thermal curing) to fabricate a polymer electrolyte that possesses mechanical robustness, high thermal stability, improved interfacial and ion transport characteristics along with stable cycling at ambient conditions. The polymer electrolyte is obtained by direct polymerization over the electrode surface in one pot starting from a reactive mixture comprising an ethylene oxide-based dimethacrylic oligomer (BDM), dimethyl polyethylene glycol (DPG) and lithium salt. Furthermore, an engineered cathode is used, comprising a LiFePO_4/PEDOT:PSS interface at the current collector that improves the material utilization at high rates and mitigates the corrosive effects of LiTFSI on aluminium current collector. The lithium cell resulting from the newly elaborated multiphase assembly of the composite cathode with the DPG-based carbonate-free polymer electrolyte film exhibits excellent reversibility upon prolonged cycling at ambient as well as elevated temperatures, which is found to be superior compared to previous reports on uncoated electrodes with polymer electrolytes.

  12. Research on the influencing factors of reverse logistics carbon footprint under sustainable development.

    Science.gov (United States)

    Sun, Qiang

    2017-10-01

    With the concerns of ecological and circular economy along with sustainable development, reverse logistics has attracted the attention of enterprise. How to achieve sustainable development of reverse logistics has important practical significance of enhancing low carbon competitiveness. In this paper, the system boundary of reverse logistics carbon footprint is presented. Following the measurement of reverse logistics carbon footprint and reverse logistics carbon capacity is provided. The influencing factors of reverse logistics carbon footprint are classified into five parts such as intensity of reverse logistics, energy structure, energy efficiency, reverse logistics output, and product remanufacturing rate. The quantitative research methodology using ADF test, Johansen co-integration test, and impulse response is utilized to interpret the relationship between reverse logistics carbon footprint and the influencing factors more accurately. This research finds that energy efficiency, energy structure, and product remanufacturing rate are more capable of inhibiting reverse logistics carbon footprint. The statistical approaches will help practitioners in this field to structure their reverse logistics activities and also help academics in developing better decision models to reduce reverse logistics carbon footprint.

  13. Application of a systematic methodology for sustainable carbon dioxide utilization process design

    DEFF Research Database (Denmark)

    Plaza, Cristina Calvera; Frauzem, Rebecca; Gani, Rafiqul

    than carbon capture and storage. To achieve this a methodology is developed to design sustainable carbon dioxide utilization processes. First, the information on the possible utilization alternatives is collected, including the economic potential of the process and the carbon dioxide emissions...... emission are desired in order to reduce the carbon dioxide emissions. Using this estimated preliminary evaluation, the top processes, with the most negative carbon dioxide emission are investigated by rigorous detailed simulation to evaluate the net carbon dioxide emissions. Once the base case design...

  14. Visualizing the application of GIS in transformation towards a sustainable development and a low carbon society

    International Nuclear Information System (INIS)

    Ahmad, M H; Ariffin, A; Malik, T A

    2014-01-01

    A strategy for sustainable development is a significant milestone on the road to a more socially, economically and environmentally responsible society. It creates a framework within which the stakeholders can make a strong contribution to a better future. Because of the merits and growing interest in sustainable development, the race is on for researchers and stakeholders in the construction sector to initiate actions to reduce the negative impacts of development and sharpen their competitive edge. The cities should be created with a vision which supports harmonious communities and living conditions through sustainable urban development. The resources must be used efficiently while reducing the development impact on human health and environment during the buildings' life cycle. Environmental auditing and pressure-state response based models to monitor sustainable development in Malaysia should be developed. A data availability and sharing system should be developed and implemented to facilitate for the use in the establishment of sustainable development and low carbon society. Ideas which affect millions of people and guide the policies of nations must be accessible to all. Only thus can they permeate the institutions from the local to the global level. Creating sustainable development and low carbon societies depends on the knowledge and involvement of all stakeholders in the industry. So what is our level of understanding of GIS and its application? The development of geospatial data in Malaysia is important because the successful implementation of sustainable development and low carbon projects depend largely on the availability of geospatial information. It would facilitate the stakeholders and resolve some of the problems regarding the availability, quality, organisation, accessibility and sharing of spatial information. The introduction of GIS may change the way for better sustainable urban development and low carbon society performance. The use of GIS

  15. Visualizing the application of GIS in transformation towards a sustainable development and a low carbon society

    Science.gov (United States)

    Ahmad, M. H.; Ariffin, A.; Malik, T. A.

    2014-02-01

    A strategy for sustainable development is a significant milestone on the road to a more socially, economically and environmentally responsible society. It creates a framework within which the stakeholders can make a strong contribution to a better future. Because of the merits and growing interest in sustainable development, the race is on for researchers and stakeholders in the construction sector to initiate actions to reduce the negative impacts of development and sharpen their competitive edge. The cities should be created with a vision which supports harmonious communities and living conditions through sustainable urban development. The resources must be used efficiently while reducing the development impact on human health and environment during the buildings' life cycle. Environmental auditing and pressure-state response based models to monitor sustainable development in Malaysia should be developed. A data availability and sharing system should be developed and implemented to facilitate for the use in the establishment of sustainable development and low carbon society. Ideas which affect millions of people and guide the policies of nations must be accessible to all. Only thus can they permeate the institutions from the local to the global level. Creating sustainable development and low carbon societies depends on the knowledge and involvement of all stakeholders in the industry. So what is our level of understanding of GIS and its application? The development of geospatial data in Malaysia is important because the successful implementation of sustainable development and low carbon projects depend largely on the availability of geospatial information. It would facilitate the stakeholders and resolve some of the problems regarding the availability, quality, organisation, accessibility and sharing of spatial information. The introduction of GIS may change the way for better sustainable urban development and low carbon society performance. The use of GIS is to

  16. Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes

    Science.gov (United States)

    Morales-Williams, Ana M.; Wanamaker, Alan D., Jr.; Downing, John A.

    2017-06-01

    Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3-) across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs). To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC) and phytoplankton particulate organic carbon (δ13Cphyto) in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass-balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3- during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3- uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.

  17. Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes

    Directory of Open Access Journals (Sweden)

    A. M. Morales-Williams

    2017-06-01

    Full Text Available Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3− across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs. To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC and phytoplankton particulate organic carbon (δ13Cphyto in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass–balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3− during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3− uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.

  18. Allotropic Carbon Nanoforms as Advanced Metal-Free Catalysts or as Supports

    Directory of Open Access Journals (Sweden)

    Hermenegildo Garcia

    2014-01-01

    Full Text Available This perspective paper summarizes the use of three nanostructured carbon allotropes as metal-free catalysts (“carbocatalysts” or as supports of metal nanoparticles. After an introductory section commenting the interest of developing metal-free catalysts and main features of carbon nanoforms, the main body of this paper is focused on exemplifying the opportunities that carbon nanotubes, graphene, and diamond nanoparticles offer to develop advanced catalysts having active sites based on carbon in the absence of transition metals or as large area supports with special morphology and unique properties. The final section provides my personal view on future developments in this field.

  19. Determination of free carbon content in boron carbide ceramic powders

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Lima, N.B. de; Paschoal, J.O.A.

    1990-01-01

    Boron carbide is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Free carbon is always found as a process dependent impurity in boron carbide. The development of procedures for its detection is required because its presence leads to a degradation of the boron carbide properties. In this work, several procedures for determining free carbon content in boron carbide specimens are reported and discussed for comparison purposes. (author) [pt

  20. Climate change and sustainability of the carbon sink in Maritime salt marshes

    International Nuclear Information System (INIS)

    Chmura, G.L.

    2008-01-01

    Ideal carbon sinks do not emit greenhouse gases (GHGs) and are sustainable with future trends in global warming. This presentation discussed the potential for using Maritime salt marshes as carbon sinks. The marshes are covered with grasses adapted to saline soils. Photosynthesis by the marsh plants and algae fix the carbon dioxide (CO 2 ) directly from the atmosphere. The carbon is then buried by mineral sediment. Wetlands without saline water are known to produce methane. The carbon in salt marsh soils does not significantly decline with depth or time. Salt marshes and mangroves store an average of 210 g of CO 2 per m 2 per year. The tidal floodwaters keep the soils wet, which allows for slow decomposition. Canadian salt marsh soils have increased in thickness at a rate of between 2 to 4 mm per year. Measurement programs have demonstrated the sustainability of inner Bay of Fundy marshes in relation to rising sea levels. Opportunities for carbon sinks also exist in dyked marshes in the region. It was concluded that the salt marshes can account for between 4 to 6 per cent of Canada's targeted reductions under the Kyoto Protocol. tabs., figs.

  1. Limitations of carbon footprint as indicator of environmental sustainability.

    Science.gov (United States)

    Laurent, Alexis; Olsen, Stig I; Hauschild, Michael Z

    2012-04-03

    Greenhouse gas accountings, commonly referred to with the popular term carbon footprints (CFP), are a widely used metric of climate change impacts and the main focus of many sustainability policies among companies and authorities. However, environmental sustainability concerns not just climate change but also other environmental problems, like chemical pollution or depletion of natural resources, and the focus on CFP brings the risk of problem shifting when reductions in CFP are obtained at the expense of increase in other environmental impacts. But how real is this risk? Here, we model and analyze the life cycle impacts from about 4000 different products, technologies, and services taken from several sectors, including energy generation, transportation, material production, infrastructure, and waste management. By investigating the correlations between the CFP and 13 other impact scores, we show that some environmental impacts, notably those related to emissions of toxic substances, often do not covary with climate change impacts. In such situations, carbon footprint is a poor representative of the environmental burden of products, and environmental management focused exclusively on CFP runs the risk of inadvertently shifting the problem to other environmental impacts when products are optimized to become more "green". These findings call for the use of more broadly encompassing tools to assess and manage environmental sustainability.

  2. Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin

    OpenAIRE

    Michael, Holly A.; Voss, Clifford I.

    2008-01-01

    Tens of millions of people in the Bengal Basin region of Bangladesh and India drink groundwater containing unsafe concentrations of arsenic. This high-arsenic groundwater is produced from shallow (150 m where groundwater arsenic concentrations are nearly uniformly low, and many more wells are needed, however, the sustainability of deep, arsenic-safe groundwater has not been previously assessed. Deeper pumping could induce downward migration of dissolved arsenic, permanently destroying the dee...

  3. Joint Decision-Making and the Coordination of a Sustainable Supply Chain in the Context of Carbon Tax Regulation and Fairness Concerns.

    Science.gov (United States)

    Liu, Zhi; Zheng, Xiao-Xue; Gong, Ben-Gang; Gui, Yun-Miao

    2017-11-27

    Carbon tax regulation and consumers' low-carbon preference act as incentives for firms to abate emissions. Manufacturers can improve product sustainability and retailers can strengthen the promotion of low-carbon products as part of such abatement. Current incomplete rationality also affects product sustainability and low-carbon promotion level. In this context, we consider a supply chain with a manufacturer and a retailer and investigate the impacts of the manufacturer's and the retailer's fairness concerns on their production sustainability level, low-carbon promotion level and profitability. We also explore the coordination contract. The results show that the manufacturer's and the retailer's fairness concerns decrease their product sustainability and low-carbon promotion level, together with the profits of the system and the manufacturer. With regard to the retailer's fairness concern, the product sustainability level and the manufacturer's profit are lower; moreover, the low-carbon promotion level and the profits of the supply chain and the retailer are higher. A revenue-sharing contract can coordinate the supply chain perfectly; however, members' fairness concerns increase the difficulty of coordination. Finally, the numerical results reveal that carbon tax regulation can encourage the manufacturer to enhance the product sustainability level. Further, the impacts on the low-carbon promotion level and firms' profitability are related to the cost coefficients of product sustainability.

  4. Safe Management Of Fast Reactors: Towards Sustainability

    International Nuclear Information System (INIS)

    Dreimanis, Andrejs

    2015-01-01

    An interdisciplinary systemic approach to socio-technical optimization of nuclear energy management is proposed, by recognizing a) the rising requirements to nuclear safety being realized using fast reactors (FR), b) the actuality to maintain and educate qualified workforce for fast reactors, c) the reactor safety and public awareness as the keystones for improving attitude to implement novel reactors. Knowledge management and informational support firstly is needed in: 1) technical issues: a) nuclear energy safety and reliability, b) to develop safe and economic technologies; 2) societal issues: a) general nuclear awareness, b) personnel education and training, c) reliable staff renascence, public education, stakeholder involvement, e).risk management. The key methodology - the principles being capable to manage knowledge and information issues: 1) a self-organization concept, 2) the principle of the requisite variety. As a primary source of growth of internal variety is considered information and knowledge. Following questions are analyzed indicating the ways of further development: a) threats in peaceful use of nuclear energy, b) basic features of nuclear risks, including terrorism, c) human resource development: basic tasks and instruments, d) safety improvements in technologies, e) advanced research and nuclear awareness improvement There is shown: public education, social learning and the use of mass media are efficient mechanisms forming a knowledge-creating community thereby reasoning to facilitate solution of key socio-technical nuclear issues: a) public acceptance of novel nuclear objects, b) promotion of adequate risk perception, and c) elevation of nuclear safety level and adequate risk management resulting in energetic and ecological sustainability. (author)

  5. The Carbon Cycle: Teaching Youth about Natural Resource Sustainability

    Science.gov (United States)

    Warren, William A.

    2015-01-01

    The carbon cycle was used as a conceptual construct for organizing the curriculum for a youth summer camp on natural resource use and sustainability. Several studies have indicated the importance of non-traditional youth education settings for science education and understanding responsible natural resource use. The Sixth Grade Forestry Tour, a…

  6. Limitations of Carbon Footprint as Indicator of Environmental Sustainability

    DEFF Research Database (Denmark)

    Laurent, Alexis; Olsen, Stig I.; Hauschild, Michael Z.

    2012-01-01

    change but also other environmental problems, like chemical pollution or depletion of natural resources, and the focus on CFP brings the risk of problem shifting when reductions in CFP are obtained at the expense of increase in other environmental impacts. But how real is this risk? Here, we model...... runs the risk of inadvertently shifting the problem to other environmental impacts when products are optimized to become more “green”. These findings call for the use of more broadly encompassing tools to assess and manage environmental sustainability.......Greenhouse gas accountings, commonly referred to with the popular term carbon footprints (CFP), are a widely used metric of climate change impacts and the main focus of many sustainability policies among companies and authorities. However, environmental sustainability concerns not just climate...

  7. Mesostructured platinum-free anode and carbon-free cathode catalysts for durable proton exchange membrane fuel cells.

    Science.gov (United States)

    Cui, Xiangzhi; Shi, Jianlin; Wang, Yongxia; Chen, Yu; Zhang, Lingxia; Hua, Zile

    2014-01-01

    As one of the most important clean energy sources, proton exchange membrane fuel cells (PEMFCs) have been a topic of extensive research focus for decades. Unfortunately, several critical technique obstacles, such as the high cost of platinum electrode catalysts, performance degradation due to the CO poisoning of the platinum anode, and carbon corrosion by oxygen in the cathode, have greatly impeded its commercial development. A prototype of a single PEMFC catalyzed by a mesostructured platinum-free WO3/C anode and a mesostructured carbon-free Pt/WC cathode catalysts is reported herein. The prototype cell exhibited 93% power output of a standard PEMFC using commercial Pt/C catalysts at 50 and 70 °C, and more importantly, CO poisoning-free and carbon corrosion-resistant characters of the anode and cathode, respectively. Consequently, the prototype cell demonstrated considerably enhanced cell operation durability. The mesostructured electrode catalysts are therefore highly promising in the future development and application of PEMFCs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The sustainable nuclear energy technology platform. A vision report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain

  9. Joint Decision-Making and the Coordination of a Sustainable Supply Chain in the Context of Carbon Tax Regulation and Fairness Concerns

    Directory of Open Access Journals (Sweden)

    Zhi Liu

    2017-11-01

    Full Text Available Carbon tax regulation and consumers’ low-carbon preference act as incentives for firms to abate emissions. Manufacturers can improve product sustainability and retailers can strengthen the promotion of low-carbon products as part of such abatement. Current incomplete rationality also affects product sustainability and low-carbon promotion level. In this context, we consider a supply chain with a manufacturer and a retailer and investigate the impacts of the manufacturer’s and the retailer’s fairness concerns on their production sustainability level, low-carbon promotion level and profitability. We also explore the coordination contract. The results show that the manufacturer’s and the retailer’s fairness concerns decrease their product sustainability and low-carbon promotion level, together with the profits of the system and the manufacturer. With regard to the retailer’s fairness concern, the product sustainability level and the manufacturer’s profit are lower; moreover, the low-carbon promotion level and the profits of the supply chain and the retailer are higher. A revenue-sharing contract can coordinate the supply chain perfectly; however, members’ fairness concerns increase the difficulty of coordination. Finally, the numerical results reveal that carbon tax regulation can encourage the manufacturer to enhance the product sustainability level. Further, the impacts on the low-carbon promotion level and firms’ profitability are related to the cost coefficients of product sustainability.

  10. Pattern formation under residual compressive stress in free sustained aluminum films

    International Nuclear Information System (INIS)

    Yu Senjiang; Ye Quanlin; Zhang Yongju; Cai Pinggen; Xu Xiaojun; Chen Jiangxing; Ye Gaoxiang

    2005-01-01

    A nearly free sustained aluminum (Al) film system has been successfully fabricated by vapor phase deposition of Al atoms on silicone oil surfaces and an unusual type of ordered patterns at the micrometer scale has been systematically studied. The ordered patterns are composed of a large number of parallel key-shaped domains and possess a sandwiched structure. The nucleation and growth of the patterns are very susceptible to the growth period, deposition rate, nominal film thickness and location of the film. The experiment shows that the ordered patterns are induced by the residual compressive stress in the film owing to contraction of the liquid surface after deposition. The appearance of these stress relief patterns generally represents the stress distribution in the nearly free sustained Al films, which mainly results from the characteristic boundary condition and the nearly zero adhesion of the solid-liquid interface

  11. Insulin-loaded poly(epsilon-caprolactone) nanoparticles: efficient, sustained and safe insulin delivery system.

    Science.gov (United States)

    de Araújo, Thiago M; Teixeira, Zaine; Barbosa-Sampaio, Helena C; Rezende, Luiz F; Boschero, Antonio C; Durán, Nelson; Höehr, Nelci F

    2013-06-01

    The aim of this work was to develop an efficient, biodegradable, biocompatible and safe controlled release system using insulin-loaded poly(epsilon-caprolactone) (PCL) nanoparticles. The insulin-loaded PCL nanoparticles were prepared by double emulsion method (water-in-oil-in-water) using Pluronic F68 as emulsifier. Using the double emulsion method a high insulin encapsulation efficiency (90.6 +/-1.6%) with a zeta potential of -29 +/-2.7 mV and average particle size of 796 +/-10.5 nm was obtained. Insulin-loaded PCL nanoparticles showed no toxicity to MIN6 cells. Insulin nanoparticles administered subcutaneously and intraperitoneally in rats reduced glycaemia of basal levels after 15 minutes, and presented a sustainable hypoglycemic effect on insulin-dependent type 1 diabetic rats, showing to be more efficient than unencapsulated insulin. Furthermore, these nanoparticles were not hepatotoxic, as evaluated by the effect over liver cell-death and oxidative stress scavenger system in rats. These results suggest that insulin-loaded PCL nanoparticles prepared by water-in-oil-in-water emulsion method are biocompatible, efficient and safe insulin-delivering system with controlled insulin release, which indicates that it may be a powerful tool for insulin-dependent patients care.

  12. A safe and cost-effective PMMA carbon source for MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ranot, Mahipal; Shinde, K. P.; Oh, Y. S.; Kang, S. H.; Chung, K. C. [Korea Institute of Materials Science, Changwon (Korea, Republic of); Jang, S. H. [Kiswire Advanced Technology Ltd, Daejeon (Korea, Republic of); Sinha, B. B. [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Mumbai (India); Bhardwaj, A. [Dept. of Physics, Sungkyunkwan University, Suwon (Korea, Republic of)

    2017-03-15

    Carbon is proven to be very effective in pinning the magnetic vortices and improving the superconducting performance of MgB2 at high fields. In this work, we have used polymethyl methacrylate (PMMA) polymer as a safe and cost effective carbon source. The effects of molecular weight of PMMA on crystal structure, microstructure as well as on superconducting properties of MgB2 were studied. X-ray diffraction analysis revealed that there is a noticeable shift in (100) and (110) Bragg reflections towards higher angles, while no shift was observed in (002) reflections for MgB2 doped with different molecular weights of PMMA. This indicates that carbon could be substituted in the boron honeycomb layers without affecting the interlayer interactions. As compared to undoped MgB2, substantial enhancement in Jc(H) properties was obtained for PMMA-doped MgB2 samples both at 5 K and 20 K. The enhancement could be attributed to the effective carbon substitution for boron and the refinement of crystallite size by PMMA doping.

  13. Sustainable Supply of Safe Drinking Water for Underserved Households in Kenya: Investigating the Viability of Decentralized Solutions

    Directory of Open Access Journals (Sweden)

    Pauline Chepchirchir Cherunya

    2015-10-01

    Full Text Available Water quality and safe water sources are pivotal aspects of consideration for domestic water. Focusing on underserved households in Kenya, this study compared user perceptions and preferences on water-service provision options, particularly investigating the viability of decentralized models, such as the Safe Water Enterprise (SWE, as sustainable safe drinking water sources. Results showed that among a number of water-service provision options available, the majority of households regularly sourced their domestic water from more than one source (86% Ngoliba/Maguguni, 98% Kangemi Gichagi. A majority of households perceived their water sources to be unsafe to drink (84% Ngoliba/Maguguni, 73% Kangemi Gichagi. For this reason, drinking water was mainly chlorinated (48% Ngoliba/Maguguni, 33% Kangemi Gichagi or boiled (42% Ngoliba/Maguguni, 67% Kangemi Gichagi. However, this study also found that households in Kenya did not apply these household water treatment methods consistently, thus indicating inconsistency in safe water consumption. The SWE concept, a community-scale decentralized safe drinking water source, was a preferred option among households who perceived it to save time and to be less cumbersome as compared to boiling and chlorination. Willingness to pay for SWE water was also a positive indicator for its preference by the underserved households. However, the long-term applicability of such decentralized water provision models needs to be further investigated within the larger water-service provision context.

  14. Governing low-carbon energy transitions in sustainable ways: Potential synergies and conflicts between climate and environmental policy objectives

    International Nuclear Information System (INIS)

    Hildingsson, Roger; Johansson, Bengt

    2016-01-01

    Climate change is a central sustainability concern, but is often treated separately from other policy areas in environmental governance. In this article we study how low-carbon energy transitions might be governed in line with broader sustainability goals. We identify conflicts and synergies between low-carbon strategies and the attainment of longer-term environmental objectives by examining the Swedish environmental quality objectives as a governance arrangement. Our analysis indicates that low-carbon strategies might be compatible with preserving other aspects of ecological sustainability. However, this requires relevant flanking policies and measures for non-climate objectives, e.g. systems that control the expansion of biomass and ensure the use of sustainable methods. For such a governance system to be credible and capable, it needs to be flexible in terms of adapting to specific and changing contexts, and reflexive enough to factor in new knowledge on requirements for sustainable development and potentially changing values of future generations. - Highlights: • We identify synergies and conflicts between climate and environmental objectives. • Low-carbon energy transitions can be compatible with other sustainability goals. • This demands relevant flanking policies, e.g. on sustainable biomass harvesting. • This requires policy measures to take different local contexts into account. • Governance systems need to respond to new knowledge and changing values.

  15. Green Strategy to Single Crystalline Anatase TiO 2 Nanosheets with Dominant (001) Facets and Its Lithiation Study toward Sustainable Cobalt-Free Lithium Ion Full Battery

    KAUST Repository

    Ming, Hai

    2015-11-03

    A green hydrothermal strategy starting from the Ti powders was developed to synthesis a new kind of well dispersed anatase TiO nanosheets (TNSTs) with dominant (001) facets, successfully avoiding using the HF by choosing the safe substitutes of LiF powder. In contrast to traditional approaches targeting TiO with dominant crystal facets, the strategy presented herein is more convenient, environment friendly and available for industrial production. As a unique structured anode applied in lithium ion battery, the TNSTs could exhibit an extremely high capacity around 215 mAh g at the current density of 100 mA g and preserved capacity over 140 mAh g enduring 200 cycles at 400 mA g. As a further step toward commercialization, a model of lithiating TiO was built for the first time and analyzed by the electrochemical characterizations, and full batteries employing lithiated TNSTs as carbon-free anode versus spinel LiNiMnO (x = 0, 0.5) cathode were configured. The full batteries of TNSTs/LiMnO and TNSTs/LiNiMnO have the sustainable advantage of cost-effective and cobalt-free characteristics, and particularly they demonstrated high energy densities of 497 and 580 Wh kg (i.e., 276 and 341 Wh kg ) with stable capacity retentions of 95% and 99% respectively over 100 cycles. Besides the intriguing performance in batteries, the versatile synthetic strategy and unique characteristics of TNSTs may promise other attracting applications in the fields of photoreaction, electro-catalyst, electrochemistry, interfacial adsorption photovoltaic devices etc.

  16. Three-dimensional core-shell Fe_2O_3 @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Xiaohua; Zhang, Miao; Liu, Enzuo; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Zhao, Naiqin

    2016-01-01

    Highlights: • The 3D core-shell Fe_2O_3@C/CC structure is fabricated by simple hydrothermal route. • The composite connected 3D carbon networks consist of carbon cloth, Fe_2O_3 nanorods and outer carbon layer. • The Fe_2O_3@C/CC used as binder-free anode in LIBs, demonstrates excellent performances. - Abstract: A facile and scalable strategy is developed to fabricate three dimensional core-shell Fe_2O_3 @ carbon/carbon cloth structure by simple hydrothermal route as binder-free lithium-ion battery anode. In the unique structure, carbon coated Fe_2O_3 nanorods uniformly disperse on carbon cloth which forms the conductive carbon network. The hierarchical porous Fe_2O_3 nanorods in situ grown on the carbon cloth can effectively shorten the transfer paths of lithium ions and reduce the contact resistance. The carbon coating significantly inhibits pulverization of active materials during the repeated Li-ion insertion/extraction, as well as the direct exposure of Fe_2O_3 to the electrolyte. Benefiting from the structural integrity and flexibility, the nanocomposites used as binder-free anode for lithium-ion batteries, demonstrate high reversible capacity and excellent cyclability. Moreover, this kind of material represents an alternative promising candidate for flexible, cost-effective, and binder-free energy storage devices.

  17. Preparation of Ultra-fine Calcium Carbonate by a Solvent-free ...

    African Journals Online (AJOL)

    The treatment of calcium chloride with sodium carbonate under solvent-free conditions with a supersonic airflow and at a low heating temperature leads to the synthesis of ultra-fine calcium carbonate. The reaction not only involves mild conditions, a simple operation, and high yields but also gives a high conversion rate.

  18. Dendrite-free Li metal anode enabled by a 3D free-standing lithiophilic nitrogen-enriched carbon sponge

    Science.gov (United States)

    Hou, Guangmei; Ren, Xiaohua; Ma, Xiaoxin; Zhang, Le; Zhai, Wei; Ai, Qing; Xu, Xiaoyan; Zhang, Lin; Si, Pengchao; Feng, Jinkui; Ding, Fei; Ci, Lijie

    2018-05-01

    Lithium metal is considered as the ultimate anode material for high-energy Li battery systems. However, the commercial application of lithium anode is impeded by issues with safety and low coulombic efficiency induced by Li dendrite growth. Herein, a free-standing three-dimensional nitrogen-enriched graphitic carbon sponge with a high nitrogen content is proposed as a multifunctional current collect for Lithium accommodation. The abundant lithiophilic N-containing functional groups are served as preferred nucleation sites to guide a uniform Li deposition. In addition, the nitrogen-enriched graphitic carbon sponge with a high specific surface area can effectively reduce the local current density. As a result of the synergistic effect, the nitrogen-enriched graphitic carbon sponge electrode realizes a long-term stable cycling without dendrites formation. Notably, the as-obtained composite electrode can deliver an ultra-high specific capacity of ∼3175 mA h g-1. The nitrogen-enriched graphitic carbon sponge might provide innovative insights to design a superior matrix for dendrite-free Li anode.

  19. 75 FR 6006 - Office of Safe and Drug-Free Schools; Cooperative Civic Education and Economic Education Exchange...

    Science.gov (United States)

    2010-02-05

    ... DEPARTMENT OF EDUCATION Office of Safe and Drug-Free Schools; Cooperative Civic Education and Economic Education Exchange Program Catalog of Federal Domestic Assistance (CFDA) Number: 84.304A. ACTION... the Cooperative Civic Education and Economic Education Exchange Program. The notice stated that a list...

  20. Energy for road passenger transport and sustainable development: assessing policies and goals interactions

    DEFF Research Database (Denmark)

    Meza, Maria Josefina Figueroa; Ribeiro, Suzana Kahn

    2013-01-01

    and sustainable development goals. Essential, uncertain and limited interactions are mapped out as a result, their overview indicates that a full reconciliation between these policies and sustainability goals is not always attainable. The careful alignment and contextual examination of interactions between...... measures and goals as exemplified in this approach can help inform practical transport energy policy that better match an agenda for sustainable development.......Development that is sustainable requires an operational, efficient and safe transportation system fueled by clean, low-carbon, secure and affordable energy. The energy used in road passenger transport enables social and economic development and is the target of interventions to fight pressing urban...

  1. Towards Sustainable Lifestyles. A Variety of Lifestyles for a Post-carbon Society

    International Nuclear Information System (INIS)

    Huber, Andreas; Le Marre, Pierre; Girard, Sebastien

    2013-01-01

    In 2009 a programme 'Re-thinking Society in a Post-carbon Society'- steered jointly by the Foresight Department of the French Ecology Ministry and the French Environment and Energy Management Agency (ADEME), was launched in France. It is still ongoing and aims to produce a final report in 2013. The idea of a transition towards a 'post- carbon' society includes four main objectives: reducing greenhouse gas emissions by 2050 to one quarter of what they were in 1990; near-autonomy with regard to carbon energies (petrol, gas, coal); an adequate capacity to adapt to climate change and, lastly, greater attention to situations of 'energy precariousness'. As part of the dossier Futuribles is devoting to this programme this month, Andreas Huber, Sebastien Girard and Pierre Le Marre lay out in this article the results of the studies they have carried out on 'sustainable urban milieus'. After a presentation of the notion of 'milieu' (based here on a segmentation using the Socio-milieus R method) and of the typology employed (nine main social milieus, three emergent milieus and 16 contrasting profiles), the authors show the extent to which individuals' carbon foot - prints vary, depending upon lifestyles, and what a determining effect these lifestyles have in the fields of housing and transport. They then specify the various factors influencing behaviour in the direction of sustain - able consumption (or not) and the different types of strategies of intervention that are likely to modify those behaviours. Lastly, they detail two targeted strategies, one aimed at the 'precarious seniors' milieu and the other at the 'eco-elite' milieu. Despite certain imperfections that remain to be sorted out in the study of sustainable urban milieus, these studies open up new perspectives for the development of sociologically targeted policies for a post-carbon transition. (authors)

  2. Preparation of carbon-free TEM microgrids by metal sputtering

    International Nuclear Information System (INIS)

    Janbroers, S.; Kruijff, T.R. de; Xu, Q.; Kooyman, P.J.; Zandbergen, H.W.

    2009-01-01

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775 K under vacuum conditions.

  3. Preparation of carbon-free TEM microgrids by metal sputtering.

    Science.gov (United States)

    Janbroers, S; de Kruijff, T R; Xu, Q; Kooyman, P J; Zandbergen, H W

    2009-08-01

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775K under vacuum conditions.

  4. Safe and sustainable: the extracranial approach toward frontoethmoidal meningoencephalocele repair.

    Science.gov (United States)

    Heidekrueger, Paul I; Thu, Myat; Mühlbauer, Wolfgang; Holm-Mühlbauer, Charlotte; Schucht, Philippe; Anderl, Hans; Schoeneich, Heinrich; Aung, Kyawzwa; Mg Ag, Mg; Thu Soe Myint, Ag; Juran, Sabrina; Aung, Thiha; Ehrl, Denis; Ninkovic, Milomir; Broer, P Niclas

    2017-10-01

    OBJECTIVE Although rare, frontoethmoidal meningoencephaloceles continue to pose a challenge to neurosurgeons and plastic reconstructive surgeons. Especially when faced with limited infrastructure and resources, establishing reliable and safe surgical techniques is of paramount importance. The authors present a case series in order to evaluate a previously proposed concise approach for meningoencephalocele repair, with a focus on sustainability of internationally driven surgical efforts. METHODS Between 2001 and 2016, a total of 246 patients with frontoethmoidal meningoencephaloceles were treated using a 1-stage extracranial approach by a single surgeon in the Department of Neurosurgery of the Yangon General Hospital in Yangon, Myanmar, initially assisted by European surgeons. Outcomes and complications were evaluated. RESULTS A total of 246 patients (138 male and 108 female) were treated. Their ages ranged from 75 days to 32 years (median 8 years). The duration of follow-up ranged between 4 weeks and 16 years (median 4 months). Eighteen patients (7.3%) showed signs of increased intracranial pressure postoperatively, and early CSF rhinorrhea was observed in 27 patients (11%), with 5 (2%) of them requiring operative dural repair. In 8 patients, a decompressive lumbar puncture was performed. There were 8 postoperative deaths (3.3%) due to meningitis. In 15 patients (6.1%), recurrent herniation of brain tissue was observed; this herniation led to blindness in 1 case. The remaining patients all showed good to very good aesthetic and functional results. CONCLUSIONS A minimally invasive, purely extracranial approach to frontoethmoidal meningoencephalocele repair may serve well, especially in middle- and low-income countries. This case series points out how the frequently critiqued lack of sustainability in the field of humanitarian surgical missions, as well as the often-cited missing aftercare and dependence on foreign supporters, can be circumvented by meticulous

  5. Climate change and sustainable energy: actions and transition to a lower carbon economy

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2009-01-01

    'Full text:' This presentation will address climate change and transition to a lower carbon economy in general and the importance of sustainable energy in such initiatives. The talk has two main parts. In the first part, the presenter discuss why non-fossil fuel energy options, which are diverse and range from renewables through to nuclear energy, are needed to help humanity combat climate change and transition to a lower carbon economy. Such energy options reduce or eliminate emissions of greenhouse gases and thus often form the basis of sustainable energy solutions. Nonetheless, carbon dioxide capture and sequestration may allow fossil fuels to be less carbon emitting. Sustainable energy options are not sufficient for avoiding climate change, in that they are not necessarily readily utilizable in their natural forms. Hydrogen energy systems are needed to facilitate the use of non-fossil fuels by allowing them to be converted to two main classes of energy carriers: hydrogen and select hydrogen-derived fuels and electricity. As hydrogen is not an energy resource, but rather is an energy carrier that must be produced, it complements non-fossil energy sources, which often need to be converted into more convenient forms. In addition, high efficiency is needed to allow the greatest benefits to be attained from all energy options, including non-fossil fuel ones, in terms of climate change and other factors. Efficiency improvements efforts have many dimensions, including energy conservation, improved energy management, fuel substitution, better matching of energy carriers and energy demands, and more efficiency utilization of both energy quantity and quality. The latter two concepts are best considered via the use of exergy analysis, an advanced thermodynamic tool. In the second part of the presentation, actions to address climate change more generally and to help society transition to a lower carbon economy are described. The role of sustainable energy in this

  6. Preparation of carbon-free TEM microgrids by metal sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Janbroers, S., E-mail: stephan.janbroers@albemarle.com [Albemarle Catalysts B.V., Nieuwendammerkade 1-3, 1030 BE, Amsterdam (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Kruijff, T.R. de; Xu, Q. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Kooyman, P.J. [DelftChemTech, Delft University of Technology, Julianalaan 136, 2628 BL, Delft (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Zandbergen, H.W. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands)

    2009-08-15

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775 K under vacuum conditions.

  7. Template-free synthesis of renewable macroporous carbon via yeast cells for high-performance supercapacitor electrode materials.

    Science.gov (United States)

    Sun, Hongmei; He, Wenhui; Zong, Chenghua; Lu, Lehui

    2013-03-01

    The urgent need for sustainable development has forced material scientists to explore novel materials for next-generation energy storage devices through a green and facile strategy. In this context, yeast, which is a large group of single cell fungi widely distributed in nature environments, will be an ideal candidate for developing effective electrode materials with fascinating structures for high-performance supercapacitors. With this in mind, herein, we present the first example of creating three-dimensional (3D) interpenetrating macroporous carbon materials via a template-free method, using the green, renewable, and widespread yeast cells as the precursors. Remarkably, when the as-prepared materials are used as the electrode materials for supercapacitors, they exhibit outstanding performance with high specific capacitance of 330 F g(-1) at a current density of 1 A g(-1), and good stability, even after 1000 charge/discharge cycles. The approach developed in this work provides a new view of making full use of sustainable resources endowed by nature, opening the avenue to designing and producing robust materials with great promising applications in high-performance energy-storage devices.

  8. International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13), Paris – March 4-7, 2013: Closing Session. Summary of Sustainability of Advanced Fuel Cycles Panel Session II

    International Nuclear Information System (INIS)

    Cameron, R.

    2013-01-01

    Sustainability was discussed in terms of the social, environment and economic perspectives, which arise from the original Brundtland definition of sustainability. The panel presented their perspectives of the need to move towards a sustainable future, involving better use of uranium, reductions in high-level radioactive waste, safe, secure and economic operation of nuclear reactors and the fuel cycle. In all cases, it was considered that sustainability in the long-term must involve fast reactors and a closed nuclear fuel cycle, although both Korea and the IAEA pointed out that these are clearly national decisions and there will not be a single solution for all countries

  9. Carbon trading, climate change, environmental sustainability and saving planet Earth

    Science.gov (United States)

    Yim, W. W.

    2009-12-01

    Carbon trading namely the reduction of future carbon dioxide levels has been widely touted as a solution needed to counter the problem of climate change. However, there are enormous risks involved as the measure tackles only one of the causes of climate change and may prove to be ineffective. This presentation highlights ten points relevant to the discussion on carbon trading, climate change, environmental sustainability and saving planet Earth for increasing public awareness. They include: (1) Climate has changed throughout Earth’s history. (2) The present level of about 388 parts per million level of carbon dioxide in the atmosphere has already exceeded the maximum level of the past 800,000 years. This value is obtained from air bubbles trapped within the ice in Antarctica but the consequence of further increases remains uncertain. (3) Earth scientists do not have an overwhelming consensus on whether carbon trading alone is an effective measure in mitigating climate change. (4) The present state of the Earth’s demise is largely the result of human actions including population growth and the mismanagement of the Earth. (5) The latest evidence on sea-level changes in the South China Sea a far-field region unaffected by glacial isostatic readjustment is not in support of a ‘rapid’ rate of future sea-level rise through global warming. (6) Volcanic eruptions have an important role in driving the Earth’s climate. Examples of temperature lowering as well as abnormally wet and dry years can both be found in the instrumental record. (7) Humans have drastically modified the ‘natural’ water cycle. This is however not a well recognized cause of climate change compared to the emission of greenhouse gases through fossil fuel consumption. (8) The bulk (~75%) of the rise in mean annual temperature of about 1oC observed at the Hong Kong Observatory Station since record began in 1884 is best explained by the thermal heat island effect. (9) No evidence has been found

  10. Quantifying economic sustainability. Implications for free-enterprise theory, policy and practice

    Energy Technology Data Exchange (ETDEWEB)

    Goerner, Sally J. [Integral Science Institute, 374 Wesley Ct, Chapel Hill, NC 27516 (United States); Lietaer, Bernard [Center for Sustainable Resources, 101 Giannini Hall, University of California, Berkeley, CA 94720-3100 (United States); Ulanowicz, Robert E. [University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, MD 20688-0038 (United States)

    2009-11-15

    In a previous paper (Ulanowicz, Goerner, Lietaer, and Gomez, 2009), we combined thermodynamic, network, and information theoretic measures with research on real-life ecosystems to create a generalized, quantitative measure of sustainability for any complex, matter/energy flow system. The current paper explores how this metric and its related concepts can be used to provide a new narrative for long-term economic health and sustainability. Based on a system's ability to maintain a crucial balance between two equally essential, but complementary factors, resilience and efficiency, this generic explanation of the network structure needed to maintain long-term robustness provides the missing theoretical explanation for what constitutes healthy development and the mathematical means to differentiate it quantitatively from mere growth. Matching long-standing observations of sustainable vitality in natural ecosystems and living organisms, the result is a much clearer, more accurate understanding of the conditions needed for free-enterprise networks to produce the kind of sustainable vitality everyone desires, one which enhances and reliably maintains the health and well-being of all levels of global civilization as well as the planet. (author)

  11. A Method for Sustainable Carbon Dioxide Utilization Process Synthesis and Design

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Fjellerup, Kasper; Roh, Kosan

    As a result of increasing regulations and concern about the impact of greenhouse gases on the environment, carbon dioxide (CO2) emissions are a primary focus for reducing emissions and improving global sustainability. One method to achieve reduced emissions, is the conversion of CO2 to useful...... compounds via chemical reactions. However, conversion is still in its infancy and requires work for implementation at an industrial level. One aspect of this is the development of a methodology for the formulation and optimization of sustainable conversion processes. This methodology follows three stages...

  12. Eco-Self-Build Housing Communities: Are They Feasible and Can They Lead to Sustainable and Low Carbon Lifestyles?

    Directory of Open Access Journals (Sweden)

    Steffie Broer

    2010-07-01

    Full Text Available This paper concerns how sustainable and low carbon living can be enabled in new housing developments in the UK. It is here recognized that consumption of energy and resources is not just what goes into the building, but also long-term through occupancy and activities. Current approaches, which require housing developers to reduce the carbon emissions of the homes they build through a mixture of energy efficiency and renewable energy systems, do not sufficiently contribute to the carbon emission reductions which are necessary for meeting UK Government targets and to avoid dangerous climate change. Purchasing a home ties people in to not just direct consumption of energy (heating, hot water, electricity, but also effects other areas of consumption such as the embedded energy in the building and activities associated with the location and the type of development. Conventional business models for new housing development, operating under current government regulations, policies and targets have failed to develop housing which encourages the adoption of sustainable lifestyles taking whole life consumption into account. An alternative business model of eco-self-build communities is proposed as a way to foster desired behavior change. The feasibility of eco-self-build communities and their scope for supporting low carbon sustainable lifestyles is assessed through stakeholder interviews, and through quantitative assessment of costs, carbon emission reduction potential, and other sustainability impacts of technical and lifestyle options and their combinations. The research shows that eco-self-build communities are both feasible and have the ability to deliver low carbon lifestyles. In comparison to conventional approaches to building new housing, they have further advantages in terms of delivering wider social, environmental as well as economic sustainability objectives. If implemented correctly they could succeed in making sustainable lifestyles

  13. Safe and quick carbon sequestration

    International Nuclear Information System (INIS)

    Tiano, M.

    2016-01-01

    Geological sequestration of carbon dioxyde is considered as an important tool to fight global warming but long term safety is an essential issue due to the risk of accidental leakages. The CarbFix experimentation has shown the possibility to turn hundreds tons of CO 2 into inert carbonated rocks in less than 2 years. This CO 2 injection took place in basaltic rocks. Basaltic rocks allows an adequate diffusion of the gas because of its porosity and favors the acido-base chemical reaction that turns CO 2 into inert and stable carbonates. This experiment was performed with CO 2 dissolved in water in order to limit leaks, basaltic layers being naturally cracked, and to accelerate the formation of carbonates by dissolving the metal ions coming from the rocks. The important quantity of water required for this technique, limits its use to coastal sites. (A.C.)

  14. Porous carbon-free SnSb anodes for high-performance Na-ion batteries

    Science.gov (United States)

    Choi, Jeong-Hee; Ha, Choong-Wan; Choi, Hae-Young; Seong, Jae-Wook; Park, Cheol-Min; Lee, Sang-Min

    2018-05-01

    A simple melt-spinning/chemical-etching process is developed to create porous carbon-free SnSb anodes. Sodium ion batteries (SIBs) incorporating these anodes exhibit excellent electrochemical performances by accomodating large volume changes during repeated cycling. The porous carbon-free SnSb anode produced by the melt-spinning/chemical-etching process shows a high reversible capacity of 481 mAh g-1, high ICE of 80%, stable cyclability with a high capacity retention of 99% after 100 cycles, and a fast rate capability of 327 mAh g-1 at 4C-rate. Ex-situ X-ray diffraction and high resolution-transmission electron microscopy analyses demonstrate that the synthesized porous carbon-free SnSb anodes involve the highly reversible reaction with sodium through the conversion and recombination reactions during sodiation/desodiation process. The novel and simple melt-spinning/chemical-etching synthetic process represents a technological breakthrough in the commercialization of Na alloy-able anodes for SIBs.

  15. The Environmental and Economic Sustainability of Carbon Capture and Storage

    Directory of Open Access Journals (Sweden)

    Mayuran Sivapalan

    2011-05-01

    Full Text Available For carbon capture and storage (CCS to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO2 abated—there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications—indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO2 entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and

  16. The environmental and economic sustainability of carbon capture and storage.

    Science.gov (United States)

    Hardisty, Paul E; Sivapalan, Mayuran; Brooks, Peter

    2011-05-01

    For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO(2) abated--there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications-indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO(2) entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically

  17. International trends on sustainable energy Issues

    International Nuclear Information System (INIS)

    Spitalnik, J.

    2007-01-01

    At the U.N. Commission on Sustainable Development (CSD), the role of nuclear power for a carbon free emission supply of energy is now being recognized although with certain reticence or opposition. Such recognition is taking place at the current cycle of discussions devoted to sustainable energy, industrial development, atmospheric pollution and climate change issues. This paper focuses on the arguments and facts provided during CSD deliberations for considering nuclear energy as a valid option: all available energy sources will need to be considered for an adjustment to a world that requires much less carbon liberation to the environment; in the transportation sector, actions need to be urgently implemented for promoting cleaner fuels and more efficient vehicles; massive reduction of greenhouse gas emissions must be urgently implemented in order to mitigate the impacts of global warming; sustainable energy solutions for developed economies are not always adequate in developing countries; the development evolution requires specifically tailored solutions to conditions of large annual growth-rates of energy demand. Consequently, nuclear power will provide the answer to many of these problems. (Author)

  18. Sustainable process design with process intensification - Development and implementation of a framework for sustainable carbon dioxide capture and utilization processes

    DEFF Research Database (Denmark)

    Frauzem, Rebecca

    . The developed framework adopts a 3-stage approach for sustainable design, which is comprised of: (1) synthesis, (2) design, and (3) innovation. In the first stage, the optimal processing route is obtained from a network via a superstructure-based approach. This stage incorporates a structured database...... and are designed and simulated in detail: 1. Dimethyl ether from methanol via combined reforming 2. Dimethyl ether from methanol via direct hydrogenation 3. Dimethyl carbonate via ethylene carbonate and methanol from combined reforming 4. Dimethyl carbonate via ethylene carbonate and methanol from direct...... hydrogenation. Through the analysis of the processes, it can be seen that the methanol distillation and the dimethyl carbonate downstream separation contribute to largeamounts of the utility consumption and therefore costs. Therefore, the reductionof the utility consumption of the methanol distillation...

  19. Three-dimensional core-shell Fe{sub 2}O{sub 3} @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaohua; Zhang, Miao [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Liu, Enzuo, E-mail: ezliu@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China); He, Fang; Shi, Chunsheng [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); He, Chunnian [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China); Li, Jiajun [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Zhao, Naiqin, E-mail: nqzhao@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China)

    2016-12-30

    Highlights: • The 3D core-shell Fe{sub 2}O{sub 3}@C/CC structure is fabricated by simple hydrothermal route. • The composite connected 3D carbon networks consist of carbon cloth, Fe{sub 2}O{sub 3} nanorods and outer carbon layer. • The Fe{sub 2}O{sub 3}@C/CC used as binder-free anode in LIBs, demonstrates excellent performances. - Abstract: A facile and scalable strategy is developed to fabricate three dimensional core-shell Fe{sub 2}O{sub 3} @ carbon/carbon cloth structure by simple hydrothermal route as binder-free lithium-ion battery anode. In the unique structure, carbon coated Fe{sub 2}O{sub 3} nanorods uniformly disperse on carbon cloth which forms the conductive carbon network. The hierarchical porous Fe{sub 2}O{sub 3} nanorods in situ grown on the carbon cloth can effectively shorten the transfer paths of lithium ions and reduce the contact resistance. The carbon coating significantly inhibits pulverization of active materials during the repeated Li-ion insertion/extraction, as well as the direct exposure of Fe{sub 2}O{sub 3} to the electrolyte. Benefiting from the structural integrity and flexibility, the nanocomposites used as binder-free anode for lithium-ion batteries, demonstrate high reversible capacity and excellent cyclability. Moreover, this kind of material represents an alternative promising candidate for flexible, cost-effective, and binder-free energy storage devices.

  20. The role of free carbon in the transport and magnetic properties of boron carbide

    International Nuclear Information System (INIS)

    Bandyopadhyay, A.K.; Beuneu, F.; Zuppiroli, L.; Beauvy, M.

    1984-01-01

    Boron carbide is a ceramic which has a wide field of application because of its mechanical and nuclear properties. This material is difficult to characterise due to the presence of different levels of disorder and inhomogeneities which are found in the usual available samples. The transport and magnetic properties of several samples of boron carbide have been measured from liquid helium to room temperature as a function of temperature and composition. We have attempted to attribute the different features of these properties to the different levels of disorder. The role of free carbon, in form of thin layers of graphite within the disordered semi-conducting matrix, was investigated in particular details, because it was either ignored or neglected by others. Free carbon is found to dominate the D.C. transport when its concentration is larger than 5%; while the principal features of the electron spin resonance (E.S.R.) line show a dominance of free carbon when the concentration is larger than 3.5%. Below these concentrations conductivities as well as spin relaxation rates do not depend very much on free carbon; neither these have been found to be correlated in a simple way to the stoichiometry. (author)

  1. Strategic research on the sustainable development cost of manufacturing industry under the background of carbon allowance and trade policy

    Science.gov (United States)

    Ma, Zhongmin; Cheng, Mengting; Wang, Mei

    2017-08-01

    The important subjects of energy consumption and carbon emission are manufacturing enterprises, with the deepening of international cooperation, and the implementation of carbon limit and trade policy, costs of manufacturing industry will rise sharply. How can the manufacturing industry survive in this reform, and it has to be a problem that the managers of the manufacturing industry need to solve. This paper analyses sustainable development cost connotation and value basis on the basis of sustainable development concept, discusses the influence of carbon allowance and trade policy for cost strategy of manufacturing industry, thinks that manufacturing industry should highlight social responsibility and realize maximization of social value, implement cost strategy the sustainable development, and pointed out the implementation way.

  2. Classifying carbon credit buyers according to their attitudes towards and involvement in CDM sustainability labels

    Energy Technology Data Exchange (ETDEWEB)

    Parnphumeesup, Piya, E-mail: pp66@hw.ac.uk [International Centre for Island Technology (ICIT), Institute of Petroleum Engineering, Heriot-Watt University, Old Academy, Back Road, Stromness, Orkney KW16 3AW, Scotland (United Kingdom); Kerr, Sandy A. [International Centre for Island Technology (ICIT), Institute of Petroleum Engineering, Heriot-Watt University, Old Academy, Back Road, Stromness, Orkney KW16 3AW, Scotland (United Kingdom)

    2011-10-15

    Carbon markets are increasingly conscious of the social and environmental 'quality' of credits delivered by CDM projects. Consequently carbon credits are no longer viewed as a homogenous good and buyers now differentiate between credits supplied by different types of CDM project. The objective of this paper is to classify CER buyers according to their attitudes towards and preferences for CDM sustainability labels. K-means clustering was used to segment a sample of buyers into two clusters. The results indicate that two clear clusters exist with distinct profile patterns. Moreover, the results of discriminant analysis confirmed that the two-cluster solution was valid. Finally, the results of the chi-square analysis and a cross-tabulation showed that these two clusters were significantly different in: organization type; level of paid up capital; perception of sustainable development benefits; perception of return on investment; perception of image of the sustainability labeling; participation in the voluntary market; the project priority; knowledge in the sustainability label; attitude towards the host country's duty; and their willingness to pay. - Highlights: > The K-means clustering was used to classify CER buyers in the primary market. > The carbon market is divided into two: the premium market; and the normal market. > Governments tend to be members of the premium market. > 82% of members in the premium market are willing to pay a price premium for CERs.

  3. Classifying carbon credit buyers according to their attitudes towards and involvement in CDM sustainability labels

    International Nuclear Information System (INIS)

    Parnphumeesup, Piya; Kerr, Sandy A.

    2011-01-01

    Carbon markets are increasingly conscious of the social and environmental 'quality' of credits delivered by CDM projects. Consequently carbon credits are no longer viewed as a homogenous good and buyers now differentiate between credits supplied by different types of CDM project. The objective of this paper is to classify CER buyers according to their attitudes towards and preferences for CDM sustainability labels. K-means clustering was used to segment a sample of buyers into two clusters. The results indicate that two clear clusters exist with distinct profile patterns. Moreover, the results of discriminant analysis confirmed that the two-cluster solution was valid. Finally, the results of the chi-square analysis and a cross-tabulation showed that these two clusters were significantly different in: organization type; level of paid up capital; perception of sustainable development benefits; perception of return on investment; perception of image of the sustainability labeling; participation in the voluntary market; the project priority; knowledge in the sustainability label; attitude towards the host country's duty; and their willingness to pay. - Highlights: → The K-means clustering was used to classify CER buyers in the primary market. → The carbon market is divided into two: the premium market; and the normal market. → Governments tend to be members of the premium market. → 82% of members in the premium market are willing to pay a price premium for CERs.

  4. Label-free SERS detection of relevant bioanalytes on silver-coated carbon nanotubes: The case of cocaine

    Science.gov (United States)

    Sanles-Sobrido, Marcos; Rodríguez-Lorenzo, Laura; Lorenzo-Abalde, Silvia; González-Fernández, África; Correa-Duarte, Miguel A.; Alvarez-Puebla, Ramón A.; Liz-Marzán, Luis M.

    2009-09-01

    Surface-enhanced Raman scattering (SERS) spectroscopy can be used for the label-free determination and quantification of relevant small biometabolites that are hard to identify by conventional immunological methods, in the absence of labelling. In this work, detection is based on monitoring the vibrational changes occurring at a specific biointerface (a monoclonal antibody, mAb) supported on silver-coated carbon nanotubes (CNT@Ag). Engineered CNT@Ag play a key role, as they offer a stable substrate to support the biointerface, with a high density of hot spots. Proof of concept is demonstrated through the analysis and quantification of the main cocaine metabolite benzoylecgonine. These results open a new avenue toward the generation of portable sensors for fast ultradetection and quantification of relevant metabolites. The use of discrete particles (CNT@Ag@mAb) rather than rough films, or other conventional SERS supports, will also enable a safe remote interrogation of highly toxic sources in environmental problems or in biological fluids.Surface-enhanced Raman scattering (SERS) spectroscopy can be used for the label-free determination and quantification of relevant small biometabolites that are hard to identify by conventional immunological methods, in the absence of labelling. In this work, detection is based on monitoring the vibrational changes occurring at a specific biointerface (a monoclonal antibody, mAb) supported on silver-coated carbon nanotubes (CNT@Ag). Engineered CNT@Ag play a key role, as they offer a stable substrate to support the biointerface, with a high density of hot spots. Proof of concept is demonstrated through the analysis and quantification of the main cocaine metabolite benzoylecgonine. These results open a new avenue toward the generation of portable sensors for fast ultradetection and quantification of relevant metabolites. The use of discrete particles (CNT@Ag@mAb) rather than rough films, or other conventional SERS supports, will also

  5. Community action for sustainable housing: Building a low-carbon future

    International Nuclear Information System (INIS)

    Seyfang, Gill

    2010-01-01

    This paper presents a new analytical framework of 'grassroots innovations' which views community-led initiatives for sustainable development as strategic green niches with the potential for wider transformation of mainstream society. This framework is applied to a low-carbon, low-impact, community-based sustainable housing initiative in the USA that pioneers straw bale housing techniques within a strong community-building ethos. The project is evaluated according to New Economics criteria of sustainable consumption, and is found to be successful at localising the construction supply chain, reducing ecological footprints, community-building, enabling collective action and building new institutions and systems of provision around housebuilding. However, viewing it as a strategic niche with aim to influence wider society, it is clear that it faces significant challenges in diffusing its ideas and practices beyond the niche. Its model is not necessarily suitable for scaling up or widespread replication; however, the scope for niche lessons to be adopted by mainstream builders is greater, given a supportive policy environment. Recognising the innovative nature of green niches at the policy level could lead to new approaches to governance of bottom-up community action for sustainable development.

  6. Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors

    Science.gov (United States)

    Hao, Xiaodong; Wang, Jie; Ding, Bing; Wang, Ya; Chang, Zhi; Dou, Hui; Zhang, Xiaogang

    2017-06-01

    Bacterial cellulose (BC), a typical biomass prepared from the microbial fermentation process, has been proved that it can be an ideal platform for design of three-dimensional (3D) multifunctional nanomaterials in energy storage and conversion field. Here we developed a simple and general silica-assisted strategy for fabrication of interconnected 3D meso-microporous carbon nanofiber networks by confine nanospace pyrolysis of sustainable BC, which can be used as binder-free electrodes for high-performance supercapacitors. The synthesized carbon nanofibers exhibited the features of interconnected 3D networks architecture, large surface area (624 m2 g-1), mesopores-dominated hierarchical porosity, and high graphitization degree. The as-prepared electrode (CN-BC) displayed a maximum specific capacitance of 302 F g-1 at a current density of 0.5 A g-1, high-rate capability and good cyclicity in 6 M KOH electrolyte. This work, together with cost-effective preparation strategy to make high-value utilization of cheap biomass, should have significant implications in the green and mass-producible energy storage.

