WorldWideScience

Sample records for s1 genome segment

  1. Single-Molecule FISH Reveals Non-selective Packaging of Rift Valley Fever Virus Genome Segments.

    Directory of Open Access Journals (Sweden)

    Paul J Wichgers Schreur

    2016-08-01

    Full Text Available The bunyavirus genome comprises a small (S, medium (M, and large (L RNA segment of negative polarity. Although genome segmentation confers evolutionary advantages by enabling genome reassortment events with related viruses, genome segmentation also complicates genome replication and packaging. Accumulating evidence suggests that genomes of viruses with eight or more genome segments are incorporated into virions by highly selective processes. Remarkably, little is known about the genome packaging process of the tri-segmented bunyaviruses. Here, we evaluated, by single-molecule RNA fluorescence in situ hybridization (FISH, the intracellular spatio-temporal distribution and replication kinetics of the Rift Valley fever virus (RVFV genome and determined the segment composition of mature virions. The results reveal that the RVFV genome segments start to replicate near the site of infection before spreading and replicating throughout the cytoplasm followed by translocation to the virion assembly site at the Golgi network. Despite the average intracellular S, M and L genome segments approached a 1:1:1 ratio, major differences in genome segment ratios were observed among cells. We also observed a significant amount of cells lacking evidence of M-segment replication. Analysis of two-segmented replicons and four-segmented viruses subsequently confirmed the previous notion that Golgi recruitment is mediated by the Gn glycoprotein. The absence of colocalization of the different segments in the cytoplasm and the successful rescue of a tri-segmented variant with a codon shuffled M-segment suggested that inter-segment interactions are unlikely to drive the copackaging of the different segments into a single virion. The latter was confirmed by direct visualization of RNPs inside mature virions which showed that the majority of virions lack one or more genome segments. Altogether, this study suggests that RVFV genome packaging is a non-selective process.

  2. Molecular characterization of genome segments 1 and 3 encoding two capsid proteins of Antheraea mylitta cytoplasmic polyhedrosis virus

    Directory of Open Access Journals (Sweden)

    Chakrabarti Mrinmay

    2010-08-01

    Full Text Available Abstract Background Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV, a cypovirus of Reoviridae family, infects Indian non-mulberry silkworm, Antheraea mylitta, and contains 11 segmented double stranded RNA (S1-S11 in its genome. Some of its genome segments (S2 and S6-S11 have been previously characterized but genome segments encoding viral capsid have not been characterized. Results In this study genome segments 1 (S1 and 3 (S3 of AmCPV were converted to cDNA, cloned and sequenced. S1 consisted of 3852 nucleotides, with one long ORF of 3735 nucleotides and could encode a protein of 1245 amino acids with molecular mass of ~141 kDa. Similarly, S3 consisted of 3784 nucleotides having a long ORF of 3630 nucleotides and could encode a protein of 1210 amino acids with molecular mass of ~137 kDa. BLAST analysis showed 20-22% homology of S1 and S3 sequence with spike and capsid proteins, respectively, of other closely related cypoviruses like Bombyx mori CPV (BmCPV, Lymantria dispar CPV (LdCPV, and Dendrolimus punctatus CPV (DpCPV. The ORFs of S1 and S3 were expressed as 141 kDa and 137 kDa insoluble His-tagged fusion proteins, respectively, in Escherichia coli M15 cells via pQE-30 vector, purified through Ni-NTA chromatography and polyclonal antibodies were raised. Immunoblot analysis of purified polyhedra, virion particles and virus infected mid-gut cells with the raised anti-p137 and anti-p141 antibodies showed specific immunoreactive bands and suggest that S1 and S3 may code for viral structural proteins. Expression of S1 and S3 ORFs in insect cells via baculovirus recombinants showed to produce viral like particles (VLPs by transmission electron microscopy. Immunogold staining showed that S3 encoded proteins self assembled to form viral outer capsid and VLPs maintained their stability at different pH in presence of S1 encoded protein. Conclusion Our results of cloning, sequencing and functional analysis of AmCPV S1 and S3 indicate that S3

  3. The Consequences of Reconfiguring the Ambisense S Genome Segment of Rift Valley Fever Virus on Viral Replication in Mammalian and Mosquito Cells and for Genome Packaging

    Science.gov (United States)

    Elliott, Richard M.

    2014-01-01

    Rift Valley fever virus (RVFV, family Bunyaviridae) is a mosquito-borne pathogen of both livestock and humans, found primarily in Sub-Saharan Africa and the Arabian Peninsula. The viral genome comprises two negative-sense (L and M segments) and one ambisense (S segment) RNAs that encode seven proteins. The S segment encodes the nucleocapsid (N) protein in the negative-sense and a nonstructural (NSs) protein in the positive-sense, though NSs cannot be translated directly from the S segment but rather from a specific subgenomic mRNA. Using reverse genetics we generated a virus, designated rMP12:S-Swap, in which the N protein is expressed from the NSs locus and NSs from the N locus within the genomic S RNA. In cells infected with rMP12:S-Swap NSs is expressed at higher levels with respect to N than in cells infected with the parental rMP12 virus. Despite NSs being the main interferon antagonist and determinant of virulence, growth of rMP12:S-Swap was attenuated in mammalian cells and gave a small plaque phenotype. The increased abundance of the NSs protein did not lead to faster inhibition of host cell protein synthesis or host cell transcription in infected mammalian cells. In cultured mosquito cells, however, infection with rMP12:S-Swap resulted in cell death rather than establishment of persistence as seen with rMP12. Finally, altering the composition of the S segment led to a differential packaging ratio of genomic to antigenomic RNA into rMP12:S-Swap virions. Our results highlight the plasticity of the RVFV genome and provide a useful experimental tool to investigate further the packaging mechanism of the segmented genome. PMID:24550727

  4. Structural constraints in the packaging of bluetongue virus genomic segments.

    Science.gov (United States)

    Burkhardt, Christiane; Sung, Po-Yu; Celma, Cristina C; Roy, Polly

    2014-10-01

    The mechanism used by bluetongue virus (BTV) to ensure the sorting and packaging of its 10 genomic segments is still poorly understood. In this study, we investigated the packaging constraints for two BTV genomic segments from two different serotypes. Segment 4 (S4) of BTV serotype 9 was mutated sequentially and packaging of mutant ssRNAs was investigated by two newly developed RNA packaging assay systems, one in vivo and the other in vitro. Modelling of the mutated ssRNA followed by biochemical data analysis suggested that a conformational motif formed by interaction of the 5' and 3' ends of the molecule was necessary and sufficient for packaging. A similar structural signal was also identified in S8 of BTV serotype 1. Furthermore, the same conformational analysis of secondary structures for positive-sense ssRNAs was used to generate a chimeric segment that maintained the putative packaging motif but contained unrelated internal sequences. This chimeric segment was packaged successfully, confirming that the motif identified directs the correct packaging of the segment. © 2014 The Authors.

  5. Single-Molecule FISH Reveals Non-selective Packaging of Rift Valley Fever Virus Genome Segments

    NARCIS (Netherlands)

    Wichgers Schreur, Paul J.; Kortekaas, Jeroen

    2016-01-01

    The bunyavirus genome comprises a small (S), medium (M), and large (L) RNA segment of negative polarity. Although genome segmentation confers evolutionary advantages by enabling genome reassortment events with related viruses, genome segmentation also complicates genome replication and packaging.

  6. Segment-specific terminal sequences of Bunyamwera bunyavirus regulate genome replication

    International Nuclear Information System (INIS)

    Barr, John N.; Elliott, Richard M.; Dunn, Ewan F.; Wertz, Gail W.

    2003-01-01

    Bunyamwera virus (BUNV) is the prototype of both the Orthobunyavirus genus and the Bunyaviridae family of segmented negative sense RNA viruses. The tripartite BUNV genome consists of small (S), medium (M), and large (L) segments that are transcribed to give a single mRNA and replicated to generate an antigenome that is the template for synthesis of further genomic RNA strands. We modified an existing cDNA-derived RNA synthesis system to allow identification of BUNV RNA replication and transcription products by direct metabolic labeling. Direct RNA analysis allowed us to distinguish between template activities that affected either RNA replication or mRNA transcription, an ability that was not possible using previous reporter gene expression assays. We generated genome analogs containing the entire nontranslated terminal sequences of the S, M, and L BUNV segments surrounding a common sequence. Analysis of RNAs synthesized from these templates revealed that the relative abilities of BUNV segments to perform RNA replication was M > L > S. Exchange of segment-specific terminal nucleotides identified a 12-nt region located within both the 3' and 5' termini of the M segment that correlated with its high replication ability

  7. Structural constraints in the packaging of bluetongue virus genomic segments

    OpenAIRE

    Burkhardt, Christiane; Sung, Po-Yu; Celma, Cristina C.; Roy, Polly

    2014-01-01

    : The mechanism used by bluetongue virus (BTV) to ensure the sorting and packaging of its 10 genomic segments is still poorly understood. In this study, we investigated the packaging constraints for two BTV genomic segments from two different serotypes. Segment 4 (S4) of BTV serotype 9 was mutated sequentially and packaging of mutant ssRNAs was investigated by two newly developed RNA packaging assay systems, one in vivo and the other in vitro. Modelling of the mutated ssRNA followed by bioche...

  8. Exploratory analysis of genomic segmentations with Segtools

    Directory of Open Access Journals (Sweden)

    Buske Orion J

    2011-10-01

    Full Text Available Abstract Background As genome-wide experiments and annotations become more prevalent, researchers increasingly require tools to help interpret data at this scale. Many functional genomics experiments involve partitioning the genome into labeled segments, such that segments sharing the same label exhibit one or more biochemical or functional traits. For example, a collection of ChlP-seq experiments yields a compendium of peaks, each labeled with one or more associated DNA-binding proteins. Similarly, manually or automatically generated annotations of functional genomic elements, including cis-regulatory modules and protein-coding or RNA genes, can also be summarized as genomic segmentations. Results We present a software toolkit called Segtools that simplifies and automates the exploration of genomic segmentations. The software operates as a series of interacting tools, each of which provides one mode of summarization. These various tools can be pipelined and summarized in a single HTML page. We describe the Segtools toolkit and demonstrate its use in interpreting a collection of human histone modification data sets and Plasmodium falciparum local chromatin structure data sets. Conclusions Segtools provides a convenient, powerful means of interpreting a genomic segmentation.

  9. Analysis Of Segmental Duplications In The Pig Genome Based On Next-Generation Sequencing

    DEFF Research Database (Denmark)

    Fadista, João; Bendixen, Christian

    Segmental duplications are >1kb segments of duplicated DNA present in a genome with high sequence identity (>90%). They are associated with genomic rearrangements and provide a significant source of gene and genome evolution within mammalian genomes. Although segmental duplications have been...... extensively studied in other organisms, its analysis in pig has been hampered by the lack of a complete pig genome assembly. By measuring the depth of coverage of Illumina whole-genome shotgun sequencing reads of the Tabasco animal aligned to the latest pig genome assembly (Sus scrofa 10 – based also...... and their associated copy number alterations, focusing on the global organization of these segments and their possible functional significance in porcine phenotypes. This work provides insights into mammalian genome evolution and generates a valuable resource for porcine genomics research...

  10. Efficient Algorithms for Analyzing Segmental Duplications, Deletions, and Inversions in Genomes

    Science.gov (United States)

    Kahn, Crystal L.; Mozes, Shay; Raphael, Benjamin J.

    Segmental duplications, or low-copy repeats, are common in mammalian genomes. In the human genome, most segmental duplications are mosaics consisting of pieces of multiple other segmental duplications. This complex genomic organization complicates analysis of the evolutionary history of these sequences. Earlier, we introduced a genomic distance, called duplication distance, that computes the most parsimonious way to build a target string by repeatedly copying substrings of a source string. We also showed how to use this distance to describe the formation of segmental duplications according to a two-step model that has been proposed to explain human segmental duplications. Here we describe polynomial-time exact algorithms for several extensions of duplication distance including models that allow certain types of substring deletions and inversions. These extensions will permit more biologically realistic analyses of segmental duplications in genomes.

  11. Construction of carrier state viruses with partial genomes of the segmented dsRNA bacteriophages

    International Nuclear Information System (INIS)

    Sun Yang; Qiao Xueying; Mindich, Leonard

    2004-01-01

    The cystoviridae are bacteriophages with genomes of three segments of dsRNA enclosed within a polyhedral capsid. Two members of this family, PHI6 and PHI8, have been shown to form carrier states in which the virus replicates as a stable episome in the host bacterium while expressing reporter genes such as kanamycin resistance or lacα. The carrier state does not require the activity of all the genes necessary for phage production. It is possible to generate carrier states by infecting cells with virus or by electroporating nonreplicating plasmids containing cDNA copies of the viral genomes into the host cells. We have found that carrier states in both PHI6 and PHI8 can be formed at high frequency with all three genomic segments or with only the large and small segments. The large genomic segment codes for the proteins that constitute the inner core of the virus, which is the structure responsible for the packaging and replication of the genome. In PHI6, a carrier state can be formed with the large and middle segment if mutations occur in the gene for the major structural protein of the inner core. In PHI8, carrier state formation requires the activity of genes 8 and 12 of segment S

  12. biomvRhsmm: Genomic Segmentation with Hidden Semi-Markov Model

    Directory of Open Access Journals (Sweden)

    Yang Du

    2014-01-01

    Full Text Available High-throughput technologies like tiling array and next-generation sequencing (NGS generate continuous homogeneous segments or signal peaks in the genome that represent transcripts and transcript variants (transcript mapping and quantification, regions of deletion and amplification (copy number variation, or regions characterized by particular common features like chromatin state or DNA methylation ratio (epigenetic modifications. However, the volume and output of data produced by these technologies present challenges in analysis. Here, a hidden semi-Markov model (HSMM is implemented and tailored to handle multiple genomic profile, to better facilitate genome annotation by assisting in the detection of transcripts, regulatory regions, and copy number variation by holistic microarray or NGS. With support for various data distributions, instead of limiting itself to one specific application, the proposed hidden semi-Markov model is designed to allow modeling options to accommodate different types of genomic data and to serve as a general segmentation engine. By incorporating genomic positions into the sojourn distribution of HSMM, with optional prior learning using annotation or previous studies, the modeling output is more biologically sensible. The proposed model has been compared with several other state-of-the-art segmentation models through simulation benchmarking, which shows that our efficient implementation achieves comparable or better sensitivity and specificity in genomic segmentation.

  13. Analysis of high-identity segmental duplications in the grapevine genome

    Directory of Open Access Journals (Sweden)

    Carelli Francesco N

    2011-08-01

    Full Text Available Abstract Background Segmental duplications (SDs are blocks of genomic sequence of 1-200 kb that map to different loci in a genome and share a sequence identity > 90%. SDs show at the sequence level the same characteristics as other regions of the human genome: they contain both high-copy repeats and gene sequences. SDs play an important role in genome plasticity by creating new genes and modeling genome structure. Although data is plentiful for mammals, not much was known about the representation of SDs in plant genomes. In this regard, we performed a genome-wide analysis of high-identity SDs on the sequenced grapevine (Vitis vinifera genome (PN40024. Results We demonstrate that recent SDs (> 94% identity and >= 10 kb in size are a relevant component of the grapevine genome (85 Mb, 17% of the genome sequence. We detected mitochondrial and plastid DNA and genes (10% of gene annotation in segmentally duplicated regions of the nuclear genome. In particular, the nine highest copy number genes have a copy in either or both organelle genomes. Further we showed that several duplicated genes take part in the biosynthesis of compounds involved in plant response to environmental stress. Conclusions These data show the great influence of SDs and organelle DNA transfers in modeling the Vitis vinifera nuclear DNA structure as well as the impact of SDs in contributing to the adaptive capacity of grapevine and the nutritional content of grape products through genome variation. This study represents a step forward in the full characterization of duplicated genes important for grapevine cultural needs and human health.

  14. Molecular evolution of avian reovirus: evidence for genetic diversity and reassortment of the S-class genome segments and multiple cocirculating lineages

    International Nuclear Information System (INIS)

    Liu, Hung J.; Lee, Long H.; Hsu, Hsiao W.; Kuo, Liam C.; Liao, Ming H.

    2003-01-01

    Nucleotide sequences of the S-class genome segments of 17 field-isolates and vaccine strains of avian reovirus (ARV) isolated over a 23-year period from different hosts, pathotypes, and geographic locations were examined and analyzed to define phylogenetic profiles and evolutionary mechanism. The S1 genome segment showed noticeably higher divergence than the other S-class genes. The σC-encoding gene has evolved into six distinct lineages. In contrast, the other S-class genes showed less divergence than that of the σC-encoding gene and have evolved into two to three major distinct lineages, respectively. Comparative sequence analysis provided evidence indicating extensive sequence divergence between ARV and other orthoreoviruses. The evolutionary trees of each gene were distinct, suggesting that these genes evolve in an independent manner. Furthermore, variable topologies were the result of frequent genetic reassortment among multiple cocirculating lineages. Results showed genetic diversity correlated more closely with date of isolation and geographic sites than with host species and pathotypes. This is the first evidence demonstrating genetic variability among circulating ARVs through a combination of evolutionary mechanisms involving multiple cocirculating lineages and genetic reassortment. The evolutionary rates and patterns of base substitutions were examined. The evolutionary rate for the σC-encoding gene and σC protein was higher than for the other S-class genes and other family of viruses. With the exception of the σC-encoding gene, which nonsynonymous substitutions predominate over synonymous, the evolutionary process of the other S-class genes can be explained by the neutral theory of molecular evolution. Results revealed that synonymous substitutions predominate over nonsynonymous in the S-class genes, even though genetic diversity and substitution rates vary among the viruses

  15. Assignment of simian rotavirus SA11 temperature-sensitive mutant groups B and E to genome segments

    International Nuclear Information System (INIS)

    Gombold, J.L.; Estes, M.K.; Ramig, R.F.

    1985-01-01

    Recombinant (reassortant) viruses were selected from crosses between temperature-sensitive (ts) mutants of simian rotavirus SA11 and wild-type human rotavirus Wa. The double-stranded genome RNAs of the reassortants were examined by electrophoresis in Tris-glycine-buffered polyacrylamide gels and by dot hybridization with a cloned DNA probe for genome segment 2. Analysis of replacements of genome segments in the reassortants allowed construction of a map correlating genome segments providing functions interchangeable between SA11 and Wa. The reassortants revealed a functional correspondence in order of increasing electrophoretic mobility of genome segments. Analysis of the parental origin of genome segments in ts+ SA11/Wa reassortants derived from the crosses SA11 tsB(339) X Wa and SA11 tsE(1400) X Wa revealed that the group B lesion of tsB(339) was located on genome segment 3 and the group E lesion of tsE(1400) was on segment 8

  16. Assignment of simian rotavirus SA11 temperature-sensitive mutant groups B and E to genome segments

    Energy Technology Data Exchange (ETDEWEB)

    Gombold, J.L.; Estes, M.K.; Ramig, R.F.

    1985-05-01

    Recombinant (reassortant) viruses were selected from crosses between temperature-sensitive (ts) mutants of simian rotavirus SA11 and wild-type human rotavirus Wa. The double-stranded genome RNAs of the reassortants were examined by electrophoresis in Tris-glycine-buffered polyacrylamide gels and by dot hybridization with a cloned DNA probe for genome segment 2. Analysis of replacements of genome segments in the reassortants allowed construction of a map correlating genome segments providing functions interchangeable between SA11 and Wa. The reassortants revealed a functional correspondence in order of increasing electrophoretic mobility of genome segments. Analysis of the parental origin of genome segments in ts+ SA11/Wa reassortants derived from the crosses SA11 tsB(339) X Wa and SA11 tsE(1400) X Wa revealed that the group B lesion of tsB(339) was located on genome segment 3 and the group E lesion of tsE(1400) was on segment 8.

  17. The structures of bovine herpesvirus 1 virion and concatemeric DNA: implications for cleavage and packaging of herpesvirus genomes

    International Nuclear Information System (INIS)

    Schynts, Frederic; McVoy, Michael A.; Meurens, Francois; Detry, Bruno; Epstein, Alberto L.; Thiry, Etienne

    2003-01-01

    Herpesvirus genomes are often characterized by the presence of direct and inverted repeats that delineate their grouping into six structural classes. Class D genomes consist of a long (L) segment and a short (S) segment. The latter is flanked by large inverted repeats. DNA replication produces concatemers of head-to-tail linked genomes that are cleaved into unit genomes during the process of packaging DNA into capsids. Packaged class D genomes are an equimolar mixture of two isomers in which S is in either of two orientations, presumably a consequence of homologous recombination between the inverted repeats. The L segment remains predominantly fixed in a prototype (P) orientation; however, low levels of genomes having inverted L (I L ) segments have been reported for some class D herpesviruses. Inefficient formation of class D I L genomes has been attributed to infrequent L segment inversion, but recent detection of frequent inverted L segments in equine herpesvirus 1 concatemers [Virology 229 (1997) 415-420] suggests that the defect may be at the level of cleavage and packaging rather than inversion. In this study, the structures of virion and concatemeric DNA of another class D herpesvirus, bovine herpesvirus 1, were determined. Virion DNA contained low levels of I L genomes, whereas concatemeric DNA contained significant amounts of L segments in both P and I L orientations. However, concatemeric termini exhibited a preponderance of L termini derived from P isomers which was comparable to the preponderance of P genomes found in virion DNA. Thus, the defect in formation of I L genomes appears to lie at the level of concatemer cleavage. These results have important implications for the mechanisms by which herpesvirus DNA cleavage and packaging occur

  18. Molecular cytogenetic and genomic analyses reveal new insights into the origin of the wheat B genome.

    Science.gov (United States)

    Zhang, Wei; Zhang, Mingyi; Zhu, Xianwen; Cao, Yaping; Sun, Qing; Ma, Guojia; Chao, Shiaoman; Yan, Changhui; Xu, Steven S; Cai, Xiwen

    2018-02-01

    This work pinpointed the goatgrass chromosomal segment in the wheat B genome using modern cytogenetic and genomic technologies, and provided novel insights into the origin of the wheat B genome. Wheat is a typical allopolyploid with three homoeologous subgenomes (A, B, and D). The donors of the subgenomes A and D had been identified, but not for the subgenome B. The goatgrass Aegilops speltoides (genome SS) has been controversially considered a possible candidate for the donor of the wheat B genome. However, the relationship of the Ae. speltoides S genome with the wheat B genome remains largely obscure. The present study assessed the homology of the B and S genomes using an integrative cytogenetic and genomic approach, and revealed the contribution of Ae. speltoides to the origin of the wheat B genome. We discovered noticeable homology between wheat chromosome 1B and Ae. speltoides chromosome 1S, but not between other chromosomes in the B and S genomes. An Ae. speltoides-originated segment spanning a genomic region of approximately 10.46 Mb was detected on the long arm of wheat chromosome 1B (1BL). The Ae. speltoides-originated segment on 1BL was found to co-evolve with the rest of the B genome. Evidently, Ae. speltoides had been involved in the origin of the wheat B genome, but should not be considered an exclusive donor of this genome. The wheat B genome might have a polyphyletic origin with multiple ancestors involved, including Ae. speltoides. These novel findings will facilitate genome studies in wheat and other polyploids.

  19. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations.

    Science.gov (United States)

    Uwimana, Brigitte; Smulders, Marinus J M; Hooftman, Danny A P; Hartman, Yorike; van Tienderen, Peter H; Jansen, Johannes; McHale, Leah K; Michelmore, Richard W; Visser, Richard G F; van de Wiel, Clemens C M

    2012-03-26

    After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The likelihood of introgression of transgenes will not only be determined by fitness effects from the transgene itself but also by the crop genes linked to it. Although lettuce is generally regarded as self-pollinating, outbreeding does occur at a low frequency. Backcrossing to wild lettuce is a likely pathway to introgression along with selfing, due to the high frequency of wild individuals relative to the rarely occurring crop-wild hybrids. To test the effect of backcrossing on the vigour of inter-specific hybrids, Lactuca serriola, the closest wild relative of cultivated lettuce, was crossed with L. sativa and the F(1) hybrid was backcrossed to L. serriola to generate BC(1) and BC(2) populations. Experiments were conducted on progeny from selfed plants of the backcrossing families (BC(1)S(1) and BC(2)S(1)). Plant vigour of these two backcrossing populations was determined in the greenhouse under non-stress and abiotic stress conditions (salinity, drought, and nutrient deficiency). Despite the decreasing contribution of crop genomic blocks in the backcross populations, the BC(1)S(1) and BC(2)S(1) hybrids were characterized by a substantial genetic variation under both non-stress and stress conditions. Hybrids were identified that performed equally or better than the wild genotypes, indicating that two backcrossing events did not eliminate the effect of the crop genomic segments that contributed to the vigour of the BC(1) and BC(2) hybrids. QTLs for plant vigour under non-stress and the various stress conditions were detected in the two populations with positive as well as negative effects from the crop. As it was shown that the crop contributed QTLs with either a positive

  20. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations

    Directory of Open Access Journals (Sweden)

    Uwimana Brigitte

    2012-03-01

    Full Text Available Abstract Background After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (transgenes could become established in natural populations. The likelihood of introgression of transgenes will not only be determined by fitness effects from the transgene itself but also by the crop genes linked to it. Although lettuce is generally regarded as self-pollinating, outbreeding does occur at a low frequency. Backcrossing to wild lettuce is a likely pathway to introgression along with selfing, due to the high frequency of wild individuals relative to the rarely occurring crop-wild hybrids. To test the effect of backcrossing on the vigour of inter-specific hybrids, Lactuca serriola, the closest wild relative of cultivated lettuce, was crossed with L. sativa and the F1 hybrid was backcrossed to L. serriola to generate BC1 and BC2 populations. Experiments were conducted on progeny from selfed plants of the backcrossing families (BC1S1 and BC2S1. Plant vigour of these two backcrossing populations was determined in the greenhouse under non-stress and abiotic stress conditions (salinity, drought, and nutrient deficiency. Results Despite the decreasing contribution of crop genomic blocks in the backcross populations, the BC1S1 and BC2S1 hybrids were characterized by a substantial genetic variation under both non-stress and stress conditions. Hybrids were identified that performed equally or better than the wild genotypes, indicating that two backcrossing events did not eliminate the effect of the crop genomic segments that contributed to the vigour of the BC1 and BC2 hybrids. QTLs for plant vigour under non-stress and the various stress conditions were detected in the two populations with positive as well as negative effects from the crop. Conclusion As it was shown that the crop

  1. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations

    Science.gov (United States)

    2012-01-01

    Background After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The likelihood of introgression of transgenes will not only be determined by fitness effects from the transgene itself but also by the crop genes linked to it. Although lettuce is generally regarded as self-pollinating, outbreeding does occur at a low frequency. Backcrossing to wild lettuce is a likely pathway to introgression along with selfing, due to the high frequency of wild individuals relative to the rarely occurring crop-wild hybrids. To test the effect of backcrossing on the vigour of inter-specific hybrids, Lactuca serriola, the closest wild relative of cultivated lettuce, was crossed with L. sativa and the F1 hybrid was backcrossed to L. serriola to generate BC1 and BC2 populations. Experiments were conducted on progeny from selfed plants of the backcrossing families (BC1S1 and BC2S1). Plant vigour of these two backcrossing populations was determined in the greenhouse under non-stress and abiotic stress conditions (salinity, drought, and nutrient deficiency). Results Despite the decreasing contribution of crop genomic blocks in the backcross populations, the BC1S1 and BC2S1 hybrids were characterized by a substantial genetic variation under both non-stress and stress conditions. Hybrids were identified that performed equally or better than the wild genotypes, indicating that two backcrossing events did not eliminate the effect of the crop genomic segments that contributed to the vigour of the BC1 and BC2 hybrids. QTLs for plant vigour under non-stress and the various stress conditions were detected in the two populations with positive as well as negative effects from the crop. Conclusion As it was shown that the crop contributed QTLs with either a

  2. Comparing genomes with rearrangements and segmental duplications.

    Science.gov (United States)

    Shao, Mingfu; Moret, Bernard M E

    2015-06-15

    Large-scale evolutionary events such as genomic rearrange.ments and segmental duplications form an important part of the evolution of genomes and are widely studied from both biological and computational perspectives. A basic computational problem is to infer these events in the evolutionary history for given modern genomes, a task for which many algorithms have been proposed under various constraints. Algorithms that can handle both rearrangements and content-modifying events such as duplications and losses remain few and limited in their applicability. We study the comparison of two genomes under a model including general rearrangements (through double-cut-and-join) and segmental duplications. We formulate the comparison as an optimization problem and describe an exact algorithm to solve it by using an integer linear program. We also devise a sufficient condition and an efficient algorithm to identify optimal substructures, which can simplify the problem while preserving optimality. Using the optimal substructures with the integer linear program (ILP) formulation yields a practical and exact algorithm to solve the problem. We then apply our algorithm to assign in-paralogs and orthologs (a necessary step in handling duplications) and compare its performance with that of the state-of-the-art method MSOAR, using both simulations and real data. On simulated datasets, our method outperforms MSOAR by a significant margin, and on five well-annotated species, MSOAR achieves high accuracy, yet our method performs slightly better on each of the 10 pairwise comparisons. http://lcbb.epfl.ch/softwares/coser. © The Author 2015. Published by Oxford University Press.

  3. Characterization of gene expression on genomic segment 7 of infectious salmon anaemia virus

    Directory of Open Access Journals (Sweden)

    Qian Biao

    2007-03-01

    Full Text Available Abstract Background Infectious salmon anaemia (ISA virus (ISAV, an important pathogen of fish that causes disease accompanied by high mortality in marine-farmed Atlantic salmon, is the only species in the genus Isavirus, one of the five genera of the Orthomyxoviridae family. The Isavirus genome consists of eight single-stranded RNA species, and the virions have two surface glycoproteins; haemagglutinin-esterase (HE protein encoded on segment 6 and fusion (F protein encoded on segment 5. Based on the initial demonstration of two 5'-coterminal mRNA transcripts by RT-PCR, ISAV genomic segment 7 was suggested to share a similar coding strategy with segment 7 of influenza A virus, encoding two proteins. However, there appears to be confusion as to the protein sizes predicted from the two open reading frames (ORFs of ISAV segment 7 which has in turn led to confusion of the predicted protein functions. The primary goal of the present work was to clone and express these two ORFs in order to assess whether the predicted protein sizes match those of the expressed proteins so as to clarify the coding assignments, and thereby identify any additional structural proteins of ISAV. Results In the present study we show that ISAV segment 7 encodes 3 proteins with estimated molecular masses of 32, 18, and 9.5 kDa. The 18-kDa and 9.5-kDa products are based on removal of an intron each from the primary transcript (7-ORF1 so that the translation continues in the +2 and +3 reading frames, respectively. The segment 7-ORF1/3 product is variably truncated in the sequence of ISAV isolates of the European genotype. All three proteins are recognized by rabbit antiserum against the 32-kDa product of the primary transcript, as they all share the N-terminal 22 amino acids. This antiserum detected a single 35-kDa protein in Western blots of purified virus, and immunoprecipitated a 32-kDa protein in ISAV-infected TO cells. Immunofluorescence staining of infected cells with the

  4. Novel genomes and genome constitutions identified by GISH and 5S rDNA and knotted1 genomic sequences in the genus Setaria.

    Science.gov (United States)

    Zhao, Meicheng; Zhi, Hui; Doust, Andrew N; Li, Wei; Wang, Yongfang; Li, Haiquan; Jia, Guanqing; Wang, Yongqiang; Zhang, Ning; Diao, Xianmin

    2013-04-11

    The Setaria genus is increasingly of interest to researchers, as its two species, S. viridis and S. italica, are being developed as models for understanding C4 photosynthesis and plant functional genomics. The genome constitution of Setaria species has been studied in the diploid species S. viridis, S. adhaerans and S. grisebachii, where three genomes A, B and C were identified respectively. Two allotetraploid species, S. verticillata and S. faberi, were found to have AABB genomes, and one autotetraploid species, S. queenslandica, with an AAAA genome, has also been identified. The genomes and genome constitutions of most other species remain unknown, even though it was thought there are approximately 125 species in the genus distributed world-wide. GISH was performed to detect the genome constitutions of Eurasia species of S. glauca, S. plicata, and S. arenaria, with the known A, B and C genomes as probes. No or very poor hybridization signal was detected indicating that their genomes are different from those already described. GISH was also performed reciprocally between S. glauca, S. plicata, and S. arenaria genomes, but no hybridization signals between each other were found. The two sets of chromosomes of S. lachnea both hybridized strong signals with only the known C genome of S. grisebachii. Chromosomes of Qing 9, an accession formerly considered as S. viridis, hybridized strong signal only to B genome of S. adherans. Phylogenetic trees constructed with 5S rDNA and knotted1 markers, clearly classify the samples in this study into six clusters, matching the GISH results, and suggesting that the F genome of S. arenaria is basal in the genus. Three novel genomes in the Setaria genus were identified and designated as genome D (S. glauca), E (S. plicata) and F (S. arenaria) respectively. The genome constitution of tetraploid S. lachnea is putatively CCC'C'. Qing 9 is a B genome species indigenous to China and is hypothesized to be a newly identified species. The

  5. Genomic segments RNA1 and RNA2 of Prunus necrotic ringspot virus codetermine viral pathogenicity to adapt to alternating natural Prunus hosts.

    Science.gov (United States)

    Cui, Hongguang; Hong, Ni; Wang, Guoping; Wang, Aiming

    2013-05-01

    Prunus necrotic ringspot virus (PNRSV) affects Prunus fruit production worldwide. To date, numerous PNRSV isolates with diverse pathological properties have been documented. To study the pathogenicity of PNRSV, which directly or indirectly determines the economic losses of infected fruit trees, we have recently sequenced the complete genome of peach isolate Pch12 and cherry isolate Chr3, belonging to the pathogenically aggressive PV32 group and mild PV96 group, respectively. Here, we constructed the Chr3- and Pch12-derived full-length cDNA clones that were infectious in the experimental host cucumber and their respective natural Prunus hosts. Pch12-derived clones induced much more severe symptoms than Chr3 in cucumber, and the pathogenicity discrepancy between Chr3 and Pch12 was associated with virus accumulation. By reassortment of genomic segments, swapping of partial genomic segments, and site-directed mutagenesis, we identified the 3' terminal nucleotide sequence (1C region) in RNA1 and amino acid K at residue 279 in RNA2-encoded P2 as the severe virulence determinants in Pch12. Gain-of-function experiments demonstrated that both the 1C region and K279 of Pch12 were required for severe virulence and high levels of viral accumulation. Our results suggest that PNRSV RNA1 and RNA2 codetermine viral pathogenicity to adapt to alternating natural Prunus hosts, likely through mediating viral accumulation.

  6. Including α s1 casein gene information in genomic evaluations of French dairy goats.

    Science.gov (United States)

    Carillier-Jacquin, Céline; Larroque, Hélène; Robert-Granié, Christèle

    2016-08-04

    Genomic best linear unbiased prediction methods assume that all markers explain the same fraction of the genetic variance and do not account effectively for genes with major effects such as the α s1 casein polymorphism in dairy goats. In this study, we investigated methods to include the available α s1 casein genotype effect in genomic evaluations of French dairy goats. First, the α s1 casein genotype was included as a fixed effect in genomic evaluation models based only on bucks that were genotyped at the α s1 casein locus. Less than 1 % of the females with phenotypes were genotyped at the α s1 casein gene. Thus, to incorporate these female phenotypes in the genomic evaluation, two methods that allowed for this large number of missing α s1 casein genotypes were investigated. Probabilities for each possible α s1 casein genotype were first estimated for each female of unknown genotype based on iterative peeling equations. The second method is based on a multiallelic gene content approach. For each model tested, we used three datasets each divided into a training and a validation set: (1) two-breed population (Alpine + Saanen), (2) Alpine population, and (3) Saanen population. The α s1 casein genotype had a significant effect on milk yield, fat content and protein content. Including an α s1 casein effect in genetic and genomic evaluations based only on male known α s1 casein genotypes improved accuracies (from 6 to 27 %). In genomic evaluations based on all female phenotypes, the gene content approach performed better than the other tested methods but the improvement in accuracy was only slightly better (from 1 to 14 %) than that of a genomic model without the α s1 casein effect. Including the α s1 casein effect in a genomic evaluation model for French dairy goats is possible and useful to improve accuracy. Difficulties in predicting the genotypes for ungenotyped animals limited the improvement in accuracy of the obtained estimated breeding values.

  7. Segmenting the human genome based on states of neutral genetic divergence.

    Science.gov (United States)

    Kuruppumullage Don, Prabhani; Ananda, Guruprasad; Chiaromonte, Francesca; Makova, Kateryna D

    2013-09-03

    Many studies have demonstrated that divergence levels generated by different mutation types vary and covary across the human genome. To improve our still-incomplete understanding of the mechanistic basis of this phenomenon, we analyze several mutation types simultaneously, anchoring their variation to specific regions of the genome. Using hidden Markov models on insertion, deletion, nucleotide substitution, and microsatellite divergence estimates inferred from human-orangutan alignments of neutrally evolving genomic sequences, we segment the human genome into regions corresponding to different divergence states--each uniquely characterized by specific combinations of divergence levels. We then parsed the mutagenic contributions of various biochemical processes associating divergence states with a broad range of genomic landscape features. We find that high divergence states inhabit guanine- and cytosine (GC)-rich, highly recombining subtelomeric regions; low divergence states cover inner parts of autosomes; chromosome X forms its own state with lowest divergence; and a state of elevated microsatellite mutability is interspersed across the genome. These general trends are mirrored in human diversity data from the 1000 Genomes Project, and departures from them highlight the evolutionary history of primate chromosomes. We also find that genes and noncoding functional marks [annotations from the Encyclopedia of DNA Elements (ENCODE)] are concentrated in high divergence states. Our results provide a powerful tool for biomedical data analysis: segmentations can be used to screen personal genome variants--including those associated with cancer and other diseases--and to improve computational predictions of noncoding functional elements.

  8. Complete genome sequence of Rhodospirillum rubrum type strain (S1).

    Science.gov (United States)

    Munk, A Christine; Copeland, Alex; Lucas, Susan; Lapidus, Alla; Del Rio, Tijana Glavina; Barry, Kerrie; Detter, John C; Hammon, Nancy; Israni, Sanjay; Pitluck, Sam; Brettin, Thomas; Bruce, David; Han, Cliff; Tapia, Roxanne; Gilna, Paul; Schmutz, Jeremy; Larimer, Frank; Land, Miriam; Kyrpides, Nikos C; Mavromatis, Konstantinos; Richardson, Paul; Rohde, Manfred; Göker, Markus; Klenk, Hans-Peter; Zhang, Yaoping; Roberts, Gary P; Reslewic, Susan; Schwartz, David C

    2011-07-01

    Rhodospirillum rubrum (Esmarch 1887) Molisch 1907 is the type species of the genus Rhodospirillum, which is the type genus of the family Rhodospirillaceae in the class Alphaproteobacteria. The species is of special interest because it is an anoxygenic phototroph that produces extracellular elemental sulfur (instead of oxygen) while harvesting light. It contains one of the most simple photosynthetic systems currently known, lacking light harvesting complex 2. Strain S1(T) can grow on carbon monoxide as sole energy source. With currently over 1,750 PubMed entries, R. rubrum is one of the most intensively studied microbial species, in particular for physiological and genetic studies. Next to R. centenum strain SW, the genome sequence of strain S1(T) is only the second genome of a member of the genus Rhodospirillum to be published, but the first type strain genome from the genus. The 4,352,825 bp long chromosome and 53,732 bp plasmid with a total of 3,850 protein-coding and 83 RNA genes were sequenced as part of the DOE Joint Genome Institute Program DOEM 2002.

  9. Spectral entropy criteria for structural segmentation in genomic DNA sequences

    International Nuclear Information System (INIS)

    Chechetkin, V.R.; Lobzin, V.V.

    2004-01-01

    The spectral entropy is calculated with Fourier structure factors and characterizes the level of structural ordering in a sequence of symbols. It may efficiently be applied to the assessment and reconstruction of the modular structure in genomic DNA sequences. We present the relevant spectral entropy criteria for the local and non-local structural segmentation in DNA sequences. The results are illustrated with the model examples and analysis of intervening exon-intron segments in the protein-coding regions

  10. Detection and correction of false segmental duplications caused by genome mis-assembly

    Science.gov (United States)

    2010-01-01

    Diploid genomes with divergent chromosomes present special problems for assembly software as two copies of especially polymorphic regions may be mistakenly constructed, creating the appearance of a recent segmental duplication. We developed a method for identifying such false duplications and applied it to four vertebrate genomes. For each genome, we corrected mis-assemblies, improved estimates of the amount of duplicated sequence, and recovered polymorphisms between the sequenced chromosomes. PMID:20219098

  11. An efficient and high fidelity method for amplification, cloning and sequencing of complete tospovirus genomic RNA segments

    Science.gov (United States)

    Amplification and sequencing of the complete M- and S-RNA segments of Tomato spotted wilt virus and Impatiens necrotic spot virus as a single fragment is useful for whole genome sequencing of tospoviruses co-infecting a single host plant. It avoids issues associated with overlapping amplicon-based ...

  12. Genome-wide signatures of 'rearrangement hotspots' within segmental duplications in humans.

    Directory of Open Access Journals (Sweden)

    Mohammed Uddin

    Full Text Available The primary objective of this study was to create a genome-wide high resolution map (i.e., >100 bp of 'rearrangement hotspots' which can facilitate the identification of regions capable of mediating de novo deletions or duplications in humans. A hierarchical method was employed to fragment segmental duplications (SDs into multiple smaller SD units. Combining an end space free pairwise alignment algorithm with a 'seed and extend' approach, we have exhaustively searched 409 million alignments to detect complex structural rearrangements within the reference-guided assembly of the NA18507 human genome (18× coverage, including the previously identified novel 4.8 Mb sequence from de novo assembly within this genome. We have identified 1,963 rearrangement hotspots within SDs which encompass 166 genes and display an enrichment of duplicated gene nucleotide variants (DNVs. These regions are correlated with increased non-allelic homologous recombination (NAHR event frequency which presumably represents the origin of copy number variations (CNVs and pathogenic duplications/deletions. Analysis revealed that 20% of the detected hotspots are clustered within the proximal and distal SD breakpoints flanked by the pathogenic deletions/duplications that have been mapped for 24 NAHR-mediated genomic disorders. FISH Validation of selected complex regions revealed 94% concordance with in silico localization of the highly homologous derivatives. Other results from this study indicate that intra-chromosomal recombination is enhanced in genic compared with agenic duplicated regions, and that gene desert regions comprising SDs may represent reservoirs for creation of novel genes. The generation of genome-wide signatures of 'rearrangement hotspots', which likely serve as templates for NAHR, may provide a powerful approach towards understanding the underlying mutational mechanism(s for development of constitutional and acquired diseases.

  13. The Statistical Segment Length of DNA: Opportunities for Biomechanical Modeling in Polymer Physics and Next-Generation Genomics.

    Science.gov (United States)

    Dorfman, Kevin D

    2018-02-01

    The development of bright bisintercalating dyes for deoxyribonucleic acid (DNA) in the 1990s, most notably YOYO-1, revolutionized the field of polymer physics in the ensuing years. These dyes, in conjunction with modern molecular biology techniques, permit the facile observation of polymer dynamics via fluorescence microscopy and thus direct tests of different theories of polymer dynamics. At the same time, they have played a key role in advancing an emerging next-generation method known as genome mapping in nanochannels. The effect of intercalation on the bending energy of DNA as embodied by a change in its statistical segment length (or, alternatively, its persistence length) has been the subject of significant controversy. The precise value of the statistical segment length is critical for the proper interpretation of polymer physics experiments and controls the phenomena underlying the aforementioned genomics technology. In this perspective, we briefly review the model of DNA as a wormlike chain and a trio of methods (light scattering, optical or magnetic tweezers, and atomic force microscopy (AFM)) that have been used to determine the statistical segment length of DNA. We then outline the disagreement in the literature over the role of bisintercalation on the bending energy of DNA, and how a multiscale biomechanical approach could provide an important model for this scientifically and technologically relevant problem.

  14. The most conserved genome segments for life detection on Earth and other planets.

    Science.gov (United States)

    Isenbarger, Thomas A; Carr, Christopher E; Johnson, Sarah Stewart; Finney, Michael; Church, George M; Gilbert, Walter; Zuber, Maria T; Ruvkun, Gary

    2008-12-01

    On Earth, very simple but powerful methods to detect and classify broad taxa of life by the polymerase chain reaction (PCR) are now standard practice. Using DNA primers corresponding to the 16S ribosomal RNA gene, one can survey a sample from any environment for its microbial inhabitants. Due to massive meteoritic exchange between Earth and Mars (as well as other planets), a reasonable case can be made for life on Mars or other planets to be related to life on Earth. In this case, the supremely sensitive technologies used to study life on Earth, including in extreme environments, can be applied to the search for life on other planets. Though the 16S gene has become the standard for life detection on Earth, no genome comparisons have established that the ribosomal genes are, in fact, the most conserved DNA segments across the kingdoms of life. We present here a computational comparison of full genomes from 13 diverse organisms from the Archaea, Bacteria, and Eucarya to identify genetic sequences conserved across the widest divisions of life. Our results identify the 16S and 23S ribosomal RNA genes as well as other universally conserved nucleotide sequences in genes encoding particular classes of transfer RNAs and within the nucleotide binding domains of ABC transporters as the most conserved DNA sequence segments across phylogeny. This set of sequences defines a core set of DNA regions that have changed the least over billions of years of evolution and provides a means to identify and classify divergent life, including ancestrally related life on other planets.

  15. RNA structural constraints in the evolution of the influenza A virus genome NP segment

    NARCIS (Netherlands)

    A.P. Gultyaev (Alexander); A. Tsyganov-Bodounov (Anton); M.I. Spronken (Monique); S. Van Der Kooij (Sander); R.A.M. Fouchier (Ron); R.C.L. Olsthoorn (René)

    2014-01-01

    textabstractConserved RNA secondary structures were predicted in the nucleoprotein (NP) segment of the influenza A virus genome using comparative sequence and structure analysis. A number of structural elements exhibiting nucleotide covariations were identified over the whole segment length,

  16. Deciphering the assembly of multi-segment genome complexes in influenza A virus

    OpenAIRE

    Prisner, Simon

    2017-01-01

    Influenza A besitzt ein segmentiertes, achtsträngiges Genom in negativer Orientierung. Die einzelnen Segmente sind in virale Ribonukleoproteinkomplexe (vRNPs) verpackt. Genomische Segmentierung erlaubt es Influenza, zwischen verschiedenen Stämmen Reassortierung zu betreiben, was zur Entstehung von hochgradig virulenten und potentiell pandemischen neuen Stämmen führen kann. Die Existenz eines Packungsmechanismus wird vermutet, der sicherstellt dass exakt ein Segment jeden Typs in neu knospe...

  17. Identifying uniformly mutated segments within repeats.

    Science.gov (United States)

    Sahinalp, S Cenk; Eichler, Evan; Goldberg, Paul; Berenbrink, Petra; Friedetzky, Tom; Ergun, Funda

    2004-12-01

    Given a long string of characters from a constant size alphabet we present an algorithm to determine whether its characters have been generated by a single i.i.d. random source. More specifically, consider all possible n-coin models for generating a binary string S, where each bit of S is generated via an independent toss of one of the n coins in the model. The choice of which coin to toss is decided by a random walk on the set of coins where the probability of a coin change is much lower than the probability of using the same coin repeatedly. We present a procedure to evaluate the likelihood of a n-coin model for given S, subject a uniform prior distribution over the parameters of the model (that represent mutation rates and probabilities of copying events). In the absence of detailed prior knowledge of these parameters, the algorithm can be used to determine whether the a posteriori probability for n=1 is higher than for any other n>1. Our algorithm runs in time O(l4logl), where l is the length of S, through a dynamic programming approach which exploits the assumed convexity of the a posteriori probability for n. Our test can be used in the analysis of long alignments between pairs of genomic sequences in a number of ways. For example, functional regions in genome sequences exhibit much lower mutation rates than non-functional regions. Because our test provides means for determining variations in the mutation rate, it may be used to distinguish functional regions from non-functional ones. Another application is in determining whether two highly similar, thus evolutionarily related, genome segments are the result of a single copy event or of a complex series of copy events. This is particularly an issue in evolutionary studies of genome regions rich with repeat segments (especially tandemly repeated segments).

  18. Evaluation of a Phylogenetic Marker Based on Genomic Segment B of Infectious Bursal Disease Virus: Facilitating a Feasible Incorporation of this Segment to the Molecular Epidemiology Studies for this Viral Agent.