  7. Binder-free Si nanoparticles@carbon nanofiber fabric as energy storage material

    International Nuclear Information System (INIS)

    Liu, Yuping; Huang, Kai; Fan, Yu; Zhang, Qing; Sun, Fu; Gao, Tian; Wang, Zhongzheng; Zhong, Jianxin

    2013-01-01

    A nonwoven nanofiber fabric with paper-like qualities composed of Si nanoparticles and carbon as binder-free anode electrode is reported. The nanofiber fabrics are prepared by convenient electrospinning technique, in which, the Si nanoparticles are uniformly confined in the carbon nanofibers. The high strength and flexibility of the nanofiber fabrics are beneficial for alleviating the structural deformation and facilitating ion transports throughout the whole composited electrodes. Due to the absence of binder, the less weight, higher energy density, and excellent electrical conductivity anodes can be attained. These traits make the composited nanofiber fabrics excellent used as a binder-free, mechanically flexible, high energy storage anode material in the next generation of rechargeable lithium ions batteries

  8. Opportunities for low carbon sustainability in large commercial buildings in China

    International Nuclear Information System (INIS)

    Jiang Ping; Keith Tovey, N.

    2009-01-01

    China's building sector consumes one quarter of total energy consumption in the country and plays an important role in long-term ability of the country to achieve sustainable development. This paper discusses a comprehensive approach to achieving low carbon sustainability in large commercial buildings in China incorporating both energy and carbon-reduction strategies. The approach concentrates primarily on three complementary aspects: (a) the introduction of an effective energy management system; (b) the incorporation of relevant advanced energy saving technologies and measures and (c) the promotion of awareness among occupants to make changes in their behaviour towards a more environmental-friendly behaviour. However, reference is also made to the role that renewable energy and offsetting may have in the effective management and environmental performance of buildings. Nine examples of large commercial buildings in Beijing and Shanghai were studied and the average electricity consumption of around 153 kWh/m 2 per annum is about 5 times higher than average electricity use in residential buildings. At the same time the associated green house gas (GHG) emissions are around 158 kg/m 2 per annum.

  9. Cost-benefit analysis of a sustainable safe road traffic system. Contribution to the conference `Traffic safety on two continents', Lisbon, Portugal, September 22-24, 1997.

    NARCIS (Netherlands)

    Poppe, F.

    1997-01-01

    In this report it is shown, using cost-benefit techniques, that for different variations of estimates, investments in a sustainable safe road traffic system are profitable from a societal point of view. (A)

  10. In vitro meat: A future animal-free harvest.

    Science.gov (United States)

    Bhat, Zuhaib Fayaz; Kumar, Sunil; Bhat, Hina Fayaz

    2017-03-04

    In vitro meat production is a novel idea of producing meat without involving animals with the help of tissue engineering techniques. This biofabrication of complex living products by using various bioengineering techniques is a potential solution to reduce the ill effects of current meat production systems and can dramatically transform traditional animal-based agriculture by inventing "animal-free" meat and meat products. Nutrition-related diseases, food-borne illnesses, resource use and pollution, and use of farm animals are some serious consequences associated with conventional meat production methods. This new way of animal-free meat production may offer health and environmental advantages by reducing environmental pollution and resource use associated with current meat production systems and will also ensure sustainable production of designer, chemically safe, and disease-free meat as the conditions in an in vitro meat production system are controllable and manipulatable. Theoretically, this system is believed to be efficient enough to supply the global demand for meat; however, establishment of a sustainable in vitro meat production would face considerably greater technical challenges and a great deal of research is still needed to establish this animal-free meat culturing system on an industrial scale.

  11. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications.

    Science.gov (United States)

    Zhao, Qingxia; Mao, Qiming; Zhou, Yaoyu; Wei, Jianhong; Liu, Xiaocheng; Yang, Junying; Luo, Lin; Zhang, Jiachao; Chen, Hong; Chen, Hongbo; Tang, Lin

    2017-12-01

    In recent years, advanced oxidation processes (AOPs), especially sulfate radical based AOPs have been widely used in various fields of wastewater treatment due to their capability and adaptability in decontamination. Recently, metal-free carbon materials catalysts in sulfate radical production has been more and more concerned because these materials have been demonstrated to be promising alternatives to conventional metal-based catalysts, but the review of metal-free catalysts is rare. The present review outlines the current state of knowledge on the generation of sulfate radical using metal-free catalysts including carbon nanotubes, graphene, mesoporous carbon, activated carbon, activated carbon fiber, nanodiamond. The mechanism such as the radical pathway and non-radical pathway, and factors influencing of the activation of sulfate radical was also be revealed. Knowledge gaps and research needs have been identified, which include the perspectives on challenges related to metal-free catalyst, heterogeneous metal-free catalyst/persulfate systems and their potential in practical environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Measurement of carbon dioxide fluxes in a free-air carbon dioxide enrichment experiment using the closed flux chamber technique

    DEFF Research Database (Denmark)

    Selsted, Merete Bang; Ambus, Per; Michelsen, Anders

    2011-01-01

    Carbon dioxide (CO2) fluxes, composing net ecosystem exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) were measured in a temperate heathland exposed to elevated CO2 by the FACE (free-air carbon enrichment) technique, raising the atmospheric CO2 concentration from c. 380 μmol...

  13. Xeno-Free Strategies for Safe Human Mesenchymal Stem/Stromal Cell Expansion: Supplements and Coatings

    Directory of Open Access Journals (Sweden)

    M. Cimino

    2017-01-01

    Full Text Available Human mesenchymal stem/stromal cells (hMSCs have generated great interest in regenerative medicine mainly due to their multidifferentiation potential and immunomodulatory role. Although hMSC can be obtained from different tissues, the number of available cells is always low for clinical applications, thus requiring in vitro expansion. Most of the current protocols for hMSC expansion make use of fetal bovine serum (FBS as a nutrient-rich supplement. However, regulatory guidelines encourage novel xeno-free alternatives to define safer and standardized protocols for hMSC expansion that preserve their intrinsic therapeutic potential. Since hMSCs are adherent cells, the attachment surface and cell-adhesive components also play a crucial role on their successful expansion. This review focuses on the advantages/disadvantages of FBS-free media and surfaces/coatings that avoid the use of animal serum, overcoming ethical issues and improving the expansion of hMSC for clinical applications in a safe and reproducible way.

  14. Low carbon content and carbon-free refractory materials with high thermal shock resistance; Thermoschockbestaendige feuerfeste Erzeugnisse mit geringerem Kohlenstoffgehalt bzw. kohlenstofffreie Erzeugnisse

    Energy Technology Data Exchange (ETDEWEB)

    Brachhold, Nora; Aneziris, C.G.; Stein, Volker; Roungos, Vasileios; Moritz, Kirsten [TU Bergakademie Freiberg (TUBAF) (DE). Inst. fuer Keramik, Glas- und Baustofftechnik (IKGB)

    2012-07-01

    Carbon bonded refractories are essential for steelmaking due to their excellent thermal shock resistance. The research on carbon reduced and carbon-free materials is necessary to manufacture high quality stainless steels tending carbon pick-up in contact to conventional refractory materials. Further advantages are reduced emissions of CO{sub 2} and energy saving potentials due to better heat insulation properties. The challenge is to develop alternative materials with lower carbon contents but with the necessary thermal shock resistance. The Priority Programme 1418 funded by the German Research Foundation (DFG) concentrates on this problem. In this article two materials are presented. First, the carbon content could be reduced by nanoscaled additives resulting in better bonding between matrix and oxidic components. Second, an AL{sub 2}O{sub 3}-rich carbon-free material is presented showing a very good thermal shock resistance due to its designed microstructure. Finally, a steel casting simulator is introduced to test the new materials under nearly real conditions. (orig.)

  15. A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management.

    Science.gov (United States)

    Tseng, Shih-Chang; Hung, Shiu-Wan

    2014-01-15

    Incorporating sustainability into supply chain management has become a critical issue driven by pressures from governments, customers, and various stakeholder groups over the past decade. This study proposes a strategic decision-making model considering both the operational costs and social costs caused by the carbon dioxide emissions from operating such a supply chain network for sustainable supply chain management. This model was used to evaluate carbon dioxide emissions and operational costs under different scenarios in an apparel manufacturing supply chain network. The results showed that the higher the social cost rate of carbon dioxide emissions, the lower the amount of the emission of carbon dioxide. The results also suggested that a legislation that forces the enterprises to bear the social costs of carbon dioxide emissions resulting from their economic activities is an effective approach to reducing carbon dioxide emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Electrochemical Performance of Electrospun carbon nanofibers as free-standing and binder-free anodes for Sodium-Ion and Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Jin, Juan; Shi, Zhi-qiang; Wang, Cheng-yang

    2014-01-01

    Highlights: • Electrospun carbon nanofiber webs were prepared by pyrolysis of polyacrylonitrile. • The webs as binder-free and current collector-free electrodes for SIBs and LIBs. • Different layer spacing and pore size for Li and Na lead different electrochemical behavior. • Electrochemical performances of the electrodes were high. - Abstract: A series of hard carbon nanofiber-based electrodes derived from electrospun polyacrylonitrile (PAN) nanofibers (PAN-CNFs) have been fabricated by stabilization in air at about 280 °C and then carbonization in N 2 at heat treatment temperatures (HTT) between 800 and 1500 °C. The electrochemical performances of the binder-free, current collector-free carbon nanofiber-based anodes in lithium-ion batteries and sodium-ion batteries are systematically investigated and compared. We demonstrate the presence of similar alkali metal insertion mechanisms in both cases, but just the differences of the layer spacing and pore size available for lithium and sodium ion lead the discharge capacity delivered at sloping region and plateau region to vary from the kinds of alkali elements. Although the anodes in sodium-ion batteries show poorer rate capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 275 mAh g −1 and similar cycling stability due to the conductive 3-D network, weakly ordered turbostratic structure and a large interlayer spacing between graphene sheets. The feature of high capacity and stable cycling performance makes PAN-CNFs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries

  17. Information report published in application of article 145 of the Regulation on the behalf of the Commission for sustainable development and land planning about the transition to carbon-free world. Nr 3305

    International Nuclear Information System (INIS)

    Chanteguet, Jean-Paul

    2015-01-01

    In a first chapter, this report proposes an overview of the world climate negotiation process within the COPs: structuring of the climate regime in Rio, a very slow process, a victory of market for quota over tax, the emergence of new climate geopolitics, and difficult climate governance. The second part outlines that the transition towards a de-carbonated world is not negotiable any longer because of the reality of climate change and of its consequences, and of a necessary alternative approach in front of an acknowledged failure. The third part highlights the different ways of a transition towards a more sustainable model by negotiation: evolution towards a new governance, a necessary transformation of the energy system, the assignment of a carbon price, to put the support to fossil energies into question again, to implement innovating financing means as a keystone of an ambitious agreement, to define more sustainable and more carbon saving policies (in urban planning, in production, in agriculture), to preserve and restore carbon sinks, and to territorialize climate again. The second part reports several hearings, and the content of the discussion within the Commission

  18. Sustainable biomass-derived hydrothermal carbons for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Falco, Camillo

    2012-01-15

    The need to reduce humankind reliance on fossil fuels by exploiting sustainably the planet renewable resources is a major driving force determining the focus of modern material research. For this reason great interest is nowadays focused on finding alternatives to fossil fuels derived products/materials. For the short term the most promising substitute is undoubtedly biomass, since it is the only renewable and sustainable alternative to fossil fuels as carbon source. As a consequence efforts, aimed at finding new synthetic approaches to convert biomass and its derivatives into carbon-based materials, are constantly increasing. In this regard, hydrothermal carbonisation (HTC) has shown to be an effective means of conversion of biomass-derived precursors into functional carbon materials. However the attempts to convert raw biomass, in particular lignocellulosic one, directly into such products have certainly been rarer. Unlocking the direct use of these raw materials as carbon precursors would definitely be beneficial in terms of HTC sustainability. For this reason, in this thesis the HTC of carbohydrate and protein-rich biomass was systematically investigated, in order to obtain more insights on the potentials of this thermochemical processing technique in relation to the production of functional carbon materials from crude biomass. First a detailed investigation on the HTC conversion mechanism of lignocellulosic biomass and its single components (i.e. cellulose, lignin) was developed based on a comparison with glucose HTC, which was adopted as a reference model. In the glucose case it was demonstrated that varying the HTC temperature allowed tuning the chemical structure of the synthesised carbon materials from a highly cross-linked furan-based structure (T = 180 C) to a carbon framework composed of polyaromatic arene-like domains. When cellulose or lignocellulosic biomass was used as carbon precursor, the furan rich structure could not be isolated at any of the

  19. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    Science.gov (United States)

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  20. Towards Sustainable Production of Formic Acid.

    Science.gov (United States)

    Bulushev, Dmitri A; Ross, Julian R H

    2018-03-09

    Formic acid is a widely used commodity chemical. It can be used as a safe, easily handled, and transported source of hydrogen or carbon monoxide for different reactions, including those producing fuels. The review includes historical aspects of formic acid production. It briefly analyzes production based on traditional sources, such as carbon monoxide, methanol, and methane. However, the main emphasis is on the sustainable production of formic acid from biomass and biomass-derived products through hydrolysis and oxidation processes. New strategies of low-temperature synthesis from biomass may lead to the utilization of formic acid for the production of fuel additives, such as methanol; upgraded bio-oil; γ-valerolactone and its derivatives; and synthesis gas used for the Fischer-Tropsch synthesis of hydrocarbons. Some technological aspects are also considered. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. 46th Annual meeting on nuclear technology (AMNT 2015). Key topic / Enhanced safety and operation excellence / Sustainable reactor operation management - safe, efficient, valuable

    International Nuclear Information System (INIS)

    Fischer, Erwin

    2015-01-01

    Summary report on the following Topical Session of the 46 th Annual Conference on Nuclear Technology (AMNT 2015) held in Berlin, 5 to 7 May 2015: - Sustainable Reactor Operation Management - Safe, Efficient, Valuable (Erwin Fischer) The other Sessions of the Key Topics - ''Outstanding Know-How and Sustainable Innovations'', - ''Enhanced Safety and Operation Excellence'' and - ''Decommissioning Experience and Waste Management Solutions'' have been covered in atw 7 (2015) and will be covered in further issues of atw.

  2. Heavy Metal-Free Tannin from Bark for Sustainable Energy Storage.

    Science.gov (United States)

    Mukhopadhyay, Alolika; Jiao, Yucong; Katahira, Rui; Ciesielski, Peter N; Himmel, Michael; Zhu, Hongli

    2017-12-13

    A novel renewable cathode made from earth abundant, low-cost materials can contribute to the intermittent storage needs of renewable energy-based society. In this work, we report for the first-time tannin from Nature as a cathode material. Our approach exploits the charge storage mechanism of the redox active quinone moiety. Tannins extracted from tree bark using environmental friendly aqueous solvents have the highest phenol content (5.56 mol g -1 ) among all the natural phenolic biopolymers, 5000 times higher than lignin. Tannins coupled with a conductive polymer polypyrrole acquire high specific capacitance values of 370 F g -1 at 0.5 A g -1 as well as excellent rate performance of 196 F g -1 at 25 A g -1 . Additionally, we employed carbonized wood as an electrode substrate to produce a sustainable electrochemical device with dramatically improved performance compared to conventional devices. The high surface area provided by the well-aligned, cellular porosity of wood-derived substrate combined with the high mobility of ions and electrons in the carbonized cell walls and deposited tannin can achieve an areal capacitance of 4.6 F cm -2 at 1 mA cm -2 , which is 1.5 times higher than activated wood carbon.

  3. [Chemistry for sustainable construction: 20 years of progress].

    Science.gov (United States)

    Leoni, R

    2012-01-01

    Sustainable development is based on three pillars, economic, social and environmental development. Sustainable products can be developed only by companies that grow on these pillars, but in building sustainability is often identified only with the reduction of dangerous synthetic substances. From this point of view, the efforts of the construction chemicals industry have focused on reducing emissions, dust and volatile organic compounds (VOCs), replacing, if technically possible, the most dangerous components, such as formaldehyde, phthalates, and chlorinated or aromatic solvents, and developing water-borne products with very low VOC emissions. Differences in the definition of VOC and in the methods of measurement of emissions, however, make it difficult to choose the safest product and grows in the construction industry the need to reference trusted standards and product certifications to guarantee users. At present, products labeled "bio", "eco" or "solvent free" do not necessarily mean safe products.

  4. 46{sup th} Annual meeting on nuclear technology (AMNT 2015). Key topic / Enhanced safety and operation excellence / Sustainable reactor operation management - safe, efficient, valuable

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Erwin [E.ON Kernkraft GmbH, Global Unit Next Generation, Hannover (Germany)

    2015-08-15

    Summary report on the following Topical Session of the 46{sup th} Annual Conference on Nuclear Technology (AMNT 2015) held in Berlin, 5 to 7 May 2015: - Sustainable Reactor Operation Management - Safe, Efficient, Valuable (Erwin Fischer) The other Sessions of the Key Topics - ''Outstanding Know-How and Sustainable Innovations'', - ''Enhanced Safety and Operation Excellence'' and - ''Decommissioning Experience and Waste Management Solutions'' have been covered in atw 7 (2015) and will be covered in further issues of atw.

  5. In-situ growing NiCo2O4 nanoplatelets on carbon cloth as binder-free catalyst air-cathode for high-performance microbial fuel cells

    International Nuclear Information System (INIS)

    Cao, Chun; Wei, Liling; Wang, Gang; Shen, Jianquan

    2017-01-01

    Highlights: • NiCo 2 O 4 nanoplatelets were in-situ growing on carbon cloth as ORR catalyst in biofuel cells. • Binder-free cathode with the lower internal resistance. • Binder-free cathode was low-cost. • NiCo 2 O 4 -CFC shows better power generation performance than Pt/C. - Abstract: Air-cathode microbial fuel cells (MFCs) was one of most promising sustainable new energy device as well as an advanced sewage treatment technology, and thoroughly studies have been devoted to lower its cost and enhance its power generation. Herein, a binder-free and low-cost catalyst air-cathode was fabricated by in-situ electro-deposition of NiCo 2 O 4 nanoplatelets on carbon cloth, followed by feasible calcinations. The catalytic activity of catalyst air-cathode was optimized by varying the deposition time. And the optimal air-cathode was installed in real MFCs and exhibited distinct maximum out-put power density (645 ± 6 mW m −2 ), which was 12.96% higher than commercial Pt/C (571 ± 11 mW m −2 ). Noted that its remarkable electricity generation performance in MFCs should absolutely attributed to the well catalytic activity for oxygen reduction reaction, and more likely ascribed to its low internal resistance since binder-free catalyst air-cathode can facilitate the electron/charge transfer process. Therefore, it was an efficient strategy to improve the electricity generation performance of MFCs by using this binder-free catalyst air-cathode, which was also potential for application in many other electrochemical devices.

  6. Sustainability of Fossil Fuels

    Science.gov (United States)

    Lackner, K. S.

    2002-05-01

    effects of injecting excess carbon into the environment need to be eliminated before fossil fuels can be considered sustainable. Sustainable fossil fuel use would likely rely on abundant, low-grade hydrocarbons like coal, tar, and shale. It would require a closed cycle approach in which carbon is extracted from the ground, processed for its energy content, and returned into safe and stable sinks for permanent disposal. Such sequestration technologies already exist and more advanced approaches that could maintain access to fossil energy for centuries are on the drawing boards. I will review these options and outline a pathway towards a zero emission fossil fuel based economy that could provide energy at prices comparable to those of today for several centuries. A successful implementation will depend not only on technological advances but also on the development of economic institutions that allow one to pay for the required carbon management. If done correctly the markets will decide whether renewable energy, or sustainable fossil energy provides a better choice.

  7. Sustainable yield of the Colle Quartara carbonate aquifer in the Southern Lepini Mountains (Central Italy

    Directory of Open Access Journals (Sweden)

    Giovanni Conte

    2016-10-01

    Full Text Available The present research is aimed to contribute to the groundwater resource sustainable management of a carbonate aquifer in a test area of the Lepini Mountains (Central Italy. This aquifer constitutes a major exploited groundwater body of central Apennines. At regional scale, the hydrogeological features of the Lepini hydrostructure are well known. The present study focuses on a portion of the Lepini Mountains where important tapping-works for drinking water supply are in activity (about 1.2 m3/s. New investigations were carried out including: meteo-climatic analysis, spring discharge and hydrometric time series processing, pumping test result interpretation. In addition, a detailed lithostratigraphical and structural survey of a portion of the Lepini hydrostructure at 1:10,000 scale was performed also examining the dense network of discontinuities affecting the carbonate aquifer. Extensional Plio-Pleistocene tectonic activity displaced the carbonate rock sequence under the Pontina Plain, where the carbonate aquifer is confined. The investigation results have allowed the reconstruction of the hydrogeological conceptual model of the studied portion of carbonate massif. Given the scale of the study and the results of the investigation, the carbonate aquifer can be treated as an equivalent porous medium, and the simplified numerical model of the aquifer was constructed with the code MODFLOW-2005. The numerical model, still now under continuous implementation, produced first results on the current withdrawal sustainability, allowing evaluation of possible alternative exploitation scenarios of the carbonate aquifer also considering the probably not significant flow exchanges with the Pontina Plain aquifer.

  8. Carbon based magnetism an overview of the magnetism of metal free carbon-based compounds and materials

    CERN Document Server

    Makarova, Tatiana

    2006-01-01

    Magnetism is one of the most intriguing phenomena observed in nature. Magnetism is relevant to physics and geology, biology and chemistry. Traditional magnets, an ubiquitous part of many everyday gadgets, are made of heavy iron- or nickel based materials. Recently there have been reports on the observation of magnetism in carbon, a very light and biocompatible element. Metal-free carbon structures exhibiting magnetic ordering represent a new class of materials and open a novel field of research that could lead to many new technologies. · The most complete, detailed, and accurate Guide in the magnetism of carbon · Dynamically written by the leading experts · Deals with recent scientific highlights · Gathers together chemists and physicists, theoreticians and experimentalists · Unified treatment rather than a series of individually authored papers · Description of genuine organic molecular ferromagnets · Unique description of new carbon materials with Curie temperatures well above ambient.

  9. Sustainable Trade Credit and Replenishment Policies under the Cap-And-Trade and Carbon Tax Regulations

    Directory of Open Access Journals (Sweden)

    Juanjuan Qin

    2015-12-01

    Full Text Available The paper considers the sustainable trade credit and inventory policies with demand related to credit period and the environmental sensitivity of consumers under the carbon cap-and-trade and carbon tax regulations. First, the decision models are constructed under three cases: without regulation, carbon cap-and-trade regulation, and carbon tax regulation. The optimal solutions of the retailer in the three cases are then discussed under the exogenous and endogenous credit periods. Finally, numerical analysis is conducted to obtain conclusions. The retailer shortens the trade credit period as the environmental sensitivity of the consumer is enhanced. The cap has no effects on the credit period decisions under the carbon cap-and-trade regulation. Carbon trade price and carbon tax have negative effects on the credit period. The retailer under carbon cap-and-trade regulation is more motivated to obey regulations than that under carbon tax regulation when carbon trade price equals carbon tax. Carbon regulations have better effects on carbon emission reduction than with exogenous credit term when the retailer has the power to decide with regards credit policies.

  10. Agroforestry: a sustainable environmental practice for carbon sequestration under the climate change scenarios-a review.

    Science.gov (United States)

    Abbas, Farhat; Hammad, Hafiz Mohkum; Fahad, Shah; Cerdà, Artemi; Rizwan, Muhammad; Farhad, Wajid; Ehsan, Sana; Bakhat, Hafiz Faiq

    2017-04-01

    Agroforestry is a sustainable land use system with a promising potential to sequester atmospheric carbon into soil. This system of land use distinguishes itself from the other systems, such as sole crop cultivation and afforestation on croplands only through its potential to sequester higher amounts of carbon (in the above- and belowground tree biomass) than the aforementioned two systems. According to Kyoto protocol, agroforestry is recognized as an afforestation activity that, in addition to sequestering carbon dioxide (CO 2 ) to soil, conserves biodiversity, protects cropland, works as a windbreak, and provides food and feed to human and livestock, pollen for honey bees, wood for fuel, and timber for shelters construction. Agroforestry is more attractive as a land use practice for the farming community worldwide instead of cropland and forestland management systems. This practice is a win-win situation for the farming community and for the environmental sustainability. This review presents agroforestry potential to counter the increasing concentration of atmospheric CO 2 by sequestering it in above- and belowground biomass. The role of agroforestry in climate change mitigation worldwide might be recognized to its full potential by overcoming various financial, technical, and institutional barriers. Carbon sequestration in soil by various agricultural systems can be simulated by various models but literature lacks reports on validated models to quantify the agroforestry potential for carbon sequestration.

  11. Karate: Keep It Safe.

    Science.gov (United States)

    Jordan, David

    1981-01-01

    Safety guidelines for each phase of a karate practice session are presented to provide an accident-free and safe environment for teaching karate in a physical education or traditional karate training program. (JMF)

  12. Label-Free Electrical Detection Using Carbon Nanotube-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Kenzo Maehashi

    2009-07-01

    Full Text Available Label-free detections of biomolecules have attracted great attention in a lot of life science fields such as genomics, clinical diagnosis and practical pharmacy. In this article, we reviewed amperometric and potentiometric biosensors based on carbon nanotubes (CNTs. In amperometric detections, CNT-modified electrodes were used as working electrodes to significantly enhance electroactive surface area. In contrast, the potentiometric biosensors were based on aptamer-modified CNT field-effect transistors (CNTFETs. Since aptamers are artificial oligonucleotides and thus are smaller than the Debye length, proteins can be detected with high sensitivity. In this review, we discussed on the technology, characteristics and developments for commercialization in label-free CNT-based biosensors.

  13. A Real-Time Recording Model of Key Indicators for Energy Consumption and Carbon Emissions of Sustainable Buildings

    Directory of Open Access Journals (Sweden)

    Weiwei Wu

    2014-05-01

    Full Text Available Buildings’ sustainability is one of the crucial parts for achieving urban sustainability. Applied to buildings, life-cycle assessment encompasses the analysis and assessment of the environmental effects of building materials, components and assemblies throughout the entire life of the building construction, use and demolition. Estimate of carbon emissions is essential and crucial for an accurate and reasonable life-cycle assessment. Addressing the need for more research into integrating analysis of real-time and automatic recording of key indicators for a more accurate calculation and comparison, this paper aims to design a real-time recording model of these crucial indicators concerning the calculation and estimation of energy use and carbon emissions of buildings based on a Radio Frequency Identification (RFID-based system. The architecture of the RFID-based carbon emission recording/tracking system, which contains four functional layers including data record layer, data collection/update layer, data aggregation layer and data sharing/backup layer, is presented. Each of these layers is formed by RFID or network devices and sub-systems that operate at a specific level. In the end, a proof-of-concept system is developed to illustrate the implementation of the proposed architecture and demonstrate the feasibility of the design. This study would provide the technical solution for real-time recording system of building carbon emissions and thus is of great significance and importance to improve urban sustainability.

  14. A Real-Time Recording Model of Key Indicators for Energy Consumption and Carbon Emissions of Sustainable Buildings

    Science.gov (United States)

    Wu, Weiwei; Yang, Huanjia; Chew, David; Hou, Yanhong; Li, Qiming

    2014-01-01

    Buildings' sustainability is one of the crucial parts for achieving urban sustainability. Applied to buildings, life-cycle assessment encompasses the analysis and assessment of the environmental effects of building materials, components and assemblies throughout the entire life of the building construction, use and demolition. Estimate of carbon emissions is essential and crucial for an accurate and reasonable life-cycle assessment. Addressing the need for more research into integrating analysis of real-time and automatic recording of key indicators for a more accurate calculation and comparison, this paper aims to design a real-time recording model of these crucial indicators concerning the calculation and estimation of energy use and carbon emissions of buildings based on a Radio Frequency Identification (RFID)-based system. The architecture of the RFID-based carbon emission recording/tracking system, which contains four functional layers including data record layer, data collection/update layer, data aggregation layer and data sharing/backup layer, is presented. Each of these layers is formed by RFID or network devices and sub-systems that operate at a specific level. In the end, a proof-of-concept system is developed to illustrate the implementation of the proposed architecture and demonstrate the feasibility of the design. This study would provide the technical solution for real-time recording system of building carbon emissions and thus is of great significance and importance to improve urban sustainability. PMID:24831109

  15. Developing nuclear power to realize low-carbon and economic sustainable development of China

    International Nuclear Information System (INIS)

    Zhang Xingfa

    2012-01-01

    Thermal power is the primary power energy of China, whose basic primary energy consumption is mostly burning coal. And thereby carbon dioxide emission reduction becomes much difficult in China. Seeking low-carbon discharge power energy is the necessary trend in China electric power development. Among the new energy, wind power, hydropower and solar energy have some distinctive shortcoming, which can not make up the energy growth demand with the rapid growth of the economy. Comparing to other kinds of electric energy, the nuclear power possesses the evident advantages, it will become the basis energy to carry out the goal of energy conservation and emission reduction in China and developing nuclear power can realize the sustainable development of China economy under low-carbon condition. (author)

  16. Sustainable production and sales of meat from free-range pigs

    DEFF Research Database (Denmark)

    Bredahl, Lone; Andersen, Lone Schreiber

    2002-01-01

    These years, the consumption of pork is not only stagnating in Denmark but also on many other European markets. This coincides with a rise in consumer demand for increased welfare among farm animals. In a project about sustainable production and sales of meat from free-range pigs, guidelines...... are developed on a European level for the production of pork from outdoors production systems, which combine animal welfare with high quality of consumption and high quality of health. In cooperation with colleagues in France, Great Britain and Sweden, MAPP is examining the market potential of this type of meat......, based on consumer surveys in these four countries....

  17. Topology of sustainable management of dynamical systems with desirable states: from defining planetary boundaries to safe operating spaces in the Earth System

    Science.gov (United States)

    Heitzig, Jobst; Kittel, Tim; Donges, Jonathan; Molkenthin, Nora

    2016-04-01

    To keep the Earth System in a desirable region of its state space, such as defined by the recently suggested "tolerable environment and development window", "guardrails", "planetary boundaries", or "safe (and just) operating space for humanity", one not only needs to understand the quantitative internal dynamics of the system and the available options for influencing it (management), but also the structure of the system's state space with regard to certain qualitative differences. Important questions are: Which state space regions can be reached from which others with or without leaving the desirable region? Which regions are in a variety of senses "safe" to stay in when management options might break away, and which qualitative decision problems may occur as a consequence of this topological structure? In this work, we develop a mathematical theory of the qualitative topology of the state space of a dynamical system with management options and desirable states, as a complement to the existing literature on optimal control which is more focussed on quantitative optimization and is much applied in both the engineering and the integrated assessment literature. We suggest a certain terminology for the various resulting regions of the state space and perform a detailed formal classification of the possible states with respect to the possibility of avoiding or leaving the undesired region. Our results indicate that before performing some form of quantitative optimization such as of indicators of human well-being for achieving certain sustainable development goals, a sustainable and resilient management of the Earth System may require decisions of a more discrete type that come in the form of several dilemmas, e.g., choosing between eventual safety and uninterrupted desirability, or between uninterrupted safety and larger flexibility. We illustrate the concepts and dilemmas drawing on conceptual models from climate science, ecology, coevolutionary Earth System modeling

  18. Important role of calcium chloride in preventing carbon monoxide generation during desflurane degradation with alkali hydroxide-free carbon dioxide absorbents.

    Science.gov (United States)

    Ando, Takahiro; Mori, Atsushi; Ito, Rie; Nishiwaki, Kimitoshi

    2017-12-01

    We investigated whether calcium chloride (CaCl 2 ), a supplementary additive in carbon dioxide (CO 2 ) absorbents, could affect carbon monoxide (CO) production caused by desflurane degradation, using a Japanese alkali-free CO 2 absorbent Yabashi Lime ® -f (YL-f), its CaCl 2 -free and 1% CaCl 2 -added derivatives, and other commercially available alkali-free absorbents with or without CaCl 2 . The reaction between 1 L of desflurane gas (3-10%) and 20 g of desiccated specimen was performed in an artificial closed-circuit anesthesia system for 3 min at 20 or 40 °C. The CO concentration was measured using a gas chromatograph equipped with a semiconductor sensor detector. The systems were validated by detecting dose-dependent CO production with an alkali hydroxide-containing CO 2 absorbent, Sodasorb ® . Compared with YL-f, the CaCl 2 -free derivative caused the production of significantly more CO, while the 1% CaCl 2 -added derivative caused the production of a comparable amount of CO. These phenomena were confirmed using commercially available absorbents AMSORB ® PLUS, an alkali-free absorbent with CaCl 2 , and LoFloSorb™, an alkali-free absorbent without CaCl 2 . These results suggest that CaCl 2 plays an important role in preventing CO generation caused by desflurane degradation with alkali hydroxide-free CO 2 absorbents like YL-f.

  19. The sustainability challenge of meeting carbon dioxide targets in Europe by 2020

    International Nuclear Information System (INIS)

    Saikku, Laura; Rautiainen, Aapo; Kauppi, Pekka E.

    2008-01-01

    Following the Kyoto Protocol, the European Union obligated itself to lower its greenhouse gas (GHG) emissions 20% below their 1990 level, by the year 2020. Carbon dioxide is the major GHG. To fulfil this obligation, the nations must meet the sustainability challenge of countering rising population plus affluence with the dematerialization of less energy per GDP plus the decarbonization of less carbon per energy. To test the feasibility of meeting the challenge, we analysed carbon dioxide emission during 1993-2004. Although emissions in the entire Union grew only by an average of 0.31% per year, emissions and their drivers varied markedly among the 27 member states. Dematerialization and decarbonization did occur, but not enough to offset the slight population growth plus rapidly increasing affluence. To fulfil its obligation in the next 12 years, the EU27 would have to counter its increasing population and affluence by a combined dematerialization and decarbonization 1.9-2.6 times faster than during 1993-2004. Hence, fulfilling its obligation by addressing fossil carbon emissions alone is very unlikely. (author)

  20. The sustainability challenge of meeting carbon dioxide targets in Europe by 2020

    Energy Technology Data Exchange (ETDEWEB)

    Saikku, Laura; Rautiainen, Aapo; Kauppi, Pekka E. [Department of Biological and Environmental Sciences, University of Helsinki, P.O. Box 27, FIN-00014 Helsinki (Finland)

    2008-02-15

    Following the Kyoto Protocol, the European Union obligated itself to lower its greenhouse gas (GHG) emissions 20% below their 1990 level, by the year 2020. Carbon dioxide is the major GHG. To fulfil this obligation, the nations must meet the sustainability challenge of countering rising population plus affluence with the dematerialization of less energy per GDP plus the decarbonization of less carbon per energy. To test the feasibility of meeting the challenge, we analysed carbon dioxide emission during 1993-2004. Although emissions in the entire Union grew only by an average of 0.31% per year, emissions and their drivers varied markedly among the 27 member states. Dematerialization and decarbonization did occur, but not enough to offset the slight population growth plus rapidly increasing affluence. To fulfil its obligation in the next 12 years, the EU27 would have to counter its increasing population and affluence by a combined dematerialization and decarbonization 1.9-2.6 times faster than during 1993-2004. Hence, fulfilling its obligation by addressing fossil carbon emissions alone is very unlikely. (author)

  1. Sustainable and safe energy supply with seawater uranium fueled HTGR and its economy

    International Nuclear Information System (INIS)

    Fukaya, Y.; Goto, M.

    2017-01-01

    Highlights: • We discussed uranium resources with an energy security perspective. • We concluded seawater uranium is preferable for sustainability and energy security. • We evaluated electricity generation cost of seawater uranium fueled HTGR. • We concluded electricity generation with seawater uranium is reasonable. - Abstract: Sustainable and safe energy supply with High Temperature Gas-cooled Reactor (HTGR) fueled by uranium from seawater have been investigated and discussed. From the view point of safety feature of self-regulation with thermal reactor of HTGR, the uranium resources should be inexhaustible. The seawater uranium is expected to be alternative resources to conventional resources because it exists so much in seawater as a solute. It is said that 4.5 billion tons of uranium is dissolved in the seawater, which corresponds to a consumption of approximately 72 thousand years. Moreover, a thousand times of the amount of 4.5 trillion tU of uranium, which corresponds to the consumption of 72 million years, also is included in the rock on the surface of the sea floor, and that is also recoverable as seawater uranium because uranium in seawater is in an equilibrium state with that. In other words, the uranium from seawater is almost inexhaustible natural resource. However, the recovery cost with current technology is still expensive compared with that of conventional uranium. Then, we assessed the effect of increase in uranium purchase cost on the entire electricity generation cost. In this study, the economy of electricity generation of cost of a commercial HTGR was evaluated with conventional uranium and seawater uranium. Compared with ordinary LWR using conventional uranium, HTGR can generate electricity cheaply because of small volume of simple direct gas turbine system compared with water and steam systems of LWR, rationalization by modularizing, and high thermal efficiency, even if fueled by seawater uranium. It is concluded that the HTGR

  2. Development of sulfur- and nitrogen- free hydrogen odorants - An important step toward a safe hydrogen society -

    International Nuclear Information System (INIS)

    Nakamura, N.; Oshikawa, K.; Hasegawa, H.; Le Lay, M.; Iwase, M.; Braun, N.A.; Eilers, J.; Walz, A.; Vogt, M.; Herr, M.

    2006-01-01

    We have developed four sulfur-free and nitrogen-free odorants, which can be effectively used to odorize hydrogen. The odors were described through an olfactory test as alarming, strange, and chemical, giving sense of danger to the person who smells the odor. The safety of the material has been assessed and has been shown to be safe for usage. Testing the stability of odorized hydrogen in 80 MPa pressurized state, it was shown for a period of 13 weeks that the odorant retained its warning odor. Using the odorized hydrogen, FC duration test at 0.2 A/cm 2 was carried out for over 900 h without significant decrease in performance or the detectable degradation of MEA. The outlet of the fuel cell had no warning odor, suggesting deodorization on the catalyst. Use of activated charcoal as an adsorbent showed that the deodorization could be effectively carried out, ensuring that normal operation conditions are not perceived as a hydrogen leakage. (authors)

  3. Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage

    Science.gov (United States)

    Liu, Tianyuan; Kavian, Reza; Chen, Zhongming; Cruz, Samuel S.; Noda, Suguru; Lee, Seung Woo

    2016-02-01

    Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering that the carbon spheres were obtained in an aqueous glucose solution and no toxic or hazardous reagents were used, this process opens up a green and sustainable method for designing high performance, environmentally-friendly energy storage devices.Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering

  4. Functionalizing carbon nitride with heavy atom-free spin converters for enhanced 1 O 2 generation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenting; Han, Congcong; Zhang, Qinhua; Zhang, Qinggang; Li, Zhongtao; Gosztola, David J.; Wiederrecht, Gary P.; Wu, Mingbo

    2018-05-01

    advanced photosensitizers for singlet oxygen (1O2) generation. However, the intersystem crossing (ISC) process is quite insufficient in carbon nitride, limiting the 1O2 generation. Here, we report a facile and general strategy to confined benzophenone as a heavy atom-free spin converter dopant in carbon nitride via the facile copolymerization. With proper energy level matching between the heavy atom-free spin converter and various ligands based on carbon nitride precursors, the proper combination can decrease the singlet-triplet energy gap (DEST) and hence generate 1O2 effectively. Due to its significant and selectivity for 1O2 generation, the as-prepared carbon nitride-based photosensitizer shows a high selective photooxidation activity for 1,5-dihydroxy-naphthalene (1,5-DHN). The product yield reached 71.8% after irradiation for 60 min, which was higher than that of cyclometalated PtII complexes (53.6%) in homogeneous photooxidation. This study can broaden the application of carbon nitride in the field of selective heterogeneous photooxidation due to simple operation, low cost, and high efficiency, making it a strong candidate for future industrialization.

  5. Detecting Patterns of Changing Carbon Uptake in Alaska Using Sustained In Situ and Remote Sensing CO2 Observations

    Science.gov (United States)

    Parazoo, N.; Miller, C. E.; Commane, R.; Wofsy, S. C.; Koven, C.; Lawrence, D. M.; Lindaas, J.; Chang, R. Y. W.; Sweeney, C.

    2015-12-01

    The future trajectory of Arctic ecosystems as a carbon sink or source is of global importance due to vast quantities of carbon in permafrost soils. Over the last few years, a sustained set of airborne (NOAA-PFA, NOAA-ACG, and CARVE) and satellite (OCO-2 and GOSAT) atmospheric CO2 mole fraction measurements have provided unprecedented space and time scale sampling density across Alaska, making it possible to study the Arctic carbon cycle in more detail than ever before. Here, we use a synthesis of airborne and satellite CO2 over the 2009-2013 period with simulated concentrations from CLM4.5 and GEOS-Chem to examine the extent to which regional-scale carbon cycle changes in Alaska can be distinguished from interannual variability and long-range transport. We show that observational strategies focused on sustained profile measurements spanning continental interiors provide key insights into magnitude, duration, and variability of Summer sink activity, but that cold season sources are currently poorly resolved due to lack of sustained spatial sampling. Consequently, although future CO2 budgets dominated by enhanced cold season emission sources under climate warming and permafrost thaw scenarios are likely to produce substantial changes to near-surface CO2 gradients and seasonal cycle amplitude, they are unlikely to be detected by current observational strategies. We conclude that airborne and ground-based networks that provide more spatial coverage in year round profiles will help compensate for systematic sampling gaps in NIR passive satellite systems and provide essential constraints for Arctic carbon cycle changes.

  6. Carbon Emission Reduction Potential through Sustainable Forest Management in Forest Concession of PT Salaki Summa Sejahtera, Province of West Sumatera

    Directory of Open Access Journals (Sweden)

    Iwan Hilwan

    2012-12-01

    Full Text Available A management unit (MU of a forest concession holder implementing the sustainable forest management (SFM principles, could be involved in reducing Emmission from Reforestation and Forest Degradation (REDD+ and carbon trading project. The fact the strategic in implementing the REDD+ and carbon trading in MU level is still lack of pilot project and methodology. Therefore, some scenarios must be developed and tested to find out the best potential of carbon credit in MU level. The objectives of the research were: to calculate carbon credit in some SFM scenarios, to analyze of carbon trading project feasibility, and to determine carbon stock recovery period of logged over area (LOA. The result revealed that carbon stock and carbon credit of LOA was affected by timber cutting intensity.  The 6th scenario with lowest annual allowable cutting (AAC obtained greater carbon credit and profit coming from timber harvesting income and carbon trading. In other hand, this scenario has shortest duration of carbon stock recovery period (27 years and shorter than its cutting cycle.  In this case, the MU has to recalculate and to decrease its AAC to have highest benefits from carbon trading in the same cutting cycle period.  It will provide double benefits from carbon trading, those are contribution in achieving the SFM purposes (production, ecology, social and climate change mitigation.Keywords: sustainable forest management, AAC, carbon stocks, recovery period, carbon trading

  7. Carbon budget of the vineyard – A new feature of sustainability

    Directory of Open Access Journals (Sweden)

    Pitacco Andrea

    2015-01-01

    Full Text Available Vineyards received scarce attention in relation to the continuous monitoring of carbon fluxes and the assessment of their overall budget, as a common believe is that agricultural crops cannot be net carbon sinks. Indeed, many technical inputs, massive periodical harvests, and the repeated disturbances of upper soil layers, all contribute to a substantial loss both of the old and newly-synthesized organic matter. Woody perennials, however, can behave differently: they grow a permanent structure, stand undisturbed in the same field for decades, originate abundant pruning debris, and are often grass-covered. We have been monitoring the Net Ecosystem Exchange (NEE by eddy covariance and the carbon partitioning in a temperate vineyard in North Eastern Italy. Five complete yearly budgets confirm a steady and substantial sink capacity of the system, with a yearly NEE around 800–900 gC m−2, grape harvest representing about 20–25% of it. Biometrical assessment of growth and partitioning show a good agreement with micrometeorological measurements and demonstrate a large input of organic matter into the soil. Even if it can be objected that this sink may be only temporary and the built-up can be substantially disrupted at the end of the vineyard life cycle, these results show that there is a concrete possibility of storing carbon in temperate-climate vineyards, possibly contributing to the global carbon budget. This sink capacity might be accounted in the official calculation of wine carbon footprint and represents a new, relevant feature of their sustainability.

  8. The role of Carbon Capture and Storage in a future sustainable energy system

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2012-01-01

    systems, the number of utilisation hours of power and CHP plants will have to decrease substantially due to the energy efficiency measures in combination with the inclusion of renewable energy power inputs from wind and similar resources. Consequently, no power or CHP plants exist in future sustainable......This paper presents the results of adding a CCS(Carbon Capture and Storage) plant including an underground CO2 storage to a well described and well documented vision of converting the present Danish fossil based energy system into a future sustainable energy system made by the Danish Society...... huge construction costs with the expectation of long lifetimes. Consequently, the CCS has to operate as part of large-scale power or CHP plants with high utilisation hours for the CCS investment to come even close to being feasible. However, seen in the light of transforming to sustainable energy...

  9. Carbon: The Ultimate Electrode Choice for Widely Distributed Polymer Solar Cells

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Roth, Bérenger; Madsen, Morten Vesterager

    2014-01-01

    -, indium tin oxide (ITO)-, and silver-free solar cells in a fully packaged form using only roll-to-roll processing is reported. Replacing silver with carbon as electrode material signifi cantly lowers the manufacturing cost and makes the organic photovoltaic (OPV) modules environmentally safe while...... retaining their fl exibility, active area effi ciency, and stability. The substitution of silver with carbon does not affect the roll-to-roll manufacturing of the modules and allows for the same fast printing and coating. The use of carbon as electrode material is one step closer to the wide release of low...

  10. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation

    Energy Technology Data Exchange (ETDEWEB)

    Roosta, Sara [Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Hashemianzadeh, Seyed Majid, E-mail: hashemianzadeh@iust.ac.ir [Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Ketabi, Sepideh, E-mail: sepidehketabi@yahoo.com [Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-10-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were − 4.128 kcal mol{sup −1} and − 2457.124 kcal mol{sup −1} respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was − 281.937 kcal mol{sup −1} which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (− 374.082 and − 245.766 kcal mol{sup −1}) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. - Highlights: • Solubility of cisplatin@ boron-nitride nanotube is larger than cisplatin@ carbon nanotube. • Boron- nitride nanotube complexes have larger electrostatic contribution in solvation free energy. • Complexation free energies confirm encapsulation of drug into the nanotubes in aqueous solution. • Boron- nitride nanotubes are appropriate drug delivery systems compared with carbon nanotubes.

  11. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation

    International Nuclear Information System (INIS)

    Roosta, Sara; Hashemianzadeh, Seyed Majid; Ketabi, Sepideh

    2016-01-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were − 4.128 kcal mol"−"1 and − 2457.124 kcal mol"−"1 respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was − 281.937 kcal mol"−"1 which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (− 374.082 and − 245.766 kcal mol"−"1) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. - Highlights: • Solubility of cisplatin@ boron-nitride nanotube is larger than cisplatin@ carbon nanotube. • Boron- nitride nanotube complexes have larger electrostatic contribution in solvation free energy. • Complexation free energies confirm encapsulation of drug into the nanotubes in aqueous solution. • Boron- nitride nanotubes are appropriate drug delivery systems compared with carbon nanotubes.

  12. Fire assisted pastoralism vs. sustainable forestry--the implications of missing markets for carbon in determining optimal land use in the wet-dry tropics of Australia.

    Science.gov (United States)

    Ockwell, David; Lovett, Jon C

    2005-04-01

    Using Cape York Peninsula, Queensland, Australia as a case study, this paper combines field sampling of woody vegetation with cost-benefit analysis to compare the social optimality of fire-assisted pastoralism with sustainable forestry. Carbon sequestration is estimated to be significantly higher in the absence of fire. Integration of carbon sequestration benefits for mitigating future costs of climate change into cost-benefit analysis demonstrates that sustainable forestry is a more socially optimal land use than fire-assisted pastoralism. Missing markets for carbon, however, imply that fire-assisted pastoralism will continue to be pursued in the absence of policy intervention. Creation of markets for carbon represents a policy solution that has the potential to drive land use away from fire-assisted pastoralism towards sustainable forestry and environmental conservation.

  13. Method for sustaining microorganism culture in syngas fermentation process in decreased concentration or absence of various substrates

    Science.gov (United States)

    Adams, Stephen S.; Scott, Syrona; Ko, Ching-Whan

    2015-05-19

    The present invention relates to methods for sustaining microorganism culture in a syngas fermentation reactor in decreased concentration or absence of various substrates comprising: adding carbon dioxide and optionally alcohol; maintaining free acetic acid concentrations; and performing the above mentioned steps within specified time.

  14. Scalable Approach To Construct Free-Standing and Flexible Carbon Networks for Lithium–Sulfur Battery

    KAUST Repository

    Li, Mengliu

    2017-02-21

    Reconstructing carbon nanomaterials (e.g., fullerene, carbon nanotubes (CNTs), and graphene) to multidimensional networks with hierarchical structure is a critical step in exploring their applications. Herein, a sacrificial template method by casting strategy is developed to prepare highly flexible and free-standing carbon film consisting of CNTs, graphene, or both. The scalable size, ultralight and binder-free characteristics, as well as the tunable process/property are promising for their large-scale applications, such as utilizing as interlayers in lithium-sulfur battery. The capability of holding polysulfides (i.e., suppressing the sulfur diffusion) for the networks made from CNTs, graphene, or their mixture is pronounced, among which CNTs are the best. The diffusion process of polysulfides can be visualized in a specially designed glass tube battery. X-ray photoelectron spectroscopy analysis of discharged electrodes was performed to characterize the species in electrodes. A detailed analysis of lithium diffusion constant, electrochemical impedance, and elementary distribution of sulfur in electrodes has been performed to further illustrate the differences of different carbon interlayers for Li-S batteries. The proposed simple and enlargeable production of carbon-based networks may facilitate their applications in battery industry even as a flexible cathode directly. The versatile and reconstructive strategy is extendable to prepare other flexible films and/or membranes for wider applications.

  15. A platform for secure, safe, and sustainable logistics

    NARCIS (Netherlands)

    Hofman, W.J.; Bastiaansen, H.J.M.; Berg, J. van den; Pruksasri, P.

    2012-01-01

    In the current society, logistics is faced with at least two bigchallenges. The first challenge considers safety and security measurements dealing with terrorism, smuggling, and related security accidents with a high societal impact. The second challenge is to meet sustainability requirements

  16. Final Technical Report: Science and technology reviews of FACE[Free Air Carbon Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Strain, Boyd R.

    1998-03-23

    The purpose of this grant was to bring together the principals of all known facilities that had been developed, principals who had submitted proposals to develop FACE facilities, and principals who want to develop proposals for facilities. In addition, critical program personnel from potential funding agencies and a few high level science administrators were invited to observe the proceedings and to visit a working FACE facility. The objectives of this study are to conduct a three-day international meeting on scientific aspects of research with the new and developing free air carbon enrichment (FACE) technology. Immediately following the science meeting, conduct a two-day international meeting on experimental protocols to be applied in FACE research. To conduct a four day international meeting on the assessment of the responses of forest ecosystems to elevated atmospheric carbon dioxide. The three meetings supported by this grant were all highly successful meetings and resulted in the formation of an organized and identified working group with the acronym InterFACE (International Free-Air Carbon Dioxide Enrichment) working group.

  17. Evaluation of carbon fluxes and trends (2000-2008) in the Greater Platte River Basin: a sustainability study on the potential biofuel feedstock development

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.; Zhang, Li; Gilmanov, Tagir G.

    2012-01-01

    This study evaluates the carbon fluxes and trends and examines the environmental sustainability (e.g., carbon budget, source or sink) of the potential biofuel feedstock sites identified in the Greater Platte River Basin (GPRB). A 9-year (2000–2008) time series of net ecosystem production (NEP), a measure of net carbon absorption or emission by ecosystems, was used to assess the historical trends and budgets of carbon flux for grasslands in the GPRB. The spatially averaged annual NEP (ANEP) for grassland areas that are possibly suitable for biofuel expansion (productive grasslands) was 71–169 g C m−2 year−1 during 2000–2008, indicating a carbon sink (more carbon is absorbed than released) in these areas. The spatially averaged ANEP for areas not suitable for biofuel feedstock development (less productive or degraded grasslands) was −47 to 69 g C m−2 year−1 during 2000–2008, showing a weak carbon source or a weak carbon sink (carbon emitted is nearly equal to carbon absorbed). The 9-year pre-harvest cumulative ANEP was 1166 g C m−2 for the suitable areas (a strong carbon sink) and 200 g C m−2 for the non-suitable areas (a weak carbon sink). Results demonstrate and confirm that our method of dynamic modeling of ecosystem performance can successfully identify areas desirable and sustainable for future biofuel feedstock development. This study provides useful information for land managers and decision makers to make optimal land use decisions regarding biofuel feedstock development and sustainability.

  18. Efficient and sustainable deployment of bioenergy with carbon capture and storage in mitigation pathways

    Science.gov (United States)

    Kato, E.; Moriyama, R.; Kurosawa, A.

    2016-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise well below 2°C above pre-industrial, which would require net negative carbon emissions at the end of the 21st century. Also, in the Paris agreement from COP21, it is denoted "a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century" which could require large scale deployment of negative emissions technologies later in this century. Because of the additional requirement for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of large-scale BECCS. In this study, we present possible development strategies of low carbon scenarios that consider interaction of economically efficient deployment of bioenergy and/or BECCS technologies, biophysical limit of bioenergy productivity, and food production. In the evaluations, detailed bioenergy representations, including bioenergy feedstocks and conversion technologies with and without CCS, are implemented in an integrated assessment model GRAPE. Also, to overcome a general discrepancy about yield development between 'top-down' integrate assessment models and 'bottom-up' estimates, we applied yields changes of food and bioenergy crops consistent with process-based biophysical models; PRYSBI-2 (Process-Based Regional-Scale Yield Simulator with Bayesian Inference) for food crops, and SWAT (Soil and Water Assessment Tool) for bioenergy crops in changing climate conditions. Using the framework, economically viable strategy for implementing sustainable BECCS are evaluated.

  19. Predicting Sustainable Work Behavior

    DEFF Research Database (Denmark)

    Hald, Kim Sundtoft

    2013-01-01

    Sustainable work behavior is an important issue for operations managers – it has implications for most outcomes of OM. This research explores the antecedents of sustainable work behavior. It revisits and extends the sociotechnical model developed by Brown et al. (2000) on predicting safe behavior...

  20. Sustainability Concept in Decision-Making: Carbon Tax Consideration for Joint Product Mix Decision

    Directory of Open Access Journals (Sweden)

    Wen-Hsien Tsai

    2016-11-01

    Full Text Available Carbon emissions are receiving greater scrutiny in many countries due to international forces to reduce anthropogenic global climate change. Carbon taxation is one of the most common carbon emission regulation policies, and companies must incorporate it into their production and pricing decisions. Activity-based costing (ABC and the theory of constraints (TOC have been applied to solve product mix problems; however, a challenging aspect of the product mix problem involves evaluating joint manufactured products, while reducing carbon emissions and environmental pollution to fulfill social responsibility. The aim of this paper is to apply ABC and TOC to analyze green product mix decision-making for joint products using a mathematical programming model and the joint production data of pharmaceutical industry companies for the processing of active pharmaceutical ingredients (APIs in drugs for medical use. This paper illustrates that the time-driven ABC model leads to optimal joint product mix decisions and performs sensitivity analysis to study how the optimal solution will change with the carbon tax. Our findings provide insight into ‘sustainability decisions’ and are beneficial in terms of environmental management in a competitive pharmaceutical industry.

  1. A platform for secure, safe, and sustainable logistics

    NARCIS (Netherlands)

    Hofman, W.; Bastiaansen, H.; Van den Berg, J.; Pruksasri, P.

    2012-01-01

    In the current society, logistics is faced with at least two big challenges. The first challenge considers safety and security measurements dealing with terrorism, smuggling, and related security accidents with a high societal impact. The second challenge is to meet sustainability requirements

  2. Evaluation of Sustainability of the Carbon and Silicon Ecosystem: From Nanoparticles to Macroworld

    Science.gov (United States)

    Dolin, V.

    Rapid development of nanotechnologies has led to a complicated problem of utilization, storage and treatment of waste nanodevices of silicon and carbon origin. The processes of physico-chemical and biogeochemical destruction of carbon—silicon—uranium nanoparticles of Chernobyl origin has been studied. The period of half-destruction assessed by leaching of different radionuclide from particles is between 5 and 25 years. Natural ecosystems are generally of carbon and silicon origin. The behavior of radionuclide in natural media is observed over a period of 20 years. For the balance calculations we have utilized the Geochemical Transition Factor (GTF) that represents the quantity of substance, which is accumulated by living matter from the area unit. The main part of total carbon is involved in biogeochemical cycles in the forest ecosystem. Anthropogenic activity leads to a considerable imbalance of carbon isotopes. The distribution of carbon isotopes between different biotic levels demonstrates that radiocarbon of artificial emission is substantially less bio-available than those from natural sources. The environmental ability to recovery, lies in decontamination of carbon trophic circuits, is an order of magnitude greater than the rate of natural attenuation and corresponds to the removal of artificial matter from natural silicon media. The modern sustainability of the silicon and carbon ecosystem is determined by an insignificant quantity of artificial matter involved in biogeochemical cycles.

  3. Sustainable Agriculture: Cover Cropping

    Science.gov (United States)

    Webster, Megan

    2018-01-01

    Sustainable agriculture practices are increasingly being used by farmers to maintain soil quality, increase biodiversity, and promote production of food that is environmentally safe. There are several types of sustainable agriculture practices such as organic farming, crop rotation, and aquaculture. This lesson plan focuses on the sustainable…

  4. Tabriz Bazaar: sustainability and human comfort

    Energy Technology Data Exchange (ETDEWEB)

    Nassehzadeh Tabriz, Shahram [Master of Department of Architecture, Islamic Azad University, Miyaneh Branch (Iran, Islamic Republic of)], email: sh_nassehzadeh@m-iau.ac.ir; Fard, Fariborz Mahdavi Tabatabaei [SABAT TARH CO. (Iran, Islamic Republic of)], email: sabat_arc@yahoo.com

    2011-07-01

    Sustainable developments in energy and the environment have become a main focus of many groups. The built environment has a great influence on environmental sustainability generally. Solutions that respond to the impact of human activities on the environment in urban areas are required. On one hand, averting resource depletion and environmental degradation caused by facilities and infrastructures over their life cycle is a principal goal. On the other hand, it is also a principal goal to create livable, comfortable, safe and productive built environments. Tabriz bazaar, in Iran, is an example of sustainable architecture. It is designed to be suited to the local climate and urban texture with spaces that are varied and have a strong connection to open space. The bazaar plays a significant role in creation of safe urban space as a cultural, social, commercial, educational and sanitarian area. It connects different activities and different people in a safe place. The purpose of this paper is to determine the sustainability of the Tabriz bazaar and the effect that the character of this commercial area has on the quality of human life.

  5. Free-Standing Porous Carbon Nanofiber Networks from Electrospinning Polyimide for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2016-01-01

    Full Text Available Free-standing porous carbon nanofiber networks (CFNs were synthesized by electrospinning method and carbonization procedure. We study the implementation of porous CFNs as supercapacitor electrodes and electrochemical measurements demonstrated that porous CFNs exhibit a specific capacitance (205 F/g at the scan rate of 5 mV/s with high flexibility and good rate capability performance (more than 70% of its initial capacitance from 5 mV/s to 200 mV/s. Furthermore, porous CFNs exhibited an excellent cycling stability (just 12% capacitance loss after 10,000 cycles. These results suggest that porous CFNs are very promising candidates as flexible supercapacitor electrodes.

  6. Positioning Nuclear Power in the Low-Carbon Electricity Transition

    Directory of Open Access Journals (Sweden)

    Aviel Verbruggen

    2017-01-01

    Full Text Available Addressing climate change requires de-carbonizing future energy supplies in an increasingly energy-dependent world. The IEA and the IPCC (2014 mention the following as low-carbon energy supply options: ‘renewable energy, nuclear power and fossil fuels with carbon capture and storage’. Positioning nuclear power in the decarbonization transition is a problematic issue and is overridden by ill-conceived axioms. Before probing these axioms, we provide an overview of five major, postwar energy-related legacies and some insight into who is engaged in nuclear activities. We check whether low-carbon nuclear power passes the full sustainability test and whether it is compatible with the unfettered deployment of variable renewable power sourced from the sun and from wind and water currents, which delivers two negative answers. We show that the best approach of the sustainable energy transition was Germany’s 2011 decision to phase out nuclear power for a fast development and full deployment of renewable power. This is the best approach for the sustainable energy transition. We offer five practical suggestions to strengthen and accelerate carbon- and nuclear-free transitions. They are related to institutional issues like the role of cost-benefit analysis and the mission of the International Atomic Energy Agency, to the costs of nuclear risks and catastrophes, and to the historical record of nuclear technology and business.

  7. Free Energy Minimization Calculation of Complex Chemical Equilibria. Reduction of Silicon Dioxide with Carbon at High Temperature.

    Science.gov (United States)

    Wai, C. M.; Hutchinson, S. G.

    1989-01-01

    Discusses the calculation of free energy in reactions between silicon dioxide and carbon. Describes several computer programs for calculating the free energy minimization and their uses in chemistry classrooms. Lists 16 references. (YP)

  8. Carbon sequestration, biological diversity, and sustainable development: Integrated forest management

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, M.A. (Environmental Research Lab., Corvallis, OR (United States)); Meganck, R.A. (United Nations Environment Programme for the Wider Caribbean, Kingston (Jamaica))

    Tropical deforestation provides a significant contribution to anthropogenic increases in atmospheric CO[sub 2] concentration that may lead to global warming. Forestation and other forest management options to sequester CO[sub 2] in the tropical latitudes may fail unless they address local economic, social, environmental, and political needs of people in the developing world. Forest management is discussed in terms of three objectives: Carbon sequestration, sustainable development, and biodiversity conservation. An integrated forest management strategy of land-use planning is proposed to achieve these objectives and is centered around: Preservation of primary forest, intensified use of nontimber resources, agroforestry, and selective use of plantation forestry. 89 refs., 1 fig., 1 tab.

  9. Application of activated carbons from coal and coconut shell for removing free residual chlorine.

    Science.gov (United States)

    Ogata, Fumihiko; Tominaga, Hisato; Ueda, Ayaka; Tanaka, Yuko; Iwata, Yuka; Kawasaki, Naohito

    2013-01-01

    This study investigated the removal of free residual chlorine by activated carbon (AC). ACs were prepared from coal (AC1) and coconut shell (AC2). The specific surface area of AC1 was larger than that of AC2. The removal of free residual chlorine increased with elapsed time and amount of adsorbent. The removal mechanism of free residual chlorine was the dechlorination reaction between hypochlorous acid or hypochlorite ion and AC. Moreover, AC1 was useful in the removal of free residual chlorine in tap water. The optimum condition for the removal of free residual chlorine using a column is space velocity 306 1/h; liner velocity 6.1 m/h.

  10. Template-free electrochemical nanofabrication of polyaniline nanobrush and hybrid polyaniline with carbon nanohorns for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wei Di; Andrew, Piers; Ryhaenen, Tapani [Nokia Research Centre Cambridge, Broers Building, 21 J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Wang, Haolan; Hiralal, Pritesh; Amaratunga, Gehan A J [Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Hayashi, Yasuhiko, E-mail: di.wei@nokia.com, E-mail: gaja1@cam.ac.uk [Department of Materials Science, Nagoya Institute of Technology, Nagoya 466-8555 (Japan)

    2010-10-29

    Polyaniline (PANI) nanobrushes were synthesized by template-free electrochemical galvanostatic methods. When the same method was applied to the carbon nanohorn (CNH) solution containing aniline monomers, a hybrid nanostructure containing PANI and CNHs was enabled after electropolymerization. This is the first report on the template-free method to make PANI nanobrushes and homogeneous hybrid soft matter (PANI) with carbon nanoparticles. Raman spectroscopy was used to analyze the interaction between CNH and PANI. Electrochemical nanofabrication offers simplicity and good control when used to make electronic devices. Both of these materials were applied in supercapacitors and an improvement capacitive current by using the hybrid material was observed.

  11. Template-free electrochemical nanofabrication of polyaniline nanobrush and hybrid polyaniline with carbon nanohorns for supercapacitors

    Science.gov (United States)

    Wei, Di; Wang, Haolan; Hiralal, Pritesh; Andrew, Piers; Ryhänen, Tapani; Hayashi, Yasuhiko; Amaratunga, Gehan A. J.

    2010-10-01

    Polyaniline (PANI) nanobrushes were synthesized by template-free electrochemical galvanostatic methods. When the same method was applied to the carbon nanohorn (CNH) solution containing aniline monomers, a hybrid nanostructure containing PANI and CNHs was enabled after electropolymerization. This is the first report on the template-free method to make PANI nanobrushes and homogeneous hybrid soft matter (PANI) with carbon nanoparticles. Raman spectroscopy was used to analyze the interaction between CNH and PANI. Electrochemical nanofabrication offers simplicity and good control when used to make electronic devices. Both of these materials were applied in supercapacitors and an improvement capacitive current by using the hybrid material was observed.

  12. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes

    Science.gov (United States)

    YanEqual Contribution, Liang; Zhao, Feng; Li, Shoujian; Hu, Zhongbo; Zhao, Yuliang

    2011-02-01

    The toxicity grade for a bulk material can be approximately determined by three factors (chemical composition, dose, and exposure route). However, for a nanomaterial it depends on more than ten factors. Interestingly, some nano-factors (like huge surface adsorbability, small size, etc.) that endow nanomaterials with new biomedical functions are also potential causes leading to toxicity or damage to the living organism. Is it possible to create safe nanomaterials if such a number of complicated factors need to be regulated? We herein try to find answers to this important question. We first discuss chemical processes that are applicable for nanosurface modifications, in order to improve biocompatibility, regulate ADME, and reduce the toxicity of carbon nanomaterials (carbon nanotubes, fullerenes, metallofullerenes, and graphenes). Then the biological/toxicological effects of surface-modified and unmodified carbon nanomaterials are comparatively discussed from two aspects: the lowered toxic responses or the enhanced biomedical functions. We summarize the eight biggest challenges in creating low-toxicity and safer nanomaterials and some significant topics of future research needs: to find out safer nanofactors; to establish controllable surface modifications and simpler chemistries for low-toxic nanomaterials; to explore the nanotoxicity mechanisms; to justify the validity of current toxicological theories in nanotoxicology; to create standardized nanomaterials for toxicity tests; to build theoretical models for cellular and molecular interactions of nanoparticles; and to establish systematical knowledge frameworks for nanotoxicology.

  13. Sustainable bioenergy production with little carbon debt in the Loess Plateau of China.

    Science.gov (United States)

    Liu, Wei; Peng, Cheng; Chen, Zhifen; Liu, Yue; Yan, Juan; Li, Jianqiang; Sang, Tao

    2016-01-01

    As a key strategy for mitigating global climate change, bioenergy production by reducing CO2 emissions plays an important role in ensuring sustainable development. However, land-use change by converting natural ecosystems into energy crop field could create a carbon debt at the beginning. Thus, the potential carbon debt calculation is necessary for determining a promising bioenergy crop production, especially in the region rich of marginal land. Here, we used high-resolution historical land-use data to identify the marginal land available and to evaluate the carbon debt of planting Miscanthus in the Loess Plateau, China. We found that there were 27.6 Mha for energy production and 9.7 Mha for ecological restoration, with total annual production of 0.41 billion tons of biomass. We also found that soil carbon sequestration and total CO2 mitigation were 9.3 Mt C year(-1) and 542 Mt year(-1), respectively. More importantly, the result showed that planting Miscanthus on marginal land in the Loess Plateau only took 0.97 years on average to repay the carbon debt. Our study demonstrated that Miscanthus production in suitable marginal land in the Loess Plateau can offer considerable renewable energy and mitigate climate change with little carbon debt. These results suggested that bioenergy production in the similar arid and semiarid region worldwide would contribute to carbon sequestration in the context of rapid climate change.

  14. Biorefinery Sustainability Analysis

    DEFF Research Database (Denmark)

    J. S. M. Silva, Carla; Prunescu, Remus Mihail; Gernaey, Krist

    2017-01-01

    This chapter deals with sustainability analysis of biorefinery systems in terms of environmental and socio-economic indicators . Life cycle analysis has methodological issues related to the functional unit (FU), allocation , land use and biogenic carbon neutrality of the reference system and of t......This chapter deals with sustainability analysis of biorefinery systems in terms of environmental and socio-economic indicators . Life cycle analysis has methodological issues related to the functional unit (FU), allocation , land use and biogenic carbon neutrality of the reference system...... and of the biorefinery-based system. Socio-economic criteria and indicators used in sustainability frameworks assessment are presented and discussed. There is not one single methodology that can aptly cover the synergies of environmental, economic, social and governance issues required to assess the sustainable...

  15. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water.

    Directory of Open Access Journals (Sweden)

    Xiaolu Liu

    Full Text Available Assimilable organic carbon (AOC is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM. The initial AOC concentration was 168 μg.L(-1 in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1 × 10(5 cells.mL(-1 to 2.6 × 10(4 cells.mL(-1 at an initial free chlorine dose of 0.6 mg.L(-1 to 4.8 × 10(4 cells.mL(-1 at an initial free chlorine dose of 0.3 mg.L(-1 due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network.

  16. Free-standing carbon nanotube/graphene hybrid papers as next generation adsorbents.

    Science.gov (United States)

    Dichiara, Anthony B; Sherwood, Tyler J; Benton-Smith, Jared; Wilson, Jonathan C; Weinstein, Steven J; Rogers, Reginald E

    2014-06-21

    The adsorption of a series of aromatic compounds from aqueous solution onto purified, free-standing single-walled carbon nanotube/graphene nanoplatelet hybrid papers is studied both experimentally and theoretically. Experimental data is obtained via changes in optical absorption spectra of the aqueous solutions and is used to extract all parameters required to implement a semi-empirical mass-transfer model. Agreement between experiment and theory is excellent and data from all compounds can be cast on a universal adsorption curve. Results indicate that the rate of adsorption and long-time capacity of many aromatic compounds on hybrid paper adsorbent significantly exceeds that of activated carbon by at least an order of magnitude. The combination of carbon nanotubes and graphene also promotes on the order of a 25% improvement in adsorption rates and capacities than either component alone. Hybrid nanocomposites show significant promise as adsorption materials used for environmental remediation efforts.

  17. Highly stable porous silicon-carbon composites as label-free optical biosensors.

    Science.gov (United States)

    Tsang, Chun Kwan; Kelly, Timothy L; Sailor, Michael J; Li, Yang Yang

    2012-12-21

    A stable, label-free optical biosensor based on a porous silicon-carbon (pSi-C) composite is demonstrated. The material is prepared by electrochemical anodization of crystalline Si in an HF-containing electrolyte to generate a porous Si template, followed by infiltration of poly(furfuryl) alcohol (PFA) and subsequent carbonization to generate the pSi-C composite as an optically smooth thin film. The pSi-C sensor is significantly more stable toward aqueous buffer solutions (pH 7.4 or 12) compared to thermally oxidized (in air, 800 °C), hydrosilylated (with undecylenic acid), or hydrocarbonized (with acetylene, 700 °C) porous Si samples prepared and tested under similar conditions. Aqueous stability of the pSi-C sensor is comparable to related optical biosensors based on porous TiO(2) or porous Al(2)O(3). Label-free optical interferometric biosensing with the pSi-C composite is demonstrated by detection of rabbit IgG on a protein-A-modified chip and confirmed with control experiments using chicken IgG (which shows no affinity for protein A). The pSi-C sensor binds significantly more of the protein A capture probe than porous TiO(2) or porous Al(2)O(3), and the sensitivity of the protein-A-modified pSi-C sensor to rabbit IgG is found to be ~2× greater than label-free optical biosensors constructed from these other two materials.

  18. Mukilteo water sensor time series - Field work coupling measurements of carbon chemistry and distribution of free-living organisms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To estimate the carbon chemistry conditions experienced by free-living organisms, we will conduct coupled biological/carbon chemistry sampling for key zooplankton...

  19. A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure

    OpenAIRE

    Yingzhi Li; Qinghua Zhang; Junxian Zhang; Lei Jin; Xin Zhao; Ting Xu

    2015-01-01

    Biomass has delicate hierarchical structures, which inspired us to develop a cost-effective route to prepare electrode materials with rational nanostructures for use in high-performance storage devices. Here, we demonstrate a novel top-down approach for fabricating bio-carbon materials with stable structures and excellent diffusion pathways; this approach is based on carbonization with controlled chemical activation. The developed free-standing bio-carbon electrode exhibits a high specific ca...

  20. Addressing the Issue of Microplastics in the Wake of the Microbead-Free Waters Act-A New Standard Can Facilitate Improved Policy.

    Science.gov (United States)

    McDevitt, Jason P; Criddle, Craig S; Morse, Molly; Hale, Robert C; Bott, Charles B; Rochman, Chelsea M

    2017-06-20

    The United States Microbead-Free Waters Act was signed into law in December 2015. It is a bipartisan agreement that will eliminate one preventable source of microplastic pollution in the United States. Still, the bill is criticized for being too limited in scope, and also for discouraging the development of biodegradable alternatives that ultimately are needed to solve the bigger issue of plastics in the environment. Due to a lack of an acknowledged, appropriate standard for environmentally safe microplastics, the bill banned all plastic microbeads in selected cosmetic products. Here, we review the history of the legislation and how it relates to the issue of microplastic pollution in general, and we suggest a framework for a standard (which we call "Ecocyclable") that includes relative requirements related to toxicity, bioaccumulation, and degradation/assimilation into the natural carbon cycle. We suggest that such a standard will facilitate future regulation and legislation to reduce pollution while also encouraging innovation of sustainable technologies.

  1. Direct electrochemistry of glucose oxidase on novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers composite film.

    Science.gov (United States)

    Zhang, Xueping; Liu, Dong; Li, Libo; You, Tianyan

    2015-05-06

    We have proposed a novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers (NCNSs@CNFs) composite film with high processability for the investigation of the direct electron transfer (DET) of glucose oxidase (GOx) and the DET-based glucose biosensing. The composites were simply prepared by controlled thermal treatment of electrospun polypyrrole nanospheres doped polyacrylonitrile nanofibers (PPyNSs@PAN NFs). Without any pretreatment, the as-prepared material can directly serve as a platform for GOx immobilization. The cyclic voltammetry of immobilized GOx showed a pair of well-defined redox peaks in O2-free solution, indicating the DET of GOx. With the addition of glucose, the anodic peak current increased, while the cathodic peak current decreased, which demonstrated the DET-based bioelectrocatalysis. The detection of glucose based on the DET of GOx was achieved, which displayed high sensitivity, stability and selectivity, with a low detection limit of 2 μM and wide linear range of 12-1000 μM. These results demonstrate that the as-obtained NCNSs@CNFs can serve as an ideal platform for the construction of the third-generation glucose biosensor.

  2. Adapting sustainable low-carbon techologies to reduce carbon dioxide emissions from coal-fired power plants in China

    Science.gov (United States)

    Kuo, Peter Shyr-Jye

    1997-09-01

    The scientific community is deeply concerned about the effect of greenhouse-gases (GHGs) on global climate change. A major climate shift can result in tragic destruction to our world. Carbon dioxide (COsb2) emissions from coal-fired power plants are major anthropogenic sources that contribute to potential global warming. The People's Republic of China, with its rapidly growing economy and heavy dependence on coal-fired power plants for electricity, faces increasingly serious environmental challenges. This research project seeks to develop viable methodologies for reducing the potential global warming effects and serious air pollution arising from excessive coal burning. China serves as a case study for this research project. Major resolution strategies are developed through intensive literature reviews to identify sustainable technologies that can minimize adverse environmental impacts while meeting China's economic needs. The research thereby contributes technological knowledge to the field of Applied Sciences. The research also integrates modern power generation technologies with China's current and future energy requirements. With these objectives in mind, this project examines how China's environmental issues are related to China's power generation methods. This study then makes strategic recommendations that emphasize low-carbon technologies as sustainable energy generating options to be implemented in China. These low-carbon technologies consist of three options: (1) using cleaner fuels converted from China's plentiful domestic coal resources; (2) applying high-efficiency gas turbine systems for power generation; and (3) integrating coal gasification processes with energy saving combined cycle gas turbine systems. Each method can perform independently, but a combined strategy can achieve the greatest COsb2 reductions. To minimize economic impacts caused by technological changes, this study also addresses additional alternatives that can be implemented in

  3. International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13). Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The conference, which was held from 4 to 7 of March 2013 in Paris, provided a forum to exchange information on national and international programmes, and more generally new developments and experience, in the field of fast reactors and related fuel cycle technologies. A first goal was to identify and discuss strategic and technical options that have been proposed by individual countries or companies. Another goal was to promote the development of fast reactors and related fuel cycle technologies in a safe, proliferation resistant and economic way. A third goal was to identify gaps and key issues that need to be addressed in relation to the industrial deployment of fast reactors with a closed fuel cycle. A fourth goal was to engage young scientists and engineers in this field, in particular with sustainability, innovation, simulation, safety, economics and public acceptance

  4. Can a low-carbon-energy transition be sustained in post-Fukushima Japan? Assessing the varying impacts of exogenous shocks

    International Nuclear Information System (INIS)

    Wakiyama, Takako; Zusman, Eric; Monogan, James E.

    2014-01-01

    In the aftermath of the Fukushima nuclear crisis, Japan began contemplating energy policy reforms that drew inspiration from low-carbon research. This article focuses on a question central to advancing low-carbon research in Japan and elsewhere: namely, how does an exogenous shock affect the onset, magnitude, and permanence of changes in electricity consumption? The article employs intervention analysis with an autoregressive moving average (ARMA) model to answer this question. The data analysis reveals that post-Fukushima electricity use underwent a sudden, significant, and sustained reduction across Japan. The shock not only affected the Tokyo Electric Power Company (TEPCO) coverage area but the more distant Kansai Electric Power Company (KEPCO) coverage area. Large electricity users responded with an immediate and significant reduction in electricity consumption that rebounded to below pre-crisis levels; households responded more gradually with no rebound. Two of the more interesting results from the data analysis – the persistence in reductions in the more distant KEPCO coverage area and the rebound among large users – are then explained with a review of survey data and policy trends. Overall the quantitative and qualitative evidence suggests that an exogenous shock may give rise to a reduction in electricity consumption but cannot sustain a low-carbon transition. - Highlights: • Contributing to the literature on low carbon transitions. • Comparing post-Fukushima electricity consumption across regions and user groups. • Recommending reforms to sustain energy savings after an exogenous shock

  5. Modeling and Measurement of Sustained Loading and Temperature-Dependent Deformation of Carbon Fiber-Reinforced Polymer Bonded to Concrete.

    Science.gov (United States)

    Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok

    2015-01-29

    This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant.

  6. Hierarchical shell/core CuO nanowire/carbon fiber composites as binder-free anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yuan, Wei; Luo, Jian; Pan, Baoyou; Qiu, Zhiqiang; Huang, Shimin; Tang, Yong

    2017-01-01

    Highlights: •The composite anode is composed of CuO nanowire shell and carbon fiber core. •The composite anode avoids completely the use of binders. •Synergistic effect of carbon fibers and CuO nanowires enhances performance. •Carbon fibers improve electrical conductivity and buffer volume change. •CuO nanowires shorten diffusion length and alleviate structural strain. -- Abstract: Developing high-performance electrode structures is of great importance for advanced lithium-ion batteries. This study reports an efficient method to fabricate hierarchical shell/core CuO nanowire/carbon fiber composites via electroless plating and thermal oxidation processes. With this method, a binder-free CuO nanowire/carbon fiber shell/core hierarchical network composite anode for lithium-ion batteries is successfully fabricated. The morphology and chemical composition of the anode are characterized, and the electrochemical performance of the anode is investigated by standard electrochemical tests. Owing to the superior properties of carbon fibers and the morphological advantages of CuO nanowires, this composite anode still retains an excellent reversible capacity of 598.2 mAh g −1 with a capacity retention rate above 86%, even after 50 cycles, which is much higher than the CuO anode without carbon fibers. Compared to the typical CuO/C electrode systems, the novel binder-free anode yields a performance close to that of the typical core/shell electrode systems and a much higher reversible capacity and capacity retention than the similar shell/core patterns as well as the anodes with binders. It is believed that this novel anode will pave the way to the development of binder-free anodes in response to the increasing demands for high-power energy storage.

  7. Methane-free biogas for direct feeding of solid oxide fuel cells

    Science.gov (United States)

    Leone, P.; Lanzini, A.; Santarelli, M.; Calì, M.; Sagnelli, F.; Boulanger, A.; Scaletta, A.; Zitella, P.

    was demonstrated the interest relying on a sustainable biomass processing which produces a biogas which can be directly fed to SOFC using traditional anode materials and avoiding the reformer component since the methane-free mixture is already safe for carbon deposition.

  8. Methane-free biogas for direct feeding of solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Leone, P.; Lanzini, A.; Santarelli, M.; Cali, M. [Dipartimento di Energetica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Sagnelli, F.; Boulanger, A.; Scaletta, A.; Zitella, P. [BioEnergy Lab, Environment Park S.p.A., Via Livorno 60, 10144 Turin (Italy)

    2010-01-01

    mercaptans up to 10 ppm). Therefore, it was demonstrated the interest relying on a sustainable biomass processing which produces a biogas which can be directly fed to SOFC using traditional anode materials and avoiding the reformer component since the methane-free mixture is already safe for carbon deposition. (author)

  9. Integrating Algae with Bioenergy Carbon Capture and Storage (ABECCS) Increases Sustainability

    Science.gov (United States)

    Beal, Colin M.; Archibald, Ian; Huntley, Mark E.; Greene, Charles H.; Johnson, Zackary I.

    2018-03-01

    Bioenergy carbon capture and storage (BECCS) has been proposed to reduce atmospheric CO2 concentrations, but concerns remain about competition for arable land and freshwater. The synergistic integration of algae production, which does not require arable land or freshwater, with BECCS (called "ABECCS") can reduce CO2 emissions without competing with agriculture. This study presents a technoeconomic and life-cycle assessment for colocating a 121-ha algae facility with a 2,680-ha eucalyptus forest for BECCS. The eucalyptus biomass fuels combined heat and power (CHP) generation with subsequent amine-based carbon capture and storage (CCS). A portion of the captured CO2 is used for growing algae and the remainder is sequestered. Biomass combustion supplies CO2, heat, and electricity, thus increasing the range of sites suitable for algae cultivation. Economic, energetic, and environmental impacts are considered. The system yields as much protein as soybeans while generating 61.5 TJ of electricity and sequestering 29,600 t of CO2 per year. More energy is generated than consumed and the freshwater footprint is roughly equal to that for soybeans. Financial break-even is achieved for product value combinations that include 1) algal biomass sold for 1,400/t (fishmeal replacement) with a 68/t carbon credit and 2) algal biomass sold for 600/t (soymeal replacement) with a 278/t carbon credit. Sensitivity analysis shows significant reductions to the cost of carbon sequestration are possible. The ABECCS system represents a unique technology for negative emissions without reducing protein production or increasing water demand, and should therefore be included in the suite of technologies being considered to address global sustainability.

  10. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.

    Science.gov (United States)

    Cheah, Wai Yan; Ling, Tau Chuan; Juan, Joon Ching; Lee, Duu-Jong; Chang, Jo-Shu; Show, Pau Loke

    2016-09-01

    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Carbon Trading. Literature Overview

    International Nuclear Information System (INIS)

    Kerste, M.; Weda, J.; Rosenboom, N.

    2010-12-01

    From Pigou and Coase to the Kyoto Protocol, carbon trading has resulted in pricing of the negative externalities emanating from pollution. This report highlights leading literature and empirical findings on carbon trading, amongst others addressing the relevant carbon and related markets, the (lack of) success of carbon trading so far and room for improvement as well as its impact on investments in emission reduction. This report is part of a set of SEO-reports on finance and sustainability. The other reports deal with: Financing the Transition to Sustainable Energy; Innovations in financing environmental and social sustainability; and Sustainable investment.

  12. Tuning of Activated Carbon for Solvent-Free Oxidation of Cyclohexane

    Directory of Open Access Journals (Sweden)

    Mohammad Sadiq

    2017-01-01

    Full Text Available Activated carbon (AC was prepared from carbonization of phosphoric acid soaked peanut shell at 380°C under inert atmosphere followed by activation with hydrogen peroxide. The AC was characterized by SEM, EDX, FTIR, TGA, and BET surface area and pore size analyzer. The potential of AC as a catalyst for solvent-free oxidation of cyclohexane to cyclohexanol and cyclohexanone (the mixture is known as KA oil in the presence of molecular oxygen at moderate temperature was investigated in a self-designed double-walled three-necked batch reactor. The effect of different reaction parameters/additive was optimized. The maximum productivity value (2.14 mmolg−1 h−1, without base, and 4.85 mmolg−1 h−1, with 0.2 mmol NaOH of the desired product was achieved under optimal reaction parameters: vol 12.5 mL, cat 0.4 g, time 14 h, oxygen flow 40 mL/min (pO2 760 Torr, stirring 1100 rpm, and temp 75°C. The AC shows recyclability for multiple runs without any significant loss in activity. Thus, the AC can be an efficient catalyst, due to low cost, ease of synthesis, easy recovery, nonleaching, and recyclability for multiple uses for the solvent-free oxidation of cyclohexane.

  13. Rapid Prototyping High-Performance MR Safe Pneumatic Stepper Motors

    NARCIS (Netherlands)

    Groenhuis, Vincent; Stramigioli, Stefano

    2018-01-01

    In this paper we show that pneumatic stepper motors for MR safe robots can be constructed using rapid prototyping techniques such as 3-D printing and laser-cutting. The designs are lightweight, completely metal-free and fully customizable. Besides MR safe robotic systems, other potential

  14. Water Quality and Sustainable Environmental Health

    Science.gov (United States)

    Setegn, S. G.

    2014-12-01

    Lack of adequate safe water, the pollution of the aquatic environment and the mismanagement of resources are major causes of ill-health and mortality, particularly in the developing countries. In order to accommodate more growth, sustainable fresh water resource management will need to be included in future development plans. One of the major environmental issues of concern to policy-makers is the increased vulnerability of ground water quality. The main challenge for the sustainability of water resources is the control of water pollution. To understand the sustainability of the water resources, one needs to understand the impact of future land use and climate changes on the natural resources. Providing safe water and basic sanitation to meet the Millennium Development Goals will require substantial economic resources, sustainable technological solutions and courageous political will. A balanced approach to water resources exploitation for development, on the one hand, and controls for the protection of health, on the other, is required if the benefits of both are to be realized without avoidable detrimental effects manifesting themselves. Meeting the millennium development goals for water and sanitation in the next decade will require substantial economic resources, sustainable technological solutions and courageous political will. In addition to providing "improved" water and "basic" sanitation services, we must ensure that these services provide: safe drinking water, adequate quantities of water for health, hygiene, agriculture and development and sustainable sanitation approaches to protect health and the environment.

  15. Cost-free and sustainable incentive increases healthy eating decisions during elementary school lunch.

    Science.gov (United States)

    Pittman, D W; Parker, J S; Getz, B R; Jackson, C M; Le, T-A P; Riggs, S B; Shay, J M

    2012-01-01

    We aimed to develop a cost-free and sustainable program to influence healthier eating decisions during elementary school lunch. Baseline food and beverage choices were assessed for 9 days during lunch service at two racially and economically diverse elementary schools in Spartanburg County, SC, USA. After being informed that the labeled items on the daily lunch menu represented the healthiest choice, students were allowed to ring a call bell in the cafeteria for public recognition when they chose all of the identified healthiest food and beverage items during lunch service. Using menus matched to the baseline phase, food and beverage choices were measured during a 9-day intervention phase. After 30 days, food and beverage choices were reassessed during a 3-day follow-up phase. Healthiest food & beverage choices increased 49% with >60% of students choosing non-flavored milk over flavored milk during the intervention phase. There was no difference in the success of the program between the two schools. The program continued and healthy eating decisions were significantly sustained at a 30-day follow-up assessment. Public recognition through bell ringing appears to be an effective practice to sustain increases in healthy eating decisions during elementary school lunch and warrants expansion to larger scale, longitudinal trials.

  16. Hydrogen role in a carbon-free energy mix

    International Nuclear Information System (INIS)

    2014-02-01

    Among the energy storage technologies under development today, there is today an increasing interest towards the hydrogen-based ones. Hydrogen generation allows to store electricity, while its combustion can supply electrical, mechanical or heat energy. The French Atomic Energy Commission (CEA) started to work on hydrogen technologies at the end of the 1990's in order to reinforce its economical interest. The development of these technologies is one of the 34 French industrial programs presented in September 2013 by the French Minister of productive recovery. This paper aims at identifying the hydrogen stakes in a carbon-free energy mix and at highlighting the remaining technological challenges to be met before reaching an industrial development level

  17. Towards a new world: The contributions of nuclear energy to a sustainable future

    International Nuclear Information System (INIS)

    Duffey, R. B.; Miller, A. I.; Fehrenbach, P. J.; Kuran, S.; Tregunno, D.; Suppiah, S.

    2007-01-01

    Over the last few years, the world has seen growing concern about the sustainability of the Planet when supplying increasing energy use. The major issues are: increased energy prices in the world markets; growing energy demand in emerging economies; security and stability of oil and gas supply; potentially adverse climate change due to carbon-based emissions; and the need to deploy economic, sustainable and reliable alternates. Large undefined 'wedges' of alternate energy technologies are needed. In light of these major difficulties, there is renewed interest and need for a greater role for nuclear energy as a safe, sustainable and economic energy contributor. The shift has been, from being viewed by some as politically discounted, to being accepted as absolutely globally essential. We have carefully considered, and systematically, extensively and technically analyzed the contributions that nuclear energy can and should make to a globally sustainable energy future. These include restraining emissions, providing safe and secure power, operating synergistically with other sources, and being both socially and fiscally attractive. Therefore, we quantify in this paper the major contributions: a) The reduction in climate change potential and the global impact of future nuclear energy deployment through emissions reduction, using established analysis tools which varying the plausible future penetration and scale of nuclear energy. b) The minimization of economic costs and the maximization of global benefits, including investment requirements, carbon price implications, competitive market penetration, and effect of variable daily pricing. c) The introduction of fuel switching, including base-load nuclear energy synergistically enabling both hydrogen production and the introduction of significant wind power. d) The management and reduction of waste streams, utilizing intelligent designs and fuel cycles that optimize fuel resource use and minimize emissions, waste disposal

  18. Label-Free Carbon-Dots-Based Ratiometric Fluorescence pH Nanoprobes for Intracellular pH Sensing.

    Science.gov (United States)

    Shangguan, Jingfang; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Xu, Fengzhou; Liu, Jinquan; Tang, Jinlu; Yang, Xue; Huang, Jin

    2016-08-02

    Measuring pH in living cells is of great importance for better understanding cellular functions as well as providing pivotal assistance for early diagnosis of diseases. In this work, we report the first use of a novel kind of label-free carbon dots for intracellular ratiometric fluorescence pH sensing. By simple one-pot hydrothermal treatment of citric acid and basic fuchsin, the carbon dots showing dual emission bands at 475 and 545 nm under single-wavelength excitation were synthesized. It is demonstrated that the fluorescence intensities of the as-synthesized carbon dots at the two emissions are pH-sensitive simultaneously. The intensity ratio (I475 nm/I545 nm) is linear against pH values from 5.2 to 8.8 in buffer solution, affording the capability as ratiometric probes for intracellular pH sensing. It also displays that the carbon dots show excellent reversibility and photostability in pH measurements. With this nanoprobe, quantitative fluorescence imaging using the ratio of two emissions (I475 nm/I545 nm) for the detection of intracellular pH were successfully applied in HeLa cells. In contrast to most of the reported nanomaterials-based ratiometric pH sensors which rely on the attachment of additional dyes, these carbon-dots-based ratiometric probes are low in toxicity, easy to synthesize, and free from labels.

  19. Carbon-free Solid Dispersion LiCoO2 Redox Couple Characterization and Electrochemical Evaluation for All Solid Dispersion Redox Flow Batteries

    International Nuclear Information System (INIS)

    Qi, Zhaoxiang; Liu, Aaron L.; Koenig, Gary M.

    2017-01-01

    Highlights: • LiCoO 2 particles can be cycled in carbon-free and binder-free coin cells. • A carbon-free LiCoO 2 suspension is electrochemically oxidized and reduced. • Comparable size LiCoO 2 and Li 4 Ti 5 O 12 suspensions have similar rheological properties. • First demonstration of redox couples with solid suspensions for both electrodes. - Abstract: Semi-solid flow batteries have been reported to have among the highest energy densities for redox flow batteries, however, they rely on percolated carbon networks which increase the electrolyte viscosity significantly. We report the first demonstration of carbon-free redox flow couples comprised of dispersed lithium-ion battery active material suspensions, with sub-micrometer LiCoO 2 (LCO) particles at the cathode and Li 4 Ti 5 O 12 (LTO) particles at the anode. Both electrochemical and rheological properties of the LCO suspensions are reported and compared to previous reports for LTO dispersed electrochemical redox couples. An LTO anode and LCO cathode full cell was constructed and reversible electrochemical redox reaction of the dispersed particles was successfully demonstrated. This carbon-free dispersed lithium-ion active material full cell provides a proof-of-concept for a system that lies between the relatively high viscosity semi-solid flow cells with percolated carbon networks and the relatively low energy density conventional flow cells comprised of dissolved transition metals, providing a system for future study of the trade-off between energy density and viscosity for electrochemical flow cells that rely on solid active materials.

  20. Fabrication and microwave shielding properties of free standing polyaniline-carbon fiber thin sheets

    International Nuclear Information System (INIS)

    Joon, Seema; Kumar, Rakesh; Singh, Avanish Pratap; Shukla, Rajni; Dhawan, S.K.

    2015-01-01

    Attempt has been made to synthesize polyaniline-carbon fiber (PANI-CF) composite via in-situ emulsion polymerization using β-naphthalene sulphonic acid (NSA) which acts as both surfactant as well as dopant. Free standing PANI-CF thin sheets are prepared which have electrical conductivity ∼1.02 S/cm with improved mechanical strength and thermal stability. The scanning electron microscopy is used to study the surface morphology of the composites. Structural characterization is done by using XRD. The dielectric attributes (ε* = ε′ − iε″) of PANI-CF sheets are calculated using experimental S parameters (S 11 , S 12 ) by Nicolson Ross Wier equations. It has been demonstrated that these sheets show maximum shielding effectiveness (SE) of 31.9 dB at 12.4 GHz frequency at a thickness of 1.5 mm. Free standing PANI-CF sheets so prepared have a potential for X-band microwave absorber application. - Highlights: • Free standing polyaniline-carbon fiber thin sheets fabricated for EMI shielding. • The mechanical strength of sheets improves with phenolic resin loading. • The dielectric parameters were calculated by Nicholson Ross Wier equations. • Sheets (1.5 mm thickness) demonstrate SE of 31.9 dB at 12.4 GHz frequency. • Sheets find potential application for X-band microwave absorption

  1. Sustainability: role of thorium

    International Nuclear Information System (INIS)

    Stigson, Bjorn Roland

    2015-01-01

    The task to renew the world's energy infrastructure, where fossil fuels account for 80% of supply, is enormous. The two carbon neutral energy sources - renewable and nuclear - should be the base of the world's future energy mix. Nuclear, however, suffers from a bad public opinion and lack of government support in many parts of the world. We can conclude that the world needs an 'on demand' energy source that is affordable, clean, safe and scalable. Thorium energy could be that energy source. It is the most energy dense solution we know, fitting well to the modular and size-constrained requirements of an urbanizing world. No part of society can create a sustainable world on their own and markets are too slow to drive transformational changes. We need new partnerships between governments, business, civil society and academia where each part is delivering on their specific responsibilities and roles

  2. Sustainable chemical processing and energy-carbon dioxide management: review of challenges and opportunities

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Vooradi, Ramsagar; Bertran, Maria-Ona

    2018-01-01

    This paper presents a brief review of the available energy sources for consumption, their effects in terms of CO2-emission and its management, and sustainable chemical processing where energy-consumption, CO2-emission, as well as economics and environmental impacts are considered. Not all available...... energy sources are being utilized efficiently, while, the energy source causing the largest emission of CO2 is being used in the largest amount. The CO2 management is therefore looking at "curing" the problem rather than "preventing" it. Examples highlighting the synthesis, design and analysis...... of sustainable chemical processing in the utilization of biomass-based energy-chemicals production, carbon-capture and utilization with zero or negative CO2-emission to produce value added chemicals as well as retrofit design of energy intensive chemical processes with significant reduction of energy consumption...

  3. Sustainability of meat production beyond carbon footprint: a synthesis of case studies from grazing systems in Uruguay.

    Science.gov (United States)

    Picasso, Valentín D; Modernel, Pablo D; Becoña, Gonzalo; Salvo, Lucía; Gutiérrez, Lucía; Astigarraga, Laura

    2014-11-01

    Livestock production has been challenged as a large contributor to climate change, and carbon footprint has become a widely used measure of cattle environmental impact. This analysis of fifteen beef grazing systems in Uruguay quantifies the range of variation of carbon footprint, and the trade-offs with other relevant environmental variables, using a partial life cycle assessment (LCA) methodology. Using carbon footprint as the primary environmental indicator has several limitations: different metrics (GWP vs. GTP) may lead to different conclusions, carbon sequestration from soils may drastically affect the results, and systems with lower carbon footprint may have higher energy use, soil erosion, nutrient imbalance, pesticide ecotoxicity, and impact on biodiversity. A multidimensional assessment of sustainability of meat production is therefore needed to inform decision makers. There is great potential to improve grazing livestock systems productivity while reducing carbon footprint and other environmental impacts, and conserving biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Sustainable Living in Finland: Combating Climate Change in Everyday Life

    Directory of Open Access Journals (Sweden)

    Arto O. Salonen

    2018-01-01

    Full Text Available Finland aims to be a carbon-neutral society by the year 2050. We are interested to know on a general level how sustainable living materializes among Finnish people, what is the structure of a sustainable lifestyle in Finland and how do people reason about their everyday behavior choices in the context of sustainability in order to combat climate change. The data (n = 2052 were collected by questionnaire in April 2017. They were corrected by sex, age and residential area to be representative of the population of Finland (18–79 years old. We applied mixed methods. A principal axis factoring was conducted on the 32 variables with orthogonal rotation (varimax. Six factors explained 65.2% of the variance. The respondents were also able to write why they considered the specific variable to be important for them. We classified 2811 reasonings. According to our results, Finns have become conscious of climate change, but carbon reduction has not become mainstream in their everyday life. Circulation and preventing loss of materials show a promising start to a Finn’s sustainable way of living. Recycling has been automated so that it is part of a Finn’s everyday routine and habits. Finns also favor domestic food and products. They are interested in the origin of materials. Essential reasons for that are supporting the local economy and ensuring a good employment rate for the state. Smart, carbon-free mobility is a challenge. Finns seem to estimate that their personal car use is already at the proper level. On the other hand, even one fifth reported consideration of environmental effects when planning holidays.

  5. CarbonSAFE Rocky Mountain Phase I : Seismic Characterization of the Navajo Reservoir, Buzzard Bench, Utah

    Science.gov (United States)

    Haar, K. K.; Balch, R. S.; Lee, S. Y.

    2017-12-01

    The CarbonSAFE Rocky Mountain project team is in the initial phase of investigating the regulatory, financial and technical feasibility of commercial-scale CO2 capture and storage from two coal-fired power plants in the northwest region of the San Rafael Swell, Utah. The reservoir interval is the Jurassic Navajo Sandstone, an eolian dune deposit that at present serves as the salt water disposal reservoir for Ferron Sandstone coal-bed methane production in the Drunkards Wash field and Buzzard Bench area of central Utah. In the study area the Navajo sandstone is approximately 525 feet thick and is at an average depth of about 7000 feet below the surface. If sufficient porosity and permeability exist, reservoir depth and thickness would provide storage for up to 100,000 metric tonnes of CO2 per square mile, based on preliminary estimates. This reservoir has the potential to meet the DOE's requirement of having the ability to store at least 50 million metric tons of CO2 and fulfills the DOE's initiative to develop protocols for commercially sequestering carbon sourced from coal-fired power plants. A successful carbon storage project requires thorough structural and stratigraphic characterization of the reservoir, seal and faults, thereby allowing the creation of a comprehensive geologic model with subsequent simulations to evaluate CO2/brine migration and long-term effects. Target formation lithofacies and subfacies data gathered from outcrop mapping and laboratory analysis of core samples were developed into a geologic model. Synthetic seismic was modeled from this, allowing us to seismically characterize the lithofacies of the target formation. This seismic characterization data was then employed in the interpretation of 2D legacy lines which provided stratigraphic and structural control for more accurate model development of the northwest region of the San Rafael Swell. Developing baseline interpretations such as this are crucial toward long-term carbon storage

  6. Sustained virologic response to interferon-free therapies ameliorates HCV-induced portal hypertension.

    Science.gov (United States)

    Mandorfer, Mattias; Kozbial, Karin; Schwabl, Philipp; Freissmuth, Clarissa; Schwarzer, Rémy; Stern, Rafael; Chromy, David; Stättermayer, Albert Friedrich; Reiberger, Thomas; Beinhardt, Sandra; Sieghart, Wolfgang; Trauner, Michael; Hofer, Harald; Ferlitsch, Arnulf; Ferenci, Peter; Peck-Radosavljevic, Markus

    2016-10-01

    We aimed to investigate the impact of sustained virologic response (SVR) to interferon (IFN)-free therapies on portal hypertension in patients with paired hepatic venous pressure gradient (HVPG) measurements. One hundred and four patients with portal hypertension (HVPG ⩾6mmHg) who underwent HVPG and liver stiffness measurement before IFN-free therapy (baseline [BL]) were retrospectively studied. Among 100 patients who achieved SVR, 60 patients underwent HVPG and transient elastography (TE) after antiviral therapy (follow-up [FU]). SVR to IFN-free therapies significantly decreased HVPG across all BL HVPG strata: 6-9mmHg (BL: 7.37±0.28 vs. FU: 5.11±0.38mmHg; -2.26±0.42mmHg; pportal hypertension across all BL HVPG strata. However, changes in HVPG seemed to be more heterogeneous among patients with BL HVPG of ⩾16mmHg and a HVPG decrease was less likely in patients with more advanced liver dysfunction. TE might be useful for the non-invasive evaluation of portal hypertension after SVR. We investigated the impact of curing hepatitis C using novel interferon-free treatments on portal hypertension, which drives the development of liver-related complications and mortality. Cure of hepatitis C decreased portal pressure, but a decrease was less likely among patients with more pronounced hepatic dysfunction. Transient elastography, which is commonly used for the non-invasive staging of liver disease, might identify patients without clinically significant portal hypertension after successful treatment. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  7. Research Update: Hard carbon with closed pores from pectin-free apple pomace waste for Na-ion batteries

    Science.gov (United States)

    Dou, Xinwei; Geng, Chenxi; Buchholz, Daniel; Passerini, Stefano

    2018-04-01

    Herein, we report a hard carbon derived from industrial bio-waste, i.e., pectin-free apple pomace. The structural, morphological, and electrochemical properties of the hard carbon are reported. The impact of the bio-waste on the closed porosity is discussed, providing valuable insights into the sodium storage mechanism in hard carbons. Most importantly, the hard carbon delivers good electrochemical performance, high specific capacities of 285 mAh g-1, and a very good capacity retention of 96% after 230 cycles at 0.1 C.

  8. Preparation of ultra-fine calcium carbonate by a solvent-free reaction using supersonic airflow and low temperatures

    OpenAIRE

    Cai, Yan-Hua; Ma, Dong-Mei; Peng, Ru-Fang; Chu, Shi-Jin

    2008-01-01

    The treatment of calcium chloride with sodium carbonate under solvent-free conditions with a supersonic airflow and at a low heating temperature leads to the synthesis of ultra-fine calcium carbonate. The reaction not only involves mild conditions, a simple operation, and high yields but also gives a high conversion rate.

  9. Energy and sustainable development. Perspectives from the Paris-based International Energy Agency

    International Nuclear Information System (INIS)

    Priddle, R.

    1999-01-01

    The G-8 leaders issued a statement expressing their commitment 'to encourage the development of energy markets' and declared that 'the greatest environmental threat of our future prosperity remains climate change and we confirm our determination to address it'. One of the options for tackling the greenhouse gas problem is to encourage substitution of carbon free fuels for conventional fossil fuels. This includes renewable energy sources and nuclear power, which has significant advantages to a society troubled by the prospect of climate change triggered by carbon emissions. Fuel supply to civil nuclear power plants is potentially, indefinitely sustainable. Uranium resources are globally widespread and could last 60 years, longer than the known reserves of oil and gas. Technological options are known for increasing the energy extracted from natural uranium. A recent IEA publication 'Nuclear Power Sustainability: Climate Change, Competition' discusses what would be necessary to make both renewable and nuclear energy sources cost-effective

  10. Hydrothermal carbonization as innovative technology in sustainable sanitation in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Ariane [Engineers Without Boarders (Germany), Berlin (DE). Project ' ' Carbonization as Sanitation' ' (CaSa)

    2011-07-01

    The need for sustainable systems is apparent as climate change and other adverse anthropogenic activities continue to negatively affect the soil fertility in Africa. One of the indicators of the loss of soil fertility is the continuous decrease in soil organic matter, which is the major building block of a fertile soil. This is mainly attributed to the inappropriate practice of human-beings of taking more substances from the ecosystem than the amount replaced. As the soil fertility is increasingly lost, food insecurity, due to dropped productivity of the soil, is becoming a critical issue in many areas of Africa, Tanzania is not any different in this respect. On the other hand, most people in rural areas of Africa still lack possibilities to cover their daily energy needs in a more sustainable way and many people mainly rely on firewood. This, in turn, has an adverse impact on the climate and the soil, causing a local viscous circle of poor soil and productivity conditions. Moreover, the sanitation coverage of those areas is very low and there is a need for appropriate sanitation systems. Therefore, the aim of this project is, to conduct research on the possibility of establishing a self-sustaining system for the rural areas of Kagera, Tanzania, to address the three basic issues: sanitation, energy supply and soil fertility. The system consists of a small-scale biogas digester, a urine diverting dehydrating toilet (UDDT) and an adaptive hydrothermal carbonization (HTC) unit. Biogas is produced from crop residues and other domestic organic waste. The fermentation residues and the dehydrated fecal matter from the UDDT is then treated with HTC. The carbonised and sanitized residue is then applied as soil amendment to improve the soil fertility as manifested by the Terra Preta in the Amazon. This holistic approach is a new development in ecological sanitation. Therefore, a comprehensive sustainability assessment including environmental, economic and socio

  11. Free energies of formation of WC and WzC and the thermodynamic properties of carbon in solid tungsten

    Science.gov (United States)

    Gupta, D. K.; Seigle, L. L.

    1974-01-01

    The activity of carbon in the two-phase regions - W + WC and W + W2C was obtained from the carbon content of iron rods equilibrated with mixtures of metal plus carbide powders. From this activity data the standard free energies of formation of WC and W2C were calculated. The temperature of the invariant reaction W2C = W + WC was fixed at 1570 + or - 5K. Using available solubility data for C in solid W, the partial molar free energy of C in the dilute solid solution was also calculated. The heat of solution of C in W, and the excess entropy for the interstitial solid solution, were computed, assuming that the carbon atoms reside in the octahedral interstices of bcc W.

  12. A Diazonium Salt-Based Ionic Liquid for Solvent-FreeModification of Carbon.

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu [ORNL; Huang, Jing-Fang [ORNL; Li, Zuojiang [ORNL; Luo, Huimin [ORNL; Dai, Sheng [ORNL

    2006-01-01

    A novel ionic liquid that consists of p-butylbenzenediazonium ions and bis(trifluoromethanesulfonyl)amidates (Tf{sub 2}N{sup -}) has been synthesized as a task-specific ionic liquid for the solvent-free modification of carbon materials. The use of anions Tf{sub 2}N{sup =} is the key to rendering the hydrophobicity, low liquidus temperature, and ionicity to this novel molten salt. This diazonium salt has a melting point of 7.2 C and a moderate electric conductivity of 527 {micro} s/cm at 25 C. The thermal stability of this diazonium ionic liquid has been investigated by high-resolution thermogravimetric analysis (HRTGA). The compound is stable up to about 90 C in nitrogen, which is only 10 C less than its solid tetrafluoroborate counterpart. The modification of carbon materials has been carried out through both thermal and electrochemical activations of diazonium ions to generate free radical intermediates without the use of any solvent. The surface-coverage loadings of 3.38 {micro} mol/m{sup 2} and 6.07 {micro} mol/m{sup 2} for covalently attached organic functionalities have been achieved by the thermally induced functionalization and electrochemically assisted reaction, respectively.

  13. Carbon nanostructure-based field-effect transistors for label-free chemical/biological sensors.

    Science.gov (United States)

    Hu, PingAn; Zhang, Jia; Li, Le; Wang, Zhenlong; O'Neill, William; Estrela, Pedro

    2010-01-01

    Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structure, excellent electrical properties and high chemical stability, carbon nanotube and graphene based electrical devices have been widely developed for high performance label-free chemical/biological sensors. Here, we review the latest developments of carbon nanostructure-based transistor sensors in ultrasensitive detection of chemical/biological entities, such as poisonous gases, nucleic acids, proteins and cells.

  14. Ethylene carbonate-free fluoroethylene carbonate-based electrolyte works better for freestanding Si-based composite paper anodes for Li-ion batteries

    Science.gov (United States)

    Yao, K.; Zheng, J. P.; Liang, R.

    2018-03-01

    Fluoroethylene carbonate (FEC)-based electrolytes using FEC as the co-solvent (50 wt%) are investigated and compared with the electrolyte using FEC as the additive (10 wt%) for freestanding Si-carbon nanotubes (CNTs) composite paper anodes for Li-ion batteries. The ethylene carbonate (EC)-free FEC-based electrolyte is found to achieve higher specific capacity and better capacity retention in terms of long-term cycling. After 500 cycles, the capacity retention of the cell using diethyl carbonate (DEC)-FEC (1:1 w/w) is increased by 88% and 60% compared to the cells using EC-DEC-FEC (45:45:10 w/w/w) and EC-FEC (1:1 w/w), respectively. Through SEM-EDX and XPS analyses, a possible reaction route of formation of fluorinated semicarbonates and polyolefins from FEC is proposed. The inferior cell performance related to the EC-containing electrolytes is likely due to the formation of more polyolefins, which do not favor Li ion migration.

  15. Rational Design of Si@SiO2/C Composites Using Sustainable Cellulose as a Carbon Resource for Anodes in Lithium-Ion Batteries.

    Science.gov (United States)

    Shen, Dazhi; Huang, Chaofan; Gan, Lihui; Liu, Jian; Gong, Zhengliang; Long, Minnan

    2018-03-07

    In this work, we propose a novel and facile route for the rational design of Si@SiO 2 /C anode materials by using sustainable and environment-friendly cellulose as a carbon resource. To simultaneously obtain a SiO 2 layer and a carbon scaffold, a specially designed homogeneous cellulose solution and commercial Si nanopowder are used as the starting materials, and the cellulose/Si composite is directly assembled by an in situ regenerating method. Subsequently, Si@SiO 2 /C composite is obtained after carbonization. As expected, Si@SiO 2 is homogeneously encapsulated in the cellulose-derived carbon network. The obtained Si@SiO 2 /C composite shows a high reversible capacity of 1071 mA h g -1 at a current density of 420 mA g -1 and 70% capacity retention after 200 cycles. This novel, sustainable, and effective design is a promising approach to obtain high-performance and cost-effective composite anodes for practical applications.

  16. High performance supercapacitor using catalysis free porous carbon nanoparticles

    International Nuclear Information System (INIS)

    Ali, Gomaa A M; Manaf, Shoriya Aruni Bt Abdul; Chong, Kwok Feng; Hegde, Gurumurthy; Kumar, Anuj

    2014-01-01

    Very high supercapacitance values are obtained using catalyst free porous carbon nanoparticles (PCNs). The obtained PCNs have a porous structure with fine particles 35 nm in size. The specific capacitance of PCNs is 343 F g −1 and 309 F g −1 at 5 mV s −1 and 0.06 A g −1 , respectively. PCNs shows a high cyclic stability of about 90% and high columbic efficiency of 95% over 2500 cycles at 1 A g −1 . Impedance spectra show low resistance of PCNs, supporting their suitability for supercapacitor electrode application. (paper)

  17. Using Tourism Free-Choice Learning Experiences to Promote Environmentally Sustainable Behaviour: The Role of Post-Visit "Action Resources"

    Science.gov (United States)

    Ballantyne, Roy; Packer, Jan

    2011-01-01

    This paper argues the need for the providers of ecotourism and other free-choice environmental learning experiences to promote the adoption of environmentally sustainable actions beyond their own sites, when visitors return to their home environments. Previous research indicates that although visitors often leave such experiences with a heightened…

  18. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes

    KAUST Repository

    Huang, Ming

    2014-12-01

    Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode. © 2014 Elsevier B.V. All rights reserved.

  19. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes

    KAUST Repository

    Huang, Ming; Mi, Rui; Liu, Hao; Li, Fei; Zhao, Xiao Li; Zhang, Wei; He, Shi Xuan; Zhang, Yu Xin

    2014-01-01

    Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode. © 2014 Elsevier B.V. All rights reserved.

  20. Avoiding, transforming, transitioning: pathways to sustainable low carbon passenger transport in developing countries

    DEFF Research Database (Denmark)

    Meza, Maria Josefina Figueroa; Fulton, Lewis; Tiwari, Geetam

    2013-01-01

    This review examines conditions affecting road passenger transport in developing countries that can be instrumental to building a pathway for reducing carbon emissions while concurrently meeting sustainable development goals. By contrasting present and future status of these conditions a vision...... in motorized travel are also necessary from OECD countries; the focus there is given to what level of pricing and regulatory interventions could change behavior. The articulation of detailed visions can help clarify and prioritize areas where policy efforts can have great impact. Strong actions are necessary...

  1. Klein tunneling in carbon nanostructures: A free-particle dynamics in disguise

    International Nuclear Information System (INIS)

    Jakubsky, Vit; Nieto, Luis-Miguel; Plyushchay, Mikhail S.

    2011-01-01

    The absence of backscattering in metallic nanotubes as well as perfect Klein tunneling in potential barriers in graphene are the prominent electronic characteristics of carbon nanostructures. We show that the phenomena can be explained by a peculiar supersymmetry generated by a first order Hamiltonian and zero-order supercharge operators. Like the supersymmetry associated with second order reflectionless finite-gap systems, it relates here the low-energy behavior of the charge carriers with the free-particle dynamics.

  2. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    International Nuclear Information System (INIS)

    Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan

    2013-01-01

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N 2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiO x films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV–vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of -NH 2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  3. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    Science.gov (United States)

    Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan

    2013-10-01

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiOx films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV-vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of sbnd NH2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  4. Advancing sustainable safety : National Road Safety Outlook for 2005-2020.

    NARCIS (Netherlands)

    Wegman, F.C.M. & Aarts, L.T. (eds.)

    2006-01-01

    Advancing Sustainable Safety: National Road Safety Outlook for 2005-2020 is the follow-up to Naar een duurzaam veilig wegverkeer [Towards sustainably safe road traffic] (Koornstra et al., 1992). Advancing Sustainable Safety is a critique of Sustainable Safety. In this advanced version, adaptations

  5. Sustainable operations management: A typological approach

    Directory of Open Access Journals (Sweden)

    Lawrence Michael Corbett

    2009-07-01

    Full Text Available This paper discusses the nature of sustainability and sustainable development as they relate to operations management. It proposes a typology for sustainable operations management that is based on the life cycle stages of a product and the three dimensions of corporate social responsibility. The aim is to show how this typology development could provide a useful approach to integrating the diverse strands of sustainability in operations, using industrial ecology and carbon neutrality as examples. It does this by providing a focused subset of environmental concerns for an industrial ecology approach, and some research propositions for the issue of carbon neutrality.