    Science.gov (United States)

    Alfonso-Morales, Abdulahi; Rios, Liliam; Martínez-Pérez, Orlando; Dolz, Roser; Valle, Rosa; Perera, Carmen L; Bertran, Kateri; Frías, Maria T; Ganges, Llilianne; Díaz de Arce, Heidy; Majó, Natàlia; Núñez, José I; Pérez, Lester J

    2015-01-01

    Infectious bursal disease (IBD) is a highly contagious and acute viral disease, which has caused high mortality rates in birds and considerable economic losses in different parts of the world for more than two decades and it still represents a considerable threat to poultry. The current study was designed to rigorously measure the reliability of a phylogenetic marker included into segment B. This marker can facilitate molecular epidemiology studies, incorporating this segment of the viral genome, to better explain the links between emergence, spreading and maintenance of the very virulent IBD virus (vvIBDV) strains worldwide. Sequences of the segment B gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank Database; Cuban sequences were obtained in the current work. A phylogenetic marker named B-marker was assessed by different phylogenetic principles such as saturation of substitution, phylogenetic noise and high consistency. This last parameter is based on the ability of B-marker to reconstruct the same topology as the complete segment B of the viral genome. From the results obtained from B-marker, demographic history for both main lineages of IBDV regarding segment B was performed by Bayesian skyline plot analysis. Phylogenetic analysis for both segments of IBDV genome was also performed, revealing the presence of a natural reassortant strain with segment A from vvIBDV strains and segment B from non-vvIBDV strains within Cuban IBDV population. This study contributes to a better understanding of the emergence of vvIBDV strains, describing molecular epidemiology of IBDV using the state-of-the-art methodology concerning phylogenetic reconstruction. This study also revealed the presence of a novel natural reassorted strain as possible manifest of change in the genetic structure and stability of the vvIBDV strains. Therefore, it highlights the need to obtain information about both genome segments of IBDV for molecular

  19. Detection and analysis of ancient segmental duplications in mammalian genomes.

    Science.gov (United States)

    Pu, Lianrong; Lin, Yu; Pevzner, Pavel A

    2018-05-07

    Although segmental duplications (SDs) represent hotbeds for genomic rearrangements and emergence of new genes, there are still no easy-to-use tools for identifying SDs. Moreover, while most previous studies focused on recently emerged SDs, detection of ancient SDs remains an open problem. We developed an SDquest algorithm for SD finding and applied it to analyzing SDs in human, gorilla, and mouse genomes. Our results demonstrate that previous studies missed many SDs in these genomes and show that SDs account for at least 6.05% of the human genome (version hg19), a 17% increase as compared to the previous estimate. Moreover, SDquest classified 6.42% of the latest GRCh38 version of the human genome as SDs, a large increase as compared to previous studies. We thus propose to re-evaluate evolution of SDs based on their accurate representation across multiple genomes. Toward this goal, we analyzed the complex mosaic structure of SDs and decomposed mosaic SDs into elementary SDs, a prerequisite for follow-up evolutionary analysis. We also introduced the concept of the breakpoint graph of mosaic SDs that revealed SD hotspots and suggested that some SDs may have originated from circular extrachromosomal DNA (ecDNA), not unlike ecDNA that contributes to accelerated evolution in cancer. © 2018 Pu et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Genomic profiling of plasmablastic lymphoma using array comparative genomic hybridization (aCGH: revealing significant overlapping genomic lesions with diffuse large B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Lu Xin-Yan

    2009-11-01

    Full Text Available Abstract Background Plasmablastic lymphoma (PL is a subtype of diffuse large B-cell lymphoma (DLBCL. Studies have suggested that tumors with PL morphology represent a group of neoplasms with clinopathologic characteristics corresponding to different entities including extramedullary plasmablastic tumors associated with plasma cell myeloma (PCM. The goal of the current study was to evaluate the genetic similarities and differences among PL, DLBCL (AIDS-related and non AIDS-related and PCM using array-based comparative genomic hybridization. Results Examination of genomic data in PL revealed that the most frequent segmental gain (> 40% include: 1p36.11-1p36.33, 1p34.1-1p36.13, 1q21.1-1q23.1, 7q11.2-7q11.23, 11q12-11q13.2 and 22q12.2-22q13.3. This correlated with segmental gains occurring in high frequency in DLBCL (AIDS-related and non AIDS-related cases. There were some segmental gains and some segmental loss that occurred in PL but not in the other types of lymphoma suggesting that these foci may contain genes responsible for the differentiation of this lymphoma. Additionally, some segmental gains and some segmental loss occurred only in PL and AIDS associated DLBCL suggesting that these foci may be associated with HIV infection. Furthermore, some segmental gains and some segmental loss occurred only in PL and PCM suggesting that these lesions may be related to plasmacytic differentiation. Conclusion To the best of our knowledge, the current study represents the first genomic exploration of PL. The genomic aberration pattern of PL appears to be more similar to that of DLBCL (AIDS-related or non AIDS-related than to PCM. Our findings suggest that PL may remain best classified as a subtype of DLBCL at least at the genome level.

  1. Draft genome sequence of Streptococcus equi subsp. zooepidemicus strain S31A1, isolated from equine infectious endometritis

    DEFF Research Database (Denmark)

    da Piedade, Isabelle; Skive, Bolette; Christensen, Henrik

    2013-01-01

    We present the draft genome sequence of Streptococcus equi subsp. zooepidemicus S31A1, a strain isolated from equine infectious endometritis in Denmark. Comparative analyses of this genome were done with four published reference genomes: S. zooepidemicus strains MGCS10565, ATCC 35246, and H70 and S...

  2. Evaluation of a Phylogenetic Marker Based on Genomic Segment B of Infectious Bursal Disease Virus: Facilitating a Feasible Incorporation of this Segment to the Molecular Epidemiology Studies for this Viral Agent.

    Directory of Open Access Journals (Sweden)

    Abdulahi Alfonso-Morales

    Full Text Available Infectious bursal disease (IBD is a highly contagious and acute viral disease, which has caused high mortality rates in birds and considerable economic losses in different parts of the world for more than two decades and it still represents a considerable threat to poultry. The current study was designed to rigorously measure the reliability of a phylogenetic marker included into segment B. This marker can facilitate molecular epidemiology studies, incorporating this segment of the viral genome, to better explain the links between emergence, spreading and maintenance of the very virulent IBD virus (vvIBDV strains worldwide.Sequences of the segment B gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank Database; Cuban sequences were obtained in the current work. A phylogenetic marker named B-marker was assessed by different phylogenetic principles such as saturation of substitution, phylogenetic noise and high consistency. This last parameter is based on the ability of B-marker to reconstruct the same topology as the complete segment B of the viral genome. From the results obtained from B-marker, demographic history for both main lineages of IBDV regarding segment B was performed by Bayesian skyline plot analysis. Phylogenetic analysis for both segments of IBDV genome was also performed, revealing the presence of a natural reassortant strain with segment A from vvIBDV strains and segment B from non-vvIBDV strains within Cuban IBDV population.This study contributes to a better understanding of the emergence of vvIBDV strains, describing molecular epidemiology of IBDV using the state-of-the-art methodology concerning phylogenetic reconstruction. This study also revealed the presence of a novel natural reassorted strain as possible manifest of change in the genetic structure and stability of the vvIBDV strains. Therefore, it highlights the need to obtain information about both genome segments of IBDV for

  3. The variability of the large genomic segment of Tahyna orthobunyavirus and an all-atom exploration of its anti-viral drug resistance

    Czech Academy of Sciences Publication Activity Database

    Kilian, Patrik; Valdés, James J.; Lecina-Casas, D.; Chrudimský, T.; Růžek, Daniel

    2013-01-01

    Roč. 20, 2013-Dec (2013), s. 304-311 ISSN 1567-1348 R&D Projects: GA ČR GAP502/11/2116; GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : Tahyna virus * Orthobunyavirus * California complex * Genetic variability * Large genomic segment Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.264, year: 2013

  4. Molecular Characterization of Bombyx mori Cytoplasmic Polyhedrosis Virus Genome Segment 4

    Science.gov (United States)

    Ikeda, Keiko; Nagaoka, Sumiharu; Winkler, Stefan; Kotani, Kumiko; Yagi, Hiroaki; Nakanishi, Kae; Miyajima, Shigetoshi; Kobayashi, Jun; Mori, Hajime

    2001-01-01

    The complete nucleotide sequence of the genome segment 4 (S4) of Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) was determined. The 3,259-nucleotide sequence contains a single long open reading frame which spans nucleotides 14 to 3187 and which is predicted to encode a protein with a molecular mass of about 130 kDa. Western blot analysis showed that S4 encodes BmCPV protein VP3, which is one of the outer components of the BmCPV virion. Sequence analysis of the deduced amino acid sequence of BmCPV VP3 revealed possible sequence homology with proteins from rice ragged stunt virus (RRSV) S2, Nilaparvata lugens reovirus S4, and Fiji disease fijivirus S4. This may suggest that plant reoviruses originated from insect viruses and that RRSV emerged more recently than other plant reoviruses. A chimeric protein consisting of BmCPV VP3 and green fluorescent protein (GFP) was constructed and expressed with BmCPV polyhedrin using a baculovirus expression vector. The VP3-GFP chimera was incorporated into BmCPV polyhedra and released under alkaline conditions. The results indicate that specific interactions occur between BmCPV polyhedrin and VP3 which might facilitate BmCPV virion occlusion into the polyhedra. PMID:11134312

  5. Avian reovirus L2 genome segment sequences and predicted structure/function of the encoded RNA-dependent RNA polymerase protein

    Directory of Open Access Journals (Sweden)

    Xu Wanhong

    2008-12-01

    Full Text Available Abstract Background The orthoreoviruses are infectious agents that possess a genome comprised of 10 double-stranded RNA segments encased in two concentric protein capsids. Like virtually all RNA viruses, an RNA-dependent RNA polymerase (RdRp enzyme is required for viral propagation. RdRp sequences have been determined for the prototype mammalian orthoreoviruses and for several other closely-related reoviruses, including aquareoviruses, but have not yet been reported for any avian orthoreoviruses. Results We determined the L2 genome segment nucleotide sequences, which encode the RdRp proteins, of two different avian reoviruses, strains ARV138 and ARV176 in order to define conserved and variable regions within reovirus RdRp proteins and to better delineate structure/function of this important enzyme. The ARV138 L2 genome segment was 3829 base pairs long, whereas the ARV176 L2 segment was 3830 nucleotides long. Both segments were predicted to encode λB RdRp proteins 1259 amino acids in length. Alignments of these newly-determined ARV genome segments, and their corresponding proteins, were performed with all currently available homologous mammalian reovirus (MRV and aquareovirus (AqRV genome segment and protein sequences. There was ~55% amino acid identity between ARV λB and MRV λ3 proteins, making the RdRp protein the most highly conserved of currently known orthoreovirus proteins, and there was ~28% identity between ARV λB and homologous MRV and AqRV RdRp proteins. Predictive structure/function mapping of identical and conserved residues within the known MRV λ3 atomic structure indicated most identical amino acids and conservative substitutions were located near and within predicted catalytic domains and lining RdRp channels, whereas non-identical amino acids were generally located on the molecule's surfaces. Conclusion The ARV λB and MRV λ3 proteins showed the highest ARV:MRV identity values (~55% amongst all currently known ARV and MRV

  6. Complete cDNA sequence of human complement C1s and close physical linkage of the homologous genes C1s and C1r

    International Nuclear Information System (INIS)

    Tosi, M.; Duponchel, C.; Meo, T.; Julier, C.

    1987-01-01

    Overlapping molecular clones encoding the complement subcomponent C1s were isolated from a human liver cDNA library. The nucleotide sequence reconstructed from these clones spans about 85% of the length of the liver C1s messenger RNAs, which occur in three distinct size classes around 3 kilobases in length. Comparisons with the sequence of C1r, the other enzymatic subcomponent of C1, reveal 40% amino acid identity and conservation of all the cysteine residues. Beside the serine protease domain, the following sequence motifs, previously described in C1r, were also found in C1s: (a) two repeats of the type found in the Ba fragment of complement factor B and in several other complement but also noncomplement proteins, (b) a cysteine-rich segment homologous to the repeats of epidermal growth factor precursor, and (c) a duplicated segment found only in C1r and C1s. Differences in each of these structural motifs provide significant clues for the interpretation of the functional divergence of these interacting serine protease zymogens. Hybridizations of C1r and C1s probes to restriction endonuclease fragments of genomic DNA demonstrate close physical linkage of the corresponding genes. The implications of this finding are discussed with respect to the evolution of C1r and C1s after their origin by tandem gene duplication and to the previously observed combined hereditary deficiencies of Clr and Cls

  7. The first determination of Trichuris sp. from roe deer by amplification and sequenation of the ITS1-5.8S-ITS2 segment of ribosomal DNA.

    Science.gov (United States)

    Salaba, O; Rylková, K; Vadlejch, J; Petrtýl, M; Scháňková, S; Brožová, A; Jankovská, I; Jebavý, L; Langrová, I

    2013-03-01

    Trichuris nematodes were isolated from roe deer (Capreolus capreolus). At first, nematodes were determined using morphological and biometrical methods. Subsequently genomic DNA was isolated and the ITS1-5.8S-ITS2 segment from ribosomal DNA (RNA) was amplified and sequenced using PCR techniques. With u sing morphological and biometrical methods, female nematodes were identified as Trichuris globulosa, and the only male was identified as Trichuris ovis. The females were classified into four morphotypes. However, analysis of the internal transcribed spacers (ITS1-5.8S-ITS2) of specimens did not confirm this classification. Moreover, the female individuals morphologically determined as T. globulosa were molecularly identified as Trichuris discolor. In the case of the only male molecular analysis match the result of the molecular identification. Furthermore, a comparative phylogenetic study was carried out with the ITS1 and ITS2 sequences of the Trichuris species from various hosts. A comparison of biometric information from T. discolor individuals from this study was also conducted.

  8. How clonal is clonal? Genome plasticity across multicellular segments of a "Candidatus Marithrix sp." filament from sulfidic, briny seafloor sediments in the Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Verena Salman-Carvalho

    2016-08-01

    Full Text Available Candidatus Marithrix is a recently described lineage within the group of large sulfur bacteria (Beggiatoaceae, Gammaproteobacteria. This group of bacteria comprises vacuolated, attached-living filaments that inhabit the sediment surface around vent and seep sites in the marine environment. A single filament is ca. 100 µm in diameter, several millimeters long, and consists of hundreds of clonal cells, which are considered highly polyploid. Based on these characteristics, Candidatus Marithrix was used as a model organism for the assessment of genomic plasticity along segments of a single filament using next generation sequencing to possibly identify hotspots of microevolution. Using six consecutive segments of a single filament sampled from a mud volcano in the Gulf of Mexico, we recovered ca. 90% of the Candidatus Marithrix genome in each segment. There was a high level of genome conservation along the filament with average nucleotide identities between 99.98-100%. Different approaches to assemble all reads into a complete consensus genome could not fill the gaps. Each of the six segment datasets encoded merely a few hundred unique nucleotides and 5 or less unique genes - the residual content was redundant in all datasets. Besides the overall high genomic identity, we identified a similar number of single nucleotide polymorphisms (SNPs between the clonal segments, which are comparable to numbers reported for other clonal organisms. An increase of SNPs with greater distance of filament segments was not observed. The polyploidy of the cells was apparent when analyzing the heterogeneity of reads within a segment. Here, a strong increase in single nucleotide variants, or 'intrasegmental sequence heterogeneity' (ISH events, was observed. These sites may represent hotspots for genome plasticity, and possibly microevolution, since two thirds of these variants were not co-localized across the genome copies of the multicellular filament.

  9. Changes in myocardial blood flow and S-T segment elevation following coronary artery occlusion in dogs

    International Nuclear Information System (INIS)

    Smith, H.J.; Singh, B.N.; Norris, R.M.; John, M.B.; Hurley, P.J.

    1975-01-01

    The relationship between regional blood flow and epicardial S-T segment elevation was studied in 26 open-chest anesthetized dogs with left anterior coronary artery ligations. Changes in myocardial blood flow, measured with 15 +- 5 μ (diameter) microspheres labeled with 141 Ce, 85 Sr, and 169 Yb, were correlated with summated S-T segment elevations 15 minutes, 1 hour, and 2 hours after coronary artery occlusion. In normal areas, myocardial blood flow was 113 +- 5 ml/min 100 g -1 and summated S-T segment elevation was 0.3 +- 0.2 mv. Fifteen minutes after coronary artery occlusion in 26 dogs, S-T segment elevation was 5.7 +- 0.7 mv over the center of the infarct and myocardial blood flow was 10 +- 1 ml/min 100 g -1 ; over the border zone, myocardial blood flow was 63 +- 4 ml/min 100 g -1 and S-T segment elevation was 3.1 +- 0.1 mv. One third of the areas with a myocardial blood flow of 10 ml/min 100 g -1 or less had no S-T segment elevation. In the center and border zones of the infarct in 9 dogs, myocardial blood flow increased from 11 +- 2 and 67 +- 8 ml/min 100 g -1 15 minutes after occlusion to 20 +- 4 and 84 +- 12 ml/min 100 g -1 , respectively, 2 hours after coronary artery occlusion. These increases were not associated with a significant reduction in summated S-T segment elevation. The results do not suggest a simple quantitative relationship between epicardial S-T segment elevation and myocardial blood flow following acute coronary artery occlusion

  10. Potential for La Crosse virus segment reassortment in nature

    Directory of Open Access Journals (Sweden)

    Geske Dave

    2008-12-01

    Full Text Available Abstract The evolutionary success of La Crosse virus (LACV, family Bunyaviridae is due to its ability to adapt to changing conditions through intramolecular genetic changes and segment reassortment. Vertical transmission of LACV in mosquitoes increases the potential for segment reassortment. Studies were conducted to determine if segment reassortment was occurring in naturally infected Aedes triseriatus from Wisconsin and Minnesota in 2000, 2004, 2006 and 2007. Mosquito eggs were collected from various sites in Wisconsin and Minnesota. They were reared in the laboratory and adults were tested for LACV antigen by immunofluorescence assay. RNA was isolated from the abdomen of infected mosquitoes and portions of the small (S, medium (M and large (L viral genome segments were amplified by RT-PCR and sequenced. Overall, the viral sequences from 40 infected mosquitoes and 5 virus isolates were analyzed. Phylogenetic and linkage disequilibrium analyses revealed that approximately 25% of infected mosquitoes and viruses contained reassorted genome segments, suggesting that LACV segment reassortment is frequent in nature.

  11. Non-canonical ribosomal DNA segments in the human genome, and nucleoli functioning.

    Science.gov (United States)

    Kupriyanova, Natalia S; Netchvolodov, Kirill K; Sadova, Anastasia A; Cherepanova, Marina D; Ryskov, Alexei P

    2015-11-10

    Ribosomal DNA (rDNA) in the human genome is represented by tandem repeats of 43 kb nucleotide sequences that form nucleoli organizers (NORs) on each of five pairs of acrocentric chromosomes. RDNA-similar segments of different lengths are also present on (NOR)(-) chromosomes. Many of these segments contain nucleotide substitutions, supplementary microsatellite clusters, and extended deletions. Recently, it was shown that, in addition to ribosome biogenesis, nucleoli exhibit additional functions, such as cell-cycle regulation and response to stresses. In particular, several stress-inducible loci located in the ribosomal intergenic spacer (rIGS) produce stimuli-specific noncoding nucleolus RNAs. By mapping the 5'/3' ends of the rIGS segments scattered throughout (NOR)(-) chromosomes, we discovered that the bonds in the rIGS that were most often susceptible to disruption in the rIGS were adjacent to, or overlapped with stimuli-specific inducible loci. This suggests the interconnection of the two phenomena - nucleoli functioning and the scattering of rDNA-like sequences on (NOR)(-) chromosomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Complete Genome Sequence of a Novel Aquareovirus That Infects the Endangered Fountain Darter, Etheostoma fonticola

    OpenAIRE

    Iwanowicz, Luke R.; Iwanowicz, Deborah D.; Adams, Cynthia R.; Lewis, Teresa D.; Brandt, Thomas M.; Cornman, Robert S.; Sanders, Lakyn

    2016-01-01

    Here, we report the complete genome of a novel aquareovirus isolated from clinically normal fountain darters, Etheostoma fonticola, inhabiting the San Marcos River, Texas, USA. The complete genome consists of 23,958 bp consisting of 11 segments that range from 783 bp (S11) to 3,866 bp (S1).

  13. Complete genome sequence of a novel aquareovirus that infects the endangered fountain darter, Etheostoma fonticola

    Science.gov (United States)

    Iwanowicz, Luke R.; Iwanowicz, Deborah; Adams, Cynthia; Lewis, Teresa D.; Brandt, Thomas M.; Cornman, Robert S.; Sanders, Lakyn R.

    2016-01-01

    Here, we report the complete genome of a novel aquareovirus isolated from clinically normal fountain darters, Etheostoma fonticola, inhabiting the San Marcos River, Texas, USA. The complete genome consists of 23,958 bp consisting of 11 segments that range from 783 bp (S11) to 3,866 bp (S1).

  14. Genome Sequence of Bacillus pumilus S-1, an Efficient Isoeugenol-Utilizing Producer for Natural Vanillin

    Science.gov (United States)

    Su, Fei; Hua, Dongliang; Zhang, Zhaobin; Wang, Xiaoyu; Tang, Hongzhi; Tao, Fei; Tai, Cui; Wu, Qiulin; Wu, Geng; Xu, Ping

    2011-01-01

    Bacillus pumilus S-1 is an efficient isoeugenol-utilizing producer of natural vanillin. The genome of B. pumilus S-1 contains the epoxide hydrolase and six candidate monooxygenases that make it possible to explore the mechanism involved in conversion of isoenguenol to vanillin in the B. pumilus strain. PMID:22038964

  15. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations

    NARCIS (Netherlands)

    Uwimana, B.; Smulders, M.J.M.; Hooftman, D.A.P.; Hartman, Y.; van Tienderen, P.H.; Jansen, J.; McHale, L.K.; Michelmore, R.W.; Visser, R.G.F.; van de Wiel, C.C.M.

    2012-01-01

    Background: After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural

  16. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations

    NARCIS (Netherlands)

    Uwimana, B.; Smulders, M.J.M.; Hooftman, D.A.P.; Hartman, Y.; Tienderen, van P.H.; Jansen, J.; McHale, L.K.; Michelmore, R.; Visser, R.G.F.; Wiel, van de C.C.M.

    2012-01-01

    After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The

  17. Complete Genome Sequence of a Novel Aquareovirus That Infects the Endangered Fountain Darter, Etheostoma fonticola.

    Science.gov (United States)

    Iwanowicz, Luke R; Iwanowicz, Deborah D; Adams, Cynthia R; Lewis, Teresa D; Brandt, Thomas M; Cornman, Robert S; Sanders, Lakyn

    2016-12-22

    Here, we report the complete genome of a novel aquareovirus isolated from clinically normal fountain darters, Etheostoma fonticola, inhabiting the San Marcos River, Texas, USA. The complete genome consists of 23,958 bp consisting of 11 segments that range from 783 bp (S11) to 3,866 bp (S1). Copyright © 2016 Iwanowicz et al.

  18. Sequence analysis of the PIP5K locus in Eimeria maxima provides further evidence for eimerian genome plasticity and segmental organization.

    Science.gov (United States)

    Song, B K; Pan, M Z; Lau, Y L; Wan, K L

    2014-07-29

    Commercial flocks infected by Eimeria species parasites, including Eimeria maxima, have an increased risk of developing clinical or subclinical coccidiosis; an intestinal enteritis associated with increased mortality rates in poultry. Currently, infection control is largely based on chemotherapy or live vaccines; however, drug resistance is common and vaccines are relatively expensive. The development of new cost-effective intervention measures will benefit from unraveling the complex genetic mechanisms that underlie host-parasite interactions, including the identification and characterization of genes encoding proteins such as phosphatidylinositol 4-phosphate 5-kinase (PIP5K). We previously identified a PIP5K coding sequence within the E. maxima genome. In this study, we analyzed two bacterial artificial chromosome clones presenting a ~145-kb E. maxima (Weybridge strain) genomic region spanning the PIP5K gene locus. Sequence analysis revealed that ~95% of the simple sequence repeats detected were located within regions comparable to the previously described feature-rich segments of the Eimeria tenella genome. Comparative sequence analysis with the orthologous E. maxima (Houghton strain) region revealed a moderate level of conserved synteny. Unique segmental organizations and telomere-like repeats were also observed in both genomes. A number of incomplete transposable elements were detected and further scrutiny of these elements in both orthologous segments revealed interesting nesting events, which may play a role in facilitating genome plasticity in E. maxima. The current analysis provides more detailed information about the genome organization of E. maxima and may help to reveal genotypic differences that are important for expression of traits related to pathogenicity and virulence.

  19. Gene conversion in the rice genome

    DEFF Research Database (Denmark)

    Xu, Shuqing; Clark, Terry; Zheng, Hongkun

    2008-01-01

    -chromosomal conversions distributed between chromosome 1 and 5, 2 and 6, and 3 and 5 are more frequent than genome average (Z-test, P ... is not tightly linked to natural selection in the rice genome. To assess the contribution of segmental duplication on gene conversion statistics, we determined locations of conversion partners with respect to inter-chromosomal segment duplication. The number of conversions associated with segmentation is less...... involved in conversion events. CONCLUSION: The evolution of gene families in the rice genome may have been accelerated by conversion with pseudogenes. Our analysis suggests a possible role for gene conversion in the evolution of pathogen-response genes....

  20. "Tandem duplication-random loss" is not a real feature of oyster mitochondrial genomes

    Directory of Open Access Journals (Sweden)

    Zhang Guofan

    2009-02-01

    Full Text Available Abstract Duplications and rearrangements of coding genes are major themes in the evolution of mitochondrial genomes, bearing important consequences in the function of mitochondria and the fitness of organisms. Yu et al. (BMC Genomics 2008, 9:477 reported the complete mt genome sequence of the oyster Crassostrea hongkongensis (16,475 bp and found that a DNA segment containing four tRNA genes (trnK1, trnC, trnQ1 and trnN, a duplicated (rrnS and a split rRNA gene (rrnL5' was absent compared with that of two other Crassostrea species. It was suggested that the absence was a novel case of "tandem duplication-random loss" with evolutionary significance. We independently sequenced the complete mt genome of three C. hongkongensis individuals, all of which were 18,622 bp and contained the segment that was missing in Yu et al.'s sequence. Further, we designed primers, verified sequences and demonstrated that the sequence loss in Yu et al.'s study was an artifact caused by placing primers in a duplicated region. The duplication and split of ribosomal RNA genes are unique for Crassostrea oysters and not lost in C. hongkongensis. Our study highlights the need for caution when amplifying and sequencing through duplicated regions of the genome.

  1. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome.

    Science.gov (United States)

    Sharp, Andrew J; Hansen, Sierra; Selzer, Rebecca R; Cheng, Ze; Regan, Regina; Hurst, Jane A; Stewart, Helen; Price, Sue M; Blair, Edward; Hennekam, Raoul C; Fitzpatrick, Carrie A; Segraves, Rick; Richmond, Todd A; Guiver, Cheryl; Albertson, Donna G; Pinkel, Daniel; Eis, Peggy S; Schwartz, Stuart; Knight, Samantha J L; Eichler, Evan E

    2006-09-01

    Genomic disorders are characterized by the presence of flanking segmental duplications that predispose these regions to recurrent rearrangement. Based on the duplication architecture of the genome, we investigated 130 regions that we hypothesized as candidates for previously undescribed genomic disorders. We tested 290 individuals with mental retardation by BAC array comparative genomic hybridization and identified 16 pathogenic rearrangements, including de novo microdeletions of 17q21.31 found in four individuals. Using oligonucleotide arrays, we refined the breakpoints of this microdeletion, defining a 478-kb critical region containing six genes that were deleted in all four individuals. We mapped the breakpoints of this deletion and of four other pathogenic rearrangements in 1q21.1, 15q13, 15q24 and 17q12 to flanking segmental duplications, suggesting that these are also sites of recurrent rearrangement. In common with the 17q21.31 deletion, these breakpoint regions are sites of copy number polymorphism in controls, indicating that these may be inherently unstable genomic regions.

  2. Complete genome sequence of Bacillus velezensis S3-1, a potential biological pesticide with plant pathogen inhibiting and plant promoting capabilities.

    Science.gov (United States)

    Jin, Qing; Jiang, Qiuyue; Zhao, Lei; Su, Cuizhu; Li, Songshuo; Si, Fangyi; Li, Shanshan; Zhou, Chenhao; Mu, Yonglin; Xiao, Ming

    2017-10-10

    Antagonistic soil microorganisms, which are non-toxic, harmless non-pollutants, can effectively reduce the density of pathogenic species by some ways. Bacillus velezensis strain S3-1 was isolated from the rhizosphere soil of cucumber, and was shown to inhibit plant pathogens, promote plant growth and efficiently colonize rhizosphere soils. The strain produced 13 kinds of lipopeptide antibiotics, belonging to the surfactin, iturin and fengycin families. Here, we presented the complete genome sequence of S3-1. The genome consists of one chromosome without plasmids and also contains the biosynthetic gene cluster that encodes difficidin, macrolactin, surfactin and fengycin. The genome contains 86 tRNA genes, 27 rRNA genes and 57 antibiotic-related genes. The complete genome sequence of B. velezensis S3-1 provides useful information to further detect the molecular mechanisms behind antifungal actions, and will facilitate its potential as a biological pesticide in the agricultural industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Novel approach for identification of influenza virus host range and zoonotic transmissible sequences by determination of host-related associative positions in viral genome segments.

    Science.gov (United States)

    Kargarfard, Fatemeh; Sami, Ashkan; Mohammadi-Dehcheshmeh, Manijeh; Ebrahimie, Esmaeil

    2016-11-16

    Recent (2013 and 2009) zoonotic transmission of avian or porcine influenza to humans highlights an increase in host range by evading species barriers. Gene reassortment or antigenic shift between viruses from two or more hosts can generate a new life-threatening virus when the new shuffled virus is no longer recognized by antibodies existing within human populations. There is no large scale study to help understand the underlying mechanisms of host transmission. Furthermore, there is no clear understanding of how different segments of the influenza genome contribute in the final determination of host range. To obtain insight into the rules underpinning host range determination, various supervised machine learning algorithms were employed to mine reassortment changes in different viral segments in a range of hosts. Our multi-host dataset contained whole segments of 674 influenza strains organized into three host categories: avian, human, and swine. Some of the sequences were assigned to multiple hosts. In point of fact, the datasets are a form of multi-labeled dataset and we utilized a multi-label learning method to identify discriminative sequence sites. Then algorithms such as CBA, Ripper, and decision tree were applied to extract informative and descriptive association rules for each viral protein segment. We found informative rules in all segments that are common within the same host class but varied between different hosts. For example, for infection of an avian host, HA14V and NS1230S were the most important discriminative and combinatorial positions. Host range identification is facilitated by high support combined rules in this study. Our major goal was to detect discriminative genomic positions that were able to identify multi host viruses, because such viruses are likely to cause pandemic or disastrous epidemics.

  4. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels.

    Directory of Open Access Journals (Sweden)

    Ana Laura Sanchez-Sandoval

    Full Text Available Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA and low-voltage (LVA activated calcium channels is around 30-40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers.

  5. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels

    Science.gov (United States)

    Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel

    2018-01-01

    Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30–40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers. PMID:29474447

  6. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels.

    Science.gov (United States)

    Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel; Gomora, Juan Carlos

    2018-01-01

    Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30-40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers.

  7. Whole-genome analyses of DS-1-like human G2P[4] and G8P[4] rotavirus strains from Eastern, Western and Southern Africa.

    Science.gov (United States)

    Nyaga, Martin M; Stucker, Karla M; Esona, Mathew D; Jere, Khuzwayo C; Mwinyi, Bakari; Shonhai, Annie; Tsolenyanu, Enyonam; Mulindwa, Augustine; Chibumbya, Julia N; Adolfine, Hokororo; Halpin, Rebecca A; Roy, Sunando; Stockwell, Timothy B; Berejena, Chipo; Seheri, Mapaseka L; Mwenda, Jason M; Steele, A Duncan; Wentworth, David E; Mphahlele, M Jeffrey

    2014-10-01

    Group A rotaviruses (RVAs) with distinct G and P genotype combinations have been reported globally. We report the genome composition and possible origin of seven G8P[4] and five G2P[4] human RVA strains based on the genetic evolution of all 11 genome segments at the nucleotide level. Twelve RVA ELISA positive stool samples collected in the representative countries of Eastern, Southern and West Africa during the 2007-2012 surveillance seasons were subjected to sequencing using the Ion Torrent PGM and Illumina MiSeq platforms. A reference-based assembly was performed using CLC Bio's clc_ref_assemble_long program, and full-genome consensus sequences were obtained. With the exception of the neutralising antigen, VP7, all study strains exhibited the DS-1-like genome constellation (P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2) and clustered phylogenetically with reference strains having a DS-1-like genetic backbone. Comparison of the nucleotide and amino acid sequences with selected global cognate genome segments revealed nucleotide and amino acid sequence identities of 81.7-100 % and 90.6-100 %, respectively, with NSP4 gene segment showing the most diversity among the strains. Bayesian analyses of all gene sequences to estimate the time of divergence of the lineage indicated that divergence times ranged from 16 to 44 years, except for the NSP4 gene where the lineage seemed to arise in the more distant past at an estimated 203 years ago. However, the long-term effects of changes found within the NSP4 genome segment should be further explored, and thus we recommend continued whole-genome analyses from larger sample sets to determine the evolutionary mechanisms of the DS-1-like strains collected in Africa.

  8. Genomic structural variation contributes to phenotypic change of industrial bioethanol yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhang, Ke; Zhang, Li-Jie; Fang, Ya-Hong; Jin, Xin-Na; Qi, Lei; Wu, Xue-Chang; Zheng, Dao-Qiong

    2016-03-01

    Genomic structural variation (GSV) is a ubiquitous phenomenon observed in the genomes of Saccharomyces cerevisiae strains with different genetic backgrounds; however, the physiological and phenotypic effects of GSV are not well understood. Here, we first revealed the genetic characteristics of a widely used industrial S. cerevisiae strain, ZTW1, by whole genome sequencing. ZTW1 was identified as an aneuploidy strain and a large-scale GSV was observed in the ZTW1 genome compared with the genome of a diploid strain YJS329. These GSV events led to copy number variations (CNVs) in many chromosomal segments as well as one whole chromosome in the ZTW1 genome. Changes in the DNA dosage of certain functional genes directly affected their expression levels and the resultant ZTW1 phenotypes. Moreover, CNVs of large chromosomal regions triggered an aneuploidy stress in ZTW1. This stress decreased the proliferation ability and tolerance of ZTW1 to various stresses, while aneuploidy response stress may also provide some benefits to the fermentation performance of the yeast, including increased fermentation rates and decreased byproduct generation. This work reveals genomic characters of the bioethanol S. cerevisiae strain ZTW1 and suggests that GSV is an important kind of mutation that changes the traits of industrial S. cerevisiae strains. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Status of the segment interconnect, cable segment ancillary logic, and the cable segment hybrid driver projects

    International Nuclear Information System (INIS)

    Swoboda, C.; Barsotti, E.; Chappa, S.; Downing, R.; Goeransson, G.; Lensy, D.; Moore, G.; Rotolo, C.; Urish, J.

    1985-01-01

    The FASTBUS Segment Interconnect (SI) provides a communication path between two otherwise independent, asynchronous bus segments. In particular, the Segment Interconnect links a backplane crate segment to a cable segment. All standard FASTBUS address and data transactions can be passed through the SI or any number of SIs and segments in a path. Thus systems of arbitrary connection complexity can be formed, allowing simultaneous independent processing, yet still permitting devices associated with one segment to be accessed from others. The model S1 Segment Interconnect and the Cable Segment Ancillary Logic covered in this report comply with all the mandatory features stated in the FASTBUS specification document DOE/ER-0189. A block diagram of the SI is shown

  10. The avian-origin PB1 gene segment facilitated replication and transmissibility of the H3N2/1968 pandemic influenza virus.

    Science.gov (United States)

    Wendel, Isabel; Rubbenstroth, Dennis; Doedt, Jennifer; Kochs, Georg; Wilhelm, Jochen; Staeheli, Peter; Klenk, Hans-Dieter; Matrosovich, Mikhail

    2015-04-01

    The H2N2/1957 and H3N2/1968 pandemic influenza viruses emerged via the exchange of genomic RNA segments between human and avian viruses. The avian hemagglutinin (HA) allowed the hybrid viruses to escape preexisting immunity in the human population. Both pandemic viruses further received the PB1 gene segment from the avian parent (Y. Kawaoka, S. Krauss, and R. G. Webster, J Virol 63:4603-4608, 1989), but the biological significance of this observation was not understood. To assess whether the avian-origin PB1 segment provided pandemic viruses with some selective advantage, either on its own or via cooperation with the homologous HA segment, we modeled by reverse genetics the reassortment event that led to the emergence of the H3N2/1968 pandemic virus. Using seasonal H2N2 virus A/California/1/66 (Cal) as a surrogate precursor human virus and pandemic virus A/Hong Kong/1/68 (H3N2) (HK) as a source of avian-derived PB1 and HA gene segments, we generated four reassortant recombinant viruses and compared pairs of viruses which differed solely by the origin of PB1. Replacement of the PB1 segment of Cal by PB1 of HK facilitated viral polymerase activity, replication efficiency in human cells, and contact transmission in guinea pigs. A combination of PB1 and HA segments of HK did not enhance replicative fitness of the reassortant virus compared with the single-gene PB1 reassortant. Our data suggest that the avian PB1 segment of the 1968 pandemic virus served to enhance viral growth and transmissibility, likely by enhancing activity of the viral polymerase complex. Despite the high impact of influenza pandemics on human health, some mechanisms underlying the emergence of pandemic influenza viruses still are poorly understood. Thus, it was unclear why both H2N2/1957 and H3N2/1968 reassortant pandemic viruses contained, in addition to the avian HA, the PB1 gene segment of the avian parent. Here, we addressed this long-standing question by modeling the emergence of the H3N2

  11. A conserved segmental duplication within ELA.

    Science.gov (United States)

    Brinkmeyer-Langford, C L; Murphy, W J; Childers, C P; Skow, L C

    2010-12-01

    The assembled genomic sequence of the horse major histocompatibility complex (MHC) (equine lymphocyte antigen, ELA) is very similar to the homologous human HLA, with the notable exception of a large segmental duplication at the boundary of ELA class I and class III that is absent in HLA. The segmental duplication consists of a ∼ 710 kb region of at least 11 repeated blocks: 10 blocks each contain an MHC class I-like sequence and the helicase domain portion of a BAT1-like sequence, and the remaining unit contains the full-length BAT1 gene. Similar genomic features were found in other Perissodactyls, indicating an ancient origin, which is consistent with phylogenetic analyses. Reverse-transcriptase PCR (RT-PCR) of mRNA from peripheral white blood cells of healthy and chronically or acutely infected horses detected transcription from predicted open reading frames in several of the duplicated blocks. This duplication is not present in the sequenced MHCs of most other mammals, although a similar feature at the same relative position is present in the feline MHC (FLA). Striking sequence conservation throughout Perissodactyl evolution is consistent with a functional role for at least some of the genes included within this segmental duplication. © 2010 The Authors, Journal compilation © 2010 Stichting International Foundation for Animal Genetics.

  12. Whole-Genome Analysis of a Novel Fish Reovirus (MsReV Discloses Aquareovirus Genomic Structure Relationship with Host in Saline Environments

    Directory of Open Access Journals (Sweden)

    Zhong-Yuan Chen

    2015-08-01

    Full Text Available Aquareoviruses are serious pathogens of aquatic animals. Here, genome characterization and functional gene analysis of a novel aquareovirus, largemouth bass Micropterus salmoides reovirus (MsReV, was described. It comprises 11 dsRNA segments (S1S11 covering 24,024 bp, and encodes 12 putative proteins including the inclusion forming-related protein NS87 and the fusion-associated small transmembrane (FAST protein NS22. The function of NS22 was confirmed by expression in fish cells. Subsequently, MsReV was compared with two representative aquareoviruses, saltwater fish turbot Scophthalmus maximus reovirus (SMReV and freshwater fish grass carp reovirus strain 109 (GCReV-109. MsReV NS87 and NS22 genes have the same structure and function with those of SMReV, whereas GCReV-109 is either missing the coiled-coil region in NS79 or the gene-encoding NS22. Significant similarities are also revealed among equivalent genome segments between MsReV and SMReV, but a difference is found between MsReV and GCReV-109. Furthermore, phylogenetic analysis showed that 13 aquareoviruses could be divided into freshwater and saline environments subgroups, and MsReV was closely related to SMReV in saline environments. Consequently, these viruses from hosts in saline environments have more genomic structural similarities than the viruses from hosts in freshwater. This is the first study of the relationships between aquareovirus genomic structure and their host environments.

  13. U.S. Army Custom Segmentation System

    Science.gov (United States)

    2007-06-01

    segmentation is individual or intergroup differences in response to marketing - mix variables. Presumptions about segments: •different demands in a...product or service category, •respond differently to changes in the marketing mix Criteria for segments: •The segments must exist in the environment

  14. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute’s genomic medicine portfolio

    Science.gov (United States)

    Manolio, Teri A.

    2016-01-01

    Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual’s genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of “Genomic Medicine Meetings,” under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and diffficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI’s genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so. PMID:27612677

  15. Genome and Transcriptome Sequencing of the Ostreid herpesvirus 1 From Tomales Bay, California

    Science.gov (United States)

    Burge, C. A.; Langevin, S.; Closek, C. J.; Roberts, S. B.; Friedman, C. S.

    2016-02-01

    Mass mortalities of larval and seed bivalve molluscs attributed to the Ostreid herpesvirus 1 (OsHV-1) occur globally. OsHV-1 was fully sequenced and characterized as a member of the Family Malacoherpesviridae. Multiple strains of OsHV-1 exist and may vary in virulence, i.e. OsHV-1 µvar. For most global variants of OsHV-1, sequence data is limited to PCR-based sequencing of segments, including two recent genomes. In the United States, OsHV-1 is limited to detection in adjacent embayments in California, Tomales and Drakes bays. Limited DNA sequence data of OsHV-1 infecting oysters in Tomales Bay indicates the virus detected in Tomales Bay is similar but not identical to any one global variant of OsHV-1. In order to better understand both strain variation and virulence of OsHV-1 infecting oysters in Tomales Bay, we used genomic and transcriptomic sequencing. Meta-genomic sequencing (Illumina MiSeq) was conducted from infected oysters (n=4 per year) collected in 2003, 2007, and 2014, where full OsHV-1 genome sequences and low overall microbial diversity were achieved from highly infected oysters. Increased microbial diversity was detected in three of four samples sequenced from 2003, where qPCR based genome copy numbers of OsHV-1 were lower. Expression analysis (SOLiD RNA sequencing) of OsHV-1 genes expressed in oyster larvae at 24 hours post exposure revealed a nearly complete transcriptome, with several highly expressed genes, which are similar to recent transcriptomic analyses of other OsHV-1 variants. Taken together, our results indicate that genome and transcriptome sequencing may be powerful tools in understanding both strain variation and virulence of non-culturable marine viruses.

  16. Comparative genome analysis of the high pathogenicity Salmonella Typhimurium strain UK-1.

    Directory of Open Access Journals (Sweden)

    Yingqin Luo

    Full Text Available Salmonella enterica serovar Typhimurium, a gram-negative facultative rod-shaped bacterium causing salmonellosis and foodborne disease, is one of the most common isolated Salmonella serovars in both developed and developing nations. Several S. Typhimurium genomes have been completed and many more genome-sequencing projects are underway. Comparative genome analysis of the multiple strains leads to a better understanding of the evolution of S. Typhimurium and its pathogenesis. S. Typhimurium strain UK-1 (belongs to phage type 1 is highly virulent when orally administered to mice and chickens and efficiently colonizes lymphoid tissues of these species. These characteristics make this strain a good choice for use in vaccine development. In fact, UK-1 has been used as the parent strain for a number of nonrecombinant and recombinant vaccine strains, including several commercial vaccines for poultry. In this study, we conducted a thorough comparative genome analysis of the UK-1 strain with other S. Typhimurium strains and examined the phenotypic impact of several genomic differences. Whole genomic comparison highlights an extremely close relationship between the UK-1 strain and other S. Typhimurium strains; however, many interesting genetic and genomic variations specific to UK-1 were explored. In particular, the deletion of a UK-1-specific gene that is highly similar to the gene encoding the T3SS effector protein NleC exhibited a significant decrease in oral virulence in BALB/c mice. The complete genetic complements in UK-1, especially those elements that contribute to virulence or aid in determining the diversity within bacterial species, provide key information in evaluating the functional characterization of important genetic determinants and for development of vaccines.

  17. The extant World War 1 dysentery bacillus NCTC1: a genomic analysis.

    Science.gov (United States)

    Baker, Kate S; Mather, Alison E; McGregor, Hannah; Coupland, Paul; Langridge, Gemma C; Day, Martin; Deheer-Graham, Ana; Parkhill, Julian; Russell, Julie E; Thomson, Nicholas R

    2014-11-08

    Shigellosis (previously bacillary dysentery) was the primary diarrhoeal disease of World War 1, but outbreaks still occur in military operations, and shigellosis causes hundreds of thousands of deaths per year in developing nations. We aimed to generate a high-quality reference genome of the historical Shigella flexneri isolate NCTC1 and to examine the isolate for resistance to antimicrobials. In this genomic analysis, we sequenced the oldest extant Shigella flexneri serotype 2a isolate using single-molecule real-time (SMRT) sequencing technology. Isolated from a soldier with dysentery from the British forces fighting on the Western Front in World War 1, this bacterium, NCTC1, was the first isolate accessioned into the National Collection of Type Cultures. We created a reference sequence for NCTC1, investigated the isolate for antimicrobial resistance, and undertook comparative genetics with S flexneri reference strains isolated during the 100 years since World War 1. We discovered that NCTC1 belonged to a 2a lineage of S flexneri, with which it shares common characteristics and a large core genome. NCTC1 was resistant to penicillin and erythromycin, and contained a complement of chromosomal antimicrobial resistance genes similar to that of more recent isolates. Genomic islands gained in the S flexneri 2a lineage over time were predominately associated with additional antimicrobial resistances, virulence, and serotype conversion. This S flexneri 2a lineage is a well adapted pathogen that has continued to respond to selective pressures. We have created a valuable historical benchmark for shigellae in the form of a high-quality reference sequence for a publicly available isolate. The Wellcome Trust. Copyright © 2014 Baker et al. Open Access article distributed under the terms of CC BY. Published by Elsevier Ltd. All rights reserved.

  18. Sphingosine-1-Phosphate Evokes Unique Segment-Specific Vasoconstriction of the Renal Microvasculature

    Science.gov (United States)

    Singletary, Sean T.; Cook, Anthony K.; Hobbs, Janet L.; Pollock, Jennifer S.; Inscho, Edward W.

    2014-01-01

    Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, has been implicated in regulating vascular tone and participating in chronic and acute kidney injury. However, little is known about the role of S1P in the renal microcirculation. Here, we directly assessed the vasoresponsiveness of preglomerular and postglomerular microvascular segments to exogenous S1P using the in vitro blood-perfused juxtamedullary nephron preparation. Superfusion of S1P (0.001–10 μM) evoked concentration-dependent vasoconstriction in preglomerular microvessels, predominantly afferent arterioles. After administration of 10 μM S1P, the diameter of afferent arterioles decreased to 35%±5% of the control diameter, whereas the diameters of interlobular and arcuate arteries declined to 50%±12% and 68%±6% of the control diameter, respectively. Notably, efferent arterioles did not respond to S1P. The S1P receptor agonists FTY720 and FTY720-phosphate and the specific S1P1 receptor agonist SEW2871 each evoked modest afferent arteriolar vasoconstriction. Conversely, S1P2 receptor inhibition with JTE-013 significantly attenuated S1P-mediated afferent arteriolar vasoconstriction. Moreover, blockade of L-type voltage-dependent calcium channels with diltiazem or nifedipine attenuated S1P-mediated vasoconstriction. Intravenous injection of S1P in anesthetized rats reduced renal blood flow dose dependently. Western blotting and immunofluorescence revealed S1P1 and S1P2 receptor expression in isolated preglomerular microvessels and microvascular smooth muscle cells. These data demonstrate that S1P evokes segmentally distinct preglomerular vasoconstriction via activation of S1P1 and/or S1P2 receptors, partially via L-type voltage-dependent calcium channels. Accordingly, S1P may have a novel function in regulating afferent arteriolar resistance under physiologic conditions. PMID:24578134

  19. Whole genome characterization of human influenza A(H1N1)pdm09 viruses isolated from Kenya during the 2009 pandemic.

    Science.gov (United States)

    Gachara, George; Symekher, Samuel; Otieno, Michael; Magana, Japheth; Opot, Benjamin; Bulimo, Wallace

    2016-06-01

    An influenza pandemic caused by a novel influenza virus A(H1N1)pdm09 spread worldwide in 2009 and is estimated to have caused between 151,700 and 575,400 deaths globally. While whole genome data on new virus enables a deeper insight in the pathogenesis, epidemiology, and drug sensitivities of the circulating viruses, there are relatively limited complete genetic sequences available for this virus from African countries. We describe herein the full genome analysis of influenza A(H1N1)pdm09 viruses isolated in Kenya between June 2009 and August 2010. A total of 40 influenza A(H1N1)pdm09 viruses isolated during the pandemic were selected. The segments from each isolate were amplified and directly sequenced. The resulting sequences of individual gene segments were concatenated and used for subsequent analysis. These were used to infer phylogenetic relationships and also to reconstruct the time of most recent ancestor, time of introduction into the country, rates of substitution and to estimate a time-resolved phylogeny. The Kenyan complete genome sequences clustered with globally distributed clade 2 and clade 7 sequences but local clade 2 viruses did not circulate beyond the introductory foci while clade 7 viruses disseminated country wide. The time of the most recent common ancestor was estimated between April and June 2009, and distinct clusters circulated during the pandemic. The complete genome had an estimated rate of nucleotide substitution of 4.9×10(-3) substitutions/site/year and greater diversity in surface expressed proteins was observed. We show that two clades of influenza A(H1N1)pdm09 virus were introduced into Kenya from the UK and the pandemic was sustained as a result of importations. Several closely related but distinct clusters co-circulated locally during the peak pandemic phase but only one cluster dominated in the late phase of the pandemic suggesting that it possessed greater adaptability. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Influenza NA and PB1 Gene Segments Interact during the Formation of Viral Progeny: Localization of the Binding Region within the PB1 Gene

    Directory of Open Access Journals (Sweden)

    Brad Gilbertson

    2016-08-01

    Full Text Available The influenza A virus genome comprises eight negative-sense viral RNAs (vRNAs that form individual ribonucleoprotein (RNP complexes. In order to incorporate a complete set of each of these vRNAs, the virus uses a selective packaging mechanism that facilitates co-packaging of specific gene segments but whose molecular basis is still not fully understood. Recently, we used a competitive transfection model where plasmids encoding the A/Puerto Rico/8/34 (PR8 and A/Udorn/307/72 (Udorn PB1 gene segments were competed to show that the Udorn PB1 gene segment is preferentially co-packaged into progeny virions with the Udorn NA gene segment. Here we created chimeric PB1 genes combining both Udorn and PR8 PB1 sequences to further define the location within the Udorn PB1 gene that drives co-segregation of these genes and show that nucleotides 1776–2070 of the PB1 gene are crucial for preferential selection. In vitro assays examining specific interactions between Udorn NA vRNA and purified vRNAs transcribed from chimeric PB1 genes also supported the importance of this region in the PB1-NA interaction. Hence, this work identifies an association between viral genes that are co-selected during packaging. It also reveals a region potentially important in the RNP-RNP interactions within the supramolecular complex that is predicted to form prior to budding to allow one of each segment to be packaged in the viral progeny. Our study lays the foundation to understand the co-selection of specific genes, which may be critical to the emergence of new viruses with pandemic potential.

  1. Determination of Trichuris skrjabini by sequencing of the ITS1-5.8S-ITS2 segment of the ribosomal DNA: comparative molecular study of different species of trichurids.

    Science.gov (United States)

    Cutillas, C; Oliveros, R; de Rojas, M; Guevara, D C

    2004-06-01

    Adults of Trichuris skrjahini have been isolated from the cecum of caprine hosts (Capra hircus), Trichuris ovis and Trichuris globulosa from Ovis aries (sheep) and C. hircus (goats), and Trichuris leporis from Lepus europaeus (rabbits) in Spain. Genomic DNA was isolated and the ITS1-5.8S-ITS2 segment from the ribosomal DNA (rDNA) was amplified and sequenced by polymerase chain reaction (PCR) techniques. The ITS1 of T. skrjabini, T. ovis, T. globulosa, and T. leporis was 495, 757, 757, and 536 nucleotides in length, respectively, and had G + C contents of 59.6, 58.7, 58.7, and 60.8%, respectively. Intraindividual variation was detected in the ITSI sequences of the 4 species. Furthermore, the 5.8S sequences of T. skrjabini, T. ovis, T. globulosa, and T. leporis were compared. A total of 157, 152, 153, and 157 nucleotides in length was observed in the 5.8S sequences of these 4 species, respectively. There were no sequence differences of ITS1 and 5.8S products between T. ovis and T. globulosa. Nevertheless, clear differences were detected between the ITS1 sequences of T. skrjabini, T. ovis, T. leporis, Trichuris muris, and T. arvicolae. The ITS2 fragment from the rDNA of T. skrjabini was sequenced. A comparative study of the ITS2 sequence of T. skrjabini with the previously published ITS2 sequence data of T. ovis, T. leporis, T. muris, and T. arvicolae suggested that the combined use of sequence data from both spacers would be useful in the molecular characterization of trichurid parasites.

  2. Grass genomes

    OpenAIRE

    Bennetzen, Jeffrey L.; SanMiguel, Phillip; Chen, Mingsheng; Tikhonov, Alexander; Francki, Michael; Avramova, Zoya

    1998-01-01

    For the most part, studies of grass genome structure have been limited to the generation of whole-genome genetic maps or the fine structure and sequence analysis of single genes or gene clusters. We have investigated large contiguous segments of the genomes of maize, sorghum, and rice, primarily focusing on intergenic spaces. Our data indicate that much (>50%) of the maize genome is composed of interspersed repetitive DNAs, primarily nested retrotransposons that in...

  3. Whole Genome Characterization, Phylogenetic and Genome Signature Analysis of Human Pandemic H1N1 Virus in Thailand, 2009–2012

    Science.gov (United States)

    Makkoch, Jarika; Suwannakarn, Kamol; Payungporn, Sunchai; Prachayangprecha, Slinporn; Cheiocharnsin, Thaweesak; Linsuwanon, Piyada; Theamboonlers, Apiradee; Poovorawan, Yong

    2012-01-01

    Background Three waves of human pandemic influenza occurred in Thailand in 2009–2012. The genome signature features and evolution of pH1N1 need to be characterized to elucidate the aspects responsible for the multiple waves of pandemic. Methodology/Findings Forty whole genome sequences and 584 partial sequences of pH1N1 circulating in Thailand, divided into 1st, 2nd and 3rd wave and post-pandemic were characterized and 77 genome signatures were analyzed. Phylogenetic trees of concatenated whole genome and HA gene sequences were constructed calculating substitution rate and dN/dS of each gene. Phylogenetic analysis showed a distinct pattern of pH1N1 circulation in Thailand, with the first two isolates from May, 2009 belonging to clade 5 while clades 5, 6 and 7 co-circulated during the first wave of pH1N1 pandemic in Thailand. Clade 8 predominated during the second wave and different proportions of the pH1N1 viruses circulating during the third wave and post pandemic period belonged to clades 8, 11.1 and 11.2. The mutation analysis of pH1N1 revealed many adaptive mutations which have become the signature of each clade and may be responsible for the multiple pandemic waves in Thailand, especially with regard to clades 11.1 and 11.2 as evidenced with V731I, G154D of PB1 gene, PA I330V, HA A214T S160G and S202T. The substitution rate of pH1N1 in Thailand ranged from 2.53×10−3±0.02 (M2 genes) to 5.27×10−3±0.03 per site per year (NA gene). Conclusions All results suggested that this virus is still adaptive, maybe to evade the host's immune response and tends to remain in the human host although the dN/dS were under purifying selection in all 8 genes. Due to the gradual evolution of pH1N1 in Thailand, continuous monitoring is essential for evaluation and surveillance to be prepared for and able to control future influenza activities. PMID:23251479

  4. Incompatibility and competitive exclusion of genomic segments between sibling Drosophila species.

    Science.gov (United States)

    Fang, Shu; Yukilevich, Roman; Chen, Ying; Turissini, David A; Zeng, Kai; Boussy, Ian A; Wu, Chung-I

    2012-06-01

    The extent and nature of genetic incompatibilities between incipient races and sibling species is of fundamental importance to our view of speciation. However, with the exception of hybrid inviability and sterility factors, little is known about the extent of other, more subtle genetic incompatibilities between incipient species. Here we experimentally demonstrate the prevalence of such genetic incompatibilities between two young allopatric sibling species, Drosophila simulans and D. sechellia. Our experiments took advantage of 12 introgression lines that carried random introgressed D. sechellia segments in different parts of the D. simulans genome. First, we found that these introgression lines did not show any measurable sterility or inviability effects. To study if these sechellia introgressions in a simulans background contained other fitness consequences, we competed and genetically tracked the marked alleles within each introgression against the wild-type alleles for 20 generations. Strikingly, all marked D. sechellia introgression alleles rapidly decreased in frequency in only 6 to 7 generations. We then developed computer simulations to model our competition results. These simulations indicated that selection against D. sechellia introgression alleles was high (average s = 0.43) and that the marker alleles and the incompatible alleles did not separate in 78% of the introgressions. The latter result likely implies that most introgressions contain multiple genetic incompatibilities. Thus, this study reveals that, even at early stages of speciation, many parts of the genome diverge to a point where introducing foreign elements has detrimental fitness consequences, but which cannot be seen using standard sterility and inviability assays.

  5. Molecular epidemiology and genetic evolution of the whole genome of G3P[8] human rotavirus in Wuhan, China, from 2000 through 2013.

    Directory of Open Access Journals (Sweden)

    Yuan-Hong Wang

    Full Text Available Rotaviruses are a major etiologic agent of gastroenteritis in infants and young children worldwide. Since the latter of the 1990s, G3 human rotaviruses referred to as "new variant G3" have emerged and spread in China, being a dominant genotype until 2010, although their genomic evolution has not yet been well investigated.The complete genomes of 33 G3P[8] human rotavirus strains detected in Wuhan, China, from 2000 through 2013 were analyzed. Phylogenetic trees of concatenated sequences of all the RNA segments and individual genes were constructed together with published rotavirus sequences.Genotypes of 11 gene segments of all the 33 strains were assigned to G3-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1, belonging to Wa genogroup. Phylogenetic analysis of the concatenated full genome sequences indicated that all the modern G3P[8] strains were assigned to Cluster 2 containing only one clade of G3P[8] strains in the US detected in the 1970s, which was distinct from Cluster 1 comprising most of old G3P[8] strains. While main lineages of all the 11 gene segments persisted during the study period, different lineages appeared occasionally in RNA segments encoding VP1, VP4, VP6, and NSP1-NSP5, exhibiting various allele constellations. In contrast, only a single lineage was detected for VP7, VP2, and VP3 genes. Remarkable lineage shift was observed for NSP1 gene; lineage A1-2 emerged in 2007 and became dominant in 2008-2009 epidemic season, while lineage A1-1 persisted throughout the study period.Chinese G3P[8] rotavirus strains have evolved since 2000 by intra-genogroup reassortment with co-circulating strains, accumulating more reassorted genes over the years. This is the first large-scale whole genome-based study to assess the long-term evolution of common human rotaviruses (G3P[8] in an Asian country.

  6. Lawrence Livermore National Laboratory- Completing the Human Genome Project and Triggering Nearly $1 Trillion in U.S. Economic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Jeffrey S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-28

    The success of the Human Genome project is already nearing $1 Trillion dollars of U.S. economic activity. Lawrence Livermore National Laboratory (LLNL) was a co-leader in one of the biggest biological research effort in history, sequencing the Human Genome Project. This ambitious research effort set out to sequence the approximately 3 billion nucleotides in the human genome, an effort many thought was nearly impossible. Deoxyribonucleic acid (DNA) was discovered in 1869, and by 1943 came the discovery that DNA was a molecule that encodes the genetic instructions used in the development and functioning of living organisms and many viruses. To make full use of the information, scientists needed to first sequence the billions of nucleotides to begin linking them to genetic traits and illnesses, and eventually more effective treatments. New medical discoveries and improved agriculture productivity were some of the expected benefits. While the potential benefits were vast, the timeline (over a decade) and cost ($3.8 Billion) exceeded what the private sector would normally attempt, especially when this would only be the first phase toward the path to new discoveries and market opportunities. The Department of Energy believed its best research laboratories could meet this Grand Challenge and soon convinced the National Institute of Health to formally propose the Human Genome project to the federal government. The U.S. government accepted the risk and challenge to potentially create new healthcare and food discoveries that could benefit the world and the U.S. Industry.

  7. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome

    NARCIS (Netherlands)

    Sharp, Andrew J.; Hansen, Sierra; Selzer, Rebecca R.; Cheng, Ze; Regan, Regina; Hurst, Jane A.; Stewart, Helen; Price, Sue M.; Blair, Edward; Hennekam, Raoul C.; Fitzpatrick, Carrie A.; Segraves, Rick; Richmond, Todd A.; Guiver, Cheryl; Albertson, Donna G.; Pinkel, Daniel; Eis, Peggy S.; Schwartz, Stuart; Knight, Samantha J. L.; Eichler, Evan E.

    2006-01-01

    Genomic disorders are characterized by the presence of flanking segmental duplications that predispose these regions to recurrent rearrangement. Based on the duplication architecture of the genome, we investigated 130 regions that we hypothesized as candidates for previously undescribed genomic

  8. Quantitative measure of randomness and order for complete genomes

    Science.gov (United States)

    Kong, Sing-Guan; Fan, Wen-Lang; Chen, Hong-Da; Wigger, Jan; Torda, Andrew E.; Lee, H. C.

    2009-06-01

    We propose an order index, ϕ , which gives a quantitative measure of randomness and order of complete genomic sequences. It maps genomes to a number from 0 (random and of infinite length) to 1 (fully ordered) and applies regardless of sequence length. The 786 complete genomic sequences in GenBank were found to have ϕ values in a very narrow range, ϕg=0.031-0.015+0.028 . We show this implies that genomes are halfway toward being completely random, or, at the “edge of chaos.” We further show that artificial “genomes” converted from literary classics have ϕ ’s that almost exactly coincide with ϕg , but sequences of low information content do not. We infer that ϕg represents a high information-capacity “fixed point” in sequence space, and that genomes are driven to it by the dynamics of a robust growth and evolution process. We show that a growth process characterized by random segmental duplication can robustly drive genomes to the fixed point.

  9. Insights into Conifer Giga-Genomes1

    Science.gov (United States)

    De La Torre, Amanda R.; Birol, Inanc; Bousquet, Jean; Ingvarsson, Pär K.; Jansson, Stefan; Jones, Steven J.M.; Keeling, Christopher I.; MacKay, John; Nilsson, Ove; Ritland, Kermit; Street, Nathaniel; Yanchuk, Alvin; Zerbe, Philipp; Bohlmann, Jörg

    2014-01-01

    Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world’s forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20–30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes. PMID:25349325

  10. Upregulation of FOXM1 induces genomic instability in human epidermal keratinocytes

    Directory of Open Access Journals (Sweden)

    Philpott Michael P

    2010-02-01

    Full Text Available Abstract Background The human cell cycle transcription factor FOXM1 is known to play a key role in regulating timely mitotic progression and accurate chromosomal segregation during cell division. Deregulation of FOXM1 has been linked to a majority of human cancers. We previously showed that FOXM1 was upregulated in basal cell carcinoma and recently reported that upregulation of FOXM1 precedes malignancy in a number of solid human cancer types including oral, oesophagus, lung, breast, kidney, bladder and uterus. This indicates that upregulation of FOXM1 may be an early molecular signal required for aberrant cell cycle and cancer initiation. Results The present study investigated the putative early mechanism of UVB and FOXM1 in skin cancer initiation. We have demonstrated that UVB dose-dependently increased FOXM1 protein levels through protein stabilisation and accumulation rather than de novo mRNA expression in human epidermal keratinocytes. FOXM1 upregulation in primary human keratinocytes triggered pro-apoptotic/DNA-damage checkpoint response genes such as p21, p38 MAPK, p53 and PARP, however, without causing significant cell cycle arrest or cell death. Using a high-resolution Affymetrix genome-wide single nucleotide polymorphism (SNP mapping technique, we provided the evidence that FOXM1 upregulation in epidermal keratinocytes is sufficient to induce genomic instability, in the form of loss of heterozygosity (LOH and copy number variations (CNV. FOXM1-induced genomic instability was significantly enhanced and accumulated with increasing cell passage and this instability was increased even further upon exposure to UVB resulting in whole chromosomal gain (7p21.3-7q36.3 and segmental LOH (6q25.1-6q25.3. Conclusion We hypothesise that prolonged and repeated UVB exposure selects for skin cells bearing stable FOXM1 protein causes aberrant cell cycle checkpoint thereby allowing ectopic cell cycle entry and subsequent genomic instability. The aberrant

  11. The diploid genome sequence of an individual human.

    Directory of Open Access Journals (Sweden)

    Samuel Levy

    2007-09-01

    Full Text Available Presented here is a genome sequence of an individual human. It was produced from approximately 32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel included 3,213,401 single nucleotide polymorphisms (SNPs, 53,823 block substitutions (2-206 bp, 292,102 heterozygous insertion/deletion events (indels(1-571 bp, 559,473 homozygous indels (1-82,711 bp, 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.

  12. Disruption of Specific RNA-RNA Interactions in a Double-Stranded RNA Virus Inhibits Genome Packaging and Virus Infectivity.

    Science.gov (United States)

    Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly

    2015-12-01

    Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3'untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3' UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3'UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3'UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3' UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs

  13. MutS and MutL are dispensable for maintenance of the genomic mutation rate in the halophilic archaeon Halobacterium salinarum NRC-1.

    Directory of Open Access Journals (Sweden)

    Courtney R Busch

    Full Text Available BACKGROUND: The genome of the halophilic archaeon Halobacterium salinarum NRC-1 encodes for homologs of MutS and MutL, which are key proteins of a DNA mismatch repair pathway conserved in Bacteria and Eukarya. Mismatch repair is essential for retaining the fidelity of genetic information and defects in this pathway result in the deleterious accumulation of mutations and in hereditary diseases in humans. METHODOLOGY/PRINCIPAL FINDINGS: We calculated the spontaneous genomic mutation rate of H. salinarum NRC-1 using fluctuation tests targeting genes of the uracil monophosphate biosynthesis pathway. We found that H. salinarum NRC-1 has a low incidence of mutation suggesting the presence of active mechanisms to control spontaneous mutations during replication. The spectrum of mutational changes found in H. salinarum NRC-1, and in other archaea, appears to be unique to this domain of life and might be a consequence of their adaption to extreme environmental conditions. In-frame targeted gene deletions of H. salinarum NRC-1 mismatch repair genes and phenotypic characterization of the mutants demonstrated that the mutS and mutL genes are not required for maintenance of the observed mutation rate. CONCLUSIONS/SIGNIFICANCE: We established that H. salinarum NRC-1 mutS and mutL genes are redundant to an alternative system that limits spontaneous mutation in this organism. This finding leads to the puzzling question of what mechanism is responsible for maintenance of the low genomic mutation rates observed in the Archaea, which for the most part do not have MutS and MutL homologs.

  14. The infinite sites model of genome evolution.

    Science.gov (United States)

    Ma, Jian; Ratan, Aakrosh; Raney, Brian J; Suh, Bernard B; Miller, Webb; Haussler, David

    2008-09-23

    We formalize the problem of recovering the evolutionary history of a set of genomes that are related to an unseen common ancestor genome by operations of speciation, deletion, insertion, duplication, and rearrangement of segments of bases. The problem is examined in the limit as the number of bases in each genome goes to infinity. In this limit, the chromosomes are represented by continuous circles or line segments. For such an infinite-sites model, we present a polynomial-time algorithm to find the most parsimonious evolutionary history of any set of related present-day genomes.

  15. Signals of historical interlocus gene conversion in human segmental duplications.

    Directory of Open Access Journals (Sweden)

    Beth L Dumont

    Full Text Available Standard methods of DNA sequence analysis assume that sequences evolve independently, yet this assumption may not be appropriate for segmental duplications that exchange variants via interlocus gene conversion (IGC. Here, we use high quality multiple sequence alignments from well-annotated segmental duplications to systematically identify IGC signals in the human reference genome. Our analysis combines two complementary methods: (i a paralog quartet method that uses DNA sequence simulations to identify a statistical excess of sites consistent with inter-paralog exchange, and (ii the alignment-based method implemented in the GENECONV program. One-quarter (25.4% of the paralog families in our analysis harbor clear IGC signals by the quartet approach. Using GENECONV, we identify 1477 gene conversion tracks that cumulatively span 1.54 Mb of the genome. Our analyses confirm the previously reported high rates of IGC in subtelomeric regions and Y-chromosome palindromes, and identify multiple novel IGC hotspots, including the pregnancy specific glycoproteins and the neuroblastoma breakpoint gene families. Although the duplication history of a paralog family is described by a single tree, we show that IGC has introduced incredible site-to-site variation in the evolutionary relationships among paralogs in the human genome. Our findings indicate that IGC has left significant footprints in patterns of sequence diversity across segmental duplications in the human genome, out-pacing the contributions of single base mutation by orders of magnitude. Collectively, the IGC signals we report comprise a catalog that will provide a critical reference for interpreting observed patterns of DNA sequence variation across duplicated genomic regions, including targets of recent adaptive evolution in humans.

  16. Segmental allotetraploidy and allelic interactions in buffelgrass (Pennisetum ciliare (L.) Link syn. Cenchrus ciliaris L.) as revealed by genome mapping.

    Science.gov (United States)

    Jessup, R W; Burson, B L; Burow, O; Wang, Y W; Chang, C; Li, Z; Paterson, A H; Hussey, M A

    2003-04-01

    Linkage analyses increasingly complement cytological and traditional plant breeding techniques by providing valuable information regarding genome organization and transmission genetics of complex polyploid species. This study reports a genome map of buffelgrass (Pennisetum ciliare (L.) Link syn. Cenchrus ciliaris L.). Maternal and paternal maps were constructed with restriction fragment length polymorphisms (RFLPs) segregating in 87 F1 progeny from an intraspecific cross between two heterozygous genotypes. A survey of 862 heterologous cDNAs and gDNAs from across the Poaceae, as well as 443 buffelgrass cDNAs, yielded 100 and 360 polymorphic probes, respectively. The maternal map included 322 RFLPs, 47 linkage groups, and 3464 cM, whereas the paternal map contained 245 RFLPs, 42 linkage groups, and 2757 cM. Approximately 70 to 80% of the buffelgrass genome was covered, and the average marker spacing was 10.8 and 11.3 cM on the respective maps. Preferential pairing was indicated between many linkage groups, which supports cytological reports that buffelgrass is a segmental allotetraploid. More preferential pairing (disomy) was found in the maternal than paternal parent across linkage groups (55 vs. 38%) and loci (48 vs. 15%). Comparison of interval lengths in 15 allelic bridges indicated significantly less meiotic recombination in paternal gametes. Allelic interactions were detected in four regions of the maternal map and were absent in the paternal map.

  17. Delineating slowly and rapidly evolving fractions of the Drosophila genome.

    Science.gov (United States)

    Keith, Jonathan M; Adams, Peter; Stephen, Stuart; Mattick, John S

    2008-05-01

    Evolutionary conservation is an important indicator of function and a major component of bioinformatic methods to identify non-protein-coding genes. We present a new Bayesian method for segmenting pairwise alignments of eukaryotic genomes while simultaneously classifying segments into slowly and rapidly evolving fractions. We also describe an information criterion similar to the Akaike Information Criterion (AIC) for determining the number of classes. Working with pairwise alignments enables detection of differences in conservation patterns among closely related species. We analyzed three whole-genome and three partial-genome pairwise alignments among eight Drosophila species. Three distinct classes of conservation level were detected. Sequences comprising the most slowly evolving component were consistent across a range of species pairs, and constituted approximately 62-66% of the D. melanogaster genome. Almost all (>90%) of the aligned protein-coding sequence is in this fraction, suggesting much of it (comprising the majority of the Drosophila genome, including approximately 56% of non-protein-coding sequences) is functional. The size and content of the most rapidly evolving component was species dependent, and varied from 1.6% to 4.8%. This fraction is also enriched for protein-coding sequence (while containing significant amounts of non-protein-coding sequence), suggesting it is under positive selection. We also classified segments according to conservation and GC content simultaneously. This analysis identified numerous sub-classes of those identified on the basis of conservation alone, but was nevertheless consistent with that classification. Software, data, and results available at www.maths.qut.edu.au/-keithj/. Genomic segments comprising the conservation classes available in BED format.

  18. Systematic discovery of unannotated genes in 11 yeast species using a database of orthologous genomic segments

    LENUS (Irish Health Repository)

    OhEigeartaigh, Sean S

    2011-07-26

    Abstract Background In standard BLAST searches, no information other than the sequences of the query and the database entries is considered. However, in situations where two genes from different species have only borderline similarity in a BLAST search, the discovery that the genes are located within a region of conserved gene order (synteny) can provide additional evidence that they are orthologs. Thus, for interpreting borderline search results, it would be useful to know whether the syntenic context of a database hit is similar to that of the query. This principle has often been used in investigations of particular genes or genomic regions, but to our knowledge it has never been implemented systematically. Results We made use of the synteny information contained in the Yeast Gene Order Browser database for 11 yeast species to carry out a systematic search for protein-coding genes that were overlooked in the original annotations of one or more yeast genomes but which are syntenic with their orthologs. Such genes tend to have been overlooked because they are short, highly divergent, or contain introns. The key features of our software - called SearchDOGS - are that the database entries are classified into sets of genomic segments that are already known to be orthologous, and that very weak BLAST hits are retained for further analysis if their genomic location is similar to that of the query. Using SearchDOGS we identified 595 additional protein-coding genes among the 11 yeast species, including two new genes in Saccharomyces cerevisiae. We found additional genes for the mating pheromone a-factor in six species including Kluyveromyces lactis. Conclusions SearchDOGS has proven highly successful for identifying overlooked genes in the yeast genomes. We anticipate that our approach can be adapted for study of further groups of species, such as bacterial genomes. More generally, the concept of doing sequence similarity searches against databases to which external

  19. Complete genome sequence of Shigella flexneri 5b and comparison with Shigella flexneri 2a

    Directory of Open Access Journals (Sweden)

    Xue Ying

    2006-07-01

    Full Text Available Abstract Background Shigella bacteria cause dysentery, which remains a significant threat to public health. Shigella flexneri is the most common species in both developing and developed countries. Five Shigella genomes have been sequenced, revealing dynamic and diverse features. To investigate the intra-species diversity of S. flexneri genomes further, we have sequenced the complete genome of S. flexneri 5b strain 8401 (abbreviated Sf8401 and compared it with S. flexneri 2a (Sf301. Results The Sf8401 chromosome is 4.5-Mb in size, a little smaller than that of Sf301, mainly because the former lacks the SHI-1 pathogenicity island (PAI. Compared with Sf301, there are 6 inversions and one translocation in Sf8401, which are probably mediated by insertion sequences (IS. There are clear differences in the known PAIs between these two genomes. The bacteriophage SfV segment remaining in SHI-O of Sf8401 is clearly larger than the remnants of bacteriophage SfII in Sf301. SHI-1 is absent from Sf8401 but a specific related protein is found next to the pheV locus. SHI-2 is involved in one intra-replichore inversion near the origin of replication, which may change the expression of iut/iuc genes. Moreover, genes related to the glycine-betaine biosynthesis pathway are present only in Sf8401 among the known Shigella genomes. Conclusion Our data show that the two S. flexneri genomes are very similar, which suggests a high level of structural and functional conservation between the two serotypes. The differences reflect different selection pressures during evolution. The ancestor of S. flexneri probably acquired SHI-1 and SHI-2 before SHI-O was integrated and the serotypes diverged. SHI-1 was subsequently deleted from the S. flexneri 5b genome by recombination, but stabilized in the S. flexneri 2a genome. These events may have contributed to the differences in pathogenicity and epidemicity between the two serotypes of S. flexneri.

  20. Clinical implications of anterior S-T segment depression in patients with acute inferior myocardial infarction

    International Nuclear Information System (INIS)

    Croft, C.H.; Woodward, W.; Nicod, P.; Corbett, J.R.; Lewis, S.E.; Willerson, J.T.; Rude, R.E.

    1982-01-01

    To assess various factors associated with anterior S-T segment depression during acute inferior myocardial infarction, 47 consecutive patients with electrocardiographic evidence of a first transmural inferior infarction were studied prospectively with radionuclide ventriculography an average of 7.3 hours (range 2.9 to 15.3) after the onset of symptoms. Thirty-nine patients (Group I) had anterior S-T depression in the initial electrocardiogram and 8 (Group II) did not have such reciprocal changes. There was no difference between the two groups in left ventricular end-diastolic or end-diastolic volume index or left ventricular ejection fraction. Stroke volume index was greater in Group I than in Group II. There were no group differences in left ventricular total or regional wall motion scores. A weak correlation existed between the quantities (mV) or inferior S-T segment elevation and reciprocal S-T depression. No relation between anterior S-T segment depression and the left ventricular end-diastolic volume index could be demonstrated; the extent of left ventricular apical and right ventricular wall motion abnormalities, both frequently associated with inferior infarction, did not correlate with the quantity of anterior S-T depression. These data show that anterior S-T segment depression occurs commonly during the early evolution of transmural inferior infarction, is not generally a marker of functionally significant anterior ischemia and cannot be used to predict left ventricular function in individual patients. Anterior S-T segment depression may be determined by reciprocal mechanisms

  1. Permanent Draft Genome of Strain ESFC-1: Ecological Genomics of a Newly Discovered Lineage of Filamentous Diazotrophic Cyanobacteria

    Science.gov (United States)

    Everroad, R. Craig; Stuart, Rhona K.; Bebout, Brad M.; Detweiler, Angela M.; Lee, Jackson Zan; Woebken, Dagmar; Bebout, Leslie E.; Pett-Ridge, Jennifer

    2016-01-01

    The nonheterocystous filamentous cyanobacterium, strain ESFC-1, is a recently described member of the order Oscillatoriales within the Cyanobacteria. ESFC-1 has been shown to be a major diazotroph in the intertidal microbial mat system at Elkhorn Slough, CA, USA. Based on phylogenetic analyses of the 16S RNA gene, ESFC-1 appears to belong to a unique, genus-level divergence; the draft genome sequence of this strain has now been determined. Here we report features of this genome as they relate to the ecological functions and capabilities of strain ESFC-1. The 5,632,035 bp genome sequence encodes 4914 protein-coding genes and 92 RNA genes. One striking feature of this cyanobacterium is the apparent lack of either uptake or bi-directional hydrogenases typically expected within a diazotroph. Additionally, a large genomic island is found that contains numerous low GC-content genes and genes related to extracellular polysaccharide production and cell wall synthesis and maintenance.

  2. Systematic determination of the mosaic structure of bacterial genomes: species backbone versus strain-specific loops

    Directory of Open Access Journals (Sweden)

    Gendrault-Jacquemard A

    2005-07-01

    Full Text Available Abstract Background Public databases now contain multitude of complete bacterial genomes, including several genomes of the same species. The available data offers new opportunities to address questions about bacterial genome evolution, a task that requires reliable fine comparison data of closely related genomes. Recent analyses have shown, using pairwise whole genome alignments, that it is possible to segment bacterial genomes into a common conserved backbone and strain-specific sequences called loops. Results Here, we generalize this approach and propose a strategy that allows systematic and non-biased genome segmentation based on multiple genome alignments. Segmentation analyses, as applied to 13 different bacterial species, confirmed the feasibility of our approach to discern the 'mosaic' organization of bacterial genomes. Segmentation results are available through a Web interface permitting functional analysis, extraction and visualization of the backbone/loops structure of documented genomes. To illustrate the potential of this approach, we performed a precise analysis of the mosaic organization of three E. coli strains and functional characterization of the loops. Conclusion The segmentation results including the backbone/loops structure of 13 bacterial species genomes are new and available for use by the scientific community at the URL: http://genome.jouy.inra.fr/mosaic.

  3. Development of a segmented grating mount system for FIREX-1

    International Nuclear Information System (INIS)

    Ezaki, Y; Tabata, M; Kihara, M; Horiuchi, Y; Endo, M; Jitsuno, T

    2008-01-01

    A mount system for segmented meter-sized gratings has been developed, which has a high precision grating support mechanism and drive mechanism to minimize both deformation of the optical surfaces and misalignments in setting a segmented grating for obtaining sufficient performance of the pulse compressor. From analytical calculations, deformation of the grating surface is less than 1/20 lambda RMS and the estimated drive resolution for piston and tilt drive of the segmented grating is 1/20 lambda, which are both compliant with the requirements for the rear-end subsystem of FIREX-1

  4. Genomic diversity in two related plant species with and without sex chromosomes--Silene latifolia and S. vulgaris.

    Directory of Open Access Journals (Sweden)

    Radim Cegan

    Full Text Available Genome size evolution is a complex process influenced by polyploidization, satellite DNA accumulation, and expansion of retroelements. How this process could be affected by different reproductive strategies is still poorly understood.We analyzed differences in the number and distribution of major repetitive DNA elements in two closely related species, Silene latifolia and S. vulgaris. Both species are diploid and possess the same chromosome number (2n = 24, but differ in their genome size and mode of reproduction. The dioecious S. latifolia (1C = 2.70 pg DNA possesses sex chromosomes and its genome is 2.5× larger than that of the gynodioecious S. vulgaris (1C = 1.13 pg DNA, which does not possess sex chromosomes. We discovered that the genome of S. latifolia is larger mainly due to the expansion of Ogre retrotransposons. Surprisingly, the centromeric STAR-C and TR1 tandem repeats were found to be more abundant in S. vulgaris, the species with the smaller genome. We further examined the distribution of major repetitive sequences in related species in the Caryophyllaceae family. The results of FISH (fluorescence in situ hybridization on mitotic chromosomes with the Retand element indicate that large rearrangements occurred during the evolution of the Caryophyllaceae family.Our data demonstrate that the evolution of genome size in the genus Silene is accompanied by the expansion of different repetitive elements with specific patterns in the dioecious species possessing the sex chromosomes.

  5. Diversity of 23S rRNA genes within individual prokaryotic genomes.

    Directory of Open Access Journals (Sweden)

    Anna Pei

    Full Text Available BACKGROUND: The concept of ribosomal constraints on rRNA genes is deduced primarily based on the comparison of consensus rRNA sequences between closely related species, but recent advances in whole-genome sequencing allow evaluation of this concept within organisms with multiple rRNA operons. METHODOLOGY/PRINCIPAL FINDINGS: Using the 23S rRNA gene as an example, we analyzed the diversity among individual rRNA genes within a genome. Of 184 prokaryotic species containing multiple 23S rRNA genes, diversity was observed in 113 (61.4% genomes (mean 0.40%, range 0.01%-4.04%. Significant (1.17%-4.04% intragenomic variation was found in 8 species. In 5 of the 8 species, the diversity in the primary structure had only minimal effect on the secondary structure (stem versus loop transition. In the remaining 3 species, the diversity significantly altered local secondary structure, but the alteration appears minimized through complex rearrangement. Intervening sequences (IVS, ranging between 9 and 1471 nt in size, were found in 7 species. IVS in Deinococcus radiodurans and Nostoc sp. encode transposases. T. tengcongensis was the only species in which intragenomic diversity >3% was observed among 4 paralogous 23S rRNA genes. CONCLUSIONS/SIGNIFICANCE: These findings indicate tight ribosomal constraints on individual 23S rRNA genes within a genome. Although classification using primary 23S rRNA sequences could be erroneous, significant diversity among paralogous 23S rRNA genes was observed only once in the 184 species analyzed, indicating little overall impact on the mainstream of 23S rRNA gene-based prokaryotic taxonomy.

  6. Task 1.5 Genomic Shift and Drift Trends of Emerging Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Borucki, M

    2010-01-05

    The Lawrence Livermore National Laboratory (LLNL) Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies Initiative (TMTI). The high-level goal of TMTI is to accelerate the development of broad-spectrum countermeasures. To achieve those goals, TMTI has a near term need to conduct analyses of genomic shift and drift trends of emerging pathogens, with a focused eye on select agent pathogens, as well as antibiotic and virulence markers. Most emerging human pathogens are zoonotic viruses with a genome composed of RNA. The high mutation rate of the replication enzymes of RNA viruses contributes to sequence drift and provides one mechanism for these viruses to adapt to diverse hosts (interspecies transmission events) and cause new human and zoonotic diseases. Additionally, new viral pathogens frequently emerge due to genetic shift (recombination and segment reassortment) which allows for dramatic genotypic and phenotypic changes to occur rapidly. Bacterial pathogens also evolve via genetic drift and shift, although sequence drift generally occurs at a much slower rate for bacteria as compared to RNA viruses. However, genetic shift such as lateral gene transfer and inter- and intragenomic recombination enables bacteria to rapidly acquire new mechanisms of survival and antibiotic resistance. New technologies such as rapid whole genome sequencing of bacterial genomes, ultra-deep sequencing of RNA virus populations, metagenomic studies of environments rich in antibiotic resistance genes, and the use of microarrays for the detection and characterization of emerging pathogens provide mechanisms to address the challenges posed by the rapid emergence of pathogens. Bioinformatic algorithms that enable efficient analysis of the massive amounts of data generated by these technologies as well computational modeling of protein structures and evolutionary processes need to be developed to allow the technology to fulfill its potential.

  7. Immunoglobulin Genomics in the Guinea Pig (Cavia porcellus)

    Science.gov (United States)

    Guo, Yongchen; Bao, Yonghua; Meng, Qingwen; Hu, Xiaoxiang; Meng, Qingyong; Ren, Liming; Li, Ning; Zhao, Yaofeng

    2012-01-01

    In science, the guinea pig is known as one of the gold standards for modeling human disease. It is especially important as a molecular and cellular biology model for studying the human immune system, as its immunological genes are more similar to human genes than are those of mice. The utility of the guinea pig as a model organism can be further enhanced by further characterization of the genes encoding components of the immune system. Here, we report the genomic organization of the guinea pig immunoglobulin (Ig) heavy and light chain genes. The guinea pig IgH locus is located in genomic scaffolds 54 and 75, and spans approximately 6,480 kb. 507 VH segments (94 potentially functional genes and 413 pseudogenes), 41 DH segments, six JH segments, four constant region genes (μ, γ, ε, and α), and one reverse δ remnant fragment were identified within the two scaffolds. Many VH pseudogenes were found within the guinea pig, and likely constituted a potential donor pool for gene conversion during evolution. The Igκ locus mapped to a 4,029 kb region of scaffold 37 and 24 is composed of 349 Vκ (111 potentially functional genes and 238 pseudogenes), three Jκ and one Cκ genes. The Igλ locus spans 1,642 kb in scaffold 4 and consists of 142 Vλ (58 potentially functional genes and 84 pseudogenes) and 11 Jλ -Cλ clusters. Phylogenetic analysis suggested the guinea pig’s large germline VH gene segments appear to form limited gene families. Therefore, this species may generate antibody diversity via a gene conversion-like mechanism associated with its pseudogene reserves. PMID:22761756

  8. Human genome program report. Part 1, overview and progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  9. The Influence of LINE-1 and SINE Retrotransposons on Mammalian Genomes.

    Science.gov (United States)

    Richardson, Sandra R; Doucet, Aurélien J; Kopera, Huira C; Moldovan, John B; Garcia-Perez, José Luis; Moran, John V

    2015-04-01

    Transposable elements have had a profound impact on the structure and function of mammalian genomes. The retrotransposon Long INterspersed Element-1 (LINE-1 or L1), by virtue of its replicative mobilization mechanism, comprises ∼17% of the human genome. Although the vast majority of human LINE-1 sequences are inactive molecular fossils, an estimated 80-100 copies per individual retain the ability to mobilize by a process termed retrotransposition. Indeed, LINE-1 is the only active, autonomous retrotransposon in humans and its retrotransposition continues to generate both intra-individual and inter-individual genetic diversity. Here, we briefly review the types of transposable elements that reside in mammalian genomes. We will focus our discussion on LINE-1 retrotransposons and the non-autonomous Short INterspersed Elements (SINEs) that rely on the proteins encoded by LINE-1 for their mobilization. We review cases where LINE-1-mediated retrotransposition events have resulted in genetic disease and discuss how the characterization of these mutagenic insertions led to the identification of retrotransposition-competent LINE-1s in the human and mouse genomes. We then discuss how the integration of molecular genetic, biochemical, and modern genomic technologies have yielded insight into the mechanism of LINE-1 retrotransposition, the impact of LINE-1-mediated retrotransposition events on mammalian genomes, and the host cellular mechanisms that protect the genome from unabated LINE-1-mediated retrotransposition events. Throughout this review, we highlight unanswered questions in LINE-1 biology that provide exciting opportunities for future research. Clearly, much has been learned about LINE-1 and SINE biology since the publication of Mobile DNA II thirteen years ago. Future studies should continue to yield exciting discoveries about how these retrotransposons contribute to genetic diversity in mammalian genomes.

  10. Segmentation of consumer's markets and evaluation of market's segments

    OpenAIRE

    ŠVECOVÁ, Iveta

    2013-01-01

    The goal of this bachelor thesis was to explain a possibly segmentation of consumer´s markets for a chosen company, and to present a suitable goods offer, so it would be suitable to the needs of selected segments. The work is divided into theoretical and practical part. First part describes marketing, segmentation, segmentation of consumer's markets, consumer's market, market's segments a other terms. Second part describes an evaluation of questionnaire survey, discovering of market's segment...

  11. Genome-wide analysis of EgEVE_1, a transcriptionally active endogenous viral element associated to small RNAs in Eucalyptus genomes

    Directory of Open Access Journals (Sweden)

    Helena Sanches Marcon

    2017-02-01

    Full Text Available Abstract Endogenous viral elements (EVEs are the result of heritable horizontal gene transfer from viruses to hosts. In the last years, several EVE integration events were reported in plants by the exponential availability of sequenced genomes. Eucalyptus grandis is a forest tree species with a sequenced genome that is poorly studied in terms of evolution and mobile genetic elements composition. Here we report the characterization of E. grandis endogenous viral element 1 (EgEVE_1, a transcriptionally active EVE with a size of 5,664 bp. Phylogenetic analysis and genomic distribution demonstrated that EgEVE_1 is a newly described member of the Caulimoviridae family, distinct from the recently characterized plant Florendoviruses. Genomic distribution of EgEVE_1 and Florendovirus is also distinct. EgEVE_1 qPCR quantification in Eucalyptus urophylla suggests that this genome has more EgEVE_1 copies than E. grandis. EgEVE_1 transcriptional activity was demonstrated by RT-qPCR in five Eucalyptus species and one intrageneric hybrid. We also identified that Eucalyptus EVEs can generate small RNAs (sRNAs,that might be involved in de novo DNA methylation and virus resistance. Our data suggest that EVE families in Eucalyptus have distinct properties, and we provide the first comparative analysis of EVEs in Eucalyptus genomes.

  12. Segmented block copolymers with monodisperse aramide end-segments

    NARCIS (Netherlands)

    Araichimani, A.; Gaymans, R.J.

    2008-01-01

    Segmented block copolymers were synthesized using monodisperse diaramide (TT) as hard segments and PTMO with a molecular weight of 2 900 g · mol-1 as soft segments. The aramide: PTMO segment ratio was increased from 1:1 to 2:1 thereby changing the structure from a high molecular weight multi-block

  13. Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages.

    Science.gov (United States)

    Han, Kyudong; Sen, Shurjo K; Wang, Jianxin; Callinan, Pauline A; Lee, Jungnam; Cordaux, Richard; Liang, Ping; Batzer, Mark A

    2005-01-01

    Long INterspersed Elements (LINE-1s or L1s) are abundant non-LTR retrotransposons in mammalian genomes that are capable of insertional mutagenesis. They have been associated with target site deletions upon insertion in cell culture studies of retrotransposition. Here, we report 50 deletion events in the human and chimpanzee genomes directly linked to the insertion of L1 elements, resulting in the loss of approximately 18 kb of sequence from the human genome and approximately 15 kb from the chimpanzee genome. Our data suggest that during the primate radiation, L1 insertions may have deleted up to 7.5 Mb of target genomic sequences. While the results of our in vivo analysis differ from those of previous cell culture assays of L1 insertion-mediated deletions in terms of the size and rate of sequence deletion, evolutionary factors can reconcile the differences. We report a pattern of genomic deletion sizes similar to those created during the retrotransposition of Alu elements. Our study provides support for the existence of different mechanisms for small and large L1-mediated deletions, and we present a model for the correlation of L1 element size and the corresponding deletion size. In addition, we show that internal rearrangements can modify L1 structure during retrotransposition events associated with large deletions.

  14. Identification and characterization of viral defective RNA genomes in influenza B virus.

    Science.gov (United States)

    Sheng, Zizhang; Liu, Runxia; Yu, Jieshi; Ran, Zhiguang; Newkirk, Simon J; An, Wenfeng; Li, Feng; Wang, Dan

    2018-04-01

    Influenza B virus (FLUBV) is an important pathogen that infects humans and causes seasonal influenza epidemics. To date, little is known about defective genomes of FLUBV and their roles in viral replication. In this study, by using a next-generation sequencing approach, we analyzed total mRNAs extracted from A549 cells infected with B/Brisbane/60/2008 virus (Victoria lineage), and identified four defective FLUBV genomes with two (PB1∆A and PB1∆B) from the polymerase basic subunit 1 (PB1) segment and the other two (M∆A and M∆B) from the matrix (M) protein-encoding segment. These defective genomes contained significant deletions in the central regions with each having the potential for encoding a novel polypeptide. Significantly, each of the discovered defective RNAs can potently inhibit the replication of B/Yamanashi/166/98 (Yamagata lineage). Furthermore, PB1∆A was able to interfere modestly with influenza A virus (FLUAV) replication. In summary, our study provides important initial insights into FLUBV defective-interfering genomes, which can be further explored to achieve better understanding of the replication, pathogenesis and evolution of FLUBV.

  15. Short segment search method for phylogenetic analysis using nested sliding windows

    Science.gov (United States)

    Iskandar, A. A.; Bustamam, A.; Trimarsanto, H.

    2017-10-01

    To analyze phylogenetics in Bioinformatics, coding DNA sequences (CDS) segment is needed for maximal accuracy. However, analysis by CDS cost a lot of time and money, so a short representative segment by CDS, which is envelope protein segment or non-structural 3 (NS3) segment is necessary. After sliding window is implemented, a better short segment than envelope protein segment and NS3 is found. This paper will discuss a mathematical method to analyze sequences using nested sliding window to find a short segment which is representative for the whole genome. The result shows that our method can find a short segment which more representative about 6.57% in topological view to CDS segment than an Envelope segment or NS3 segment.

  16. Universal global imprints of genome growth and evolution--equivalent length and cumulative mutation density.

    Directory of Open Access Journals (Sweden)

    Hong-Da Chen

    Full Text Available BACKGROUND: Segmental duplication is widely held to be an important mode of genome growth and evolution. Yet how this would affect the global structure of genomes has been little discussed. METHODS/PRINCIPAL FINDINGS: Here, we show that equivalent length, or L(e, a quantity determined by the variance of fluctuating part of the distribution of the k-mer frequencies in a genome, characterizes the latter's global structure. We computed the L(es of 865 complete chromosomes and found that they have nearly universal but (k-dependent values. The differences among the L(e of a chromosome and those of its coding and non-coding parts were found to be slight. CONCLUSIONS: We verified that these non-trivial results are natural consequences of a genome growth model characterized by random segmental duplication and random point mutation, but not of any model whose dominant growth mechanism is not segmental duplication. Our study also indicates that genomes have a nearly universal cumulative "point" mutation density of about 0.73 mutations per site that is compatible with the relatively low mutation rates of (1-5 x 10(-3/site/Mya previously determined by sequence comparison for the human and E. coli genomes.

  17. Destabilization of IncA and IncC plasmids by SGI1 and SGI2 type Salmonella genomic islands.

    Science.gov (United States)

    Harmer, Christopher J; Hamidian, Mohammad; Ambrose, Stephanie J; Hall, Ruth M

    Both the Salmonella genomic islands (SGI) and the conjugative IncC plasmids are known to contribute substantially to the acquisition of resistance to multiple antibiotics, and plasmids in the A/C group are known to mobilize the Salmonella genomic island SGI1, which also carries multiple antibiotic resistance genes. Plasmid pRMH760 (IncC; A/C 2 ) was shown to mobilize SGI1 variants SGI1-I, SGI1-F, SGI1-K and SGI2 from Salmonella enterica to Escherichia coli where it was integrated at the preferred location, at the end of the trmE (thdF) gene. The plasmid was transferred at a similar frequency. However, we observed that co-transfer of the SGI and the plasmid was rarer. In E. coli to E. coli transfer, the frequency of transfer of the IncC plasmid pRMH760 was at least 1000-fold lower when the donor carried SGI1-I or SGI1-K, indicating that the SGI suppresses transfer of the plasmid. In addition, pRMH760 was rapidly lost from both E. coli and S. enterica strains that also carried SGI1-I, SGI1-F or SGI2. However, plasmid loss was not seen when the SGI1 variant was SGI1-K, which lacks two segments of the SGI1 backbone. The complete sequence of the SGI1-I and SGI1-F were determined and SGI1-K also carries two single base substitutions relative to SGI1-I. The IncA (A/C 1 ) plasmid RA1 was also shown to mobilize SGI2-A and though there are significant differences between the backbones of IncA and IncC plasmids, RA1 was also rapidly lost when SGI2-A was present in the same cell. We conclude that there are multiple interactions, both cooperative and antagonistic, between an IncA or IncC plasmid and the SGI1 and SGI2 family genomic islands. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe--a landmark approach for Thinopyrum genome research.

    Science.gov (United States)

    Chen, Q

    2005-01-01

    The introduction of alien genetic variation from the genus Thinopyrum through chromosome engineering into wheat is a valuable and proven technique for wheat improvement. A number of economically important traits have been transferred into wheat as single genes, chromosome arms or entire chromosomes. Successful transfers can be greatly assisted by the precise identification of alien chromatin in the recipient progenies. Chromosome identification and characterization are useful for genetic manipulation and transfer in wheat breeding following chromosome engineering. Genomic in situ hybridization (GISH) using an S genomic DNA probe from the diploid species Pseudoroegneria has proven to be a powerful diagnostic cytogenetic tool for monitoring the transfer of many promising agronomic traits from Thinopyrum. This specific S genomic probe not only allows the direct determination of the chromosome composition in wheat-Thinopyrum hybrids, but also can separate the Th. intermedium chromosomes into the J, J(S) and S genomes. The J(S) genome, which consists of a modified J genome chromosome distinguished by S genomic sequences of Pseudoroegneria near the centromere and telomere, carries many disease and mite resistance genes. Utilization of this S genomic probe leads to a better understanding of genomic affinities between Thinopyrum and wheat, and provides a molecular cytogenetic marker for monitoring the transfer of alien Thinopyrum agronomic traits into wheat recipient lines. Copyright 2005 S. Karger AG, Basel.

  19. Phylogenetic analysis of Puumala virus strains from Central Europe highlights the need for a full-genome perspective on hantavirus evolution.

    Science.gov (United States)

    Szabó, Róbert; Radosa, Lukáš; Ličková, Martina; Sláviková, Monika; Heroldová, Marta; Stanko, Michal; Pejčoch, Milan; Osterberg, Anja; Laenen, Lies; Schex, Susanne; Ulrich, Rainer G; Essbauer, Sandra; Maes, Piet; Klempa, Boris

    2017-12-01

    Puumala virus (PUUV), carried by bank voles (Myodes glareolus), is the medically most important hantavirus in Central and Western Europe. In this study, a total of 523 bank voles (408 from Germany, 72 from Slovakia, and 43 from Czech Republic) collected between the years 2007-2012 were analyzed for the presence of hantavirus RNA. Partial PUUV genome segment sequences were obtained from 51 voles. Phylogenetic analyses of all three genome segments showed that the newfound strains cluster with other Central and Western European PUUV strains. The new sequences from Šumava (Bohemian Forest), Czech Republic, are most closely related to the strains from the neighboring Bavarian Forest, a known hantavirus disease outbreak region. Interestingly, the Slovak strains clustered with the sequences from Bohemian and Bavarian Forests only in the M but not S segment analyses. This well-supported topological incongruence suggests a segment reassortment event or, as we analyzed only partial sequences, homologous recombination. Our data highlight the necessity of sequencing all three hantavirus genome segments and of a broader bank vole screening not only in recognized endemic foci but also in regions with no reported human hantavirus disease cases.

  20. Opposite effects of the S4-S5 linker and PIP2 on voltage-gated channel function: KCNQ1/KCNE1 and other channels

    Directory of Open Access Journals (Sweden)

    Frank S Choveau

    2012-07-01

    Full Text Available Voltage-gated potassium (Kv channels are tetramers, each subunit presenting six transmembrane segments (S1-S6, with each S1-S4 segments forming a voltage-sensing domain (VSD and the four S5-S6 forming both the conduction pathway and its gate. S4 segments control the opening of the intracellular activation gate in response to changes in membrane potential. Crystal structures of several voltage-gated ion channels in combination with biophysical and mutagenesis studies highlighted the critical role of the S4-S5 linker (S4S5L and of the S6 C-terminal part (S6T in the coupling between the VSD and the activation gate. Several mechanisms have been proposed to describe the coupling at a molecular scale. This review summarizes the mechanisms suggested for various voltage-gated ion channels, including a mechanism that we described for KCNQ1, in which S4S5L is acting like a ligand binding to S6T to stabilize the channel in a closed state. As discussed in this review, this mechanism may explain the reverse response to depolarization in HCN-like channels. As opposed to S4S5L, the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2, stabilizes KCNQ1 channel in an open state. Many other ion channels (not only voltage-gated require PIP2 to function properly, confirming its crucial importance as an ion channel co-factor. This is highlighted in cases in which an altered regulation of ion channels by PIP2 leads to channelopathies, as observed for KCNQ1. This review summarizes the state of the art on the two regulatory mechanisms that are critical for KCNQ1 and other voltage-gated channels function (PIP2 and S4-S5L, and assesses their potential physiological and pathophysiological roles.

  1. A decision-theoretic approach for segmental classification

    OpenAIRE

    Yau, Christopher; Holmes, Christopher C.

    2013-01-01

    This paper is concerned with statistical methods for the segmental classification of linear sequence data where the task is to segment and classify the data according to an underlying hidden discrete state sequence. Such analysis is commonplace in the empirical sciences including genomics, finance and speech processing. In particular, we are interested in answering the following question: given data $y$ and a statistical model $\\pi(x,y)$ of the hidden states $x$, what should we report as the ...