  6. Energy sustainable cities. From eco villages, eco districts towards zero carbon cities

    Science.gov (United States)

    Zaręba, Anna; Krzemińska, Alicja; Łach, Janusz

    2017-11-01

    Minimizing energy consumption is the effect of sustainable design technics as among many others: designing buildings with solar access and natural ventilation, using climate responsive design materials and effective insulation. Contemporary examples of zero-carbon cities: Masdar City, United Arab Emirates and Dongtan, China, confirm technical feasibility of renewable energy by implementation of solar PV and wind technologies. The ecological city - medium or high density urban settlement separated by greenspace causes the smallest possible ecological footprint on the surrounding countryside through efficient use of land and its resources, recycling used materials and converting waste to energy. This paper investigates the concept of energy sustainable cities, examines, how urban settlements might affect building energy design in eco-villages, eco-districts (e.g. Vauban, Freiburg in Germany, Bo01 Malmo in Sweden), and discuss the strategies for achieving Zero Emission Cities principles in densely populated areas. It is focused on low energy architectural design solutions which could be incorporated into urban settlements to create ecological villages, districts and cities, designed with consideration of environmental impact, required minimal inputs of energy, water, food, waste and pollution.

  7. Safe patient care - safety culture and risk management in otorhinolaryngology.

    Science.gov (United States)

    St Pierre, Michael

    2013-12-13

    Safety culture is positioned at the heart of an organization's vulnerability to error because of its role in framing organizational awareness to risk and in providing and sustaining effective strategies of risk management. Safety related attitudes of leadership and management play a crucial role in the development of a mature safety culture ("top-down process"). A type marker for organizational culture and thus a predictor for an organization's maturity in respect to safety is information flow and in particular an organization's general way of coping with information that suggests anomaly. As all values and beliefs, relationships, learning, and other aspects of organizational safety culture are about sharing and processing information, safety culture has been termed "informed culture". An informed culture is free of blame and open for information provided by incidents. "Incident reporting systems" are the backbone of a reporting culture, where good information flow is likely to support and encourage other kinds of cooperative behavior, such as problem solving, innovation, and inter-departmental bridging. Another facet of an informed culture is the free flow of information during perioperative patient care. The World Health Organization's safe surgery checklist" is the most prevalent example of a standardized information exchange aimed at preventing patient harm due to information deficit. In routine tasks mandatory standard operating procedures have gained widespread acceptance in guaranteeing the highest possible process quality. Technical and non-technical skills of healthcare professionals are the decisive human resource for an efficient and safe delivery of patient care and the avoidance of errors. The systematic enhancement of staff qualification by providing training opportunities can be a major investment in patient safety. In recent years several otorhinolaryngology departments have started to incorporate stimulation based team trainings into their

  8. [Safe patient care: safety culture and risk management in otorhinolaryngology].

    Science.gov (United States)

    St Pierre, M

    2013-04-01

    Safety culture is positioned at the heart of an organisation's vulnerability to error because of its role in framing organizational awareness to risk and in providing and sustaining effective strategies of risk management. Safety related attitudes of leadership and management play a crucial role in the development of a mature safety culture ("top-down process"). A type marker for organizational culture and thus a predictor for an organizations maturity in respect to safety is information flow and in particular an organization's general way of coping with information that suggests anomaly. As all values and beliefs, relationships, learning, and other aspects of organizational safety culture are about sharing and processing information, safety culture has been termed "informed culture". An informed culture is free of blame and open for information provided by incidents. "Incident reporting systems" are the backbone of a reporting culture, where good information flow is likely to support and encourage other kinds of cooperative behavior, such as problem solving, innovation, and inter-departmental bridging. Another facet of an informed culture is the free flow of information during perioperative patient care. The World Health Organisation's "safe surgery checklist" is the most prevalent example of a standardized information exchange aimed at preventing patient harm due to information deficit. In routine tasks mandatory standard operating procedures have gained widespread acceptance in guaranteeing the highest possible process quality.Technical and non-technical skills of healthcare professionals are the decisive human resource for an efficient and safe delivery of patient care and the avoidance of errors. The systematic enhancement of staff qualification by providing training opportunities can be a major investment in patient safety. In recent years several otorhinolaryngology departments have started to incorporate simulation based team trainings into their curriculum

  9. Modified free volume theory of self-diffusion and molecular theory of shear viscosity of liquid carbon dioxide.

    Science.gov (United States)

    Nasrabad, Afshin Eskandari; Laghaei, Rozita; Eu, Byung Chan

    2005-04-28

    In previous work on the density fluctuation theory of transport coefficients of liquids, it was necessary to use empirical self-diffusion coefficients to calculate the transport coefficients (e.g., shear viscosity of carbon dioxide). In this work, the necessity of empirical input of the self-diffusion coefficients in the calculation of shear viscosity is removed, and the theory is thus made a self-contained molecular theory of transport coefficients of liquids, albeit it contains an empirical parameter in the subcritical regime. The required self-diffusion coefficients of liquid carbon dioxide are calculated by using the modified free volume theory for which the generic van der Waals equation of state and Monte Carlo simulations are combined to accurately compute the mean free volume by means of statistical mechanics. They have been computed as a function of density along four different isotherms and isobars. A Lennard-Jones site-site interaction potential was used to model the molecular carbon dioxide interaction. The density and temperature dependence of the theoretical self-diffusion coefficients are shown to be in excellent agreement with experimental data when the minimum critical free volume is identified with the molecular volume. The self-diffusion coefficients thus computed are then used to compute the density and temperature dependence of the shear viscosity of liquid carbon dioxide by employing the density fluctuation theory formula for shear viscosity as reported in an earlier paper (J. Chem. Phys. 2000, 112, 7118). The theoretical shear viscosity is shown to be robust and yields excellent density and temperature dependence for carbon dioxide. The pair correlation function appearing in the theory has been computed by Monte Carlo simulations.

  10. Heteroatom-Doped Carbon Materials for Electrocatalysis.

    Science.gov (United States)

    Asefa, Tewodros; Huang, Xiaoxi

    2017-08-10

    Fuel cells, water electrolyzers, and metal-air batteries are important energy systems that have started to play some roles in our renewable energy landscapes. However, despite much research works carried out on them, they have not yet found large-scale applications, mainly due to the unavailability of sustainable catalysts that can catalyze the reactions employed in them. Currently, noble metal-based materials are the ones that are commonly used as catalysts in most commercial fuel cells, electrolyzers, and metal-air batteries. Hence, there has been considerable research efforts worldwide to find alternative noble metal-free and metal-free catalysts composed of inexpensive, earth-abundant elements for use in the catalytic reactions employed in these energy systems. In this concept paper, a brief introduction on catalysis in renewable energy systems, followed by the recent efforts to develop sustainable, heteroatom-doped carbon and non-noble metal-based electrocatalysts, the challenges to unravel their structure-catalytic activity relationships, and the authors' perspectives on these topics and materials, are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst

    Science.gov (United States)

    Gogoi, Satyabrat; Karak, Niranjan

    2017-10-01

    Safe, sustainable, and green production of hydrogen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV, which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium. The overall process was performed in accordance with the principles of green chemistry using bio-based precursors and aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst.

  12. On the Travel Emissions of Sustainability Science Research

    Directory of Open Access Journals (Sweden)

    Timothy Waring

    2014-05-01

    Full Text Available This paper presents data on carbon emissions generated by travel undertaken for a major sustainability science research effort. Previous research has estimated CO2 emissions generated by individual scientists, by entire academic institutions, or by international climate conferences. Here, we sought to investigate the size, distribution and factors affecting the carbon emissions of travel for sustainability research in particular. Reported airline and automobile travel of participants in Maine’s Sustainability Solutions Initiative were used to calculate the carbon dioxide emissions attributable to research-related travel over a three-year period. Carbon emissions varied substantially by researcher and by purpose of travel. Travel for the purpose of dissemination created the largest carbon footprint. This result suggests that alternative networking and dissemination models are needed to replace the high carbon costs of annual society meetings. This research adds to literature that questions whether the cultural demands of contemporary academic careers are compatible with climate stabilization. We argue that precise record keeping and routine analysis of travel data are necessary to track and reduce the climate impacts of sustainability research. We summarize the barriers to behavioral change at individual and organizational levels and conclude with suggestions for reducing climate impacts of travel undertaken for sustainability research.

  13. The Formation of Carbide-Free Bainite in High-Carbon High-Silicon Steel under Isothermal Conditions

    Science.gov (United States)

    Tereshchenko, N. A.; Yakovleva, I. L.; Mirzaev, D. A.; Buldashev, I. V.

    2017-12-01

    It is shown that a carbide-free bainite structure can be formed in high-carbon steel of the Fe-Si-Mn-Cr-V system using a traditional furnace facility. The structural aspects of bainitic transformation developing under isothermal conditions at 300°C have been studied by the methods of X-ray diffraction and transmission electron microscopy. Orientation relationships between crystalline lattices of γ and α phases have been established. A superequilibrium carbon concentration in the bainite α phase has been determined.

  14. System Innovation for Sustainability

    DEFF Research Database (Denmark)

    System Innovation for Sustainability 2 focuses on change towards sustainable personal mobility based on implemented cases analysed from a system perspective. It examines what changes can be made to help us reduce our need for mobility, or start to make use of more sustainable mobility systems...... in order to provide sustainable solutions to our current ‘lock-in’ problems. Three major problem areas are considered (the ‘three Cs’): carbon emissions (and the growing contribution of mobility to the climate change crisis), congestion, and casualties. And each strategy proposed addresses one or more...... of these problem areas. Among the cases discussed are: Norway’s carbon compensation scheme for air travel; Madrid’s high-occupancy vehicle lanes; London’s congestion charge scheme; market-based instruments such as eco-labelling for cars; and taxation. The book identifies opportunities for actors...

  15. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration

    Science.gov (United States)

    Kell, Douglas B.

    2011-01-01

    Background The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from ‘root crops’) mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth. Scope Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO2. This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing. PMID:21813565

  16. THE CONSEQUENCES OF GLOBALIZATION UPON SAFE TOURISM

    Directory of Open Access Journals (Sweden)

    Svetlana Mihić

    2009-11-01

    Full Text Available Globalization, a phenomenon on the rise, is characterized by the free cross-bor- der movement of individuals, technologies, and capital. It has far- reaching consequen- ces for tourism, too, as it implies travel for leisure and business, and correspondingly, financial transfers between various nation states. Startinf from the status quo in the field, the current paper sets out to analyze the consequences and implications of globalization upon safe tourism and conduct a marketing research into the perceptions of consumers upon Serbia as a safe vacation destination for the purpose of safe tourism. Finally the research results will be presented and several solutions will be provided for improving security in tourism zones

  17. Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock

    International Nuclear Information System (INIS)

    Streit, J.E.; Hillis, R.R.

    2004-01-01

    Geomechanical modelling of fault stability is an integral part of Australia's GEODISC research program to ensure the safe storage of carbon dioxide in subsurface reservoirs. Storage of CO 2 in deep saline formations or depleted hydrocarbon reservoirs requires estimates of sustainable fluid pressures that will not induce fracturing or create fault permeability that could lead to CO 2 escape. Analyses of fault stability require the determination of fault orientations, ambient pore fluid pressures and in situ stresses in a potential storage site. The calculation of effective stresses that act on faults and reservoir rocks lead then to estimates of fault slip tendency and fluid pressures sustainable during CO 2 storage. These parameters can be visualized on 3D images of fault surfaces or in 2D projections. Faults that are unfavourably oriented for reactivation can be identified from failure plots. In depleted oil and gas fields, modelling of fault and rock stability needs to incorporate changes of the pre-production stresses that were induced by hydrocarbon production and associated pore pressure depletion. Such induced stress changes influence the maximum sustainable formation pressures and CO 2 storage volumes. Hence, determination of in situ stresses and modelling of fault stability are essential prerequisites for the safe engineering of subsurface CO 2 injection and the modelling of storage capacity. (author)

  18. InaSAFE applications in disaster preparedness

    Science.gov (United States)

    Pranantyo, Ignatius Ryan; Fadmastuti, Mahardika; Chandra, Fredy

    2015-04-01

    Disaster preparedness activities aim to reduce the impact of disasters by being better prepared to respond when a disaster occurs. In order to better anticipate requirements during a disaster, contingency planning activities can be undertaken prior to a disaster based on a realistic disaster scenario. InaSAFE is a tool that can inform this process. InaSAFE is a free and open source software that estimates the impact to people and infrastructure from potential hazard scenarios. By using InaSAFE, disaster managers can develop scenarios of disaster impacts (people and infrastructures affected) to inform their contingency plan and emergency response operation plan. While InaSAFE provides the software framework exposure data and hazard data are needed as inputs to run this software. Then InaSAFE can be used to forecast the impact of the hazard scenario to the exposure data. InaSAFE outputs include estimates of the number of people, buildings and roads are affected, list of minimum needs (rice and clean water), and response checklist. InaSAFE is developed by Indonesia's National Disaster Management Agency (BNPB) and the Australian Government, through the Australia-Indonesia Facility for Disaster Reduction (AIFDR), in partnership with the World Bank - Global Facility for Disaster Reduction and Recovery (GFDRR). This software has been used in many parts of Indonesia, including Padang, Maumere, Jakarta, and Slamet Mountain for emergency response and contingency planning.

  19. Analysing power for quasi-elastic pp scattering in carbon and for elastic pp scattering on free protons

    International Nuclear Information System (INIS)

    Bystricky, J.; Deregel, J.; Lehar, F.

    1984-01-01

    The ratio of the analysing powers for quasi-elastic pp scattering in carbon and for elastic scattering on free protons was measured from T = 0.52 to 2.8 GeV by scattering of the SATURNE II polarized proton beam on carbon and CH 2 . It was found to have a maximum at about 0.8 GeV. The energy dependence for quasi-elastic scattering on carbon had not been measured before above 1 GeV. The observed effect was not expected from simple models

  20. Carbon-Based Nanomaterials in Biomass-Based Fuel-Fed Fuel Cells

    Directory of Open Access Journals (Sweden)

    Le Quynh Hoa

    2017-11-01

    Full Text Available Environmental and sustainable economical concerns are generating a growing interest in biofuels predominantly produced from biomass. It would be ideal if an energy conversion device could directly extract energy from a sustainable energy resource such as biomass. Unfortunately, up to now, such a direct conversion device produces insufficient power to meet the demand of practical applications. To realize the future of biofuel-fed fuel cells as a green energy conversion device, efforts have been devoted to the development of carbon-based nanomaterials with tunable electronic and surface characteristics to act as efficient metal-free electrocatalysts and/or as supporting matrix for metal-based electrocatalysts. We present here a mini review on the recent advances in carbon-based catalysts for each type of biofuel-fed/biofuel cells that directly/indirectly extract energy from biomass resources, and discuss the challenges and perspectives in this developing field.

  1. WO3 nanorods-modified carbon electrode for sustained electron uptake from Shewanella oneidensis MR-1 with suppressed biofilm formation

    International Nuclear Information System (INIS)

    Zhang, Feng; Yuan, Shi-Jie; Li, Wen-Wei; Chen, Jie-Jie; Ko, Chi-Chiu; Yu, Han-Qing

    2015-01-01

    Highlights: • WO 3 nanorods-modified carbon paper was used as the anode of MFC. • WO 3 nanorods suppressed biofilm growth on the electrode surface. • Sustained electron transfer from cells to electrode via riboflavin was achieved. • C–WO 3 nanorods enable stable and efficient EET process in long-time operation. - Abstract: Carbon materials are widely used as electrodes for bioelectrochemical systems (BES). However, a thick biofilm tends to grow on the electrode surface during continuous operation, resulting in constrained transport of electrons and nutrients at the cell-electrode interface. In this work, we tackled this problem by adopting a WO 3 -nanorods modified carbon electrode (C–WO 3 nanorods), which completely suppressed the biofilm growth of Shewanella Oneidensis MR-1. Moreover, the C–WO 3 nanorods exhibited high electric conductivity and strong response to riboflavin. These two factors together make it possible for the C–WO 3 nanorods to maintain a sustained, efficient process of electron transfer from the MR-1 planktonic cells. As a consequence, the microbial fuel cells with C–WO 3 nanorods anode showed more stable performance than the pure carbon paper and WO 3 -nanoparticles systems in prolonged operation. This work suggests that WO 3 nanorods have the potential to be used as a robust and biofouling-resistant electrode material for practical bioelectrochemical applications

  2. A carbon nanotube based resettable sensor for measuring free chlorine in drinking water

    International Nuclear Information System (INIS)

    Hsu, Leo H. H.; Hoque, Enamul; Kruse, Peter; Ravi Selvaganapathy, P.

    2015-01-01

    Free chlorine from dissolved chlorine gas is widely used as a disinfectant for drinking water. The residual chlorine concentration has to be continuously monitored and accurately controlled in a certain range around 0.5–2 mg/l to ensure drinking water safety and quality. However, simple, reliable, and reagent free monitoring devices are currently not available. Here, we present a free chlorine sensor that uses oxidation of a phenyl-capped aniline tetramer (PCAT) to dope single wall carbon nanotubes (SWCNTs) and to change their resistance. The oxidation of PCAT by chlorine switches the PCAT-SWCNT system into a low resistance (p-doped) state which can be detected by probing it with a small voltage. The change in resistance is found to be proportional to the log-scale concentration of the free chlorine in the sample. The p-doping of the PCAT-SWCNT film then can be electrochemically reversed by polarizing it cathodically. This sensor not only shows good sensing response in the whole concentration range of free chlorine in drinking water but is also able to be electrochemically reset back many times without the use of any reagents. This simple sensor is ideally suited for measuring free chlorine in drinking water continuously

  3. Calculation of the Carbon Footprint to Determine Sustainability Status: A Comparative Analysis of Some Selected Planned and Unplanned Areas of Dhaka Megacity

    Science.gov (United States)

    Iqbal, S. M. S.

    2015-12-01

    Resource scarcity is considered to be one of the most serious issues plaguing Dhaka city. Because of the massive pressure of increasing population (15.931 million), a very unsustainable situation is waiting for this city in the upcoming future. It is inevitable to know how far this city is from being sustainable. This paper embodies the comparative analysis of the carbon footprint of four different areas in Dhaka city. It is considered as one of the most important key indicators of sustainability. It calculates the amount of biologically productive land in order to produce all the resources consumed by an individual or a particular community. This research has been conducted in both the planned and unplanned areas of this city. Among compound, component and direct method, component method was used to calculate the carbon footprint. Primary data were collected from door to door questionnaire survey. Total 371 samples were drawn from all the study areas at 95 % confidence level and 5% confidence interval. After finishing data analysis it was clear that the per capita carbon footprint of the selected study areas exceeds the per capita biocapacity of Dhaka city. And there exists a huge variation between the planned and unplanned areas of Old Dhaka and New Dhaka. Per capita carbon footprint of Gulshan & Jhigatola (part of New Dhaka) is higher than the per capita carbon footprint of Gandaria & Wari (part of Old Dhaka) that means resource stress is higher in Gulshan & Jhigatola in comparison with Gandaria & Wari because of the difference of daily consumption pattern. One of the most important findings of this study is that the per capita carbon footprint is the highest in Gulshan (1.2407 gha) among all the study areas and it is 85.56 times greater than the per capita biocapacity of Dhaka city (0.0145 gha) that means a single resident of this area needs 1.2407 gha land in order to support his/her demand on nature but only 0.0145 gha land (in an average) is available for

  4. An econometric investigation of impacts of sustainable land management practices on soil carbon and yield risk: A potential for climate change mitigation

    OpenAIRE

    Kato, Edward; Nkonya, Ephraim; Place, Frank; Mwanjalolo, Majaliwa

    2010-01-01

    We investigate the impacts of sustainable land management practices on soil carbon stocks and also impacts of soil carbon on the mean and variance of crop production using econometric tools. Using a cross-sectional plot-level dataset collected from three agroecological zones of Uganda with soil carbon measured at a depth of 0 to 15 centimeters, our results have robustly shown that irrigation, fertilizers, improved fallow, crop residues, mulching, and trash lines are positively and significant...

  5. Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode.

    Science.gov (United States)

    Zhang, Fuguo; Yang, Xichuan; Wang, Haoxin; Cheng, Ming; Zhao, Jianghua; Sun, Licheng

    2014-09-24

    Low-temperature-processed (100 °C) carbon paste was developed as counter electrode material in hole-conductor free perovskite/TiO2 heterojunction solar cells to substitute noble metallic materials. Under optimized conditions, an impressive PCE value of 8.31% has been achieved with this carbon counter electrode fabricated by doctor-blading technique. Electrochemical impedance spectroscopy demonstrates good charge transport characteristics of low-temperature-processed carbon counter electrode. Moreover, this carbon counter electrode-based perovskite solar cell exhibits good stability over 800 h.

  6. Effects of Inulin and Sodium Carbonate in Phosphate-Free Restructured Poultry Steaks

    Science.gov (United States)

    Öztürk, B.; Serdaroğlu, M.

    2017-09-01

    Recently inorganic phosphates used in meat product formulations have caused negative impact on consumers due to their potential health risks. Therefore, utilization of natural ingredients as phosphate replacers has come into prominence as a novel research topic to meet consumer demands for clean-label trends. In this study, we objected to investigate the effects of inulin utilization either in the powder or gelled form, alone or in combination with sodium carbonate on quality of phosphate-free restructured chicken steaks. Total moisture, protein, lipid and ash values of the trial groups were in the range of 71.54-75.46%, 22.60-24.31%, 0.94-1.70% and 1.45-2.13%, respectively. pH of the samples was between 6.18-6.39, significant increments were recorded in samples containing inulin with sodium carbonate. L*, a* and b* values were recorded as 78.92-81.05, 1.76-3.05 and 10.80-11.94, respectively, where use of gelled inulin resulted in changes of L* and a* values. Utilization of inulin in combination with sodium carbonate decreased cook loss and enhanced product yield. Sensory scores in control group with phosphate showed a similar pattern to sensory scores in groups with inulin and sodium carbonate. During storage, purge loss and lipid oxidation rate were similar in control and inulin + sodium carbonate samples. The results showed that use of inulin in combination with sodium carbonate provided equivalent physical, chemical and sensory quality to phosphates in restructured chicken steaks.

  7. Sustainable Low-Carbon Expansion for the Power Sector of an Emerging Economy: The Case of Kenya.

    Science.gov (United States)

    Carvallo, Juan-Pablo; Shaw, Brittany J; Avila, Nkiruka I; Kammen, Daniel M

    2017-09-05

    Fast growing and emerging economies face the dual challenge of sustainably expanding and improving their energy supply and reliability while at the same time reducing poverty. Critical to such transformation is to provide affordable and sustainable access to electricity. We use the capacity expansion model SWITCH to explore low carbon development pathways for the Kenyan power sector under a set of plausible scenarios for fast growing economies that include uncertainty in load projections, capital costs, operational performance, and technology and environmental policies. In addition to an aggressive and needed expansion of overall supply, the Kenyan power system presents a unique transition from one basal renewable resource-hydropower-to another based on geothermal and wind power for ∼90% of total capacity. We find geothermal resource adoption is more sensitive to operational degradation than high capital costs, which suggests an emphasis on ongoing maintenance subsidies rather than upfront capital cost subsidies. We also find that a cost-effective and viable suite of solutions includes availability of storage, diesel engines, and transmission expansion to provide flexibility to enable up to 50% of wind power penetration. In an already low-carbon system, typical externality pricing for CO 2 has little to no effect on technology choice. Consequently, a "zero carbon emissions" by 2030 scenario is possible with only moderate levelized cost increases of between $3 and $7/MWh with a number of social and reliability benefits. Our results suggest that fast growing and emerging economies could benefit by incentivizing anticipated strategic transmission expansion. Existing and new diesel and natural gas capacity can play an important role to provide flexibility and meet peak demand in specific hours without a significant increase in carbon emissions, although more research is required for other pollutant's impacts.

  8. The new EC FP7 MatISSE project: materials' innovations for a safe and sustainable nuclear in Europe

    International Nuclear Information System (INIS)

    Cabet, C.; Michaux, A.; Fazio, C.; Malerba, L.; Maday, M.F.; Serrano, M.; Nilsson, K.F.; )

    2015-01-01

    The European Energy Research Alliance (EERA), set-up under the European SET-Plan, has launched an initiative for a Joint Programme on Nuclear Materials (JPNM). The JNMP aims to establish key priorities in the area of advanced nuclear materials, identify funding opportunities and harmonise this scientific and technical domain at the European level by maximising complementarities and synergies with the major actors of the field. The JPNM partners submitted the MatISSE proposal which was accepted by the European Commission. The MatISSE project has the ambition to prepare the building of a European integrated research programme on materials innovation for a safe and sustainable nuclear. Emphasis is on advanced nuclear systems in particular sodium-cooled fast reactor (SFR), lead-cooled fast reactor (LFR) and gas-cooled fast reactor (GFR). The aim of the selected scientific and technical work is to make progress in the fields of conventional materials, advanced materials and predictive capabilities for fuel elements and structural components. (authors)

  9. Organising a safe space for navigating social-ecological transformations to sustainability

    NARCIS (Netherlands)

    L. Pereira (Laura); T. Karpouzoglou (Timothy); S. Doshi (Samir); N. Frantzeskaki (Niki)

    2015-01-01

    textabstractThe need for developing socially just living conditions for the world’s growing population whilst keeping human societies within a ‘safe operating space’ has become a modern imperative. This requires transformative changes in the dominant social norms, behaviours, governance and

  10. Organising a safe space for navigating social-ecological transformations to sustainability

    NARCIS (Netherlands)

    Pereira, L.; Karpouzoglou, T.D.; Doshi, S.; Frantzeskaki, N.

    2015-01-01

    The need for developing socially just living conditions for the world’s growing population whilst keeping human societies within a ‘safe operating space’ has become a modern imperative. This requires transformative changes in the dominant social norms, behaviours, governance and management regimes

  11. USING THE SAFE SYSTEM APPROACH TO KEEP OLDER DRIVERS SAFELY MOBILE

    Directory of Open Access Journals (Sweden)

    Jim LANGFORD

    2006-01-01

    Full Text Available In 2003, Australian road transport jurisdictions collectively accepted that the greatest road safety gains would be achieved through adopting a Safe System approach, derived from Sweden's Vision Zero and the Netherlands' Sustainable Safety strategies. A key objective of all three approaches is to manage vehicles, the road infrastructure, speeds, road users and the interactions between these components, to ensure that in the event of crashes, crash energies will remain at levels that minimize the probability of death and serious injury. Older drivers pose a particular challenge to the Safe System approach, given particularly their greater physical frailty, their driving patterns and for some at least, their reduced fitness to drive. This paper has analyzed the so-called ‘older driver problem’ and identified a number of key factors underpinning their crash levels, for which countermeasures can be identified and implemented within a Safe System framework. The recommended countermeasures consist of: (1 safer roads, through a series of design improvements particularly governing urban intersections; (2 safer vehicles, through both the promotion of crashworthiness as a critical consideration when purchasing a vehicle and the wide use of developed and developing ITS technologies; (3 safer speeds especially at intersections; and (4 safer road users, through both improved assessment procedures to identify the minority of older drivers with reduced fitness to drive and educational efforts to encourage safer driving habits particularly but not only through self-regulation.

  12. Paying for sustainability

    DEFF Research Database (Denmark)

    Grebitus, Carola; Steiner, Bodo; Veeman, Michele

    2016-01-01

    Increasing environmental concerns of consumers and global supply chains center on the impacts of carbon dioxide emissions and water usage. This study analyzes consumers’ preferences for sustainable products as indicated by water and carbon footprint labels, enabling a rare cross-cultural comparison...... and policy stakeholders in designing targeted footprint labeling initiatives....

  13. Free fall plasma-arc reactor for synthesis of carbon nanotubes in microgravity

    International Nuclear Information System (INIS)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2006-01-01

    High temperatures inside the plasma of a carbon arc generate strong buoyancy driven convection which has an effect on the growth and morphology of the single-walled carbon nanotubes (SWNTs). To study the effect of buoyancy on the arc process, a miniature carbon arc apparatus was designed and developed to synthesize SWNTs in a microgravity environment substantially free from buoyant convective flows. An arc reactor was operated in the 2.2 and 5.18 s drop towers at the NASA Glenn Research Center. The apparatus employed a 4 mm diameter anode and was powered by a portable battery pack capable of providing in excess of 300 A at 30 V to the arc for the duration of a 5 s drop. However, the principal result is that no dramatic difference in sample yield or composition was noted between normal gravity and 2.2 and 5 s long microgravity runs. Much longer duration microgravity time is required for SWNT's growth such as the zero-G aircraft, but more likely will need to be performed on the international space station or an orbiting spacecraft

  14. Environmentally safe corrosion inhibition of Mg-Al-Zn alloy in chloride free neutral solutions by amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Helal, N.H. [Chemistry Department, Faculty of Science, Fayoum University, Fayoum (Egypt); Badawy, W.A., E-mail: wbadawy@cu.edu.eg [Chemistry Department, Faculty of Science, Cairo University, 12 613 Giza (Egypt)

    2011-07-30

    Highlights: > Phenyl alanine at a concentration of 2 x 10{sup -3} mol dm{sup -3} gives 93% corrosion inhibition efficiency for the corrosion of the Mg-Al-Zn alloy. > The corrosion inhibition process is based on the adsorption of the amino acid molecules on the active sites of the alloy surface by physical adsorption mechanism. > The adsorption free energy was 15.72 kJ mol{sup -1}. - Abstract: The corrosion inhibition of Mg-Al-Zn alloy was investigated in stagnant naturally aerated chloride free neutral solutions using amino acids as environmentally safe corrosion inhibitors. The corrosion rate was calculated in the absence and presence of the corrosion inhibitor using the polarization technique and electrochemical impedance spectroscopy. The experimental impedance data were fitted to theoretical data according to a proposed electronic circuit model to explain the behavior of the alloy/electrolyte interface under different conditions. The corrosion inhibition process was found to depend on the adsorption of the amino acid molecules on the metal surface. Phenyl alanine has shown remarkably high corrosion inhibition efficiency up to 93% at a concentration of 2 x 10{sup -3} mol dm{sup -3}. The corrosion inhibition efficiency was found to depend on the concentration of the amino acid and its structure. The mechanism of the corrosion inhibition process was discussed and different adsorption isotherms were investigated. The free energy of the adsorption process was calculated for the adsorption of different amino acids on the Mg-Al-Zn alloy and the obtained values reveal a physical adsorption of the inhibitor molecules on the alloy surface.

  15. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    Energy Technology Data Exchange (ETDEWEB)

    Tunma, Somruthai [The Graduate School, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Song, Doo-Hoon [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Si-Eun; Kim, Kyoung-Nam [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Han, Jeon-Geon [Center for Advanced Plasma Surface Technology, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746 (Korea, Republic of); Boonyawan, Dheerawan [Thailand Center of Excellence in Physics (ThEP), 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand)

    2013-10-15

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N{sub 2} films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiO{sub x} films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV–vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of -NH{sub 2} groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  16. Bainitic Transformation and Properties of Low Carbon Carbide-Free Bainitic Steels with Cr Addition

    Directory of Open Access Journals (Sweden)

    Mingxing Zhou

    2017-07-01

    Full Text Available Two low carbon carbide-free bainitic steels (with and without Cr addition were designed, and each steel was treated by two kinds of heat treatment procedure (austempering and continuous cooling. The effects of Cr addition on bainitic transformation, microstructure, and properties of low carbon bainitic steels were investigated by dilatometry, metallography, X-ray diffraction, and a tensile test. The results show that Cr addition hinders the isothermal bainitic transformation, and this effect is more significant at higher transformation temperatures. In addition, Cr addition increases the tensile strength and elongation simultaneously for austempering treatment at a lower temperature. However, when the austempering temperature is higher, the strength increases and the elongation obviously decreases by Cr addition, resulting in the decrease in the product of tensile strength and elongation. Meanwhile, the austempering temperature should be lower in Cr-added steel than that in Cr-free steel in order to obtain better comprehensive properties. Moreover, for the continuous cooling treatment in the present study, the product of tensile strength and elongation significantly decreases with Cr addition due to more amounts of martensite.

  17. Micropore-free surface-activated carbon for the analysis of polychlorinated dibenzo-p-dioxins-dibenzofurans and non-ortho-substituted polychlorinated biphenyls in environmental samples.

    Science.gov (United States)

    Kemmochi, Yukio; Tsutsumi, Kaori; Arikawa, Akihiro; Nakazawa, Hiroyuki

    2002-11-22

    2,3,7,8-Substituted polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/Fs) and non-ortho-substituted polychlorinated biphenyls (PCBs) account for almost all of the total toxic equivalents (TEQ) in environmental samples. Activated carbon columns are used to fractionate the samples for GC-MS analysis or bioassay. Micropore-free surface-activated carbon is highly selective for PCDD/Fs and non-ortho-PCBs and can improve the conventional activated carbon column clean-up. Along with sulfuric acid-coated diatomaceous earth columns, micropore-free surface-activated carbon provides a rapid, robust, and high-throughput sample preparation method for PCDD/Fs and non-ortho-PCBs analysis.

  18. A free-air system for long-term stable carbon isotope labeling of adult forest trees

    Science.gov (United States)

    Stable carbon (C) isotopes, in particular employed in labeling experiments, are an ideal tool to broaden our understanding of C dynamics in trees and forest ecosystems. Here, we present a free-air exposure system, named isoFACE, designed for long-term stable C isotope labeling in...

  19. Evaluating the sustainability of co-firing in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Jeremy; Tipper, Richard; Brown, Gareth; Diaz-Chavez, Rocio; Lovell, Jessica; de Groot, Peter

    2006-10-09

    The objectives of the study were: Assess the overall carbon balance for co-firing; Investigate the other sustainability issues relating to co-firing; Assess the scope for incentivising the most sustainable forms of co-firing. The main questions to be addressed were: Is the overall carbon balance for co-firing positive? What is the difference in carbon balance between energy crops and other biomass? Are some kinds of energy crops better than others? How big a factor is transport in the carbon balance? Under what circumstances (fuel, transport, process, etc.) are the greatest benefits of co-firing in terms of carbon balance and sustainability? Are there any circumstances (as above) that could raise serious carbon balance or sustainability issues? How does the carbon balance compare between co-firing, dedicated biomass, and biomass heat? Is there any scope for encouraging the most sustainable forms of co-firing - perhaps through using existing or currently in development accreditation schemes? The report concludes that: Co-firing could be expanded to make a significant and low risk contribution to Government and EU renewable energy policy targets; Real environmental and social benefits could arise from the expansion of co-firing markets, both in the UK and in poor developing countries, given responsible development policy; There is no clear environmental or social case, for an arbitrary cap on the amount of co-firing; Co-firing could expand and enhance clean coal Carbon and Capture and Sequestration (CCS). This report focuses solely on the carbon (GHG) and broader sustainability impacts of co-firing in the UK. It does not include an economic evaluation. It provides an overview of the existing materials being used as feedstocks for co-firing and a summary life-cycle assessment of the GHG balances and sustainability (environmental and social) impacts of the provision and use of those feedstocks. A clear distinction is made between the use of residues and dedicated

  20. Evaluating the sustainability of co-firing in the UK

    International Nuclear Information System (INIS)

    Woods, Jeremy; Tipper, Richard; Brown, Gareth; Diaz-Chavez, Rocio; Lovell, Jessica; de Groot, Peter

    2006-01-01

    The objectives of the study were: Assess the overall carbon balance for co-firing; Investigate the other sustainability issues relating to co-firing; Assess the scope for incentivising the most sustainable forms of co-firing. The main questions to be addressed were: Is the overall carbon balance for co-firing positive? What is the difference in carbon balance between energy crops and other biomass? Are some kinds of energy crops better than others? How big a factor is transport in the carbon balance? Under what circumstances (fuel, transport, process, etc.) are the greatest benefits of co-firing in terms of carbon balance and sustainability? Are there any circumstances (as above) that could raise serious carbon balance or sustainability issues? How does the carbon balance compare between co-firing, dedicated biomass, and biomass heat? Is there any scope for encouraging the most sustainable forms of co-firing - perhaps through using existing or currently in development accreditation schemes? The report concludes that: Co-firing could be expanded to make a significant and low risk contribution to Government and EU renewable energy policy targets; Real environmental and social benefits could arise from the expansion of co-firing markets, both in the UK and in poor developing countries, given responsible development policy; There is no clear environmental or social case, for an arbitrary cap on the amount of co-firing; Co-firing could expand and enhance clean coal Carbon and Capture and Sequestration (CCS). This report focuses solely on the carbon (GHG) and broader sustainability impacts of co-firing in the UK. It does not include an economic evaluation. It provides an overview of the existing materials being used as feedstocks for co-firing and a summary life-cycle assessment of the GHG balances and sustainability (environmental and social) impacts of the provision and use of those feedstocks. A clear distinction is made between the use of residues and dedicated

  1. Free allocations in EU ETS Phase 3: The impact of emissions performance benchmarking for carbon-intensive industry - Working Paper No. 2013-14

    International Nuclear Information System (INIS)

    Lecourt, S.; Palliere, C.; Sartor, O.

    2013-02-01

    From Phase 3 (2013-20) of the European Union Emissions Trading Scheme, carbon-intensive industrial emitters will receive free allocations based on harmonised, EU-wide benchmarks. This paper analyses the impacts of these new rules on allocations to key energy-intensive sectors across Europe. It explores an original dataset that combines recent data from the National Implementing Measures of 20 EU Member States with the Community Independent Transaction Log and other EU documents. The analysis reveals that free allocations to benchmarked sectors will be reduced significantly compared to Phase 2 (2008-12). This reduction should both increase public revenues from carbon auctions and has the potential to enhance the economic efficiency of the carbon market. The analysis also shows that changes in allocation vary mostly across installations within countries, raising the possibility that the carbon-cost competitiveness impacts may be more intense within rather than across countries. Lastly, the analysis finds evidence that the new benchmarking rules will, as intended, reward installations with better emissions performance and will improve harmonisation of free allocations in the EU ETS by reducing differences in allocation levels across countries with similar carbon intensities of production. (authors)

  2. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A generic methodology for the design of sustainable carbon dioxide utilization processes using superstructure optimization

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Gani, Rafiqul

    , including as an extractive agent or raw material. Chemical conversion, an important element of utilization, involves the use of carbon dioxide as a reactant in the production of chemical compounds [2]. However, for feasible implementation, a systematic methodology is needed for the design of the utilization......, especially chemical conversion, processes. To achieve this, a generic methodology has been developed, which adopts a three-stage approach consisting in (i) process synthesis, (ii) process design, and (iii) innovative and sustainable design [3]. This methodology, with the individual steps and associated...... methods and tools, has been developed and applied to carbon dioxide utilization networks. This work will focus on the first stage, process synthesis, of this three-stage methodology; process synthesis is important in determining the appropriate processing route to produce products from a selection...

  4. Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Sousa, Marcelo de; Martinez, Diego Stéfani Teodoro; Alves, Oswaldo Luiz

    2016-01-01

    Mannosylation is a method commonly used to deliver nanomaterials to specific organs and tissues via cellular macrophage uptake. In this work, for the first time, we proposed a method that involves the binding of d-mannose to ethylenediamine to form mannosylated ethylenediamine, which is then coupled to oxidized and purified multiwalled carbon nanotubes. The advantage of this approach is that mannosylated ethylenediamine precipitates in methanol, which greatly facilitates the separation of this product in the synthesis process. Carbon nanotubes were oxidized using concentrated H_2SO_4 and HNO_3 by conventional reflux method. However, during this oxidation process, carbon nanotubes generated carboxylated carbonaceous fragments (oxidation debris). These by-products were removed from the oxidized carbon nanotubes to ensure that the functionalization would occur only on the carbon nanotube surface. The coupling of mannosylated ethylenediamine to debris-free carbon nanotubes was accomplished using n-(3-dimethylaminopropyl)-n-ethylcarbodiimide and n-hydroxysuccinimide. Deconvoluted N1s spectra obtained from X-ray photoelectron spectroscopy gave binding energies of 399.8 and 401.7 eV, which we attributed to the amide and amine groups, respectively, of carbon nanotubes functionalized with mannosylated ethylenediamine. Deconvoluted O1s spectra showed a binding energy of 532.4 eV, which we suggest is caused by an overlap in the binding energies of the aliphatic CO groups of d-mannose and the O=C group of the amide bond. The functionalization degree was approximately 3.4 %, according to the thermogravimetric analysis. Scanning electron microscopy demonstrated that an extended carbon nanotube morphology was preserved following the oxidation, purification, and functionalization steps.

  5. Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Marcelo de, E-mail: marcelosousap2@yahoo.com.br [University of Campinas (Unicamp), Solid State Chemistry Laboratory (LQES) and NanoBioss Laboratory, Institute of Chemistry (Brazil); Martinez, Diego Stéfani Teodoro, E-mail: diego.martinez@lnnano.cnpem.br [Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Nanotechnology National Laboratory (LNNano) (Brazil); Alves, Oswaldo Luiz, E-mail: oalves@iqm.unicamp.br [University of Campinas (Unicamp), Solid State Chemistry Laboratory (LQES) and NanoBioss Laboratory, Institute of Chemistry (Brazil)

    2016-06-15

    Mannosylation is a method commonly used to deliver nanomaterials to specific organs and tissues via cellular macrophage uptake. In this work, for the first time, we proposed a method that involves the binding of d-mannose to ethylenediamine to form mannosylated ethylenediamine, which is then coupled to oxidized and purified multiwalled carbon nanotubes. The advantage of this approach is that mannosylated ethylenediamine precipitates in methanol, which greatly facilitates the separation of this product in the synthesis process. Carbon nanotubes were oxidized using concentrated H{sub 2}SO{sub 4} and HNO{sub 3} by conventional reflux method. However, during this oxidation process, carbon nanotubes generated carboxylated carbonaceous fragments (oxidation debris). These by-products were removed from the oxidized carbon nanotubes to ensure that the functionalization would occur only on the carbon nanotube surface. The coupling of mannosylated ethylenediamine to debris-free carbon nanotubes was accomplished using n-(3-dimethylaminopropyl)-n-ethylcarbodiimide and n-hydroxysuccinimide. Deconvoluted N1s spectra obtained from X-ray photoelectron spectroscopy gave binding energies of 399.8 and 401.7 eV, which we attributed to the amide and amine groups, respectively, of carbon nanotubes functionalized with mannosylated ethylenediamine. Deconvoluted O1s spectra showed a binding energy of 532.4 eV, which we suggest is caused by an overlap in the binding energies of the aliphatic CO groups of d-mannose and the O=C group of the amide bond. The functionalization degree was approximately 3.4 %, according to the thermogravimetric analysis. Scanning electron microscopy demonstrated that an extended carbon nanotube morphology was preserved following the oxidation, purification, and functionalization steps.

  6. Demonstration using EPR spin-trapping of an oxygen-dependent, carbon-centered free radical generated by soybean lipoxygenase

    International Nuclear Information System (INIS)

    Carpenter, M.F.; Smith, F.L.

    1986-01-01

    Purified prostaglandin synthase produces a carbon-centered, oxygen-dependent free radical which they have shown forms a spin-trapped adduct with 4-POBN and has characteristic hyperfine spin coupling constants (hfsc). As production of this radical is cyclooxygenase-dependent, additional studies on radical production were done using soybean lipoxygenase. The latter generates a lipid substrate-derived free radical trapped by the EPR spin trap 4-POBN [α-(4-pyridyl 1-oxide)N-tert-butyl nitrone]. With linoleate as substrate, the hfsc are a/sub N/ = 15.5 G, a/sub β//sup H/ = 2.7 G. This signal is inhibited by ETYA, various antioxidants and heat inactivation of the enzyme. Additional hfsc are not seen when the enzyme is incubated in an 17 O 2 atmosphere, but the signal is inhibited by anaerobeosis. Substitution of 13 C 18 carbon free fatty acids from Chlorella pyrenoisdosa for linoleate produces 2 new lines for each of the original 6 observed with 12 C substrate; the new spectrum has hfsc of a/sub N/ = 16.0 G, a/sub β//sup H/ = 2.4 G, a/sub β/ 13 C = 4.2 G. This demonstrates that the radical is carbon centered and oxygen-dependent and appears not to be the same radical formed by enzymic hydrogen abstraction from the lipid substrate. This radical and the prostaglandin synthase-dependent radical appear to be nearly identical

  7. Standard enthalpy, entropy and Gibbs free energy of formation of «A» type carbonate phosphocalcium hydroxyapatites

    International Nuclear Information System (INIS)

    Jebri, Sonia; Khattech, Ismail; Jemal, Mohamed

    2017-01-01

    Highlights: • A-type carbonate hydroxyapatites with 0 ⩽ x ⩽ 1 were prepared and characterized by DRX, IR spectroscopy and CHN analysis. • The heat of solution was measured in 9 wt% HNO 3 using an isoperibol calorimeter. • The standard enthalpy of formation was determined by thermochemical cycle. • Gibbs free energy has been deduced by estimating standard entropy of formation. • Carbonatation increases the stability till x = 0.6 mol. - Abstract: « A » type carbonate phosphocalcium hydroxyapatites having the general formula Ca 10 (PO 4 ) 6 (OH) (2-2x) (CO 3 ) x with 0 ⩽ x ⩽ 1, were prepared by solid gas reaction in the temperature range of 700–1000 °C. The obtained materials were characterized by X-ray diffraction and infrared spectroscopy. The carbonate content has been determined by C–H–N analysis. The heat of solution of these products was measured at T = 298 K in 9 wt% nitric acid solution using an isoperibol calorimeter. A thermochemical cycle was proposed and complementary experiences were performed in order to access to the standard enthalpies of formation of these phosphates. The results were compared to those previously obtained on apatites containing strontium and barium and show a decrease with the carbonate amount introduced in the lattice. This quantity becomes more negative as the ratio of substitution increases. Estimation of the entropy of formation allowed the determination of standard Gibbs free energy of formation of these compounds. The study showed that the substitution of hydroxyl by carbonate ions contributes to the stabilisation of the apatite structure.

  8. Landscape planning for a safe city

    Directory of Open Access Journals (Sweden)

    M. Ishikawa

    2002-06-01

    Full Text Available To create a safe city free from natural disasters has been one of the important criteria in city planning. Since large cities have suffered from large fires caused by earthquakes, the planning of open spaces to prevent the spread of fires is part of the basic structure of city planning in Japan. Even in the feudal city of Edo, the former name of Tokyo, there had been open spaces to prevent fire disasters along canals and rivers. This paper discusses the historical evolution of open space planning, that we call landscape planning, through the experiences in Tokyo, and clarifies the characteristics and problems for achieving a safe city.

  9. Carbon-Free CoO Mesoporous Nanowire Array Cathode for High-Performance Aprotic Li-O2 Batteries.

    Science.gov (United States)

    Wu, Baoshan; Zhang, Hongzhang; Zhou, Wei; Wang, Meiri; Li, Xianfeng; Zhang, Huamin

    2015-10-21

    Although various kinds of catalysts have been developed for aprotic Li-O2 battery application, the carbon-based cathodes are still vulnerable to attacks from the discharge intermediates or products, as well as the accompanying electrolyte decomposition. To ameliorate this problem, the free-standing and carbon-free CoO nanowire array cathode was purposely designed for Li-O2 batteries. The single CoO nanowire formed as a special mesoporous structure, owing even comparable specific surface area and pore volume to the typical Super-P carbon particles. In addition to the highly selective oxygen reduction/evolution reactions catalytic activity of CoO cathodes, both excellent discharge specific capacity and cycling efficiency of Li-O2 batteries were obtained, with 4888 mAh gCoO(-1) and 50 cycles during 500 h period. Owing to the synergistic effect between elaborate porous structure and selective intermediate absorption on CoO crystal, a unique bimodal growth phenomenon of discharge products was occasionally observed, which further offers a novel mechanism to control the formation/decomposition morphology of discharge products in nanoscale. This research work is believed to shed light on the future development of high-performance aprotic Li-O2 batteries.

  10. The sustainability of carbon sinks in forests. Studying the sensitivity of forest carbon sinks in the Netherlands, Europe and the Amazon to climate and management

    International Nuclear Information System (INIS)

    Kruijt, B.; Kramer, K.; Van den Wyngaert, I.; Groen, R.; Elbers, J.A.; Jans, W.W.P.

    2003-01-01

    The aim of this study was to assess the sustainability of carbon sinks in managed or unmanaged forests of Europe and the Amazon. First, the functioning and seasonal variability of the carbon sink strength in forest ecosystems was analysed in relation to climate variability. For this, existing global data sets of ecosystem fluxes measured by eddy correlation were analysed. A simple, comprehensive empirical model was derived to represent these flux variabilities. Also, new soil respiration measurements were initiated in the Netherlands and Amazonia and their usefulness to understand the uptake- and emission components of carbon exchange was analysed. Then, two long-term forest dynamics models were parameterised (FORSPACE and CENTURY) for Dutch Pinus and Fagus forests, to study the development of forest carbon stocks over a century under different management and climate scenarios. Finally, using the empirical model as well as the long-term models, scenario predictions were made. It turns out that uptake rates are expected to decrease in a climate with higher temperatures, but that storage capacity for carbon can be expected to be slightly enhanced, especially if also the management intensity is carefully tuned down

  11. Robust Chemiresistive Sensor for Continuous Monitoring of Free Chlorine Using Graphene-like Carbon.

    Science.gov (United States)

    Aryasomayajula, Aditya; Wojnas, Caroline; Divigalpitiya, Ranjith; Selvaganapathy, Ponnambalam Ravi; Kruse, Peter

    2018-02-23

    Free chlorine is widely used in industry as a bleaching and oxidizing agent. Its concentration is tightly monitored to avoid environmental contamination and deleterious human health effects. Here, we demonstrate a solid state chemiresistive sensor using graphene like carbon (GLC) to detect free chlorine in water. A 15-20 nm thick GLC layer on a PET substrate was modified with a redox-active aniline oligomer (phenyl-capped aniline tetramer, PCAT) to increase sensitivity, improve selectivity, and impart fouling resistance. Both the bare GLC sensor and the PCAT-modified GLC sensor can detect free chlorine continuously and, unlike previous chemiresistive sensors, do not require a reset. The PCAT-modified sensor showed a linear response with a slope of 13.89 (mg/L) -1 to free chlorine concentrations between 0.2 and 0.8 mg/L which is relevant for free chlorine monitoring for drinking water and wastewater applications. The PCAT-modified GLC sensors were found to be selective and showed less than 0.5% change in current in response to species such as nitrates, phosphates and sulfates in water. They also were resistant to fouling from organic material and showed only a 2% loss in signal. Tap water samples from residential area were tested using this sensor which showed good agreement with standard colorimetric measurement methods. The GLC and PCAT-GLC sensors show high sensitivity and excellent selectivity to free chlorine and can be used for continuous automated monitoring of free chlorine.

  12. One-step synthesis of continuous free-standing Carbon Nanotubes-Titanium oxide composite films as anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Gao, Hongxu; Hou, Feng; Wan, Zhipeng; Zhao, Sha; Yang, Deming; Liu, Jiachen; Guo, Anran; Gong, Yuxuan

    2015-01-01

    Highlights: • CNTs/TiO 2 compoiste films synthesized are continuous and free-standing. • The film can be directly used as flexible, binder-free Lithium-Ion Battery electrode. • The CNTs/TiO 2 electrodes exhibit excellent rate capacity and cyclic stability. • Our strategy is readily applicable to fabricate other CNTs-based composite films. - Abstract: Continuous free-standing Carbon Nanotubes (CNTs)/Titanium oxide (TiO 2 ) composite films were fabricated in a vertical CVD gas flow reactor with water sealing by the One-Step Chemical Vapor Deposition (CVD) approach. The composite films consist of multiple layers of conductive carbon nanotube networks with titanium oxide nanoparticles decorating on carbon nanotube surface. The as-synthesized flexible and transferrable composite films show excellent electrochemical properties, when the content of tetrabutyl titanate is 19.0 wt.%, which can be promising as binder-free anodes for Lithium-Ion Battery (LIB) applications. It demonstrates remarkably high rate capacity of 150 mAh g −1 , as well as excellent high rate cyclic stability over 500 cycles (current density of 3000 mA g −1 ). Such observations can be attributed to the relatively larger surface area and pore volume comparing with pristine CNT films. Great potentials of CNTs/TiO 2 composite films for large-scale production and application in energy devices were shown

  13. Direct electron transfer of glucose oxidase promoted by carbon nanotubes is without value in certain mediator-free applications

    International Nuclear Information System (INIS)

    Wang, Y.; Yao, Y.

    2012-01-01

    We have investigated the direct electron transfer (DET) promoted by carbon nanotubes (CNTs) on an electrode containing immobilized glucose oxidase (GOx) with the aim to develop a third-generation glucose biosensor and a mediator-free glucose biofuel cell anode. GOx was immobilized via chitosan (CS) on a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNTs). Cyclic voltammetric revealed that the GOx on the surface of such an electrode is unable to simultaneously demonstrate DET with the electrode and to retain its catalytic activity towards glucose, although the MWCNTs alone can promote electron transfer between GOx and electrode. This is interpreted in terms of two types of GOx on the surface, the distribution and properties of which are quite different. The first type exhibits DET capability that results from the collaboration of MWCNTs and metal impurities, but is unable to catalyze the oxidation of glucose. The second type maintains its glucose-specific catalytic capability in the presence of a mediator, which can be enhanced by MWCNTs, but cannot undergo DET with the electrode. As a result, the MWCNTs are capable of promoting the electron transfer, but this is without value in some mediator-free applications such as in third-generation glucose biosensors and in mediator-free anodes for glucose biofuel cells. (author)

  14. Microbial Growth and Carbon Use Efficiency in the Rhizosphere and Root-Free Soil

    Science.gov (United States)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Anderson, Traute-Heidi; Kuzyakov, Yakov

    2014-01-01

    Plant-microbial interactions alter C and N balance in the rhizosphere and affect the microbial carbon use efficiency (CUE)–the fundamental characteristic of microbial metabolism. Estimation of CUE in microbial hotspots with high dynamics of activity and changes of microbial physiological state from dormancy to activity is a challenge in soil microbiology. We analyzed respiratory activity, microbial DNA content and CUE by manipulation the C and nutrients availability in the soil under Beta vulgaris. All measurements were done in root-free and rhizosphere soil under steady-state conditions and during microbial growth induced by addition of glucose. Microorganisms in the rhizosphere and root-free soil differed in their CUE dynamics due to varying time delays between respiration burst and DNA increase. Constant CUE in an exponentially-growing microbial community in rhizosphere demonstrated the balanced growth. In contrast, the CUE in the root-free soil increased more than three times at the end of exponential growth and was 1.5 times higher than in the rhizosphere. Plants alter the dynamics of microbial CUE by balancing the catabolic and anabolic processes, which were decoupled in the root-free soil. The effects of N and C availability on CUE in rhizosphere and root-free soil are discussed. PMID:24722409

  15. Diffusion and sorption of neptunium(V) in compacted montmorillonite: effects of carbonate and salinity

    International Nuclear Information System (INIS)

    Tachi, Y.; Yotsuji, K.; Suyama, T.; Seida, Y.; Yui, M.; Nakazawa, T.; Yamada, N.; Ochs, M.

    2010-01-01

    Diffusion and sorption of radionuclides in compacted bentonite/montmorillonite are key processes in the safe geological disposal of radioactive waste. In this study, the effects of carbonate and salinity on neptunium(V) diffusion and sorption in compacted sodium montmorillonite were investigated by experimental and modeling approaches. Effective diffusion coefficients (D e ) and distribution coefficients (K d ) of 237 Np(V) in sodium montmorillonite compacted to a dry density of 800 kg m -3 were measured under four chemical conditions with different salinities (0.05/0.5 M NaCl) and carbonate concentrations (0.0.01 M NaHCO 3 ). D e values for carbonate-free conditions were of the order of 10 -10 -10 -11 m 2 s -1 and decreased as salinity increased, and those for carbonate conditions were of the order of 10 -11 -10 -12 m 2 s -1 and showed the opposite dependence. Diffusion-derived K d values for carbonate-free conditions were higher by one order of magnitude than those for carbonate conditions. Diffusion and sorption behaviors were interpreted based on mechanistic models by coupling thermodynamic aqueous speciation, thermodynamic sorption model (TSM) based on ion exchange, and surface complexation reactions, and a diffusion model based on electrical double layer (EDL) theory in homogeneous narrow pores. The model predicted the experimentally observed tendency of D e and K d qualitatively, as a result of the following mechanisms; 1) the dominant aqueous species are NpO 2 + and NpO 2 CO 3 - for carbonate-free and carbonate conditions, respectively, 2) the effects of cation excess and anion exclusion result in opposite tendencies of D e for salinity, 3) higher carbonate in solution inhibits sorption due to the formation of carbonate complexes. (orig.)

  16. Cities in the global South and the Sustainable Development Goals

    African Journals Online (AJOL)

    Sustainable development recently topped the global agenda again when, on 25 September 2015, the UN adopted the 17 Sustainable Development Goals (SDG), including SDG 11 on cities: 'Make cities inclusive, safe, resilient and sustainable.' Though heralded with pomp and pageantry, in reality the relevance of cities to ...

  17. The Stability, Sustained Release and Cellular Antioxidant Activity of Curcumin Nanoliposomes

    Directory of Open Access Journals (Sweden)

    Xing Chen

    2015-08-01

    Full Text Available Curcumin is a multifunctional and natural agent considered to be pharmacologically safe. However, its application in the food and medical industry is greatly limited by its poor water solubility, physicochemical instability and inadequate bioavailability. Nanoliposome encapsulation could significantly enhance the solubility and stability of curcumin. Curcumin nanoliposomes exhibited good physicochemical properties (entrapment efficiency = 57.1, particle size = 68.1 nm, polydispersity index = 0.246, and zeta potential = −3.16 mV. Compared with free curcumin, curcumin nanoliposomes exhibited good stability against alkaline pH and metal ions as well as good storage stability at 4 °C. Curcumin nanoliposomes also showed good sustained release properties. Compared with free curcumin, curcumin nanoliposomes presented an equal cellular antioxidant activity, which is mainly attributed to its lower cellular uptake as detected by fluorescence microscopy and flow cytometry. This study provide theoretical and practical guides for the further application of curcumin nanoliposomes.

  18. Solvent-free and catalyst-free chemistry: A benign pathway to sustainability

    Science.gov (United States)

    In the past decade, alternative benign organic methodologies have become an imperative part of organic syntheses and novel chemical reactions. The various new and innovative sustainable organic reactions and methodologies using no solvents or catalysts and employing alternative ...

  19. Sustainability of Self-Driving Mobility: An Analysis of Carbon Emissions Between Autonomous Vehicles and Conventional Modes of Transportation

    OpenAIRE

    Mccarthy, John Francis

    2017-01-01

    The primary contribution of this paper is to identify the potential variables through which vehicle automation may affect carbon emissions in the transportation sector, and compare modal shifts between conventional vehicles, public transportation, and pilot autonomous vehicles (AVs). AV programs that are rapidly emerging in cities, states, and nations across the globe mark the early stages of the next transportation revolution akin to the steam engine and assembly line. By safely allowing hum...

  20. Towards a safe non-invasive method for evaluating the carbonate substitution levels of hydroxyapatite (HAP) in micro-calcifications found in breast tissue.

    Science.gov (United States)

    Kerssens, Marleen M; Matousek, Pavel; Rogers, Keith; Stone, Nicholas

    2010-12-01

    A new diagnostic concept based on deep Raman spectroscopy is proposed permitting the non-invasive determination of the level of carbonate substitution in type II calcifications (HAP). The carbonate substitution has shown to be directly associated with the pathology of the surrounding breast tissue and different pathology groups can therefore be separated using specific features in the Raman spectra of the calcifications. This study explores the principle of distinguishing between type II calcifications, found in proliferating lesions, by using the strongest Raman peak from calcium hydroxyapatites (the phosphate peak at 960 cm(-1)) to act as a surrogate marker for carbonate substitution levels. It is believed that carbonate ion substitution leads to a perturbation of the hydroxyapatite lattice which in turn affects the phosphate vibrational modes. By studying calcifications, with known carbonate content, buried in porcine tissue it has been possible to evaluate the feasibility of using the proposed approach to probe the composition of the calcifications in vivo and hence provide pathology specific information non-invasively, in real time. Using the proposed concept we were able to determine the level of carbonate substitutions through soft tissue phantom samples (total thickness of 5.6 mm). As the level of carbonate substitution has been previously correlated with mid-FTIR to the lesion type, i.e. whether benign or invasive or in situ carcinoma, the new findings provide a major step forward towards establishing a new capability for diagnosing benign and malignant lesions in breast tissue in a safe and non-invasive manner in vivo.

  1. Holistic-integrated analysis and evaluation of nuclear energy for sustainable energy supply; Ganzheitlich-integrierte Betrachtung der Kernenergie im Hinblick auf eine nachhaltige Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Wissel, Steffen [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER)

    2012-11-01

    Germany has decided in 2011 nuclear phase-out by the end of 2022. The European Commission is still convinced of the safe use of nuclear energy as option for carbon reduction in the energy supply. In the European energy market the decisions of neighboring countries have an impact on the national energy systems. The contribution covers a holistic-integrated analysis based on technical, economic and ecologic aspects of nuclear energy for sustainable energy supply in comparison with other fossil and renewable systems.

  2. Opening Session [International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13), Paris, France, March 4-7, 2013

    International Nuclear Information System (INIS)

    Bigot, Bernard

    2013-01-01

    In Europe today, the energy supply relies on fossil fuels at over 75% of its primary energy consumption. Worldwide, it is over 82%. Such a massive use of fossil fuels is thus both a threat for the environment, climate and health, and also for our economies. In 2012, for France, fossil fuel imports represent an expense 3 times larger than in 2005, and over 90% of France’s trade deficit. If keeping this current energy mix, we will strongly contribute to a large increase of the risk of climate change, environmental and human health impacts, and their damaging effects. Tackling climate change, environmental and health issues will require the priority use of CO 2 emission free energy sources. Despite Kyoto protocol and many political international statements, the amount of CO 2 emission per year has known a +40% growth from 1990 to 2009, with the correlated increase of temperatures. To ensure a sustainable development, the world needs a sustainable energy supply, which makes a sufficient amount available for everybody at an acceptable price. For all these reasons, the substitution of fossil fuel consumption as soon as possible and as large as possible with CO 2 free energy sources must be our top priority. The corner stone of any sustainable European energy is the reduction of our consumption of fossil fuels with three axes of action relative to the technologies using these fuels: energy savings, improved efficiency, substitution by other technologies which do not use such fuels, as renewable and nuclear energies

  3. Sustainable energy-economic-environmental scenarios

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-31

    IIASA's Environmentally Compatible Energy Strategies (ECS) Project has proposed a quantitative 'working definition' of sustainable development E3 (energy-economic-environmental) scenarios. ECS has proposed four criteria for sustainability: economic growth is sustained throughout the time horizon; socioeconomic inequity among world regions is reduced over the 21st century; reserves-to-production (R/P) ratio for exhaustible primary energy resources do not decline; and long-term environmental stress is mitigated. Using these criteria, 40 long-term E3 scenarios generated by ECS models were reviewed and analyzed. Amongst the conclusions drawn were: slow population growth or stabilization of global population appears to be prerequisite for sustainable development; economic growth alone does not guarantee a sustainable future; carbon intensities of total primary energy must decrease faster than the historical trend; strategies for fossil fuel consumption must aim at non-decreasing R/P ratios; and carbon emissions must be near or below today's levels at the end of this century. The analysis of sustainable development scenarios is an important step towards formulating long-term strategies aimed at climate stabilization. 6 figs., 1 tab.

  4. Carbon Dissolution Using Waste Biomass—A Sustainable Approach for Iron-Carbon Alloy Production

    Directory of Open Access Journals (Sweden)

    Irshad Mansuri

    2018-04-01

    Full Text Available This paper details the characterisation of char obtained by high-temperature pyrolysis of waste macadamia shell biomass and its application as carbon source in iron-carbon alloy production. The obtained char was characterised by ultimate and proximate analysis, X-ray diffraction (XRD, Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR, X-ray photon spectroscopy (XPS, Brunauer-Emmett-Teller (BET surface area via N2 isothermal adsorption and scanning electron microscopy (SEM. The results indicated that obtained char is less porous, low in ash content, and high in carbon content. Investigation of iron-carbon alloy formation through carbon dissolution at 1550 °C was carried out using sessile drop method by using obtained char as a carbon source. Rapid carbon pickup by iron was observed during first two minutes of contact and reached a saturation value of ~5.18 wt % of carbon after 30 min. The carbon dissolution rate using macadamia char as a source of carbon was comparatively higher using than other carbonaceous materials such as metallurgical coke, coal chars, and waste compact discs, due to its high percentage of carbon and low ash content. This research shows that macadamia shell waste, which has a low content of ash, is a valuable supplementary carbon source for iron-carbon alloy industries.

  5. Safe Exploration for Identifying Linear Systems via Robust Optimization

    OpenAIRE

    Lu, Tyler; Zinkevich, Martin; Boutilier, Craig; Roy, Binz; Schuurmans, Dale

    2017-01-01

    Safely exploring an unknown dynamical system is critical to the deployment of reinforcement learning (RL) in physical systems where failures may have catastrophic consequences. In scenarios where one knows little about the dynamics, diverse transition data covering relevant regions of state-action space is needed to apply either model-based or model-free RL. Motivated by the cooling of Google's data centers, we study how one can safely identify the parameters of a system model with a desired ...

  6. Education in Safe and Unsafe Spaces

    Science.gov (United States)

    Callan, Eamonn

    2016-01-01

    Recent student demands within the academy for "safe space" have aroused concern about the constraints they might impose on free speech and academic freedom. There are as many kinds of safety as there are threats to the things that human beings might care about. That is why we need to be very clear about the specific threats of which the…

  7. Environmental law and sustainable development

    Directory of Open Access Journals (Sweden)

    María Oliva Sirgo Álvarez

    2017-06-01

    Full Text Available This article analyses the origin and birth of the human right to a safe and healthy environment in order to allow everyone to live a dignified and quality life. It also analyses the essential content of sustainable development, which must always guide the development of environmental law to ensure a healthy environment for human present and future generations, and a sustainable economic growth that contributes to the development of equal opportunities for all people.

  8. A "catalyst switch" Strategy for the sequential metal-free polymerization of epoxides and cyclic Esters/Carbonate

    KAUST Repository

    Zhao, Junpeng

    2014-06-24

    A "catalyst switch" strategy was used to synthesize well-defined polyether-polyester/polycarbonate block copolymers. Epoxides (ethylene oxide and/or 1,2-butylene oxide) were first polymerized from a monoalcohol in the presence of a strong phosphazene base promoter (t-BuP4). Then an excess of diphenyl phosphate (DPP) was introduced, followed by the addition and polymerization of a cyclic ester (ε-caprolactone or δ-valerolactone) or a cyclic carbonate (trimethylene carbonate), where DPP acted as both the neutralizer of phosphazenium alkoxide (polyether chain end) and the activator of cyclic ester/carbonate. This work has provided a one-pot sequential polymerization method for the metal-free synthesis of block copolymers from monomers which are suited for different types of organic catalysts. © 2014 American Chemical Society.

  9. A "catalyst switch" Strategy for the sequential metal-free polymerization of epoxides and cyclic Esters/Carbonate

    KAUST Repository

    Zhao, Junpeng; Pahovnik, David; Gnanou, Yves; Hadjichristidis, Nikolaos

    2014-01-01

    A "catalyst switch" strategy was used to synthesize well-defined polyether-polyester/polycarbonate block copolymers. Epoxides (ethylene oxide and/or 1,2-butylene oxide) were first polymerized from a monoalcohol in the presence of a strong phosphazene base promoter (t-BuP4). Then an excess of diphenyl phosphate (DPP) was introduced, followed by the addition and polymerization of a cyclic ester (ε-caprolactone or δ-valerolactone) or a cyclic carbonate (trimethylene carbonate), where DPP acted as both the neutralizer of phosphazenium alkoxide (polyether chain end) and the activator of cyclic ester/carbonate. This work has provided a one-pot sequential polymerization method for the metal-free synthesis of block copolymers from monomers which are suited for different types of organic catalysts. © 2014 American Chemical Society.

  10. SUSTAINABLE TRAILER FLOORING

    Directory of Open Access Journals (Sweden)

    John Lu

    2009-05-01

    Full Text Available Different trailer flooring materials, including wood-based, aluminum, steel, and synthetic plastic floors, were evaluated in accordance with their durability and sustainability to our natural environment. Wood-based trailer flooring is an eco-friendly product. It is the most sustainable trailer flooring material compared with fossil fuel-intensive steel, aluminum, and plastics. It is renewable and recyclable. Oak, hard maple, and apitong are strong and durable hardwood species that are currently extensively used for trailer flooring. For manufacture, wood-based flooring is higher in energy efficiency and lower in carbon emission than steel, aluminum and plastics. Moreover, wood per se is a natural product that sequesters carbon. Accordingly, using more wood-based trailer flooring is effective to reduce global warming.

  11. Deep molecular responses for treatment-free remission in chronic myeloid leukemia.

    Science.gov (United States)

    Dulucq, Stéphanie; Mahon, Francois-Xavier

    2016-09-01

    Several clinical trials have demonstrated that some patients with chronic myeloid leukemia in chronic phase (CML-CP) who achieve sustained deep molecular responses on tyrosine kinase inhibitor (TKI) therapy can safely suspend therapy and attempt treatment-free remission (TFR). Many TFR studies to date have enrolled imatinib-treated patients; however, the feasibility of TFR following nilotinib or dasatinib has also been demonstrated. In this review, we discuss available data from TFR trials and what these data reveal about the molecular biology of TFR. With an increasing number of ongoing TFR clinical trials, TFR may become an achievable goal for patients with CML-CP. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  12. SafeNet: a methodology for integrating general-purpose unsafe devices in safe-robot rehabilitation systems.

    Science.gov (United States)

    Vicentini, Federico; Pedrocchi, Nicola; Malosio, Matteo; Molinari Tosatti, Lorenzo

    2014-09-01

    Robot-assisted neurorehabilitation often involves networked systems of sensors ("sensory rooms") and powerful devices in physical interaction with weak users. Safety is unquestionably a primary concern. Some lightweight robot platforms and devices designed on purpose include safety properties using redundant sensors or intrinsic safety design (e.g. compliance and backdrivability, limited exchange of energy). Nonetheless, the entire "sensory room" shall be required to be fail-safe and safely monitored as a system at large. Yet, sensor capabilities and control algorithms used in functional therapies require, in general, frequent updates or re-configurations, making a safety-grade release of such devices hardly sustainable in cost-effectiveness and development time. As such, promising integrated platforms for human-in-the-loop therapies could not find clinical application and manufacturing support because of lacking in the maintenance of global fail-safe properties. Under the general context of cross-machinery safety standards, the paper presents a methodology called SafeNet for helping in extending the safety rate of Human Robot Interaction (HRI) systems using unsafe components, including sensors and controllers. SafeNet considers, in fact, the robotic system as a device at large and applies the principles of functional safety (as in ISO 13489-1) through a set of architectural procedures and implementation rules. The enabled capability of monitoring a network of unsafe devices through redundant computational nodes, allows the usage of any custom sensors and algorithms, usually planned and assembled at therapy planning-time rather than at platform design-time. A case study is presented with an actual implementation of the proposed methodology. A specific architectural solution is applied to an example of robot-assisted upper-limb rehabilitation with online motion tracking. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Planetary boundaries: exploring the safe operating space for humanity

    Science.gov (United States)

    Johan Rockström; Will Steffen; Kevin Noone; Asa Persson; F. Stuart Chapin; Eric Lambin; Timothy M. Lenton; Marten Scheffer; Carl Folke; Hans Joachim Schellnhuber; Björn Nykvist; Cynthia A. de Wit; Terry Hughes; Sander van der Leeuw; Henning Rodhe; Sverker Sörlin; Peter K. Snyder; Robert Costanza; Uno Svedin; Malin Falkenmark; Louise Karlberg; Robert W. Corell; Victoria J. Fabry; James Hansen; Brian Walker; Diana Liverman; Katherine Richardson; Paul Crutzen; Jonathan Foley

    2009-01-01

    Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due...

  14. Mechanical performance of pyrolytic carbon in prosthetic heart valve applications.

    Science.gov (United States)

    Cao, H

    1996-06-01

    An experimental procedure has been developed for rigorous characterization of the fracture resistance and fatigue crack extension in pyrolytic carbon for prosthetic heart valve application. Experiments were conducted under sustained and cyclic loading in a simulated biological environment using Carbomedics Pyrolite carbon. While the material was shown to have modest fracture toughness, it exhibited excellent resistance to subcritical crack growth. The crack growth kinetics in pyrolytic carbon were formulated using a phenomenological description. A fatigue threshold was observed below which the crack growth rate diminishes. A damage tolerance concept based on fracture mechanics was used to develop an engineering design approach for mechanical heart valve prostheses. In particular, a new quantity, referred to as the safe-life index, was introduced to assess the design adequacy against subcritical crack growth in brittle materials. In addition, a weakest-link statistical description of the fracture strength is provided and used in the design of component proof-tests. It is shown that the structural reliability of mechanical heart valves can be assured by combining effective flaw detection and manufacturing quality control with adequate damage tolerance design.

  15. Corn Belt soil carbon and macronutrient budgets with projected sustainable stover harvest

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shu-Guang

    2015-01-01

    Corn (Zea mays L.) stover has been identified as a prime feedstock for biofuel production in the U.S. Corn Belt because of its perceived abundance and availability, but long-term stover harvest effects on regional nutrient budgets have not been evaluated. We defined the minimum stover requirement (MSR) to maintain current soil organic carbon levels and then estimated current and future soil carbon (C), nitrogen (N), phosphorus (P), and potassium (K) budgets for various stover harvest scenarios. Analyses for 2006 through 2010 across the entire Corn Belt indicated that currently, 28 Tg or 1.6 Mg ha−1 of stover could be sustainably harvested from 17.95 million hectares (Mha) with N, P, and K removal of 113, 26, and 47 kg ha−1, respectively, and C removal for that period was estimated to be 4.55 Mg C ha−1. Assuming continued yield increases and a planted area of 26.74 Mha in 2050, 77.4 Tg stover (or 2.4 Mg ha−1) could be sustainably harvested with N, P, and K removal of 177, 37, and 72 kg ha−1, respectively, along with C removal of ∼6.57 Mg C ha−1. Although there would be significant variation across the region, harvesting only the excess over the MSR under current fertilization rates would result in a small depletion of soil N (−5 ± 27 kg ha−1) and K (−20 ± 31 kg ha−1) and a moderate surplus of P (36 ± 18 kg ha−1). Our 2050 projections based on continuing to keep the MSR, but having higher yields indicate that soil N and K deficits would become larger, thus emphasize the importance of balancing soil nutrient supply with crop residue removal.

  16. A facile strategy to construct binder-free flexible carbonate composite anode at low temperature with high performances for lithium-ion batteries

    International Nuclear Information System (INIS)

    Shi, Shaojun; Zhang, Ming; Deng, Tingting; Wang, Ting; Yang, Gang

    2017-01-01

    Graphical abstract: The schematic illustration of the strategy for preparations and the mechanism for the stability of structure Display Omitted -- Highlights: •A facile strategy is applied to construct flexible carbonate composite anode. •Carbon nano-fiber matrix serves as fast charge channel and efficient buffer. •High specific capacity of 958 mAh g −1 at 100 mA g −1 is obtained. •After 200 cycles at 1 A g −1 , there is not obvious capacity decline. •The mechanism for stress release is further analyzed. -- Abstract: High temperature is usually necessary for carbon modification or electrospinning to obtain flexible anode with excellent conductivity and stability. However, due to the unstable instinct of carbonate, it’s hard to obtain carbonate when any of the synthesis process undergoes high temperature treatment. Thus, a facile strategy is applied to construct binder-free flexible carbonate composite anode at low temperature with high electrochemical performances. The carbon nano-fiber matrix is first synthesized through electrospinning followed by a facile solvothermal process to in-situ grow carbonate on carbon nano-fibers to form a well combinative flexible anode. The carbon nano-fiber matrix serves not only as a fast channel for charge transfer, but also as an efficient buffer to release the stress resulting from the hysteresis of lithiation for carbonate particles during repeated charge/discharge cycles. Owing to the synergistic effect of carbon nano-fiber and the carbonate, the flexible anode exhibits high specific capacity of 958 mAh g −1 . And after 200 cycles at 1 A g −1 , no obvious capacity decline. The reaction mechanism for stress release is also well analyzed to display the merit of our strategy. It is considered as one of the most promising way to get binder-free flexible carbonate anode with remarkable properties.

  17. A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure.

    Science.gov (United States)

    Li, Yingzhi; Zhang, Qinghua; Zhang, Junxian; Jin, Lei; Zhao, Xin; Xu, Ting

    2015-09-23

    Biomass has delicate hierarchical structures, which inspired us to develop a cost-effective route to prepare electrode materials with rational nanostructures for use in high-performance storage devices. Here, we demonstrate a novel top-down approach for fabricating bio-carbon materials with stable structures and excellent diffusion pathways; this approach is based on carbonization with controlled chemical activation. The developed free-standing bio-carbon electrode exhibits a high specific capacitance of 204 F g(-1) at 1 A g(-1); good rate capability, as indicated by the residual initial capacitance of 85.5% at 10 A g(-1); and a long cycle life. These performance characteristics are attributed to the outstanding hierarchical structures of the electrode material. Appropriate carbonization conditions enable the bio-carbon materials to inherit the inherent hierarchical texture of the original biomass, thereby facilitating effective channels for fast ion transfer. The macropores and mesopores that result from chemical activation significantly increase the specific surface area and also play the role of temporary ion-buffering reservoirs, further shortening the ionic diffusion distance.

  18. An estimated carbon footprint of NHS primary dental care within England. How can dentistry be more environmentally sustainable?

    Science.gov (United States)

    Duane, B; Lee, M Berners; White, S; Stancliffe, R; Steinbach, I

    2017-10-27

    Introduction National Health Service (NHS) England dental teams need to consider from a professional perspective how they can, along with their NHS colleagues, play their part in reducing their carbon emissions and improve the sustainability of the care they deliver. In order to help understand carbon emissions from dental services, Public Health England (PHE) commissioned a calculation and analysis of the carbon footprint of key dental procedures.Methods Secondary data analysis from Business Services Authority (BSA), Health and Social Care Information Centre (HSCIC) (now called NHS Digital, Information Services Division [ISD]), National Association of Specialist Dental Accountants (NASDA) and recent Scottish papers was undertaken using a process-based and environmental input-output analysis using industry established conversion factors.Results The carbon footprint of the NHS dental service is 675 kilotonnes carbon dioxide equivalents (CO2e). Examinations contributed the highest proportion to this footprint (27.1%) followed by scale and polish (13.4%) and amalgam/composite restorations (19.3%). From an emissions perspective, nearly 2/3 (64.5%) of emissions related to travel (staff and patient travel), 19% procurement (the products and services dental clinics buy) and 15.3% related to energy use.Discussion The results are estimates of carbon emissions based on a number of broad assumptions. More research, education and awareness is needed to help dentistry develop low carbon patient pathways.

  19. Disabled Children: The Right to Feel Safe

    Science.gov (United States)

    Mepham, Sarah

    2010-01-01

    This article explores the fundamental right of disabled children to feel safe and be free from bullying, harassment and abuse. The article proposes that, 20 years since the United Nations Convention on the Rights of the Child, disabled children are still facing barriers to securing this right. The article focuses on recent Mencap research that…

  20. Is an environmentally sustainable future for the European Community compatible with continued growth - carbon dioxide and the management of greed

    International Nuclear Information System (INIS)

    Slesser, M.

    1993-01-01

    The search for sustainability creates moral and economic dilemmas for politicians seeking to match public aspirations with environmental integrity. The paper explores a method for computing the longer term outcome of policies, considering the case of the European Community as a single economy and taking the specific problem of carbon dioxide

  1. Organising a safe space for navigating social-ecological transformations to sustainability

    OpenAIRE

    Pereira, L.; Karpouzoglou, T.D.; Doshi, S.; Frantzeskaki, N.

    2015-01-01

    textabstractThe need for developing socially just living conditions for the world’s growing population whilst keeping human societies within a ‘safe operating space’ has become a modern imperative. This requires transformative changes in the dominant social norms, behaviours, governance and management regimes that guide human responses in areas such as urban ecology, public health, resource security (e.g., food, water, energy access), economic development and biodiversity conservation. Howeve...

  2. Static and free vibration analysis of carbon nano wires based on Timoshenko beam theory using differential quadrature method

    Directory of Open Access Journals (Sweden)

    Maziar Janghorban

    Full Text Available Static and free vibration analysis of carbon nano wires with rectangular cross section based on Timoshenko beam theory is studied in this research. Differential quadrature method (DQM is employed to solve the governing equations. From the knowledge of author, it is the first time that free vibration of nano wires is investigated. It is also the first time that differential quadrature method is used for bending analysis of nano wires.

  3. Nuclear power and sustainable development. Maintaining and increasing the overall assets available to future generations

    International Nuclear Information System (INIS)

    2002-01-01

    A central goal of sustainable development is to maintain or increase the overall assets available to future generations, while minimizing consumption of finite resources and not exceeding the carrying capacities of ecosystems. The development of nuclear power broadens the natural resource base usable for energy production, increases human and man-made capital, and, when safely handled, has little impact on ecosystems. Energy is essential for sustainable development. With continuing population and economic growth, and increasing needs in the developing world, substantially greater energy demand is a given, even taking into account continuing and accelerated energy efficiency and intensity improvements. Today, nuclear power is mostly utilized in industrialized countries that have the necessary technological, institutional and financial resources. Many of the industrialized countries that are able and willing to use nuclear power are also large energy consumers. Nuclear power currently generates 16% of the world's electricity. It produces virtually no sulfur dioxide, particulates, nitrogen oxides, volatile organic compounds or greenhouse gases. Globally, nuclear power currently avoids approximately 600 million tonnes of carbon emissions annually, about the same as hydropower. The 600 MtC avoided by nuclear power equals 8% of current global greenhouse gases emissions. In the OECD countries, nuclear power has for 35 years accounted for most of the reduction in the carbon intensity per unit of delivered energy. Existing operating nuclear power plants (NPPs) for which initial capital investments are largely depreciated are also often the most cost-effective way to reduce carbon emissions from electricity generation. In fact in the United States in 2000, NPPs were the most cost-effective way to generate electricity, irrespective of avoided carbon emissions. In other countries the advantages of existing nuclear generating stations are also increasingly recognized. Interest

  4. Chemistry of sustainability-Part I: Carbon dioxide as an organic synthon and Part II: Study of thermodynamics of cation exchange reactions in semiconductor nanocrystals

    Science.gov (United States)

    Sathe, Ajay A.

    Sustainability is an important part of the design and development of new chemical and energy conversion processes. Simply put sustainability is the ability to meet our needs without sacrificing the ability of the next generations to meet theirs. This thesis describes our efforts in developing two orthogonal strategies for the fixation of CO2 by utilizing high energy intermediates which are generated via oxidative or reductive processes on common organic substrates and of thermochemical measurements of cation exchange reactions which will aid the development of new materials relevant for energy conversion and storage. The first chapter lays a background for the challenges and opportunities for the use of CO2 in organic synthesis. The rapidly growing field of continuous flow processing in organic synthesis is introduced, and its importance in the development of sustainable chemical conversions is highlighted. The second chapter describes the development of a novel route to alpha-amino acids via reductive carboxylation of imines. A mechanistic proposal is presented and the reaction is shown to proceed through the intermediacy of alpha-amino alkyl metal species. Possible strategies for designing catalytic and enantioselective variants of the reaction are presented. The third chapter describes the development of a catalytic oxidative carboxylation of olefins to yield cyclic carbonates. The importance of flow chemistry and membrane separation is demonstrated by allowing the combination of mutually incompatible reagents in a single reaction sequence. While the use of carbon dioxide for synthesis of organic fine chemicals is not expected to help reduce the atmospheric carbon dioxide levels, or tackle climate change, it certainly has the potential to reduce our dependence on non-sustainable carbon feedstocks, and help achieve a carbon neutral chemical life cycle. Having described the use of carbon dioxide and flow chemistry for sustainable chemical conversion, the fourth

  5. ''Green'' path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim Z. [Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922 (United States); Veziroglu, T. Nejat [Clean Energy Research Institute, University of Miami, Coral Gables, FL 33124 (United States)

    2008-12-15

    While the dominant role of hydrogen in a sustainable energy future is widely accepted, the strategies for the transition from fossil-based to hydrogen economy are still actively debated. This paper emphasizes the role of carbon-neutral technologies and fuels during the transition period. To satisfy the world's growing appetite for energy and keep our planet healthy, at least 10 TW (or terawatt) of carbon-free power has to be produced by mid-century. Three prominent options discussed in the literature include: decarbonization of fossil energy, nuclear energy and renewable energy sources. These options are analyzed in this paper with a special emphasis on the role of hydrogen as a carbon-free energy carrier. In particular, the authors compare various fossil decarbonization strategies and evaluate the potential of nuclear and renewable energy resources to meet the 10 TW target. An overview of state-of-the-art technologies for production of carbon-free energy carriers and transportation fuels, and the assessment of their commercial potential is provided. It is shown that neither of these three options alone could provide 10 TW of carbon-neutral power without major changes in the existing infrastructure, and/or technological breakthroughs in many areas, and/or a considerable environmental risk. The authors propose a scenario for the transition from current fossil-based to hydrogen economy that includes two key elements: (i) changing the fossil decarbonization strategy from one based on CO{sub 2} sequestration to one that involves sequestration and/or utilization of solid carbon, and (ii) producing carbon-neutral synthetic fuels from bio-carbon and hydrogen generated from water using carbon-free sources (nuclear, solar, wind, geothermal). This strategy would allow taking advantage of the existing fuel infrastructure without an adverse environmental impact, and it would secure a smooth carbon-neutral transition from fossil-based to future hydrogen economy. (author)

  6. Action Research for Sustainability

    DEFF Research Database (Denmark)

    Egmose, Jonas

    on urban sustainability the need to move towards sustainability at societal level is conceptualised as a democratic challenge questioning the way we live on planet earth. By understanding sustainability as an immanent and emergent ability of ecological and social life, continuously to renew itself without...... with a greater say in the future of urban sustainability research, the work shows how action research can make important methodological contributions to processes of social learning between citizens and scientists by enabling free spaces in peoples everyday life and within academia, where aspects...

  7. Action Research for Sustainability

    DEFF Research Database (Denmark)

    Egmose, Jonas

    by analysing processes of social learning. The book addresses the need to move towards sustainability at societal level as a democratic challenge questioning the way we live on planet earth. By conceptualising sustain-ability as an immanent and emergent ability of ecological and social life, continuously...... to provide local citizens with a greater say in the future of urban sustainability research, this book shows how action research can make important methodological contributions to processes of social learning between citizens and scientists by enabling free spaces in peoples everyday life and within academia...

  8. Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors

    Science.gov (United States)

    Star, Alexander; Tu, Eugene; Niemann, Joseph; Gabriel, Jean-Christophe P.; Joiner, C. Steve; Valcke, Christian

    2006-01-01

    We report carbon nanotube network field-effect transistors (NTNFETs) that function as selective detectors of DNA immobilization and hybridization. NTNFETs with immobilized synthetic oligonucleotides have been shown to specifically recognize target DNA sequences, including H63D single-nucleotide polymorphism (SNP) discrimination in the HFE gene, responsible for hereditary hemochromatosis. The electronic responses of NTNFETs upon single-stranded DNA immobilization and subsequent DNA hybridization events were confirmed by using fluorescence-labeled oligonucleotides and then were further explored for label-free DNA detection at picomolar to micromolar concentrations. We have also observed a strong effect of DNA counterions on the electronic response, thus suggesting a charge-based mechanism of DNA detection using NTNFET devices. Implementation of label-free electronic detection assays using NTNFETs constitutes an important step toward low-cost, low-complexity, highly sensitive and accurate molecular diagnostics. hemochromatosis | SNP | biosensor

  9. Frontier In-Situ Resource Utilization for Enabling Sustained Human Presence on Mars

    Science.gov (United States)

    Moses, Robert W.; Bushnell, Dennis M.

    2016-01-01

    The currently known resources on Mars are massive, including extensive quantities of water and carbon dioxide and therefore carbon, hydrogen and oxygen for life support, fuels and plastics and much else. The regolith is replete with all manner of minerals. In Situ Resource Utilization (ISRU) applicable frontier technologies include robotics, machine intelligence, nanotechnology, synthetic biology, 3-D printing/additive manufacturing and autonomy. These technologies combined with the vast natural resources should enable serious, pre- and post-human arrival ISRU to greatly increase reliability and safety and reduce cost for human colonization of Mars. Various system-level transportation concepts employing Mars produced fuel would enable Mars resources to evolve into a primary center of trade for the inner solar system for eventually nearly everything required for space faring and colonization. Mars resources and their exploitation via extensive ISRU are the key to a viable, safe and affordable, human presence beyond Earth. The purpose of this paper is four-fold: 1) to highlight the latest discoveries of water, minerals, and other materials on Mars that reshape our thinking about the value and capabilities of Mars ISRU; 2) to summarize the previous literature on Mars ISRU processes, equipment, and approaches; 3) to point to frontier ISRU technologies and approaches that can lead to safe and affordable human missions to Mars; and 4) to suggest an implementation strategy whereby the ISRU elements are phased into the mission campaign over time to enable a sustainable and increasing human presence on Mars.

  10. Synthesis of Stacked-Cup Carbon Nanotubes in a Metal Free Low Temperature System

    Science.gov (United States)

    Kimura, Yuki; Nuth, Joseph A.; Johnson, Natasha M.; Farmer, Kevin D.; Roberts, Kenneth P.; Hussaini, Syed R.

    2011-01-01

    Stacked-cup carbon nanotubes were formed by either Fischer-Tropsch type or Haber Bosch type reactions in a metal free system. Graphite particles were used as the catalyst. The samples were heated at 600 C in a gas mixture of CO 75 Torr, N2 75 Torr and H2 550 Torr for three days. Trans mission electron microscope analysis of the catalyst surface at the completion of the experiment recognized the growth of nanotubes. They were 10-50 nm in diameter and approximately 1 micrometer in length. They had a hollow channel of 5-20 nm in the center. The nanotubes may have grown on graphite surfaces by the CO disproportionation reaction and the surface tension of the carbon nucleus may have determined the diameter. Although, generally, the diameter of a carbon nanotube depends on the size of the cataly1ic particles, the diameter of the nanotubes on graphite particles was independent of the particle size and significantly confined within a narrow range compared with that produced using catalytic amorphous iron-silicate nanoparticles. Therefore, they must have an unknown formation process that is different than the generally accepted mechanism.

  11. Turning into carbonate the residual sodium left in BN-350 circuits may alleviate concerns over their long term safe confinement

    International Nuclear Information System (INIS)

    Rahmani, L

    2000-01-01

    After the coolant is drained from the reactor vessel and from the primary and secondary circuits of the BN-350 nuclear power plant, what sodium is left in ponds and films may amount to hundreds of kilograms. For the long term safe storage period which is to follow, preliminary safety analyses (e.g. derived from those made for French sodium cooled reactors) might show that the risks incurred through loss of leaktightness are significant. The ingress of moisture into the circuits would generate, by reaction with the sodium, two undesirable products : sodium hydroxide and hydrogene. Even when considering that water would enter the circuits progressively, so that the heat of the reaction does not give rise to over-pressure, some main risk factors remain. The most promising solution to this challenge appears to be the carbonation of the sodium residues, by progressive diffusion of an appropriate association of carbon dioxyde and water vapour through the inert gaseous medium which fills the circuits. The desired product is porous sodium hydrogenocarbonate

  12. Effect of Boron on the Hot Ductility of Resulfurized Low-Carbon Free-Cutting Steel

    Science.gov (United States)

    Liu, Hai-tao; Chen, Wei-qing

    2015-09-01

    The hot ductility of resulfurized low-carbon free-cutting steel with boron additives is studied in the temperature range 850 - 1200°C with the help of a Gleeble-1500 thermomechanical simulator. The introduction of boron increases hot ductility, especially at 900 - 1050°C. In the single-phase austenitic region, this effect is caused by segregation of boron over grain boundaries, acceleration of dynamic recrystallization, and solid-solution softening of deformed austenite.

  13. Assimilation of aged organic carbon in a glacial river food web

    Science.gov (United States)

    Fellman, J.; Hood, E. W.; Raymond, P. A.; Bozeman, M.; Hudson, J.; Arimitsu, M.

    2013-12-01

    Identifying the key sources of organic carbon supporting fish and invertebrate consumers is fundamental to our understanding of stream ecosystems. Recent laboratory bioassays highlight that aged organic carbon from glacier environments is highly bioavailable to stream bacteria relative to carbon originating from ice-free areas. However, there is little evidence suggesting that this aged, bioavailable organic carbon is also a key basal carbon source for stream metazoa. We used natural abundance of Δ14C, δ13C, and δ15N to determine if fish and invertebrate consumers are subsidized by aged organic carbon in a glacial river in southeast Alaska. We collected biofilm, leaf litter, three different species of macroinvertebrates, and resident juvenile salmonids from a reference stream and two sites (one site is directly downstream of the glacial outflow and one site is upstream of the tidal estuary) on the heavily glaciated Herbert River. Key producers, fish, and invertebrate consumers in the reference stream had carbon isotope values that ranged from -26 to -30‰ for δ13C and from -12 to 53‰ for Δ14C, reflecting a food web sustained mainly on contemporary primary production. In contrast, biofilm in the two glacial sites was highly Δ14C depleted (-203 to -215‰) relative to the reference site. Although biofilm may consist of both bacteria and benthic algae utilizing carbon depleted in Δ14C, δ13C values for biofilm (-24.1‰), dissolved inorganic carbon (-5.9‰), and dissolved organic carbon (-24.0‰) suggest that biofilm consist of bacteria sustained in part by glacier-derived, aged organic carbon. Invertebrate consumers (mean Δ14C of -80.5, mean δ13C of -26.5) and fish (mean Δ14C of -63.3, mean δ13C of -25.7) in the two glacial sites had carbon isotope values similar to biofilm. These results similarly show that aged organic carbon is incorporated into the metazoan food web. Overall, our findings indicate that continued watershed deglaciation and

  14. Safe Handover : Safe Patients - The Electronic Handover System.

    Science.gov (United States)

    Till, Alex; Sall, Hanish; Wilkinson, Jonathan

    2014-01-01

    Failure of effective handover is a major preventable cause of patient harm. We aimed to promote accurate recording of high-quality clinical information using an Electronic Handover System (EHS) that would contribute to a sustainable improvement in effective patient care and safety. Within our hospital the human factors associated with poor communication were compromising patient care and unnecessarily increasing the workload of staff due to the poor quality of handovers. Only half of handovers were understood by the doctors expected to complete them, and more than half of our medical staff felt it posed a risk to patient safety. We created a standardised proforma for handovers that contained specific sub-headings, re-classified patient risk assessments, and aided escalation of care by adding prompts for verbal handover. Sources of miscommunication were removed, accountability for handovers provided, and tasks were re-organised to reduce the workload of staff. Long-term, three-month data showed that each sub-heading achieved at least 80% compliance (an average improvement of approximately 40% for the overall quality of handovers). This translated into 91% of handovers being subjectively clear to junior doctors. 87% of medical staff felt we had reduced a risk to patient safety and 80% felt it increased continuity of care. Without guidance, doctors omit key information required for effective handover. All organisations should consider implementing an electronic handover system as a viable, sustainable and safe solution to handover of care that allows patient safety to remain at the heart of the NHS.

  15. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haojie [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Shouchun, E-mail: zschun@sxicc.ac.cn [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, Chunxiang, E-mail: chunxl@sxicc.ac.cn [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); He, Shuqing [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); An, Feng [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2013-08-15

    An organic solvent-free polyamic acid (PAA) nanoemulsion was obtained by direct ionization of the solid PAA in deionized water, with the average particle size of 261 nm and Zeta potential of −55.1 mV, and used as a carbon fiber sizing to improve the interfacial adhesion between the carbon fiber and polyether sulfone (PES). The surface characteristics of PAA coated carbon fibers were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and dynamic contact angle measurement. The results demonstrated that a continuous and uniform PAA sizing layer was formed on the surface of carbon fibers, and the surface energy of carbon fibers increased from 42.91 to 54.55 mN/m after sizing treatment. The single fiber pull-out testing was also performed, which showed the increased interfacial shear strength (IFSS) of carbon fiber/PES composites from 33.6 to 49.7 MPa by 47.9%. The major reasons for the improved interfacial adhesion were the increased van der Waals forces between the PES matrix and sizing layer as well as the chemical bonding between the sizing layer and carbon fiber surface. Furthermore, the PAA sizing also presented a positive effect on the interfacial adhesion of carbon fiber/PES composites under hydrothermal condition.

  16. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing

    International Nuclear Information System (INIS)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang; He, Shuqing; An, Feng

    2013-01-01

    An organic solvent-free polyamic acid (PAA) nanoemulsion was obtained by direct ionization of the solid PAA in deionized water, with the average particle size of 261 nm and Zeta potential of −55.1 mV, and used as a carbon fiber sizing to improve the interfacial adhesion between the carbon fiber and polyether sulfone (PES). The surface characteristics of PAA coated carbon fibers were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and dynamic contact angle measurement. The results demonstrated that a continuous and uniform PAA sizing layer was formed on the surface of carbon fibers, and the surface energy of carbon fibers increased from 42.91 to 54.55 mN/m after sizing treatment. The single fiber pull-out testing was also performed, which showed the increased interfacial shear strength (IFSS) of carbon fiber/PES composites from 33.6 to 49.7 MPa by 47.9%. The major reasons for the improved interfacial adhesion were the increased van der Waals forces between the PES matrix and sizing layer as well as the chemical bonding between the sizing layer and carbon fiber surface. Furthermore, the PAA sizing also presented a positive effect on the interfacial adhesion of carbon fiber/PES composites under hydrothermal condition.

  17. Cement replacement materials. Properties, durability, sustainability

    International Nuclear Information System (INIS)

    Ramezanianpour, Ali Akbar

    2014-01-01

    The aim of this book is to present the latest findings in the properties and application of Supplementary Cementing Materials and blended cements currently used in the world in concrete. Sustainability is an important issue all over the world. Carbon dioxide emission has been a serious problem in the world due to the greenhouse effect. Today many countries agreed to reduce the emission of CO2. Many phases of cement and concrete technology can affect sustainability. Cement and concrete industry is responsible for the production of 7% carbon dioxide of the total world CO2 emission. The use of supplementary cementing materials (SCM), design of concrete mixtures with optimum content of cement and enhancement of concrete durability are the main issues towards sustainability in concrete industry.

  18. The effect of varying alveolar carbon dioxide levels on free recall.

    Science.gov (United States)

    Marangoni, A H; Hurford, D P

    1990-05-01

    A recent study suggested that students who have increased minute ventilation receive poorer grades. The present study was interested in determining the role alveolar carbon dioxide (CO2) levels play with cognitive abilities. A free recall task was used to examine list learning under two conditions of alveolar CO2 level: normal and decreased. The results suggested that decreased alveolar CO2 level affect the participant's ability to rehearse and recall information. It was concluded that conditions that reduce alveolar CO2 levels, such as hyperventilation resulting from stress, nervousness, or inappropriate breathing habits, can lead to poorer learning. If these conditions produce a habitual breathing pattern, the academic performance of the individual may suffer.

  19. ADSORPTION PROPERTIES OF NICKEL-BASED MAGNETIC ACTIVATED CARBON PREPARED BY PD-FREE ELECTROLESS PLATING

    Directory of Open Access Journals (Sweden)

    Boyang Jia

    2011-02-01

    Full Text Available Nickel-based magnetic activated carbon was synthesized from coconut shell activated carbon by electroless plating with palladium-free activation. The effect of plating solution volume on metallic ratio and adsorption capacity were evaluated. The effect of metallic ratio on specific area, pore volume, and magnetic properties were investigated. The morphologies of activated carbon before and after plating were observed by SEM, and the composition of the layer was analyzed by EDS analysis. The results showed that the metallic ratio was increased with the increase of the plating solution volume. The magnetic activated carbon showed high adsorption capacity for methylene blue and a high iodine number. Those values reached 142.5 mg/g and 1035 mg/g, respectively. The specific area and pore volume decreased from 943 m2/g to 859 m2/g and 0.462 ml/g to 0.417 ml/g, respectively. And the layer was more compact and continuous when the metallic ratio reached 16.37 wt.%. In the layer, there was about 97 wt.% nickel and 3 wt.% phosphorus, which indicates that the layer was a low-phosphorus one. At the same time, magnetism was enhanced, making the product suitable for some special applications.

  20. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings.

    Science.gov (United States)

    Liao, Shaohua; Pan, Bo; Li, Hao; Zhang, Di; Xing, Baoshan

    2014-01-01

    Biochar can benefit human society as a carbon-negative material and soil amendment. However, negative biochar impacts on plant germination and growth have been observed, and they have not been fully explained. Therefore, protocols to avoid these risks cannot be proposed. We hypothesized that the free radicals generated during charring may inhibit plant germination and growth. Significant electron paramagnetic resonance (EPR) signals were observed in the biochars derived from several types of common biomass (corn stalk, rice, and wheat straws) and the major biopolymer components of biomass (cellulose and lignin), but not in the original materials, suggesting the ubiquitous presence of free radicals in biochars. EPR signal intensity increased with increasing pyrolysis temperature, and it was dominantly contributed by oxygen centered in the mixture of oxygen- and carbon-centered free radicals as the temperature increased. The free radicals in biochars induced strong ·OH radicals in the aqueous phase. Significant germination inhibition, root and shoot growth retardation and plasma membrane damage were observed for biochars with abundant free radicals. Germination inhibition and plasma membrane damage were not obvious for biochars containing low free radicals, but they were apparent at comparable concentrations of conventional contaminants, such as heavy metals and polyaromatic hydrocarbons. The potential risk and harm of relatively persistent free radicals in biochars must be addressed to apply them safely.

  1. Investigating supply chain sustainability in South African organisations

    Directory of Open Access Journals (Sweden)

    Gabrielle Niehaus

    2018-02-01

    Full Text Available Background: The need for sustainable supply chain management has become a necessity given the growing impact of climate change and global warming. The South African (SA government is planning to implement a carbon tax in the future, which will present financial challenges for organisations already facing social and environmental difficulties. Objectives: The main objective of this article was to investigate the current sustainability reporting practices in supply chains of SA organisations. The focus was specifically on the supply chain sustainability practices of organisations listed in selected sectors on the Johannesburg Stock Exchange (JSE. A secondary objective was to investigate preparation efforts by SA companies for the impending carbon tax. Method: Data collected from sustainability and integrated annual reports of organisations in the sample were analysed using non-parametric statistical tests to compare sectors on the JSE and to compare companies listed on the socially responsible investment (SRI Index with those that are not. Results: The results showed that there is insufficient data for some of the sectors; however, there are differences in the supply chain and sustainability practices for the remaining sectors. There are also differences in these practices between SRI and non-SRI companies. The research also showed that companies are discussing important concepts relating to the implementation of the impending carbon tax. Research impact: SA organisations need to increase their focus on sustainable supply chain practices. Further investigation into the preparation efforts of companies to reduce their emissions and/or footprint and mitigate the impact of the impending carbon tax is necessary.

  2. Comparative assessment of different energy sources and their potential role in long-term sustainable energy mix

    International Nuclear Information System (INIS)

    Kagramanian, V.S.

    2001-01-01

    In the debate on sustainable energy future, the role of nuclear power is a contentious issue. Many, who are outside of the nuclear community, do not even consider nuclear, because of public concerns on nuclear safety, radioactive waste and non-proliferation issues. For example, the United Nations Development Program, in its document Energy After Rio does not suggest a specific role for nuclear power except in the most doubtful of terms. On the contrary, most nuclear organisations and related industries see nuclear power as the only mature carbon-free electricity generating option that can be deployed even on a much larger scale than today. This paper analyses the potential role of nuclear power in the context of the global sustainable energy future. The fundamental features of sustainable energy development are examined in terms of the following compatibility constraints: Demand driven compatibility; Natural resource compatibility; Environmental compatibility; Geopolitical compatibility; and Economic compatibility

  3. Providing safe drinking water to 1.2 billion unserved people

    Energy Technology Data Exchange (ETDEWEB)

    Gadgil, Ashok J.; Derby, Elisabeth A.

    2003-06-01

    Despite substantial advances in the past 100 years in public health, technology and medicine, 20% of the world population, mostly comprised of the poor population segments in developing countries (DCs), still does not have access to safe drinking water. To reach the United Nations (UN) Millennium Goal of halving the number of people without access to safe water by 2015, the global community will need to provide an additional one billion urban residents and 600 million rural residents with safe water within the next twelve years. This paper examines current water treatment measures and implementation methods for delivery of safe drinking water, and offers suggestions for making progress towards the goal of providing a timely and equitable solution for safe water provision. For water treatment, based on the serious limitations of boiling water and chlorination, we suggest an approach based on filtration coupled with ultraviolet (UV) disinfection, combined with public education. Additionally, owing to the capacity limitations for non-governmental organizations (NGOs) to take on this task primarily on their own, we suggest a strategy based on financially sustainable models that include the private sector as well as NGOs.

  4. Sustainable nanomaterials using waste agricultural residues

    Science.gov (United States)

    Sustainable synthetic processes developed during the past two decades involving the use of alternate energy inputs and greener reaction media are summarized. Learning from nature, one can produce a wide variety of nanoparticles using completely safe and benign materials such as ...

  5. Transforming cities towards sustainable low-carbon energy systems using emergy synthesis for support in decision making

    International Nuclear Information System (INIS)

    Lugaric, Luka; Krajcar, Slavko

    2016-01-01

    Recognized as implementation actors of operative measures for transition towards a low carbon economy, cities must establish a development roadmap integrating local resources with local energy development plans. A systematic approach does not exist yet and cities develop their plans individually, which is difficult for small and medium sized cities due to limited development capacities. Conventional city planning approaches do not integrate considerations on energy, economy and environment in transition plans in an easily comparable way, yet making decisions with regards to these parameters is vital to determine outcomes of planned developments on future sustainability of the city. The paper presents a framework model based on emergy synthesis which integrates energy, economic and environmental city systems in the decision making process, examining associated theoretical challenges and application limitations. The method is applied on the city of Sisak in Croatia which has developed plans to implement several initiatives geared towards creating a smart energy city. The model enables simulation and assessment of impacts of individual projects targeting the development of a smart energy city on city sustainability expressed through emergy performance, used as a tool for evaluating local development alternatives within the boundary of local resources. - Highlights: • Key concepts of present city development trends towards sustainability are examined. • Emergy synthesis is examined and applied as a tool for policy and decision makers. • Emergy model of a small city is developed, along with submodels for renewable energy sources and buildings. • Simulation of 5 different projects shows impacts on overall city sustainability in a comparable manner. • Increase in emergy sustainability index is confirmed after presumed implementation of simulated projects.

  6. Safe sex

    Science.gov (United States)

    ... sex; Sexually transmitted - safe sex; GC - safe sex; Gonorrhea - safe sex; Herpes - safe sex; HIV - safe sex; ... contact. STIs include: Chlamydia Genital herpes Genital warts Gonorrhea Hepatitis HIV HPV Syphilis STIs are also called ...

  7. Enabling Factors for Sustaining Open Defecation-Free Communities in Rural Indonesia: A Cross-Sectional Study.

    Science.gov (United States)

    Odagiri, Mitsunori; Muhammad, Zainal; Cronin, Aidan A; Gnilo, Michael E; Mardikanto, Aldy K; Umam, Khaerul; Asamou, Yameha T

    2017-12-14

    Community Approaches to Total Sanitation (CATS) programmes, like the Sanitasi Total Berbasis Masyarakat (STBM) programme of the Government of Indonesia, have played a significant role in reducing open defecation though still little is known about the sustainability of the outcomes. We assessed the sustainability of verified Open Defecation Free (ODF) villages and explored the association between slippage occurrence and the strength of social norms through a government conducted cross-sectional data collection in rural Indonesia. The study surveyed 587 households and held focus group discussions (FGDs) in six ODF villages two years after the government's ODF verification. Overall, the slippage rate (i.e., a combination of sub-optimal use of a latrine and open defecation at respondent level) was estimated to be 14.5% (95% CI 11.6-17.3). Results of multivariate logistic regression analyses indicated that (1) weaker social norms, as measured by respondents' perceptions around latrine ownership coverage in their community, (2) a lack of all-year round water access, and (3) wealth levels (i.e., not being in the richest quintile), were found to be significantly associated with slippage occurrence. These findings, together with qualitative analysis, concluded that CATS programmes, including a combination of demand creation, removal of perceived constraints through community support mechanisms, and continued encouragement to pursue higher levels of services with post-ODF follow-up, could stabilize social norms and help to sustain longer-term latrine usage in study communities. Further investigation and at a larger scale, would be important to strengthen these findings.

  8. Policy Case Study – Food Labelling: Climate for Sustainable Growth

    OpenAIRE

    Cosbey, Aaron; Marcu, Andrei; Belis, David; Stoefs, Wijnand; Tuokko, Katja

    2015-01-01

    This study, which is part of the project entitled “Climate for Sustainable Growth“, focuses on one particular policy tool used in the agricultural sector, food labelling. It reviews food carbon labelling when put in place with clear objectives to address climate change. This study examines whether food carbon labels, as climate mitigation tools, are put in place in a sustainable way, by identifying their impacts on the three dimensions of sustainable development: 1) economic 2) social and ...

  9. Sustaining a verification regime in a nuclear weapon-free world. VERTIC research report no. 4

    International Nuclear Information System (INIS)

    Moyland, S. van

    1999-01-01

    Sustaining high levels of commitment to and enthusiasm for the verification regime in a nuclear weapon-free world (NWFW) would be a considerable challenge, but the price of failure would be high. No verification system for a complete ban on a whole of weapon of mass destruction (WMD) has been in existence long enough to provide a precedent or the requisite experience. Nevertheless, lessons from the International Atomic Energy Agency's (IAEA) nuclear safeguards system are instructive. A potential problem over the long haul is the gradual erosion of the deterrent effect of verification that may result from the continual overlooking of minor instances of non-compliance. Flaws in the verification system must be identified and dealt with early lest they also corrode the system. To achieve this the verification organisation's inspectors and analytical staff will need sustained support, encouragement, resources and training. In drawing attention to weaknesses, they must be supported by management and at the political level. The leaking of sensitive information, either industrial or military, by staff of the verification regime is a potential problem. 'Managed access' techniques should be constantly examined and improved. The verification organisation and states parties will need to sustain close co-operation with the nuclear and related industries. Frequent review mechanisms must be established. States must invest time and effort to make them effective. Another potential problem is the withering of resources for sustained verification. Verification organisations tend to be pressured by states to cut or last least cap costs, even if the verification workload increases. The verification system must be effective as knowledge and experience allows. The organisation will need continuously to update its scientific methods and technology. This requires in-house resources plus external research and development (R and D). Universities, laboratories and industry need incentives to

  10. Mechanochemical conversion of brominated POPs into useful oxybromides: a greener approach

    Science.gov (United States)

    Cagnetta, Giovanni; Liu, Han; Zhang, Kunlun; Huang, Jun; Wang, Bin; Deng, Shubo; Wang, Yujue; Yu, Gang

    2016-06-01

    Brominated organic pollutants are considered of great concern for their adverse effect on human health and the environment, so an increasing number of such compounds are being classified as persistent organic pollutants (POPs). Mechanochemical destruction is a promising technology for POPs safe disposal because it can achieve their complete carbonization by solvent-free high energy ball milling at room temperature. However, a large amount of co-milling reagent usually is necessary, so a considerable volume of residue is produced. In the present study a different approach to POPs mechanochemical destruction is proposed. Employing stoichiometric quantities of Bi2O3 or La2O3 as co-milling reagent, brominated POPs are selectively and completely converted into their corresponding oxybromides (i.e. BiOBr and LaOBr), which possess very peculiar properties and can be used for some actual and many more potential applications. In this way, bromine is beneficially reused in the final product, while POPs carbon skeleton is safely destroyed to amorphous carbon. Moreover, mechanochemical destruction is employed in a greener and more sustainable manner.

  11. Free-hand ultrasound guidance permits safe and efficient minimally invasive intrathymic injections in both young and aged mice.

    Science.gov (United States)

    Tuckett, Andrea Z; Zakrzewski, Johannes L; Li, Duan; van den Brink, Marcel R M; Thornton, Raymond H

    2015-04-01

    The goal of this study was to evaluate whether use of an aseptic free-hand approach to ultrasound-guided injection facilitates injection into the thymic gland in mice. We used this interventional radiology technique in young, aged and immunodeficient mice and found that the thymus was visible in all cases. The mean injection period was 8 seconds in young mice and 19 seconds in aged or immunodeficient mice. Injection accuracy was confirmed by intrathymic location of an injected dye or by in vivo bioluminescence imaging of injected luciferase-expressing cells. Accurate intrathymic injection was confirmed in 97% of cases. No major complications were observed. We conclude that an aseptic freehand technique for ultrasound-guided intrathymic injection is safe and accurate and reduces the time required for intrathymic injections. This method facilitates large-scale experiments and injection of individual thymic lobes and is clinically relevant. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Delineating a sustainable future

    International Nuclear Information System (INIS)

    Brown, Lester R

    1996-01-01

    The expression Develop Sustainable of wide use today in day is used among national political leaders and among environmentalists. The sustainable economy from the environmental point of view is that that obeys the basic principles or laws of the sustainability; principles so real as those of the aerodynamic one or those of the thermodynamic. If somebody intends, for example, to design an airplane, it will have to be adjusted to the aerodynamic principles and to print to the apparatus a certain stability degree so that it can fly. In the same way, an economic system environmentally sustainable it must respond to the balance principles if it doesn't want to be condemned to the failure. The fundamental laws or sustainability principles are as rigorous as the aerodynamic laws. The society can violate these laws in the short term; but not long term. As well as an airplane can lose height in a brief lapse without falling; the economy can violate the principles of the sustainability in the short term without collapsing. Among of the sustainability principles figure the following: long term; the extinction of species cannot exceed the evolution of the species; the soil erosion cannot exceed the soils formation; the destruction of forests cannot exceed the regeneration of the forests; the emissions of carbon cannot exceed the fixation of carbon; the fishing cannot exceed the regenerative capacity of the banks of fish and, in the human land, the morbidity cannot exceed the mortality. The author also speaks of the disappearance of species, ozone layer, stability of the climate, earth, water fertilizers and alimentary systems among others

  13. Chemistry of sustainable energy

    CERN Document Server

    Carpenter, Nancy E

    2014-01-01

    Energy BasicsWhat Is Energy?Energy, Technology, and SustainabilityEnergy Units, Terms, and AbbreviationsElectricity Generation and StorageOther ResourcesReferencesFossil FuelsFormation of Oil and GasExtraction of Fossil FuelsRefiningCarbon Capture and StorageSummaryOther ResourcesOnline Resources Related to Carbon Capture andSequestrationReferencesThermodynamicsIntroductionThe First Law of ThermodynamicsThe Second Law and Thermodynamic Cycles: the Carnot EfficiencyExerg

  14. Mifrenz: Safe email for children

    Directory of Open Access Journals (Sweden)

    Tim Hunt

    Full Text Available Products currently available for monitoring children\\'s email usage are either considered to encourage dubious ethical behaviour or are time consuming for parents to administer. This paper describes the development of a new email client application for children called Mifrenz. This new application gives parents the ability to let their children safely use email, with the minimum of intervention. It was developed using mostly free software and also with the desire to provide real first hand programming examples to demonstrate to students.