  2. Complete Genome Sequence of Bradyrhizobium sp. S23321: Insights into Symbiosis Evolution in Soil Oligotrophs

    Science.gov (United States)

    Okubo, Takashi; Tsukui, Takahiro; Maita, Hiroko; Okamoto, Shinobu; Oshima, Kenshiro; Fujisawa, Takatomo; Saito, Akihiro; Futamata, Hiroyuki; Hattori, Reiko; Shimomura, Yumi; Haruta, Shin; Morimoto, Sho; Wang, Yong; Sakai, Yoriko; Hattori, Masahira; Aizawa, Shin-ichi; Nagashima, Kenji V. P.; Masuda, Sachiko; Hattori, Tsutomu; Yamashita, Akifumi; Bao, Zhihua; Hayatsu, Masahito; Kajiya-Kanegae, Hiromi; Yoshinaga, Ikuo; Sakamoto, Kazunori; Toyota, Koki; Nakao, Mitsuteru; Kohara, Mitsuyo; Anda, Mizue; Niwa, Rieko; Jung-Hwan, Park; Sameshima-Saito, Reiko; Tokuda, Shin-ichi; Yamamoto, Sumiko; Yamamoto, Syuji; Yokoyama, Tadashi; Akutsu, Tomoko; Nakamura, Yasukazu; Nakahira-Yanaka, Yuka; Hoshino, Yuko Takada; Hirakawa, Hideki; Mitsui, Hisayuki; Terasawa, Kimihiro; Itakura, Manabu; Sato, Shusei; Ikeda-Ohtsubo, Wakako; Sakakura, Natsuko; Kaminuma, Eli; Minamisawa, Kiwamu

    2012-01-01

    Bradyrhizobium sp. S23321 is an oligotrophic bacterium isolated from paddy field soil. Although S23321 is phylogenetically close to Bradyrhizobium japonicum USDA110, a legume symbiont, it is unable to induce root nodules in siratro, a legume often used for testing Nod factor-dependent nodulation. The genome of S23321 is a single circular chromosome, 7,231,841 bp in length, with an average GC content of 64.3%. The genome contains 6,898 potential protein-encoding genes, one set of rRNA genes, and 45 tRNA genes. Comparison of the genome structure between S23321 and USDA110 showed strong colinearity; however, the symbiosis islands present in USDA110 were absent in S23321, whose genome lacked a chaperonin gene cluster (groELS3) for symbiosis regulation found in USDA110. A comparison of sequences around the tRNA-Val gene strongly suggested that S23321 contains an ancestral-type genome that precedes the acquisition of a symbiosis island by horizontal gene transfer. Although S23321 contains a nif (nitrogen fixation) gene cluster, the organization, homology, and phylogeny of the genes in this cluster were more similar to those of photosynthetic bradyrhizobia ORS278 and BTAi1 than to those on the symbiosis island of USDA110. In addition, we found genes encoding a complete photosynthetic system, many ABC transporters for amino acids and oligopeptides, two types (polar and lateral) of flagella, multiple respiratory chains, and a system for lignin monomer catabolism in the S23321 genome. These features suggest that S23321 is able to adapt to a wide range of environments, probably including low-nutrient conditions, with multiple survival strategies in soil and rhizosphere. PMID:22452844

  3. Pancreas and cyst segmentation

    Science.gov (United States)

    Dmitriev, Konstantin; Gutenko, Ievgeniia; Nadeem, Saad; Kaufman, Arie

    2016-03-01

    Accurate segmentation of abdominal organs from medical images is an essential part of surgical planning and computer-aided disease diagnosis. Many existing algorithms are specialized for the segmentation of healthy organs. Cystic pancreas segmentation is especially challenging due to its low contrast boundaries, variability in shape, location and the stage of the pancreatic cancer. We present a semi-automatic segmentation algorithm for pancreata with cysts. In contrast to existing automatic segmentation approaches for healthy pancreas segmentation which are amenable to atlas/statistical shape approaches, a pancreas with cysts can have even higher variability with respect to the shape of the pancreas due to the size and shape of the cyst(s). Hence, fine results are better attained with semi-automatic steerable approaches. We use a novel combination of random walker and region growing approaches to delineate the boundaries of the pancreas and cysts with respective best Dice coefficients of 85.1% and 86.7%, and respective best volumetric overlap errors of 26.0% and 23.5%. Results show that the proposed algorithm for pancreas and pancreatic cyst segmentation is accurate and stable.

  4. Complete Genome Sequence of a Novel Reassortant Avian Influenza H1N2 Virus Isolated from a Domestic Sparrow in 2012

    OpenAIRE

    Xie, Zhixun; Guo, Jie; Xie, Liji; Liu, Jiabo; Pang, Yaoshan; Deng, Xianwen; Xie, Zhiqin; Fan, Qing; Luo, Sisi

    2013-01-01

    We report here the complete genome sequence of a novel H1N2 avian influenza virus strain, A/Sparrow /Guangxi/GXs-1/2012 (H1N2), isolated from a sparrow in the Guangxi Province of southern China in 2012. All of the 8 gene segments (hemagglutinin [HA], nucleoprotein [NP], matrix [M], polymerase basic 2 [PB2], neuraminidase [NA], polymerase acidic [PA], polymerase basic 1 [PB1], and nonstructural [NS] genes) of this natural recombinant virus are attributed to the Eurasian lineage, and phylogenet...

  5. Analysis of complete genome sequences of G9P[19] rotavirus strains from human and piglet with diarrhea provides evidence for whole-genome interspecies transmission of nonreassorted porcine rotavirus.

    Science.gov (United States)

    Yodmeeklin, Arpaporn; Khamrin, Pattara; Chuchaona, Watchaporn; Kumthip, Kattareeya; Kongkaew, Aphisek; Vachirachewin, Ratchaya; Okitsu, Shoko; Ushijima, Hiroshi; Maneekarn, Niwat

    2017-01-01

    Whole genomes of G9P[19] human (RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19]) and porcine (RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19]) rotaviruses concurrently detected in the same geographical area in northern Thailand were sequenced and analyzed for their genetic relationships using bioinformatic tools. The complete genome sequence of human rotavirus RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] was most closely related to those of porcine rotavirus RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19] and to those of porcine-like human and porcine rotaviruses reference strains than to those of human rotavirus reference strains. The genotype constellation of G9P[19] detected in human and piglet were identical and displayed as the G9-P[19]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genotypes with the nucleotide sequence identities of VP7, VP4, VP6, VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4, and NSP5 at 99.0%, 99.5%, 93.2%, 97.7%, 97.7%, 85.6%, 89.5%, 93.2%, 92.9%, 94.0%, and 98.1%, respectively. The findings indicate that human rotavirus strain RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] containing the genome segments of porcine genetic backbone is most likely a human rotavirus of porcine origin. Our data provide an evidence of interspecies transmission and whole-genome transmission of nonreassorted G9P[19] porcine RVA to human occurring in nature in northern Thailand. Copyright © 2016. Published by Elsevier B.V.

  6. GENOMIC FEATURES OF COTESIA PLUTELLAE POLYDNAVIRUS

    Institute of Scientific and Technical Information of China (English)

    LIUCai-ling; ZHUXiang-xiong; FuWen-jun; ZHAOMu-jun

    2003-01-01

    Polydnavirus was purified from the calyx fluid of Cotesia plutellae ovary. The genomic features of C. plutellae polydnavirus (CpPDV) were investigated. The viral genome consists of at least 12 different segments and the aggregate genome size is a lower estimate of 80kbp. By partial digestion of CpPDV DNA with BamHI and subsequent ligation with BamHI-cut plasmid Bluescript, a representative library of CpPDV genome was obtained.

  7. Evolutionary force of AT-rich repeats to trap genomic and episomal DNAs into the rice genome: lessons from endogenous pararetrovirus.

    Science.gov (United States)

    Liu, Ruifang; Koyanagi, Kanako O; Chen, Sunlu; Kishima, Yuji

    2012-12-01

    In plant genomes, the incorporation of DNA segments is not a common method of artificial gene transfer. Nevertheless, various segments of pararetroviruses have been found in plant genomes in recent decades. The rice genome contains a number of segments of endogenous rice tungro bacilliform virus-like sequences (ERTBVs), many of which are present between AT dinucleotide repeats (ATrs). Comparison of genomic sequences between two closely related rice subspecies, japonica and indica, allowed us to verify the preferential insertion of ERTBVs into ATrs. In addition to ERTBVs, the comparative analyses showed that ATrs occasionally incorporate repeat sequences including transposable elements, and a wide range of other sequences. Besides the known genomic sequences, the insertion sequences also represented DNAs of unclear origins together with ERTBVs, suggesting that ATrs have integrated episomal DNAs that would have been suspended in the nucleus. Such insertion DNAs might be trapped by ATrs in the genome in a host-dependent manner. Conversely, other simple mono- and dinucleotide sequence repeats (SSR) were less frequently involved in insertion events relative to ATrs. Therefore, ATrs could be regarded as hot spots of double-strand breaks that induce non-homologous end joining. The insertions within ATrs occasionally generated new gene-related sequences or involved structural modifications of existing genes. Likewise, in a comparison between Arabidopsis thaliana and Arabidopsis lyrata, the insertions preferred ATrs to other SSRs. Therefore ATrs in plant genomes could be considered as genomic dumping sites that have trapped various DNA molecules and may have exerted a powerful evolutionary force. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  8. Piscine reovirus: Genomic and molecular phylogenetic analysis from farmed and wild salmonids collected on the Canada/US Pacific Coast

    Science.gov (United States)

    Siah, Ahmed; Morrison, Diane B.; Fringuelli, Elena; Savage, Paul S.; Richmond, Zina; Purcell, Maureen K.; Johns, Robert; Johnson, Stewart C.; Sakasida, Sonja M.

    2015-01-01

    Piscine reovirus (PRV) is a double stranded non-enveloped RNA virus detected in farmed and wild salmonids. This study examined the phylogenetic relationships among different PRV sequence types present in samples from salmonids in Western Canada and the US, including Alaska (US), British Columbia (Canada) and Washington State (US). Tissues testing positive for PRV were partially sequenced for segment S1, producing 71 sequences that grouped into 10 unique sequence types. Sequence analysis revealed no identifiable geographical or temporal variation among the sequence types. Identical sequence types were found in fish sampled in 2001, 2005 and 2014. In addition, PRV positive samples from fish derived from Alaska, British Columbia and Washington State share identical sequence types. Comparative analysis of the phylogenetic tree indicated that Canada/US Pacific Northwest sequences formed a subgroup with some Norwegian sequence types (group II), distinct from other Norwegian and Chilean sequences (groups I, III and IV). Representative PRV positive samples from farmed and wild fish in British Columbia and Washington State were subjected to genome sequencing using next generation sequencing methods. Individual analysis of each of the 10 partial segments indicated that the Canadian and US PRV sequence types clustered separately from available whole genome sequences of some Norwegian and Chilean sequences for all segments except the segment S4. In summary, PRV was genetically homogenous over a large geographic distance (Alaska to Washington State), and the sequence types were relatively stable over a 13 year period.

  9. An Inhibitory Motif on the 5’UTR of Several Rotavirus Genome Segments Affects Protein Expression and Reverse Genetics Strategies

    Science.gov (United States)

    Papa, Guido; Eichwald, Catherine; Burrone, Oscar R.

    2016-01-01

    Rotavirus genome consists of eleven segments of dsRNA, each encoding one single protein. Viral mRNAs contain an open reading frame (ORF) flanked by relatively short untranslated regions (UTRs), whose role in the viral cycle remains elusive. Here we investigated the role of 5’UTRs in T7 polymerase-driven cDNAs expression in uninfected cells. The 5’UTRs of eight genome segments (gs3, gs5-6, gs7-11) of the simian SA11 strain showed a strong inhibitory effect on the expression of viral proteins. Decreased protein expression was due to both compromised transcription and translation and was independent of the ORF and the 3’UTR sequences. Analysis of several mutants of the 21-nucleotide long 5’UTR of gs 11 defined an inhibitory motif (IM) represented by its primary sequence rather than its secondary structure. IM was mapped to the 5’ terminal 6-nucleotide long pyrimidine-rich tract 5’-GGY(U/A)UY-3’. The 5’ terminal position within the mRNA was shown to be essentially required, as inhibitory activity was lost when IM was moved to an internal position. We identified two mutations (insertion of a G upstream the 5’UTR and the U to A mutation of the fifth nucleotide of IM) that render IM non-functional and increase the transcription and translation rate to levels that could considerably improve the efficiency of virus helper-free reverse genetics strategies. PMID:27846320

  10. Genome sequence of Shigella flexneri strain SP1, a diarrheal isolate that encodes an extended-spectrum β-lactamase (ESBL).

    Science.gov (United States)

    Shen, Ping; Fan, Jianzhong; Guo, Lihua; Li, Jiahua; Li, Ang; Zhang, Jing; Ying, Chaoqun; Ji, Jinru; Xu, Hao; Zheng, Beiwen; Xiao, Yonghong

    2017-05-12

    Shigellosis is the most common cause of gastrointestinal infections in developing countries. In China, the species most frequently responsible for shigellosis is Shigella flexneri. S. flexneri remains largely unexplored from a genomic standpoint and is still described using a vocabulary based on biochemical and serological properties. Moreover, increasing numbers of ESBL-producing Shigella strains have been isolated from clinical samples. Despite this, only a few cases of ESBL-producing Shigella have been described in China. Therefore, a better understanding of ESBL-producing Shigella from a genomic standpoint is required. In this study, a S. flexneri type 1a isolate SP1 harboring bla CTX-M-14 , which was recovered from the patient with diarrhea, was subjected to whole genome sequencing. The draft genome assembly of S. flexneri strain SP1 consisted of 4,592,345 bp with a G+C content of 50.46%. RAST analysis revealed the genome contained 4798 coding sequences (CDSs) and 100 RNA-encoding genes. We detected one incomplete prophage and six candidate CRISPR loci in the genome. In vitro antimicrobial susceptibility testing demonstrated that strain SP1 is resistant to ampicillin, amoxicillin/clavulanic acid, cefazolin, ceftriaxone and trimethoprim. In silico analysis detected genes mediating resistance to aminoglycosides, β-lactams, phenicol, tetracycline, sulphonamides, and trimethoprim. The bla CTX-M-14 gene was located on an IncFII2 plasmid. A series of virulence factors were identified in the genome. In this study, we report the whole genome sequence of a bla CTX-M-14 -encoding S. flexneri strain SP1. Dozens of resistance determinants were detected in the genome and may be responsible for the multidrug-resistance of this strain, although further confirmation studies are warranted. Numerous virulence factors identified in the strain suggest that isolate SP1 is potential pathogenic. The availability of the genome sequence and comparative analysis with other S

  11. Flexibility and symmetry of prokaryotic genome rearrangement reveal lineage-associated core-gene-defined genome organizational frameworks.

    Science.gov (United States)

    Kang, Yu; Gu, Chaohao; Yuan, Lina; Wang, Yue; Zhu, Yanmin; Li, Xinna; Luo, Qibin; Xiao, Jingfa; Jiang, Daquan; Qian, Minping; Ahmed Khan, Aftab; Chen, Fei; Zhang, Zhang; Yu, Jun

    2014-11-25

    The prokaryotic pangenome partitions genes into core and dispensable genes. The order of core genes, albeit assumed to be stable under selection in general, is frequently interrupted by horizontal gene transfer and rearrangement, but how a core-gene-defined genome maintains its stability or flexibility remains to be investigated. Based on data from 30 species, including 425 genomes from six phyla, we grouped core genes into syntenic blocks in the context of a pangenome according to their stability across multiple isolates. A subset of the core genes, often species specific and lineage associated, formed a core-gene-defined genome organizational framework (cGOF). Such cGOFs are either single segmental (one-third of the species analyzed) or multisegmental (the rest). Multisegment cGOFs were further classified into symmetric or asymmetric according to segment orientations toward the origin-terminus axis. The cGOFs in Gram-positive species are exclusively symmetric and often reversible in orientation, as opposed to those of the Gram-negative bacteria, which are all asymmetric and irreversible. Meanwhile, all species showing strong strand-biased gene distribution contain symmetric cGOFs and often specific DnaE (α subunit of DNA polymerase III) isoforms. Furthermore, functional evaluations revealed that cGOF genes are hub associated with regard to cellular activities, and the stability of cGOF provides efficient indexes for scaffold orientation as demonstrated by assembling virtual and empirical genome drafts. cGOFs show species specificity, and the symmetry of multisegmental cGOFs is conserved among taxa and constrained by DNA polymerase-centric strand-biased gene distribution. The definition of species-specific cGOFs provides powerful guidance for genome assembly and other structure-based analysis. Prokaryotic genomes are frequently interrupted by horizontal gene transfer (HGT) and rearrangement. To know whether there is a set of genes not only conserved in position

  12. Usher syndrome type 1-associated cadherins shape the photoreceptor outer segment.

    Science.gov (United States)

    Schietroma, Cataldo; Parain, Karine; Estivalet, Amrit; Aghaie, Asadollah; Boutet de Monvel, Jacques; Picaud, Serge; Sahel, José-Alain; Perron, Muriel; El-Amraoui, Aziz; Petit, Christine

    2017-06-05

    Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis , these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23 , encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15-containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal. © 2017 Schietroma et al.

  13. Comparative genomics reveals insights into avian genome evolution and adaptation

    Science.gov (United States)

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun

    2015-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  14. STUDY OF OUTCOME AND COMPLICATIONS OF ANORECTAL MYECTOMY IN CHILDREN WITH ULTRASHORT SEGMENT HIRSCHSPRUNG’S DISEASE

    Directory of Open Access Journals (Sweden)

    J. Ahmadi

    2006-08-01

    Full Text Available The term ultra short is not clearly defined in ultrashort-segment Hirschsprung’s disease. The limited extent of the ultrashort-segment Hirschsprung’s disease allows for treatment with extended sphincteromyectomy. In anal sphincter achalasia, anal sphincter dilatation under general anesthesia may be sufficient to treat the condition; in cases with persistent constipation, sphincteromyectomy is indicated. Some investigators believe that the term ultrashort-segment Hirschsprung’s disease and anorectal achalasia are the same. Our study was performed to define the efficacy of transanal anorectal ‎myectomy and digital dilation under general anesthesia in children with ultra short-segment Hirschsprung’s disease and internal anal sphincter achalasia. A total of 87 patients were included in our study. Among these, 15 cases (17.24% were female and 72 (82.76% were male. In 12 patients (13.79%, the muscle strip had normal ganglion cells in both distal and proximal ends (group A. In 10 patients (11.49%, there was not any ganglion cell in both distal and proximal ends of muscle strip (group B. In 65 patients (74.71%, there were normal ganglion cells in proximal end with no ganglion cell in distal end of the muscle strip (group C. ‎There was no meaningful differences between group A, B and C in their outcome and partially or complete response to anorectal myectomy. We recommend the term “sluggish rectum” for these patients instead of ultrashort-segment Hirschsprung’s disease or internal anal sphincter achalasia that causes ambiguity in diagnosis and treatment of these cases.

  15. Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation

    Science.gov (United States)

    2013-01-01

    Background Lyme disease is caused by spirochete bacteria from the Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) species complex. To reconstruct the evolution of B. burgdorferi s.l. and identify the genomic basis of its human virulence, we compared the genomes of 23 B. burgdorferi s.l. isolates from Europe and the United States, including B. burgdorferi sensu stricto (B. burgdorferi s.s., 14 isolates), B. afzelii (2), B. garinii (2), B. “bavariensis” (1), B. spielmanii (1), B. valaisiana (1), B. bissettii (1), and B. “finlandensis” (1). Results Robust B. burgdorferi s.s. and B. burgdorferi s.l. phylogenies were obtained using genome-wide single-nucleotide polymorphisms, despite recombination. Phylogeny-based pan-genome analysis showed that the rate of gene acquisition was higher between species than within species, suggesting adaptive speciation. Strong positive natural selection drives the sequence evolution of lipoproteins, including chromosomally-encoded genes 0102 and 0404, cp26-encoded ospC and b08, and lp54-encoded dbpA, a07, a22, a33, a53, a65. Computer simulations predicted rapid adaptive radiation of genomic groups as population size increases. Conclusions Intra- and inter-specific pan-genome sizes of B. burgdorferi s.l. expand linearly with phylogenetic diversity. Yet gene-acquisition rates in B. burgdorferi s.l. are among the lowest in bacterial pathogens, resulting in high genome stability and few lineage-specific genes. Genome adaptation of B. burgdorferi s.l. is driven predominantly by copy-number and sequence variations of lipoprotein genes. New genomic groups are likely to emerge if the current trend of B. burgdorferi s.l. population expansion continues. PMID:24112474

  16. Why segmentation matters: experience-driven segmentation errors impair “morpheme” learning

    Science.gov (United States)

    Finn, Amy S.; Hudson Kam, Carla L.

    2015-01-01

    We ask whether an adult learner’s knowledge of their native language impedes statistical learning in a new language beyond just word segmentation (as previously shown). In particular, we examine the impact of native-language word-form phonotactics on learners’ ability to segment words into their component morphemes and learn phonologically triggered variation of morphemes. We find that learning is impaired when words and component morphemes are structured to conflict with a learner’s native-language phonotactic system, but not when native-language phonotactics do not conflict with morpheme boundaries in the artificial language. A learner’s native-language knowledge can therefore have a cascading impact affecting word segmentation and the morphological variation that relies upon proper segmentation. These results show that getting word segmentation right early in learning is deeply important for learning other aspects of language, even those (morphology) that are known to pose a great difficulty for adult language learners. PMID:25730305

  17. Analysis of the Genome and Chromium Metabolism-Related Genes of Serratia sp. S2.

    Science.gov (United States)

    Dong, Lanlan; Zhou, Simin; He, Yuan; Jia, Yan; Bai, Qunhua; Deng, Peng; Gao, Jieying; Li, Yingli; Xiao, Hong

    2018-05-01

    This study is to investigate the genome sequence of Serratia sp. S2. The genomic DNA of Serratia sp. S2 was extracted and the sequencing library was constructed. The sequencing was carried out by Illumina 2000 and complete genomic sequences were obtained. Gene function annotation and bioinformatics analysis were performed by comparing with the known databases. The genome size of Serratia sp. S2 was 5,604,115 bp and the G+C content was 57.61%. There were 5373 protein coding genes, and 3732, 3614, and 3942 genes were respectively annotated into the GO, KEGG, and COG databases. There were 12 genes related to chromium metabolism in the Serratia sp. S2 genome. The whole genome sequence of Serratia sp. S2 is submitted to the GenBank database with gene accession number of LNRP00000000. Our findings may provide theoretical basis for the subsequent development of new biotechnology to repair environmental chromium pollution.

  18. Outline of a genome navigation system based on the properties of GA-sequences and their flanks.

    Directory of Open Access Journals (Sweden)

    Guenter Albrecht-Buehler

    Full Text Available Introducing a new method to visualize large stretches of genomic DNA (see Appendix S1 the article reports that most GA-sequences [1] shared chains of tetra-GA-motifs and contained upstream poly(A-segments. Although not integral parts of them, Alu-elements were found immediately upstream of all human and chimpanzee GA-sequences with an upstream poly(A-segment. The article hypothesizes that genome navigation uses these properties of GA-sequences in the following way. (1 Poly(A binding proteins interact with the upstream poly(A-segments and arrange adjacent GA-sequences side-by-side ('GA-ribbon', while folding the intervening DNA sequences between them into loops ('associated DNA-loops'. (2 Genome navigation uses the GA-ribbon as a search path for specific target genes that is up to 730-fold shorter than the full-length chromosome. (3 As to the specificity of the search, each molecule of a target protein is assumed to catalyze the formation of specific oligomers from a set of transcription factors that recognize tetra-GA-motifs. Their specific combinations of tetra-GA motifs are assumed to be present in the particular GA-sequence whose associated loop contains the gene for the target protein. As long as the target protein is abundant in the cell it produces sufficient numbers of such oligomers which bind to their specific GA-sequences and, thereby, inhibit locally the transcription of the target protein in the associated loop. However, if the amount of target protein drops below a certain threshold, the resultant reduction of specific oligomers leaves the corresponding GA-sequence 'denuded'. In response, the associated DNA-loop releases its nucleosomes and allows transcription of the target protein to proceed. (4 The Alu-transcripts may help control the general background of protein synthesis proportional to the number of transcriptionally active associated loops, especially in stressed cells. (5 The model offers a new mechanism of co-regulation of

  19. Limitations and pitfalls of Couinaud's segmentation of the liver in transaxial Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Strunk, H.; Textor, J.; Willinek, W. [Department of Radiology, University of Bonn, Sigmund Freud-Strasse 25, 53105, Bonn (Germany); Stuckmann, G. [Department of Radiology, Kantonsspital Winterthur (Switzerland)

    2003-11-01

    The segmental anatomy of the human liver has become a matter of increasing interest to the radiologist, especially in view of the need for an accurate preoperative localization of focal hepatic lesions. In this review article first an overview of the different classical concepts for delineating segmental and subsegmental anatomy on US, transaxial CT, and MR images is given. Essentially, these procedures are based on Couinaud's concept of three vertical planes that divide the liver into four segments and of a transverse scissura that further subdivides the segments into two subsegments each. In a second part, the limitations of these methods are delineated and discussed with the conclusion that if exact preoperative localization of hepatic lesions is needed, tumor must be located relative to the avascular planes between the different portal territories. (orig.)

  20. Genome instability in Lactobacillus rhamnosus GG

    NARCIS (Netherlands)

    Sybesma, W.; Molenaar, D.; IJcken, W. van; Venema, K.; Korta, R.

    2013-01-01

    We describe here a comparative genome analysis of three dairy product isolates of Lactobacillus rhamnosus GG (LGG) and the ATCC 53103 reference strain to the published genome sequence of L. rhamnosus GG. The analysis showed that in two of three isolates, major DNA segments were missing from the

  1. Analysis of the complete genome sequence of Nocardia seriolae UTF1, the causative agent of fish nocardiosis: The first reference genome sequence of the fish pathogenic Nocardia species.

    Science.gov (United States)

    Yasuike, Motoshige; Nishiki, Issei; Iwasaki, Yuki; Nakamura, Yoji; Fujiwara, Atushi; Shimahara, Yoshiko; Kamaishi, Takashi; Yoshida, Terutoyo; Nagai, Satoshi; Kobayashi, Takanori; Katoh, Masaya

    2017-01-01

    Nocardiosis caused by Nocardia seriolae is one of the major threats in the aquaculture of Seriola species (yellowtail; S. quinqueradiata, amberjack; S. dumerili and kingfish; S. lalandi) in Japan. Here, we report the complete nucleotide genome sequence of N. seriolae UTF1, isolated from a cultured yellowtail. The genome is a circular chromosome of 8,121,733 bp with a G+C content of 68.1% that encodes 7,697 predicted proteins. In the N. seriolae UTF1 predicted genes, we found orthologs of virulence factors of pathogenic mycobacteria and human clinical Nocardia isolates involved in host cell invasion, modulation of phagocyte function and survival inside the macrophages. The virulence factor candidates provide an essential basis for understanding their pathogenic mechanisms at the molecular level by the fish nocardiosis research community in future studies. We also found many potential antibiotic resistance genes on the N. seriolae UTF1 chromosome. Comparative analysis with the four existing complete genomes, N. farcinica IFM 10152, N. brasiliensis HUJEG-1 and N. cyriacigeorgica GUH-2 and N. nova SH22a, revealed that 2,745 orthologous genes were present in all five Nocardia genomes (core genes) and 1,982 genes were unique to N. seriolae UTF1. In particular, the N. seriolae UTF1 genome contains a greater number of mobile elements and genes of unknown function that comprise the differences in structure and gene content from the other Nocardia genomes. In addition, a lot of the N. seriolae UTF1-specific genes were assigned to the ABC transport system. Because of limited resources in ocean environments, these N. seriolae UTF1 specific ABC transporters might facilitate adaptation strategies essential for marine environment survival. Thus, the availability of the complete N. seriolae UTF1 genome sequence will provide a valuable resource for comparative genomic studies of N. seriolae isolates, as well as provide new insights into the ecological and functional diversity of

  2. Sequence analysis of the whole genomes of five African human G9 rotavirus strains.

    Science.gov (United States)

    Nyaga, Martin M; Jere, Khuzwayo C; Peenze, Ina; Mlera, Luwanika; van Dijk, Alberdina A; Seheri, Mapaseka L; Mphahlele, M Jeffrey

    2013-06-01

    The G9 rotaviruses are amongst the most common global rotavirus strains causing severe childhood diarrhoea. However, the whole genomes of only a few G9 rotaviruses have been fully sequenced and characterised of which only one G9P[6] and one G9P[8] are from Africa. We determined the consensus sequence of the whole genomes of five African human group A G9 rotavirus strains, four G9P[8] strains and one G9P[6] strain collected in Cameroon (central Africa), Kenya (eastern Africa), South Africa and Zimbabwe (southern Africa) in 1999, 2009 and 2010. Strain RVA/Human-wt/ZWE/MRC-DPRU1723/2009/G9P[8] from Zimbabwe, RVA/Human-wt/ZAF/MRC-DPRU4677/2010/G9P[8] from South Africa, RVA/Human-wt/CMR/1424/2009/G9P[8] from Cameroon and RVA/Human-wt/KEN/MRC-DPRU2427/2010/G9P[8] from Kenya were on a Wa-like genetic backbone and were genotyped as G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. Strain RVA/Human-wt/ZAF/MRC-DPRU9317/1999/G9P[6] from South Africa was genotyped as G9-P[6]-I2-R2-C2-M2-A2-N1-T2-E2-H2. Rotavirus A strain MRC-DPRU9317 is the second G9 strain to be reported on a DS-1-like genetic backbone, the other being RVA/Human-wt/ZAF/GR10924/1999/G9P[6]. MRC-DPRU9317 was found to be a reassortant between DS-1-like (I2, R2, C2, M2, A2, T2, E2 and H2) and Wa-like (N1) genome segments. All the genome segments of the five strains grouped strictly according to their genotype Wa- or DS-1-like clusters. Within their respective genotypes, the genome segments of the three G9 study strains from southern Africa clustered most closely with rotaviruses from the same geographical origin and with those with the same G and P types. The highest nucleotide identity of genome segments of the study strains from eastern and central Africa regions on a Wa-like backbone was not limited to rotaviruses with G9P[8] genotypes only, they were also closely related to G12P[6], G8P[8], G1P[8] and G11P[25] rotaviruses, indicating a close inter-genotype relationship between the G9 and other rotavirus genotypes

  3. Proteus genomic island 1 (PGI1), a new resistance genomic island from two Proteus mirabilis French clinical isolates.

    Science.gov (United States)

    Siebor, Eliane; Neuwirth, Catherine

    2014-12-01

    To analyse the genetic environment of the antibiotic resistance genes in two clinical Proteus mirabilis isolates resistant to multiple antibiotics. PCR, gene walking and whole-genome sequencing were used to determine the sequence of the resistance regions, the surrounding genetic structure and the flanking chromosomal regions. A genomic island of 81.1 kb named Proteus genomic island 1 (PGI1) located at the 3'-end of trmE (formerly known as thdF) was characterized. The large MDR region of PGI1 (55.4 kb) included a class 1 integron (aadB and aadA2) and regions deriving from several transposons: Tn2 (blaTEM-135), Tn21, Tn6020-like transposon (aphA1b), a hybrid Tn502/Tn5053 transposon, Tn501, a hybrid Tn1696/Tn1721 transposon [tetA(A)] carrying a class 1 integron (aadA1) and Tn5393 (strA and strB). Several ISs were also present (IS4321, IS1R and IS26). The PGI1 backbone (25.7 kb) was identical to that identified in Salmonella Heidelberg SL476 and shared some identity with the Salmonella genomic island 1 (SGI1) backbone. An IS26-mediated recombination event caused the division of the MDR region into two parts separated by a large chromosomal DNA fragment of 197 kb, the right end of PGI1 and this chromosomal sequence being in inverse orientation. PGI1 is a new resistance genomic island from P. mirabilis belonging to the same island family as SGI1. The role of PGI1 in the spread of antimicrobial resistance genes among Enterobacteriaceae of medical importance needs to be evaluated. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Genomic interrogation of mechanism(s) underlying cellular responses to toxicants

    International Nuclear Information System (INIS)

    Amin, Rupesh P.; Hamadeh, Hisham K.; Bushel, Pierre R.; Bennett, Lee; Afshari, Cynthia A.; Paules, Richard S.

    2002-01-01

    Assessment of the impact of xenobiotic exposure on human health and disease progression is complex. Knowledge of mode(s) of action, including mechanism(s) contributing to toxicity and disease progression, is valuable for evaluating compounds. Toxicogenomics, the subdiscipline which merges genomics with toxicology, holds the promise to contributing significantly toward the goal of elucidating mechanism(s) by studying genome-wide effects of xenobiotics. Global gene expression profiling, revolutionized by microarray technology and a crucial aspect of a toxicogenomic study, allows measuring transcriptional modulation of thousands of genes following exposure to a xenobiotic. We use our results from previous studies on compounds representing two different classes of xenobiotics (barbiturate and peroxisome proliferator) to discuss the application of computational approaches for analyzing microarray data to elucidate mechanism(s) underlying cellular responses to toxicants. In particular, our laboratory demonstrated that chemical-specific patterns of gene expression can be revealed using cDNA microarrays. Transcript profiling provides discrimination between classes of toxicants, as well as, genome-wide insight into mechanism(s) of toxicity and disease progression. Ultimately, the expectation is that novel approaches for predicting xenobiotic toxicity in humans will emerge from such information

  5. [Association of muscle segment homeobox gene 1 polymorphisms with nonsyndromic cleft lip with or without cleft palate].

    Science.gov (United States)

    Zhang, Li; Tang, Jun-Ling; Liang, Shang-Zheng

    2008-06-01

    Muscle segment homeobox gene (MSX)1 has been proposed as a gene in which mutations may contribute to nonsyndromic cleft lip with or without cleft palate (NSCL/P). To study MSX1 polymorphisms in NSCL/ P by means of polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP), and investigate the association of MSX1 exons 1 polymorphisms with NSCL/P. DNA were extracted from blood samples from NSCL/P and unrelated normal subjects. Genome DNA from peripheral leukocyte with these blood samples were extracted, which was used as template to amplify desired gene fragment of MSX1 exons 1 by means of polymerase chain reaction (PCR). The PCR products were examined by single-strand conformation polymorphism (SSCP). The MSX1 exons 1 polymorphisms were examined by sequencing if mutations were found. MSX1 genes of exon 1 mutation was not been found in the NSCL/P and unrelated normal subjects by SSCP. No correlation between MSX1 exon 1 and NSCL/P was found. MSX1 exon 1 may not be a key gene (susceptibility gene) in NSCL/P.

  6. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome.

    Science.gov (United States)

    Yu, Shoukai; Lemos, Bernardo

    2016-12-31

    Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. A high-resolution view of genome-wide pneumococcal transformation.

    Directory of Open Access Journals (Sweden)

    Nicholas J Croucher

    Full Text Available Transformation is an important mechanism of microbial evolution through which bacteria have been observed to rapidly adapt in response to clinical interventions; examples include facilitating vaccine evasion and the development of penicillin resistance in the major respiratory pathogen Streptococcus pneumoniae. To characterise the process in detail, the genomes of 124 S. pneumoniae isolates produced through in vitro transformation were sequenced and recombination events detected. Those recombinations importing the selected marker were independent of unselected events elsewhere in the genome, the positions of which were not significantly affected by local sequence similarity between donor and recipient or mismatch repair processes. However, both types of recombinations were sometimes mosaic, with multiple non-contiguous segments originating from the same molecule of donor DNA. The lengths of the unselected events were exponentially distributed with a mean of 2.3 kb, implying that recombinations are stochastically resolved with a fixed per base probability of 4.4×10(-4 bp(-1. This distribution of recombination sizes, coupled with an observed under representation of large insertions within transferred sequence, suggests transformation has the potential to reduce the size of bacterial genomes, and is unlikely to act as an efficient mechanism for the uptake of accessory genomic loci.

  8. Genome Reduction in Psychromonas Species within the Gut of an Amphipod from the Ocean’s Deepest Point

    KAUST Repository

    Zhang, Weipeng

    2018-04-25

    Amphipods are the dominant scavenging metazoan species in the Mariana Trench, the deepest known point in Earth\\'s oceans. Here the gut microbiota of the amphipod Hirondellea gigas collected from the Challenger and Sirena Deeps of the Mariana Trench were investigated. The 11 amphipod individuals included for analyses were dominated by Psychromonas, of which a nearly complete genome was successfully recovered (designated CDP1). Compared with previously reported free-living Psychromonas strains, CDP1 has a highly reduced genome. Genome alignment showed deletion of the trimethylamine N-oxide (TMAO) reducing gene cluster in CDP1, suggesting that the

  9. Fast CSF MRI for brain segmentation; Cross-validation by comparison with 3D T1-based brain segmentation methods.

    Science.gov (United States)

    van der Kleij, Lisa A; de Bresser, Jeroen; Hendrikse, Jeroen; Siero, Jeroen C W; Petersen, Esben T; De Vis, Jill B

    2018-01-01

    In previous work we have developed a fast sequence that focusses on cerebrospinal fluid (CSF) based on the long T2 of CSF. By processing the data obtained with this CSF MRI sequence, brain parenchymal volume (BPV) and intracranial volume (ICV) can be automatically obtained. The aim of this study was to assess the precision of the BPV and ICV measurements of the CSF MRI sequence and to validate the CSF MRI sequence by comparison with 3D T1-based brain segmentation methods. Ten healthy volunteers (2 females; median age 28 years) were scanned (3T MRI) twice with repositioning in between. The scan protocol consisted of a low resolution (LR) CSF sequence (0:57min), a high resolution (HR) CSF sequence (3:21min) and a 3D T1-weighted sequence (6:47min). Data of the HR 3D-T1-weighted images were downsampled to obtain LR T1-weighted images (reconstructed imaging time: 1:59 min). Data of the CSF MRI sequences was automatically segmented using in-house software. The 3D T1-weighted images were segmented using FSL (5.0), SPM12 and FreeSurfer (5.3.0). The mean absolute differences for BPV and ICV between the first and second scan for CSF LR (BPV/ICV: 12±9/7±4cc) and CSF HR (5±5/4±2cc) were comparable to FSL HR (9±11/19±23cc), FSL LR (7±4, 6±5cc), FreeSurfer HR (5±3/14±8cc), FreeSurfer LR (9±8, 12±10cc), and SPM HR (5±3/4±7cc), and SPM LR (5±4, 5±3cc). The correlation between the measured volumes of the CSF sequences and that measured by FSL, FreeSurfer and SPM HR and LR was very good (all Pearson's correlation coefficients >0.83, R2 .67-.97). The results from the downsampled data and the high-resolution data were similar. Both CSF MRI sequences have a precision comparable to, and a very good correlation with established 3D T1-based automated segmentations methods for the segmentation of BPV and ICV. However, the short imaging time of the fast CSF MRI sequence is superior to the 3D T1 sequence on which segmentation with established methods is performed.

  10. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows

    Directory of Open Access Journals (Sweden)

    Van Tassell Curtis P

    2011-08-01

    Full Text Available Abstract Background Genome-wide association analysis is a powerful tool for annotating phenotypic effects on the genome and knowledge of genes and chromosomal regions associated with dairy phenotypes is useful for genome and gene-based selection. Here, we report results of a genome-wide analysis of predicted transmitting ability (PTA of 31 production, health, reproduction and body conformation traits in contemporary Holstein cows. Results Genome-wide association analysis identified a number of candidate genes and chromosome regions associated with 31 dairy traits in contemporary U.S. Holstein cows. Highly significant genes and chromosome regions include: BTA13's GNAS region for milk, fat and protein yields; BTA7's INSR region and BTAX's LOC520057 and GRIA3 for daughter pregnancy rate, somatic cell score and productive life; BTA2's LRP1B for somatic cell score; BTA14's DGAT1-NIBP region for fat percentage; BTA1's FKBP2 for protein yields and percentage, BTA26's MGMT and BTA6's PDGFRA for protein percentage; BTA18's 53.9-58.7 Mb region for service-sire and daughter calving ease and service-sire stillbirth; BTA18's PGLYRP1-IGFL1 region for a large number of traits; BTA18's LOC787057 for service-sire stillbirth and daughter calving ease; BTA15's CD82, BTA23's DST and the MOCS1-LRFN2 region for daughter stillbirth; and BTAX's LOC520057 and GRIA3 for daughter pregnancy rate. For body conformation traits, BTA11, BTAX, BTA10, BTA5, and BTA26 had the largest concentrations of SNP effects, and PHKA2 of BTAX and REN of BTA16 had the most significant effects for body size traits. For body shape traits, BTAX, BTA19 and BTA3 were most significant. Udder traits were affected by BTA16, BTA22, BTAX, BTA2, BTA10, BTA11, BTA20, BTA22 and BTA25, teat traits were affected by BTA6, BTA7, BTA9, BTA16, BTA11, BTA26 and BTA17, and feet/legs traits were affected by BTA11, BTA13, BTA18, BTA20, and BTA26. Conclusions Genome-wide association analysis identified a number of

  11. QnrS1- and Aac(6’-Ib-cr-producing Escherichia coli among isolates from animals of different sources: susceptibility and genomic characterization

    Directory of Open Access Journals (Sweden)

    Daniela eJones-Dias

    2016-05-01

    Full Text Available Salmonella enterica and Escherichia coli can inhabit humans and animals from multiple origins. These bacteria are often associated with gastroenteritis in animals, being a frequent cause of resistant zoonotic infections. In fact, bacteria from animals can be transmitted to humans through the food chain and direct contact. In this study, we aimed to assess the antibiotic susceptibility of a collection of S. enterica and E. coli recovered from animals of different sources, performing a genomic comparison of the plasmid-mediated quinolone resistance (PMQR-producing isolates detected.Antibiotic susceptibility testing revealed a high number of non wild-type isolates for fluoroquinolones among S. enterica recovered from poultry isolates. In turn, the frequency of non-wild-type E. coli to nalidixic acid and ciprofloxacin was higher in food-producing animals than in companion or zoo animals. Globally, we detected two qnrS1 and two aac(6’-Ib-cr in E. coli isolates recovered from animals of different origins. The genomic characterization of QnrS1-producing E. coli showed high genomic similarity (O86:H12 and ST2297, although they have been recovered from a healthy turtle dove from a Zoo Park, and from a dog showing symptoms of infection. The qnrS1 gene was encoded in a IncN plasmid, also carrying blaTEM-1-containing Tn3. Isolates harboring aac(6’-Ib-cr were detected in two captive bottlenose dolphins, within a time span of two years. The additional antibiotic resistance genes of the two aac(6’-Ib-cr-positive isolates (blaOXA-1, blaTEM-1, blaCTX-M-15, catB3, aac(3-IIa and tetA were enclosed in IncFIA plasmids that differed in a single transposase and 60 single nucleotide variants. The isolates could be assigned to the same genetic sublineage – ST131 fimH30-Rx (O25:H4, confirming clonal spread. PMQR-producing isolates were associated with symptomatic and asymptomatic hosts, which highlight the aptitude of E. coli to act as silent vehicles, allowing

  12. Family genome browser: visualizing genomes with pedigree information.

    Science.gov (United States)

    Juan, Liran; Liu, Yongzhuang; Wang, Yongtian; Teng, Mingxiang; Zang, Tianyi; Wang, Yadong

    2015-07-15

    Families with inherited diseases are widely used in Mendelian/complex disease studies. Owing to the advances in high-throughput sequencing technologies, family genome sequencing becomes more and more prevalent. Visualizing family genomes can greatly facilitate human genetics studies and personalized medicine. However, due to the complex genetic relationships and high similarities among genomes of consanguineous family members, family genomes are difficult to be visualized in traditional genome visualization framework. How to visualize the family genome variants and their functions with integrated pedigree information remains a critical challenge. We developed the Family Genome Browser (FGB) to provide comprehensive analysis and visualization for family genomes. The FGB can visualize family genomes in both individual level and variant level effectively, through integrating genome data with pedigree information. Family genome analysis, including determination of parental origin of the variants, detection of de novo mutations, identification of potential recombination events and identical-by-decent segments, etc., can be performed flexibly. Diverse annotations for the family genome variants, such as dbSNP memberships, linkage disequilibriums, genes, variant effects, potential phenotypes, etc., are illustrated as well. Moreover, the FGB can automatically search de novo mutations and compound heterozygous variants for a selected individual, and guide investigators to find high-risk genes with flexible navigation options. These features enable users to investigate and understand family genomes intuitively and systematically. The FGB is available at http://mlg.hit.edu.cn/FGB/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. SEGMENTING THE U.S.A. NON-TRAVEL MARKET

    Directory of Open Access Journals (Sweden)

    Wayne W. Smith

    2011-12-01

    Full Text Available Tourism marketers focus on understanding the many different segments that comprise their visitors. Understanding these segments’ motivations for travel is important in order to motivate repeat visitation and to attract like-minded consumers to visit. But how about those who do not travel? This surprisingly large percentage of the population is a lost opportunity for the industry. The research that follows, based upon a very significant USA-based sample of non-travelers, suggests that non-travelers can be effectively segmented and targeted. Understanding these segments will better allow vacation marketers to craft their product and their message, hopefully bringing more travelers to the mix.

  14. Bat biology, genomes, and the Bat1K project

    DEFF Research Database (Denmark)

    Teeling, Emma C; Vernes, Sonja C; Dávalos, Liliana M

    2018-01-01

    and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n∼1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>148 members as of writing), computational scientists, conservation organizations, genome technologists, and any...

  15. S1 constrains S4 in the voltage sensor domain of Kv7.1 K+ channels.

    Directory of Open Access Journals (Sweden)

    Yoni Haitin

    Full Text Available Voltage-gated K(+ channels comprise a central pore enclosed by four voltage-sensing domains (VSDs. While movement of the S4 helix is known to couple to channel gate opening and closing, the nature of S4 motion is unclear. Here, we substituted S4 residues of Kv7.1 channels by cysteine and recorded whole-cell mutant channel currents in Xenopus oocytes using the two-electrode voltage-clamp technique. In the closed state, disulfide and metal bridges constrain residue S225 (S4 nearby C136 (S1 within the same VSD. In the open state, two neighboring I227 (S4 are constrained at proximity while residue R228 (S4 is confined close to C136 (S1 of an adjacent VSD. Structural modeling predicts that in the closed to open transition, an axial rotation (approximately 190 degrees and outward translation of S4 (approximately 12 A is accompanied by VSD rocking. This large sensor motion changes the intra-VSD S1-S4 interaction to an inter-VSD S1-S4 interaction. These constraints provide a ground for cooperative subunit interactions and suggest a key role of the S1 segment in steering S4 motion during Kv7.1 gating.

  16. Single-segment and double-segment INTACS for post-LASIK ectasia.

    Directory of Open Access Journals (Sweden)

    Hassan Hashemi

    2014-09-01

    Full Text Available The objective of the present study was to compare single segment and double segment INTACS rings in the treatment of post-LASIK ectasia. In this interventional study, 26 eyes with post-LASIK ectasia were assessed. Ectasia was defined as progressive myopia regardless of astigmatism, along with topographic evidence of inferior steepening of the cornea after LASIK. We excluded those with a history of intraocular surgery, certain eye conditions, and immune disorders, as well as monocular, pregnant and lactating patients. A total of 11 eyes had double ring and 15 eyes had single ring implantation. Visual and refractive outcomes were compared with preoperative values based on the number of implanted INTACS rings. Pre and postoperative spherical equivalent were -3.92 and -2.29 diopter (P=0.007. The spherical equivalent decreased by 1 ± 3.2 diopter in the single-segment group and 2.56 ± 1.58 diopter in the double-segment group (P=0.165. Mean preoperative astigmatism was 2.38 ± 1.93 diopter which decreased to 2.14 ± 1.1 diopter after surgery (P=0.508; 0.87 ± 1.98 diopter decrease in the single-segment group and 0.67 ± 1.2 diopter increase in the double-segment group (P=0.025. Nineteen patients (75% gained one or two lines, and only three, who were all in the double-segment group, lost one or two lines of best corrected visual acuity. The spherical equivalent and vision significantly decreased in all patients. In these post-LASIK ectasia patients, the spherical equivalent was corrected better with two segments compared to single segment implantation; nonetheless, the level of astigmatism in the single-segment group was significantly better than that in the double-segment group.

  17. Software test plan/description/report (STP/STD/STR) for the enhanced logistics intratheater support tool (ELIST) global data segment. Version 8.1.0.0, Database Instance Segment Version 8.1.0.0, ...[elided] and Reference Data Segment Version 8.1.0.0 for Solaris 7; TOPICAL

    International Nuclear Information System (INIS)

    Dritz, K.; Absil-Mills, M.; Jacobs, K.

    2002-01-01

    This document is the Software Test Plan/Description/Report (STP/STD/STR) for the DII COE Enhanced Logistics Intratheater Support Tool (ELIST) mission application. It combines in one document the information normally presented separately in a Software Test Plan, a Software Test Description, and a Software Test Report; it also presents this information in one place for all the segments of the ELIST mission application. The primary purpose of this document is to show that ELIST has been tested by the developer and found, by that testing, to install, deinstall, and work properly. The information presented here is detailed enough to allow the reader to repeat the testing independently. The remainder of this document is organized as follows. Section 1.1 identifies the ELIST mission application. Section 2 is the list of all documents referenced in this document. Section 3, the Software Test Plan, outlines the testing methodology and scope-the latter by way of a concise summary of the tests performed. Section 4 presents detailed descriptions of the tests, along with the expected and observed results; that section therefore combines the information normally found in a Software Test Description and a Software Test Report. The remaining small sections present supplementary information. Throughout this document, the phrase ELIST IP refers to the Installation Procedures (IP) for the Enhanced Logistics Intratheater Support Tool (ELIST) Global Data Segment, Database Instance Segment, Database Fill Segment, Database Segment, Database Utility Segment, Software Segment, and Reference Data Segment

  18. Characterisation and genome sequence of the lytic Acinetobacter baumannii bacteriophage vB_AbaS_Loki.

    Directory of Open Access Journals (Sweden)

    Dann Turner

    Full Text Available Acinetobacter baumannii has emerged as an important nosocomial pathogen in healthcare and community settings. While over 100 of Acinetobacter phages have been described in the literature, relatively few have been sequenced. This work describes the characterisation and genome annotation of a new lytic Acinetobacter siphovirus, vB_AbaS_Loki, isolated from activated sewage sludge. Sequencing revealed that Loki encapsulates a 41,308 bp genome, encoding 51 predicted open reading frames. Loki is most closely related to Acinetobacter phage IME_AB3 and more distantly related to Burkholderia phage KL1, Paracoccus phage vB_PmaS_IMEP1 and Pseudomonas phages vB_Pae_Kakheti25, vB_PaeS_SCH_Ab26 and PA73. Loki is characterised by a narrow host range, among the 40 Acinetobacter isolates tested, productive infection was only observed for the propagating host, A. baumannii ATCC 17978. Plaque formation was found to be dependent upon the presence of Ca2+ ions and adsorption to host cells was abolished upon incubation with a mutant of ATCC 17978 encoding a premature stop codon in lpxA. The complete genome sequence of vB_AbaS_Loki was deposited in the European Nucleotide Archive (ENA under the accession number LN890663.