  15. Graphene on silicon dioxide via carbon ion implantation in copper with PMMA-free transfer

    Science.gov (United States)

    Lehnert, Jan; Spemann, Daniel; Hamza Hatahet, M.; Mändl, Stephan; Mensing, Michael; Finzel, Annemarie; Varga, Aron; Rauschenbach, Bernd

    2017-06-01

    In this work, a synthesis method for the growth of low-defect large-area graphene using carbon ion beam implantation into metallic Cu foils is presented. The Cu foils (1 cm2 in size) were pre-annealed in a vacuum at 950 °C for 2 h, implanted with 35 keV carbon ions at room temperature, and subsequently annealed at 850 °C for 2 h to form graphene layers with the layer number controlled by the implantation fluence. The graphene was then transferred to SiO2/Si substrates by a PMMA-free wet chemical etching process. The obtained regions of monolayer graphene are of ˜900 μm size. Raman spectroscopy, atomic force microscopy, scanning electron microscopy, and optical microscopy performed at room temperature demonstrated a good quality and homogeneity of the graphene layers, especially for monolayer graphene.

  16. COMPANION ANIMALS SYMPOSIUM: Rendered ingredients significantly influence sustainability, quality, and safety of pet food.

    Science.gov (United States)

    Meeker, D L; Meisinger, J L

    2015-03-01

    The rendering industry collects and safely processes approximately 25 million t of animal byproducts each year in the United States. Rendering plants process a variety of raw materials from food animal production, principally offal from slaughterhouses, but include whole animals that die on farms or in transit and other materials such as bone, feathers, and blood. By recycling these byproducts into various protein, fat, and mineral products, including meat and bone meal, hydrolyzed feather meal, blood meal, and various types of animal fats and greases, the sustainability of food animal production is greatly enhanced. The rendering industry is conscious of its role in the prevention of disease and microbiological control and providing safe feed ingredients for livestock, poultry, aquaculture, and pets. The processing of otherwise low-value OM from the livestock production and meat processing industries through rendering drastically reduces the amount of waste. If not rendered, biological materials would be deposited in landfills, burned, buried, or inappropriately dumped with large amounts of carbon dioxide, ammonia, and other compounds polluting air and water. The majority of rendered protein products are used as animal feed. Rendered products are especially valuable to the livestock and pet food industries because of their high protein content, digestible AA levels (especially lysine), mineral availability (especially calcium and phosphorous), and relatively low cost in relation to their nutrient value. The use of these reclaimed and recycled materials in pet food is a much more sustainable model than using human food for pets.

  17. Surface modification of carbon nanotubes via combination of mussel inspired chemistry and chain transfer free radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Qing; Tian, Jianwen; Liu, Meiying; Zeng, Guangjian; Huang, Qiang [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wang, Ke; Zhang, Qingsong [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2015-08-15

    Graphical abstract: A novel strategy combination of mussel inspired chemistry and chain transfer free radical polymerization has been developed for surface modification of carbon nanotubes with polymers for the first time. - Highlights: • Surface modification of CNTs via mussel inspired chemistry. • Preparation of aminated polymers through free radical polymerization. • Functionalized CNTs with aminated polymers via Michael addition reaction. • Highly dispersed CNTs in organic and aqueous solution. - Abstract: In this work, a novel strategy for surface modification of carbon nanotubes (CNTs) was developed via combination of mussel inspired chemistry and chain transfer free radical polymerization. First, pristine CNTs were functionalized with polydopamine (PDA), which is formed via self-polymerization of dopamine in alkaline conditions. These PDA functionalized CNTs can be further reacted with amino-terminated polymers (named as PDMC), which was synthesized through chain transfer free radical polymerization using cysteamine hydrochloride as chain transfer agent and methacryloxyethyltrimethyl ammonium chloride as the monomer. PDMC perfectly conjugated with CNT-PDA was ascertained by a series of characterization techniques including transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The dispersibility of obtained CNT nanocomposites (named as CNT-PDA-PDMC) was further examined. Results showed that the dispersibility of CNT-PDA-PDMC in aqueous and organic solutions was obviously enhanced. Apart from PDMC, many other amino-terminated polymers can also be used to functionalization of CNTs via similar strategy. Therefore, the method described in this work should be a general strategy for fabrication various polymer nanocomposites.

  18. Nitrogen-Doped Banana Peel–Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors

    OpenAIRE

    Bingzhi Liu; Lili Zhang; Peirong Qi; Mingyuan Zhu; Gang Wang; Yanqing Ma; Xuhong Guo; Hui Chen; Boya Zhang; Zhuangzhi Zhao; Bin Dai; Feng Yu

    2016-01-01

    Nitrogen-doped banana peel?derived porous carbon foam (N-BPPCF) successfully prepared from banana peels is used as a binder-free electrode for supercapacitors. The N-BPPCF exhibits superior performance including high specific surface areas of 1357.6 m2/g, large pore volume of 0.77 cm3/g, suitable mesopore size distributions around 3.9 nm, and super hydrophilicity with nitrogen-containing functional groups. It can easily be brought into contact with an electrolyte to facilitate electron and io...

  19. Suitability of selected free-gas and dissolved-gas sampling containers for carbon isotopic analysis.

    Science.gov (United States)

    Eby, P; Gibson, J J; Yi, Y

    2015-07-15

    Storage trials were conducted for 2 to 3 months using a hydrocarbon and carbon dioxide gas mixture with known carbon isotopic composition to simulate typical hold times for gas samples prior to isotopic analysis. A range of containers (both pierced and unpierced) was periodically sampled to test for δ(13)C isotopic fractionation. Seventeen containers were tested for free-gas storage (20°C, 1 atm pressure) and 7 containers were tested for dissolved-gas storage, the latter prepared by bubbling free gas through tap water until saturated (20°C, 1 atm) and then preserved to avoid biological activity by acidifying to pH 2 with phosphoric acid and stored in the dark at 5°C. Samples were extracted using valves or by piercing septa, and then introduced into an isotope ratio mass spectrometer for compound-specific δ(13)C measurements. For free gas, stainless steel canisters and crimp-top glass serum bottles with butyl septa were most effective at preventing isotopic fractionation (pierced and unpierced), whereas silicone and PTFE-butyl septa allowed significant isotopic fractionation. FlexFoil and Tedlar bags were found to be effective only for storage of up to 1 month. For dissolved gas, crimp-top glass serum bottles with butyl septa were again effective, whereas silicone and PTFE-butyl were not. FlexFoil bags were reliable for up to 2 months. Our results suggest a range of preferred containers as well as several that did not perform very well for isotopic analysis. Overall, the results help establish better QA/QC procedures to avoid isotopic fractionation when storing environmental gas samples. Recommended containers for air transportation include steel canisters and glass serum bottles with butyl septa (pierced and unpierced). Copyright © 2015 John Wiley & Sons, Ltd.

  20. Enhanced Electrochemical Performance of Electrospun Ag/Hollow Glassy Carbon Nanofibers as Free-standing Li-ion Battery Anode

    International Nuclear Information System (INIS)

    Shilpa; Sharma, Ashutosh

    2015-01-01

    Silver with a high theoretical capacity for lithium storage is an attractive alloy based anode for Li-ion batteries, but large volume changes associated with AgLi x alloy formation leads to electrode cracking, pulverization and rapid capacity fading. A buffer matrix, like the electrospun hollow carbon nanofibers, can reduce this problem to a great extent. Herein, we demonstrate the facile synthesis of a free-standing, binder free Ag-C hybrid electrode through co-axial electrospinning, where well dispersed Ag nanoparticles are embedded in hollow carbon nanofibers. Using this approach, the long cycle life of carbon is complemented with the high lithium storage capacity of Ag, resulting in a high performance anode. The Ag-C composite electrode delivers a capacity of 739 mAh g −1 (>conventional graphite anodes) at 50 mA g −1 , with ∼85% capacity retention after 100 cycles. In addition, the Ag-C composite nanofibers are highly porous and exhibit a large accessible surface area (∼726.9 m 2 g −1 ) with an average pore diameter of ∼6.07 nm. The encapsulation of Ag in the hollow interiors not only provides additional lithium storage sites but also enhances the electronic conductivity, which combined with the reduced lithium diffusion path lengths in the nanofibers result in faster charge-discharge kinetics and hence a high rate performance

  1. Safe Handover : Safe Patients – The Electronic Handover System

    Science.gov (United States)

    Till, Alex; Sall, Hanish; Wilkinson, Jonathan

    2014-01-01

    Failure of effective handover is a major preventable cause of patient harm. We aimed to promote accurate recording of high-quality clinical information using an Electronic Handover System (EHS) that would contribute to a sustainable improvement in effective patient care and safety. Within our hospital the human factors associated with poor communication were compromising patient care and unnecessarily increasing the workload of staff due to the poor quality of handovers. Only half of handovers were understood by the doctors expected to complete them, and more than half of our medical staff felt it posed a risk to patient safety. We created a standardised proforma for handovers that contained specific sub-headings, re-classified patient risk assessments, and aided escalation of care by adding prompts for verbal handover. Sources of miscommunication were removed, accountability for handovers provided, and tasks were re-organised to reduce the workload of staff. Long-term, three-month data showed that each sub-heading achieved at least 80% compliance (an average improvement of approximately 40% for the overall quality of handovers). This translated into 91% of handovers being subjectively clear to junior doctors. 87% of medical staff felt we had reduced a risk to patient safety and 80% felt it increased continuity of care. Without guidance, doctors omit key information required for effective handover. All organisations should consider implementing an electronic handover system as a viable, sustainable and safe solution to handover of care that allows patient safety to remain at the heart of the NHS. PMID:26734244

  2. Fabrication and electrochemical properties of free-standing single-walled carbon nanotube film electrodes

    International Nuclear Information System (INIS)

    Niu Zhi-Qiang; Ma Wen-Jun; Dong Hai-Bo; Li Jin-Zhu; Zhou Wei-Ya

    2011-01-01

    An easily manipulative approach was presented to fabricate electrodes using free-standing single-walled carbon nanotube (SWCNT) films grown directly by chemical vapor deposition. Electrochemical properties of the electrodes were investigated. In comparison with the post-deposited SWCNT papers, the directly grown SWCNT film electrodes manifested enhanced electrochemical properties and sensitivity of sensors as well as excellent electrocatalytic activities. A transition from macroelectrode to nanoelectrode behaviours was observed with the increase of scan rate. The heat treatment of the SWCNT film electrodes increased the current signals of electrochemical analyser and background current, because the heat-treatment of the SWCNTs in air could create more oxide defects on the walls of the SWCNTs and make the surfaces of SWCNTs more hydrophilic. The excellent electrochemical properties of the directly grown and heat-treated free-standing SWCNT film electrodes show the potentials in biological and electrocatalytic applications. (cross-disciplinary physics and related areas of science and technology)

  3. Three-dimensional free-standing carbon nanotubes for a flexible lithium-ion battery anode

    International Nuclear Information System (INIS)

    Kang, Chiwon; Cha, Eunho; Baskaran, Rangasamy; Choi, Wonbong

    2016-01-01

    Flexible lithium-ion batteries (LIBs) have received considerable attention as energy sources for wearable electronics. In recent years, much effort has been devoted to study light-weight, robust, and flexible electrodes. However, high areal and volumetric capacities need to be achieved for practical power and energy densities. In this paper, we report the use of three-dimensional (3D) free-standing carbon nanotubes (CNTs) as a current collector-free anode to demonstrate flexible LIBs with enhanced areal and volumetric capacities. High density CNTs grown on copper (Cu) mesh are transferred to a flexible graphene/polyethylene terephthalate  film and integrated into a flexible LIB. A fully flexible LIB cell integrated with the 3D CNT anode delivers a high areal capacity of 0.25 mAh cm"−"2 at 0.1C and shows fairly consistent open circuit voltage under bending. These findings may provide significant advances in the application of flexible LIB based electronic devices. (paper)

  4. Sustained release of simvastatin from hollow carbonated hydroxyapatite microspheres prepared by aspartic acid and sodium dodecyl sulfate.

    Science.gov (United States)

    Wang, Ke; Wang, Yinjing; Zhao, Xu; Li, Yi; Yang, Tao; Zhang, Xue; Wu, Xiaoguang

    2017-06-01

    Hollow carbonated hydroxyapatite (HCHAp) microspheres as simvastatin (SV) sustained-release vehicles were fabricated through a novel and simple one-step biomimetic strategy. Firstly, hollow CaCO 3 microspheres were precipitated through the reaction of CaCl 2 with Na 2 CO 3 in the presence of aspartic acid and sodium dodecyl sulfate. Then, the as-prepared hollow CaCO 3 microspheres were transformed into HCHAp microspheres with a controlled anion-exchange method. The HCHAp microspheres were 3-5μm with a shell thickness of 0.5-1μm and were constructed of short needle nanoparticles. The HCHAp microspheres were then loaded with SV, exhibiting excellent drug-loading capacity and sustained release properties. These results present a new material synthesis strategy for HCHAp microspheres and suggest that the as-prepared HCHAp microspheres are promising for applications in drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Carbon Footprint estimation for a Sustainable Improvement of Supply Chains: State of the Art

    Directory of Open Access Journals (Sweden)

    Pilar Cordero

    2013-07-01

    Full Text Available Purpose: This paper examines the current methodologies and approaches developed to estimate carbon footprint in supply chains and the studies existing in the literature review about the application of these methodologies and other new approaches proposed by some authors.Design/methodology/approach: Literature review about methodologies developed by some authors for determining greenhouse gases emissions throughout the supply chain of a given sector or organization.Findings and Originality/value: Due to its usefulness for the design and management of a sustainable supply chain management, methodologies for calculating carbon footprint across the supply chain are recommended by many authors not only to reduce GHG emissions but also to optimize it in a cost-effective manner. Although these approaches are in first stages of development and the literature is scarce, different methodologies for estimating CF emissions which include EIO analysis models and standardized methods and guidance have been developed, some of them applicable to supply chains especially methodologies for calculating CF of a specific economic sector supply chain in a territory or country and for calculating CF of an organization applicable to the estimation of GHG emissions of a specific company supply chain.

  6. Novel Agricultural Conservation System with Sustained Yield and Decreased Water, Nutrient, Energy, and Carbon Footprints

    Science.gov (United States)

    Hansen, K.; Shukla, S.; Holt, N.; Hendricks, G.; Sishodia, R. P.

    2017-12-01

    Fresh fruits and vegetables are conventionally grown in raised bed plasticulture (RBP), a high intensity, high input, and high output production system. In 2016, the fresh market plasticulture industry covered 680,000 ha in the US, producing crops (e.g. tomato, peppers, melons, and strawberries) valued at ten billion dollars. To meet the increasing future demand for fresh fruits and vegetables and sustain the production potential of croplands, a transformation of the conventional food-water-energy nexus is essential. A novel agricultural conservation system, compact bed geometry, has been proposed to shift the paradigm in RBP, sustaining yield and decreasing inputs (e.g. water, nutrients, energy, and carbon). Compact bed geometries fit the shape of the wetting front created when water is applied through drip irrigation on the production soil, creating a taller (23-30 cm) and thinner bed (66-41 cm). Two seasons of tomato (single row) and pepper (double row) production, in the environmentally fragile watershed of the Florida Everglades, highlight the potential impact of compact bed geometry on environmental sustainability in agricultural production. No difference in plant growth or yield was detected, with a reduction of 5-50% in irrigation water, up to 20% less N application, 12% less P, 20% less K, and 5-15% less carbon dioxide emissions. The hydrologic benefits of compact bed geometry include 26% less runoff generation, decreased need for active drainage pumping, and increased residence time for irrigation water within the bed, overall decreasing instances of nutrient leaching. A water related co-benefit observed was a reduction in the occurrences of Phytophthora capsici in pepper, which has the potential to reduce yield by as much as 70%. Non-water co-benefits include up to a 250/ ha reduction in production cost, with the potential to save the industry 200 million dollars annually. This economic benefit has led to rapid industry adoption, with more than 20

  7. Preparation of nitrogen-doped biomass-derived carbon nanofibers/graphene aerogel as a binder-free electrode for high performance supercapacitors

    Science.gov (United States)

    Zhang, Yimei; Wang, Fei; Zhu, Hao; Zhou, Lincheng; Zheng, Xinliang; Li, Xinghua; Chen, Zhuang; Wang, Yue; Zhang, Dandan; Pan, Duo

    2017-12-01

    Carbon materials derived from various biomasses have aroused forceful interest from scientific community based on their abundant resource, low cost, environment friendly and easy fabrication. Herein, the method has been developed to prepare nitrogen-doped biomass-derived carbon nanofibers/graphene aerogel (NCGA) as the binder-free electrode for supercapacitors. Ethylenediamine (EDA) is select as nitrogen source for its high nitrogen content and strong interaction with graphene oxide (GO) and cellulose nanofibers (CNFs) via hydrothermal self-assembly method to form hybrid hydrogel, and finally converts to NCGA by freeze-drying and carbonization. After carbonization the insulated CNFs converted to high conductivity carbon nanofibers. The NCGA electrode exhibits a high specific capacitance of 289 F g-1 at 5 mV s-1 and high stability of 90.5% capacitance retention ratio after 5000 cycles at 3 A g-1. This novel biomass electrode could be potential candidate for high performance supercapacitors.

  8. On the Market Failures during the Development of Low-Carbon Economy

    Institute of Scientific and Technical Information of China (English)

    LU Xian-xiang; KE Zan-xian; ZHANG Yi

    2014-01-01

    Greenhouse gas emissions and the development of low-carbon economy are the biggest market failures,which are mainly manifested in such problems as the low-carbon economy being the world's largest externality,the low-carbon economy being the global public goods,and the free-rider along the development of low-carbon economy.The major reason for the market failures during the development of low-carbon economy is lacking of secured property ownership as well as the greenhouse effect.Thus,in order to establish secured property rights through institutional innovation,it is necessary not only to reduce the exploitation of fossil fuels from the source,but also to allocate the emission rights fairly.To develop the low-carbon economy is faced with market failures,but we can not therefore deny the basic roles of the market mechanism in the development of low-carbon economy,rather to correct and adjust the market through institutional innovations,so as to facilitate the establishment and operation of the low-carbon economy.For the sake of the sustainable development of human society,we have to adjust or change the rules of the resource allocation in the market economy,embedding such factors as emission reduction,low-carbon,environmental protection,etc.into the institutional framework of the market via rules,systems and policies.

  9. Hydrogen production using thermocatalytic decomposition of methane on Ni30/activated carbon and Ni30/carbon black.

    Science.gov (United States)

    Srilatha, K; Viditha, V; Srinivasulu, D; Ramakrishna, S U B; Himabindu, V

    2016-05-01

    Hydrogen is an energy carrier of the future need. It could be produced from different sources and used for power generation or as a transport fuel which mainly in association with fuel cells. The primary challenge for hydrogen production is reducing the cost of production technologies to make the resulting hydrogen cost competitive with conventional fuels. Thermocatalytic decomposition (TCD) of methane is one of the most advantageous processes, which will meet the future demand, hence an attractive route for COx free environment. The present study deals with the production of hydrogen with 30 wt% of Ni impregnated in commercially available activated carbon and carbon black catalysts (samples coded as Ni30/AC and Ni30/CB, respectively). These combined catalysts were not attempted by previous studies. Pure form of hydrogen is produced at 850 °C and volume hourly space velocity (VHSV) of 1.62 L/h g on the activity of both the catalysts. The analysis (X-ray diffraction (XRD)) of the catalysts reveals moderately crystalline peaks of Ni, which might be responsible for the increase in catalytic life along with formation of carbon fibers. The activity of carbon black is sustainable for a longer time compared to that of activated carbon which has been confirmed by life time studies (850 °C and 54 sccm of methane).

  10. Supercritical Carbon Dioxide and Its Potential as a Life-Sustaining Solvent in a Planetary Environment

    Directory of Open Access Journals (Sweden)

    Nediljko Budisa

    2014-08-01

    Full Text Available Supercritical fluids have different properties compared to regular fluids and could play a role as life-sustaining solvents on other worlds. Even on Earth, some bacterial species have been shown to be tolerant to supercritical fluids. The special properties of supercritical fluids, which include various types of selectivities (e.g., stereo-, regio-, and chemo-selectivity have recently been recognized in biotechnology and used to catalyze reactions that do not occur in water. One suitable example is enzymes when they are exposed to supercritical fluids such as supercritical carbon dioxide: enzymes become even more stable, because they are conformationally rigid in the dehydrated state. Furthermore, enzymes in anhydrous organic solvents exhibit a “molecular memory”, i.e., the capacity to “remember” a conformational or pH state from being exposed to a previous solvent. Planetary environments with supercritical fluids, particularly supercritical carbon dioxide, exist, even on Earth (below the ocean floor, on Venus, and likely on Super-Earth type exoplanets. These planetary environments may present a possible habitat for exotic life.

  11. 48 CFR 970.2301 - Sustainable acquisition.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Sustainable acquisition. 970.2301 Section 970.2301 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY..., Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2301 Sustainable acquisition...

  12. Fundamentals of sustainable neighbourhoods

    CERN Document Server

    Friedman, Avi

    2015-01-01

    This book introduces architects, engineers, builders, and urban planners to a range of design principles of sustainable communities and illustrates them with outstanding case studies. Drawing on the author’s experience as well as local and international case studies, Fundamentals of Sustainable Neighbourhoods presents planning concepts that minimize developments' carbon footprint through compact communities, adaptable and expandable dwellings, adaptable landscapes, and smaller-sized yet quality-designed housing. This book also: Examines in-depth global strategies for minimizing the residential carbon footprint, including district heating, passive solar gain, net-zero residences, as well as preserving the communities' natural assets Reconsiders conceptual approaches in building design and urban planning to promote a better connection between communities and nature Demonstrates practical applications of green architecture Focuses on innovative living spaces in urban environments

  13. The road to sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, John L [Los Alamos National Laboratory; Crabtree, George [ANL

    2009-01-01

    carbon dioxide that threaten climate stability. Some alternatives to fossil fuels have their own degrees of potential harm, including the underground migration and leakage of sequestered carbon dioxide and the hazards of storing spent nuclear fuel. The third and most strict criterion for sustainability is 'leaves no change'. When the material outputs of energy generation and use are recycled to replace the inputs, the chemical cycle is said to be closed and the chemical state of the world is unchanged. The process of converting renewable energy sources like sunlight and wind to carriers like hydrogen or electricity comes closest to fulfilling this restrictive definition. Fossil energy systems, in contrast, usually operate as once-through processes, irreversibly converting hydrocarbons to carbon dioxide and water. Some such systems could, however, be retrofitted to collect and recycle the combustion products to make new hydrocarbon fuel. If this process used the Sun as its energy source, fossil fuels, too, could meet this criterion.

  14. Contrasting behavior of covalent and molecular carbon allotropes exposed to extreme ultraviolet and soft x-ray free-electron laser radiation

    Science.gov (United States)

    Toufarová, M.; Hájková, V.; Chalupský, J.; Burian, T.; Vacík, J.; Vorlíček, V.; Vyšín, L.; Gaudin, J.; Medvedev, N.; Ziaja, B.; Nagasono, M.; Yabashi, M.; Sobierajski, R.; Krzywinski, J.; Sinn, H.; Störmer, M.; Koláček, K.; Tiedtke, K.; Toleikis, S.; Juha, L.

    2017-12-01

    All carbon materials, e.g., amorphous carbon (a-C) coatings and C60 fullerene thin films, play an important role in short-wavelength free-electron laser (FEL) research motivated by FEL optics development and prospective nanotechnology applications. Responses of a-C and C60 layers to the extreme ultraviolet (SPring-8 Compact SASE Source in Japan) and soft x-ray (free-electron laser in Hamburg) free-electron laser radiation are investigated by Raman spectroscopy, differential interference contrast, and atomic force microscopy. A remarkable difference in the behavior of covalent (a-C) and molecular (C60) carbonaceous solids is demonstrated under these irradiation conditions. Low thresholds for ablation of a fullerene crystal (estimated to be around 0.15 eV/atom for C60 vs 0.9 eV/atom for a-C in terms of the absorbed dose) are caused by a low cohesive energy of fullerene crystals. An efficient mechanism of the removal of intact C60 molecules from the irradiated crystal due to Coulomb repulsion of fullerene-cage cation radicals formed by the ionizing radiation is revealed by a detailed modeling.

  15. Lean maturity, lean sustainability

    DEFF Research Database (Denmark)

    Jørgensen, Frances; Matthiesen, Rikke; Nielsen, Jacob

    2007-01-01

    . A framework for describing levels of lean capability is presented, based on a brief review of the literature and experiences from 12 Danish companies currently implementing lean. Although still in its emerging phase, the framework contributes to both theory and practice by describing developmental stages......Although lean is rapidly growing in popularity, its implementation is far from problem free and companies may experience difficulties sustaining long term success. In this paper, it is suggested that sustainable lean requires attention to both performance improvement and capability development...... that support lean capability development and consequently, lean sustainability....

  16. From melamine sponge towards 3D sulfur-doping carbon nitride as metal-free electrocatalysts for oxygen reduction reaction

    Science.gov (United States)

    Xu, Jingjing; Li, Bin; Li, Songmei; Liu, Jianhua

    2017-07-01

    Development of new and efficient metal-free electrocatalysts for replacing Pt to improve the sluggish kinetics of oxygen reduction reaction (ORR) is of great importance to emerging renewable energy technologies such as metal-air batteries and polymer electrolyte fuel cells. Herein, 3D sulfur-doping carbon nitride (S-CN) as a novel metal-free ORR electrocatalyst was synthesized by exploiting commercial melamine sponge as raw material. The sulfur atoms were doping on CN networks uniformly through numerous S-C bonds which can provide additional active sites. And it was found that the S-CN exhibited high catalytic activity for ORR in term of more positive onset potential, higher electron transfer number and higher cathodic density. This work provides a novel choice of metal-free ORR electrocatalysts and highlights the importance of sulfur-doping CN in metal-free ORR electrocatalysts.

  17. Renewable Hydrogen Carrier — Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    Directory of Open Access Journals (Sweden)

    Y.-H. Percival Zhang

    2011-01-01

    Full Text Available The hydrogen economy presents an appealing energy future but its implementation must solve numerous problems ranging from low-cost sustainable production, high-density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high-density hydrogen carrier and energy source for hydrogen production is possible due to emerging cell-free synthetic biology technology—cell-free synthetic pathway biotransformation (SyPaB. Assembly of numerous enzymes and co-enzymes in vitro can create complicated set of biological reactions or pathways that microorganisms or catalysts cannot complete, for example, C6H10O5 (aq + 7 H2O (l à 12 H2 (g + 6 CO2 (g (PLoS One 2007, 2:e456. Thanks to 100% selectivity of enzymes, modest reaction conditions, and high-purity of generated hydrogen, carbohydrate is a promising hydrogen carrier for end users. Gravimetric density of carbohydrate is 14.8 H2 mass% if water can be recycled from proton exchange membrane fuel cells or 8.33% H2 mass% without water recycling. Renewable carbohydrate can be isolated from plant biomass or would be produced from a combination of solar electricity/hydrogen and carbon dioxide fixation mediated by high-efficiency artificial photosynthesis mediated by SyPaB. The construction of this carbon-neutral carbohydrate economy would address numerous sustainability challenges, such as electricity and hydrogen storage, CO2 fixation and long-term storage, water conservation, transportation fuel production, plus feed and food production.

  18. Polyplex micelle installing intracellular self-processing functionalities without free catiomers for safe and efficient systemic gene therapy through tumor vasculature targeting.

    Science.gov (United States)

    Chen, Qixian; Osada, Kensuke; Ge, Zhishen; Uchida, Satoshi; Tockary, Theofilus A; Dirisala, Anjaneyulu; Matsui, Akitsugu; Toh, Kazuko; Takeda, Kaori M; Liu, Xueying; Nomoto, Takahiro; Ishii, Tekihiko; Oba, Makoto; Matsumoto, Yu; Kataoka, Kazunori

    2017-01-01

    Both efficiency and safety profiles are crucial for promotion of gene delivery systems towards practical applications. A promising template system was previously developed based on block catiomer of poly(ethylene glycol) (PEG)-b-poly{N'-[N-(2-aminoethyl)-2-aminoehtyl]aspartamide}-cholesteryl [PEG-PAsp(DET)-cholesteryl] with strategies of ligand conjugation at the α-terminus for specific affinity to the targeted cells and cholesteryl conjugation at the ω-terminus for structural stabilization to obtain systemic retention. Aiming for advocating this formulation towards practical applications, in the current study, the binding profile of this polymer to plasmid DNA (pDNA) was carefully studied to address an issue of toxicity origin. Quantification of free polymer composition confirmed that the toxicity mainly results from unbound polymer and polyplex micelle itself has negligible toxicity. This evaluation allowed for identifying an optimal condition to prepare safe polyplex micelles for systemic application that possess maximal polymer-binding but exclude free polymers. The identified polyplex micelles then faced a drawback of limited transfection efficiency due to the absence of free polymer, which is an acknowledged tendency found in various synthetic gene carriers. Thus, series of functional components was strategically compiled to improve the transfection efficiency such as attachment of cyclic (Arg-Gly-Asp) (cRGD) peptide as a ligand onto the polyplex micelles to facilitate cellular uptake, use of endosome membrane disruptive catiomer of PAsp(DET) for facilitating endosome escape along with use of the conjugated cholesteryl group to amplify the effect of PAsp(DET) on membrane disruption, so as to obtain efficient transfection. The mechanistic investigation respecting the appreciated pH dependent protonation behavior of PAsp(DET) permitted to depict an intriguing scenario how the block catiomers manage to escape from the endosome entrapment in response to the p

  19. A Dynamic Programming-Based Sustainable Inventory-Allocation Planning Problem with Carbon Emissions and Defective Item Disposal under a Fuzzy Random Environment

    Directory of Open Access Journals (Sweden)

    Kai Kang

    2018-01-01

    Full Text Available There is a growing concern that business enterprises focus primarily on their economic activities and ignore the impact of these activities on the environment and the society. This paper investigates a novel sustainable inventory-allocation planning model with carbon emissions and defective item disposal over multiple periods under a fuzzy random environment. In this paper, a carbon credit price and a carbon cap are proposed to demonstrate the effect of carbon emissions’ costs on the inventory-allocation network costs. The percentage of poor quality products from manufacturers that need to be rejected is assumed to be fuzzy random. Because of the complexity of the model, dynamic programming-based particle swarm optimization with multiple social learning structures, a DP-based GLNPSO, and a fuzzy random simulation are proposed to solve the model. A case is then given to demonstrate the efficiency and effectiveness of the proposed model and the DP-based GLNPSO algorithm. The results found that total costs across the inventory-allocation network varied with changes in the carbon cap and that carbon emissions’ reductions could be utilized to gain greater profits.

  20. Creep characteristics of precipitation hardened carbon free martensitic alloys

    International Nuclear Information System (INIS)

    Muneki, S.; Igarashi, M.; Abe, F.

    2000-01-01

    A new attempt has been demonstrated using carbon free Fe-Ni-Co martensitic alloys strengthened by Laves phase such as Fe 2 W or Fe 2 Mo to achieve homogeneous creep deformation at high temperatures under low stress levels. Creep behavior of the alloys is found to be completely different from that of the conventional high-Cr ferritic steels. The alloys exhibit gradual change in the creep rate with strain both in the transient and acceleration creep regions, and give a larger strain for the minimum creep rate. In these alloys the creep deformation takes place very homogeneously and no heterogeneous creep deformation is enhanced even at low stress levels. The minimum creep rates of the Fe-Ni-Co alloys at 700 C are found to be much lower than that of the conventional steel, which is due to fine dispersion strengthening useful even at 700 C in these alloys. It is thus concluded that the Fe-Ni-Co martensite strengthened by Laves phase is very useful to increase the creep resistance at elevated temperatures over 650 C. (orig.)

  1. Towards sustainable energy planning and management

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Sperling, Karl

    2014-01-01

    Rising energy costs, anthropogenic climate change, and fossil fuel depletion calls for a concerted effort within energy planning to ensure a sustainable energy future. This article presents an overview of global energy trends focusing on energy costs, energy use and carbon dioxide emissions....... Secondly, a review of contemporary work is presented focusing on national energy pathways with cases from Ireland, Denmark and Jordan, spatial issues within sustainable energy planning and policy means to advance a sustainable energy future....

  2. Innovative Design and Manufacture of “S” Type Carbon-Free Cars

    Directory of Open Access Journals (Sweden)

    Liu Jianwei

    2017-01-01

    Full Text Available Based on the new rules of the 4th national college students’ engineering and comprehensive training ability competition, established three-dimensional model using software UG NX, designed a kind of “S” type carbon-free,it can adapt to various poles’ distance and easy assembling and debugging.Focus on variable pitch mechanism and steering mechanism’s designing, and by motion simulation verify its rationality, the simulation analysis showed the car trajectory accords with a requirement. Finally,processed parts,assembled and debugged of the cars.Practice has proved that the design of the car conform to the requirements of the game, is reasonable, assembling outfit is convenient, easy to debug, can meet the requirements of a variety of stem from, smooth finish and get good grades.

  3. Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor

    International Nuclear Information System (INIS)

    Wei, Li; Jiang, Wenchao; Yuan, Yang; Goh, Kunli; Yu, Dingshan; Wang, Liang; Chen, Yuan

    2015-01-01

    We report the synthesis of a free-standing two dimensional carbon nanotube (CNT)-reduced graphene oxide (rGO) hybrid by directly growing CNTs on air-sprayed GO paper. As a result of the good integration between CNTs and thermally reduced GO film during chemical vapor deposition, excellent electrical conductivity (2.6×10 4 S/m), mechanical flexibility (electrical resistance only increases 1.1% after bent to 90° for 500 times) and a relatively large surface area (335.3 m 2 /g) are achieved. Two-electrode supercapacitor assembled using the CNT–rGO hybrids in ionic liquid electrolyte (1-ethyl-3-methylimidazolium tetrafluoroborate) shows excellent stability upon 500 bending cycles with the gravimetric energy density measuring 23.7 Wh/kg and a power density of 2.0 kW/kg. Furthermore, it shows an impedance phase angle of −64.4° at a frequency of 120 Hz, suggesting good potentials for 120 Hz alternating current line filtering applications. - Graphical abstract: Flexible and highly conductive carbon nanotube-reduced graphene oxide nanohybrid. - Highlights: • Direct growth of carbon nanotubes by chemical vapor deposition on air-sprayed graphene oxide paper. • Two-dimensional carbon nanohybrid with excellent conductivity and mechanical flexibility. • Supercapacitor with excellent performance stability upon mechanical deformation for flexible electronics applications. • Supercapacitor with high impedance phase angle for 120 Hz alternating current line filtering applications

  4. Determination of "safe" and "critical" nanoparticles exposure to welders in a workshop.

    Science.gov (United States)

    Gomes, J F; Miranda, R M

    2017-01-01

    The present study examined consequences of "safe" versus "critical" exposure to nanoparticles (NP) released during welding operations. With this aim in mind, a set of measurements regarding NP emissions was undertaken in a workshop during welding by metal active gas of carbon steel using different mixtures of argon (Ar) and carbon dioxide (CO 2 ) as well as different process parameters which might influence emission of (NP). If these measurements were conducted in several locations away from the welding sources, the graphical representation of the obtained observations with time enabled definition of "safe" and "critical" regions within a welding workshop in terms of welder's exposure. This information may be combined with the results of risk analysis derived by control banding and helps to categorize the sites where regulatory measures such as operation containment or dedicated exhaust ventilation need to be implemented.

  5. A diagonal approach for the catalytic transformation of carbon dioxide

    International Nuclear Information System (INIS)

    Gomes, Christophe

    2013-01-01

    Emissions of carbon dioxide are growing with the massive utilization of hydrocarbons for the production of energy and chemicals, resulting in a threatening global warming. The development of a more sustainable economy is urging to reduce the fingerprint of our current way of life. In this perspective, the organic chemistry industry will face important challenges in the next decades to replace hydrocarbons as a feedstock and use carbon-free energy sources. To tackle this challenge, new catalytic processes have been designed to convert CO 2 to high energy and value-added chemicals (formamides, N-heterocycles and methanol), using a novel diagonal approach. The energy efficiency of the new transformations is ensured by the utilization of mild reductants such as hydro-silanes and hydro-boranes. Importantly the reactions are promoted by organic catalysts, which circumvent the problems of cost, abundance and toxicity usually encountered with metal complexes. Based on theoretical and experimental studies, the understanding of the mechanisms involved in these reactions allowed the rational optimization of the catalysts as well as the reaction conditions, in order to match the requirements of sustainable chemistry. (author) [fr

  6. A carbon nanotube screen-printed electrode for label-free detection of the human cardiac troponin T.

    Science.gov (United States)

    Silva, Bárbara V M; Cavalcanti, Igor T; Silva, Mízia M S; Dutra, Rosa F

    2013-12-15

    Label-free immunosensor based on amine-functionalized carbon nanotubes screen-printed electrode is described for detection of the cardiac troponin T, an important marker of acute myocardial infarction. The disposable sensor was fabricated by tightly squeezing an adhesive carbon ink containing carbon nanotubes onto a polyethylene terephthalate substrate forming a thin film. The use of carbon nanotubes increased the reproducibility and stability of the sensor, and the amine groups permitted nonrandom immobilization of antibodies against cardiac troponin T. Amperometric responses were obtained by differential pulse voltammetry in presence of a ferrocyanide/ferricyanide redox probe after troponin T incubation. The calibration curve indicated a linear response of troponin T between 0.0025 ng mL(-1) and 0.5 ng mL(-1), with a good correlation coefficient (r=0.995; p<0.0001, n=7). The limit of detection (0.0035 ng mL(-1) cardiac troponin T) was lower than any previously described by immunosensors and was comparable with conventional analytical methods. The high reproducibility and clinical range obtained using this immunosensor support its utility as a potential tool for point-of-care acute myocardial infarction diagnostic testing. © 2013 Elsevier B.V. All rights reserved.

  7. Day one sustainability

    Science.gov (United States)

    Orr, John; Ibell, Timothy; Evernden, Mark; Darby, Antony

    2015-05-01

    Emissions reductions targets for the UK set out in the Climate Change Act for the period to 2050 will only be achieved with significant changes to the built environment, which is currently estimated to account for 50% of the UK's carbon emissions. The socio-technological nature of Civil Engineering means that this field is uniquely placed to lead the UK through such adaptations. This paper discusses the importance of interdisciplinary teaching to produce multi-faceted team approaches to sustainable design solutions. Methods for measuring success in education are often not fit for purpose, producing good students but poor engineers. Real-world failures to apply sustainable design present a serious, difficult to detect, and ultimately economically negative situation. Techniques to replace summative examinations are presented and discussed, with the aim of enhancing core technical skills alongside those required for sustainable design. Finally, the role of our future engineers in policy-making is discussed. In addition to carbon, the provision of water and food will heavily influence the work of civil engineers in the coming decades. Leadership from civil engineers with the technical knowledge and social awareness to tackle these issues will be required. This provides both opportunities and challenges for engineering education in the UK.

  8. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  9. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-01-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290

  10. Post-carbon bibliography. Research program 'rethinking cities in a post-carbon society?'

    International Nuclear Information System (INIS)

    Mor, Elsa

    2009-05-01

    This bibliography presents a selection of references (books, journal articles, dossiers, reports) with or without abstract, about: post-carbon cities and societies, energy and energy peaks, renewable energy sources, energy/climate prospective, low-carbon economy and society, climate/regions and adaptation to climate change, intelligent infrastructure systems, Grenelle Environment Forum, urban policy, energy policy and fossil fuels phasing out, sustainable urbanism, urban morphologies, buildings, sustainable mobility and transports, low energy intensity lifestyles

  11. Waste management in a sustainable society

    International Nuclear Information System (INIS)

    Ascari, Sergio; Milan, Univ. ''Bocconi''

    1997-01-01

    This paper summarises the environmental economics debate about sustainable management of solid wastes. Sustainable levels of solid waste generation, recycling and disposal cannot be set by general criteria, but priorities are better defined locally. Preferable solutions are mostly determined by market forces once economic instruments are introduced in order to compel agents to incorporate environmental costs and benefits into their decisions. Greater care should be devoted to dangerous wastes, where schemes may be devised to subsidize not only recovery and recycling but environmentally safe disposal as well; these may be financed by raw materials levies

  12. User's manual for sustainable transportation performance measures calculator

    Science.gov (United States)

    2010-08-01

    Sustainable transportation can be viewed as the provision of safe, effective, and efficient : access and mobility into the future while considering economic, social, and environmental : needs. For the Texas Department of Transportation (TxDOT) to ass...

  13. Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications.

    Science.gov (United States)

    Cirillo, Giuseppe; Hampel, Silke; Klingeler, Rüdiger; Puoci, Francesco; Iemma, Francesca; Curcio, Manuela; Parisi, Ortensia Ilaria; Spizzirri, Umile Gianfranco; Picci, Nevio; Leonhardt, Albrecht; Ritschel, Manfred; Büchner, Bernd

    2011-02-01

    To prove the possibility of covalently functionalizing multi-walled carbon nanotubes (CNTs) by free radical grafting of gallic acid on their surface with the subsequent synthesis of materials with improved biological properties evaluated by specific in-vitro assays. Antioxidant CNTs were synthesized by radical grafting of gallic acid onto pristine CNTs. The synthesis of carbon nanotubes was carried out in a fixed-bed reactor and, after the removal of the amorphous carbon, the grafting process was performed. The obtained materials were characterized by fluorescence and Fourier transform infrared spectroscopy (FT-IR) analyses. After assessment of the biocompatibility and determination of the disposable phenolic group content, the antioxidant properties were evaluated in terms of total antioxidant activity and scavenger ability against 2,2'-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl and peroxyl radicals. Finally the inhibition activity on acetylcholinesterase was evaluated.   The covalent functionalization of CNTs with gallic acid was confirmed and the amount of gallic acid bound per g of CNTs was found to be 2.1±0.2 mg. Good antioxidant and scavenging properties were recorded in the functionalized CNTs, which were found to be able to inhibit the acetylcholinesterase with potential improved activity for biomedical and pharmaceutical applications. For the first time, a free radical grafting procedure was proposed as a synthetic approach for the covalent functionalization of CNTs with an antioxidant polyphenol. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society.

  14. A MERGE model with endogenous technological change and the cost of carbon stabilization

    International Nuclear Information System (INIS)

    Kypreos, Socrates

    2007-01-01

    Two stylized backstop systems with endogenous technological learning (ETL) are introduced in the 'model for evaluating regional and global effects' (MERGE): one for the electric and the other for the non-electric markets. Then the model is applied to analyze the impacts of ETL on carbon-mitigation policy, contrasting the resulting impacts with the situation without ETL. We model research and development (R and D) spending and learning subsidies for the demonstration and deployment stage as control variables, and we investigate the ability of this extra spending to create path-dependent experience and knowledge to aid in the implementation of carbon-free technologies. Based on model estimations and sensitivity analyses, we conclude that increased commitments for the development of new technologies to advance along their learning curves has a potential for substantial reductions in the cost of mitigating climate change and thereby helping to reach safe concentrations of carbon in the atmosphere

  15. Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation

    International Nuclear Information System (INIS)

    Yas, M.H.; Samadi, N.

    2012-01-01

    This study deals with free vibrations and buckling analysis of nanocomposite Timoshenko beams reinforced by single-walled carbon nanotubes (SWCNTs) resting on an elastic foundation. The SWCNTs are assumed to be aligned and straight with a uniform layout. Four different carbon nanotubes (CNTs) distributions including uniform and three types of functionally graded distributions of CNTs through the thickness are considered. The rule of mixture is used to describe the effective material properties of the nanocomposite beams. The governing equations are derived through using Hamilton's principle and then solved by using the generalized differential quadrature method (GDQM). Natural frequencies and critical buckling load are obtained for nanocomposite beams with different boundary conditions. Effects of several parameters, such as nanotube volume fraction, foundation stiffness parameters, slenderness ratios, CNTs distribution and boundary conditions on both natural frequency and critical buckling load are investigated. The results indicate that the above-mentioned parameters play a very important role on the free vibrations and buckling characteristics of the beam. Highlights: ► Beams with FG-X distribution have highest fundamental frequency. ► Beams with FG-X distribution have highest critical buckling load. ► Using elastic foundation, lead to increase the natural frequency. ► Using elastic foundation, lead to increase the critical buckling load. ► Increasing CNT volume fraction, lead to increase the natural frequency.

  16. Silicon-Encapsulated Hollow Carbon Nanofiber Networks as Binder-Free Anodes for Lithium Ion Battery

    Directory of Open Access Journals (Sweden)

    Ding Nan

    2014-01-01

    Full Text Available Silicon-encapsulated hollow carbon nanofiber networks with ample space around the Si nanoparticles (hollow Si/C composites were successfully synthesized by dip-coating phenolic resin onto the surface of electrospun Si/PVA nanofibers along with the subsequent solidification and carbonization. More importantly, the structure and Si content of hollow Si/C composite nanofibers can be effectively tuned by merely varying the concentration of dip solution. As-synthesized hollow Si/C composites show excellent electrochemical performance when they are used as binder-free anodes for Li-ion batteries (LIBs. In particular, when the concentration of resol/ethanol solution is 3.0%, the product exhibits a large capacity of 841 mAh g−1 in the first cycle, prominent cycling stability, and good rate capability. The discharge capacity retention of it was ~90%, with 745 mAh g−1 after 50 cycles. The results demonstrate that the hollow Si/C composites are very promising as alternative anode candidates for high-performance LIBs.

  17. Assessing the Sustainability of EU Timber Consumption Trends: Comparing Consumption Scenarios with a Safe Operating Space Scenario for Global and EU Timber Supply

    Directory of Open Access Journals (Sweden)

    Meghan O’Brien

    2017-12-01

    Full Text Available The growing demand for wood to meet EU renewable energy targets has increasingly come under scrutiny for potentially increasing EU import dependence and inducing land use change abroad, with associated impacts on the climate and biodiversity. This article builds on research accounting for levels of primary timber consumption—e.g., toward forest footprints—and developing reference values for benchmarking sustainability—e.g., toward land use targets—in order to improve systemic monitoring of timber and forest use. Specifically, it looks at future trends to assess how current EU policy may impact forests at an EU and global scale. Future demand scenarios are based on projections derived and adapted from the literature to depict developments under different scenario assumptions. Results reveal that by 2030, EU consumption levels on a per capita basis are estimated to be increasingly disproportionate compared to the rest of the world. EU consumption scenarios based on meeting around a 40% share of the EU renewable energy targets with timber would overshoot both the EU and global reference value range for sustainable supply capacities in 2030. Overall, findings support literature pointing to an increased risk of problem shifting relating to both how much and where timber needed for meeting renewable energy targets is sourced. It is argued that a sustainable level of timber consumption should be characterized by balance between supply (what the forest can provide on a sustainable basis and demand (how much is used on a per capita basis, considering the concept of fair shares. To this end, future research should close data gaps, increase methodological robustness and address the socio-political legitimacy of the safe operating space concept towards targets in the future. A re-use of timber within the economy should be supported to increase supply options.

  18. Towards a carbon independent and CO2-free electrochemical membrane process for NH3 synthesis.

    Science.gov (United States)

    Kugler, K; Ohs, B; Scholz, M; Wessling, M

    2014-04-07

    Ammonia is exclusively synthesized by the Haber-Bosch process starting from precious carbon resources such as coal or CH4. With H2O, H2 is produced and with N2, NH3 can be synthesized at high pressures and temperatures. Regrettably, the carbon is not incorporated into NH3 but emitted as CO2. Valuable carbon sources are consumed which could be used otherwise when carbon sources become scarce. We suggest an alternative process concept using an electrochemical membrane reactor (ecMR). A complete synthesis process with N2 production and downstream product separation is presented and evaluated in a multi-scale model to quantify its energy consumption. A new micro-scale ecMR model integrates mass, species, heat and energy balances with electrochemical conversions allowing further integration into a macro-scale process flow sheet. For the anodic oxidation reaction H2O was chosen as a ubiquitous H2 source. Nitrogen was obtained by air separation which combines with protons from H2O to give NH3 using a hypothetical catalyst recently suggested from DFT calculations. The energy demand of the whole electrochemical process is up to 20% lower than the Haber-Bosch process using coal as a H2 source. In the case of natural gas, the ecMR process is not competitive under today's energy and resource conditions. In future however, the electrochemical NH3 synthesis might be the technology-of-choice when coal is easily accessible over natural gas or limited carbon sources have to be used otherwise but for the synthesis of the carbon free product NH3.

  19. Synthesis of metal free ultrathin graphitic carbon nitride sheet for photocatalytic dye degradation of Rhodamine B under visible light irradiation

    Science.gov (United States)

    Rahman, Shakeelur; Momin, Bilal; Higgins M., W.; Annapure, Uday S.; Jha, Neetu

    2018-04-01

    In recent times, low cost and metal free photocatalyts driven under visible light have attracted a lot of interest. One such photo catalyst researched extensively is bulk graphitic carbon nitride sheets. But the low surface area and weak mobility of photo generated electrons limits its photocatalytic performance in the visible light spectrum. Here we present the facile synthesis of ultrathin graphitic carbon nitride using a cost effective melamine precursor and its application in highly efficient photocatalytic dye degradation of Rhodamine B molecules. Compared to bulk graphitic carbon nitride, the synthesized ultrathin graphitic carbon nitride shows an increase in surface area, a a decrease in optical band gap and effective photogenerated charge separation which facilitates the harvest of visible light irradiation. Due to these optimal properties of ultrathin graphitic carbon nitride, it shows excellent photocatalytic activity with photocatalytic degradation of about 95% rhodamine B molecules in 1 hour.

  20. Sustainable Carbon Dioxide Sequestration as Soil Carbon to Achieve Carbon Neutral Status for DoD Lands

    Science.gov (United States)

    2017-10-01

    26 4.6.3 Fertilizer ...5 Figure 3. Soil organic carbon sensitivity to...Industries Association ERDC TR-17-13 ix SOC Soil Organic Carbon SSURGO Soil Survey Geographic Database USACE U.S. Army Corps of Engineers USDA

  1. Potential safe termination by injection of polypropylene pellets in JET

    International Nuclear Information System (INIS)

    Schmidt, G.L.; Ali-Arshad, S.; Bartlett, D.

    1995-01-01

    Thermal energy and the magnetic field energy associated with the plasma current must be dissipated safely when a tokamak discharge is terminated in a disruption. Magnetic energy can be dissipated by impurity radiation if position control is maintained. Prior to the dissipation of magnetic energy, thermal energy is usually conducted to the plasma contact points on a 1ms time scale in a thermal quench. A resistive, highly radiating plasma formed prior to the thermal quench, might dissipate both the thermal and magnetic energy by radiation minimizing damage due to local deposition. High speed injection of a low Z material can produce a resistive, highly radiating plasma on a 1ms time scale. Neon has recently been used in such an application on JT60-U. A large carbon pellet producing dilution temperatures < 1 keV is a possible alternative. This paper summarizes the results of an initial experiment performed in JET using carbon injected at high speed, as a 6mm polypropylene pellet, to investigate this potential approach to a safe plasma termination

  2. 3D hierarchical dandelion-like NiCo{sub 2}O{sub 4}/N-doped carbon/Ni foam for an effective binder-free supercapacitor electrode

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaoyang; Hong, Wei; Zhao, Huilin; Song, Yahui; Qiu, Haixia, E-mail: haixiaqiuls@163.com; Gao, Jianping

    2017-01-15

    In this work, the 3D hierarchical dandelion-like NiCo{sub 2}O{sub 4}/N-doped carbon/Ni foam has been developed by introducing PANI as the precursor of N-doped carbon. Meanwhile, the NiCo{sub 2}O{sub 4}/N-doped carbon/Ni foam with a novel 3D hierarchical dandelion-like structure was verified by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy, etc. In addition, the NiCo{sub 2}O{sub 4}/N-doped carbon/Ni foam was directly used as a binder-free supercapacitor electrode and its performances were investigated by cycle voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy. The results show that the obtained NiCo{sub 2}O{sub 4}/N-doped carbon/Ni foam electrode owns good electrochemical performances, such as high specific capacitance (864 F/g at 1 A/g) and good cycling stability, owing to the porous feature from its novel 3D hierarchical dandelion-like structure. - Highlights: • The 3D hierarchical dandelion-like NiCo{sub 2}O{sub 4}/N-doped carbon/Ni foam was prepared. • It can be directly used as a binder-free supercapacitor electrode. • It owns good electrochemical performances.

  3. Kinetics of absorption of carbon dioxide in aqueous amine and carbonate solutions with carbonic anhydrase

    NARCIS (Netherlands)

    Penders-van Elk, Nathalie J. M. C.; Hamborg, Espen S.; Huttenhuis, Patrick J. G.; Fradette, Sylvie; Carley, Jonathan A.; Versteeg, Geert F.

    In the present work the absorption of carbon dioxide in aqueous N-methyldiethanolamine (MDEA) and aqueous sodium carbonate with and without carbonic anhydrase (CA) was studied in a stirred cell contactor in the temperature range 298-333 K. The CA was present as free enzyme and is compared to the

  4. Sustainable nanocomposites toward electrochemical energy storage and environmental remediation

    Science.gov (United States)

    Zhu, Jiahua

    magnetic field. Without any modification of the inside of the electrochemical capacitance cell, the reported magnetic field enhanced capacitance with both improved energy density and power density will have a great impact on the electrochemical energy storage field. A facile thermodecomposition process to synthesize magnetic graphene nanocomposites (MGNCs) is reported. The MGNCs demonstrate an extremely fast Cr(VI) removal from the wastewater with a high removal efficiency and with an almost complete removal of Cr(VI) within 5 min. The large saturation magnetization (96.3 emu/g) of the synthesized nanoparticles allows fast separation of the MGNCs from liquid suspension. By using a permanent magnet, the recycling process of both the MGNC adsorbents and the adsorbed Cr(VI) is more energetically and economically sustainable. The significantly reduced treatment time required to remove the Cr(VI) and the applicability in treating the solutions with low pH make MGNCs promising for the efficient removal of heavy metals from the wastewater. A waste-free process to recycle Fe Fe2O3/ polypropylene (PP) polymer nanocomposites (PNCs) is introduced to synthesize magnetic carbon nanocomposites (MCNCs) and simultaneously produce useful chemical species which can be utilized as a feedstock in petrochemical industry. The magnetic nanoparticles (NPs) are found to have an effective catalytic activity on the pyrolysis of PP. The coked solid waste from the conventional process has been utilized as a carbon source to form a protective carbon shell surrounding the magnetic NPs. The magnetic carbon nanocomposites (MCNCs) pyrolyzed from PNCs containing 20.0 wt% NPs demonstrate extremely fast Cr(VI) removal from wastewater with the almost complete removal of Cr(VI) within 10 min. The large saturation magnetization (32.5 emu g-1) of these novel magnetic carbon nanocomposites allows fast recycling of both the adsorbents and the adsorbed Cr(VI) from the liquid suspension in a more energetically and

  5. Tendances Carbone no. 83 'Reduction in free allowances for phase 3 of the EU ETS'

    International Nuclear Information System (INIS)

    Alberola, Emilie; Sartor, Oliver

    2013-01-01

    Among the publications of CDC Climat Research, 'Tendances Carbone' bulletin specifically studies the developments of the European market for CO 2 allowances. This issue addresses the following points: In early September, the European Commission decided on the amount of free allowances attributed to industrial installations for phase 3 of the EU ETS, thus completing a process begun in 2009. This decision followed the examination of Member State proposals and their National Implementation Measures (NIM) with regard to two principal criteria: their compatibility with harmonized allocation rules and their consistency with benchmark values. The allocation proposals of all States were all approved with the exception of the allocation of 20 installations which are to be revised. In line with the ETS Directive, a correction factor was then applied so that these allocations do not exceed the maximum amount of free allocation allowed

  6. Alkali-Activated Mortars for Sustainable Building Solutions: Effect of Binder Composition on Technical Performance

    Directory of Open Access Journals (Sweden)

    Agnese Attanasio

    2018-02-01

    Full Text Available There is a growing interest in the construction sector in the use of sustainable binders as an alternative to ordinary Portland cement, the production of which is highly impacting on the environment, due to high carbon dioxide emissions and energy consumption. Alkali-activated binders, especially those resulting from low-cost industrial by-products, such as coal fly ash or metallurgical slag, represent a sustainable option for cement replacement, though their use is more challenging, due to some technological issues related to workability or curing conditions. This paper presents sustainable alkali-activated mortars cured in room conditions and based on metakaolin, fly ash, and furnace slag (both by-products resulting from local sources and relevant blends, aiming at their real scale application in the building sector. The effect of binder composition—gradually adjusted taking into consideration technical and environmental aspects (use of industrial by-products in place of natural materials in the view of resources saving—on the performance (workability, compressive strength of different mortar formulations, is discussed in detail. Some guidelines for the design of cement-free binders are given, taking into consideration the effect of each investigated alumino-silicate component. The technical feasibility to produce the mortars with standard procedures and equipment, the curing in room conditions, the promising results achieved in terms of workability and mechanical performance (from 20.0 MPa up to 52.0 MPa, confirm the potential of such materials for practical applications (masonry mortars of class M20 and Md. The cement-free binders resulting from this study can be used as reference for the development of mortars and concrete formulations for sustainable building materials production.

  7. Developing a Decision Model of Sustainable Product Design and Development from Product Servicizing in Taiwan

    Science.gov (United States)

    Huang, Yu-Chen; Tu, Jui-Che; Hung, So-Jeng

    2016-01-01

    In response to the global trend of low carbon and the concept of sustainable development, enterprises need to develop R&D for the manufacturing of energy-saving and sustainable products and low carbon products. Therefore, the purpose of this study was to construct a decision model for sustainable product design and development from product…

  8. Sustainable polymers from renewable resources.

    Science.gov (United States)

    Zhu, Yunqing; Romain, Charles; Williams, Charlotte K

    2016-12-14

    Renewable resources are used increasingly in the production of polymers. In particular, monomers such as carbon dioxide, terpenes, vegetable oils and carbohydrates can be used as feedstocks for the manufacture of a variety of sustainable materials and products, including elastomers, plastics, hydrogels, flexible electronics, resins, engineering polymers and composites. Efficient catalysis is required to produce monomers, to facilitate selective polymerizations and to enable recycling or upcycling of waste materials. There are opportunities to use such sustainable polymers in both high-value areas and in basic applications such as packaging. Life-cycle assessment can be used to quantify the environmental benefits of sustainable polymers.