  19. Word segmentation in children’s literacy: a study about word awareness

    Directory of Open Access Journals (Sweden)

    Débora Mattos Marques

    2016-10-01

    Full Text Available The present research aimed to investigate how linguistic awareness regarding the concept of “word” may influence some mistakes on segmenting words in children’s writing in the Elementary School. The observed data comprised those of hyper and hyposegmentation which were then related to word awareness. For the analysis of linguistic awareness data, the Representational Redescription, proposed by Karmillof-Smith (1986-1992, has been used. It postulates four levels where knowledge is redescribed in the human mind, becoming accessible for awareness and verbalization along with the time. The research methodology consisted of six tests, out of which four were applied in order to verify word awareness, and, the other two tests, to obtain samples of writing data. Thus, it was noticed that a great part of the segmentation mistakes identified in the collected writings are related to the informants' ability to distinguish between different words until the moment they were observed. As a result, the uncommon segmentation mistakes found in the analyzed data evidenced that not only are they motivated by prosodic or phonological matters, but they are also influenced by linguistic awareness issues involving the informants’ understanding of word.

  20. Usher syndrome type 1–associated cadherins shape the photoreceptor outer segment

    Science.gov (United States)

    Parain, Karine; Aghaie, Asadollah; Picaud, Serge

    2017-01-01

    Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis, these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23, encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15–containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal. PMID:28495838

  1. The analysis of APOL1 genetic variation and haplotype diversity provided by 1000 Genomes project.

    Science.gov (United States)

    Peng, Ting; Wang, Li; Li, Guisen

    2017-08-11

    The APOL1 gene variants has been shown to be associated with an increased risk of multiple kinds of diseases, particularly in African Americans, but not in Caucasians and Asians. In this study, we explored the single nucleotide polymorphism (SNP) and haplotype diversity of APOL1 gene in different races provided by 1000 Genomes project. Variants of APOL1 gene in 1000 Genome Project were obtained and SNPs located in the regulatory region or coding region were selected for genetic variation analysis. Total 2504 individuals from 26 populations were classified as four groups that included Africa, Europe, Asia and Admixed populations. Tag SNPs were selected to evaluate the haplotype diversities in the four populations by HaploStats software. APOL1 gene was surrounded by some of the most polymorphic genes in the human genome, variation of APOL1 gene was common, with up to 613 SNP (1000 Genome Project reported) and 99 of them (16.2%) with MAF ≥ 1%. There were 79 SNPs in the URR and 92 SNPs in 3'UTR. Total 12 SNPs in URR and 24 SNPs in 3'UTR were considered as common variants with MAF ≥ 1%. It is worth noting that URR-1 was presents lower frequencies in European populations, while other three haplotypes taken an opposite pattern; 3'UTR presents several high-frequency variation sites in a short segment, and the differences of its haplotypes among different population were significant (P < 0.01), UTR-1 and UTR-5 presented much higher frequency in African population, while UTR-2, UTR-3 and UTR-4 were much lower. APOL1 coding region showed that two SNP of G1 with higher frequency are actually pull down the haplotype H-1 frequency when considering all populations pooled together, and the diversity among the four populations be widen by the G1 two mutation (P 1  = 3.33E-4 vs P 2  = 3.61E-30). The distributions of APOL1 gene variants and haplotypes were significantly different among the different populations, in either regulatory or coding regions. It could provide

  2. Adaptive stress response in segmental progeria resembles long-lived dwarfism and calorie restriction in mice

    NARCIS (Netherlands)

    H.W.M. van de Ven (Marieke); J.-O. Andressoo (Jaan-Olle); V.B. Holcomb (Valerie); M.M. von Lindern (Marieke); W.M.C. Jong (Willeke); C.I. de Zeeuw (Chris); Y. Suh (Yousin); P. Hasty (Paul); J.H.J. Hoeijmakers (Jan); G.T.J. van der Horst (Gijsbertus); J.R. Mitchell (James)

    2006-01-01

    textabstractHow congenital defects causing genome instability can result in the pleiotropic symptoms reminiscent of aging but in a segmental and accelerated fashion remains largely unknown. Most segmental progerias are associated with accelerated fibroblast senescence, suggesting that cellular

  3. The expression and genetic immunization of chimeric fragment of Hantaan virus M and S segments

    International Nuclear Information System (INIS)

    Zhang Fanglin; Wu Xingan; Luo Wen; Bai Wentao; Liu Yong; Yan Yan; Wang Haitao; Xu Zhikai

    2007-01-01

    Hemorrhagic fever with renal syndrome (HFRS), which is characterized by severe symptoms and high mortality, is caused by hantavirus. There are still no effective prophylactic vaccines directed to HFRS until now. In this research, we fused expressed G2 fragment of M segment and 0.7 kb fragment of S segment. We expect it could be a candidate vaccine. Chimeric gene G2S0.7 was first expressed in prokaryotic expression system pGEX-4T. After inducing expressed fusion proteins, GST-G2S0.7 was induced and its molecular weight was about 100 kDa. Meanwhile, the fusion protein kept the activity of its parental proteins. Further, BALB/c mice were vaccinated by the chimeric gene. ELISA, cell microculture neutralization test in vitro were used to detect the humoral immune response in immunized BALB/c mice. Lymphocyte proliferation assay was used to detect the cellular immune response. The results showed that the chimeric gene could simultaneously evoke specific antibody against nucleocapsid protein (NP) and glycoprotein (GP). And the immunized mice of every group elicited neutralizing antibodies with different titers. But the titers were low. Lymphocyte proliferation assay results showed that the stimulation indexes of splenocytes of chimeric gene to NP and GP were significantly higher than that of control. It suggested that the chimeric gene of Hantaan virus containing G2 fragment of M segment and 0.7 kb fragment of S segment could directly elicit specific anti-Hantaan virus humoral and cellular immune response in BALB/c mice

  4. Complete Genome Sequence of Bifidobacterium bifidum S17▿

    Science.gov (United States)

    Zhurina, Daria; Zomer, Aldert; Gleinser, Marita; Brancaccio, Vincenco Francesco; Auchter, Marc; Waidmann, Mark S.; Westermann, Christina; van Sinderen, Douwe; Riedel, Christian U.

    2011-01-01

    Here, we report on the first completely annotated genome sequence of a Bifidobacterium bifidum strain. B. bifidum S17, isolated from feces of a breast-fed infant, was shown to strongly adhere to intestinal epithelial cells and has potent anti-inflammatory activity in vitro and in vivo. The genome sequence will provide new insights into the biology of this potential probiotic organism and allow for the characterization of the molecular mechanisms underlying its beneficial properties. PMID:21037011

  5. 2012 U.S. Department of Energy: Joint Genome Institute: Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, David [DOE JGI Public Affairs Manager

    2013-01-01

    The mission of the U.S. Department of Energy Joint Genome Institute (DOE JGI) is to serve the diverse scientific community as a user facility, enabling the application of large-scale genomics and analysis of plants, microbes, and communities of microbes to address the DOE mission goals in bioenergy and the environment. The DOE JGI's sequencing efforts fall under the Eukaryote Super Program, which includes the Plant and Fungal Genomics Programs; and the Prokaryote Super Program, which includes the Microbial Genomics and Metagenomics Programs. In 2012, several projects made news for their contributions to energy and environment research.

  6. Comparative genome analysis of Pseudogymnoascus spp. reveals primarily clonal evolution with small genome fragments exchanged between lineages.

    Science.gov (United States)

    Leushkin, Evgeny V; Logacheva, Maria D; Penin, Aleksey A; Sutormin, Roman A; Gerasimov, Evgeny S; Kochkina, Galina A; Ivanushkina, Natalia E; Vasilenko, Oleg V; Kondrashov, Alexey S; Ozerskaya, Svetlana M

    2015-05-21

    Pseudogymnoascus spp. is a wide group of fungi lineages in the family Pseudorotiaceae including an aggressive pathogen of bats P. destructans. Although several lineages of P. spp. were shown to produce ascospores in culture, the vast majority of P. spp. demonstrates no evidence of sexual reproduction. P. spp. can tolerate a wide range of different temperatures and salinities and can survive even in permafrost layer. Adaptability of P. spp. to different environments is accompanied by extremely variable morphology and physiology. We sequenced genotypes of 14 strains of P. spp., 5 of which were extracted from permafrost, 1 from a cryopeg, a layer of unfrozen ground in permafrost, and 8 from temperate surface environments. All sequenced genotypes are haploid. Nucleotide diversity among these genomes is very high, with a typical evolutionary distance at synonymous sites dS ≈ 0.5, suggesting that the last common ancestor of these strains lived >50 Mya. The strains extracted from permafrost do not form a separate clade. Instead, each permafrost strain has close relatives from temperate environments. We observed a strictly clonal population structure with no conflicting topologies for ~99% of genome sequences. However, there is a number of short (~100-10,000 nt) genomic segments with the total length of 67.6 Kb which possess phylogenetic patterns strikingly different from the rest of the genome. The most remarkable case is a MAT-locus, which has 2 distinct alleles interspersed along the whole-genome phylogenetic tree. Predominantly clonal structure of genome sequences is consistent with the observations that sexual reproduction is rare in P. spp. Small number of regions with noncanonical phylogenies seem to arise due to some recombination events between derived lineages of P. spp., with MAT-locus being transferred on multiple occasions. All sequenced strains have heterothallic configuration of MAT-locus.

  7. Extreme-Scale De Novo Genome Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Georganas, Evangelos [Intel Corporation, Santa Clara, CA (United States); Hofmeyr, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Genome Inst.; Egan, Rob [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Buluc, Aydin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Genome Inst.; Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Genome Inst.; Rokhsar, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Yelick, Katherine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Genome Inst.

    2017-09-26

    De novo whole genome assembly reconstructs genomic sequence from short, overlapping, and potentially erroneous DNA segments and is one of the most important computations in modern genomics. This work presents HipMER, a high-quality end-to-end de novo assembler designed for extreme scale analysis, via efficient parallelization of the Meraculous code. Genome assembly software has many components, each of which stresses different components of a computer system. This chapter explains the computational challenges involved in each step of the HipMer pipeline, the key distributed data structures, and communication costs in detail. We present performance results of assembling the human genome and the large hexaploid wheat genome on large supercomputers up to tens of thousands of cores.

  8. Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules.

    Science.gov (United States)

    Valach, Matus; Burger, Gertraud; Gray, Michael W; Lang, B Franz

    2014-12-16

    5S Ribosomal RNA (5S rRNA) is a universal component of ribosomes, and the corresponding gene is easily identified in archaeal, bacterial and nuclear genome sequences. However, organelle gene homologs (rrn5) appear to be absent from most mitochondrial and several chloroplast genomes. Here, we re-examine the distribution of organelle rrn5 by building mitochondrion- and plastid-specific covariance models (CMs) with which we screened organelle genome sequences. We not only recover all organelle rrn5 genes annotated in GenBank records, but also identify more than 50 previously unrecognized homologs in mitochondrial genomes of various stramenopiles, red algae, cryptomonads, malawimonads and apusozoans, and surprisingly, in the apicoplast (highly derived plastid) genomes of the coccidian pathogens Toxoplasma gondii and Eimeria tenella. Comparative modeling of RNA secondary structure reveals that mitochondrial 5S rRNAs from brown algae adopt a permuted triskelion shape that has not been seen elsewhere. Expression of the newly predicted rrn5 genes is confirmed experimentally in 10 instances, based on our own and published RNA-Seq data. This study establishes that particularly mitochondrial 5S rRNA has a much broader taxonomic distribution and a much larger structural variability than previously thought. The newly developed CMs will be made available via the Rfam database and the MFannot organelle genome annotator. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Genome-wide DNA polymorphism in the indica rice varieties RGD-7S and Taifeng B as revealed by whole genome re-sequencing.

    Science.gov (United States)

    Fu, Chong-Yun; Liu, Wu-Ge; Liu, Di-Lin; Li, Ji-Hua; Zhu, Man-Shan; Liao, Yi-Long; Liu, Zhen-Rong; Zeng, Xue-Qin; Wang, Feng

    2016-03-01

    Next-generation sequencing technologies provide opportunities to further understand genetic variation, even within closely related cultivars. We performed whole genome resequencing of two elite indica rice varieties, RGD-7S and Taifeng B, whose F1 progeny showed hybrid weakness and hybrid vigor when grown in the early- and late-cropping seasons, respectively. Approximately 150 million 100-bp pair-end reads were generated, which covered ∼86% of the rice (Oryza sativa L. japonica 'Nipponbare') reference genome. A total of 2,758,740 polymorphic sites including 2,408,845 SNPs and 349,895 InDels were detected in RGD-7S and Taifeng B, respectively. Applying stringent parameters, we identified 961,791 SNPs and 46,640 InDels between RGD-7S and Taifeng B (RGD-7S/Taifeng B). The density of DNA polymorphisms was 256.8 SNPs and 12.5 InDels per 100 kb for RGD-7S/Taifeng B. Copy number variations (CNVs) were also investigated. In RGD-7S, 1989 of 2727 CNVs were overlapped in 218 genes, and 1231 of 2010 CNVs were annotated in 175 genes in Taifeng B. In addition, we verified a subset of InDels in the interval of hybrid weakness genes, Hw3 and Hw4, and obtained some polymorphic InDel markers, which will provide a sound foundation for cloning hybrid weakness genes. Analysis of genomic variations will also contribute to understanding the genetic basis of hybrid weakness and heterosis.

  10. Adaptive stress response in segmental progeria resembles long-lived dwarfism and calorie restriction in mice

    NARCIS (Netherlands)

    van de Ven, Marieke; Andressoo, Jaan-Olle; Holcomb, Valerie B.; von Lindern, Marieke; Jong, Willeke M. C.; de Zeeuw, Chris I.; Suh, Yousin; Hasty, Paul; Hoeijmakers, Jan H. J.; van der Horst, Gijsbertus T. J.; Mitchell, James R.

    2006-01-01

    How congenital defects causing genome instability can result in the pleiotropic symptoms reminiscent of aging but in a segmental and accelerated fashion remains largely unknown. Most segmental progerias are associated with accelerated fibroblast senescence, suggesting that cellular senescence is a

  11. Quantification of expression and methylation of the Igf2r imprinted gene in segmental trisomic mouse model

    Czech Academy of Sciences Publication Activity Database

    Vacík, Tomáš; Forejt, Jiří

    2003-01-01

    Roč. 82, - (2003), s. 261-268 ISSN 0888-7543 R&D Projects: GA MŠk LN00A079; GA ČR GV204/98/K015 Grant - others:HHMI(US) 555000306 Institutional research plan: CEZ:AV0Z5052915 Keywords : Genomic imprinting * dosage-sensitive genes * Ts43H segmental trisomy of chromosome 17 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.488, year: 2003

  12. Genomics using the Assembly of the Mink Genome

    DEFF Research Database (Denmark)

    Guldbrandtsen, Bernt; Cai, Zexi; Sahana, Goutam

    2018-01-01

    The American Mink’s (Neovison vison) genome has recently been sequenced. This opens numerous avenues of research both for studying the basic genetics and physiology of the mink as well as genetic improvement in mink. Using genotyping-by-sequencing (GBS) generated marker data for 2,352 Danish farm...... mink runs of homozygosity (ROH) were detect in mink genomes. Detectable ROH made up on average 1.7% of the genome indicating the presence of at most a moderate level of genomic inbreeding. The fraction of genome regions found in ROH varied. Ten percent of the included regions were never found in ROH....... The ability to detect ROH in the mink genome also demonstrates the general reliability of the new mink genome assembly. Keywords: american mink, run of homozygosity, genome, selection, genomic inbreeding...

  13. Effects of fog, driver experience and gender on driving behavior on S-curved road segments.

    Science.gov (United States)

    Li, Xiaomeng; Yan, Xuedong; Wong, S C

    2015-04-01

    Driving on curved roads has been recognized as a significant safety issue for many years. However, driver behavior and the interactions among variables that affect driver performance on curves is complicated and not well understood. Previous studies have investigated various factors that influence driver performance on right- or left-turn curves, but have paid little attention to the effects of foggy weather, driver experience and gender on driver performance on complex curves. A driving simulator experiment was conducted in this study to evaluate the relationships between driving behavior on a continuous S-curve and foggy weather, driver experience and gender. The process of negotiating a curve was divided into three stages consisting of a straight segment, the transition from the straight segment to the S-curve and the S-curve. The experimental results indicated that drivers tended to drive more cautiously in heavy fog, but the driving risk was still increased, especially in the transition stage from the straight segment to the S-curve. The non-professional (NP) drivers were less sensitive to the impending change in the road geometry, and less skilled in both longitudinal and lateral vehicle control than the professional drivers. The NP female drivers in particular were found to be the most vulnerable group in S-curve driving. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A Chromosome Segment Substitution Library of Weedy Rice for Genetic Dissection of Complex Agronomic and Domestication Traits.

    Directory of Open Access Journals (Sweden)

    Prasanta K Subudhi

    Full Text Available Chromosome segment substitution lines (CSSLs are a powerful alternative for locating quantitative trait loci (QTL, analyzing gene interactions, and providing starting materials for map-based cloning projects. We report the development and characterization of a CSSL library of a U.S. weedy rice accession 'PSRR-1' with genome-wide coverage in an adapted rice cultivar 'Bengal' background. The majority of the CSSLs carried a single defined weedy rice segment with an average introgression segment of 2.8 % of the donor genome. QTL mapping results for several agronomic and domestication traits from the CSSL population were compared with those obtained from two recombinant inbred line (RIL populations involving the same weedy rice accession. There was congruence of major effect QTLs between both types of populations, but new and additional QTLs were detected in the CSSL population. Although, three major effect QTLs for plant height were detected on chromosomes 1, 4, and 8 in the CSSL population, the latter two escaped detection in both RIL populations. Since this was observed for many traits, epistasis may play a major role for the phenotypic variation observed in weedy rice. High levels of shattering and seed dormancy in weedy rice might result from an accumulation of many small effect QTLs. Several CSSLs with desirable agronomic traits (e.g. longer panicles, longer grains, and higher seed weight identified in this study could be useful for rice breeding. Since weedy rice is a reservoir of genes for many weedy and agronomic attributes, the CSSL library will serve as a valuable resource to discover latent genetic diversity for improving crop productivity and understanding the plant domestication process through cloning and characterization of the underlying genes.

  15. Insights into the evolution of Darwin’s finches from comparative analysis of the Geospiza magnirostris genome sequence

    Directory of Open Access Journals (Sweden)

    Rands Chris M

    2013-02-01

    Full Text Available Abstract Background A classical example of repeated speciation coupled with ecological diversification is the evolution of 14 closely related species of Darwin’s (Galápagos finches (Thraupidae, Passeriformes. Their adaptive radiation in the Galápagos archipelago took place in the last 2–3 million years and some of the molecular mechanisms that led to their diversification are now being elucidated. Here we report evolutionary analyses of genome of the large ground finch, Geospiza magnirostris. Results 13,291 protein-coding genes were predicted from a 991.0 Mb G. magnirostris genome assembly. We then defined gene orthology relationships and constructed whole genome alignments between the G. magnirostris and other vertebrate genomes. We estimate that 15% of genomic sequence is functionally constrained between G. magnirostris and zebra finch. Genic evolutionary rate comparisons indicate that similar selective pressures acted along the G. magnirostris and zebra finch lineages suggesting that historical effective population size values have been similar in both lineages. 21 otherwise highly conserved genes were identified that each show evidence for positive selection on amino acid changes in the Darwin's finch lineage. Two of these genes (Igf2r and Pou1f1 have been implicated in beak morphology changes in Darwin’s finches. Five of 47 genes showing evidence of positive selection in early passerine evolution have cilia related functions, and may be examples of adaptively evolving reproductive proteins. Conclusions These results provide insights into past evolutionary processes that have shaped G. magnirostris genes and its genome, and provide the necessary foundation upon which to build population genomics resources that will shed light on more contemporaneous adaptive and non-adaptive processes that have contributed to the evolution of the Darwin’s finches.

  16. Complete genome sequence and phylogenetic analyses of an aquabirnavirus isolated from a diseased marbled eel culture in Taiwan.

    Science.gov (United States)

    Wen, Chiu-Ming

    2017-08-01

    An aquabirnavirus was isolated from diseased marbled eels (Anguilla marmorata; MEIPNV1310) with gill haemorrhages and associated mortality. Its genome segment sequences were obtained through next-generation sequencing and compared with published aquabirnavirus sequences. The results indicated that the genome sequence of MEIPNV1310 contains segment A (3099 nucleotides) and segment B (2789 nucleotides). Phylogenetic analysis showed that MEIPNV1310 is closely related to the infectious pancreatic necrosis Ab strain within genogroup II. This genome sequence is beneficial for studying the geographic distribution and evolution of aquabirnaviruses.

  17. Defining the Core Genome of Salmonella enterica Serovar Typhimurium for Genomic Surveillance and Epidemiological Typing

    Science.gov (United States)

    Fu, Songzhe; Octavia, Sophie; Tanaka, Mark M.; Sintchenko, Vitali

    2015-01-01

    Salmonella enterica serovar Typhimurium is the most common Salmonella serovar causing foodborne infections in Australia and many other countries. Twenty-one S. Typhimurium strains from Salmonella reference collection A (SARA) were analyzed using Illumina high-throughput genome sequencing. Single nucleotide polymorphisms (SNPs) in 21 SARA strains ranged from 46 to 11,916 SNPs, with an average of 1,577 SNPs per strain. Together with 47 strains selected from publicly available S. Typhimurium genomes, the S. Typhimurium core genes (STCG) were determined. The STCG consist of 3,846 genes, a set that is much larger than that of the 2,882 Salmonella core genes (SCG) found previously. The STCG together with 1,576 core intergenic regions (IGRs) were defined as the S. Typhimurium core genome. Using 93 S. Typhimurium genomes from 13 epidemiologically confirmed community outbreaks, we demonstrated that typing based on the S. Typhimurium core genome (STCG plus core IGRs) provides superior resolution and higher discriminatory power than that based on SCG for outbreak investigation and molecular epidemiology of S. Typhimurium. STCG and STCG plus core IGR typing achieved 100% separation of all outbreaks compared to that of SCG typing, which failed to separate isolates from two outbreaks from background isolates. Defining the S. Typhimurium core genome allows standardization of genes/regions to be used for high-resolution epidemiological typing and genomic surveillance of S. Typhimurium. PMID:26019201

  18. Herpes zoster on segmental vitiligo: Wolf’s isotopic response?

    Directory of Open Access Journals (Sweden)

    Mankesh Lal Gambhir

    2014-04-01

    Full Text Available “Wolf’s isotopic response” describes the occurrence of a new skin disorder at the site of another, unrelated and already healed skin disease. In most cases of isotopic response, the initial dermatosis is herpes zoster, herpes simplex, varicella, thrombophlebitis, scrofuloderma and striae distense. The most frequent second dermatoses are granulomatous reactions, particularly granuloma annulare, and lichenoid diseases. Various etiological reasons including viral, immunologic, neural and vascular have been put forth. We report here a case in which the second disease was herpes zoster that appeared over the same dermatomes of pre-existing segmental vitiligo. The occurrence of vitiligo as first and herpes zoster as second disease in the “Wolf’s isotopic response” has not, to the best of our knowledge, been reported previously.

  19. Reanalysis and revision of the complete mitochondrial genome of Rachycentron canadum (Teleostei, Perciformes, Rachycentridae).

    Science.gov (United States)

    Musika, Jidapa; Khongchatee, Adison; Phinchongsakuldit, Jaros

    2014-08-01

    The complete mitochondrial genome of cobia, Rachycentron canadum, was reanalyzed and revised. The genome is 18,008 bp in length, containing 13 protein-coding genes, 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a control region or displacement loop (D-loop). The gene arrangement is identical to that observed in most vertebrates. Base composition on the heavy strand is 30.14% A, 25.22% C, 15.80% G and 28.84% T. The D-loop region exhibits an A + T rich pattern, containing short tandem repeats of TATATACATGG, TATATGCACAA and TATATGCACGG. The mitochondrial genome studied differs from the previously published genome in two segments; the control region to 12S and ND5 to tRNA(Glu). The 12S sequence also differs from those published in the databases. Phylogeny analyses revealed that the differences could be due to errors in sequence assembly and/or sample misidentification of the previous studies.

  20. eGenomics: Cataloguing Our Complete Genome Collection III

    Directory of Open Access Journals (Sweden)

    Dawn Field

    2007-01-01

    Full Text Available This meeting report summarizes the proceedings of the “eGenomics: Cataloguing our Complete Genome Collection III” workshop held September 11–13, 2006, at the National Institute for Environmental eScience (NIEeS, Cambridge, United Kingdom. This 3rd workshop of the Genomic Standards Consortium was divided into two parts. The first half of the three-day workshop was dedicated to reviewing the genomic diversity of our current and future genome and metagenome collection, and exploring linkages to a series of existing projects through formal presentations. The second half was dedicated to strategic discussions. Outcomes of the workshop include a revised “Minimum Information about a Genome Sequence” (MIGS specification (v1.1, consensus on a variety of features to be added to the Genome Catalogue (GCat, agreement by several researchers to adopt MIGS for imminent genome publications, and an agreement by the EBI and NCBI to input their genome collections into GCat for the purpose of quantifying the amount of optional data already available (e.g., for geographic location coordinates and working towards a single, global list of all public genomes and metagenomes.

  1. Complete Mitochondrial Genomes of the Cherskii’s Sculpin and Siberian Taimen Reveal GenBank Entry Errors: Incorrect Species Identification and Recombinant Mitochondrial Genome

    Directory of Open Access Journals (Sweden)

    Evgeniy S Balakirev

    2017-08-01

    Full Text Available The complete mitochondrial (mt genome is sequenced in 2 individuals of the Cherskii’s sculpin Cottus czerskii . A surprisingly high level of sequence divergence (10.3% has been detected between the 2 genomes of C czerskii studied here and the GenBank mt genome of C czerskii (KJ956027. At the same time, a surprisingly low level of divergence (1.4% has been detected between the GenBank C czerskii (KJ956027 and the Amur sculpin Cottus szanaga (KX762049, KX762050. We argue that the observed discrepancies are due to incorrect taxonomic identification so that the GenBank accession number KJ956027 represents actually the mt genome of C szanaga erroneously identified as C czerskii . Our results are of consequence concerning the GenBank database quality, highlighting the potential negative consequences of entry errors, which once they are introduced tend to be propagated among databases and subsequent publications. We illustrate the premise with the data on recombinant mt genome of the Siberian taimen Hucho taimen (NCBI Reference Sequence Database NC_016426.1; GenBank accession number HQ897271.1, bearing 2 introgressed fragments (≈0.9 kb [kilobase] from 2 lenok subspecies, Brachymystax lenok and Brachymystax lenok tsinlingensis , submitted to GenBank on June 12, 2011. Since the time of submission, the H taimen recombinant mt genome leading to incorrect phylogenetic inferences was propagated in multiple subsequent publications despite the fact that nonrecombinant H taimen genomes were also available (submitted to GenBank on August 2, 2014; KJ711549, KJ711550. Other examples of recombinant sequences persisting in GenBank are also considered. A GenBank Entry Error Depositary is urgently needed to monitor and avoid a progressive accumulation of wrong biological information.

  2. MARKET SEGMENTATION: IDENTIFYING THE HIGH-GROWTH EXPORT MARKETS FOR U.S. AGRICULTURE

    OpenAIRE

    Reed, Michael R.; Salvacruz, Joseph C.

    1994-01-01

    A cluster analysis based on a five-year growth rate of agricultural imports from the United States was conducted on 86 countries and revealed two significant market segments for U.S. agriculture: the high-growth markets and the low-growth markets. Multiple discriminant analysis was then used to test the significance of the countries' trade-related and macroeconomic variables to their market growth classification. The discriminant function was used to predict the high-growth markets for U.S. a...

  3. RFA-cut: Semi-automatic segmentation of radiofrequency ablation zones with and without needles via optimal s-t-cuts.

    Science.gov (United States)

    Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Chen, Xiaojun; Hann, Alexander; Boechat, Pedro; Yu, Wei; Freisleben, Bernd; Alhonnoro, Tuomas; Pollari, Mika; Moche, Michael; Schmalstieg, Dieter

    2015-01-01

    In this contribution, we present a semi-automatic segmentation algorithm for radiofrequency ablation (RFA) zones via optimal s-t-cuts. Our interactive graph-based approach builds upon a polyhedron to construct the graph and was specifically designed for computed tomography (CT) acquisitions from patients that had RFA treatments of Hepatocellular Carcinomas (HCC). For evaluation, we used twelve post-interventional CT datasets from the clinical routine and as evaluation metric we utilized the Dice Similarity Coefficient (DSC), which is commonly accepted for judging computer aided medical segmentation tasks. Compared with pure manual slice-by-slice expert segmentations from interventional radiologists, we were able to achieve a DSC of about eighty percent, which is sufficient for our clinical needs. Moreover, our approach was able to handle images containing (DSC=75.9%) and not containing (78.1%) the RFA needles still in place. Additionally, we found no statistically significant difference (p<;0.423) between the segmentation results of the subgroups for a Mann-Whitney test. Finally, to the best of our knowledge, this is the first time a segmentation approach for CT scans including the RFA needles is reported and we show why another state-of-the-art segmentation method fails for these cases. Intraoperative scans including an RFA probe are very critical in the clinical practice and need a very careful segmentation and inspection to avoid under-treatment, which may result in tumor recurrence (up to 40%). If the decision can be made during the intervention, an additional ablation can be performed without removing the entire needle. This decreases the patient stress and associated risks and costs of a separate intervention at a later date. Ultimately, the segmented ablation zone containing the RFA needle can be used for a precise ablation simulation as the real needle position is known.

  4. Segmentation and volumetric analysis of the caudate nucleus in Alzheimer's disease

    International Nuclear Information System (INIS)

    Jiji, Sudevan; Smitha, Karavallil Achuthan; Gupta, Arun Kumar; Pillai, Vellara Pappukutty Mahadevan; Jayasree, Ramapurath S.

    2013-01-01

    Objectives: A quantitative volumetric analysis of caudate nucleus can provide valuable information in early diagnosis and prognosis of patients with Alzheimer's diseases (AD). Purpose of the study is to estimate the volume of segmented caudate nucleus from MR images and to correlate the variation in the segmented volume with respect to the total brain volume. We have also tried to evaluate the caudate nucleus atrophy with the age related atrophy of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) in a group of Alzheimer's disease patients. Methods: 3D fast low angle shot (3D FLASH) brain MR images of 15 AD patients, 15 normal volunteers and 15 patients who had normally diagnosed MR images were included in the study. Brain tissue and caudate nuclei were segmented using the statistical parametric mapping package and a semi-automatic tool, respectively and the volumes were estimated. Volume of segmented caudate nucleus is correlated with respect to the total brain volume. Further, the caudate nucleus atrophy is estimated with the age related atrophy of WM, GM and CSF in a group of AD patients. Results: Significant reduction in the caudate volume of AD patients was observed compared to that of the normal volunteers. Statistical analysis also showed significant variation in the volume of GM and CSF of AD patients. Among the patients who had normal appearing brain, 33% showed significant changes in the caudate volume. We hypothesize that these changes can be considered as an indication of early AD. Conclusion: The method of volumetric analysis of brain structures is simple and effective way of early diagnosis of neurological disorders like Alzheimer's disease. We have illustrated this with the observed changes in the volume of caudate nucleus in a group of patients. A detailed study with more subjects will be useful in correlating these results for early diagnosis of AD

  5. Copy number variation in the bovine genome

    DEFF Research Database (Denmark)

    Fadista, João; Thomsen, Bo; Holm, Lars-Erik

    2010-01-01

    to genetic variation in cattle. Results We designed and used a set of NimbleGen CGH arrays that tile across the assayable portion of the cattle genome with approximately 6.3 million probes, at a median probe spacing of 301 bp. This study reports the highest resolution map of copy number variation...... in the cattle genome, with 304 CNV regions (CNVRs) being identified among the genomes of 20 bovine samples from 4 dairy and beef breeds. The CNVRs identified covered 0.68% (22 Mb) of the genome, and ranged in size from 1.7 to 2,031 kb (median size 16.7 kb). About 20% of the CNVs co-localized with segmental...... duplications, while 30% encompass genes, of which the majority is involved in environmental response. About 10% of the human orthologous of these genes are associated with human disease susceptibility and, hence, may have important phenotypic consequences. Conclusions Together, this analysis provides a useful...

  6. Antibody mediated albuminuria and focal segmental glomerulosclerosis in Thy- 1.1 transgenic mice.

    NARCIS (Netherlands)

    Smeets, B.

    2006-01-01

    Focal segmental glomerulosclerosis (FSGS) is the hallmark of the glomerular lesion that is characteristically observed in failing kidneys. FSGS is one of the leading causes of renal insufficiency. In this thesis the Thy-1.1 transgenic mouse model was used as a model of FSGS. We particularly

  7. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Baumgarten Andrew

    2004-06-01

    Full Text Available Abstract Background Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses. Results Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions. Conclusions Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families.

  8. Genome mapping and characterization of the Anopheles gambiae heterochromatin

    Directory of Open Access Journals (Sweden)

    Sharakhova Maria V

    2010-08-01

    Full Text Available Abstract Background Heterochromatin plays an important role in chromosome function and gene regulation. Despite the availability of polytene chromosomes and genome sequence, the heterochromatin of the major malaria vector Anopheles gambiae has not been mapped and characterized. Results To determine the extent of heterochromatin within the An. gambiae genome, genes were physically mapped to the euchromatin-heterochromatin transition zone of polytene chromosomes. The study found that a minimum of 232 genes reside in 16.6 Mb of mapped heterochromatin. Gene ontology analysis revealed that heterochromatin is enriched in genes with DNA-binding and regulatory activities. Immunostaining of the An. gambiae chromosomes with antibodies against Drosophila melanogaster heterochromatin protein 1 (HP1 and the nuclear envelope protein lamin Dm0 identified the major invariable sites of the proteins' localization in all regions of pericentric heterochromatin, diffuse intercalary heterochromatin, and euchromatic region 9C of the 2R arm, but not in the compact intercalary heterochromatin. To better understand the molecular differences among chromatin types, novel Bayesian statistical models were developed to analyze genome features. The study found that heterochromatin and euchromatin differ in gene density and the coverage of retroelements and segmental duplications. The pericentric heterochromatin had the highest coverage of retroelements and tandem repeats, while intercalary heterochromatin was enriched with segmental duplications. We also provide evidence that the diffuse intercalary heterochromatin has a higher coverage of DNA transposable elements, minisatellites, and satellites than does the compact intercalary heterochromatin. The investigation of 42-Mb assembly of unmapped genomic scaffolds showed that it has molecular characteristics similar to cytologically mapped heterochromatin. Conclusions Our results demonstrate that Anopheles polytene chromosomes

  9. Translocations of chromosome end-segments and facultative heterochromatin promote meiotic ring formation in evening primroses.

    Science.gov (United States)

    Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan

    2014-03-01

    Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories.

  10. Complete genome sequence of the actinobacterium Amycolatopsis japonica MG417-CF17T (=DSM 44213T) producing (S,S)-N,N′-ethylenediaminedisuccinic acid

    DEFF Research Database (Denmark)

    Stegmann, Evi; Albersmeier, Andreas; Spohn, Marius

    2014-01-01

    We report the complete genome sequence of Amycolatopsis japonica MG417-CF17T (=DSM 44213T) which was identified as the producer of (S,S)-N,N′-ethylenediaminedisuccinic acid during a screening for phospholipase C inhibitors. The genome of A. japonica MG417-CF17T consists of two replicons: the chro......We report the complete genome sequence of Amycolatopsis japonica MG417-CF17T (=DSM 44213T) which was identified as the producer of (S,S)-N,N′-ethylenediaminedisuccinic acid during a screening for phospholipase C inhibitors. The genome of A. japonica MG417-CF17T consists of two replicons...

  11. Genetic determinants of P wave duration and PR segment

    NARCIS (Netherlands)

    Verweij, Niek; Mateo Leach, Irene; van den Boogaard, Malou; van Veldhuisen, Dirk J.; Christoffels, Vincent M.; Hillege, Hans L.; van Gilst, Wiek H.; Barnett, Phil; de Boer, Rudolf A.; van der Harst, Pim

    2014-01-01

    The PR interval on the ECG reflects atrial depolarization and atrioventricular nodal delay which can be partially differentiated by P wave duration and PR segment, respectively. Genome-wide association studies have identified several genetic loci for PR interval, but it remains to be determined

  12. Genetic Determinants of P Wave Duration and PR Segment

    NARCIS (Netherlands)

    Verweij, Niek; Mateo Leach, Irene; van den Boogaard, Malou; van Veldhuisen, Dirk J.; Christoffels, Vincent M.; Hillege, Hans L.; van Gilst, Wiek H.; Barnett, Phil; de Boer, Rudolf A.; van der Harst, Pim

    Background-The PR interval on the ECG reflects atrial depolarization and atrioventricular nodal delay which can be partially differentiated by P wave duration and PR segment, respectively. Genome-wide association studies have identified several genetic loci for PR interval, but it remains to be

  13. Thalamus segmentation from MP2RAGE: a comparative study

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Næss-Schmidt, Erhard; Blicher, Jakob

    RAGE sequence on a Siemens Magnetom Skyra 3T MRI system with a 32 channel head coil. Parameters were TR=5 s, TI1=0.7 s, TI2=2.5 s, α1=4°, α2=5° and acquired at a nominal, isotropic, resolution of 1mm (acquisition matrix: 240x256, 176 sagittal slices). An experienced neuro-radiologist manually traced......, increasing the number of training images in the library of SNIPE improves segmentation accuracy (Figure 4). Even though the DSI seems to plateau around a library size of 10-11 images, increasing the library may improve the accuracy even further. Conclusions: Widely used atlas based segmentation methods...

  14. Indel Group in Genomes (IGG) Molecular Genetic Markers1[OPEN

    Science.gov (United States)

    Burkart-Waco, Diana; Kuppu, Sundaram; Britt, Anne; Chetelat, Roger

    2016-01-01

    Genetic markers are essential when developing or working with genetically variable populations. Indel Group in Genomes (IGG) markers are primer pairs that amplify single-locus sequences that differ in size for two or more alleles. They are attractive for their ease of use for rapid genotyping and their codominant nature. Here, we describe a heuristic algorithm that uses a k-mer-based approach to search two or more genome sequences to locate polymorphic regions suitable for designing candidate IGG marker primers. As input to the IGG pipeline software, the user provides genome sequences and the desired amplicon sizes and size differences. Primer sequences flanking polymorphic insertions/deletions are produced as output. IGG marker files for three sets of genomes, Solanum lycopersicum/Solanum pennellii, Arabidopsis (Arabidopsis thaliana) Columbia-0/Landsberg erecta-0 accessions, and S. lycopersicum/S. pennellii/Solanum tuberosum (three-way polymorphic) are included. PMID:27436831

  15. Annotating non-coding regions of the genome.

    Science.gov (United States)

    Alexander, Roger P; Fang, Gang; Rozowsky, Joel; Snyder, Michael; Gerstein, Mark B

    2010-08-01

    Most of the human genome consists of non-protein-coding DNA. Recently, progress has been made in annotating these non-coding regions through the interpretation of functional genomics experiments and comparative sequence analysis. One can conceptualize functional genomics analysis as involving a sequence of steps: turning the output of an experiment into a 'signal' at each base pair of the genome; smoothing this signal and segmenting it into small blocks of initial annotation; and then clustering these small blocks into larger derived annotations and networks. Finally, one can relate functional genomics annotations to conserved units and measures of conservation derived from comparative sequence analysis.

  16. The first genome sequence of a metatherian herpesvirus: Macropodid herpesvirus 1.

    Science.gov (United States)

    Vaz, Paola K; Mahony, Timothy J; Hartley, Carol A; Fowler, Elizabeth V; Ficorilli, Nino; Lee, Sang W; Gilkerson, James R; Browning, Glenn F; Devlin, Joanne M

    2016-01-22

    While many placental herpesvirus genomes have been fully sequenced, the complete genome of a marsupial herpesvirus has not been described. Here we present the first genome sequence of a metatherian herpesvirus, Macropodid herpesvirus 1 (MaHV-1). The MaHV-1 viral genome was sequenced using an Illumina MiSeq sequencer, de novo assembly was performed and the genome was annotated. The MaHV-1 genome was 140 kbp in length and clustered phylogenetically with the primate simplexviruses, sharing 67% nucleotide sequence identity with Human herpesviruses 1 and 2. The MaHV-1 genome contained 66 predicted open reading frames (ORFs) homologous to those in other herpesvirus genomes, but lacked homologues of UL3, UL4, UL56 and glycoprotein J. This is the first alphaherpesvirus genome that has been found to lack the UL3 and UL4 homologues. We identified six novel ORFs and confirmed their transcription by RT-PCR. This is the first genome sequence of a herpesvirus that infects metatherians, a taxonomically unique mammalian clade. Members of the Simplexvirus genus are remarkably conserved, so the absence of ORFs otherwise retained in eutherian and avian alphaherpesviruses contributes to our understanding of the Alphaherpesvirinae. Further study of metatherian herpesvirus genetics and pathogenesis provides a unique approach to understanding herpesvirus-mammalian interactions.

  17. G2S: A web-service for annotating genomic variants on 3D protein structures.

    Science.gov (United States)

    Wang, Juexin; Sheridan, Robert; Sumer, S Onur; Schultz, Nikolaus; Xu, Dong; Gao, Jianjiong

    2018-01-27

    Accurately mapping and annotating genomic locations on 3D protein structures is a key step in structure-based analysis of genomic variants detected by recent large-scale sequencing efforts. There are several mapping resources currently available, but none of them provides a web API (Application Programming Interface) that support programmatic access. We present G2S, a real-time web API that provides automated mapping of genomic variants on 3D protein structures. G2S can align genomic locations of variants, protein locations, or protein sequences to protein structures and retrieve the mapped residues from structures. G2S API uses REST-inspired design conception and it can be used by various clients such as web browsers, command terminals, programming languages and other bioinformatics tools for bringing 3D structures into genomic variant analysis. The webserver and source codes are freely available at https://g2s.genomenexus.org. g2s@genomenexus.org. Supplementary data are available at Bioinformatics online. © The Author (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Genomic clone encoding the α chain of the OKM1, LFA-1, and platelet glycoprotein IIb-IIIa molecules

    International Nuclear Information System (INIS)

    Cosgrove, L.J.; Sandrin, M.S.; Rajasekariah, P.; McKenzie, I.F.C.

    1986-01-01

    LFA-1, an antigen involved in cytolytic T lymphocyte-mediated killing, and Mac-1, the receptor for complement component C3bi, constitute a family of structurally and functionally related cell surface glycoproteins involved in cellular interactions. In both mouse and man, Mac-1 (OKM1) and LFA-1 share a common 95-kDa β subunit but are distinguished by their α chains, which have different cellular distributions, apparent molecular masses (165 and 177 kDa, respectively), and peptide maps. The authors report the isolation of a genomic clone from a human genomic library that on transfection into mouse fibroblasts produced a molecule(s) reactive with monoclonal antibodies to OKM1, to LFA-1, and to platelet glycoprotein IIb-IIIa. This gene was cloned by several cycles of transfection of L cells with a human genomic library cloned in λ phase Charon 4A and subsequent rescue of the λ phage. Transfection with the purified recombinant λ DNA yielded a transfectant that expressed the three human α chains of OKM1, LFA-1, and glycoprotein IIb-IIIa, presumably in association with the murine β chain

  19. A Horizontally Transferred Autonomous Helitron Became a Full Polydnavirus Segment in Cotesia vestalis

    Directory of Open Access Journals (Sweden)

    Pedro Heringer

    2017-12-01

    Full Text Available Bracoviruses associate symbiotically with thousands of parasitoid wasp species in the family Braconidae, working as virulence gene vectors, and allowing the development of wasp larvae within hosts. These viruses are composed of multiple DNA circles that are packaged into infective particles, and injected together with wasp’s eggs during parasitization. One of the viral segments of Cotesia vestalis bracovirus contains a gene that has been previously described as a helicase of unknown origin. Here, we demonstrate that this gene is a Rep/Helicase from an intact Helitron transposable element that covers the viral segment almost entirely. We also provide evidence that this element underwent at least two horizontal transfers, which appear to have occurred consecutively: first from a Drosophila host ancestor to the genome of the parasitoid wasp C. vestalis and its bracovirus, and then from C. vestalis to a lepidopteran host (Bombyx mori. Our results reinforce the idea of parasitoid wasps as frequent agents of horizontal transfers in eukaryotes. Additionally, this Helitron-bracovirus segment is the first example of a transposable element that effectively became a whole viral circle.

  20. Composition and genomic organization of arthropod Hox clusters.

    Science.gov (United States)

    Pace, Ryan M; Grbić, Miodrag; Nagy, Lisa M

    2016-01-01

    The ancestral arthropod is believed to have had a clustered arrangement of ten Hox genes. Within arthropods, Hox gene mutations result in transformation of segment identities. Despite the fact that variation in segment number/character was common in the diversification of arthropods, few examples of Hox gene gains/losses have been correlated with morphological evolution. Furthermore, a full appreciation of the variation in the genomic arrangement of Hox genes in extant arthropods has not been recognized, as genome sequences from each major arthropod clade have not been reported until recently. Initial genomic analysis of the chelicerate Tetranychus urticae suggested that loss of Hox genes and Hox gene clustering might be more common than previously assumed. To further characterize the genomic evolution of arthropod Hox genes, we compared the genomic arrangement and general characteristics of Hox genes from representative taxa from each arthropod subphylum. In agreement with others, we find arthropods generally contain ten Hox genes arranged in a common orientation in the genome, with an increasing number of sampled species missing either Hox3 or abdominal-A orthologs. The genomic clustering of Hox genes in species we surveyed varies significantly, ranging from 0.3 to 13.6 Mb. In all species sampled, arthropod Hox genes are dispersed in the genome relative to the vertebrate Mus musculus. Differences in Hox cluster size arise from variation in the number of intervening genes, intergenic spacing, and the size of introns and UTRs. In the arthropods surveyed, Hox gene duplications are rare and four microRNAs are, in general, conserved in similar genomic positions relative to the Hox genes. The tightly clustered Hox complexes found in the vertebrates are not evident within arthropods, and differential patterns of Hox gene dispersion are found throughout the arthropods. The comparative genomic data continue to support an ancestral arthropod Hox cluster of ten genes with

  1. SparCLeS: dynamic l₁ sparse classifiers with level sets for robust beard/moustache detection and segmentation.

    Science.gov (United States)

    Le, T Hoang Ngan; Luu, Khoa; Savvides, Marios

    2013-08-01

    Robust facial hair detection and segmentation is a highly valued soft biometric attribute for carrying out forensic facial analysis. In this paper, we propose a novel and fully automatic system, called SparCLeS, for beard/moustache detection and segmentation in challenging facial images. SparCLeS uses the multiscale self-quotient (MSQ) algorithm to preprocess facial images and deal with illumination variation. Histogram of oriented gradients (HOG) features are extracted from the preprocessed images and a dynamic sparse classifier is built using these features to classify a facial region as either containing skin or facial hair. A level set based approach, which makes use of the advantages of both global and local information, is then used to segment the regions of a face containing facial hair. Experimental results demonstrate the effectiveness of our proposed system in detecting and segmenting facial hair regions in images drawn from three databases, i.e., the NIST Multiple Biometric Grand Challenge (MBGC) still face database, the NIST Color Facial Recognition Technology FERET database, and the Labeled Faces in the Wild (LFW) database.

  2. Alport’s syndrome with focal segmental glomerulosclerosis lesion – Pattern to recognize

    Directory of Open Access Journals (Sweden)

    Afnan A Alsahli

    2018-01-01

    Full Text Available The association between Alport’s syndrome (AS and focal segmental glomerulosclerosis (FSGS in the same patient is complex and rarely reported. We report a case of a 42-year-old male presenting with proteinuria, microscopic hematuria, elevated serum creatinine and hypertension with unremarkable physical examination apart from obesity. The renal biopsy showed well-established FSGS pattern of injury with mild interstitial fibrosis and tubular atrophy, while the electron microscopic examination demonstrated glomerular basement membranes (GBM changes compatible with AS. AS can be complicated by segmental glomerular scarring, which can mimic primary FSGS, while familial FSGS can result from mutations in collagen IV network of the GBM. This overlap can complicate histopathological interpretation of renal biopsy, which should be accompanied by mutational analysis for accurate diagnosis and proper therapeutic intervention.

  3. FR-like EBNA1 binding repeats in the human genome

    International Nuclear Information System (INIS)

    D'Herouel, Aymeric Fouquier; Birgersdotter, Anna; Werner, Maria

    2010-01-01

    Epstein-Barr virus (EBV) is widely spread in the human population. EBV nuclear antigen 1 (EBNA1) is a transcription factor that activates viral genes and is necessary for viral replication and partitioning, which binds the EBV genome cooperatively. We identify similar EBNA1 repeat binding sites in the human genome using a nearest-neighbor positional weight matrix. Previously experimentally verified EBNA1 sites in the human genome are successfully recovered by our approach. Most importantly, 40 novel regions are identified in the human genome, constituted of tandemly repeated binding sites for EBNA1. Genes located in the vicinity of these regions are presented as possible targets for EBNA1-mediated regulation. Among these, four are discussed in more detail: IQCB1, IMPG1, IRF2BP2 and TPO. Incorporating the cooperative actions of EBNA1 is essential when identifying regulatory regions in the human genome and we believe the findings presented here are highly valuable for the understanding of EBV-induced phenotypic changes.

  4. Adaptive segmentation of nuclei in H&S stained tendon microscopy

    Science.gov (United States)

    Chuang, Bo-I.; Wu, Po-Ting; Hsu, Jian-Han; Jou, I.-Ming; Su, Fong-Chin; Sun, Yung-Nien

    2015-12-01

    Tendiopathy is a popular clinical issue in recent years. In most cases like trigger finger or tennis elbow, the pathology change can be observed under H and E stained tendon microscopy. However, the qualitative analysis is too subjective and thus the results heavily depend on the observers. We develop an automatic segmentation procedure which segments and counts the nuclei in H and E stained tendon microscopy fast and precisely. This procedure first determines the complexity of images and then segments the nuclei from the image. For the complex images, the proposed method adopts sampling-based thresholding to segment the nuclei. While for the simple images, the Laplacian-based thresholding is employed to re-segment the nuclei more accurately. In the experiments, the proposed method is compared with the experts outlined results. The nuclei number of proposed method is closed to the experts counted, and the processing time of proposed method is much faster than the experts'.

  5. The brain’s cutting-room floor: segmentation of narrative cinema

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Zacks

    2010-10-01

    Full Text Available Observers segment ongoing activity into meaningful events. Segmentation is a core component of perception that helps determine memory and guide planning. The current study tested the hypotheses that event segmentation is an automatic component of the perception of extended naturalistic activity, and that the identification of event boundaries in such activities results in part from processing changes in the perceived situation. Observers may identify boundaries between events as a result of processing changes in the observed situation. To test this hypothesis and study this potential mechanism, we measured brain activity while participants viewed an extended narrative film. Large transient responses were observed when the activity was segmented, and these responses were mediated by changes in the observed activity, including characters and their interactions, interactions with objects, spatial location, goals, and causes. These results support accounts that propose event segmentation is automatic and depends on processing meaningful changes in the perceived situation; they are the first to show such effects for extended naturalistic human activity.