  9. Hydrogen evolution by a metal-free electrocatalyst

    KAUST Repository

    Zheng, Yao

    2014-04-28

    Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics. © 2014 Macmillan Publishers Limited. All rights reserved.

  10. Managing carbon emissions in China through building energy efficiency.

    Science.gov (United States)

    Li, Jun; Colombier, Michel

    2009-06-01

    This paper attempts to analyse the role of building energy efficiency (BEE) in China in addressing climate change mitigation. It provides an analysis of the current situation and future prospects for the adoption of BEE technologies in Chinese cities. It outlines the economic and institutional barriers to large-scale deployment of the sustainable, low-carbon, and even carbon-free construction techniques. Based on a comprehensive overview of energy demand characteristics and development trends driven by economic and demographic growth, different policy tools for cost-effective CO(2) emission reduction in the Chinese construction sector are described. We propose a comprehensive approach combining building design and construction, and the urban planning and building material industries, in order to drastically improve BEE during this period of rapid urban development. A coherent institutional framework needs to be established to ensure the implementation of efficiency policies. Regulatory and incentive options should be integrated into the policy portfolios of BEE to minimise the efficiency gap and to realise sizeable carbon emissions cuts in the next decades. We analyse in detail several policies and instruments, and formulate relevant policy proposals fostering low-carbon construction technology in China. Specifically, Our analysis shows that improving building energy efficiency can generate considerable carbon emissions reduction credits with competitive price under the CDM framework.

  11. Radiochemical study of isomerization of free butyl cations

    International Nuclear Information System (INIS)

    Sinotova, E.N.; Nefedov, V.D.; Skorokhodov, S.S.; Arkhipov, Yu.M.

    1987-01-01

    Ion-molecular reactions of free butyl cations, generated by nuclear chemical method, with carbon monoxide containing small quantities of ethanol vapors are studied. Carbon monoxide was used to fix instable butyl cations in the form of corresponding acyl ions. Ester of α-methyl-butyric acid appears to be the only product of free butyl cation interaction with carbon monoxide in the presence of ethanol vapors. That means, that up to the moment of butyl cation reaction with carbon monoxide, the primary butyl cations are almost completely isomerized into secondary in agreement with results of previous investigations. This allows one to study free butyl cation isomerization process according to ion-molecular reaction product isomeric composition

  12. Calcium carbonate microspheres as carriers for the anticancer drug camptothecin

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Neng [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Yin, Huabing, E-mail: huabing.yin@glasgow.ac.uk [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Ji, Bozhi; Klauke, Norbert; Glidle, Andrew [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Zhang, Yongkui; Song, Hang [Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Cai, Lulu; Ma, Liang; Wang, Guangcheng [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Chen, Lijuan, E-mail: lijuan17@hotmail.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Wang, Wenwen [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China)

    2012-12-01

    Biogenic calcium carbonate has come to the attention of many researchers as a promising drug delivery system due to its safety, pH sensitivity and the large volume of information already in existence on its medical use. In this study, we employed bovine serum albumin (BSA) as an additive to synthesize a series of porous calcium carbonate microspheres (CCMS). These spheres, identified as vaterite, are stable both in aqueous solutions and organic solvents. Camptothecin, an effective anticancer agent, was loaded into the CCMS by simple diffusion and adsorption. The camptothecin loaded CCMS showed sustained cell growth inhibitory activity and a pH dependent release of camptothecin. With a few hours, the release is negligible under physiological conditions (pH = 7.4) but almost complete at pH 4 to 6 (i.e. pHs found in lysosomes and solid tumor tissue respectively). These findings suggest that porous, biogenic calcium carbonate microspheres could be promising carriers for the safe and efficient delivery of anticancer drugs of low aqueous solubility. - Highlights: Black-Right-Pointing-Pointer BSA-doped calcium carbonate microspheres with porous structure were prepared. Black-Right-Pointing-Pointer Camptothecin was encapsulated in the spherical microparticles with encapsulation efficiency up to 11%. Black-Right-Pointing-Pointer The release of encapsulated camptothecin is pH dependent Black-Right-Pointing-Pointer In vitro studies showed an effective anticancer activity of the camptothecin- microspheres.

  13. Processing nanoparticle–nanocarbon composites as binder-free electrodes for lithium-based batteries

    Directory of Open Access Journals (Sweden)

    Marya Baloch

    2017-09-01

    Full Text Available Abstract The processing of battery materials into functional electrodes traditionally requires the preparation of slurries using binders, organic solvents, and additives, all of which present economic and environmental challenges. These are amplified in the production of nanostructured carbon electrodes which are often more difficult to disperse in slurries and require more energy-intensive and longer processing. In this study we demonstrate a new process for preparing binder-free nanocarbon/nanoparticle (Fe–C composite electrodes and study the effect of processing on the nanocomposite’s cycling performance in lithium cells. The binder-free electrodes were prepared by a two-step method: pulsed-electrodeposition of iron-based catalyst followed by chemical vapor deposition of a carbon film. SEM and TEM of the Fe–C showed that the active materials have a fibrous and tortuous morphology with disordered nanocrystalline domains characteristic of an amorphous carbon. The Fe–C electrodes showed good mechanical stability and an excellent cycle performance with an average stable capacity of 221 mAhg−1, and 85% capacity retention for up to 50 cycles. By reducing the number of processing steps and eliminating the use of binders and other chemicals this new method offers a “greener” alternative than current processing methods. Graphical abstract Synopsis: gains in sustainability can be achieved by eliminating use of binders, chemicals, and the number of electrode’s processing steps in this new method.

  14. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage.

    Science.gov (United States)

    Hu, Bo; DeBruler, Camden; Rhodes, Zayn; Liu, T Leo

    2017-01-25

    Redox flow batteries (RFBs) are a viable technology to store renewable energy in the form of electricity that can be supplied to electricity grids. However, widespread implementation of traditional RFBs, such as vanadium and Zn-Br 2 RFBs, is limited due to a number of challenges related to materials, including low abundance and high costs of redox-active metals, expensive separators, active material crossover, and corrosive and hazardous electrolytes. To address these challenges, we demonstrate a neutral aqueous organic redox flow battery (AORFB) technology utilizing a newly designed cathode electrolyte containing a highly water-soluble ferrocene molecule. Specifically, water-soluble (ferrocenylmethyl)trimethylammonium chloride (FcNCl, 4.0 M in H 2 O, 107.2 Ah/L, and 3.0 M in 2.0 NaCl, 80.4 Ah/L) and N 1 -ferrocenylmethyl-N 1 ,N 1 ,N 2 ,N 2 ,N 2 -pentamethylpropane-1,2-diaminium dibromide, (FcN 2 Br 2 , 3.1 M in H 2 O, 83.1 Ah/L, and 2.0 M in 2.0 M NaCl, 53.5 Ah/L) were synthesized through structural decoration of hydrophobic ferrocene with synergetic hydrophilic functionalities including an ammonium cation group and a halide anion. When paired with methyl viologen (MV) as an anolyte, resulting FcNCl/MV and FcN 2 Br 2 /MV AORFBs were operated in noncorrosive neutral NaCl supporting electrolytes using a low-cost anion-exchange membrane. These ferrocene/MV AORFBs are characterized as having high theoretical energy density (45.5 Wh/L) and excellent cycling performance from 40 to 100 mA/cm 2 . Notably, the FcNCl/MV AORFBs (demonstrated at 7.0 and 9.9 Wh/L) exhibited unprecedented long cycling performance, 700 cycles at 60 mA/cm 2 with 99.99% capacity retention per cycle, and delivered power density up to 125 mW/cm 2 . These AORFBs are built from earth-abundant elements and are environmentally benign, thus representing a promising choice for sustainable and safe energy storage.

  15. Sustainable and safe design of footwear integrating ecological footprint and risk criteria

    International Nuclear Information System (INIS)

    Herva, Marta; Alvarez, Antonio; Roca, Enrique

    2011-01-01

    Highlights: → The ecological footprint (EF) is a suitable screening indicator to assist the assessment of the sustainability of an ecodesign proposal. → The EF does not consider the risk derived from hazardous substances in its evaluation. → Environmental risk assessment (ERA) successfully complemented the evaluation of the EF providing safety criteria. → Options that exceeded the safety limits for Hazard Quotient and Cancer Risk where discarded, thus guaranteeing the protection of children. → Trade-offs among criteria could be established by the application of fuzzy logic techniques to derive an ecodesign index. - Abstract: The ecodesign of a product implies that different potential environmental impacts of diverse nature must be taken into account considering its whole life cycle, apart from the general design criteria (i.e. technical, functional, ergonomic, aesthetic or economic). In this sense, a sustainability assessment methodology, ecological footprint (EF), and environmental risk assessment (ERA), were combined for the first time to derive complementary criteria for the ecodesign of footwear. Four models of children's shoes were analyzed and compared. The synthetic shoes obtained a smaller EF (6.5 gm 2 ) when compared to the leather shoes (11.1 gm 2 ). However, high concentrations of hazardous substances were detected in the former, even making the Hazard Quotient (HQ) and the Cancer Risk (CR) exceed the recommended safety limits for one of the synthetic models analyzed. Risk criteria were prioritized in this case and, consequently, the design proposal was discarded. For the other cases, the perspective provided by the indicators of different nature was balanced to accomplish a fairest evaluation. The selection of fibers produced under sustainable criteria and the reduction of the materials consumption was recommended, since the area requirements would be minimized and the absence of hazardous compounds would ensure safety conditions during the

  16. Sustainable and safe design of footwear integrating ecological footprint and risk criteria

    Energy Technology Data Exchange (ETDEWEB)

    Herva, Marta [Sustainable Processes and Products Engineering Group, Department of Chemical Engineering, University of Santiago de Compostela, Campus Vida, 15705 Santiago de Compostela (Spain); Alvarez, Antonio [Industrias de Diseno Textil, S.A., Edificio Inditex, Av. de la Diputacion s/n, Poligono de Sabon, 15142 Arteixo - A Coruna (Spain); Roca, Enrique, E-mail: enrique.roca@usc.es [Sustainable Processes and Products Engineering Group, Department of Chemical Engineering, University of Santiago de Compostela, Campus Vida, 15705 Santiago de Compostela (Spain)

    2011-09-15

    Highlights: {yields} The ecological footprint (EF) is a suitable screening indicator to assist the assessment of the sustainability of an ecodesign proposal. {yields} The EF does not consider the risk derived from hazardous substances in its evaluation. {yields} Environmental risk assessment (ERA) successfully complemented the evaluation of the EF providing safety criteria. {yields} Options that exceeded the safety limits for Hazard Quotient and Cancer Risk where discarded, thus guaranteeing the protection of children. {yields} Trade-offs among criteria could be established by the application of fuzzy logic techniques to derive an ecodesign index. - Abstract: The ecodesign of a product implies that different potential environmental impacts of diverse nature must be taken into account considering its whole life cycle, apart from the general design criteria (i.e. technical, functional, ergonomic, aesthetic or economic). In this sense, a sustainability assessment methodology, ecological footprint (EF), and environmental risk assessment (ERA), were combined for the first time to derive complementary criteria for the ecodesign of footwear. Four models of children's shoes were analyzed and compared. The synthetic shoes obtained a smaller EF (6.5 gm{sup 2}) when compared to the leather shoes (11.1 gm{sup 2}). However, high concentrations of hazardous substances were detected in the former, even making the Hazard Quotient (HQ) and the Cancer Risk (CR) exceed the recommended safety limits for one of the synthetic models analyzed. Risk criteria were prioritized in this case and, consequently, the design proposal was discarded. For the other cases, the perspective provided by the indicators of different nature was balanced to accomplish a fairest evaluation. The selection of fibers produced under sustainable criteria and the reduction of the materials consumption was recommended, since the area requirements would be minimized and the absence of hazardous compounds would

  17. Capacitance for carbon capture

    International Nuclear Information System (INIS)

    Landskron, Kai

    2018-01-01

    Metal recycling: A sustainable, capacitance-assisted carbon capture and sequestration method (Supercapacitive Swing Adsorption) can turn scrap metal and CO 2 into metal carbonates at an attractive energy cost. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Determination of aluminium nitride or free nitrogen in low carbon steel

    International Nuclear Information System (INIS)

    Guetaz, V.; Soler, M.; Massardier, V.; Merlin, J.; Ravaine, D.

    2001-01-01

    As the aluminium nitrides play an important role in the manufacturing of steel sheets, a specific methodology was developed based on the thermoelectric power (TEP) technique, in order to determine the AIN nitrogen by an indirect method. The free nitrogen was determined and then the AIN nitrogen was calculated by the difference between the total nitrogen and the free nitrogen. Indeed, it is easier to determine the dissolved nitrogen, the content of which gradually decreases during the AIN precipitation, than the AIN nitrogen. A low carbon aluminium killed steel was employed with 580 ppm of aluminium and 50 ppm of nitrogen. A comparison of the results obtained by TEP with those obtained by other techniques (hot hydrogen extraction, electrochemical dissolution followed by a mineralization, electrochemical dissolution followed by a sodic decomposition and the Beeghly method) was conducted, in order to determine a reliable technique likely to quantify the amount of aluminium nitrides in aluminium killed steels. With these techniques, it is possible to determine either free nitrogen or precipitated nitrogen. From an experimental point of view, the precipitation kinetics of AIN was followed during an annealing performed at 973 K (700 C) by TEP and then different precipitation states of AIN were investigated to compare the different techniques: three annealing states (when no nitrogen, half the nitrogen and the total nitrogen has precipitated) and two soaking states (1403 and 1523 K). Thus, it was possible to compare states where the AIN precipitates are in various forms (different shapes, crystallographic structures, sizes, distributions in the matrix). This work showed that the quantification by TEP, hot hydrogen extraction and electrochemical dissolution followed by a mineralization seem reliable whereas the Beeghly method gives good results only for the precipitates formed at high temperatures. In contrast, the quantification by electrochemical dissolution followed by

  19. Sustainable and Resilient Supply Chain Network Design under Disruption Risks

    Directory of Open Access Journals (Sweden)

    Sonia Irshad Mari

    2014-09-01

    Full Text Available Sustainable supply chain network design is a rich area for academic research that is still in its infancy and has potential to affect supply chain performance. Increasing regulations for carbon and waste management are forcing firms to consider their supply chains from ecological and social objectives, but in reality, however, facilities and the links connecting them are disrupted from time to time, due to poor weather, natural or manmade disasters or a combination of any other factors. Supply chain systems drop their sustainability objectives while coping with these unexpected disruptions. Hence, the new challenges for supply chain managers are to design an efficient and effective supply chain network that will be resilient enough to bounce back from any disruption and that also should have sufficient vigilance to offer same sustainability under a disruption state. This paper focuses on ecological sustainability, because an environmental focus in a supply chain system is more important and also links with other pillars of sustainability, as the products need to be produced, packed and transported in an ethical way, which should not harm social balance and the environment. Owing to importance of the considered issue, this paper attempts to introduce a network optimization model for a sustainable and resilient supply chain network by incorporating (1 sustainability via carbon emissions and embodied carbon footprints and (2 resilience by incorporating location-specific risks. The proposed goal programming (GP model optimizes the total cost, while considering the resilience and sustainability of the supply chain network.

  20. Energy, sustainability and the environment technology, incentives, behavior

    CERN Document Server

    2011-01-01

    The complexity of carbon reduction and economic sustainability is significantly complicated by competing aspects of socioeconomic practices as well as legislative, regulatory, and scientific requirements and protocols. An easy to read and understand guide, Sioshansi, along with an international group of contributors, moves through the maze of carbon reduction methods and technologies, providing steps and insights to meet carbon reduction requirements and maintaining the health and welfare of the firm. The book's three part treatment is based on a clear and rigorous exposition of a wide range of options to reduce the carbon footprint Part 1 of the book, Challenge of Sustainability, examines the fundamental drivers of energy demand - economic growth, the need for basic energy services, and the interdependence of economic, political, environmental, social, equity, legacy and policy issues. Part 2 of the book, Technological Solutions, examines how energy can be used to support basic energy service needs of homes...

  1. A Carbon-Free Energy Future

    Science.gov (United States)

    Linden, H. R.; Singer, S. F.

    2001-12-01

    It is generally agreed that hydrogen is an ideal energy source, both for transportation and for the generation of electric power. Through the use of fuel cells, hydrogen becomes a high-efficiency carbon-free power source for electromotive transport; with the help of regenerative braking, cars should be able to reach triple the current mileage. Many have visualized a distributed electric supply network with decentralized generation based on fuel cells. Fuel cells can provide high generation efficiencies by overcoming the fundamental thermodynamic limitation imposed by the Carnot cycle. Further, by using the heat energy of the high-temperature fuel cell in co-generation, one can achieve total thermal efficiencies approaching 100 percent, as compared to present-day average power-plant efficiencies of around 35 percent. In addition to reducing CO2 emissions, distributed generation based on fuel cells also eliminates the tremendous release of waste heat into the environment, the need for cooling water, and related limitations on siting. Manufacture of hydrogen remains a key problem, but there are many technical solutions that come into play whenever the cost equations permit . One can visualize both central and local hydrogen production. Initially, reforming of abundant natural gas into mixtures of 80% H2 and 20% CO2 provides a relatively low-emission source of hydrogen. Conventional fossil-fuel plants and nuclear plants can become hydrogen factories using both high-temperature topping cycles and electrolysis of water. Hydro-electric plants can manufacture hydrogen by electrolysis. Later, photovoltaic and wind farms could be set up at favorable locations around the world as hydrogen factories. If perfected, photovoltaic hydrogen production through catalysis would use solar photons most efficiently . For both wind and PV, hydrogen production solves some crucial problems: intermittency of wind and of solar radiation, storage of energy, and use of locations that are not

  2. Light Water Reactor Sustainability Research and Development Program Plan. Fiscal Year 2009-2013

    International Nuclear Information System (INIS)

    2009-01-01

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R and D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R and D programs. The purpose of the LWRS R and D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R and D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its

  3. Carbon sequestration via wood burial

    Directory of Open Access Journals (Sweden)

    Zeng Ning

    2008-01-01

    Full Text Available Abstract To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 ± 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1, followed by temperate (3.7 GtC y-1 and boreal forests (2.1 GtC y-1. Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from North American logging industry, the cost for wood burial is estimated to be $14/tCO2($50/tC, lower than the typical cost for power plant CO2 capture with geological storage. The cost for carbon sequestration with wood burial is low because CO2 is removed from the atmosphere by the natural process of photosynthesis at little cost. The technique is low tech, distributed, easy to monitor, safe, and reversible, thus an attractive option for large-scale implementation in a world-wide carbon market.

  4. Large-deformation and high-strength amorphous porous carbon nanospheres

    Science.gov (United States)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  5. A pulser-sustainer carbon monoxide electric-discharge supersonic laser

    Science.gov (United States)

    Monson, D. J.; Srinivasan, G.

    1977-01-01

    Operation of a CW CO electric-discharge supersonic laser with a pulser-sustainer discharge is described. High-power operation as well as independent control over electron energy and density are demonstrated. Maximum input power achieved to date is 100 kW. The maximum output power is 6 kW or 10% of the sustainer positive-column power. Much improved performance appears possible.

  6. Capacitance for carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Landskron, Kai [Department of Chemistry, Lehigh University, Bethlehem, PA (United States)

    2018-03-26

    Metal recycling: A sustainable, capacitance-assisted carbon capture and sequestration method (Supercapacitive Swing Adsorption) can turn scrap metal and CO{sub 2} into metal carbonates at an attractive energy cost. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Transfer-free synthesis of graphene-like atomically thin carbon films on SiC by ion beam mixing technique

    Science.gov (United States)

    Zhang, Rui; Chen, Fenghua; Wang, Jinbin; Fu, Dejun

    2018-03-01

    Here we demonstrate the synthesis of graphene directly on SiC substrates at 900 °C using ion beam mixing technique with energetic carbon cluster ions on Ni/SiC structures. The thickness of 7-8 nm Ni films was evaporated on the SiC substrates, followed by C cluster ion bombarding. Carbon cluster ions C4 were bombarded at 16 keV with the dosage of 4 × 1016 atoms/cm2. After thermal annealing process Ni silicides were formed, whereas C atoms either from the decomposition of the SiC substrates or the implanted contributes to the graphene synthesis by segregating and precipitating process. The limited solubility of carbon atoms in silicides, involving SiC, Ni2Si, Ni5Si2, Ni3Si, resulted in diffusion and precipitation of carbon atoms to form graphene on top of Ni and the interface of Ni/SiC. The ion beam mixing technique provides an attractive production method of a transfer-free graphene growth on SiC and be compatible with current device fabrication.

  8. Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: Looking for cross-linking effects

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Basiuk, Vladimir A.; Meza-Laguna, Víctor; Contreras-Torres, Flavio F.; Martínez, Melchor; Rojas-Aguilar, Aarón; Salerno, Marco

    2012-01-01

    Highlights: ► Diamines were used for one-step functionalization of nanotubes and nanodiamond. ► We found experimental evidences of cross-linking effects in these nanomaterials. ► We found a strong orientation effect in the functionalized carbon nanotubes. - Abstract: The covalent functionalization of carbon nanomaterials with diamines is a way to enhance the mechanical strength of nanocomposites due to cross-linking effects, to form complex networks for nanotube-based electronic circuits, as well as is important for a number of biomedical applications. The main goal of the present work was to covalently functionalize pristine multi-walled carbon nanotubes and nanodiamond with three aliphatic diamines (1,8-diaminooctane, 1,10-diaminodecane and 1,12-diaminododecane) and one aromatic diamine (1,5-diaminonaphthalene), by employing a simple one-step solvent-free methodology, which is based on thermal instead of chemical activation. We looked for experimental evidences of cross-linking effects in the carbon nanomaterials synthesized by using solubility/dispersibility tests, atomic force microscopy, scanning and transmission electron microscopy, as well as Fourier-transform infrared spectroscopy and thermogravimetric analysis for additional characterization.

  9. Geochemical Impacts to Groundwater from Geologic Carbon Sequestration: Controls on pH and Inorganic Carbon Concentrations from Reaction Path and Kinetic Modeling

    Science.gov (United States)

    Geologic carbon sequestration has the potential to cause long-term reductions in global emissions of carbon dioxide to the atmosphere. Safe and effective application of carbon sequestration technology requires an understanding of the potential risks to the quality of underground...

  10. Financial sustainability for a lignocellulosic biorefinery under carbon constraints and price downside risk

    International Nuclear Information System (INIS)

    Cheng, Lingfeng; Anderson, C. Lindsay

    2016-01-01

    Highlights: • Stochastic program determines production, risk management strategy for biorefinery. • Scheduled production commitment decreases as tiered carbon tax rate increases. • Risk averse producers prefer the forward contract as a mode of product sales. • Time varying forward prices and inventory enable producers to increase profits. • Inventory is beneficial to producers, below the threshold for inventory costs. - Abstract: The development of an environmentally sustainable and financially viable replacement for fossil fuels continues to elude industry investors even though the benefits of replacing them is undisputed. Biofuels are among the promising replacements for fossil fuels. However, the development and production process for bio-based fuels creates uncertainty for industry investors. In order to increase process profitability, financial tools can be implemented with current technology. This paper proposes the use of forward contracts to mitigate risk, and it also considers the impact of carbon tax constraints and price uncertainty. Specifically, a stochastic optimization approach is implemented to develop strategies, which increases the net present value (NPV) of a production facility through determination of an optimal production schedule, as well as the creation of a portfolio of forward contracts to reduce product price risk. Results of numerical case studies show that if the policymaker is risk averse, production is higher in the early planning period rather than the later period. This paper also investigates the ability to maintain inventory in order to create additional financial benefit.

  11. Sustainable Carbon Dioxide Photoreduction by a Cooperative Effect of Reactor Design and Titania Metal Promotion

    Directory of Open Access Journals (Sweden)

    Alberto Olivo

    2018-01-01

    Full Text Available An effective process based on the photocatalytic reduction of CO2 to face on the one hand, the crucial problem of environmental pollution, and, on the other hand, to propose an efficient way to product clean and sustainable energy sources has been developed in this work. Particular attention has been paid to the sustainability of the process by using a green reductant (water and TiO2 as a photocatalyst under very mild operative conditions (room temperature and atmospheric pressure. It was shown that the efficiency in carbon dioxide photoreduction is strictly related to the process parameters and to the catalyst features. In order to formulate a versatile and high performing catalyst, TiO2 was modified by oxide or metal species. Copper (in the oxide CuO form or gold (as nanoparticles were employed as promoting metal. Both photocatalytic activity and selectivity displayed by CuO-TiO2 and Au-TiO2 were compared, and it was found that the nature of the promoter (either Au or CuO shifts the selectivity of the process towards two strategic products: CH4 or H2. The catalytic results were discussed in depth and correlated with the physicochemical features of the photocatalysts.

  12. Nonlinear free vibration of single walled Carbone NanoTubes conveying fluid

    Directory of Open Access Journals (Sweden)

    Azrar A.

    2014-04-01

    Full Text Available Nonlinear free vibration of single-walled carbon nanotubes (CNTs conveying fluid are modeled and numerically simulated based on von Kármán geometric nonlinearity and Eringen’s nonlocal elasticity theory. The CNTs are modelled as nanobeams where the effects of transverse shear deformation and rotary inertia are considered within the framework of Timoshenko beam theory. The governing equations and boundary conditions are derived using the Hamilton’s principle and the nonlinear equation of motion is solved by the Galerkin’s method. The small scale parameter and the fluid-tube interaction effects on the dynamic behaviours of the CNT-fluid system as well as the instabilities induced by the fluid-velocity can be investigated. The critical fluid-velocity and frequency-amplitude relationships as well as the flutter and divergence instability types and the associated time responses are obtained based on the presented methodological approach.

  13. High-performance zno transistors processed via an aqueous carbon-free metal oxide precursor route at temperatures between 80-180 °c

    KAUST Repository

    Lin, Yenhung; Faber, Hendrik; Zhao, Kui; Wang, Qingxiao; Amassian, Aram; McLachlan, Martyn A.; Anthopoulos, Thomas D.

    2013-01-01

    An aqueous and carbon-free metal-oxide precursor route is used in combination with a UV irradiation-assisted low-temperature conversion method to fabricate low-voltage ZnO transistors with electron mobilities exceeding 10 cm2/Vs at temperatures <

  14. Geoscience and sustainability

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2018-01-01

    This paper explores how scientists entangle themselves in between keywords and buzzwords when they make use of concepts like sustainability. It sketches out theoretical distinctions between keywords and buzzwords. Then it turns to the concept of nature discussing the paradox that nature embraces...... the same fuzzy, slippery and contingent character as does sustainability, yet the former has a deep ontological status, the latter does not. The paper explores a related paradox: natural sciences claim we live in the Anthropocene, in which humans have transformed geochemical cycles, e.g. of methane...... and carbon dioxide as much as they changed between glacial and interglacial periods. Yet, science favors (external) nature as a keyword, sustainability as a buzzword. This should cause deep reflections on how scientists make use of the power of reference in between keywords and buzzwords – as well...

  15. Tendances Carbone no. 79 'Free allocations under Phase 3 benchmarks: early evidence of what has changed'

    International Nuclear Information System (INIS)

    Sartor, Oliver

    2013-01-01

    Among the publications of CDC Climat Research, 'Tendances Carbone' bulletin specifically studies the developments of the European market for CO 2 allowances. This issue addresses the following points: One of the most controversial changes to the EU ETS in Phase 3 (2013-2020) has been the introduction of emissions-performance benchmarks for determining free allocations to non-electricity producers. Phases 1 and 2 used National Allocation Plans (NAPs). For practical reasons NAPs were drawn up by each Member State, but this led to problems, including over-generous allowance allocation, insufficiently harmonised allocations across countries and distorted incentives to reduce emissions. Benchmarking tries to fix things by allocating the equivalent of 100% of allowances needed if every installation used the best available technology. But this is not universally popular and industries say that they might lose international competitiveness. So a new study by CDC Climat and the Climate Economics Chair examined the data from the preliminary Phase 3 free allocations of 20 EU Member States and asked: how much are free allocations actually going to change with benchmarking?

  16. Nitrogen-doped micropore-dominant carbon derived from waste pine cone as a promising metal-free electrocatalyst for aqueous zinc/air batteries

    Science.gov (United States)

    Lei, Xiaoke; Wang, Mengran; Lai, Yanqing; Hu, Langtao; Wang, Hao; Fang, Zhao; Li, Jie; Fang, Jing

    2017-10-01

    The exploitation for highly effective and low-cost metal-free catalysts with facile and environmental friendly method for oxygen reduction reaction is still a great challenge. To find an effective method for catalyst synthesis, in this manuscript, waste biomass pine cone is employed as raw material and nitrogen-doped micropore-dominant carbon material with excellent ORR catalytic activity is successfully synthesized. The as-prepared N-doped micropore-dominant carbon possesses a high surface area of 1556 m2 g-1. In addition, this carbon electrocatalyst loaded electrode exhibits a high discharge voltage 1.07 V at the current density of 50 mA cm-2, which can be ascribed to the rich micropores and high content of pyridinic N of the prepared carbon, indicative of great potential in the application of zinc/air batteries.

  17. Economics of nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    Bertel, E.

    2006-01-01

    The paper is based on a recent OECD study on projected costs of generating electricity and other NEA studies on external costs including carbon emissions and global climate change risks. The overall objective of the analysis is to provide key elements for assessing nuclear energy in a sustainable development perspective, taking into account social and environmental aspects. Levelised lifetime costs of generating electricity are presented and compared for nuclear power plants and alternative generation technologies including gas-fired, coal-fired and wind power plants. The data presented refer to state-of-the-art power plants that could be commissioned by 2015 or earlier. Cost drivers and their variability from country to country and technology to technology are analysed. The paper also addresses external costs and benefits of nuclear energy as compared with those of alternative options. In particular, it provides insights regarding the impact of policy measures to reduce greenhouse gas emissions on the relative competitiveness of fossil-fuelled power plants and nearly carbon-free technologies (e.g., nuclear or wind). Other external costs such as social concerns, environmental impacts of residual emissions and contribution to security of energy supply are discussed

  18. Reviews and syntheses: Calculating the global contribution of coralline algae to total carbon burial

    Science.gov (United States)

    van der Heijden, L. H.; Kamenos, N. A.

    2015-11-01

    The ongoing increase in anthropogenic carbon dioxide (CO2) emissions is changing the global marine environment and is causing warming and acidification of the oceans. Reduction of CO2 to a sustainable level is required to avoid further marine change. Many studies investigate the potential of marine carbon sinks (e.g. seagrass) to mitigate anthropogenic emissions, however, information on storage by coralline algae and the beds they create is scant. Calcifying photosynthetic organisms, including coralline algae, can act as a CO2 sink via photosynthesis and CaCO3 dissolution and act as a CO2 source during respiration and CaCO3 production on short-term timescales. Long-term carbon storage potential might come from the accumulation of coralline algae deposits over geological timescales. Here, the carbon storage potential of coralline algae is assessed using meta-analysis of their global organic and inorganic carbon production and the processes involved in this metabolism. Net organic and inorganic production were estimated at 330 g C m-2 yr-1 and 900 g CaCO3 m-2 yr-1 respectively giving global organic/inorganic C production of 0.7/1.8 × 109 t C yr-1. Calcium carbonate production by free-living/crustose coralline algae (CCA) corresponded to a sediment accretion of 70/450 mm kyr-1. Using this potential carbon storage for coralline algae, the global production of free-living algae/CCA was 0.4/1.2 × 109 t C yr-1 suggesting a total potential carbon sink of 1.6 × 109 tonnes per year. Coralline algae therefore have production rates similar to mangroves, salt marshes and seagrasses representing an as yet unquantified but significant carbon store, however, further empirical investigations are needed to determine the dynamics and stability of that store.

  19. Achieving sustainable biomass conversion to energy and bio products

    International Nuclear Information System (INIS)

    Matteson, G. C.

    2009-01-01

    The present effort in to maximize biomass conversion-to-energy and bio products is examined in terms of sustain ability practices. New goals, standards in practice, measurements and certification are needed for the sustainable biomass industry. Sustainable practices produce biomass energy and products in a manner that is secure, renewable, accessible locally, and pollution free. To achieve sustainable conversion, some new goals are proposed. (Author)

  20. Carbon emission disclosure: does it matter

    Science.gov (United States)

    Sudibyo, Y. A.

    2018-01-01

    The purpose of this research were to test empirically the relationship of Volume of Carbon emission, Carbon Management Practice disclosure and Carbon disclosure emission with firm value, especially in Indonesia as developing Country. This research using data from Indonesian sustainability Award in 2013-2015. The instrument of this research was adapted from CDP Questionnaires to score the disclosure of Carbon Management Practice. While the carbon emission disclosure instrument was dummy variable. For volume of carbon emission, this research used the quantity or volume of carbon reported in sustainability reporting. We find that Volume of carbon emission was not related to Firm value. Also Carbon disclosure Emission does not have relationship with Firm value. Both hypotheses were not consistent with [8] which was doing their research in Developed Country. While Carbon Management Practice Disclosure, using CDP Questionnaires, has positive relationship with Firm value. The conclusion is developing country as resource constraint need to be motivated to report and disclose carbon emission from voluntary reporting to mandatory by regulation from government, not just only for high sensitive industry but also low sensitive industry. Then developing country which has resource constraint need to have more proactive strategy to prevent carbon emission instead of reducing carbon emission.

  1. Governance and legitimacy aspects of the UK biofuel carbon and sustainability reporting system

    International Nuclear Information System (INIS)

    Upham, Paul; Tomei, Julia; Dendler, Leonie

    2011-01-01

    Biofuel policy has become highly contentious in Europe. In this paper we discuss the governance and legitimacy aspects of the carbon and sustainability system of the UK Renewable Transport Fuel Obligation (RTFO), both before and after implementation of the Renewable Energy Directive. RTFO certification is of a meta-type, being built upon existing certification and labelling schemes, each of which are more or less contested by NGOs. Despite the RTFO being based on these non-state initiatives, so far the concerns of environment and development NGOs and others have not been given serious expression in regulatory terms. Indeed, biofuel policy development in the UK has arguably been unduly non-responsive to critical opinion, given the limited scientific base on biofuel impacts and the reliance of RTFO sustainability certification on non-state actors and schemes. Drawing on documentary evidence, interviews and three sets of literatures - co-production of regulation; post-normal science; and legitimacy of non-state certification and labelling processes - we suggest that until concerned voices are given a stronger expression in UK and EC biofuel policy development, the policy cannot yet be said to have achieved a wide social mandate. - Research highlights: → Interviews with largely non-commercial actors show a high level of concern about EC/UK biofuel policy. → The scientific uncertainties and complexity of biofuels justify inclusive policy development. → Statutory UK and EC biofuel certification will rely heavily on non-state actors and processes.→ EC/UK biofuel certification can learn from legitimisation processes more usually relevant to non-state initiatives.

  2. Governance and legitimacy aspects of the UK biofuel carbon and sustainability reporting system

    Energy Technology Data Exchange (ETDEWEB)

    Upham, Paul, E-mail: Paul.upham@manchester.ac.u [Manchester Institute for Innovation Research and Tyndall Centre Manchester, Pariser Building, University of Manchester, M60 1QD (United Kingdom); Tomei, Julia, E-mail: j.tomei@ucl.ac.u [UCL Energy Institute, Central House, 14 Upper Woburn Place, London WC1H 0HY (United Kingdom); Dendler, Leonie, E-mail: Leonie.Dendler@postgrad.manchester.ac.u [Sustainable Consumption Institute (SCI), University of Manchester, 188 Waterloo Place, Oxford Road, Manchester M139PL (United Kingdom)

    2011-05-15

    Biofuel policy has become highly contentious in Europe. In this paper we discuss the governance and legitimacy aspects of the carbon and sustainability system of the UK Renewable Transport Fuel Obligation (RTFO), both before and after implementation of the Renewable Energy Directive. RTFO certification is of a meta-type, being built upon existing certification and labelling schemes, each of which are more or less contested by NGOs. Despite the RTFO being based on these non-state initiatives, so far the concerns of environment and development NGOs and others have not been given serious expression in regulatory terms. Indeed, biofuel policy development in the UK has arguably been unduly non-responsive to critical opinion, given the limited scientific base on biofuel impacts and the reliance of RTFO sustainability certification on non-state actors and schemes. Drawing on documentary evidence, interviews and three sets of literatures - co-production of regulation; post-normal science; and legitimacy of non-state certification and labelling processes - we suggest that until concerned voices are given a stronger expression in UK and EC biofuel policy development, the policy cannot yet be said to have achieved a wide social mandate. - Research highlights: {yields} Interviews with largely non-commercial actors show a high level of concern about EC/UK biofuel policy. {yields} The scientific uncertainties and complexity of biofuels justify inclusive policy development. {yields} Statutory UK and EC biofuel certification will rely heavily on non-state actors and processes.{yields} EC/UK biofuel certification can learn from legitimisation processes more usually relevant to non-state initiatives.

  3. Theory to practice: The scope, purpose and practice of prefeasibility studies for critical resources in the era of sustainable development

    International Nuclear Information System (INIS)

    Hilton, Julian

    2014-01-01

    Safety and Sustainability: • A strong mutual dependency has been identified between the objectives of HSE and sustainable development goals, such as the sustainable management and use of critical mineral resources. • A practice cannot be described as sustainable that is not also safe.

  4. Stable Asymptotically Free Extensions (SAFEs) of the Standard Model

    International Nuclear Information System (INIS)

    Holdom, Bob; Ren, Jing; Zhang, Chen

    2015-01-01

    We consider possible extensions of the standard model that are not only completely asymptotically free, but are such that the UV fixed point is completely UV attractive. All couplings flow towards a set of fixed ratios in the UV. Motivated by low scale unification, semi-simple gauge groups with elementary scalars in various representations are explored. The simplest model is a version of the Pati-Salam model. The Higgs boson is truly elementary but dynamical symmetry breaking from strong interactions may be needed at the unification scale. A hierarchy problem, much reduced from grand unified theories, is still in need of a solution.

  5. Light Water Reactor Sustainability Research and Development Program Plan -- Fiscal Year 2009–2013

    Energy Technology Data Exchange (ETDEWEB)

    Idaho National Laboratory

    2009-12-01

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R&D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R&D programs. The purpose of the LWRS R&D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R&D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its international engagement

  6. Sustainable Materials Management Web Academy

    Science.gov (United States)

    The Sustainable Materials Management (SMM) Web Academy series is a free resource for SMM challenge participants, stakeholders, and anyone else interested in learning more about SMM principles from experts in the field.

  7. Safe Patient Handling and Mobility: Development and Implementation of a Large-Scale Education Program.

    Science.gov (United States)

    Lee, Corinne; Knight, Suzanne W; Smith, Sharon L; Nagle, Dorothy J; DeVries, Lori

    This article addresses the development, implementation, and evaluation of an education program for safe patient handling and mobility at a large academic medical center. The ultimate goal of the program was to increase safety during patient mobility/transfer and reduce nursing staff injury from lifting/pulling. This comprehensive program was designed on the basis of the principles of prework, application, and support at the point of care. A combination of online learning, demonstration, skill evaluation, and coaching at the point of care was used to achieve the goal. Specific roles and responsibilities were developed to facilitate implementation. It took 17 master trainers, 88 certified trainers, 176 unit-based trainers, and 98 coaches to put 3706 nurses and nursing assistants through the program. Evaluations indicated both an increase in knowledge about safe patient handling and an increased ability to safely mobilize patients. The challenge now is sustainability of safe patient-handling practices and the growth and development of trainers and coaches.

  8. Nitrogen-Doped Banana Peel-Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors.

    Science.gov (United States)

    Liu, Bingzhi; Zhang, Lili; Qi, Peirong; Zhu, Mingyuan; Wang, Gang; Ma, Yanqing; Guo, Xuhong; Chen, Hui; Zhang, Boya; Zhao, Zhuangzhi; Dai, Bin; Yu, Feng

    2016-01-15

    Nitrogen-doped banana peel-derived porous carbon foam (N-BPPCF) successfully prepared from banana peels is used as a binder-free electrode for supercapacitors. The N-BPPCF exhibits superior performance including high specific surface areas of 1357.6 m²/g, large pore volume of 0.77 cm³/g, suitable mesopore size distributions around 3.9 nm, and super hydrophilicity with nitrogen-containing functional groups. It can easily be brought into contact with an electrolyte to facilitate electron and ion diffusion. A comparative analysis on the electrochemical properties of BPPCF electrodes is also conducted under similar conditions. The N-BPPCF electrode offers high specific capacitance of 185.8 F/g at 5 mV/s and 210.6 F/g at 0.5 A/g in 6 M KOH aqueous electrolyte versus 125.5 F/g at 5 mV/s and 173.1 F/g at 0.5 A/g for the BPPCF electrode. The results indicate that the N-BPPCF is a binder-free electrode that can be used for high performance supercapacitors.

  9. Nitrogen-Doped Banana Peel–Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Bingzhi Liu

    2016-01-01

    Full Text Available Nitrogen-doped banana peel–derived porous carbon foam (N-BPPCF successfully prepared from banana peels is used as a binder-free electrode for supercapacitors. The N-BPPCF exhibits superior performance including high specific surface areas of 1357.6 m2/g, large pore volume of 0.77 cm3/g, suitable mesopore size distributions around 3.9 nm, and super hydrophilicity with nitrogen-containing functional groups. It can easily be brought into contact with an electrolyte to facilitate electron and ion diffusion. A comparative analysis on the electrochemical properties of BPPCF electrodes is also conducted under similar conditions. The N-BPPCF electrode offers high specific capacitance of 185.8 F/g at 5 mV/s and 210.6 F/g at 0.5 A/g in 6 M KOH aqueous electrolyte versus 125.5 F/g at 5 mV/s and 173.1 F/g at 0.5 A/g for the BPPCF electrode. The results indicate that the N-BPPCF is a binder-free electrode that can be used for high performance supercapacitors.

  10. Consensus together to jointly promote the safe and efficient development of China's Nuclear industry

    International Nuclear Information System (INIS)

    Lei Zengguang

    2012-01-01

    After the development of China's nuclear industry 56 years, and a certain ability to form a strategic advantage for sustainable development, laying a solid foundation for the development of the national nuclear energy. 2011 Japan's Fukushima Daiichi nuclear accident occurred seven. 2011 of the 'Economic and Social Development Twelfth Five Five Year plan' clearly stated: 'on the basis of ensuring efficient and safe development of nuclear power', the development of China's nuclear industry is facing unprecedented opportunities and challenges, requiring the nuclear industry and nuclear academia work together to jointly promote China's nuclear industry safe and efficient, development

  11. Proposal for a new normalization reference in LCA based on “safe operating space”: presentation of framework and global factors at midpoint level

    DEFF Research Database (Denmark)

    Bjørn, Anders; Hauschild, Michael Zwicky

    Planetary boundaries have been suggested for a range of environmental impacts,such as climate change, eutrophying nutrients and land use. The boundaries demarcate the safe operating space of humanity: Staying within the space ensures environmental sustainability, while exceeding it risks pushing...... ecosystems into alternative regimes, leading to adverse effects for humanity. Planetary boundaries can be applied as policy targets. To promote a societal development in the direction of these targets, an indicator system is needed that measures the fraction of the safe operating space that a given activity...... normalization factors in units compatible with characterized results at midpoint level in LCA. Our suggested framework allows expressing normalized results in units of “sustainable person years”. Normalization factors are derived by dividing the safe operating space by the global population. The proposed...

  12. Cytotoxic Deoxypodophyllotoxin Can Be Extracted in High Purity from Anthriscus sylvestris Roots by Supercritical Carbon Dioxide.

    Science.gov (United States)

    Seegers, Christel L C; Tepper, Pieter G; Setroikromo, Rita; Quax, Wim J

    2018-05-01

    Deoxypodophyllotoxin is present in the roots of Anthriscus sylvestris . This compound is cytotoxic on its own, but it can also be converted into podophyllotoxin, which is in high demand as a precursor for the important anticancer drugs etoposide and teniposide. In this study, deoxypodophyllotoxin is extracted from A. sylvestris roots by supercritical carbon dioxide extraction. The process is simple and scalable. The supercritical carbon dioxide method extracts 75 - 80% of the total deoxypodophyllotoxin content, which is comparable to a single extraction by traditional Soxhlet. However, less polar components are extracted. The activity of the supercritical carbon dioxide extract containing deoxypodophyllotoxin was assessed by demonstrating that the extract arrests A549 and HeLa cells in the G 2 /M phase of the cell cycle. We conclude that biologically active deoxypodophyllotoxin can be extracted from A. sylvestris by supercritical carbon dioxide extraction. The method is solvent free and more sustainable compared to traditional methods. Georg Thieme Verlag KG Stuttgart · New York.

  13. Standard Gibbs free energies of reactions of ozone with free radicals in aqueous solution: quantum-chemical calculations.

    Science.gov (United States)

    Naumov, Sergej; von Sonntag, Clemens

    2011-11-01

    Free radicals are common intermediates in the chemistry of ozone in aqueous solution. Their reactions with ozone have been probed by calculating the standard Gibbs free energies of such reactions using density functional theory (Jaguar 7.6 program). O(2) reacts fast and irreversibly only with simple carbon-centered radicals. In contrast, ozone also reacts irreversibly with conjugated carbon-centered radicals such as bisallylic (hydroxycylohexadienyl) radicals, with conjugated carbon/oxygen-centered radicals such as phenoxyl radicals, and even with nitrogen- oxygen-, sulfur-, and halogen-centered radicals. In these reactions, further ozone-reactive radicals are generated. Chain reactions may destroy ozone without giving rise to products other than O(2). This may be of importance when ozonation is used in pollution control, and reactions of free radicals with ozone have to be taken into account in modeling such processes.

  14. Selection of environmental sustainable fiber materials for wind turbine blades - a contra intuitive process?

    Energy Technology Data Exchange (ETDEWEB)

    Birkved, M.; Corona, A. [Technical Univ. of Denmark. DTU Management Engineering, Kgs. Lyngby (Denmark); Markussen, C.M.; Madsen, Bo [Technical Univ. of Denmark. DTU Wind Energy, Risoe Campus, Roskilde (Denmark)

    2013-09-01

    Over the recent decades biomaterials have been marketed successfully supported by the common perception that biomaterials and environmental sustainability de facto represents two sides of the same coin. The development of sustainable composite materials such as blades for small-scale wind turbines have thus partially been focused on the substitution of conventional fiber materials with bio-fibers. The major question is if this material substitution actually, is environmental sustainable. In order to assess a wide pallet of environmental impacts and taking into account positive and negative environmental trade-offs over the entire life-span of composite materials, life cycle assessment (LCA) can be applied. In the present case study, four different types of fibers (carbon, glass, flax and carbon/flax mixture) are compared in terms of environmental sustainability and cost. Applying one of the most recent life cycle impact assessment methods, it is demonstrated that the environmental sustainability of the mixed carbon/flax fiber based composite material is better than that of the flax fibers alone. This observation may be contra-intuitive, but is mainly caused by the fact that the bio-material resin demand is by far exceeding the resin demand of the conventional fibers, and since the environmental burden of the resin is comparable to that of the fibers, resin demand is in terms of environmental sustainability important. On the other hand is the energy demand and associated environmental impacts in relation to the production of the carbon and glass fibers considerable compared to the impacts resulting from resin production. The ideal fiber solution, in terms of environmental sustainability, is hence the fiber composition having the lowest resin demand and lowest overall energy demand. The optimum environmental solution hence turns out to be a 70:30 flax:carbon mix, thereby minimizing the use of carbon fibers and resin. On top of the environmental sustainability

  15. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be safely...

  16. Safe recycling of materials containing persistent inorganic and carbon nanoparticles

    NARCIS (Netherlands)

    Reijnders, L.; Njuguna, J.; Pielichowski, K.; Zhu, H.

    2014-01-01

    For persistent inorganic and carbon nanomaterials, considerable scope exists for a form of recycling called ‘resource cascading’. Resource cascading is aimed at the maximum exploitation of quality and service time of natural resources. Options for resource cascading include engineered nanomaterials

  17. Sustainable and safe design of footwear integrating ecological footprint and risk criteria.

    Science.gov (United States)

    Herva, Marta; Álvarez, Antonio; Roca, Enrique

    2011-09-15

    The ecodesign of a product implies that different potential environmental impacts of diverse nature must be taken into account considering its whole life cycle, apart from the general design criteria (i.e. technical, functional, ergonomic, aesthetic or economic). In this sense, a sustainability assessment methodology, ecological footprint (EF), and environmental risk assessment (ERA), were combined for the first time to derive complementary criteria for the ecodesign of footwear. Four models of children's shoes were analyzed and compared. The synthetic shoes obtained a smaller EF (6.5 gm(2)) when compared to the leather shoes (11.1 gm(2)). However, high concentrations of hazardous substances were detected in the former, even making the Hazard Quotient (HQ) and the Cancer Risk (CR) exceed the recommended safety limits for one of the synthetic models analyzed. Risk criteria were prioritized in this case and, consequently, the design proposal was discarded. For the other cases, the perspective provided by the indicators of different nature was balanced to accomplish a fairest evaluation. The selection of fibers produced under sustainable criteria and the reduction of the materials consumption was recommended, since the area requirements would be minimized and the absence of hazardous compounds would ensure safety conditions during the use stage. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Cool and Safe: Multiplicity in Safe Innovation at Unilever

    Science.gov (United States)

    Penders, Bart

    2011-01-01

    This article presents the making of a safe innovation: the application of ice structuring protein (ISP) in edible ices. It argues that safety is not the absence of risk but is an active accomplishment; innovations are not "made safe afterward" but "safe innovations are made". Furthermore, there are multiple safeties to be accomplished in the…

  19. Toward Sustainable Amino Acid Production.

    Science.gov (United States)

    Usuda, Yoshihiro; Hara, Yoshihiko; Kojima, Hiroyuki

    Because the global amino acid production industry has been growing steadily and is expected to grow even more in the future, efficient production by fermentation is of great importance from economic and sustainability viewpoints. Many systems biology technologies, such as genome breeding, omics analysis, metabolic flux analysis, and metabolic simulation, have been employed for the improvement of amino acid-producing strains of bacteria. Synthetic biological approaches have recently been applied to strain development. It is also important to use sustainable carbon sources, such as glycerol or pyrolytic sugars from cellulosic biomass, instead of conventional carbon sources, such as glucose or sucrose, which can be used as food. Furthermore, reduction of sub-raw substrates has been shown to lead to reduction of environmental burdens and cost. Recently, a new fermentation system for glutamate production under acidic pH was developed to decrease the amount of one sub-raw material, ammonium, for maintenance of culture pH. At the same time, the utilization of fermentation coproducts, such as cells, ammonium sulfate, and fermentation broth, is a useful approach to decrease waste. In this chapter, further perspectives for future amino acid fermentation from one-carbon compounds are described.

  20. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: Catalyst-free synthesis and its application in energy storage devices

    KAUST Repository

    Xu, Xuezhu

    2015-04-15

    Currently, most carbon aerogels are based on carbon nanotubes (CNTs) or graphene, which are produced through a catalyst-assisted chemical vapor deposition method. Biomass based organic aerogels and carbon aerogels, featuring low cost, high scalability, and small environmental footprint, represent an important new research direction in (carbon) aerogel development. Cellulose and lignin are the two most abundant natural polymers in the world, and the aerogels based on them are very promising. Classic silicon aerogels and available organic resorcinol-formaldehyde (RF) or lignin-resorcinol-formaldehyde (LRF) aerogels are brittle and fragile; toughening of the aerogels is highly desired to expand their applications. This study reports the first attempt to toughen the intrinsically brittle LRF aerogel and carbon aerogel using bacterial cellulose. The facile process is catalyst-free and cost-effective. The toughened carbon aerogels, consisting of blackberry-like, core-shell structured, and highly graphitized carbon nanofibers, are able to undergo at least 20% reversible compressive deformation. Due to their unique nanostructure and large mesopore population, the carbon materials exhibit an areal capacitance higher than most of the reported values in the literature. This property makes them suitable candidates for flexible solid-state energy storage devices. Besides energy storage, the conductive interconnected nanoporous structure can also find applications in oil/water separation, catalyst supports, sensors, and so forth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Solvent-free functionalization of carbon nanotube buckypaper with amines

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Ramírez-Calera, Itzel J.; Meza-Laguna, Victor; Abarca-Morales, Edgar; Pérez-Rey, Luis A.; Re, Marilena; Prete, Paola; Lovergine, Nico

    2015-01-01

    Graphical abstract: - Abstract: We demonstrate the possibility of fast and efficient solvent-free functionalization of buckypaper (BP) mats prefabricated from oxidized multiwalled carbon nanotubes (MWCNTs-ox), by using three representative amines of different structure: one monofunctional aliphatic amine, octadecylamine (ODA), one monofunctional aromatic amine, 1-aminopyrene (AP), and one aromatic diamine, 1,5-diaminonaphthalene (DAN). The functionalization procedure, which relies on the formation of amide bonds with carboxylic groups of MWCNTs-ox, is performed at 150–180 °C under reduced pressure and takes about 4 h including auxiliary degassing. The amine-treated BP samples (BP-ODA, BP-AP and BP-DAN, respectively) were characterized by means of a variety of analytical techniques such as Fourier-transform infrared and Raman spectroscopy, thermogravimetric and differential thermal analysis, scanning and transmission electron microscopy, scanning helium ion microscopy, and atomic force microscopy. The highest amine content was found for BP-ODA, and the lowest one was observed for BP-DAN, with a possible contribution of non-covalently bonded amine molecules in all three cases. Despite of some differences in spectral and morphological characteristics for amine-functionalized BP samples, they have in common a dramatically increased stability in water as compared to pristine BP and, on the other hand, a relatively invariable electrical conductivity.

  2. Sustainable development and low carbon growth strategy for India

    International Nuclear Information System (INIS)

    Parikh, Kirit

    2012-01-01

    For India, sustainable strategy means one that is economically, environmentally and socially sustainable. This calls for rapid economic growth to deal with poverty and human development. However, the relatively meagre energy resources of the country pose a huge challenge. At the same time concern for climate change has raised the bar on the use of the one energy resource that India has in some abundance, namely coal. India's strategy for sustainable development has to explore all options of reducing energy needs, enhancing efficiency of use of conventional energy resources and develop new and renewable sources. The paper identifies various technical options, their potential roles and alternative policy measures to realize them in a cost effective manner. Even for the same objectives different policy instruments are available and how one chooses a particular instrument is often critical for the success. Self-implementing incentive compatible policy that does not create vested interests that would get entrenched should be preferred. -- Highlights: ► Energy efficiency is critical for sustainable development. ► India can reduce its emission intensity by 25 % by 2020 as proposed by India at Copenhagen. ► With a more aggressive effort even 35% reduction is attainable even with 8% or 9% growth. ► Energy efficient appliances, vehicles, buildings and industrial processes are needed. ► Policies that incentivize adoption of these pose critical challenges.

  3. Three-Dimensional Printing of Bisphenol A-Free Polycarbonates.

    Science.gov (United States)

    Zhu, Wei; Pyo, Sang-Hyun; Wang, Pengrui; You, Shangting; Yu, Claire; Alido, Jeffrey; Liu, Justin; Leong, Yew; Chen, Shaochen

    2018-02-14

    Polycarbonates are widely used in food packages, drink bottles, and various healthcare products such as dental sealants and tooth coatings. However, bisphenol A (BPA) and phosgene used in the production of commercial polycarbonates pose major concerns to public health safety. Here, we report a green pathway to prepare BPA-free polycarbonates (BFPs) by thermal ring-opening polymerization and photopolymerization. Polycarbonates prepared from two cyclic carbonates in different mole ratios demonstrated tunable mechanical stiffness, excellent thermal stability, and high optical transparency. Three-dimensional (3D) printing of the new BFPs was demonstrated using a two-photon laser direct writing system and a rapid 3D optical projection printer to produce structures possessing complex high-resolution geometries. Seeded C3H10T1/2 cells also showed over 95% viability with potential applications in biological studies. By combining biocompatible BFPs with 3D printing, novel safe and high-performance biomedical devices and healthcare products could be developed with broad long-term benefits to society.

  4. India’s GHG Emission Reduction and Sustainable Development

    DEFF Research Database (Denmark)

    Shukla, P.; Dhar, Subash

    2016-01-01

    India has made voluntary commitment for reducing the emission intensity of GDP in the year 2020 by 20–25 % below that in the year 2005. The Indian approach is based on delineating and implementing cost-effective mitigation actions which can contribute to national sustainable development goals while...... an optimal roadmap of actions in India which can maximize net total benefits of carbon emissions mitigation and national sustainable development. A key contribution of the paper is the estimation of the net social value of carbon in India which is an important input for provisioning carbon finance...... model ANSWER-MARKAL, which is embedded within a soft-linked integrated model system (SLIMS). The central themes of the three scenario storylines and assumptions are as follows: first, a business-as-usual (BAU) scenario that assumes the socioeconomic development to happen along the conventional path...

  5. Biosynthesis of glycerol carbonate from glycerol by lipase in dimethyl carbonate as the solvent.

    Science.gov (United States)

    Lee, Kyung Hwa; Park, Chang-Ho; Lee, Eun Yeol

    2010-11-01

    Glycerol carbonate was synthesized from renewable glycerol and dimethyl carbonate using lipase in solvent-free reaction system in which excess dimethyl carbonate played as the reaction medium. A variety of lipases have been tested for their abilities to catalyze transesterification reaction, and Candida antartica lipase B and Novozyme 435 exhibited higher catalytic activities. The silica-coated glycerol with a 1:1 ratio was supplied to prevent two-phase formation between hydrophobic dimethyl carbonate and hydrophilic glycerol. Glycerol carbonate was successfully synthesized with more than 90% conversion from dimethyl carbonate and glycerol with a molar ratio of 10 using Novozyme 435-catalyzed transesterification at 70 °C. The Novozyme 435 [5% (w/w) and 20% (w/w)] and silica gel were more than four times recycled with good stability in a repeated batch operation for the solvent-free synthesis of glycerol carbonate.

  6. Transforming Innovation for Sustainability

    Directory of Open Access Journals (Sweden)

    Melissa Leach

    2012-06-01

    Full Text Available The urgency of charting pathways to sustainability that keep human societies within a "safe operating space" has now been clarified. Crises in climate, food, biodiversity, and energy are already playing out across local and global scales and are set to increase as we approach critical thresholds. Drawing together recent work from the Stockholm Resilience Centre, the Tellus Institute, and the STEPS Centre, this commentary article argues that ambitious Sustainable Development Goals are now required along with major transformation, not only in policies and technologies, but in modes of innovation themselves, to meet them. As examples of dryland agriculture in East Africa and rural energy in Latin America illustrate, such "transformative innovation" needs to give far greater recognition and power to grassroots innovation actors and processes, involving them within an inclusive, multi-scale innovation politics. The three dimensions of direction, diversity, and distribution along with new forms of "sustainability brokering" can help guide the kinds of analysis and decision making now needed to safeguard our planet for current and future generations.

  7. Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: Looking for cross-linking effects

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Elena V., E-mail: elenagd@unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); Basiuk, Vladimir A. [Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos (Mexico); Meza-Laguna, Victor; Contreras-Torres, Flavio F.; Martinez, Melchor [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Rojas-Aguilar, Aaron [Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico); Salerno, Marco [Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); and others

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Diamines were used for one-step functionalization of nanotubes and nanodiamond. Black-Right-Pointing-Pointer We found experimental evidences of cross-linking effects in these nanomaterials. Black-Right-Pointing-Pointer We found a strong orientation effect in the functionalized carbon nanotubes. - Abstract: The covalent functionalization of carbon nanomaterials with diamines is a way to enhance the mechanical strength of nanocomposites due to cross-linking effects, to form complex networks for nanotube-based electronic circuits, as well as is important for a number of biomedical applications. The main goal of the present work was to covalently functionalize pristine multi-walled carbon nanotubes and nanodiamond with three aliphatic diamines (1,8-diaminooctane, 1,10-diaminodecane and 1,12-diaminododecane) and one aromatic diamine (1,5-diaminonaphthalene), by employing a simple one-step solvent-free methodology, which is based on thermal instead of chemical activation. We looked for experimental evidences of cross-linking effects in the carbon nanomaterials synthesized by using solubility/dispersibility tests, atomic force microscopy, scanning and transmission electron microscopy, as well as Fourier-transform infrared spectroscopy and thermogravimetric analysis for additional characterization.

  8. Large scale international bioenergy trading. How bioenergy trading can be reliazed under safe and sustainable frame conditions?

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Kirchovas, Simas

    2011-01-01

    Biomass sources as Woodchips – Wood pellets, Straw – Bio pellets, animal manure, farm-by products and new cropping systems are integrated in our society’s needs. The mindset for shifting from fossil fuels based economies into sustainable energy economies already exist. Bioenergy utilization systems...... sustainability criteria. The sustainability criteria agreed internationally could be realized as a tool to secure the positive impacts of bioenergy and to foster the international trade. This study investigates the developments by national and international bodies of biomass standardization and certification...

  9. Nuclear Power Plants and Sustainable Development on a Liberalized Market

    International Nuclear Information System (INIS)

    Androcec, I.; Stanic, Z.; Tomsic, Z.

    2002-01-01

    Finding a way to generate electricity so as to satisfy the terms of sustainable development of the entire society is the only way which will secure safe energy future. If we talk about energy in the context of sustainable development, one of the most important element is environmental protection. Since CO 2 emissions stemming from electricity generation have predominant impact on climate change, one of the options for reducing emissions is the use of fuels without carbon, such as e.g. nuclear fuel. The future of nuclear power plants was considered in view of: nuclear fuel supply; potential impact of fuel cycle on environment, power plant operation, decommissioning and secondary products from electricity generation; and the entire nuclear power plant economy. Nuclear power plants were also examined in the context of the Kyoto Protocol stipulating reduction of greenhouse gases emissions. Nuclear power plants can not reduce CO 2 emissions in a short-term because they already operate with maximum output, but in a long-run they can play a significant role. This paper is aiming to analyse the role of nuclear power plants in long term environmental sustainability in electricity sector reform (liberalisation, deregulation, privatisation) in small or medium sized power supply systems. Nuclear power plants are associated with certain environmental aspects which will be taken into account. A comparison will be made through externalities with other energy resources, especially fossil fuels, which are prevailing energy resources, considering possible use of nuclear power plants in the countries with small and medium-size grids. It will be given an example of the role of NPP Krsko on air emissions reduction in Croatia. (author)

  10. Carbon-free hydrogen production from low rank coal

    Science.gov (United States)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2018-02-01

    Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.

  11. Sustainable Consumption Dilemmas

    Directory of Open Access Journals (Sweden)

    Kees Vringer

    2017-06-01

    Full Text Available To examine which considerations play a role when individuals make decisions to purchase sustainable product varieties or not, we have conducted a large scale field experiment with more than 600 participating households. Households can vote on whether the budgets they receive should only be spent on purchasing the sustainable product variety, or whether every household in a group is free to spend their budget on any product variety. By conducting several treatments, we tested whether people tend to view sustainable consumption as a social dilemma or as a moral dilemma. We find little support for the hypothesis that social dilemma considerations are the key drivers of sustainable consumption behaviour. Participants seem to be caught in a moral dilemma in which they not only weigh their individual financial costs with the sustainable benefits but they also consider the consequences of restricting other people’s freedom of choice. Complementary survey results further substantiate this claim and show that many people are reluctant to impose restrictions on their peers, but, at the same time, our results also suggest substantial support for the government to regulate the availability of unsustainable product varieties.

  12. Tuning CNT Properties for Metal-Free Environmental Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Raquel P. Rocha

    2016-06-01

    Full Text Available The application of carbon nanotubes (CNTs as metal-free catalysts is a novel approach for heterogeneous liquid phase catalytic systems. Textural and chemical modifications by liquid/gas phase or mechanical treatments, as well as solid state reactions, were successfully applied to obtain carbon nanotubes with different surface functionalities. Oxygen, nitrogen, and sulfur are the most common heteroatoms introduced on the carbon surface. This short-review highlights different routes used to develop metal-free carbon nanotube catalysts with enhanced properties for Advanced Oxidation Processes.

  13. Fostering Sustainable Travel Behavior: Role of Sustainability Labels and Goal-Directed Behavior Regarding Touristic Services

    Directory of Open Access Journals (Sweden)

    Elfriede Penz

    2017-06-01

    Full Text Available Individuals around the globe engage in sustainable consumption in their everyday life, e.g., when it comes to individual transportation. Although tourism behavior contributes to global carbon emissions to a considerable extent, consumers’ awareness of sustainability in the tourism industry is still underresearched. Placing eco-labels next to tourist offers on websites might direct consumer’s perception towards more sustainable offers. By employing eye-tracking techniques and surveys, this research aimed at linking information about sustainable tourist offers, perception of eco-labels and subsequent perception and preferences of tourism services. In Study 1, eight existing hotel offers with sustainability certification (four different labels were selected and their websites presented to 48 participants (four websites each, whose eye movements were tracked. After looking at each website, they rated the overall appearance of the website. Based on the results, in the second study, participants’ (n = 642 awareness of labels, their values and attitudes regarding sustainable behavior were found to influence their preference for certified tour operators. In addition, individuals’ ideas of their perfect holidays were captured to allow a better understanding of their motivation. This research proposes implementing appropriate sustainable labeling in the tourism industry to increase awareness about sustainability among travelers and subsequently increase sustainable travel behavior.

  14. WHITE CEMENT IN SUSTAINABLE DEVELOPMENT

    OpenAIRE

    Y.C.P RAMANA BABU; B.SAI DOONDI; N. M .V .VAMSI KRISHNA; K.PRASANTHI

    2013-01-01

    India is one among the fast developing countries in the world in the areas of Infrastructure. Now a day, Carbon monoxide (CO) and carbon dioxide (CO2) are the temporary atmospheric pollutants in the environment chiefly emitted from the fuel burning vehicles and street lights which lead to global warming and pose a major threat tothe survival and sustainable development. This paper deals with the principal purpose of use of white cement in pavement design which will take care of the Green hous...

  15. Nuclear power and carbon dioxide free automobiles

    International Nuclear Information System (INIS)

    Pendergast, D.R.

    1999-01-01

    Nuclear energy has been developed as a major source of electric power in Canada. Electricity from nuclear energy already avoids the emission of about 100 million tonnes of carbon dioxide to the atmosphere in Canada. This is a significant fraction of the 619 million tonnes of Canadian greenhouse gas emissions in 1995. However, the current scope of application of electricity to end use energy needs in Canada limits the contribution nuclear energy can make to carbon dioxide emission reduction. Nuclear energy can also contribute to carbon dioxide emissions reduction through expansion of the use of electricity to less traditional applications. Transportation, in particular contributed 165 million tonnes of carbon dioxide to the Canadian atmosphere in 1995. Canada's fleet of personal vehicles consisted of 16.9 million cars and light trucks. These vehicles were driven on average 21,000 km/year and generated 91 million tonnes of greenhouse gases expressed as a C02 equivalent. Technology to improve the efficiency of cars is under development which is expected to increase the energy efficiency from the 1995 level of about 10 litres/100 km of gasoline to under 3 litres/100km expressed as an equivalent referenced to the energy content of gasoline. The development of this technology, which may ultimately lead to the practical implementation of hydrogen as a portable source of energy for transportation is reviewed. Fuel supply life cycle greenhouse gas releases for several personal vehicle energy supply systems are then estimated. Very substantial reductions of greenhouse gas emissions are possible due to efficiency improvements and changing to less carbon intensive fuels such as natural gas. C02 emissions from on board natural gas fueled versions of hybrid electric cars would be decreased to approximately 25 million t/year from the current 91 million tonnes/year. The ultimate reduction identified is through the use of hydrogen fuel produced via electricity from CANDU power

  16. Eco-friendly all-carbon paper electronics fabricated by a solvent-free drawing method

    International Nuclear Information System (INIS)

    Kanaparthi, Srinivasulu; Badhulika, Sushmee

    2016-01-01

    Here we report the fabrication of high-performance all-carbon temperature and infrared (IR) sensors with a solvent-free multiwalled carbon nanotube (MWCNT) trace as the sensing element and commercial graphite pencil trace as the electrical contact on recyclable and biodegradable cellulose filter paper without using any toxic materials or complex procedures. The temperature sensor shows a large negative temperature coefficient of resistance (TCR) in the range of −3100 ppm K −1 to −4900 ppm K −1 , which is comparable to available commercial temperature sensors, and an activation energy of 34.85 meV. The IR sensor shows a high responsivity of 58.5 V W −1 , which is greater than reported IR sensors with similar dimensions. A detailed study of the conduction mechanism in MWCNTs with temperature and the photo response with IR illumination was done and it was found that the conduction is due to thermally assisted hopping in band tails and the photo response is bolometric in nature. The successful fabrication of these sensors on cellulose filter paper with a comparable performance to existing components indicates that it is possible to fabricate high-performance electronics using low-cost, eco-friendly materials without the need for expensive clean-room processing techniques or harmful chemicals. (paper)

  17. Towards a Multidisciplinary Approach on Creating Value: Sustainability through the Supply Chain and ERP Systems

    Directory of Open Access Journals (Sweden)

    Wouter De Soete

    2016-03-01

    Full Text Available Manufacturing Resource Planning (MRP is a widely used approach through manufacturing environments in a variety of sectors. With a tendency to go to specialized, smaller lot sizes in several industries (e.g., the pharmaceutical sector, companies are dealing with capacity bottlenecks if the planning rhythm wheel is not well calibrated or when production lines are not flexible enough in terms of changeover (C/O and set-up times (S/U (OEE is too small. A well-established communication system including other enterprise resources or production factors (e.g., Enterprise Resource Planning, ERP is favorable to any extent. More and more questions arise from stakeholder communities and end-users on whether or not supply chains and manufacturing environments are sustainable and safe. Departments such as Environmental Health, Safety & Sustainability (EHS & S and Product Stewardship are too often at the “blind” side of the ICT interface. When it comes to product and organizational sustainability, data seems to be lacking in order to conduct sustainability assessments proficiently. Years of intensive research and experience proved that primary data to perform sustainability assessments often are measured through equipment control sensors (e.g., flow rates, temperatures, etc. and sent to PLCs and many other systems. Nevertheless, these data measurements are in many cases simply not penetrating through the Manufacturing Execution Systems (MES because these bottom-up engineering data seems to be of little value to planning, procurement, etc. This communication paper deals with how sustainability assessments can be embedded in business operational management systems. After all, who does not want a “live Carbon Footprint” for process improvements and external sustainability reporting instead of a series of expensive resource consuming studies of 4 to 6 months digging into data logs in traditional Life Cycle Assessment (LCA? This communication paper has

  18. Selection of environmental sustainable fiber materials for wind turbine blades - a contra intuitive process?

    DEFF Research Database (Denmark)

    Birkved, Morten; Corona, Andrea; Markussen, Christen Malte

    2013-01-01

    environmental trade-offs over the entire life-span of composite materials, life cycle assessment (LCA) can be applied. In the present case study, four different types of fibers (carbon, glass, flax and carbon/flax mixture) are compared in terms of environmental sustainability and cost. Applying one of the most...... recent life cycle impact assessment methods, it is demonstrated that the environmental sustainability of the mixed carbon/flax fiber based composite material is better than that of the flax fibers alone. This observation may be contra-intuitive, but is mainly caused by the fact that the bio...... impacts in relation to the production of the carbon and glass fibers considerable compared to the impacts resulting from resin production. The ideal fiber solution, in terms of environmental sustainability, is hence the fiber composition having the lowest resin demand and lowest overall energy demand...

  19. Journal of Sustainable Development Law and Policy (The) - Vol 5 ...

    African Journals Online (AJOL)

    Increased Relevance and Influence of Free Prior Informed Consent, Redd, and Green Economy Principles on Sustainable Commons Management in Peru · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. CAM Soria Dall'Orso, 4-31 ...

  20. Challenges of Integrating Affordable and Sustainable Housing in Malaysia

    Science.gov (United States)

    Syed Jamaludin, S. Z. H.; Mahayuddin, S. A.; Hamid, S. H. A.

    2018-04-01

    Developing countries including Malaysia have begun to comprehend the needs for affordable and sustainable housing development. The majority of the population is still aspiring for a comfortable, safe and reasonably priced house. Households in the low-middle income range face difficulties to find housing that can satisfy their needs and budget. Unfortunately, most of the housing development programs are considering affordability rather than sustainable aspects. Furthermore, developers are more interested in profit and neglect sustainability issues. Thus, the aim of this paper is to review the challenges in integrating affordable housing and sustainable practices in Malaysia. This paper is produced based on an extensive literature review as a basis to develop strategies of integrated affordable and sustainable housing in Malaysia. The challenges are divided into four sections, namely market challenges, professional challenges, societal challenges and technological challenges. The outcomes of this paper will assist in the decision making involving housing development and in enhancing quality of life for sustainable communities.

  1. Sustainable Agricultural Marketing Initiatives

    Directory of Open Access Journals (Sweden)

    Hakan Adanacıoğlu

    2015-07-01

    important in terms of the success of the initiatives. It's also essential to bring to the fore the various themes, such as regional delicacies, safe production methods, human and environmental health, regionalism, regional artisanship, and biodiversity to cultivate a successful marketing strategy in promotional activities of sustainable agricultural marketing initiatives.

  2. How to assess sustainability in automated manufacturing

    DEFF Research Database (Denmark)

    Dijkman, Teunis Johannes; Rödger, Jan-Markus; Bey, Niki

    2015-01-01

    The aim of this paper is to describe how sustainability in automation can be assessed. The assessment method is illustrated using a case study of a robot. Three aspects of sustainability assessment in automation are identified. Firstly, we consider automation as part of a larger system...... that fulfills the market demand for a given functionality. Secondly, three aspects of sustainability have to be assessed: environment, economy, and society. Thirdly, automation is part of a system with many levels, with different actors on each level, resulting in meeting the market demand. In this system......, (sustainability) specifications move top-down, which helps avoiding sub-optimization and problem shifting. From these three aspects, sustainable automation is defined as automation that contributes to products that fulfill a market demand in a more sustainable way. The case study presents the carbon footprints...

  3. Transition to Sustainability: Science Support Through Characterizing and Quantifying Sustainability

    Science.gov (United States)

    Plag, Hans-Peter; Jules-Plag, Shelley

    2013-04-01

    Humanity's sustainability crisis caused by a growing, resource-demanding population on a finite, rapidly changing planet challenges us with large uncertainties. While some see the planet on the edge, it is more likely that humanity as a global species is on the edge. However, science, Earth observations, and socio-economic data do not provide clear indications of where this edge is, and how close we are to this edge. The instruments in the cockpit of a modern airplane provide more relevant and actionable information to the pilots than the "cockpit" of planet Earth provides to those involved in the governance of our planet. There is no manual for those responsible to keep us on a track within the "safe operational space" of humanity. What science and research is needed to make progress towards a future, where knowledge of sustainability and resilience allows for an evidence-based, adaptive policy and decision-making? Paradoxically, innovation over the recent decades have worsened the sustainablity crisis, but more innovation is imperative to bring us out of it. The comprehensive, conceptual framework for sustainability research that would provide an umbrella identifying the key challenges and a basis for this innovation seems to be missing. Defining sustainability as a characteristic of a process that can be maintained at a certain level indefinitely, we need to agree in a societal deliberation on a few aspects, including what processes we want to consider (the anthroposphere as embedded in the Earth system?), what time frames we want to aim at (not infinity, but very long time frames, e.g., 10,000 years?), and what spatial scales we need to look at (from local to global?). Most importantly, we need to acknowledge that humanity's sustainability is the result of intertwined social, economic, and environmental (s2e) processes that can not be separate. The research then has to clarify in the s2e context what are the attributes of sustainability, the relevant processes

  4. Reducing Maternal Mortality in Papua New Guinea: Contextualizing Access to Safe Surgery and Anesthesia.

    Science.gov (United States)

    Dennis, Alicia T

    2018-01-01

    Papua New Guinea has one of the world's highest maternal mortality rates with approximately 215 women dying per 100,000 live births. The sustainable development goals outline key priority areas for achieving a reduction in maternal mortality including a focus on universal health coverage with safe surgery and anesthesia for all pregnant women. This narrative review addresses the issue of reducing maternal mortality in Papua New Guinea by contextualizing the need for safe obstetric surgery and anesthesia within a structure of enabling environments at key times in a woman's life. The 3 pillars of enabling environments are as follows: a stable humanitarian government; a safe, secure, and clean environment; and a strong health system. Key times, and their associated specific issues, in a woman's life include prepregnancy, antenatal, birth and the postpartum period, childhood, adolescence and young womanhood, and the postchildbearing years.

  5. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors

    Science.gov (United States)

    Lai, Chuilin; Zhou, Zhengping; Zhang, Lifeng; Wang, Xiaoxu; Zhou, Qixin; Zhao, Yong; Wang, Yechun; Wu, Xiang-Fa; Zhu, Zhengtao; Fong, Hao

    2014-02-01

    Mechanically flexible mats consisting of electrospun carbon nanofibers (ECNFs) were prepared by first electrospinning aqueous mixtures containing a natural product of alkali lignin together with polyvinyl alcohol (PVA) into composite nanofiber mats followed by stabilization in air and carbonization in an inert environment. Morphological and structural properties, as well as specific surface area, total pore volume, average pore size, and pore size distribution, of the lignin-based ECNF mats were characterized; and their electrochemical performances (i.e., capacitive behaviors) were evaluated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The lignin-based ECNF mats exhibited outstanding performance as free-standing and/or binder-free electrodes of supercapacitors. For example, the ECNFs made from the composite nanofibers with mass ratio of lignin/PVA being 70/30 (i.e., ECNFs (70/30)) had the average diameter of ∼100 nm and the Brunauer-Emmett-Teller (BET) specific surface area of ∼583 m2 g-1. The gravimetric capacitance of ECNFs (70/30) electrode in 6 M KOH aqueous electrolyte exhibited 64 F g-1 at current density of 400 mA g-1 and 50 F g-1 at 2000 mA g-1. The ECNFs (70/30) electrode also exhibited excellent cycling durability/stability, and the gravimetric capacitance merely reduced by ∼10% after 6000 cycles of charge/discharge.

  6. Assessing the Value of Housing Schemes through Sustainable Return on Investment: A Path towards Sustainability-Led Evaluations?

    Directory of Open Access Journals (Sweden)

    Kevin Dean

    2017-12-01

    Full Text Available The 2016 United Nations (UN New Urban Agenda clearly reaffirms the concept that sustainable cities require intertwined environmental and social sustainability. The United Nations Sustainable Development Goal (SDG 11—“Make cities inclusive, safe, resilient, and sustainable”—sets (as a primary target the provision of sufficient affordable housing. Despite the central role that housing plays in ensuring sustainability and the importance of both environmental and social pillars in ensuring sustainable development, current evaluative methods that support decision making on social housing interventions fail to capture all of the socio-environmental value contained in the UN SDG 11. This paper addresses the issue by demonstrating how Sustainable Return on Investment can successfully describe and analyse a range of externalities related to the sustainable value generated by social housing regeneration schemes. To achieve this goal, a single case study strategy has been chosen. Two extant projects—a high-rise housing scheme and an environmental-led program developed by City West Housing Trust (a nonprofit housing association based in the Manchester area—have been assessed in order to monetise their social and environmental value through different methods. The findings show that, historically, the environmental and social value of regeneration schemes have been largely disregarded because of a gap in the evaluation methods, and that there is room for significant improvement for future evaluation exercises.

  7. Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells.

    Science.gov (United States)

    Iudicone, Paola; Fioravanti, Daniela; Bonanno, Giuseppina; Miceli, Michelina; Lavorino, Claudio; Totta, Pierangela; Frati, Luigi; Nuti, Marianna; Pierelli, Luca

    2014-01-27

    Supplements to support clinical-grade cultures of mesenchymal stem cells (MSC) are required to promote growth and expansion of these cells. Platelet lysate (PL) is a human blood component which may replace animal serum in MSC cultures being rich in various growth factors. Here, we describe a plasma poor pathogen-free platelet lysate obtained by pooling 12 platelet (PLT) units, to produce a standardized and safe supplement for clinical-grade expansion of MSC. PL lots were obtained by combining 2 6-unit PLT pools in additive solution (AS) following a transfusional-based procedure including pathogen inactivation (PI) by Intercept technology and 3 cycles of freezing/thawing, followed by membrane removal. Three PI-PL and 3 control PL lots were produced to compare their ability to sustain bone marrow derived MSC selection and expansion. Moreover, two further PL, subjected to PI or not, were also produced starting from the same initial PLT pools to evaluate the impact of PI on growth factor concentration and capacity to sustain cell growth. Additional PI-PL lots were used for comparison with fetal bovine serum (FBS) on MSC expansion. Immunoregulatory properties of PI-PL-generated MSC were documented in vitro by mixed lymphocyte culture (MLC) and peripheral blood mononuclear cells (PBMC) mitogen induced proliferation. PI-PL and PL control lots had similar concentrations of 4 well-described growth factors endowed with MSC stimulating ability. Initial growth and MSC expansion by PI-PL and PL controls were comparable either using different MSC populations or in head to head experiments. Moreover, PI-PL and PL control sustained similar MSC growth of frozen/thawed MSC. Multilineage differentiation of PI-derived and PI-PL-derived MSC were maintained in any MSC cultures as well as their immunoregulatory properties. Finally, no direct impact of PI on growth factor concentration and MSC growth support was observed, whereas the capacity of FBS to sustain MSC expansion in basic

  8. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Community Outreach Resource Center Toy Recall Statistics CO Poster Contest Pool Safely Business & Manufacturing Business & Manufacturing Business ... Featured Resources CPSC announces winners of carbon monoxide poster contest Video View the blog Clues You Can ...

  9. Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice.

    Science.gov (United States)

    Reguera, Maria; Peleg, Zvi; Abdel-Tawab, Yasser M; Tumimbang, Ellen B; Delatorre, Carla A; Blumwald, Eduardo

    2013-12-01

    The effects of water deficit on carbon and nitrogen metabolism were investigated in flag leaves of wild-type and transgenic rice (Oryza sativa japonica 'Kitaake') plants expressing ISOPENTENYLTRANSFERASE (IPT; encoding the enzyme that mediates the rate-limiting step in cytokinin synthesis) under the control of P(SARK), a maturation- and stress-induced promoter. While the wild-type plants displayed inhibition of photosynthesis and nitrogen assimilation during water stress, neither carbon nor nitrogen assimilation was affected by stress in the transgenic P(SARK)::IPT plants. In the transgenic plants, photosynthesis was maintained at control levels during stress and the flag leaf showed increased sucrose (Suc) phosphate synthase activity and reduced Suc synthase and invertase activities, leading to increased Suc contents. The sustained carbon assimilation in the transgenic P(SARK)::IPT plants was well correlated with enhanced nitrate content, higher nitrate reductase activity, and sustained ammonium contents, indicating that the stress-induced cytokinin synthesis in the transgenic plants played a role in maintaining nitrate acquisition. Protein contents decreased and free amino acids increased in wild-type plants during stress, while protein content was preserved in the transgenic plants. Our results indicate that the stress-induced cytokinin synthesis in the transgenic plants promoted sink strengthening through a cytokinin-dependent coordinated regulation of carbon and nitrogen metabolism that facilitates an enhanced tolerance of the transgenic plants to water deficit.

  10. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes II. Steam:carbon ratio and current density

    Science.gov (United States)

    Kuhn, J.; Kesler, O.

    2015-03-01

    For the second part of a two part publication, coking thresholds with respect to molar steam:carbon ratio (SC) and current density in nickel-based solid oxide fuel cells were determined. Anode-supported button cell samples were exposed to 2-component and 5-component gas mixtures with 1 ≤ SC ≤ 2 and zero fuel utilization for 10 h, followed by measurement of the resulting carbon mass. The effect of current density was explored by measuring carbon mass under conditions known to be prone to coking while increasing the current density until the cell was carbon-free. The SC coking thresholds were measured to be ∼1.04 and ∼1.18 at 600 and 700 °C, respectively. Current density experiments validated the thresholds measured with respect to fuel utilization and steam:carbon ratio. Coking thresholds at 600 °C could be predicted with thermodynamic equilibrium calculations when the Gibbs free energy of carbon was appropriately modified. Here, the Gibbs free energy of carbon on nickel-based anode support cermets was measured to be -6.91 ± 0.08 kJ mol-1. The results of this two part publication show that thermodynamic equilibrium calculations with appropriate modification to the Gibbs free energy of solid-phase carbon can be used to predict coking thresholds on nickel-based anodes at 600-700 °C.

  11. Developing sustainable transportation performance measures for TXDOT's strategic plan : technical report.

    Science.gov (United States)

    2009-04-01

    For this research project, sustainable transportation can be viewed as the provision of safe, effective, and : efficient access and mobility into the future while considering economic, social, and environmental needs. : This project developed a perfo...

  12. Nuclear power and sustainable energy supply for Europe. European Commission

    International Nuclear Information System (INIS)

    Hilden, W.

    2005-01-01

    The right energy mix is decisive. The European Commission feels that nuclear power can make an important contribution towards sustainable energy supply in Europe. Nuclear power should keep its place in the European energy mix. One important aspect in this regard is improved public acceptance through communication, transparency, and confidence building. High safety standards and a credible approach to the safe long-term management of radioactive waste are major components of this sustainable energy source. (orig./GL)

  13. The carbon market: major operational carbon funds and financed projects

    International Nuclear Information System (INIS)

    Markandya, A.; Nobili, V.

    2008-01-01

    The flexible mechanisms envisaged by the Kyoto Protocol have led gradually to a global carbon market that has become very appetizing for companies operating in the sector. Financial instruments such as carbon funds, and investments in greenhouse-gas-reduction projects, now operate at the international level, counting on the development of new technologies and energy efficiency, and contributing to sustainable development in the countries that host the projects [it

  14. A Newsboy Model with Quick Response under Sustainable Carbon Cap-N-Trade

    Directory of Open Access Journals (Sweden)

    Jinpyo Lee

    2018-05-01

    Full Text Available In this study, we consider a carbon emission cap-and-trade system in which the policymaker decides the cap for carbon emissions for each company and also has the power to regulate the carbon price in the carbon trading market for the purpose of minimizing total carbon emissions. We assume that there are n companies regulated in terms of carbon emissions by the policymaker, each of which emits carbon when producing its own product. After learning the carbon cap and carbon price regulated by the policymaker, each company makes simultaneous pricing and production decisions using the quick response strategy, and can trade some of its carbon emissions in the carbon market at the carbon price set by the policymaker, if the carbon emissions are below the cap. We model this non-cooperative game between the policymaker and companies as a Stackelberg game in which the policymaker is the leader and the companies are the followers. We show that there exists an equilibrium for the policymaker’s carbon pricing decisions and each company’s production and pricing decisions. From this equilibrium, we derive a carbon cap for the company at which the amount of traded carbon emissions is zero. This implies that some company’s production and pricing decisions, even under carbon emission restrictions, will be equal to those without the carbon emission restrictions. Also, we find that companies participating in the carbon cap-and-trade system would reduce their carbon emissions through reduced production, but can have a chance to improve profit through control of the product’s selling price.

  15. Global carbon inequality

    Energy Technology Data Exchange (ETDEWEB)

    Hubacek, Klaus [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); Masaryk University, Department of Environmental Studies, Brno (Czech Republic); Baiocchi, Giovanni [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); University of Maryland, Department of Economics, College Park, MD (United States); Feng, Kuishuang [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); Munoz Castillo, Raul [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); Interamerican Development Bank, Washington, DC (United States); Sun, Laixiang [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); SOAS, University of London, London (United Kingdom); International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria); Xue, Jinjun [Nagoya University, Graduate School of Economics, Nagoya (Japan); Hubei University of Economics, Wuhan (China)

    2017-12-01

    Global climate change and inequality are inescapably linked both in terms of who contributes climate change and who suffers the consequences. This fact is also partly reflected in two United Nations (UN) processes: on the one hand, the Paris Agreement of the UN Framework Convention on Climate Change under which countries agreed to hold the increase in the global average temperature to below 2 C above pre-industrial levels and, on the other hand, the UN's Sustainable Development Goals aiming to end poverty. These agreements are seen as important foundation to put the world nations on a sustainable pathway. However, how these agreements can be achieved or whether they are even mutually compatible is less clear. We explore the global carbon inequality between and within countries and the carbon implications of poverty alleviation by combining detailed consumer expenditure surveys for different income categories for a wide range of countries with an environmentally extended multi-regional input-output approach to estimate carbon footprints of different household groups, globally, and assess the carbon implications of moving the poorest people out of poverty. Given the current context, increasing income leads to increasing carbon footprints and makes global targets for mitigating greenhouse gases more difficult to achieve given the pace of technological progress and current levels of fossil fuel dependence. We conclude that the huge level of carbon inequality requires a critical discussion of undifferentiated income growth. Current carbon-intensive lifestyles and consumption patterns need to enter the climate discourse to a larger extent. (orig.)

  16. Global carbon inequality

    International Nuclear Information System (INIS)

    Hubacek, Klaus; Baiocchi, Giovanni; Feng, Kuishuang; Munoz Castillo, Raul; Sun, Laixiang; Xue, Jinjun

    2017-01-01

    Global climate change and inequality are inescapably linked both in terms of who contributes climate change and who suffers the consequences. This fact is also partly reflected in two United Nations (UN) processes: on the one hand, the Paris Agreement of the UN Framework Convention on Climate Change under which countries agreed to hold the increase in the global average temperature to below 2 C above pre-industrial levels and, on the other hand, the UN's Sustainable Development Goals aiming to end poverty. These agreements are seen as important foundation to put the world nations on a sustainable pathway. However, how these agreements can be achieved or whether they are even mutually compatible is less clear. We explore the global carbon inequality between and within countries and the carbon implications of poverty alleviation by combining detailed consumer expenditure surveys for different income categories for a wide range of countries with an environmentally extended multi-regional input-output approach to estimate carbon footprints of different household groups, globally, and assess the carbon implications of moving the poorest people out of poverty. Given the current context, increasing income leads to increasing carbon footprints and makes global targets for mitigating greenhouse gases more difficult to achieve given the pace of technological progress and current levels of fossil fuel dependence. We conclude that the huge level of carbon inequality requires a critical discussion of undifferentiated income growth. Current carbon-intensive lifestyles and consumption patterns need to enter the climate discourse to a larger extent. (orig.)

  17. Rainwater Harvesting and Social Networks: Visualising Interactions for Niche Governance, Resilience and Sustainability

    Directory of Open Access Journals (Sweden)

    Sarah Ward

    2016-11-01

    Full Text Available Visualising interactions across urban water systems to explore transition and change processes requires the development of methods and models at different scales. This paper contributes a model representing the network interactions of rainwater harvesting (RWH infrastructure innovators and other organisations in the UK RWH niche to identify how resilience and sustainability feature within niche governance in practice. The RWH network interaction model was constructed using a modified participatory social network analysis (SNA. The SNA was further analysed through the application of a two-part analytical framework based on niche management and the safe, resilient and sustainable (‘Safe and SuRe’ framework. Weak interactions between some RWH infrastructure innovators and other organisations highlighted reliance on a limited number of persuaders to influence the regime and landscape, which were underrepresented. Features from niche creation and management were exhibited by the RWH network interaction model, though some observed characteristics were not represented. Additional Safe and SuRe features were identified covering diverse innovation, responsivity, no protection, unconverged expectations, primary influencers, polycentric or adaptive governance and multiple learning-types. These features enable RWH infrastructure innovators and other organisations to reflect on improving resilience and sustainability, though further research in other sectors would be useful to verify and validate observation of the seven features.

  18. The Effect of a "Class Smoke Free Pledge" on Breath Carbon Monoxide in Arabic Male Adolescents.

    Science.gov (United States)

    Al-Sheyab, Nihaya A; Khader, Yousef S; Shah, Smita; Roydhouse, Jessica K; Gallagher, Robyn

    2018-04-02

    Arabic male adolescents have a high smoking prevalence. Introduction of "Class smoke-free" pledges have been successful amongst European adolescents but have not been evaluated using objective valid measures. We tested the impact of adding a smoke free pledge strategy to a proven peer-led asthma and smoking prevention program on breath carbon monoxide level (BCO) in male high-school students in Jordan. We enrolled male students from four high-schools in Irbid, Jordan. Schools were randomly assigned to receive either TAJ (Triple A in Jordan, n = 218) or TAJ-Plus (with added class smoke-free pledge, n = 215). We hypothesized that students receiving TAJ-Plus would have greater reduction in BCO levels than those only receiving the TAJ intervention. Asthma and smoking status were assessed by self-administered questionnaires. Smoking outcomes were collected using a BCO Monitor. Both groups had significant reductions in BCO levels post-intervention (p smoking status (p = .085), asthma status (p = .602), or a combination of the two (p = .702). An added smoke-free pledge strategy to a proven peer-led asthma education program appears to be a promising approach to motivate adolescents to abstain from smoking in Jordan. Future research is required to determine if these results can be extended to Jordanian adolescent females. A commitment by students via a "class smoke-free" pledge can be an added incentive to motivate adolescents in Arabic-speaking countries to abstain from smoking. Social influence approaches in schools can be useful in countering the aggressive tobacco marketing campaigns targeting Jordanian and other Arabic-speaking youth. The combination of "class smoke-free" pledges and an evidence-based peer-led asthma and smoking education can be implemented in schools to influence adolescents with asthma to abstain from smoking.

  19. SUSTAINING CARBON SINK POTENTIALS IN TROPICAL FOREST ...

    African Journals Online (AJOL)

    HP

    Reducing carbon emissions from deforestation and degradation ..... Increasing the energy efficiency of fuel wood use and derived products. Charcoal ... Hayhoe, K., C. P. Wake, T. G. Huntington, L. F. Luo, M. D. Schwartz, J. Sheffield, E. Wood,.

  20. Sustainable production of acetaldehyde from lactic acid over the carbon catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Congming; Peng, Jiansheng; Li, Xinli; Zhai, Zhanjie; Gao, Hejun; Liao, Yunwen [China West Normal University, Nanchong (China); Bai, Wei; Jiang, Ning [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu (China)

    2016-01-15

    The synthesis of acetaldehyde from lactic acid over the carbon material catalysts was investigated. The carbon materials were characterized by scanning electron microscopy for morphologic features, by X-ray diffraction for crystal phases, by Fourier transform infrared spectroscopy for functional group structures, by N2 sorption for specific surface area and by ammonia temperature-programed desorption for acidity, respectively. Among the tested carbon catalysts, mesoporous carbon displayed the most excellent catalytic performance. By acidity analysis, the medium acidity is a crucial factor for catalytic performance: more medium acidity favored the formation of acetaldehyde from lactic acid. To verify, we compared the catalytic performance of fresh activated carbon with that of the activated carbon treated by nitric acid. Similarly, the modified activated carbon also displayed better activity due to a drastic increase of medium acidity amount. However, in contrast to fresh carbon nanotube, the treated sample displayed worse activity due to decrease of medium acidity amount. The effect of reaction temperature and time on stream on the catalytic performance was also investigated. Under the optimal reaction conditions, 100% lactic acid conversion and 91.6% acetaldehyde selectivity were achieved over the mesoporous carbon catalyst.

  1. A combined approach for high-performance Li–O2 batteries: A binder-free carbon electrode and atomic layer deposition of RuO2 as an inhibitor–promoter

    Directory of Open Access Journals (Sweden)

    Hyun-Seop Shin

    2018-04-01

    Full Text Available A rechargeable lithium–oxygen (Li–O2 battery is considered as a promising technology for electrochemical energy storage systems because its theoretical energy density is much higher than those of state-of-the-art Li-ion batteries. The cathode (positive electrode for Li–O2 batteries is made of carbon and polymeric binders; however, these constituents undergo parasitic decomposition reactions during battery operation, which in turn causes considerable performance degradation. Therefore, the rational design of the cathode is necessary for building robust and high-performance Li–O2 batteries. Here, a binder-free carbon nanotube (CNT electrode surface-modified by atomic layer deposition (ALD of dual acting RuO2 as an inhibitor–promoter is proposed for rechargeable Li–O2 batteries. RuO2 nanoparticles formed directly on the binder-free CNT electrode by ALD play a dual role to inhibit carbon decomposition and to promote Li2O2 decomposition. The binder-free RuO2/CNT cathode with the unique architecture shows outstanding electrochemical performance as characterized by small voltage gaps (∼0.9 V as well as excellent cyclability without any signs of capacity decay over 80 cycles.

  2. A combined approach for high-performance Li-O2 batteries: A binder-free carbon electrode and atomic layer deposition of RuO2 as an inhibitor-promoter

    Science.gov (United States)

    Shin, Hyun-Seop; Seo, Gi Won; Kwon, Kyoungwoo; Jung, Kyu-Nam; Lee, Sang Ick; Choi, Eunsoo; Kim, Hansung; Hwang, Jin-Ha; Lee, Jong-Won

    2018-04-01

    A rechargeable lithium-oxygen (Li-O2) battery is considered as a promising technology for electrochemical energy storage systems because its theoretical energy density is much higher than those of state-of-the-art Li-ion batteries. The cathode (positive electrode) for Li-O2 batteries is made of carbon and polymeric binders; however, these constituents undergo parasitic decomposition reactions during battery operation, which in turn causes considerable performance degradation. Therefore, the rational design of the cathode is necessary for building robust and high-performance Li-O2 batteries. Here, a binder-free carbon nanotube (CNT) electrode surface-modified by atomic layer deposition (ALD) of dual acting RuO2 as an inhibitor-promoter is proposed for rechargeable Li-O2 batteries. RuO2 nanoparticles formed directly on the binder-free CNT electrode by ALD play a dual role to inhibit carbon decomposition and to promote Li2O2 decomposition. The binder-free RuO2/CNT cathode with the unique architecture shows outstanding electrochemical performance as characterized by small voltage gaps (˜0.9 V) as well as excellent cyclability without any signs of capacity decay over 80 cycles.

  3. Single walled carbon nanotube-based electrical biosensor for the label-free detection of pathogenic bacteria

    DEFF Research Database (Denmark)

    Yoo, S. M.; Baek, Y. K.; Shin, S.

    2016-01-01

    We herein describe the development of a single-walled carbon nanotube (SWNT)-based electrical biosensor consisting of a two-terminal resistor, and report its use for the specific, label-free detection of pathogenic bacteria via changes in conductance. The ability of this biosensor to recognize...... different pathogenic bacteria was analyzed, and conditions were optimized with different probe concentrations. Using this system, the reference strains and clinical isolates of Staphylococcus aureus and Escherichia coli were successfully detected; in both cases, the sensor showed a detection limit of 10 CFU....... This SWNT-based electrical biosensor will prove useful for the development of highly sensitive and specific handheld pathogen detectors....

  4. Carbon taxes. A drop in the ocean, or a drop that erodes the stone? The effect of carbon taxes on technological change

    International Nuclear Information System (INIS)

    Gerlagh, Reyer; Lise, Wietze

    2005-01-01

    We develop an economic partial equilibrium model for energy supply and demand with capital and labor as production factors, and endogenous technological change through learning by research and learning by doing. Our model can reproduce the learning curve typical for (bottom-up) energy-system models. The model also produces an endogenous S-curved transition from fossil-fuel energy sources to carbon-free energy sources over the coming two centuries. We use the model to study carbon taxes' effects on fossil-fuel and carbon-free energy use and carbon dioxide emissions. It is shown that without induced technological change, carbon taxes have a modest effect on emissions, while with induced technological change, they accelerate the substitution of carbon-free energy for fossil fuels substantially

  5. Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply.

    Science.gov (United States)

    Biswas, Ashis; Nath, Bibhash; Bhattacharya, Prosun; Halder, Dipti; Kundu, Amit K; Mandal, Ujjal; Mukherjee, Abhijit; Chatterjee, Debashis; Mörth, Carl-Magnus; Jacks, Gunnar

    2012-08-01

    Delineation of safe aquifer(s) that can be targeted by cheap drilling technology for tubewell (TW) installation becomes highly imperative to ensure access to safe and sustainable drinking water sources for the arsenic (As) affected population in Bengal Basin. This study investigates the potentiality of brown sand aquifers (BSA) as a safe drinking water source by characterizing its hydrogeochemical contrast to grey sand aquifers (GSA) within shallow depth (water guidelines, which warrants rigorous assessment of attendant health risk for Mn prior to considering mass scale exploitation of the BSA for possible sustainable drinking water supply. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Incentives and market development to establish sustainable biomass systems

    International Nuclear Information System (INIS)

    Matteson Gary, C.

    2009-01-01

    Business-as-usual is not acceptable when it comes to the future for biomass-to-energy/product conversion industry. Incentives and market development need to be applied to guide the owners and operators towards the sustainable practices. Sustainability for biomass is defined to be future energy fuels and bio products that are secure, renewable, and accessible locally, affordable, and pollution free. Intensives are required to convert biomass-to-energy/product conversion systems that are not sustainable into sustainable formats. (Author)

  7. Effects of long-term (10 years) exposure to elevated CO2 and O3 on trembling Aspen carbon and nitrogen metabolism at the aspen FACE (Free-Air Carbon Dioxide Enrichment) study site

    Science.gov (United States)

    Rakesh Minocha; Stephanie Long; Subhash Minocha; Paula Marquardt; Neil Nelson; Mark. Kubiske

    2010-01-01

    This study was conducted at the Aspen Free-Air Carbon Dioxide Enrichment (FACE) experimental site, Rhinelander, WI, (USA). Since 1998, 12 experimental rings planted in 1997 underwent four different treatments: control; elevated CO2 (560 ppm); elevated O3 (1.5X ambient) and elevated CO2 (560 ppm) + O...

  8. Energies and carbon sinks

    International Nuclear Information System (INIS)

    Riedacker, A.

    2002-01-01

    The Kyoto Protocol puts a lot of emphasis on carbon sinks. This emphasis almost obliterates the other potential contributions of biomass in the fight against climatic changes and toward sustainable development. Biomass represents an infinite supply of renewable energy sources which do not increase the levels of carbon in the atmosphere, contribute to energy savings resulting from the use of wood rather than other materials, the sustainable management of soils, the fight against drought, agroforestry from which the production of foods depends, the mitigating of certain extreme climatic occurrences and the protection of dams from increased silting. The industrial revolution contributed to the increase in greenhouse gas emissions. When discussing some of the finer points of the Kyoto Protocol, the focus was placed on carbon sinks. The author indicates that the biomass cycle had to be considered, both in situ and ex situ. Details to this effect are provided, and a section dealing with greenhouse gases other than carbon must be taken into account. The rural environment must be considered globally. The author indicates that in the future, the emissions resulting from the transportation of agricultural products will have to be considered. Within the realm of the policies on sustainable development, the fight against climatic change represents only one aspect. In arid and semi-arid regions, one must take into account meeting the energy needs of the populations, the fight against drought and the preservation of biodiversity. The planting of trees offers multiple advantages apart from being a carbon sink: roughage, wood for burning, protection of soils, etc. A few examples are provided. 8 refs., 3 figs

  9. The SafeCOP ECSEL Project: Safe Cooperating Cyber-Physical Systems Using Wireless Communication

    DEFF Research Database (Denmark)

    Pop, Paul; Scholle, Detlef; Hansson, Hans

    2016-01-01

    This paper presents an overview of the ECSEL project entitled "Safe Cooperating Cyber-Physical Systems using Wireless Communication" (SafeCOP), which runs during the period 2016 -- 2019. SafeCOP targets safety-related Cooperating Cyber-Physical Systems (CO-CPS) characterised by use of wireless...... detection of abnormal behaviour, triggering if needed a safe degraded mode. SafeCOP will also develop methods and tools, which will be used to produce safety assurance evidence needed to certify cooperative functions. SafeCOP will extend current wireless technologies to ensure safe and secure cooperation...

  10. Effects of prolonged wakefulness combined with alcohol and hands-free cell phone divided attention tasks on simulated driving.

    Science.gov (United States)

    Iudice, A; Bonanni, E; Gelli, A; Frittelli, C; Iudice, G; Cignoni, F; Ghicopulos, I; Murri, L

    2005-03-01

    Simulated driving ability was assessed following administration of alcohol, at an estimated blood level of 0.05%, and combined prolonged wakefulness, while participants were undertaking divided attention tasks over a hands-free mobile phone. Divided attention tasks were structured to provide a sustained cognitive workload to the subjects. Twenty three young healthy individuals drove 10 km simulated driving under four conditions in a counterbalanced, within-subject design: alcohol, alcohol and 19 h wakefulness, alcohol and 24 h wakefulness, and while sober. Study measures were: simulated driving, self-reported sleepiness, critical flicker fusion threshold (CFFT), Stroop word-colour interference test (Stroop) and simple visual reaction times (SVRT). As expected, subjective sleepiness was highly correlated with both sleep restriction and alcohol consumption. The combination of alcohol and 24 h sustained wakefulness produced the highest driving impairment, significantly beyond the alcohol effect itself. Concurrent alcohol and 19 h wakefulness significantly affected only driving time-to-collision. No significant changes of study measures occurred following alcohol intake in unrestricted sleep conditions. CFFT, SVRT and Stroop results showed a similar trend in the four study conditions. Thus apparently 'safe' blood alcohol levels in combination with prolonged wakefulness resulted in significant driving impairments. In normal sleep conditions alcohol effects on driving were partially counteracted by the concomitant hands-free phone based psychometric tasks. 2005 John Wiley & Sons, Ltd.

  11. Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies.

    Science.gov (United States)

    Zaehle, Sönke; Medlyn, Belinda E; De Kauwe, Martin G; Walker, Anthony P; Dietze, Michael C; Hickler, Thomas; Luo, Yiqi; Wang, Ying-Ping; El-Masri, Bassil; Thornton, Peter; Jain, Atul; Wang, Shusen; Warlind, David; Weng, Ensheng; Parton, William; Iversen, Colleen M; Gallet-Budynek, Anne; McCarthy, Heather; Finzi, Adrien; Hanson, Paul J; Prentice, I Colin; Oren, Ram; Norby, Richard J

    2014-05-01

    We analysed the responses of 11 ecosystem models to elevated atmospheric [CO2 ] (eCO2 ) at two temperate forest ecosystems (Duke and Oak Ridge National Laboratory (ORNL) Free-Air CO2 Enrichment (FACE) experiments) to test alternative representations of carbon (C)-nitrogen (N) cycle processes. We decomposed the model responses into component processes affecting the response to eCO2 and confronted these with observations from the FACE experiments. Most of the models reproduced the observed initial enhancement of net primary production (NPP) at both sites, but none was able to simulate both the sustained 10-yr enhancement at Duke and the declining response at ORNL: models generally showed signs of progressive N limitation as a result of lower than observed plant N uptake. Nonetheless, many models showed qualitative agreement with observed component processes. The results suggest that improved representation of above-ground-below-ground interactions and better constraints on plant stoichiometry are important for a predictive understanding of eCO2 effects. Improved accuracy of soil organic matter inventories is pivotal to reduce uncertainty in the observed C-N budgets. The two FACE experiments are insufficient to fully constrain terrestrial responses to eCO2 , given the complexity of factors leading to the observed diverging trends, and the consequential inability of the models to explain these trends. Nevertheless, the ecosystem models were able to capture important features of the experiments, lending some support to their projections. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  12. Heritage contribution in sustainable city

    Science.gov (United States)

    Rostami, R.; Khoshnava, S. M.; Lamit, H.

    2014-02-01

    The concept of sustainability has been an integral part of development work since the late 1970s. Sustainability is no longer a buzzword but a reality that must be addressed by cities all over the world. Increasing empirical evidence indicates that city sustainability is not just related to technical issues, such as carbon emissions, energy consumption and waste management, or on the economic aspects of urban regeneration and growth, but also it covers social well-being of different groups living within increasingly cosmopolitan towns and cities. Heritage is seen as a major component of quality of life, features that give a city its unique character and provide the sense of belonging that lies at the core of cultural identity. In other words, heritage by providing important social and psychological benefits enrich human life with meanings and emotions, and raise quality of life as a key component of sustainability. The purpose of this paper, therefore, is to examine the role that built cultural heritage can play within sustainable urban development.

  13. Heritage contribution in sustainable city

    International Nuclear Information System (INIS)

    Rostami, R; Khoshnava, S M; Lamit, H

    2014-01-01

    The concept of sustainability has been an integral part of development work since the late 1970s. Sustainability is no longer a buzzword but a reality that must be addressed by cities all over the world. Increasing empirical evidence indicates that city sustainability is not just related to technical issues, such as carbon emissions, energy consumption and waste management, or on the economic aspects of urban regeneration and growth, but also it covers social well-being of different groups living within increasingly cosmopolitan towns and cities. Heritage is seen as a major component of quality of life, features that give a city its unique character and provide the sense of belonging that lies at the core of cultural identity. In other words, heritage by providing important social and psychological benefits enrich human life with meanings and emotions, and raise quality of life as a key component of sustainability. The purpose of this paper, therefore, is to examine the role that built cultural heritage can play within sustainable urban development

  14. Sustainability of biomass for cofiring

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-02-01

    There are many items to include when considering the sustainability of biomass for cofiring, and some of them are hard to quantify. The focus of this report is on the greenhouse gas emission aspects of sustainability. The reduction of greenhouse gas emissions achieved by substituting biomass for coal depends on a number of factors such as the nature of the fossil fuel reference system, the source of the biomass, and how it is produced. Relevant issues in biomass production include the energy balance, the greenhouse gas balance, land use change, non-CO2 greenhouse gas emission from soils, changes to soil organic carbon, and the timing of emissions and removal of CO2 which relates to the scale of biomass production. Certification of sustainable biomass is slow to emerge at the national and international level, so various organisations are developing and using their own standards for sustainable production. The EU does not yet have sustainability standards for solid biomass, but the UK and Belgium have developed their own.

  15. Epidemiology of rugby injuries sustained by Free State University ...

    African Journals Online (AJOL)

    Background Rugby results in more hospitalisations and visits to the emergency rooms of hospitals than any other sport. It is also the sport with the highest injury rate. The aim of this study was to determine the incidence and profile of the rugby injuries that were sustained by hostel-league rugby players at the University of the ...

  16. Environmental sustainability in North European hotel business

    OpenAIRE

    Niskanen, Ville

    2011-01-01

    Environmental issues are becoming increasingly important in modern day society, and environmental sustainability is one issue to be considered in hotel business. Global temperatures have been increasing during the recent years and the emissions of carbon dioxide have a big role in the issue. Hotels can affect the situation for their part by trying to run their businesses in an environmentally sustainable fashion. Concentrating on environmental issues can also result in financial savings in th...

  17. Sustainable and Resilient Garment Supply Chain Network Design with Fuzzy Multi-Objectives under Uncertainty

    Directory of Open Access Journals (Sweden)

    Sonia Irshad Mari

    2016-10-01

    Full Text Available Researchers and practitioners are taking more interest in developing sustainable garment supply chains in recent times. On the other hand, the supply chain manager drops sustainability objectives while coping with unexpected natural and man-made disruption risks. Hence, supply chain managers are now trying to develop sustainable supply chains that are simultaneously resilient enough to cope with disruption risks. Owing to the importance of the considered issue, this study proposed a network optimization model for a sustainable and resilient supply chain network by considering sustainability via embodied carbon footprints and carbon emissions and resilience by considering resilience index. In this paper, initially, a possibilistic fuzzy multi-objective sustainable and resilient supply chain network model is developed for the garment industry considering economic, sustainable, and resilience objectives. Secondly, a possibilistic fuzzy linguistic weight-based interactive solution method is proposed. Finally, a numerical case example is presented to show the applicability of the proposed model and solution methodology.

  18. The impact of intermittent or sustained carbon dioxide on intermittent hypoxia initiated respiratory plasticity. What is the effect of these combined stimuli on apnea severity?

    Science.gov (United States)

    Mateika, Jason H; Panza, Gino; Alex, Raichel; El-Chami, Mohamad

    2017-10-31

    The following review explores the effect that intermittent or sustained hypercapnia coupled to intermittent hypoxia has on respiratory plasticity. The review explores published work which suggests that intermittent hypercapnia leads to long-term depression of respiration when administered in isolation and prevents the initiation of long-term facilitation when administered in combination with intermittent hypoxia. The review also explores the impact that sustained hypercapnia alone and in combination with intermittent hypoxia has on the magnitude of long-term facilitation. After exploring the outcomes linked to intermittent hypoxia/hypercapnia and intermittent hypoxia/sustained hypercapnia the translational relevance of the outcomes as it relates to breathing stability during sleep is addressed. The likelihood that naturally induced cycles of intermittent hypoxia, coupled to oscillations in carbon dioxide that range between hypocapnia and hypercapnia, do not initiate long-term facilitation is addressed. Moreover, the conditions under which intermittent hypoxia/sustained hypercapnia could serve to improve breathing stability and mitigate co-morbidities associated with sleep apnea are considered. Published by Elsevier B.V.

  19. Carbon footprint estimation of municipal water cycle

    Science.gov (United States)

    Bakhshi, Ali A.

    2009-11-01

    This research investigates the embodied energy associated with water use. A geographic information system (GIS) was tested using data from Loudoun County, Virginia. The objective of this study is to estimate the embodied energy and carbon emission levels associated with water service at a geographical location and to improve for sustainability planning. Factors that affect the carbon footprint were investigated and the use of a GIS based model as a sustainability planning framework was evaluated. The carbon footprint metric is a useful tool for prediction and measurement of a system's sustainable performance over its expected life cycle. Two metrics were calculated: tons of carbon dioxide per year to represent the contribution to global warming and watt-hrs per gallon to show the embodied energy associated with water consumption. The water delivery to the building, removal of wastewater from the building and associated treatment of water and wastewater create a sizable carbon footprint; often the energy attributed to this water service is the greatest end use of electrical energy. The embodied energy in water depends on topographical characteristics of the area's local water supply, the efficiency of the treatment systems, and the efficiency of the pumping stations. The questions answered by this research are: What is the impact of demand side sustainable water practices on the embodied energy as represented by a comprehensive carbon footprint? What are the major energy consuming elements attributed to the system? What is a viable and visually identifiable tool to estimate the carbon footprint attributed to those Greenhouse Gas (GHG) producing elements? What is the embodied energy and emission associated with water use delivered to a building? Benefits to be derived from a standardized GIS applied carbon footprint estimation approach include: (1) Improved environmental and economic information for the developers, water and wastewater processing and municipal

  20. Interannual Variations of the Carbon Footprint and Carbon Eco-efficiency in Agro-ecosystem of Beijing, China

    Directory of Open Access Journals (Sweden)

    TIAN Zhi-hui

    2015-12-01

    Full Text Available Suburban farmland ecosystems are known to be affected by intensive land use/cover change (LUCC during the process of urbanization in Beijing. We investigated inter-annual changes in carbon sequestration, source, footprint, and eco-efficiency from 2004 to 2012 in the agro-ecosystem of suburban Beijing. Our findings indicated that: (1 Carbon sink increased 2.8 percent annually and the average annual carbon storage amount was 1 058 200 t, with food crops constituting the highest proportion at 80.4% of carbon storage in farmland ecosystems, of which maize contributed 68.5% as the largest constituent; (2 Carbon emission in the system showed a gradually decreasing trend, with agricultural chemicals as significant contributors. The annual average carbon emission was 276 000 tons in the Beijing farmland ecosystem, and decreased approximately 1.3 percent per year. The largest amount of carbon emissions came from agricultural chemicals at 85.4%, of which nitrogen fertilizer was the biggest contributor at 83.7%; ( 3 The carbon footprint also showed a decreasing trend along with an ecological surplus of carbon. The average carbon footprint was 5.71 hm2 in the Beijing farmland ecosystem with decreasing rate at 5.5% annually; however, the carbon surplus showed a downward trend due to reduction in the amount of arable land; (4 Finally, the increasing carbon sink capacity led to higher carbon eco-efficiency, with an annual average of 3.854 kg C·kg-1 CE, carbon sequestration was greater than the amount of carbon released. In summary, the agro-ecosystem in suburban Beijing has sustained a relatively high carbon eco-efficiency, and agricultural production continues to have high sustainability potential.