  6. The Sorghum bicolor genome and the diversification of grasses

    Energy Technology Data Exchange (ETDEWEB)

    Paterson, Andrew H.; Bowers, John E.; Bruggmann, Remy; dubchak, Inna; Grimwood, Jane; Gundlach, Heidrun; Haberer, Georg; Hellsten, Uffe; Mitros, Therese; Poliakov, Alexander; Schmutz, Jeremy; Spannagl, Manuel; Tang, Haibo; Wang, Xiyin; Wicker, Thomas; Bharti, Arvind K.; Chapman, Jarrod; Feltus, F. Alex; Gowik, Udo; Grigoriev, Igor V.; Lyons, Eric; Maher, Christopher A.; Martis, Mihaela; Marechania, Apurva; Otillar, Robert P.; Penning, Bryan W.; Salamov, Asaf. A.; Wang, Yu; Zhang, Lifang; Carpita, Nicholas C.; Freeling, Michael; Gingle, Alan R.; hash, C. Thomas; Keller, Beat; Klein, Patricia; Kresovich, Stephen; McCann, Maureen C.; Ming, Ray; Peterson, Daniel G.; ur-Rahman, Mehboob-; Ware, Doreen; Westhoff, Peter; Mayer, Klaus F. X.; Messing, Joachim; Rokhsar, Daniel S.

    2008-08-20

    Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the approx730-megabase Sorghum bicolor (L.) Moench genome, placing approx98percent of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the approx75percent larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization approx70 million years ago, most duplicated gene sets lost one member before the sorghum rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24percent of genes are grass-specific and 7percent are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.

  7. Benchmarking of Remote Sensing Segmentation Methods

    Czech Academy of Sciences Publication Activity Database

    Mikeš, Stanislav; Haindl, Michal; Scarpa, G.; Gaetano, R.

    2015-01-01

    Roč. 8, č. 5 (2015), s. 2240-2248 ISSN 1939-1404 R&D Projects: GA ČR(CZ) GA14-10911S Institutional support: RVO:67985556 Keywords : benchmark * remote sensing segmentation * unsupervised segmentation * supervised segmentation Subject RIV: BD - Theory of Information Impact factor: 2.145, year: 2015 http://library.utia.cas.cz/separaty/2015/RO/haindl-0445995.pdf

  8. Word segmentation in children’s literacy: a study about word awareness

    OpenAIRE

    Débora Mattos Marques; Aline Lorandi

    2016-01-01

    The present research aimed to investigate how linguistic awareness regarding the concept of “word” may influence some mistakes on segmenting words in children’s writing in the Elementary School. The observed data comprised those of hyper and hyposegmentation which were then related to word awareness. For the analysis of linguistic awareness data, the Representational Redescription, proposed by Karmillof-Smith (1986-1992), has been used. It postulates four levels where knowledge is redescri...

  9. Construction of chromosome segment substitution lines enables QTL mapping for flowering and morphological traits in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Xiaonan eLi

    2015-06-01

    Full Text Available Chromosome segment substitution lines (CSSLs represent a powerful method for precise quantitative trait loci (QTL detection of complex agronomical traits in plants. In this study, we used a marker-assisted backcrossing strategy to develop a population consisting of 63 CSSLs, derived from backcrossing of the F1 generated from a cross between two Brassica rapa subspecies: ‘Chiifu’ (ssp. pekinensis, the Brassica A genome-represented line used as the donor, and ‘49caixin’ (ssp. parachinensis, a non-heading cultivar used as the recipient. The 63 CSSLs covered 87.95% of the B. rapa genome. Among them, 39 lines carried a single segment; 15 lines, two segments; and nine lines, three or more segments of the donor parent chromosomes. To verify the potential advantage of these CSSL lines, we used them to locate QTL for six morphology-related traits. A total of 58 QTL were located on eight chromosomes for all six traits: 17 for flowering time, 14 each for bolting time and plant height, 6 for plant diameter, 2 for leaf width, and 5 for flowering stalk diameter. Co-localized QTL were mainly distributed on eight genomic regions in A01, A02, A05, A06, A08, A09, and A10, present in the corresponding CSSLs. Moreover, new chromosomal fragments that harbored QTL were identified using the findings of previous studies. The CSSL population constructed in our study paves the way for fine mapping and cloning of candidate genes involved in late bolting, flowering, and plant architecture-related traits in B. rapa. Furthermore, it has great potential for future marker-aided gene/QTL pyramiding of other interesting traits in B. rapa breeding.

  10. Recommendations for the Use of Automated Gray Matter Segmentation Tools: Evidence from Huntington’s Disease

    Science.gov (United States)

    Johnson, Eileanoir B.; Gregory, Sarah; Johnson, Hans J.; Durr, Alexandra; Leavitt, Blair R.; Roos, Raymund A.; Rees, Geraint; Tabrizi, Sarah J.; Scahill, Rachael I.

    2017-01-01

    The selection of an appropriate segmentation tool is a challenge facing any researcher aiming to measure gray matter (GM) volume. Many tools have been compared, yet there is currently no method that can be recommended above all others; in particular, there is a lack of validation in disease cohorts. This work utilizes a clinical dataset to conduct an extensive comparison of segmentation tools. Our results confirm that all tools have advantages and disadvantages, and we present a series of considerations that may be of use when selecting a GM segmentation method, rather than a ranking of these tools. Seven segmentation tools were compared using 3 T MRI data from 20 controls, 40 premanifest Huntington’s disease (HD), and 40 early HD participants. Segmented volumes underwent detailed visual quality control. Reliability and repeatability of total, cortical, and lobular GM were investigated in repeated baseline scans. The relationship between each tool was also examined. Longitudinal within-group change over 3 years was assessed via generalized least squares regression to determine sensitivity of each tool to disease effects. Visual quality control and raw volumes highlighted large variability between tools, especially in occipital and temporal regions. Most tools showed reliable performance and the volumes were generally correlated. Results for longitudinal within-group change varied between tools, especially within lobular regions. These differences highlight the need for careful selection of segmentation methods in clinical neuroimaging studies. This guide acts as a primer aimed at the novice or non-technical imaging scientist providing recommendations for the selection of cohort-appropriate GM segmentation software. PMID:29066997

  11. Recommendations for the Use of Automated Gray Matter Segmentation Tools: Evidence from Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Eileanoir B. Johnson

    2017-10-01

    Full Text Available The selection of an appropriate segmentation tool is a challenge facing any researcher aiming to measure gray matter (GM volume. Many tools have been compared, yet there is currently no method that can be recommended above all others; in particular, there is a lack of validation in disease cohorts. This work utilizes a clinical dataset to conduct an extensive comparison of segmentation tools. Our results confirm that all tools have advantages and disadvantages, and we present a series of considerations that may be of use when selecting a GM segmentation method, rather than a ranking of these tools. Seven segmentation tools were compared using 3 T MRI data from 20 controls, 40 premanifest Huntington’s disease (HD, and 40 early HD participants. Segmented volumes underwent detailed visual quality control. Reliability and repeatability of total, cortical, and lobular GM were investigated in repeated baseline scans. The relationship between each tool was also examined. Longitudinal within-group change over 3 years was assessed via generalized least squares regression to determine sensitivity of each tool to disease effects. Visual quality control and raw volumes highlighted large variability between tools, especially in occipital and temporal regions. Most tools showed reliable performance and the volumes were generally correlated. Results for longitudinal within-group change varied between tools, especially within lobular regions. These differences highlight the need for careful selection of segmentation methods in clinical neuroimaging studies. This guide acts as a primer aimed at the novice or non-technical imaging scientist providing recommendations for the selection of cohort-appropriate GM segmentation software.

  12. Poly(ether amide) segmented block copolymers with adipicacid based tetra amide segments

    NARCIS (Netherlands)

    Biemond, G.J.E.; Feijen, Jan; Gaymans, R.J.

    2007-01-01

    Poly(tetramethylene oxide)-based poly(ether ester amide)s with monodisperse tetraamide segments were synthesized. The tetraamide segment was based on adipic acid, terephthalic acid, and hexamethylenediamine. The synthesis method of the copolymers and the influence of the tetraamide concentration,

  13. Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation

    Directory of Open Access Journals (Sweden)

    Praveen Agarwal

    2017-06-01

    Full Text Available Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without texture. The final segmentation is simply achieved by a spatially color segmentation using feature vector with the set of color values contained around the pixel to be classified with some mathematical equations. The spatial constraint allows taking into account the inherent spatial relationships of any image and its color. This approach provides effective PSNR for the segmented image. These results have the better performance as the segmented images are compared with Watershed & Region Growing Algorithm and provide effective segmentation for the Spectral Images & Medical Images.

  14. Quantitative hepatic CT perfusion measurement: Comparison of Couinaud's hepatic segments with dual-source 128-slice CT

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuan [The Department of Radiology, Peking Union Medical College Hospital, Dongcheng District, Beijing, 100730 (China); Xue, Hua-dan, E-mail: bjdanna95@hotmail.com [The Department of Radiology, Peking Union Medical College Hospital, Dongcheng District, Beijing, 100730 (China); Jin, Zheng-yu, E-mail: jin_zhengyu@163.com [The Department of Radiology, Peking Union Medical College Hospital, Dongcheng District, Beijing, 100730 (China); Su, Bai-yan; Li, Zhuo; Sun, Hao; Chen, Yu; Liu, Wei [The Department of Radiology, Peking Union Medical College Hospital, Dongcheng District, Beijing, 100730 (China)

    2013-02-15

    Purpose: To compare the quantitative liver computed tomography perfusion (CTP) differences among eight hepatic segments. Materials and methods: This retrospective study was based on 72 acquired upper abdomen CTP scans for detecting suspected pancreas tumor. Patients with primary or metastatic liver tumor, any focal liver lesions except simple cyst (<3 cm in diameter), history of liver operation or splenectomy, evidence of liver cirrhosis or invasion of portal vein were excluded. The final analysis included 50 patients (M:F = 21:29, mean age = 43.2 years, 15–76 years). Arterial liver perfusion (ALP), portal-venous perfusion (PVP), total hepatic perfusion (THP = ALP + PVP), and hepatic perfusion index (HPI) of each hepatic segment were calculated and compared by means of one-way analysis of variance (ANOVA) and the Bonferonni correction method. Results: Compared to hepatic segments 5, 6, 7 and 8, segments 2 and 3 showed a tendency of higher ALPs, lower PVPs, and higher HPIs, most of which were statistically significant (p < 0.05). Hepatic segments 1 and 4 had higher mean values of ALP and HPI and lower mean values of PVP than segments 5, 6, 7 and 8 as well, although no significant differences were detected except for ALP and HPI for liver segments 1 and 7 (p = 0.001 and 0.035 respectively), and ALP for liver segments 1 and 5 (p = 0.039). Higher ALP and HPI were showed in hepatic segment 3 compared to segment 4 (p = 0.000 and 0.000 respectively). No significant differences were found for THP among eight segments. Conclusions: Intra-hepatic perfusion differences exist in normal hepatic parenchyma especially between lateral sector (segments 2 and 3) and right lobe (segments 5, 6, 7 and 8). This might have potential clinical significance in liver-perfusion-related protocol design and result analysis.

  15. Engineered Cpf1 variants with altered PAM specificities increase genome targeting range

    Science.gov (United States)

    Gao, Linyi; Cox, David B.T.; Yan, Winston X.; Manteiga, John C.; Schneider, Martin W.; Yamano, Takashi; Nishimasu, Hiroshi; Nureki, Osamu; Crosetto, Nicola; Zhang, Feng

    2017-01-01

    The RNA-guided endonuclease Cpf1 is a promising tool for genome editing in eukaryotic cells1–7. However, the utility of the commonly used Acidaminococcus sp. BV3L6 Cpf1 (AsCpf1) and Lachnospiraceae bacterium ND2006 Cpf1 (LbCpf1) is limited by their requirement of a TTTV protospacer adjacent motif (PAM) in the DNA substrate. To address this limitation, we performed a structure-guided mutagenesis screen to increase the targeting range of Cpf1. We engineered two AsCpf1 variants carrying the mutations S542R/K607R and S542R/K548V/N552R, which recognize TYCV and TATV PAMs, respectively, with enhanced activities in vitro and in human cells. Genome-wide assessment of off-target activity using BLISS7 assay indicated that these variants retain high DNA targeting specificity, which we further improved by introducing an additional non-PAM-interacting mutation. Introducing the identified mutations at their corresponding positions in LbCpf1 similarly altered its PAM specificity. Together, these variants increase the targeting range of Cpf1 by approximately three-fold in human coding sequences to one cleavage site per ~11 bp. PMID:28581492

  16. Serratia marcescens harbouring SME-type class A carbapenemases in Canada and the presence of blaSME on a novel genomic island, SmarGI1-1.

    Science.gov (United States)

    Mataseje, L F; Boyd, D A; Delport, J; Hoang, L; Imperial, M; Lefebvre, B; Kuhn, M; Van Caeseele, P; Willey, B M; Mulvey, M R

    2014-07-01

    An increasing prevalence since 2010 of Serratia marcescens harbouring the Ambler class A carbapenemase SME prompted us to further characterize these isolates. Isolates harbouring bla(SME) were identified by PCR and sequencing. Phenotypic analysis for carbapenemase activity was carried out by a modified Hodge test and a modified Carba NP test. Antimicrobial susceptibilities were determined by Etest and Vitek 2. Typing was by PFGE of macrorestriction digests. Whole-genome sequencing of three isolates was carried out to characterize the genomic region harbouring the bla(SME)-type genes. All S. marcescens harbouring SME-type enzymes could be detected using a modified Carba NP test. Isolates harbouring bla(SME) were resistant to penicillins and carbapenems, but remained susceptible to third-generation cephalosporins, as well as fluoroquinolones and trimethoprim/sulfamethoxazole. Isolates exhibited diverse genetic backgrounds, though 57% of isolates were found in three clusters. Analysis of whole-genome sequence data from three isolates revealed that the bla(SME) gene occurred in a novel cryptic prophage genomic island, SmarGI1-1. There has been an increasing occurrence of S. marcescens harbouring bla(SME) in Canada since 2010. The bla(SME) gene was found on a genomic island, SmarGI1-1, that can be excised and circularized, which probably contributes to its dissemination amongst S. marcescens. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Genome sequence of herpes simplex virus 1 strain KOS.

    Science.gov (United States)

    Macdonald, Stuart J; Mostafa, Heba H; Morrison, Lynda A; Davido, David J

    2012-06-01

    Herpes simplex virus type 1 (HSV-1) strain KOS has been extensively used in many studies to examine HSV-1 replication, gene expression, and pathogenesis. Notably, strain KOS is known to be less pathogenic than the first sequenced genome of HSV-1, strain 17. To understand the genotypic differences between KOS and other phenotypically distinct strains of HSV-1, we sequenced the viral genome of strain KOS. When comparing strain KOS to strain 17, there are at least 1,024 small nucleotide polymorphisms (SNPs) and 172 insertions/deletions (indels). The polymorphisms observed in the KOS genome will likely provide insights into the genes, their protein products, and the cis elements that regulate the biology of this HSV-1 strain.

  18. Genomic Instability: The Driving Force behind Refractory/Relapsing Hodgkin’s Lymphoma

    International Nuclear Information System (INIS)

    Knecht, Hans; Righolt, Christiaan; Mai, Sabine

    2013-01-01

    In classical Hodgkin’s lymphoma (HL) the malignant mononuclear Hodgkin (H) and multinuclear, diagnostic Reed-Sternberg (RS) cells are rare and generally make up <3% of the total cellular mass of the affected lymph nodes. During recent years, the introduction of laser micro-dissection techniques at the single cell level has substantially improved our understanding of the molecular pathogenesis of HL. Gene expression profiling, comparative genomic hybridization analysis, micro-RNA expression profiling and viral oncogene sequencing have deepened our knowledge of numerous facets of H- and RS-cell gene expression deregulation. The question remains whether disturbed signaling pathways and deregulated transcription factors are at the origin of refractory/relapsing Hodgkin’s lymphoma or whether these hallmarks are at least partially related to another major factor. We recently showed that the 3D nuclear organization of telomeres and chromosomes marked the transition from H- to RS-cells in HL cell lines. This transition is associated with progression of telomere dysfunction, shelterin disruption and progression of complex chromosomal rearrangements. We reported analogous findings in refractory/relapsing HL and identified the shelterin proteins TRF1, TRF2 and POT1 as targets of the LMP1 oncogene in post-germinal center B-cells. Here we summarize our findings, including data not previously published, and propose a model in which progressive disruption of nuclear integrity, a form of genomic instability, is the key-player in refractory/relapsing HL. Therapeutic approaches should take these findings into account

  19. Efficient assembly of de novo human artificial chromosomes from large genomic loci

    Directory of Open Access Journals (Sweden)

    Stromberg Gregory

    2005-07-01

    Full Text Available Abstract Background Human Artificial Chromosomes (HACs are potentially useful vectors for gene transfer studies and for functional annotation of the genome because of their suitability for cloning, manipulating and transferring large segments of the genome. However, development of HACs for the transfer of large genomic loci into mammalian cells has been limited by difficulties in manipulating high-molecular weight DNA, as well as by the low overall frequencies of de novo HAC formation. Indeed, to date, only a small number of large (>100 kb genomic loci have been reported to be successfully packaged into de novo HACs. Results We have developed novel methodologies to enable efficient assembly of HAC vectors containing any genomic locus of interest. We report here the creation of a novel, bimolecular system based on bacterial artificial chromosomes (BACs for the construction of HACs incorporating any defined genomic region. We have utilized this vector system to rapidly design, construct and validate multiple de novo HACs containing large (100–200 kb genomic loci including therapeutically significant genes for human growth hormone (HGH, polycystic kidney disease (PKD1 and ß-globin. We report significant differences in the ability of different genomic loci to support de novo HAC formation, suggesting possible effects of cis-acting genomic elements. Finally, as a proof of principle, we have observed sustained ß-globin gene expression from HACs incorporating the entire 200 kb ß-globin genomic locus for over 90 days in the absence of selection. Conclusion Taken together, these results are significant for the development of HAC vector technology, as they enable high-throughput assembly and functional validation of HACs containing any large genomic locus. We have evaluated the impact of different genomic loci on the frequency of HAC formation and identified segments of genomic DNA that appear to facilitate de novo HAC formation. These genomic loci

  20. Complete genome sequence of Halorhodospira halophila SL1

    Energy Technology Data Exchange (ETDEWEB)

    Challacombe, Jean F [ORNL; Majid, Sophia [University of Chicago; Deole, Ratnakar [Oklahoma State University; Brettin, Thomas S. [Argonne National Laboratory (ANL); Bruce, David [Los Alamos National Laboratory (LANL); Delano, Susana [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Gleasner, Cheryl D. [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Misra, Monica [Los Alamos National Laboratory (LANL); Reitenga, Krista K. [Los Alamos National Laboratory (LANL); Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Hoff, Wouter D. [Oklahoma State University

    2013-01-01

    Halorhodospira halophila is among the most halophilic organisms known. It is an obligately photosynthetic and anaerobic purple sulfur bacterium that exhibits autotrophic growth up to saturated NaCl concentrations. The type strain H. halophila SL1 was isolated from a hypersaline lake in Oregon. Here we report the determination of its entire genome in a single contig. This is the first genome of a phototrophic extreme halophile. The genome consists of 2,678,452 bp, encoding 2493 predicted genes as determined by automated genome annotation. Of the 2407 predicted proteins, 1905 were assigned to a putative function. Future detailed analysis of this genome promises to yield insights into the halophilic adaptations of this organism, its ability for photoautotrophic growth under extreme conditions, and its characteristic sulfur metabolism.

  1. Analysis of the coding potential of the partially overlapping 3' ORF in segment 5 of the plant fijiviruses

    Directory of Open Access Journals (Sweden)

    Atkins John F

    2009-03-01

    Full Text Available Abstract The plant-infecting members of the genus Fijivirus (family Reoviridae have linear dsRNA genomes divided into 10 segments, two of which contain two substantial and non-overlapping ORFs, while the remaining eight are apparently monocistronic. However, one of these – namely segment 5 – contains a second long ORF (~200+ codons that overlaps the 3' end of the major ORF (~920–940 codons in the +1 reading frame. In this report, we use bioinformatic techniques to analyze the pattern of base variations across an alignment of fijivirus segment 5 sequences, and show that this 3' ORF has a strong coding signature. Possible translation mechanisms for this unusually positioned ORF are discussed.

  2. Insertion and deletion polymorphisms of the ancient AluS family in the human genome.

    Science.gov (United States)

    Kryatova, Maria S; Steranka, Jared P; Burns, Kathleen H; Payer, Lindsay M

    2017-01-01

    Polymorphic Alu elements account for 17% of structural variants in the human genome. The majority of these belong to the youngest AluY subfamilies, and most structural variant discovery efforts have focused on identifying Alu polymorphisms from these currently retrotranspositionally active subfamilies. In this report we analyze polymorphisms from the evolutionarily older AluS subfamily, whose peak activity was tens of millions of years ago. We annotate the AluS polymorphisms, assess their likely mechanism of origin, and evaluate their contribution to structural variation in the human genome. Of 52 previously reported polymorphic AluS elements ascertained for this study, 48 were confirmed to belong to the AluS subfamily using high stringency subfamily classification criteria. Of these, the majority (77%, 37/48) appear to be deletion polymorphisms. Two polymorphic AluS elements (4%) have features of non-classical Alu insertions and one polymorphic AluS element (2%) likely inserted by a mechanism involving internal priming. Seven AluS polymorphisms (15%) appear to have arisen by the classical target-primed reverse transcription (TPRT) retrotransposition mechanism. These seven TPRT products are 3' intact with 3' poly-A tails, and are flanked by target site duplications; L1 ORF2p endonuclease cleavage sites were also observed, providing additional evidence that these are L1 ORF2p endonuclease-mediated TPRT insertions. Further sequence analysis showed strong conservation of both the RNA polymerase III promoter and SRP9/14 binding sites, important for mediating transcription and interaction with retrotransposition machinery, respectively. This conservation of functional features implies that some of these are fairly recent insertions since they have not diverged significantly from their respective retrotranspositionally competent source elements. Of the polymorphic AluS elements evaluated in this report, 15% (7/48) have features consistent with TPRT-mediated insertion

  3. Analysis of CR1 Repeats in the Zebra Finch Genome

    Directory of Open Access Journals (Sweden)

    George E. Liu

    2013-06-01

    Full Text Available Most bird species have smaller genomes and fewer repeats than mammals. Chicken Repeat 1 (CR1 repeat is one of the most abundant families of repeats, ranging from ~133,000 to ~187,000 copies accounting for ~50 to ~80% of the interspersed repeats in the zebra finch and chicken genomes, respectively. CR1 repeats are believed to have arisen from the retrotransposition of a small number of master elements, which gave rise to multiple CR1 subfamilies in the chicken. In this study, we performed a global assessment of the divergence distributions, phylogenies, and consensus sequences of CR1 repeats in the zebra finch genome. We identified and validated 34 CR1 subfamilies and further analyzed the correlation between these subfamilies. We also discovered 4 novel lineage-specific CR1 subfamilies in the zebra finch when compared to the chicken genome. We built various evolutionary trees of these subfamilies and concluded that CR1 repeats may play an important role in reshaping the structure of bird genomes.

  4. Segmentation of time series with long-range fractal correlations

    Science.gov (United States)

    Bernaola-Galván, P.; Oliver, J.L.; Hackenberg, M.; Coronado, A.V.; Ivanov, P.Ch.; Carpena, P.

    2012-01-01

    Segmentation is a standard method of data analysis to identify change-points dividing a nonstationary time series into homogeneous segments. However, for long-range fractal correlated series, most of the segmentation techniques detect spurious change-points which are simply due to the heterogeneities induced by the correlations and not to real nonstationarities. To avoid this oversegmentation, we present a segmentation algorithm which takes as a reference for homogeneity, instead of a random i.i.d. series, a correlated series modeled by a fractional noise with the same degree of correlations as the series to be segmented. We apply our algorithm to artificial series with long-range correlations and show that it systematically detects only the change-points produced by real nonstationarities and not those created by the correlations of the signal. Further, we apply the method to the sequence of the long arm of human chromosome 21, which is known to have long-range fractal correlations. We obtain only three segments that clearly correspond to the three regions of different G + C composition revealed by means of a multi-scale wavelet plot. Similar results have been obtained when segmenting all human chromosome sequences, showing the existence of previously unknown huge compositional superstructures in the human genome. PMID:23645997

  5. Segmentation of time series with long-range fractal correlations.

    Science.gov (United States)

    Bernaola-Galván, P; Oliver, J L; Hackenberg, M; Coronado, A V; Ivanov, P Ch; Carpena, P

    2012-06-01

    Segmentation is a standard method of data analysis to identify change-points dividing a nonstationary time series into homogeneous segments. However, for long-range fractal correlated series, most of the segmentation techniques detect spurious change-points which are simply due to the heterogeneities induced by the correlations and not to real nonstationarities. To avoid this oversegmentation, we present a segmentation algorithm which takes as a reference for homogeneity, instead of a random i.i.d. series, a correlated series modeled by a fractional noise with the same degree of correlations as the series to be segmented. We apply our algorithm to artificial series with long-range correlations and show that it systematically detects only the change-points produced by real nonstationarities and not those created by the correlations of the signal. Further, we apply the method to the sequence of the long arm of human chromosome 21, which is known to have long-range fractal correlations. We obtain only three segments that clearly correspond to the three regions of different G + C composition revealed by means of a multi-scale wavelet plot. Similar results have been obtained when segmenting all human chromosome sequences, showing the existence of previously unknown huge compositional superstructures in the human genome.

  6. Biodegradation of DDT by Stenotrophomonas sp. DDT-1: Characterization and genome functional analysis.

    Science.gov (United States)

    Pan, Xiong; Lin, Dunli; Zheng, Yuan; Zhang, Qian; Yin, Yuanming; Cai, Lin; Fang, Hua; Yu, Yunlong

    2016-02-18

    A novel bacterium capable of utilizing 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) as the sole carbon and energy source was isolated from a contaminated soil which was identified as Stenotrophomonas sp. DDT-1 based on morphological characteristics, BIOLOG GN2 microplate profile, and 16S rDNA phylogeny. Genome sequencing and functional annotation of the isolate DDT-1 showed a 4,514,569 bp genome size, 66.92% GC content, 4,033 protein-coding genes, and 76 RNA genes including 8 rRNA genes. Totally, 2,807 protein-coding genes were assigned to Clusters of Orthologous Groups (COGs), and 1,601 protein-coding genes were mapped to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The degradation half-lives of DDT increased with substrate concentration from 0.1 to 10.0 mg/l, whereas decreased with temperature from 15 °C to 35 °C. Neutral condition was the most favorable for DDT biodegradation. Based on genome annotation of DDT degradation genes and the metabolites detected by GC-MS, a mineralization pathway was proposed for DDT biodegradation in which it was orderly converted into DDE/DDD, DDMU, DDOH, and DDA via dechlorination, hydroxylation, and carboxylation, and ultimately mineralized to carbon dioxide. The results indicate that the isolate DDT-1 is a promising bacterial resource for the removal or detoxification of DDT residues in the environment.

  7. Advances in faba bean genetics and genomics

    Directory of Open Access Journals (Sweden)

    Donal Martin O'Sullivan

    2016-08-01

    Full Text Available Vicia faba L, is a globally important grain legume whose main centres of diversity are the Fertile Crescent and Mediterranean basin. Because of its small number (six of exceptionally large and easily observed chromosomes it became a model species for plant cytogenetics the 70s and 80s. It is somewhat ironic therefore, that the emergence of more genomically tractable model plant species such as Arabidopsis and Medicago coincided with a marked decline in genome research on the formerly favoured plant cytogenetic model. Thus, as ever higher density molecular marker coverage and dense genetic and even complete genome sequence maps of key crop and model species emerged through the 1990s and early 2000s, genetic and genome knowledge of Vicia faba lagged far behind other grain legumes such as soybean, common bean and pea.However, cheap sequencing technologies have stimulated the production of deep transcriptome coverage from several tissue types and numerous distinct cultivars in recent years. This has permitted the reconstruction of the faba bean meta-transcriptome and has fuelled development of extensive sets of Simple Sequence Repeat and Single Nucleotide Polymorphism (SNP markers. Genetics of faba bean stretches back to the 1930s, but it was not until 1993 that DNA markers were used to construct genetic maps. A series of Random Amplified Polymorphic DNA-based genetic studies mainly targeted at quantitative loci underlying resistance to a series of biotic and abiotic stresses were conducted during the 1990’s and early 2000s. More recently, SNP-based genetic maps have permitted chromosome intervals of interest to be aligned to collinear segments of sequenced legume genomes such as the model legume Medicago truncatula, which in turn opens up the possibility for hypotheses on gene content, order and function to be translated from model to crop. Some examples of where knowledge of gene content and function have already been productively exploited are

  8. Draft genome sequence of Xylella fastidiosa subsp. fastidiosa strain Stag’s Leap

    Science.gov (United States)

    Xylella fastidiosa subsp. fastidiosa causes Pierce’s disease of grapevine. Presented here is the draft genome sequence of the Stag’s Leap strain, previously used in pathogenicity/virulence assays to evaluate grapevine germplasm bearing Pierce’s disease....

  9. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods.

    Science.gov (United States)

    Oldfield, Lauren M; Grzesik, Peter; Voorhies, Alexander A; Alperovich, Nina; MacMath, Derek; Najera, Claudia D; Chandra, Diya Sabrina; Prasad, Sanjana; Noskov, Vladimir N; Montague, Michael G; Friedman, Robert M; Desai, Prashant J; Vashee, Sanjay

    2017-10-17

    Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOS YA , replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.

  10. Genome Partitioner: A web tool for multi-level partitioning of large-scale DNA constructs for synthetic biology applications.

    Science.gov (United States)

    Christen, Matthias; Del Medico, Luca; Christen, Heinz; Christen, Beat

    2017-01-01

    Recent advances in lower-cost DNA synthesis techniques have enabled new innovations in the field of synthetic biology. Still, efficient design and higher-order assembly of genome-scale DNA constructs remains a labor-intensive process. Given the complexity, computer assisted design tools that fragment large DNA sequences into fabricable DNA blocks are needed to pave the way towards streamlined assembly of biological systems. Here, we present the Genome Partitioner software implemented as a web-based interface that permits multi-level partitioning of genome-scale DNA designs. Without the need for specialized computing skills, biologists can submit their DNA designs to a fully automated pipeline that generates the optimal retrosynthetic route for higher-order DNA assembly. To test the algorithm, we partitioned a 783 kb Caulobacter crescentus genome design. We validated the partitioning strategy by assembling a 20 kb test segment encompassing a difficult to synthesize DNA sequence. Successful assembly from 1 kb subblocks into the 20 kb segment highlights the effectiveness of the Genome Partitioner for reducing synthesis costs and timelines for higher-order DNA assembly. The Genome Partitioner is broadly applicable to translate DNA designs into ready to order sequences that can be assembled with standardized protocols, thus offering new opportunities to harness the diversity of microbial genomes for synthetic biology applications. The Genome Partitioner web tool can be accessed at https://christenlab.ethz.ch/GenomePartitioner.

  11. Genome Partitioner: A web tool for multi-level partitioning of large-scale DNA constructs for synthetic biology applications.

    Directory of Open Access Journals (Sweden)

    Matthias Christen

    Full Text Available Recent advances in lower-cost DNA synthesis techniques have enabled new innovations in the field of synthetic biology. Still, efficient design and higher-order assembly of genome-scale DNA constructs remains a labor-intensive process. Given the complexity, computer assisted design tools that fragment large DNA sequences into fabricable DNA blocks are needed to pave the way towards streamlined assembly of biological systems. Here, we present the Genome Partitioner software implemented as a web-based interface that permits multi-level partitioning of genome-scale DNA designs. Without the need for specialized computing skills, biologists can submit their DNA designs to a fully automated pipeline that generates the optimal retrosynthetic route for higher-order DNA assembly. To test the algorithm, we partitioned a 783 kb Caulobacter crescentus genome design. We validated the partitioning strategy by assembling a 20 kb test segment encompassing a difficult to synthesize DNA sequence. Successful assembly from 1 kb subblocks into the 20 kb segment highlights the effectiveness of the Genome Partitioner for reducing synthesis costs and timelines for higher-order DNA assembly. The Genome Partitioner is broadly applicable to translate DNA designs into ready to order sequences that can be assembled with standardized protocols, thus offering new opportunities to harness the diversity of microbial genomes for synthetic biology applications. The Genome Partitioner web tool can be accessed at https://christenlab.ethz.ch/GenomePartitioner.

  12. Comparative genome analysis of non-toxigenic non-O1 versus toxigenic O1 Vibrio cholerae

    Science.gov (United States)

    Mukherjee, Munmun; Kakarla, Prathusha; Kumar, Sanath; Gonzalez, Esmeralda; Floyd, Jared T.; Inupakutika, Madhuri; Devireddy, Amith Reddy; Tirrell, Selena R.; Bruns, Merissa; He, Guixin; Lindquist, Ingrid E.; Sundararajan, Anitha; Schilkey, Faye D.; Mudge, Joann; Varela, Manuel F.

    2015-01-01

    Pathogenic strains of Vibrio cholerae are responsible for endemic and pandemic outbreaks of the disease cholera. The complete toxigenic mechanisms underlying virulence in Vibrio strains are poorly understood. The hypothesis of this work was that virulent versus non-virulent strains of V. cholerae harbor distinctive genomic elements that encode virulence. The purpose of this study was to elucidate genomic differences between the O1 serotypes and non-O1 V. cholerae PS15, a non-toxigenic strain, in order to identify novel genes potentially responsible for virulence. In this study, we compared the whole genome of the non-O1 PS15 strain to the whole genomes of toxigenic serotypes at the phylogenetic level, and found that the PS15 genome was distantly related to those of toxigenic V. cholerae. Thus we focused on a detailed gene comparison between PS15 and the distantly related O1 V. cholerae N16961. Based on sequence alignment we tentatively assigned chromosome numbers 1 and 2 to elements within the genome of non-O1 V. cholerae PS15. Further, we found that PS15 and O1 V. cholerae N16961 shared 98% identity and 766 genes, but of the genes present in N16961 that were missing in the non-O1 V. cholerae PS15 genome, 56 were predicted to encode not only for virulence–related genes (colonization, antimicrobial resistance, and regulation of persister cells) but also genes involved in the metabolic biosynthesis of lipids, nucleosides and sulfur compounds. Additionally, we found 113 genes unique to PS15 that were predicted to encode other properties related to virulence, disease, defense, membrane transport, and DNA metabolism. Here, we identified distinctive and novel genomic elements between O1 and non-O1 V. cholerae genomes as potential virulence factors and, thus, targets for future therapeutics. Modulation of such novel targets may eventually enhance eradication efforts of endemic and pandemic disease cholera in afflicted nations. PMID:25722857

  13. Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1.

    Science.gov (United States)

    Kane, Staci R; Chakicherla, Anu Y; Chain, Patrick S G; Schmidt, Radomir; Shin, Maria W; Legler, Tina C; Scow, Kate M; Larimer, Frank W; Lucas, Susan M; Richardson, Paul M; Hristova, Krassimira R

    2007-03-01

    Methylibium petroleiphilum PM1 is a methylotroph distinguished by its ability to completely metabolize the fuel oxygenate methyl tert-butyl ether (MTBE). Strain PM1 also degrades aromatic (benzene, toluene, and xylene) and straight-chain (C(5) to C(12)) hydrocarbons present in petroleum products. Whole-genome analysis of PM1 revealed an approximately 4-Mb circular chromosome and an approximately 600-kb megaplasmid, containing 3,831 and 646 genes, respectively. Aromatic hydrocarbon and alkane degradation, metal resistance, and methylotrophy are encoded on the chromosome. The megaplasmid contains an unusual t-RNA island, numerous insertion sequences, and large repeated elements, including a 40-kb region also present on the chromosome and a 29-kb tandem repeat encoding phosphonate transport and cobalamin biosynthesis. The megaplasmid also codes for alkane degradation and was shown to play an essential role in MTBE degradation through plasmid-curing experiments. Discrepancies between the insertion sequence element distribution patterns, the distributions of best BLASTP hits among major phylogenetic groups, and the G+C contents of the chromosome (69.2%) and plasmid (66%), together with comparative genome hybridization experiments, suggest that the plasmid was recently acquired and apparently carries the genetic information responsible for PM1's ability to degrade MTBE. Comparative genomic hybridization analysis with two PM1-like MTBE-degrading environmental isolates (approximately 99% identical 16S rRNA gene sequences) showed that the plasmid was highly conserved (ca. 99% identical), whereas the chromosomes were too diverse to conduct resequencing analysis. PM1's genome sequence provides a foundation for investigating MTBE biodegradation and exploring the genetic regulation of multiple biodegradation pathways in M. petroleiphilum and other MTBE-degrading beta-proteobacteria.

  14. Population genetic inference from personal genome data: impact of ancestry and admixture on human genomic variation.

    Science.gov (United States)

    Kidd, Jeffrey M; Gravel, Simon; Byrnes, Jake; Moreno-Estrada, Andres; Musharoff, Shaila; Bryc, Katarzyna; Degenhardt, Jeremiah D; Brisbin, Abra; Sheth, Vrunda; Chen, Rong; McLaughlin, Stephen F; Peckham, Heather E; Omberg, Larsson; Bormann Chung, Christina A; Stanley, Sarah; Pearlstein, Kevin; Levandowsky, Elizabeth; Acevedo-Acevedo, Suehelay; Auton, Adam; Keinan, Alon; Acuña-Alonzo, Victor; Barquera-Lozano, Rodrigo; Canizales-Quinteros, Samuel; Eng, Celeste; Burchard, Esteban G; Russell, Archie; Reynolds, Andy; Clark, Andrew G; Reese, Martin G; Lincoln, Stephen E; Butte, Atul J; De La Vega, Francisco M; Bustamante, Carlos D

    2012-10-05

    Full sequencing of individual human genomes has greatly expanded our understanding of human genetic variation and population history. Here, we present a systematic analysis of 50 human genomes from 11 diverse global populations sequenced at high coverage. Our sample includes 12 individuals who have admixed ancestry and who have varying degrees of recent (within the last 500 years) African, Native American, and European ancestry. We found over 21 million single-nucleotide variants that contribute to a 1.75-fold range in nucleotide heterozygosity across diverse human genomes. This heterozygosity ranged from a high of one heterozygous site per kilobase in west African genomes to a low of 0.57 heterozygous sites per kilobase in segments inferred to have diploid Native American ancestry from the genomes of Mexican and Puerto Rican individuals. We show evidence of all three continental ancestries in the genomes of Mexican, Puerto Rican, and African American populations, and the genome-wide statistics are highly consistent across individuals from a population once ancestry proportions have been accounted for. Using a generalized linear model, we identified subtle variations across populations in the proportion of neutral versus deleterious variation and found that genome-wide statistics vary in admixed populations even once ancestry proportions have been factored in. We further infer that multiple periods of gene flow shaped the diversity of admixed populations in the Americas-70% of the European ancestry in today's African Americans dates back to European gene flow happening only 7-8 generations ago. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. History and genomic sequence analysis of the herpes simplex virus 1 KOS and KOS1.1 sub-strains.

    Science.gov (United States)

    Colgrove, Robert C; Liu, Xueqiao; Griffiths, Anthony; Raja, Priya; Deluca, Neal A; Newman, Ruchi M; Coen, Donald M; Knipe, David M

    2016-01-01

    A collection of genomic DNA sequences of herpes simplex virus (HSV) strains has been defined and analyzed, and some information is available about genomic stability upon limited passage of viruses in culture. The nature of genomic change upon extensive laboratory passage remains to be determined. In this report we review the history of the HSV-1 KOS laboratory strain and the related KOS1.1 laboratory sub-strain, also called KOS (M), and determine the complete genomic sequence of an early passage stock of the KOS laboratory sub-strain and a laboratory stock of the KOS1.1 sub-strain. The genomes of the two sub-strains are highly similar with only five coding changes, 20 non-coding changes, and about twenty non-ORF sequence changes. The coding changes could potentially explain the KOS1.1 phenotypic properties of increased replication at high temperature and reduced neuroinvasiveness. The study also provides sequence markers to define the provenance of specific laboratory KOS virus stocks. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Translocations of Chromosome End-Segments and Facultative Heterochromatin Promote Meiotic Ring Formation in Evening Primroses[W][OPEN

    Science.gov (United States)

    Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan

    2014-01-01

    Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories. PMID:24681616

  17. Variability of Emaravirus Species Associated with Sterility Mosaic Disease of Pigeonpea in India Provides Evidence of Segment Reassortment

    Science.gov (United States)

    Patil, Basavaprabhu L.; Dangwal, Meenakshi; Mishra, Ritesh

    2017-01-01

    Sterility mosaic disease (SMD) of pigeonpea is a serious constraint for cultivation of pigeonpea in India and other South Asian countries. SMD of pigeonpea is associated with two distinct emaraviruses, Pigeonpea sterility mosaic virus 1 (PPSMV-1) and Pigeonpea sterility mosaic virus 2 (PPSMV-2), with genomes consisting of five and six negative-sense RNA segments, respectively. The recently published genome sequences of both PPSMV-1 and PPSMV-2 are from a single location, Patancheru from the state of Telangana in India. However, here we present the first report of sequence variability among 23 isolates of PPSMV-1 and PPSMV-2, collected from ten locations representing six states of India. Both PPSMV-1 and PPSMV-2 are shown to be present across India and to exhibit considerable sequence variability. Variability of RNA3 sequences was higher than the RNA4 sequences for both PPSMV-1 and PPSMV-2. Additionally, the sixth RNA segment (RNA6), previously reported to be associated with only PPSMV-2, is also associated with isolates of PPSMV-1. Multiplex reverse transcription PCR (RT-PCR) analyses show that PPSMV-1 and PPSMV-2 frequently occur as mixed infections. Further sequence analyses indicated the presence of reassortment of RNA4 between isolates of PPSMV-1 and PPSMV-2. PMID:28696402

  18. Permanent draft genomes of the Rhodopirellula maiorica strain SM1.

    Science.gov (United States)

    Richter, Michael; Richter-Heitmann, Tim; Klindworth, Anna; Wegner, Carl-Eric; Frank, Carsten S; Harder, Jens; Glöckner, Frank Oliver

    2014-02-01

    The genome of Rhodopirellula maiorica strain SM1 was sequenced as a permanent draft to complement the full genome sequence of the type strain Rhodopirellula baltica SH1(T). This isolate is part of a larger study to infer the biogeography of Rhodopirellula species in European marine waters, as well as to amend the genus description of R. baltica. This genomics resource article is the fifth of a series of five publications reporting in total eight new permanent daft genomes of Rhodopirellula species. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Whole genome HBV deletion profiles and the accumulation of preS deletion mutant during antiviral treatment

    Science.gov (United States)

    2012-01-01

    Background Hepatitis B virus (HBV), because of its error-prone viral polymerase, has a high mutation rate leading to widespread substitutions, deletions, and insertions in the HBV genome. Deletions may significantly change viral biological features complicating the progression of liver diseases. However, the clinical conditions correlating to the accumulation of deleted mutants remain unclear. In this study, we explored HBV deletion patterns and their association with disease status and antiviral treatment by performing whole genome sequencing on samples from 51 hepatitis B patients and by monitoring changes in deletion variants during treatment. Clone sequencing was used to analyze preS regions in another cohort of 52 patients. Results Among the core, preS, and basic core promoter (BCP) deletion hotspots, we identified preS to have the highest frequency and the most complex deletion pattern using whole genome sequencing. Further clone sequencing analysis on preS identified 70 deletions which were classified into 4 types, the most common being preS2. Also, in contrast to the core and BCP regions, most preS deletions were in-frame. Most deletions interrupted viral surface epitopes, and are possibly involved in evading immuno-surveillance. Among various clinical factors examined, logistic regression showed that antiviral medication affected the accumulation of deletion mutants (OR = 6.81, 95% CI = 1.296 ~ 35.817, P = 0.023). In chronic carriers of the virus, and individuals with chronic hepatitis, the deletion rate was significantly higher in the antiviral treatment group (Fisher exact test, P = 0.007). Particularly, preS2 deletions were associated with the usage of nucleos(t)ide analog therapy (Fisher exact test, P = 0.023). Dynamic increases in preS1 or preS2 deletions were also observed in quasispecies from samples taken from patients before and after three months of ADV therapy. In vitro experiments demonstrated that preS2 deletions alone

  20. Genomics of Escherichia and Shigella

    Science.gov (United States)

    Perna, Nicole T.

    The laboratory workhorse Escherichia coli K-12 is among the most intensively studied living organisms on earth, and this single strain serves as the model system behind much of our understanding of prokaryotic molecular biology. Dense genome sequencing and recent insightful comparative analyses are making the species E. coli, as a whole, an emerging system for studying prokaryotic population genetics and the relationship between system-scale, or genome-scale, molecular evolution and complex traits like host range and pathogenic potential. Genomic perspective has revealed a coherent but dynamic species united by intraspecific gene flow via homologous lateral or horizontal transfer and differentiated by content flux mediated by acquisition of DNA segments from interspecies transfers.

  1. Market Segmentation in Business Technology Base: The Case of Segmentation of Sparkling

    Directory of Open Access Journals (Sweden)

    Valéria Riscarolli

    2014-08-01

    Full Text Available A common market segmentation premise for products and services rules consumer behavior as the segmentation center piece. Would this be the logic for segmentation used by small technology based companies? In this article we target at determining the principles of market segmentation used by a vitiwinery company, as research object. This company is recognized by its products excellence, either in domestic as well as in the foreign market, among 13 distinct countries. The research method used is a case study, through information from the company’s CEOs and crossed by primary information from observation and formal registries and documents of the company. In this research we look at sparkling wines market segmentation. Main results indicate that the winery studied considers only technological elements as the basis to build a market segment. One may conclude that a market segmentation for this company is based upon technological dominion of sparkling wines production, aligned with a premium-price policy. In the company, directorship believes that as sparkling wines market is still incipient in the country, sparkling wine market segments will form and consolidate after the evolution of consumers tasting preferences, depending on technologies that boost sparkling wines quality. 

  2. Comparative genomics identifies distinct lineages of S. Enteritidis from Queensland, Australia.

    Science.gov (United States)

    Graham, Rikki M A; Hiley, Lester; Rathnayake, Irani U; Jennison, Amy V

    2018-01-01

    Salmonella enterica is a major cause of gastroenteritis and foodborne illness in Australia where notification rates in the state of Queensland are the highest in the country. S. Enteritidis is among the five most common serotypes reported in Queensland and it is a priority for epidemiological surveillance due to concerns regarding its emergence in Australia. Using whole genome sequencing, we have analysed the genomic epidemiology of 217 S. Enteritidis isolates from Queensland, and observed that they fall into three distinct clades, which we have differentiated as Clades A, B and C. Phage types and MLST sequence types differed between the clades and comparative genomic analysis has shown that each has a unique profile of prophage and genomic islands. Several of the phage regions present in the S. Enteritidis reference strain P125109 were absent in Clades A and C, and these clades also had difference in the presence of pathogenicity islands, containing complete SPI-6 and SPI-19 regions, while P125109 does not. Antimicrobial resistance markers were found in 39 isolates, all but one of which belonged to Clade B. Phylogenetic analysis of the Queensland isolates in the context of 170 international strains showed that Queensland Clade B isolates group together with the previously identified global clade, while the other two clades are distinct and appear largely restricted to Australia. Locally sourced environmental isolates included in this analysis all belonged to Clades A and C, which is consistent with the theory that these clades are a source of locally acquired infection, while Clade B isolates are mostly travel related.

  3. Isolation of a Genomic Region Affecting Most Components of Metabolic Syndrome in a Chromosome-16 Congenic Rat Model.

    Directory of Open Access Journals (Sweden)

    Lucie Šedová

    Full Text Available Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16 and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx into the genomic background of the spontaneously hypertensive rat (SHR strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18-28 mmHg difference and diastolic (10-15 mmHg difference blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001. The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1. Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic

  4. Tumor segmentation of whole-body magnetic resonance imaging in neurofibromatosis type 1 patients: tumor burden correlates

    Energy Technology Data Exchange (ETDEWEB)

    Heffler, Michael A.; Xi, Yin; Chhabra, Avneesh [University of Texas Southwestern Medical Center, Department of Radiology, Dallas, TX (United States); Le, Lu Q. [University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, TX (United States)

    2017-01-15

    Segmentation of whole-body MRI (WBMRI) to assess the feasibility, quantitate the total tumor volume (tumor burden) in patients with neurofibromatosis type 1 (NF1) and examine associations with demographic, disease-related and anthropomorphic features. A consecutive series of patients with NF1 underwent WBMRI and were reviewed for tumors. Tumors were segmented using a semiautomated software-based tool. Tumors were classified as superficial or deep and discrete or plexiform. Segmentation times were recorded. Segmentation yielded the quantity and tumor burden of superficial, internal and plexiform tumors. Correlations between segmentation data and demographic, disease-related and anthropomorphic features were examined. Fifteen patients were evaluated (42.3 ± 13.6 years, 10 female, 5 male). Segmentation times were a median of 30 min and yielded 2,328 tumors (1,582 superficial, 746 internal and 23 plexiform). One tumor was malignant. Tumor counts ranged from 14 to 397. Tumor burden ranged from 6.95 cm3 to 571 cm3. Individual tumor volume ranged from 0.0120 cm3 to 298 cm3. Significant correlation was found between the total volume of superficial tumors and height (ρ = 0.5966, p < 0.02). Male patients had higher overall tumor burdens (p < 0.05) and higher superficial tumor burden (p < 0.03). Patients with negative family history had more tumors (p < 0.05). Segmentation of WBMRI in patients with NF1 is feasible and elucidates meaningful relationships among disease phenotype, anthropomorphic and demographic features. (orig.)

  5. Tumor segmentation of whole-body magnetic resonance imaging in neurofibromatosis type 1 patients: tumor burden correlates

    International Nuclear Information System (INIS)

    Heffler, Michael A.; Xi, Yin; Chhabra, Avneesh; Le, Lu Q.

    2017-01-01

    Segmentation of whole-body MRI (WBMRI) to assess the feasibility, quantitate the total tumor volume (tumor burden) in patients with neurofibromatosis type 1 (NF1) and examine associations with demographic, disease-related and anthropomorphic features. A consecutive series of patients with NF1 underwent WBMRI and were reviewed for tumors. Tumors were segmented using a semiautomated software-based tool. Tumors were classified as superficial or deep and discrete or plexiform. Segmentation times were recorded. Segmentation yielded the quantity and tumor burden of superficial, internal and plexiform tumors. Correlations between segmentation data and demographic, disease-related and anthropomorphic features were examined. Fifteen patients were evaluated (42.3 ± 13.6 years, 10 female, 5 male). Segmentation times were a median of 30 min and yielded 2,328 tumors (1,582 superficial, 746 internal and 23 plexiform). One tumor was malignant. Tumor counts ranged from 14 to 397. Tumor burden ranged from 6.95 cm3 to 571 cm3. Individual tumor volume ranged from 0.0120 cm3 to 298 cm3. Significant correlation was found between the total volume of superficial tumors and height (ρ = 0.5966, p < 0.02). Male patients had higher overall tumor burdens (p < 0.05) and higher superficial tumor burden (p < 0.03). Patients with negative family history had more tumors (p < 0.05). Segmentation of WBMRI in patients with NF1 is feasible and elucidates meaningful relationships among disease phenotype, anthropomorphic and demographic features. (orig.)

  6. Antimicrobial resistance, class 1 integrons, and genomic island 1 in Salmonella isolates from Vietnam.

    Directory of Open Access Journals (Sweden)

    An T T Vo

    Full Text Available BACKGROUND: The objective was to investigate the phenotypic and genotypic resistance and the horizontal transfer of resistance determinants from Salmonella isolates from humans and animals in Vietnam. METHODOLOGY/PRINCIPAL FINDINGS: The susceptibility of 297 epidemiologically unrelated non-typhoid Salmonella isolates was investigated by disk diffusion assay. The isolates were screened for the presence of class 1 integrons and Salmonella genomic island 1 by PCR. The potential for the transfer of resistance determinants was investigated by conjugation experiments. Resistance to gentamicin, kanamycin, chloramphenicol, streptomycin, trimethoprim, ampicillin, nalidixic acid, sulphonamides, and tetracycline was found in 13 to 50% of the isolates. Nine distinct integron types were detected in 28% of the isolates belonging to 11 Salmonella serovars including S. Tallahassee. Gene cassettes identified were aadA1, aadA2, aadA5, bla(PSE-1, bla(OXA-30, dfrA1, dfrA12, dfrA17, and sat, as well as open reading frames with unknown functions. Most integrons were located on conjugative plasmids, which can transfer their antimicrobial resistance determinants to Escherichia coli or Salmonella Enteritidis, or with Salmonella Genomic Island 1 or its variants. The resistance gene cluster in serovar Emek identified by PCR mapping and nucleotide sequencing contained SGI1-J3 which is integrated in SGI1 at another position than the majority of SGI1. This is the second report on the insertion of SGI1 at this position. High-level resistance to fluoroquinolones was found in 3 multiresistant S. Typhimurium isolates and was associated with mutations in the gyrA gene leading to the amino acid changes Ser83Phe and Asp87Asn. CONCLUSIONS: Resistance was common among Vietnamese Salmonella isolates from different sources. Legislation to enforce a more prudent use of antibiotics in both human and veterinary medicine should be implemented by the authorities in Vietnam.

  7. The evolving role of the orphan nuclear receptor ftz-f1, a pair-rule segmentation gene.

    Science.gov (United States)

    Heffer, Alison; Grubbs, Nathaniel; Mahaffey, James; Pick, Leslie

    2013-01-01

    Segmentation is a critical developmental process that occurs by different mechanisms in diverse taxa. In insects, there are three common modes of embryogenesis-short-, intermediate-, and long-germ development-which differ in the number of segments specified at the blastoderm stage. While genes involved in segmentation have been extensively studied in the long-germ insect Drosophila melanogaster (Dm), it has been found that their expression and function in segmentation in short- and intermediate-germ insects often differ. Drosophila ftz-f1 encodes an orphan nuclear receptor that functions as a maternally expressed pair-rule segmentation gene, responsible for the formation of alternate body segments during Drosophila embryogenesis. Here we investigated the expression and function of ftz-f1 in the short-germ beetle, Tribolium castaneum (Tc). We found that Tc-ftz-f1 is expressed in stripes in Tribolium embryos. These stripes overlap alternate Tc-Engrailed (Tc-En) stripes, indicative of a pair-rule expression pattern. To test whether Tc-ftz-f1 has pair-rule function, we utilized embryonic RNAi, injecting double-stranded RNA corresponding to Tc-ftz-f1 coding or non-coding regions into early Tribolium embryos. Knockdown of Tc-ftz-f1 produced pair-rule segmentation defects, evidenced by loss of expression of alternate En stripes. In addition, a later role for Tc-ftz-f1 in cuticle formation was revealed. These results identify a new pair-rule gene in Tribolium and suggest that its role in segmentation may be shared among holometabolous insects. Interestingly, while Tc-ftz-f1 is expressed in pair-rule stripes, the gene is ubiquitously expressed in Drosophila embryos. Thus, the pair-rule function of ftz-f1 is conserved despite differences in expression patterns of ftz-f1 genes in different lineages. This suggests that ftz-f1 expression changed after the divergence of lineages leading to extant beetles and flies, likely due to differences in cis-regulatory sequences. We

  8. Complete genome sequence and analysis of the Streptomyces aureofaciens phage mu1/6

    Czech Academy of Sciences Publication Activity Database

    Farkasovská, J.; Klucar, L.; Vlček, Čestmír; Kokavec, J.; Godány, A.

    2007-01-01

    Roč. 52, č. 4 (2007), s. 347-358 ISSN 0015-5632 R&D Projects: GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z50520514 Keywords : phage * genome * streptomyces Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.989, year: 2007

  9. Segmentation of heart sound recordings by a duration-dependent hidden Markov model

    International Nuclear Information System (INIS)

    Schmidt, S E; Graff, C; Toft, E; Struijk, J J; Holst-Hansen, C

    2010-01-01

    Digital stethoscopes offer new opportunities for computerized analysis of heart sounds. Segmentation of heart sound recordings into periods related to the first and second heart sound (S1 and S2) is fundamental in the analysis process. However, segmentation of heart sounds recorded with handheld stethoscopes in clinical environments is often complicated by background noise. A duration-dependent hidden Markov model (DHMM) is proposed for robust segmentation of heart sounds. The DHMM identifies the most likely sequence of physiological heart sounds, based on duration of the events, the amplitude of the signal envelope and a predefined model structure. The DHMM model was developed and tested with heart sounds recorded bedside with a commercially available handheld stethoscope from a population of patients referred for coronary arterioangiography. The DHMM identified 890 S1 and S2 sounds out of 901 which corresponds to 98.8% (CI: 97.8–99.3%) sensitivity in 73 test patients and 13 misplaced sounds out of 903 identified sounds which corresponds to 98.6% (CI: 97.6–99.1%) positive predictivity. These results indicate that the DHMM is an appropriate model of the heart cycle and suitable for segmentation of clinically recorded heart sounds

  10. Integrated readout of organic scintillator and ZnS:Ag/6LiF for segmented antineutrino detectors

    International Nuclear Information System (INIS)

    Kiff, Scott D.; Reyna, David; Monahan, James; Bowden, Nathaniel S.

    2010-01-01

    Antineutrino detection using inverse beta decay conversion has demonstrated the capability to measure nuclear reactor power and fissile material content for nuclear safeguards. Current efforts focus on aboveground deployment scenarios, for which highly efficient capture and identification of neutrons is needed to measure the anticipated antineutrino event rates in an elevated background environment. In this submission, we report on initial characterization of a new scintillation-based segmented design that uses layers of ZnS:Ag/ 6 LiF and an integrated readout technique to capture and identify neutrons created in the inverse beta decay reaction. Laboratory studies with multiple organic scintillator and ZnS:Ag/ 6 LiF configurations reliably identify 6 Li neutron captures in 60 cm-long segments using pulse shape discrimination.

  11. Adaptive stress response in segmental progeria resembles long-lived dwarfism and calorie restriction in mice

    OpenAIRE

    Ven, Marieke; Andressoo, Jaan-Olle; Holcomb, Valerie; Lindern, Marieke; Jong, Willeke; Zeeuw, Chris; Suh, Yousin; Hasty, Paul; Hoeijmakers, Jan; Horst, Gijsbertus; Mitchell, James

    2006-01-01

    textabstractHow congenital defects causing genome instability can result in the pleiotropic symptoms reminiscent of aging but in a segmental and accelerated fashion remains largely unknown. Most segmental progerias are associated with accelerated fibroblast senescence, suggesting that cellular senescence is a likely contributing mechanism. Contrary to expectations, neither accelerated senescence nor acute oxidative stress hypersensitivity was detected in primary fibroblast or erythroblast cul...

  12. Polyether based segmented copolymers with uniform aramid units

    NARCIS (Netherlands)

    Niesten, M.C.E.J.

    2000-01-01

    Segmented copolymers with short, glassy or crystalline hard segments and long, amorphous soft segments (multi-block copolymers) are thermoplastic elastomers (TPE’s). The hard segments form physical crosslinks for the amorphous (rubbery) soft segments. As a result, this type of materials combines

  13. Using diverse U.S. beef cattle genomes to identify missense mutations in EPAS1, a gene associated with pulmonary hypertension

    Science.gov (United States)

    The availability of whole genome sequence (WGS) data has made it possible to discover protein variants in silico. However, existing bovine WGS databases do not show data in a form conducive to protein variant analysis, and tend to under represent the breadth of genetic diversity in U.S. beef cattle...

  14. Organizational heterogeneity of vertebrate genomes.

    Science.gov (United States)

    Frenkel, Svetlana; Kirzhner, Valery; Korol, Abraham

    2012-01-01

    Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS) analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers) in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM) allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.

  15. Organizational heterogeneity of vertebrate genomes.

    Directory of Open Access Journals (Sweden)

    Svetlana Frenkel

    Full Text Available Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.

  16. Comparative genomic analysis of single-molecule sequencing and hybrid approaches for finishing the Clostridium autoethanogenum JA1-1 strain DSM 10061 genome

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D [ORNL; Nagaraju, Shilpa [LanzaTech; Utturkar, Sagar M [ORNL; De Tissera, Sashini [LanzaTech; Segovia, Simón [LanzaTech; Mitchell, Wayne [LanzaTech; Land, Miriam L [ORNL; Dassanayake, Asela [LanzaTech; Köpke, Michael [LanzaTech

    2014-01-01

    Background Clostridium autoethanogenum strain JA1-1 (DSM 10061) is an acetogen capable of fermenting CO, CO2 and H2 (e.g. from syngas or waste gases) into biofuel ethanol and commodity chemicals such as 2,3-butanediol. A draft genome sequence consisting of 100 contigs has been published. Results A closed, high-quality genome sequence for C. autoethanogenum DSM10061 was generated using only the latest single-molecule DNA sequencing technology and without the need for manual finishing. It is assigned to the most complex genome classification based upon genome features such as repeats, prophage, nine copies of the rRNA gene operons. It has a low G + C content of 31.1%. Illumina, 454, Illumina/454 hybrid assemblies were generated and then compared to the draft and PacBio assemblies using summary statistics, CGAL, QUAST and REAPR bioinformatics tools and comparative genomic approaches. Assemblies based upon shorter read DNA technologies were confounded by the large number repeats and their size, which in the case of the rRNA gene operons were ~5 kb. CRISPR (Clustered Regularly Interspaced Short Paloindromic Repeats) systems among biotechnologically relevant Clostridia were classified and related to plasmid content and prophages. Potential associations between plasmid content and CRISPR systems may have implications for historical industrial scale Acetone-Butanol-Ethanol (ABE) fermentation failures and future large scale bacterial fermentations. While C. autoethanogenum contains an active CRISPR system, no such system is present in the closely related Clostridium ljungdahlii DSM 13528. A common prophage inserted into the Arg-tRNA shared between the strains suggests a common ancestor. However, C. ljungdahlii contains several additional putative prophages and it has more than double the amount of prophage DNA compared to C. autoethanogenum. Other differences include important metabolic genes for central metabolism (as an additional hydrogenase and the absence of a

  17. A specific pattern of splicing for the horse αS1-Casein mRNA and partial genomic characterization of the relevant locus

    Directory of Open Access Journals (Sweden)

    Guérin Gérard

    2002-07-01

    Full Text Available Abstract Mares' milk has a composition very different from that of cows' milk. It is much more similar to human milk, in particular in its casein fraction. This study reports on the sequence of a 994 bp amplified fragment corresponding to a horse αS1-Casein (αS1-Cn cDNA and its comparison with its caprine, pig, rabbit and human counterparts. The alignment of these sequences revealed a specific pattern of splicing for this horse primary transcript. As in humans, exons 3', 6' and 13' are present whereas exons 5, 13 and 14 are absent in this equine mRNA sequence. BAC clones, screened from a horse BAC library, containing the αS1-Cn gene allowed the mapping of its locus by FISH on equine chromosome 3q22.2-q22.3 which is in agreement with the Zoo-FISH results. Genomic analysis of the αS1-Cn gene showed that the region from the second exon to the last exon is scattered within a nucleotide stretch nearly 15-kb in length which is quite similar in size to its ruminant and rabbit counterparts. The region between αS1- and β-Cn genes, suspected to contain cis-acting elements involved in the expression of all clustered casein genes, is similar in size (ca. 15-kb to the caprine and mouse intergenic region.

  18. Research on simulation calculation method of biomechanical characteristics of C1-3 motion segment damage mechanism

    Directory of Open Access Journals (Sweden)

    HUANG Ju-ying

    2013-11-01

    Full Text Available Objective To develop the finite element model (FEM of cervical spinal C1-3 motion segment, and to make biomechanical finite element analysis (FEA on C1-3 motion segment and thus simulate the biomechanical characteristics of C1-3 motion segment in distraction violence, compression violence, hyperextension violence and hyperflexion violence. Methods According to CT radiological data of a healthy adult, the vertebrae and intervertebral discs of cervical spinal C1-3 motion segment were respectively reconstructed by Mimics 10.01 software and Geomagic 10.0 software. The FEM of C1-3 motion segment was reconstructed by attaching the corresponding material properties of cervical spine in Ansys software. The biomechanical characteristics of cervical spinal C1-3 motion segment model were simulated under the 4 loadings of distraction violence, compression violence, hyperextension violence and hyperflexion violence by finite element method. Results In the loading of longitudinal stretch, the stress was relatively concentrated in the anterior arch of atlas, atlantoaxial joint and C3 lamina and spinous process. In the longitudinal compressive loads, the maximum stress of the upper cervical spine was located in the anterior arch of atlas. In the loading of hyperextension moment, the stress was larger in the massa lateralis atlantis, the lateral and posterior arch junction of atlas, the posterior arch nodules of the atlas, superior articular surface of axis and C2 isthmus. In the loading of hyperflexion moment, the stress was relatively concentrated in the odontoid process of axis, the posterior arch of atlas, the posterior arch nodules of atlas, C2 isthmic and C2 inferior articular process. Conclusion Finite element biomechanical testing of C1-3 motion segment can predict the biomechanical mechanism of upper cervical spine injury.

  19. Transformation of natural genetic variation into Haemophilus influenzae genomes.

    Directory of Open Access Journals (Sweden)

    Joshua Chang Mell

    2011-07-01

    Full Text Available Many bacteria are able to efficiently bind and take up double-stranded DNA fragments, and the resulting natural transformation shapes bacterial genomes, transmits antibiotic resistance, and allows escape from immune surveillance. The genomes of many competent pathogens show evidence of extensive historical recombination between lineages, but the actual recombination events have not been well characterized. We used DNA from a clinical isolate of Haemophilus influenzae to transform competent cells of a laboratory strain. To identify which of the ~40,000 polymorphic differences had recombined into the genomes of four transformed clones, their genomes and their donor and recipient parents were deep sequenced to high coverage. Each clone was found to contain ~1000 donor polymorphisms in 3-6 contiguous runs (8.1±4.5 kb in length that collectively comprised ~1-3% of each transformed chromosome. Seven donor-specific insertions and deletions were also acquired as parts of larger donor segments, but the presence of other structural variation flanking 12 of 32 recombination breakpoints suggested that these often disrupt the progress of recombination events. This is the first genome-wide analysis of chromosomes directly transformed with DNA from a divergent genotype, connecting experimental studies of transformation with the high levels of natural genetic variation found in isolates of the same species.

  20. Novel association of ABO histo-blood group antigen with soluble ICAM-1: results of a genome-wide association study of 6,578 women.

    Directory of Open Access Journals (Sweden)

    Guillaume Paré

    2008-07-01

    Full Text Available While circulating levels of soluble Intercellular Adhesion Molecule 1 (sICAM-1 have been associated with diverse conditions including myocardial infarction, stroke, malaria, and diabetes, comprehensive analysis of the common genetic determinants of sICAM-1 is not available. In a genome-wide association study conducted among 6,578 participants in the Women's Genome Health Study, we find that three SNPs at the ICAM1 (19p13.2 locus (rs1799969, rs5498 and rs281437 are non-redundantly associated with plasma sICAM-1 concentrations at a genome-wide significance level (P<5x10(-8, thus extending prior results from linkage and candidate gene studies. We also find that a single SNP (rs507666, P = 5.1x10(-29 at the ABO (9q34.2 locus is highly correlated with sICAM-1 concentrations. The novel association at the ABO locus provides evidence for a previously unknown regulatory role of histo-blood group antigens in inflammatory adhesion processes.

  1. Draft Genome Sequence of a Chitinase-producing Biocontrol Bacterium Serratia sp. C-1

    Directory of Open Access Journals (Sweden)

    Seur Kee Park

    2015-09-01

    Full Text Available The chitinase-producing bacterial strain C-1 is one of the key chitinase-producing biocontrol agents used for effective bioformulations for biological control. These bioformulations are mixed cultures of various chitinolytic bacteria. However, the precise identification, biocontrol activity, and the underlying mechanisms of the strain C-1 have not been investigated so far. Therefore, we evaluated in planta biocontrol efficacies of C-1 and determined the draft genome sequence of the strain in this study. The bacterial C-1 strain was identified as a novel Serratia sp. by a phylogenic analysis of its 16S rRNA sequence. The Serratia sp. C-1 bacterial cultures showed strong in planta biocontrol efficacies against some major phytopathogenic fungal diseases. The draft genome sequence of Serratia sp. C-1 indicated that the C-1 strain is a novel strain harboring a subset of genes that may be involved in its biocontrol activities.

  2. Draft Genome Sequence of Xylella fastidiosa subsp. fastidiosa Strain Stag?s Leap

    OpenAIRE

    Chen, J.; Wu, F.; Zheng, Z.; Deng, X.; Burbank, L. P.; Stenger, D. C.

    2016-01-01

    Xylella fastidiosa subsp. fastidiosa causes Pierce?s disease of grapevine. Presented here is the draft genome sequence of the Stag?s Leap strain, previously used in pathogenicity/virulence assays to evaluate grapevine germplasm bearing Pierce?s disease resistance and a phenotypic assessment of knockout mutants to determine gene function.

  3. Genome position specific priors for genomic prediction

    DEFF Research Database (Denmark)

    Brøndum, Rasmus Froberg; Su, Guosheng; Lund, Mogens Sandø

    2012-01-01

    casual mutation is different between the populations but affects the same gene. Proportions of a four-distribution mixture for SNP effects in segments of fixed size along the genome are derived from one population and set as location specific prior proportions of distributions of SNP effects...... for the target population. The model was tested using dairy cattle populations of different breeds: 540 Australian Jersey bulls, 2297 Australian Holstein bulls and 5214 Nordic Holstein bulls. The traits studied were protein-, fat- and milk yield. Genotypic data was Illumina 777K SNPs, real or imputed Results...

  4. U.S. Department of Energy's Genomics: GTL Bioenergy Research Centers White Paper

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-08-01

    The Genomics:GTL Bioenergy Research Centers will be dedicated to fundamental research on microbe and plant systems with the goal of developing knowledge that will advance biotechnology-based strategies for biofuels production. The aim is to spur substantial progress toward cost-effective production of biologically based renewable energy sources. This document describes the rationale for the establishment of the centers and their objectives in light of the U.S. Department of Energy’s mission and goals.

  5. Genome-wide selection signatures in Pinzgau cattle

    Directory of Open Access Journals (Sweden)

    Radovan Kasarda

    2015-08-01

    Full Text Available The aim of this study was to identify the evidence of recent selection based on estimation of the integrated Haplotype Score (iHS, population differentiation index (FST and characterize affected regions near QTL associated with traits under strong selection in Pinzgau cattle. In total 21 Austrian and 19 Slovak purebreed bulls genotyped with Illumina bovineHD and  bovineSNP50 BeadChip were used to identify genomic regions under selection. Only autosomal loci with call rate higher than 90%, minor allele frequency higher than 0.01 and Hardy-Weinberg equlibrium limit of 0.001 were included in the subsequent analyses of selection sweeps presence. The final dataset was consisted from 30538 SNPs with 81.86 kb average adjacent SNPs spacing. The iHS score were averaged into non-overlapping 500 kb segments across the genome. The FST values were also plotted against genome position based on sliding windows approach and averaged over 8 consecutive SNPs. Based on integrated Haplotype Score evaluation only 7 regions with iHS score higher than 1.7 was found. The average iHS score observed for each adjacent syntenic regions indicated slight effect of recent selection in analysed group of Pinzgau bulls. The level of genetic differentiation between Austrian and Slovak bulls estimated based on FST index was low. Only 24% of FST values calculated for each SNP was greather than 0.01. By using sliding windows approach was found that 5% of analysed windows had higher value than 0.01. Our results indicated use of similar selection scheme in breeding programs of Slovak and Austrian Pinzgau bulls. The evidence for genome-wide association between signatures of selection and regions affecting complex traits such as milk production was insignificant, because the loci in segments identified as affected by selection were very distant from each other. Identification of genomic regions that may be under pressure of selection for phenotypic traits to better understanding of the

  6. Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing.

    Science.gov (United States)

    Straub, Shannon C K; Fishbein, Mark; Livshultz, Tatyana; Foster, Zachary; Parks, Matthew; Weitemier, Kevin; Cronn, Richard C; Liston, Aaron

    2011-05-04

    Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first

  7. CoCoNUT: an efficient system for the comparison and analysis of genomes

    Directory of Open Access Journals (Sweden)

    Kurtz Stefan

    2008-11-01

    Full Text Available Abstract Background Comparative genomics is the analysis and comparison of genomes from different species. This area of research is driven by the large number of sequenced genomes and heavily relies on efficient algorithms and software to perform pairwise and multiple genome comparisons. Results Most of the software tools available are tailored for one specific task. In contrast, we have developed a novel system CoCoNUT (Computational Comparative geNomics Utility Toolkit that allows solving several different tasks in a unified framework: (1 finding regions of high similarity among multiple genomic sequences and aligning them, (2 comparing two draft or multi-chromosomal genomes, (3 locating large segmental duplications in large genomic sequences, and (4 mapping cDNA/EST to genomic sequences. Conclusion CoCoNUT is competitive with other software tools w.r.t. the quality of the results. The use of state of the art algorithms and data structures allows CoCoNUT to solve comparative genomics tasks more efficiently than previous tools. With the improved user interface (including an interactive visualization component, CoCoNUT provides a unified, versatile, and easy-to-use software tool for large scale studies in comparative genomics.

  8. Complete Mitochondrial Genomes of the Cherskii’s Sculpin Cottus czerskii and Siberian Taimen Hucho taimen Reveal GenBank Entry Errors: Incorrect Species Identification and Recombinant Mitochondrial Genome

    Science.gov (United States)

    Balakirev, Evgeniy S; Saveliev, Pavel A; Ayala, Francisco J

    2017-01-01

    The complete mitochondrial (mt) genome is sequenced in 2 individuals of the Cherskii’s sculpin Cottus czerskii. A surprisingly high level of sequence divergence (10.3%) has been detected between the 2 genomes of C czerskii studied here and the GenBank mt genome of C czerskii (KJ956027). At the same time, a surprisingly low level of divergence (1.4%) has been detected between the GenBank C czerskii (KJ956027) and the Amur sculpin Cottus szanaga (KX762049, KX762050). We argue that the observed discrepancies are due to incorrect taxonomic identification so that the GenBank accession number KJ956027 represents actually the mt genome of C szanaga erroneously identified as C czerskii. Our results are of consequence concerning the GenBank database quality, highlighting the potential negative consequences of entry errors, which once they are introduced tend to be propagated among databases and subsequent publications. We illustrate the premise with the data on recombinant mt genome of the Siberian taimen Hucho taimen (NCBI Reference Sequence Database NC_016426.1; GenBank accession number HQ897271.1), bearing 2 introgressed fragments (≈0.9 kb [kilobase]) from 2 lenok subspecies, Brachymystax lenok and Brachymystax lenok tsinlingensis, submitted to GenBank on June 12, 2011. Since the time of submission, the H taimen recombinant mt genome leading to incorrect phylogenetic inferences was propagated in multiple subsequent publications despite the fact that nonrecombinant H taimen genomes were also available (submitted to GenBank on August 2, 2014; KJ711549, KJ711550). Other examples of recombinant sequences persisting in GenBank are also considered. A GenBank Entry Error Depositary is urgently needed to monitor and avoid a progressive accumulation of wrong biological information. PMID:28890653

  9. Complete chloroplast genome and 45S nrDNA sequences of the medicinal plant species Glycyrrhiza glabra and Glycyrrhiza uralensis.

    Science.gov (United States)

    Kang, Sang-Ho; Lee, Jeong-Hoon; Lee, Hyun Oh; Ahn, Byoung Ohg; Won, So Youn; Sohn, Seong-Han; Kim, Jung Sun

    2017-10-06

    Glycyrrhiza uralensis and G. glabra, members of the Fabaceae, are medicinally important species that are native to Asia and Europe. Extracts from these plants are widely used as natural sweeteners because of their much greater sweetness than sucrose. In this study, the three complete chloroplast genomes and five 45S nuclear ribosomal (nr)DNA sequences of these two licorice species and an interspecific hybrid are presented. The chloroplast genomes of G. glabra, G. uralensis and G. glabra × G. uralensis were 127,895 bp, 127,716 bp and 127,939 bp, respectively. The three chloroplast genomes harbored 110 annotated genes, including 76 protein-coding genes, 30 tRNA genes and 4 rRNA genes. The 45S nrDNA sequences were either 5,947 or 5,948 bp in length. Glycyrrhiza glabra and G. glabra × G. uralensis showed two types of nrDNA, while G. uralensis contained a single type. The complete 45S nrDNA sequence unit contains 18S rRNA, ITS1, 5.8S rRNA, ITS2 and 26S rRNA. We identified simple sequence repeat and tandem repeat sequences. We also developed four reliable markers for analysis of Glycyrrhiza diversity authentication.

  10. RTEL1 maintains genomic stability by suppressing homologous recombination.

    Science.gov (United States)

    Barber, Louise J; Youds, Jillian L; Ward, Jordan D; McIlwraith, Michael J; O'Neil, Nigel J; Petalcorin, Mark I R; Martin, Julie S; Collis, Spencer J; Cantor, Sharon B; Auclair, Melissa; Tissenbaum, Heidi; West, Stephen C; Rose, Ann M; Boulton, Simon J

    2008-10-17

    Homologous recombination (HR) is an important conserved process for DNA repair and ensures maintenance of genome integrity. Inappropriate HR causes gross chromosomal rearrangements and tumorigenesis in mammals. In yeast, the Srs2 helicase eliminates inappropriate recombination events, but the functional equivalent of Srs2 in higher eukaryotes has been elusive. Here, we identify C. elegans RTEL-1 as a functional analog of Srs2 and describe its vertebrate counterpart, RTEL1, which is required for genome stability and tumor avoidance. We find that rtel-1 mutant worms and RTEL1-depleted human cells share characteristic phenotypes with yeast srs2 mutants: lethality upon deletion of the sgs1/BLM homolog, hyperrecombination, and DNA damage sensitivity. In vitro, purified human RTEL1 antagonizes HR by promoting the disassembly of D loop recombination intermediates in a reaction dependent upon ATP hydrolysis. We propose that loss of HR control after deregulation of RTEL1 may be a critical event that drives genome instability and cancer.

  11. CpGislandEVO: A Database and Genome Browser for Comparative Evolutionary Genomics of CpG Islands

    Directory of Open Access Journals (Sweden)

    Guillermo Barturen

    2013-01-01

    Full Text Available Hypomethylated, CpG-rich DNA segments (CpG islands, CGIs are epigenome markers involved in key biological processes. Aberrant methylation is implicated in the appearance of several disorders as cancer, immunodeficiency, or centromere instability. Furthermore, methylation differences at promoter regions between human and chimpanzee strongly associate with genes involved in neurological/psychological disorders and cancers. Therefore, the evolutionary comparative analyses of CGIs can provide insights on the functional role of these epigenome markers in both health and disease. Given the lack of specific tools, we developed CpGislandEVO. Briefly, we first compile a database of statistically significant CGIs for the best assembled mammalian genome sequences available to date. Second, by means of a coupled browser front-end, we focus on the CGIs overlapping orthologous genes extracted from OrthoDB, thus ensuring the comparison between CGIs located on truly homologous genome segments. This allows comparing the main compositional features between homologous CGIs. Finally, to facilitate nucleotide comparisons, we lifted genome coordinates between assemblies from different species, which enables the analysis of sequence divergence by direct count of nucleotide substitutions and indels occurring between homologous CGIs. The resulting CpGislandEVO database, linking together CGIs and single-cytosine DNA methylation data from several mammalian species, is freely available at our website.

  12. Reconstruction of putative DNA virus from endogenous rice tungro bacilliform virus-like sequences in the rice genome: implications for integration and evolution

    Directory of Open Access Journals (Sweden)

    Kishima Yuji

    2004-10-01

    Full Text Available Abstract Background Plant genomes contain various kinds of repetitive sequences such as transposable elements, microsatellites, tandem repeats and virus-like sequences. Most of them, with the exception of virus-like sequences, do not allow us to trace their origins nor to follow the process of their integration into the host genome. Recent discoveries of virus-like sequences in plant genomes led us to set the objective of elucidating the origin of the repetitive sequences. Endogenous rice tungro bacilliform virus (RTBV-like sequences (ERTBVs have been found throughout the rice genome. Here, we reconstructed putative virus structures from RTBV-like sequences in the rice genome and characterized to understand evolutionary implication, integration manner and involvements of endogenous virus segments in the corresponding disease response. Results We have collected ERTBVs from the rice genomes. They contain rearranged structures and no intact ORFs. The identified ERTBV segments were shown to be phylogenetically divided into three clusters. For each phylogenetic cluster, we were able to make a consensus alignment for a circular virus-like structure carrying two complete ORFs. Comparisons of DNA and amino acid sequences suggested the closely relationship between ERTBV and RTBV. The Oryza AA-genome species vary in the ERTBV copy number. The species carrying low-copy-number of ERTBV segments have been reported to be extremely susceptible to RTBV. The DNA methylation state of the ERTBV sequences was correlated with their copy number in the genome. Conclusions These ERTBV segments are unlikely to have functional potential as a virus. However, these sequences facilitate to establish putative virus that provided information underlying virus integration and evolutionary relationship with existing virus. Comparison of ERTBV among the Oryza AA-genome species allowed us to speculate a possible role of endogenous virus segments against its related disease.

  13. Genetic makeup of amantadine-resistant and oseltamivir-resistant human influenza A/H1N1 viruses.

    Science.gov (United States)

    Zaraket, Hassan; Saito, Reiko; Suzuki, Yasushi; Baranovich, Tatiana; Dapat, Clyde; Caperig-Dapat, Isolde; Suzuki, Hiroshi

    2010-04-01

    The emergence and widespread occurrence of antiviral drug-resistant seasonal human influenza A viruses, especially oseltamivir-resistant A/H1N1 virus, are major concerns. To understand the genetic background of antiviral drug-resistant A/H1N1 viruses, we performed full genome sequencing of prepandemic A/H1N1 strains. Seasonal influenza A/H1N1 viruses, including antiviral-susceptible viruses, amantadine-resistant viruses, and oseltamivir-resistant viruses, obtained from several areas in Japan during the 2007-2008 and 2008-2009 influenza seasons were analyzed. Sequencing of the full genomes of these viruses was performed, and the phylogenetic relationships among the sequences of each individual genome segment were inferred. Reference genome sequences from the Influenza Virus Resource database were included to determine the closest ancestor for each segment. Phylogenetic analysis revealed that the oseltamivir-resistant strain evolved from a reassortant oseltamivir-susceptible strain (clade 2B) which circulated in the 2007-2008 season by acquiring the H275Y resistance-conferring mutation in the NA gene. The oseltamivir-resistant lineage (corresponding to the Northern European resistant lineage) represented 100% of the H1N1 isolates from the 2008-2009 season and further acquired at least one mutation in each of the polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), hemagglutinin (HA), and neuraminidase (NA) genes. Therefore, a reassortment event involving two distinct oseltamivir-susceptible lineages, followed by the H275Y substitution in the NA gene and other mutations elsewhere in the genome, contributed to the emergence of the oseltamivir-resistant lineage. In contrast, amantadine-resistant viruses from the 2007-2008 season distinctly clustered in clade 2C and were characterized by extensive amino acid substitutions across their genomes, suggesting that a fitness gap among its genetic components might have driven these mutations to maintain it in the

  14. Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes.

    Science.gov (United States)

    Jeong, Young-Min; Kim, Namshin; Ahn, Byung Ohg; Oh, Mijin; Chung, Won-Hyong; Chung, Hee; Jeong, Seongmun; Lim, Ki-Byung; Hwang, Yoon-Jung; Kim, Goon-Bo; Baek, Seunghoon; Choi, Sang-Bong; Hyung, Dae-Jin; Lee, Seung-Won; Sohn, Seong-Han; Kwon, Soo-Jin; Jin, Mina; Seol, Young-Joo; Chae, Won Byoung; Choi, Keun Jin; Park, Beom-Seok; Yu, Hee-Ju; Mun, Jeong-Hwan

    2016-07-01

    This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.

  15. Complete mitochondrial genome of the aluminum-tolerant fungus Rhodotorula taiwanensis RS1 and comparative analysis of Basidiomycota mitochondrial genomes.

    Science.gov (United States)

    Zhao, Xue Qiang; Aizawa, Tomoko; Schneider, Jessica; Wang, Chao; Shen, Ren Fang; Sunairi, Michio

    2013-04-01

    The complete mitochondrial genome of Rhodotorula taiwanensis RS1, an aluminum-tolerant Basidiomycota fungus, was determined and compared with the known mitochondrial genomes of 12 Basidiomycota species. The mitochondrial genome of R. taiwanensis RS1 is a circular DNA molecule of 40,392 bp and encodes the typical 15 mitochondrial proteins, 23 tRNAs, and small and large rRNAs as well as 10 intronic open reading frames. These genes are apparently transcribed in two directions and do not show syntenies in gene order with other investigated Basidiomycota species. The average G+C content (41%) of the mitochondrial genome of R. taiwanensis RS1 is the highest among the Basidiomycota species. Two introns were detected in the sequence of the atp9 gene of R. taiwanensis RS1, but not in that of other Basidiomycota species. Rhodotorula taiwanensis is the first species of the genus Rhodotorula whose full mitochondrial genome has been sequenced; and the data presented here supply valuable information for understanding the evolution of fungal mitochondrial genomes and researching the mechanism of aluminum tolerance in microorganisms. © 2013 The Authors. Published by Blackwell Publishing Ltd.

  16. Comparative analysis of prophages in Streptococcus mutans genomes

    Science.gov (United States)

    Fu, Tiwei; Fan, Xiangyu; Long, Quanxin; Deng, Wanyan; Song, Jinlin

    2017-01-01

    Prophages have been considered genetic units that have an intimate association with novel phenotypic properties of bacterial hosts, such as pathogenicity and genomic variation. Little is known about the genetic information of prophages in the genome of Streptococcus mutans, a major pathogen of human dental caries. In this study, we identified 35 prophage-like elements in S. mutans genomes and performed a comparative genomic analysis. Comparative genomic and phylogenetic analyses of prophage sequences revealed that the prophages could be classified into three main large clusters: Cluster A, Cluster B, and Cluster C. The S. mutans prophages in each cluster were compared. The genomic sequences of phismuN66-1, phismuNLML9-1, and phismu24-1 all shared similarities with the previously reported S. mutans phages M102, M102AD, and ϕAPCM01. The genomes were organized into seven major gene clusters according to the putative functions of the predicted open reading frames: packaging and structural modules, integrase, host lysis modules, DNA replication/recombination modules, transcriptional regulatory modules, other protein modules, and hypothetical protein modules. Moreover, an integrase gene was only identified in phismuNLML9-1 prophages. PMID:29158986

  17. PWR internals segmentation and packaging experience in the U.S

    International Nuclear Information System (INIS)

    Kreitman, P.J.

    2008-01-01

    Seven commercial nuclear power plants of the Pressurized Water Reactor (PWR) design have been permanently shut down in the US to date. Six of these plants have been decommissioned using dismantling methods. The remaining plant, Indian Point 1, located in Buchanan, NY, has been placed in Safe Storage. Of the six dismantled plants, five underwent extensive segmentation, separation, and packaging of their internal components to allow removal and disposal of the reactor vessel assembly. Only the Trojan Plant in Portland, Oregon, was able to ship the reactor vessel assembly with its internals intact to the final disposal site near Richland, Washington. An important part of the planning for the upcoming decommissioning of similar plants in Europe such as Chooz A in France and Zorita in Spain will be to study the lessons learned from the US efforts and apply the best practices to future projects. This paper will chronicle the evolution of the reactor internals segmentation and packaging process to date, including the planning, methodology, equipment, waste management, and packaging strategy. (author)

  18. Synaptojanin 1 is required for endolysosomal trafficking of synaptic proteins in cone photoreceptor inner segments.

    Directory of Open Access Journals (Sweden)

    Ashley A George

    Full Text Available Highly polarized cells such as photoreceptors require precise and efficient strategies for establishing and maintaining the proper subcellular distribution of proteins. The signals and molecular machinery that regulate trafficking and sorting of synaptic proteins within cone inner segments is mostly unknown. In this study, we show that the polyphosphoinositide phosphatase Synaptojanin 1 (SynJ1 is critical for this process. We used transgenic markers for trafficking pathways, electron microscopy, and immunocytochemistry to characterize trafficking defects in cones of the zebrafish mutant, nrc(a14 , which is deficient in phosphoinositide phosphatase, SynJ1. The outer segments and connecting cilia of nrc(a14 cone photoreceptors are normal, but RibeyeB and VAMP2/synaptobrevin, which normally localize to the synapse, accumulate in the nrc(a14 inner segment. The structure of the Endoplasmic Reticulum in nrc(a14 mutant cones is normal. Golgi develop normally, but later become disordered. Large vesicular structures accumulate within nrc(a14 cone photoreceptor inner segments, particularly after prolonged incubation in darkness. Cone inner segments of nrc (a14 mutants also have enlarged acidic vesicles, abnormal late endosomes, and a disruption in autophagy. This last pathway also appears exacerbated by darkness. Taken altogether, these findings show that SynJ1 is required in cones for normal endolysosomal trafficking of synaptic proteins.

  19. Complete Genome Sequence of Pseudomonas aeruginosa Phage AAT-1.

    Science.gov (United States)

    Andrade-Domínguez, Andrés; Kolter, Roberto

    2016-08-25

    Aspects of the interaction between phages and animals are of interest and importance for medical applications. Here, we report the genome sequence of the lytic Pseudomonas phage AAT-1, isolated from mammalian serum. AAT-1 is a double-stranded DNA phage, with a genome of 57,599 bp, containing 76 predicted open reading frames. Copyright © 2016 Andrade-Domínguez and Kolter.

  20. Whole-Genome Sequence of the Purple Photosynthetic Bacterium Rhodovulum sulfidophilum Strain W4

    OpenAIRE

    Masuda, Shinji; Hori, Koichi; Maruyama, Fumito; Ren, Shukun; Sugimoto, Saori; Yamamoto, Nozomi; Mori, Hiroshi; Yamada, Takuji; Sato, Shusei; Tabata, Satoshi; Ohta, Hiroyuki; Kurokawa, Ken

    2013-01-01

    We report the draft genome sequence of the purple photosynthetic bacterium Rhodovulum sulfidophilum. The photosynthesis gene cluster comprises two segments?a unique feature among photosynthesis gene clusters of purple bacteria. The genome information will be useful for further analysis of bacterial photosynthesis.

  1. Soft segmented inchworm robot with dielectric elastomer muscles

    Science.gov (United States)

    Conn, Andrew T.; Hinitt, Andrew D.; Wang, Pengchuan

    2014-03-01

    Robotic devices typically utilize rigid components in order to produce precise and robust operation. Rigidity becomes a significant impediment, however, when navigating confined or constricted environments e.g. search-and-rescue, industrial pipe inspection. In such cases adaptively conformable soft structures become optimal. Dielectric elastomers (DEs) are well suited for developing such soft robots since they are inherently compliant and can produce large musclelike actuation strains. In this paper, a soft segmented inchworm robot is presented that utilizes pneumatically-coupled DE membranes to produce inchworm-like locomotion. The robot is constructed from repeated body segments, each with a simple control architecture, so that the total length can be readily adapted by adding or removing segments. Each segment consists of a soft inflatable shell (internal pressure in range of 1.0-15.9 mBar) and a pair of antagonistic DE membranes (VHB 4905). Experimental testing of a single body segment is presented and the relationship between drive voltage, pneumatic pressure and active displacement is characterized. This demonstrates that pneumatic coupling of DE membranes induces complex non-linear electro-mechanical behaviour as drive voltage and pneumatic pressure are altered. Locomotion of a two-segment inchworm robot prototype with a passive length of 80 mm is presented. Artificial setae are included on the body shell to generate anisotropic friction for locomotion. A maximum locomotion speed of 4.1 mm/s was recorded at a drive frequency of 1.5 Hz, which compares favourably to biological counterparts. Future development of the soft inchworm robot are discussed including reflexive low-level control of individual segments.

  2. Process Segmentation Typology in Czech Companies

    Directory of Open Access Journals (Sweden)

    Tucek David

    2016-03-01

    Full Text Available This article describes process segmentation typology during business process management implementation in Czech companies. Process typology is important for a manager’s overview of process orientation as well as for a manager’s general understanding of business process management. This article provides insight into a process-oriented organizational structure. The first part analyzes process segmentation typology itself as well as some original results of quantitative research evaluating process segmentation typology in the specific context of Czech company strategies. Widespread data collection was carried out in 2006 and 2013. The analysis of this data showed that managers have more options regarding process segmentation and its selection. In terms of practicality and ease of use, the most frequently used method of process segmentation (managerial, main, and supportive stems directly from the requirements of ISO 9001. Because of ISO 9001:2015, managers must now apply risk planning in relation to the selection of processes that are subjected to process management activities. It is for this fundamental reason that this article focuses on process segmentation typology.

  3. Comparative Genomics and Transcriptional Analysis of Prophages Identified in the Genomes of Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei†

    Science.gov (United States)

    Ventura, Marco; Canchaya, Carlos; Bernini, Valentina; Altermann, Eric; Barrangou, Rodolphe; McGrath, Stephen; Claesson, Marcus J.; Li, Yin; Leahy, Sinead; Walker, Carey D.; Zink, Ralf; Neviani, Erasmo; Steele, Jim; Broadbent, Jeff; Klaenhammer, Todd R.; Fitzgerald, Gerald F.; O'Toole, Paul W.; van Sinderen, Douwe

    2006-01-01

    Lactobacillus gasseri ATCC 33323, Lactobacillus salivarius subsp. salivarius UCC 118, and Lactobacillus casei ATCC 334 contain one (LgaI), four (Sal1, Sal2, Sal3, Sal4), and one (Lca1) distinguishable prophage sequences, respectively. Sequence analysis revealed that LgaI, Lca1, Sal1, and Sal2 prophages belong to the group of Sfi11-like pac site and cos site Siphoviridae, respectively. Phylogenetic investigation of these newly described prophage sequences revealed that they have not followed an evolutionary development similar to that of their bacterial hosts and that they show a high degree of diversity, even within a species. The attachment sites were determined for all these prophage elements; LgaI as well as Sal1 integrates in tRNA genes, while prophage Sal2 integrates in a predicted arginino-succinate lyase-encoding gene. In contrast, Lca1 and the Sal3 and Sal4 prophage remnants are integrated in noncoding regions in the L. casei ATCC 334 and L. salivarius UCC 118 genomes. Northern analysis showed that large parts of the prophage genomes are transcriptionally silent and that transcription is limited to genome segments located near the attachment site. Finally, pulsed-field gel electrophoresis followed by Southern blot hybridization with specific prophage probes indicates that these prophage sequences are narrowly distributed within lactobacilli. PMID:16672450

  4. Crossing the LINE toward genomic instability: LINE-1 retrotransposition in cancer

    Science.gov (United States)

    Kemp, Jacqueline; Longworth, Michelle

    2015-12-01

    Retrotransposons are repetitive DNA sequences that are positioned throughout the human genome. Retrotransposons are capable of copying themselves and mobilizing new copies to novel genomic locations in a process called retrotransposition. While most retrotransposon sequences in the human genome are incomplete and incapable of mobilization, the LINE-1 retrotransposon, which comprises approximately 17% of the human genome, remains active. The disruption of cellular mechanisms that suppress retrotransposon activity is linked to the generation of aneuploidy, a potential driver of tumor development. When retrotransposons insert into a novel genomic region, they have the potential to disrupt the coding sequence of endogenous genes and alter gene expression, which can lead to deleterious consequences for the organism. Additionally, increased LINE-1 copy numbers provide more chances for recombination events to occur between retrotransposons, which can lead to chromosomal breaks and rearrangements. LINE-1 activity is increased in various cancer cell lines and in patient tissues resected from primary tumors. LINE-1 activity also correlates with increased cancer metastasis. This review aims to give a brief overview of the connections between LINE-1 retrotransposition and the loss of genome stability. We will also discuss the mechanisms that repress retrotransposition in human cells and their links to cancer.

  5. The Perennial Ryegrass GenomeZipper: Targeted Use of Genome Resources for Comparative Grass Genomics1[C][W

    Science.gov (United States)

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F.X.; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-01-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species. PMID:23184232

  6. Genomic clustering and homology between HET-S and the NWD2 STAND protein in various fungal genomes.

    Directory of Open Access Journals (Sweden)

    Asen Daskalov

    Full Text Available BACKGROUND: Prions are infectious proteins propagating as self-perpetuating amyloid polymers. The [Het-s] prion of Podospora anserina is involved in a cell death process associated with non-self recognition. The prion forming domain (PFD of HET-s adopts a β-solenoid amyloid structure characterized by the two fold repetition of an elementary triangular motif. [Het-s] induces cell death when interacting with HET-S, an allelic variant of HET-s. When templated by [Het-s], HET-S undergoes a trans-conformation, relocates to the cell membrane and induces toxicity. METHODOLOGY/PRINCIPAL FINDINGS: Here, comparing HET-s homologs from different species, we devise a consensus for the HET-s elementary triangular motif. We use this motif to screen genomic databases and find a match to the N-terminus of NWD2, a STAND protein, encoded by the gene immediately adjacent to het-S. STAND proteins are signal transducing ATPases which undergo ligand-induced oligomerisation. Homology modelling predicts that the NWD2 N-terminal region adopts a HET-s-like fold. We propose that upon NWD2 oligomerisation, these N-terminal extensions adopt the β-solenoid fold and template HET-S to adopt the amyloid fold and trigger toxicity. We extend this model to a putative prion, the σ infectious element in Nectria haematococca, because the s locus controlling propagation of σ also encodes a STAND protein and displays analogous features. Comparative genomic analyses indicate evolutionary conservation of these STAND/prion-like gene pairs, identify a number of novel prion candidates and define, in addition to the HET-s PFD motif, two distinct, novel putative PFD-like motifs. CONCLUSIONS/SIGNIFICANCE: We suggest the existence, in the fungal kingdom, of a widespread and evolutionarily conserved mode of signal transduction based on the transmission of an amyloid-fold from a NOD-like STAND receptor protein to an effector protein.

  7. Draft genome sequence of Acidithiobacillus ferrooxidans YQH-1

    Directory of Open Access Journals (Sweden)

    Lei Yan

    2015-12-01

    Full Text Available Acidithiobacillus ferrooxidans YQH-1 is a moderate acidophilic bacterium isolated from a river in a volcano of Northeast China. Here, we describe the draft genome of strain YQH-1, which was assembled into 123 contigs containing 3,111,222 bp with a G + C content of 58.63%. A large number of genes related to carbon dioxide fixation, dinitrogen fixation, pH tolerance, heavy metal detoxification, and oxidative stress defense were detected. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LJBT00000000.

  8. Active Segmentation.

    Science.gov (United States)

    Mishra, Ajay; Aloimonos, Yiannis

    2009-01-01

    The human visual system observes and understands a scene/image by making a series of fixations. Every fixation point lies inside a particular region of arbitrary shape and size in the scene which can either be an object or just a part of it. We define as a basic segmentation problem the task of segmenting that region containing the fixation point. Segmenting the region containing the fixation is equivalent to finding the enclosing contour- a connected set of boundary edge fragments in the edge map of the scene - around the fixation. This enclosing contour should be a depth boundary.We present here a novel algorithm that finds this bounding contour and achieves the segmentation of one object, given the fixation. The proposed segmentation framework combines monocular cues (color/intensity/texture) with stereo and/or motion, in a cue independent manner. The semantic robots of the immediate future will be able to use this algorithm to automatically find objects in any environment. The capability of automatically segmenting objects in their visual field can bring the visual processing to the next level. Our approach is different from current approaches. While existing work attempts to segment the whole scene at once into many areas, we segment only one image region, specifically the one containing the fixation point. Experiments with real imagery collected by our active robot and from the known databases 1 demonstrate the promise of the approach.

  9. Segmentation and Classification of Burn Color Images

    Science.gov (United States)

    2001-10-25

    SEGMENTATION AND CLASSIFICATION OF BURN COLOR IMAGES Begoña Acha1, Carmen Serrano1, Laura Roa2 1Área de Teoría de la Señal y Comunicaciones ...2000, Las Vegas (USA), pp. 411-415. [21] G. Wyszecki and W.S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (New

  10. Whole genome analysis of Klebsiella pneumoniae T2-1-1 from human oral cavity

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2016-03-01

    Full Text Available Klebsiella pneumoniae T2-1-1 was isolated from the human tongue debris and subjected to whole genome sequencing on HiSeq platform and annotated on RAST. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession JAQL00000000. Keywords: Human tongue surface, Oral cavity, Oral bacteria, Virulence

  11. Whole-Genome Analysis of the Methyl tert-Butyl Ether-Degrading Beta-Proteobacterium Methylibium petroleiphilum PM1▿ †

    Science.gov (United States)

    Kane, Staci R.; Chakicherla, Anu Y.; Chain, Patrick S. G.; Schmidt, Radomir; Shin, Maria W.; Legler, Tina C.; Scow, Kate M.; Larimer, Frank W.; Lucas, Susan M.; Richardson, Paul M.; Hristova, Krassimira R.

    2007-01-01

    Methylibium petroleiphilum PM1 is a methylotroph distinguished by its ability to completely metabolize the fuel oxygenate methyl tert-butyl ether (MTBE). Strain PM1 also degrades aromatic (benzene, toluene, and xylene) and straight-chain (C5 to C12) hydrocarbons present in petroleum products. Whole-genome analysis of PM1 revealed an ∼4-Mb circular chromosome and an ∼600-kb megaplasmid, containing 3,831 and 646 genes, respectively. Aromatic hydrocarbon and alkane degradation, metal resistance, and methylotrophy are encoded on the chromosome. The megaplasmid contains an unusual t-RNA island, numerous insertion sequences, and large repeated elements, including a 40-kb region also present on the chromosome and a 29-kb tandem repeat encoding phosphonate transport and cobalamin biosynthesis. The megaplasmid also codes for alkane degradation and was shown to play an essential role in MTBE degradation through plasmid-curing experiments. Discrepancies between the insertion sequence element distribution patterns, the distributions of best BLASTP hits among major phylogenetic groups, and the G+C contents of the chromosome (69.2%) and plasmid (66%), together with comparative genome hybridization experiments, suggest that the plasmid was recently acquired and apparently carries the genetic information responsible for PM1's ability to degrade MTBE. Comparative genomic hybridization analysis with two PM1-like MTBE-degrading environmental isolates (∼99% identical 16S rRNA gene sequences) showed that the plasmid was highly conserved (ca. 99% identical), whereas the chromosomes were too diverse to conduct resequencing analysis. PM1's genome sequence provides a foundation for investigating MTBE biodegradation and exploring the genetic regulation of multiple biodegradation pathways in M. petroleiphilum and other MTBE-degrading beta-proteobacteria. PMID:17158667

  12. The Enhanced Segment Interconnect for FASTBUS data communications

    International Nuclear Information System (INIS)

    Machen, D.R.; Downing, R.W.; Kirsten, F.A.; Nelson, R.O.

    1987-01-01

    The Enhanced Segment Interconnect concept (ESI) for improved FASTBUS data communications is a development supported by the U.S. Department of Energy under the Small Business Innovation Research (SBIR) program. The ESI will contain both the Segment Interconnect (SI) Tyhpe S-1 and an optional buffered interconnect for store-and-forward data communications; fiber-optic-coupled serial ports will provide optional data paths. The ESI can be applied in large FASTBUS-implemented physics experiments whose data-set or data-transmission distance requirements dictate alternate approaches to data communications. This paper describes the functions of the ESI and the status of its development, now 25% complete

  13. Segmental isotope labeling of proteins for NMR structural study using a protein S tag for higher expression and solubility

    International Nuclear Information System (INIS)

    Kobayashi, Hiroshi; Swapna, G. V. T.; Wu, Kuen-Phon; Afinogenova, Yuliya; Conover, Kenith; Mao, Binchen; Montelione, Gaetano T.; Inouye, Masayori

    2012-01-01

    A common obstacle to NMR studies of proteins is sample preparation. In many cases, proteins targeted for NMR studies are poorly expressed and/or expressed in insoluble forms. Here, we describe a novel approach to overcome these problems. In the protein S tag-intein (PSTI) technology, two tandem 92-residue N-terminal domains of protein S (PrS 2 ) from Myxococcus xanthus is fused at the N-terminal end of a protein to enhance its expression and solubility. Using intein technology, the isotope-labeled PrS 2 -tag is replaced with non-isotope labeled PrS 2 -tag, silencing the NMR signals from PrS 2 -tag in isotope-filtered 1 H-detected NMR experiments. This method was applied to the E. coli ribosome binding factor A (RbfA), which aggregates and precipitates in the absence of a solubilization tag unless the C-terminal 25-residue segment is deleted (RbfAΔ25). Using the PrS 2 -tag, full-length well-behaved RbfA samples could be successfully prepared for NMR studies. PrS 2 (non-labeled)-tagged RbfA (isotope-labeled) was produced with the use of the intein approach. The well-resolved TROSY-HSQC spectrum of full-length PrS 2 -tagged RbfA superimposes with the TROSY-HSQC spectrum of RbfAΔ25, indicating that PrS 2 -tag does not affect the structure of the protein to which it is fused. Using a smaller PrS-tag, consisting of a single N-terminal domain of protein S, triple resonance experiments were performed, and most of the backbone 1 H, 15 N and 13 C resonance assignments for full-length E. coli RbfA were determined. Analysis of these chemical shift data with the Chemical Shift Index and heteronuclear 1 H– 15 N NOE measurements reveal the dynamic nature of the C-terminal segment of the full-length RbfA protein, which could not be inferred using the truncated RbfAΔ25 construct. CS-Rosetta calculations also demonstrate that the core structure of full-length RbfA is similar to that of the RbfAΔ25 construct.

  14. Annotated Draft Genome Assemblies for the Northern Bobwhite (Colinus virginianus) and the Scaled Quail (Callipepla squamata) Reveal Disparate Estimates of Modern Genome Diversity and Historic Effective Population Size.

    Science.gov (United States)

    Oldeschulte, David L; Halley, Yvette A; Wilson, Miranda L; Bhattarai, Eric K; Brashear, Wesley; Hill, Joshua; Metz, Richard P; Johnson, Charles D; Rollins, Dale; Peterson, Markus J; Bickhart, Derek M; Decker, Jared E; Sewell, John F; Seabury, Christopher M

    2017-09-07

    Northern bobwhite ( Colinus virginianus ; hereafter bobwhite) and scaled quail ( Callipepla squamata ) populations have suffered precipitous declines across most of their US ranges. Illumina-based first- (v1.0) and second- (v2.0) generation draft genome assemblies for the scaled quail and the bobwhite produced N50 scaffold sizes of 1.035 and 2.042 Mb, thereby producing a 45-fold improvement in contiguity over the existing bobwhite assembly, and ≥90% of the assembled genomes were captured within 1313 and 8990 scaffolds, respectively. The scaled quail assembly (v1.0 = 1.045 Gb) was ∼20% smaller than the bobwhite (v2.0 = 1.254 Gb), which was supported by kmer-based estimates of genome size. Nevertheless, estimates of GC content (41.72%; 42.66%), genome-wide repetitive content (10.40%; 10.43%), and MAKER-predicted protein coding genes (17,131; 17,165) were similar for the scaled quail (v1.0) and bobwhite (v2.0) assemblies, respectively. BUSCO analyses utilizing 3023 single-copy orthologs revealed a high level of assembly completeness for the scaled quail (v1.0; 84.8%) and the bobwhite (v2.0; 82.5%), as verified by comparison with well-established avian genomes. We also detected 273 putative segmental duplications in the scaled quail genome (v1.0), and 711 in the bobwhite genome (v2.0), including some that were shared among both species. Autosomal variant prediction revealed ∼2.48 and 4.17 heterozygous variants per kilobase within the scaled quail (v1.0) and bobwhite (v2.0) genomes, respectively, and estimates of historic effective population size were uniformly higher for the bobwhite across all time points in a coalescent model. However, large-scale declines were predicted for both species beginning ∼15-20 KYA. Copyright © 2017 Oldeschulte et al.

  15. Annotated Draft Genome Assemblies for the Northern Bobwhite (Colinus virginianus and the Scaled Quail (Callipepla squamata Reveal Disparate Estimates of Modern Genome Diversity and Historic Effective Population Size

    Directory of Open Access Journals (Sweden)

    David L. Oldeschulte

    2017-09-01

    Full Text Available Northern bobwhite (Colinus virginianus; hereafter bobwhite and scaled quail (Callipepla squamata populations have suffered precipitous declines across most of their US ranges. Illumina-based first- (v1.0 and second- (v2.0 generation draft genome assemblies for the scaled quail and the bobwhite produced N50 scaffold sizes of 1.035 and 2.042 Mb, thereby producing a 45-fold improvement in contiguity over the existing bobwhite assembly, and ≥90% of the assembled genomes were captured within 1313 and 8990 scaffolds, respectively. The scaled quail assembly (v1.0 = 1.045 Gb was ∼20% smaller than the bobwhite (v2.0 = 1.254 Gb, which was supported by kmer-based estimates of genome size. Nevertheless, estimates of GC content (41.72%; 42.66%, genome-wide repetitive content (10.40%; 10.43%, and MAKER-predicted protein coding genes (17,131; 17,165 were similar for the scaled quail (v1.0 and bobwhite (v2.0 assemblies, respectively. BUSCO analyses utilizing 3023 single-copy orthologs revealed a high level of assembly completeness for the scaled quail (v1.0; 84.8% and the bobwhite (v2.0; 82.5%, as verified by comparison with well-established avian genomes. We also detected 273 putative segmental duplications in the scaled quail genome (v1.0, and 711 in the bobwhite genome (v2.0, including some that were shared among both species. Autosomal variant prediction revealed ∼2.48 and 4.17 heterozygous variants per kilobase within the scaled quail (v1.0 and bobwhite (v2.0 genomes, respectively, and estimates of historic effective population size were uniformly higher for the bobwhite across all time points in a coalescent model. However, large-scale declines were predicted for both species beginning ∼15–20 KYA.

  16. Identification of two novel functional p53 responsive elements in the herpes simplex virus-1 genome.

    Science.gov (United States)

    Hsieh, Jui-Cheng; Kuta, Ryan; Armour, Courtney R; Boehmer, Paul E

    2014-07-01

    Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Vasopressin-induced constriction of the isolated rat occipital artery is segment dependent.

    Science.gov (United States)

    Chelko, Stephen P; Schmiedt, Chad W; Lewis, Tristan H; Lewis, Stephen J; Robertson, Tom P

    2013-01-01

    Circulating factors delivered to the nodose ganglion (NG) by the occipital artery (OA) have been shown to affect vagal afferent activity, and thus the contractile state of the OA may influence blood flow to the NG. OA were isolated and bisected into proximal and distal segments relative to the external carotid artery. Bisection highlighted stark differences between maximal contractile responses and OA sensitivity. Specifically, maximum responses to vasopressin and the V1 receptor agonist were significantly higher in distal than proximal segments. Distal segments were significantly more sensitive to 5-hydroxytryptamine (5-HT) and the 5-HT2 receptor agonist than proximal segments. Angiotensin II (AT)2, V2 and 5-HT(1B/1D) receptor agonists did not elicit vascular responses. Additionally, AT1 receptor agonists elicited mild, yet not significantly different maximal responses between segments. The results of this study are consistent with contractile properties of rat OA being mediated via AT1, V1 and 5-HT2 receptors and dependent upon the OA segment. Furthermore, vasopressin-induced constriction of the OA, regardless of a bolus dose or a first and second concentration-response curve, retained this unique segmental difference. We hypothesize that these segmental differences may be important in the regulation of blood flow through the OA in health and disease. © 2013 S. Karger AG, Basel.

  18. White matter hyperintensities segmentation: a new semi-automated method

    Directory of Open Access Journals (Sweden)

    Mariangela eIorio

    2013-12-01

    Full Text Available White matter hyperintensities (WMH are brain areas of increased signal on T2-weighted or fluid attenuated inverse recovery magnetic resonance imaging (MRI scans. In this study we present a new semi-automated method to measure WMH load that is based on the segmentation of the intensity histogram of fluid-attenuated inversion recovery images. Thirty patients with Mild Cognitive Impairment with variable WMH load were enrolled. The semi-automated WMH segmentation included: removal of non-brain tissue, spatial normalization, removal of cerebellum and brain stem, spatial filtering, thresholding to segment probable WMH, manual editing for correction of false positives and negatives, generation of WMH map and volumetric estimation of the WMH load. Accuracy was quantitatively evaluated by comparing semi-automated and manual WMH segmentations performed by two independent raters. Differences between the two procedures were assessed using Student’s t tests and similarity was evaluated using linear regression model and Dice Similarity Coefficient (DSC. The volumes of the manual and semi-automated segmentations did not statistically differ (t-value= -1.79, DF=29, p= 0.839 for rater 1; t-value= 1.113, DF=29, p= 0.2749 for rater 2, were highly correlated (R²= 0.921, F (1,29 =155,54, p

  19. Unsupervised Image Segmentation

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Mikeš, Stanislav

    2014-01-01

    Roč. 36, č. 4 (2014), s. 23-23 R&D Projects: GA ČR(CZ) GA14-10911S Institutional support: RVO:67985556 Keywords : unsupervised image segmentation Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2014/RO/haindl-0434412.pdf

  20. Genomic analysis of influenza A virus from captive wild boars in Brazil reveals a human-like H1N2 influenza virus.

    Science.gov (United States)

    Biondo, Natalha; Schaefer, Rejane; Gava, Danielle; Cantão, Mauricio E; Silveira, Simone; Mores, Marcos A Z; Ciacci-Zanella, Janice R; Barcellos, David E S N

    2014-01-10

    Influenza is a viral disease that affects human and several animal species. In Brazil, H1N1, H3N2 and 2009 pandemic H1N1 A(H1N1)pdm09 influenza A viruses (IAV) circulate in domestic swine herds. Wild boars are also susceptible to IAV infection but in Brazil until this moment there are no reports of IAV infection in wild boars or in captive wild boars populations. Herein the occurrence of IAV in captive wild boars with the presence of lung consolidation lesions during slaughter was investigated. Lung samples were screened by RT-PCR for IAV detection. IAV positive samples were further analyzed by quantitative real-time PCR (qRRT-PCR), virus isolation, genomic sequencing, histopathology and immunohistochemistry (IHC). Eleven out of 60 lungs (18.3%) were positive for IAV by RT-PCR and seven out of the eleven were also positive for A(H1N1)pdm09 by qRRT-PCR. Chronic diffuse bronchopneumonia was observed in all samples and IHC analysis was negative for influenza A antigen. Full genes segments of H1N2 IAV were sequenced using Illumina's genome analyzer platform (MiSeq). The genomic analysis revealed that the HA and NA genes clustered with IAVs of the human lineage and the six internal genes were derived from the H1N1pdm09 IAV. This is the first report of a reassortant human-like H1N2 influenza virus infection in captive wild boars in Brazil and indicates the need to monitor IAV evolution in Suidae populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Endogenous viral elements in animal genomes.

    Directory of Open Access Journals (Sweden)

    Aris Katzourakis

    2010-11-01

    Full Text Available Integration into the nuclear genome of germ line cells can lead to vertical inheritance of retroviral genes as host alleles. For other viruses, germ line integration has only rarely been documented. Nonetheless, we identified endogenous viral elements (EVEs derived from ten non-retroviral families by systematic in silico screening of animal genomes, including the first endogenous representatives of double-stranded RNA, reverse-transcribing DNA, and segmented RNA viruses, and the first endogenous DNA viruses in mammalian genomes. Phylogenetic and genomic analysis of EVEs across multiple host species revealed novel information about the origin and evolution of diverse virus groups. Furthermore, several of the elements identified here encode intact open reading frames or are expressed as mRNA. For one element in the primate lineage, we provide statistically robust evidence for exaptation. Our findings establish that genetic material derived from all known viral genome types and replication strategies can enter the animal germ line, greatly broadening the scope of paleovirological studies and indicating a more significant evolutionary role for gene flow from virus to animal genomes than has previously been recognized.

  2. Phylogeny and Taxonomy of Archaea: A Comparison of the Whole-Genome-Based CVTree Approach with 16S rRNA Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Guanghong Zuo

    2015-03-01

    Full Text Available A tripartite comparison of Archaea phylogeny and taxonomy at and above the rank order is reported: (1 the whole-genome-based and alignment-free CVTree using 179 genomes; (2 the 16S rRNA analysis exemplified by the All-Species Living Tree with 366 archaeal sequences; and (3 the Second Edition of Bergey’s Manual of Systematic Bacteriology complemented by some current literature. A high degree of agreement is reached at these ranks. From the newly proposed archaeal phyla, Korarchaeota, Thaumarchaeota, Nanoarchaeota and Aigarchaeota, to the recent suggestion to divide the class Halobacteria into three orders, all gain substantial support from CVTree. In addition, the CVTree helped to determine the taxonomic position of some newly sequenced genomes without proper lineage information. A few discrepancies between the CVTree and the 16S rRNA approaches call for further investigation.

  3. Forces shaping the fastest evolving regions in the human genome

    DEFF Research Database (Denmark)

    Pollard, Katherine S; Salama, Sofie R; King, Bryan

    2006-01-01

    Comparative genomics allow us to search the human genome for segments that were extensively changed in the last approximately 5 million years since divergence from our common ancestor with chimpanzee, but are highly conserved in other species and thus are likely to be functional. We found 202...... genomic elements that are highly conserved in vertebrates but show evidence of significantly accelerated substitution rates in human. These are mostly in non-coding DNA, often near genes associated with transcription and DNA binding. Resequencing confirmed that the five most accelerated elements...... contributed to accelerated evolution of the fastest evolving elements in the human genome....

  4. Infants generalize representations of statistically segmented words

    Directory of Open Access Journals (Sweden)

    Katharine eGraf Estes

    2012-10-01

    Full Text Available The acoustic variation in language presents learners with a substantial challenge. To learn by tracking statistical regularities in speech, infants must recognize words across tokens that differ based on characteristics such as the speaker’s voice, affect, or the sentence context. Previous statistical learning studies have not investigated how these types of surface form variation affect learning. The present experiments used tasks tailored to two distinct developmental levels to investigate the robustness of statistical learning to variation. Experiment 1 examined statistical word segmentation in 11-month-olds and found that infants can recognize statistically segmented words across a change in the speaker’s voice from segmentation to testing. The direction of infants’ preferences suggests that recognizing words across a voice change is more difficult than recognizing them in a consistent voice. Experiment 2 tested whether 17-month-olds can generalize the output of statistical learning across variation to support word learning. The infants were successful in their generalization; they associated referents with statistically defined words despite a change in voice from segmentation to label learning. Infants’ learning patterns also indicate that they formed representations of across-word syllable sequences during segmentation. Thus, low probability sequences can act as object labels in some conditions. The findings of these experiments suggest that the units that emerge during statistical learning are not perceptually constrained, but rather are robust to naturalistic acoustic variation.

  5. The utility of segmental analysis in cardiac I-123 MIBG SPECT in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Soo Hyun; Yoon, Joon Kee; Yoon, Jung Han; Lee, Su Jin; Jo, Kyung Soo; Lee, Dong Hyun; An, Young Sil [Ajou University School of Medicine, Suwon (Korea, Republic of)

    2015-12-15

    Cardiac images using I-123 metaiodobenzylguanidine (MIBG) are widely used to evaluate cardiac sympathetic denervation in Parkinson’s disease (PD). The aim of this study was to evaluate the utility of segmental analysis on cardiac MIBG SPECT in PD patients. In total, 36 patients with PD (n = 26) or essential tremor (ET, n = 10) who underwent MIBG cardiac SPECT were enrolled. The heart-to-mediastinum (H/M) ratios of MIBG uptake were acquired on planar images. For the segmental analysis of SPECT images, we evaluated the summed defect score (SDS) using a 17-segment model. The diagnostic abilities of H/M ratios and segmental parameters on MIBG SPECT were assessed by ROC curve analysis. The H/M ratios were significantly lower in PD than in ET patients (p < 0.05). On segmental analysis, SDS was significantly higher in PD patients than in the ET group (7.04 ± 4.09 vs. 2.90 ± 2.80; p = 0.006). The defect score of the anteroseptal region showed a significant difference between the groups (p = 0.002). The ROC analysis suggested only SDS (AUC = 0.785, p = 0.0003) and defect scores in the anteroseptal (AUC = 0.800, p < 0.0001) and inferior (AUC = 0.667, p = 0.013) regions showed significant diagnostic ability to differentiate PD from ET. Segmental parameters from cardiac MIBG SPECT images can provide additional information to differentiate PD from ET patients. Beyond H/M ratios from planar images, we recommend an MIBG SPECT study to evaluate sympathetic denervation in PD.

  6. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian; Wang, Junguo; Miki, Daisuke; Xia, Ran; Yu, Wenxiang; He, Junna; Zheng, Zhimin; Zhu, Jian-Kang; Gonga, Zhizhong

    2010-01-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  7. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian

    2010-07-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  8. Building a model: developing genomic resources for common milkweed (Asclepias syriaca with low coverage genome sequencing

    Directory of Open Access Journals (Sweden)

    Weitemier Kevin

    2011-05-01

    Full Text Available Abstract Background Milkweeds (Asclepias L. have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L. could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. Results A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp and 5S rDNA (120 bp sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp, with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae unigenes (median coverage of 0.29× and 66% of single copy orthologs (COSII in asterids (median coverage of 0.14×. From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites and phylogenetics (low-copy nuclear genes studies were developed. Conclusions The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species

  9. Benchmarking Insulin Treatment Persistence Among Patients with Type 2 Diabetes Across Different U.S. Payer Segments.

    Science.gov (United States)

    Wei, Wenhui; Jiang, Jenny; Lou, Youbei; Ganguli, Sohini; Matusik, Mark S

    2017-03-01

    Treatment persistence with basal insulins is crucial to achieving sustained glycemic control, which is associated with a reduced risk of microvascular disease and other complications of type 2 diabetes (T2D). However, studies suggest that persistence with basal insulin treatment is often poor. To measure and benchmark real-world basal insulin treatment persistence among patients with T2D across different payer segments in the United States. This was a retrospective observational study of data from a national pharmacy database (Walgreen Co., Deerfield, IL). The analysis included patients with T2D aged ≥ 18 years who filled ≥ 1 prescription for basal insulins between January 2013 and June 2013 (the index prescription) and who had also filled prescriptions for ≥ 1 oral antidiabetes drug in the database. Patients with claims for premixed insulin were excluded. Treatment persistence was defined as remaining on the study medication(s) during the 1-year follow-up period. Patients were stratified according to treatment history (existing basal insulin users vs. new insulin users), payer segments (commercially insured, Medicare, Medicaid, or cash-pay), type of basal insulin (insulin glargine, insulin detemir, or neutral protamine Hagedorn insulin [NPH]), and device for insulin administration (pen or vial/syringe). A total of 274,102 patients were included in this analysis, 82% of whom were existing insulin users. In terms of payer segments, 45.3% of patients were commercially insured, 47.8% had Medicare, 5.9% had Medicaid, and 1.1% were cash-pay. At the 1-year follow-up, basal insulin treatment persistence rate was 66.8% overall, 61.7% for new users, and 67.9% for existing users. In general, for both existing and new basal insulin users, higher persistence rate and duration were associated with Medicare versus cash-pay patients, use of insulin pens versus vial/syringe, and use of insulin glargine versus NPH. This large-scale study provides a benchmark of basal insulin

  10. A Segment of the Apospory-Specific Genomic Region Is Highly Microsyntenic Not Only between the Apomicts Pennisetum squamulatum and Buffelgrass, But Also with a Rice Chromosome 11 Centromeric-Proximal Genomic Region1[W

    Science.gov (United States)

    Gualtieri, Gustavo; Conner, Joann A.; Morishige, Daryl T.; Moore, L. David; Mullet, John E.; Ozias-Akins, Peggy

    2006-01-01

    Bacterial artificial chromosome (BAC) clones from apomicts Pennisetum squamulatum and buffelgrass (Cenchrus ciliaris), isolated with the apospory-specific genomic region (ASGR) marker ugt197, were assembled into contigs that were extended by chromosome walking. Gene-like sequences from contigs were identified by shotgun sequencing and BLAST searches, and used to isolate orthologous rice contigs. Additional gene-like sequences in the apomicts' contigs were identified by bioinformatics using fully sequenced BACs from orthologous rice contigs as templates, as well as by interspecies, whole-contig cross-hybridizations. Hierarchical contig orthology was rapidly assessed by constructing detailed long-range contig molecular maps showing the distribution of gene-like sequences and markers, and searching for microsyntenic patterns of sequence identity and spatial distribution within and across species contigs. We found microsynteny between P. squamulatum and buffelgrass contigs. Importantly, this approach also enabled us to isolate from within the rice (Oryza sativa) genome contig Rice A, which shows the highest microsynteny and is most orthologous to the ugt197-containing C1C buffelgrass contig. Contig Rice A belongs to the rice genome database contig 77 (according to the current September 12, 2003, rice fingerprint contig build) that maps proximal to the chromosome 11 centromere, a feature that interestingly correlates with the mapping of ASGR-linked BACs proximal to the centromere or centromere-like sequences. Thus, relatedness between these two orthologous contigs is supported both by their molecular microstructure and by their centromeric-proximal location. Our discoveries promote the use of a microsynteny-based positional-cloning approach using the rice genome as a template to aid in constructing the ASGR toward the isolation of genes underlying apospory. PMID:16415213

  11. Genome Reduction in Psychromonas Species within the Gut of an Amphipod from the Ocean’s Deepest Point

    Science.gov (United States)

    Zhang, Weipeng; Tian, Ren-Mao; Sun, Jin; Bougouffa, Salim; Ding, Wei; Cai, Lin; Lan, Yi; Tong, Haoya; Li, Yongxin; Jamieson, Alan J.; Bajic, Vladimir B.; Drazen, Jeffrey C.; Bartlett, Douglas

    2018-01-01

    ABSTRACT Amphipods are the dominant scavenging metazoan species in the Mariana Trench, the deepest known point in Earth’s oceans. Here the gut microbiota of the amphipod Hirondellea gigas collected from the Challenger and Sirena Deeps of the Mariana Trench were investigated. The 11 amphipod individuals included for analyses were dominated by Psychromonas, of which a nearly complete genome was successfully recovered (designated CDP1). Compared with previously reported free-living Psychromonas strains, CDP1 has a highly reduced genome. Genome alignment showed deletion of the trimethylamine N-oxide (TMAO) reducing gene cluster in CDP1, suggesting that the “piezolyte” function of TMAO is more important than its function in respiration, which may lead to TMAO accumulation. In terms of nutrient utilization, the bacterium retains its central carbohydrate metabolism but lacks most of the extended carbohydrate utilization pathways, suggesting the confinement of Psychromonas to the host gut and sequestration from more variable environmental conditions. Moreover, CDP1 contains a complete formate hydrogenlyase complex, which might be involved in energy production. The genomic analyses imply that CDP1 may have developed adaptive strategies for a lifestyle within the gut of the hadal amphipod H. gigas. IMPORTANCE As a unique but poorly investigated habitat within marine ecosystems, hadal trenches have received interest in recent years. This study explores the gut microbial composition and function in hadal amphipods, which are among the dominant carrion feeders in hadal habitats. Further analyses of a dominant strain revealed genomic features that may contribute to its adaptation to the amphipod gut environment. Our findings provide new insights into animal-associated bacteria in the hadal biosphere. PMID:29657971

  12. Alternatives to Autograft Evaluated in a Rabbit Segmental Bone Defect

    Science.gov (United States)

    2015-07-09

    mesenchymal stem cells for off-the-shelf bone tissue engineering application. Biomaterials 33(9):2656–2672. doi:10.1016/j.biomaterials.2011.12.025 14...segmental bone defects in the rabbit with vascularized tissue engineered bone . Biomaterials 31(6):1171– 1179. doi:10.1016/j.biomaterials.2009.10.043 International Orthopaedics (SICOT) ...ORIGINAL PAPER Alternatives to autograft evaluated in a rabbit segmental bone defect Jennifer S. McDaniel1 & Marcello Pilia1 & Vivek Raut2 & Jeffrey

  13. The complete mitochondrial genome of the pink stem borer, Sesamia inferens, in comparison with four other Noctuid moths.

    Science.gov (United States)

    Chai, Huan-Na; Du, Yu-Zhou

    2012-01-01

    The complete 15,413-bp mitochondrial genome (mitogenome) of Sesamia inferens (Walker) (Lepidoptera: Noctuidae) was sequenced and compared with those of four other noctuid moths. All of the mitogenomes analyzed displayed similar characteristics with respect to gene content, genome organization, nucleotide comparison, and codon usages. Twelve-one protein-coding genes (PCGs) utilized the standard ATN, but the cox1 gene used CGA as the initiation codon; cox1, cox2, and nad4 genes had the truncated termination codon T in the S. inferens mitogenome. All of the tRNA genes had typical cloverleaf secondary structures except for trnS1(AGN), in which the dihydrouridine (DHU) arm did not form a stable stem-loop structure. Both the secondary structures of rrnL and rrnS genes inferred from the S. inferens mitogenome closely resembled those of other noctuid moths. In the A+T-rich region, the conserved motif "ATAGA" followed by a long T-stretch was observed in all noctuid moths, but other specific tandem-repeat elements were more variable. Additionally, the S. inferens mitogenome contained a potential stem-loop structure, a duplicated 17-bp repeat element, a decuplicated segment, and a microsatellite "(AT)(7)", without a poly-A element upstream of the trnM in the A+T-rich region. Finally, the phylogenetic relationships were reconstructed based on amino acid sequences of mitochondrial 13 PCGs, which support the traditional morphologically based view of relationships within the Noctuidae.

  14. Intragenomic sequence variation at the ITS1 - ITS2 region and at the 18S and 28S nuclear ribosomal DNA genes of the New Zealand mud snail, Potamopyrgus antipodarum (Hydrobiidae: mollusca)

    Science.gov (United States)

    Hoy, Marshal S.; Rodriguez, Rusty J.

    2013-01-01

    Molecular genetic analysis was conducted on two populations of the invasive non-native New Zealand mud snail (Potamopyrgus antipodarum), one from a freshwater ecosystem in Devil's Lake (Oregon, USA) and the other from an ecosystem of higher salinity in the Columbia River estuary (Hammond Harbor, Oregon, USA). To elucidate potential genetic differences between the two populations, three segments of nuclear ribosomal DNA (rDNA), the ITS1-ITS2 regions and the 18S and 28S rDNA genes were cloned and sequenced. Variant sequences within each individual were found in all three rDNA segments. Folding models were utilized for secondary structure analysis and results indicated that there were many sequences which contained structure-altering polymorphisms, which suggests they could be nonfunctional pseudogenes. In addition, analysis of molecular variance (AMOVA) was used for hierarchical analysis of genetic variance to estimate variation within and among populations and within individuals. AMOVA revealed significant variation in the ITS region between the populations and among clones within individuals, while in the 5.8S rDNA significant variation was revealed among individuals within the two populations. High levels of intragenomic variation were found in the ITS regions, which are known to be highly variable in many organisms. More interestingly, intragenomic variation was also found in the 18S and 28S rDNA, which has rarely been observed in animals and is so far unreported in Mollusca. We postulate that in these P. antipodarum populations the effects of concerted evolution are diminished due to the fact that not all of the rDNA genes in their polyploid genome should be essential for sustaining cellular function. This could lead to a lessening of selection pressures, allowing mutations to accumulate in some copies, changing them into variant sequences.                   

  15. Complete genome sequence of Parvibaculum lavamentivorans type strain (DS-1(T)).

    Science.gov (United States)

    Schleheck, David; Weiss, Michael; Pitluck, Sam; Bruce, David; Land, Miriam L; Han, Shunsheng; Saunders, Elizabeth; Tapia, Roxanne; Detter, Chris; Brettin, Thomas; Han, James; Woyke, Tanja; Goodwin, Lynne; Pennacchio, Len; Nolan, Matt; Cook, Alasdair M; Kjelleberg, Staffan; Thomas, Torsten

    2011-12-31

    Parvibaculum lavamentivorans DS-1(T) is the type species of the novel genus Parvibaculum in the novel family Rhodobiaceae (formerly Phyllobacteriaceae) of the order Rhizobiales of Alphaproteobacteria. Strain DS-1(T) is a non-pigmented, aerobic, heterotrophic bacterium and represents the first tier member of environmentally important bacterial communities that catalyze the complete degradation of synthetic laundry surfactants. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,914,745 bp long genome with its predicted 3,654 protein coding genes is the first completed genome sequence of the genus Parvibaculum, and the first genome sequence of a representative of the family Rhodobiaceae.

  16. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome

    DEFF Research Database (Denmark)

    Lewis, Nathan E; Liu, Xin; Li, Yuxiang

    2013-01-01

    stymied by the lack of a unifying genomic resource for CHO cells. Here we report a 2.4-Gb draft genome sequence of a female Chinese hamster, Cricetulus griseus, harboring 24,044 genes. We also resequenced and analyzed the genomes of six CHO cell lines from the CHO-K1, DG44 and CHO-S lineages...

  17. Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae).

    Science.gov (United States)

    Mahelka, Václav; Kopecky, David; Baum, Bernard R

    2013-09-01

    We employed sequencing of clones and in situ hybridization (genomic and fluorescent in situ hybridization [GISH and rDNA-FISH]) to characterize both the sequence variation and genomic organization of 45S (herein ITS1-5.8S-ITS2 region) and 5S (5S gene + nontranscribed spacer) ribosomal DNA (rDNA) families in the allohexaploid grass Thinopyrum intermedium. Both rDNA families are organized within several rDNA loci within all three subgenomes of the allohexaploid species. Both families have undergone different patterns of evolution. The 45S rDNA family has evolved in a concerted manner: internal transcribed spacer (ITS) sequences residing within the arrays of two subgenomes out of three got homogenized toward one major ribotype, whereas the third subgenome contained a minor proportion of distinct unhomogenized copies. Homogenization mechanisms such as unequal crossover and/or gene conversion were coupled with the loss of certain 45S rDNA loci. Unlike in the 45S family, the data suggest that neither interlocus homogenization among homeologous chromosomes nor locus loss occurred in 5S rDNA. Consistently with other Triticeae, the 5S rDNA family in intermediate wheatgrass comprised two distinct array types-the long- and short-spacer unit classes. Within the long and short units, we distinguished five and three different types, respectively, likely representing homeologous unit classes donated by putative parental species. Although the major ITS ribotype corresponds in our phylogenetic analysis to the E-genome species, the minor ribotype corresponds to Dasypyrum. 5S sequences suggested the contributions from Pseudoroegneria, Dasypyrum, and Aegilops. The contribution from Aegilops to the intermediate wheatgrass' genome is a new finding with implications in wheat improvement. We discuss rDNA evolution and potential origin of intermediate wheatgrass.

  18. SPAR1/RTEL1 maintains genomic stability by suppressing homologous recombination

    Science.gov (United States)

    Barber, Louise J.; Youds, Jillian L.; Ward, Jordan D.; McIlwraith, Michael J.; O’Neil, Nigel J.; Petalcorin, Mark I.R.; Martin, Julie S.; Collis, Spencer J.; Cantor, Sharon B.; Auclair, Melissa; Tissenbaum, Heidi; West, Stephen C.; Rose, Ann M.; Boulton, Simon J.

    2013-01-01

    SUMMARY Inappropriate homologous recombination (HR) can cause gross chromosomal rearrangements that in mammalian cells may lead to tumorigenesis. In yeast, the Srs2 protein is an anti-recombinase that eliminates inappropriate recombination events, but the functional equivalent of Srs2 in higher eukaryotes has proven to be elusive. In this work, we identify C. elegans SPAR-1 as a functional analogue of Srs2 and describe its vertebrate counterpart, SPAR1/RTEL1, which is required for genome stability and tumour avoidance. We find that spar-1 mutant worms and SPAR1 knockdown human cells share characteristic phenotypes with yeast srs2 mutants, including inviability upon deletion of the sgs1/BLM homologue, hyper-recombination, and DNA damage sensitivity. In vitro, purified human SPAR1 antagonises HR by promoting the disassembly of D loop recombination intermediates in a reaction dependent upon ATP hydrolysis. We propose that loss of HR control following deregulation of SPAR1/RTEL1 may be a critical event that drives genome instability and cancer. PMID:18957201

  19. Prague texture segmentation data generator and benchmark

    Czech Academy of Sciences Publication Activity Database

    Mikeš, Stanislav; Haindl, Michal

    2006-01-01

    Roč. 2006, č. 64 (2006), s. 67-68 ISSN 0926-4981 R&D Projects: GA MŠk(CZ) 1M0572; GA AV ČR(CZ) 1ET400750407; GA AV ČR IAA2075302 Institutional research plan: CEZ:AV0Z10750506 Keywords : image segmentation * texture * benchmark * web Subject RIV: BD - Theory of Information

  20. Using diverse U.S. beef cattle genomes to identify missense mutations in EPAS1, a gene associated with high-altitude pulmonary hypertension

    Science.gov (United States)

    The availability of whole genome sequence (WGS) data has made it possible to discover protein variants in silico. However, bovine WGS databases comprised of related influential sires from relatively few breeds tend to under represent the breadth of genetic diversity in U.S. beef cattle. Thus, our ...

  1. Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance.

    Science.gov (United States)

    Ali, N; Heslop-Harrison, Js Pat; Ahmad, H; Graybosch, R A; Hein, G L; Schwarzacher, T

    2016-08-01

    Pyramiding of alien-derived Wheat streak mosaic virus (WSMV) resistance and resistance enhancing genes in wheat is a cost-effective and environmentally safe strategy for disease control. PCR-based markers and cytogenetic analysis with genomic in situ hybridisation were applied to identify alien chromatin in four genetically diverse populations of wheat (Triticum aestivum) lines incorporating chromosome segments from Thinopyrum intermedium and Secale cereale (rye). Out of 20 experimental lines, 10 carried Th. intermedium chromatin as T4DL*4Ai#2S translocations, while, unexpectedly, 7 lines were positive for alien chromatin (Th. intermedium or rye) on chromosome 1B. The newly described rye 1RS chromatin, transmitted from early in the pedigree, was associated with enhanced WSMV resistance. Under field conditions, the 1RS chromatin alone showed some resistance, while together with the Th. intermedium 4Ai#2S offered superior resistance to that demonstrated by the known resistant cultivar Mace. Most alien wheat lines carry whole chromosome arms, and it is notable that these lines showed intra-arm recombination within the 1BS arm. The translocation breakpoints between 1BS and alien chromatin fell in three categories: (i) at or near to the centromere, (ii) intercalary between markers UL-Thin5 and Xgwm1130 and (iii) towards the telomere between Xgwm0911 and Xbarc194. Labelled genomic Th. intermedium DNA hybridised to the rye 1RS chromatin under high stringency conditions, indicating the presence of shared tandem repeats among the cereals. The novel small alien fragments may explain the difficulty in developing well-adapted lines carrying Wsm1 despite improved tolerance to the virus. The results will facilitate directed chromosome engineering producing agronomically desirable WSMV-resistant germplasm.

  2. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis

    Directory of Open Access Journals (Sweden)

    Boyce Mark

    2012-08-01

    Full Text Available Abstract Background Bluetongue virus (BTV is a double-stranded RNA (dsRNA virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Results Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1 as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3′ poly(A sequence identifying the 3′ end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. Conclusions NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed

  3. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis.

    Science.gov (United States)

    Boyce, Mark; Celma, Cristina C P; Roy, Polly

    2012-08-29

    Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp) as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1) as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs) of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3' poly(A) sequence identifying the 3' end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed replacement of cellular protein synthesis with viral protein

  4. Draft genome sequence of Penicillium marneffei strain PM1.

    Science.gov (United States)

    Woo, Patrick C Y; Lau, Susanna K P; Liu, Bin; Cai, James J; Chong, Ken T K; Tse, Herman; Kao, Richard Y T; Chan, Che-Man; Chow, Wang-Ngai; Yuen, Kwok-Yung

    2011-12-01

    Penicillium marneffei is the most important thermal dimorphic, pathogenic fungus endemic in China and Southeast Asia and is particularly important in HIV-positive patients. We report the 28,887,485-bp draft genome sequence of P. marneffei, which contains its complete mitochondrial genome, sexual cycle genes, a high diversity of Mp1p homologues, and polyketide synthase genes.

  5. A whole genome analysis reveals the presence of a plant PR1 sequence in the potato pathogen Streptomyces scabies and other Streptomyces species.

    Science.gov (United States)

    Armijos-Jaramillo, Vinicio; Santander-Gordón, Daniela; Soria, Rosa; Pazmiño-Betancourth, Mauro; Echeverría, María Cristina

    2017-09-01

    Streptomyces scabies is a common soil bacterium that causes scab symptoms in potatoes. Strong evidence indicates horizontal gene transfer (HGT) among bacteria has influenced the evolution of this plant pathogen and other Streptomyces spp. To extend the study of the HGT to the Streptomyces genus, we explored the effects of the inter-domain HGT in the S. scabies genome. We employed a semi-automatic pipeline based on BLASTp searches and phylogenetic reconstruction. The data show low impact of inter-domain HGT in the S. scabies genome; however, we found a putative plant pathogenesis related 1 (PR1) sequence in the genome of S. scabies and other species of the genus. It is possible that this gene could be used by S. scabies to out-compete other soil organisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform.

    Science.gov (United States)

    Sun, Shuping; Jiang, Zhongwei; Wang, Haibin; Fang, Yu

    2014-05-01

    This paper proposes a novel automatic method for the moment segmentation and peak detection analysis of heart sound (HS) pattern, with special attention to the characteristics of the envelopes of HS and considering the properties of the Hilbert transform (HT). The moment segmentation and peak location are accomplished in two steps. First, by applying the Viola integral waveform method in the time domain, the envelope (E(T)) of the HS signal is obtained with an emphasis on the first heart sound (S1) and the second heart sound (S2). Then, based on the characteristics of the E(T) and the properties of the HT of the convex and concave functions, a novel method, the short-time modified Hilbert transform (STMHT), is proposed to automatically locate the moment segmentation and peak points for the HS by the zero crossing points of the STMHT. A fast algorithm for calculating the STMHT of E(T) can be expressed by multiplying the E(T) by an equivalent window (W(E)). According to the range of heart beats and based on the numerical experiments and the important parameters of the STMHT, a moving window width of N=1s is validated for locating the moment segmentation and peak points for HS. The proposed moment segmentation and peak location procedure method is validated by sounds from Michigan HS database and sounds from clinical heart diseases, such as a ventricular septal defect (VSD), an aortic septal defect (ASD), Tetralogy of Fallot (TOF), rheumatic heart disease (RHD), and so on. As a result, for the sounds where S2 can be separated from S1, the average accuracies achieved for the peak of S1 (AP₁), the peak of S2 (AP₂), the moment segmentation points from S1 to S2 (AT₁₂) and the cardiac cycle (ACC) are 98.53%, 98.31% and 98.36% and 97.37%, respectively. For the sounds where S1 cannot be separated from S2, the average accuracies achieved for the peak of S1 and S2 (AP₁₂) and the cardiac cycle ACC are 100% and 96.69%. Copyright © 2014 Elsevier Ireland Ltd. All

  7. CRISPR-Cpf1: A New Tool for Plant Genome Editing

    KAUST Repository

    Zaidi, Syed Shan-e-Ali; Mahfouz, Magdy M.; Mansoor, Shahid

    2017-01-01

    Clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated proteins (CRISPR-Cas), a groundbreaking genome-engineering tool, has facilitated targeted trait improvement in plants. Recently, CRISPR-CRISPR from Prevotella and Francisella 1 (Cpf1) has emerged as a new tool for efficient genome editing, including DNA-free editing in plants, with higher efficiency, specificity, and potentially wider applications than CRISPR-Cas9.

  8. CRISPR-Cpf1: A New Tool for Plant Genome Editing

    KAUST Repository

    Zaidi, Syed Shan-e-Ali

    2017-05-19

    Clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated proteins (CRISPR-Cas), a groundbreaking genome-engineering tool, has facilitated targeted trait improvement in plants. Recently, CRISPR-CRISPR from Prevotella and Francisella 1 (Cpf1) has emerged as a new tool for efficient genome editing, including DNA-free editing in plants, with higher efficiency, specificity, and potentially wider applications than CRISPR-Cas9.

  9. Insights into the genome structure and copy-number variation of Eimeria tenella

    Directory of Open Access Journals (Sweden)

    Lim Lik-Sin

    2012-08-01

    Full Text Available Abstract Background Eimeria is a genus of parasites in the same phylum (Apicomplexa as human parasites such as Toxoplasma, Cryptosporidium and the malaria parasite Plasmodium. As an apicomplexan whose life-cycle involves a single host, Eimeria is a convenient model for understanding this group of organisms. Although the genomes of the Apicomplexa are diverse, that of Eimeria is unique in being composed of large alternating blocks of sequence with very different characteristics - an arrangement seen in no other organism. This arrangement has impeded efforts to fully sequence the genome of Eimeria, which remains the last of the major apicomplexans to be fully analyzed. In order to increase the value of the genome sequence data and aid in the effort to gain a better understanding of the Eimeria tenella genome, we constructed a whole genome map for the parasite. Results A total of 1245 contigs representing 70.0% of the whole genome assembly sequences (Wellcome Trust Sanger Institute were selected and subjected to marker selection. Subsequently, 2482 HAPPY markers were developed and typed. Of these, 795 were considered as usable markers, and utilized in the construction of a HAPPY map. Markers developed from chromosomally-assigned genes were then integrated into the HAPPY map and this aided the assignment of a number of linkage groups to their respective chromosomes. BAC-end sequences and contigs from whole genome sequencing were also integrated to improve and validate the HAPPY map. This resulted in an integrated HAPPY map consisting of 60 linkage groups that covers approximately half of the estimated 60 Mb genome. Further analysis suggests that the segmental organization first seen in Chromosome 1 is present throughout the genome, with repeat-poor (P regions alternating with repeat-rich (R regions. Evidence of copy-number variation between strains was also uncovered. Conclusions This paper describes the application of a whole genome mapping

  10. Guided genome halving: hardness, heuristics and the history of the Hemiascomycetes.

    Science.gov (United States)

    Zheng, Chunfang; Zhu, Qian; Adam, Zaky; Sankoff, David

    2008-07-01

    Some present day species have incurred a whole genome doubling event in their evolutionary history, and this is reflected today in patterns of duplicated segments scattered throughout their chromosomes. These duplications may be used as data to 'halve' the genome, i.e. to reconstruct the ancestral genome at the moment of doubling, but the solution is often highly nonunique. To resolve this problem, we take account of outgroups, external reference genomes, to guide and narrow down the search. We improve on a previous, computationally costly, 'brute force' method by adapting the genome halving algorithm of El-Mabrouk and Sankoff so that it rapidly and accurately constructs an ancestor close the outgroups, prior to a local optimization heuristic. We apply this to reconstruct the predoubling ancestor of Saccharomyces cerevisiae and Candida glabrata, guided by the genomes of three other yeasts that diverged before the genome doubling event. We analyze the results in terms (1) of the minimum evolution criterion, (2) how close the genome halving result is to the final (local) minimum and (3) how close the final result is to an ancestor manually constructed by an expert with access to additional information. We also visualize the set of reconstructed ancestors using classic multidimensional scaling to see what aspects of the two doubled and three unduplicated genomes influence the differences among the reconstructions. The experimental software is available on request.

  11. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity

    Science.gov (United States)

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P.; Nir, Talia M.; Toga, Arthur W.; Jack, Clifford R.; Saykin, Andrew J.; Green, Robert C.; Weiner, Michael W.; Medland, Sarah E.; Montgomery, Grant W.; Hansell, Narelle K.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.; Weiner, Michael; Aisen, Paul; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowski, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Liu, Enchi; Green, Robert C.; Montine, Tom; Petersen, Ronald; Aisen, Paul; Gamst, Anthony; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Beckett, Laurel; Harvey, Danielle; Gamst, Anthony; Donohue, Michael; Kornak, John; Jack, Clifford R.; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Jagust, William; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Morris, John; Cairns, Nigel J.; Taylor-Reinwald, Lisa; Trojanowki, J.Q.; Shaw, Les; Lee, Virginia M.Y.; Korecka, Magdalena; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Saykin, Andrew J.; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Khachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Petersen, Ronald; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Coleman, R. Edward; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Lu, Po H.; Bartzokis, George; Silverman, Daniel H.S.; Graff-Radford, Neill R.; Parfitt, Francine; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O.; Wolday, Saba; Bwayo, Salome K.; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabeth; Rachinsky, Irina; Rogers, John; Kertesz, Andrew; Drost, Dick

    2013-01-01

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer’s disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain’s connectivity pattern, allowing us to discover genetic variants that affect the human brain’s wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer’s disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases. PMID:23471985

  12. Global MLST of Salmonella Typhi Revisited in Post-Genomic Era: Genetic conservation, Population Structure and Comparative genomics of rare sequence types

    Directory of Open Access Journals (Sweden)

    Kien-Pong eYap

    2016-03-01

    Full Text Available Typhoid fever, caused by Salmonella enterica serovar Typhi, remains an important public health burden in Southeast Asia and other endemic countries. Various genotyping methods have been applied to study the genetic variations of this human-restricted pathogen. Multilocus Sequence Typing (MLST is one of the widely accepted methods, and recently, there is a growing interest in the re-application of MLST in the post-genomic era. In this study, we provide the global MLST distribution of S. Typhi utilizing both publicly available 1,826 S. Typhi genome sequences in addition to performing conventional MLST on S. Typhi strains isolated from various endemic regions spanning over a century. Our global MLST analysis confirms the predominance of two sequence types (ST1 and ST2 co-existing in the endemic regions. Interestingly, S. Typhi strains with ST8 are currently confined within the African continent. Comparative genomic analyses of ST8 and other rare STs with genomes of ST1/ST2 revealed unique mutations in important virulence genes such as flhB, sipC and tviD that may explain the variations that differentiate between seemingly successful (widespread and unsuccessful (poor dissemination S. Typhi populations. Large scale whole-genome phylogeny demonstrated evidence of phylogeographical structuring and showed that ST8 may have diverged from the earlier ancestral population of ST1 and ST2, which later lost some of its fitness advantages, leading to poor worldwide dissemination. In response to the unprecedented increase in genomic data, this study demonstrates and highlights the utility of large-scale genome-based MLST as a quick and effective approach to narrow the scope of in-depth comparative genomic analysis and consequently provide new insights into the fine scale of pathogen evolution and population structure.

  13. Population genetic analysis of shotgun assemblies of genomic sequences from multiple individuals

    DEFF Research Database (Denmark)

    Hellmann, Ines; Mang, Yuan; Gu, Zhiping

    2008-01-01

    We introduce a simple, broadly applicable method for obtaining estimates of nucleotide diversity from genomic shotgun sequencing data. The method takes into account the special nature of these data: random sampling of genomic segments from one or more individuals and a relatively high error rate...... for individual reads. Applying this method to data from the Celera human genome sequencing and SNP discovery project, we obtain estimates of nucleotide diversity in windows spanning the human genome and show that the diversity to divergence ratio is reduced in regions of low recombination. Furthermore, we show...

  14. The mitochondrial genome of Grateloupia taiwanensis (Halymeniaceae, Rhodophyta) and comparative mitochondrial genomics of red algae.

    Science.gov (United States)

    DePriest, Michael S; Bhattacharya, Debashish; López-Bautista, Juan M

    2014-10-01

    Although red algae are economically highly valuable for their gelatinous cell wall compounds as well as being integral parts of marine benthic habitats, very little genome data are currently available. We present mitochondrial genome sequence data from the red alga Grateloupia taiwanensis S.-M. Lin & H.-Y. Liang. Comprising 28,906 nucleotide positions, the mitochondrial genome contig contains 25 protein-coding genes and 24 transfer RNA genes. It is highly similar to other red algal genomes in gene content as well as overall structure. An intron in the cox1 gene was found to be shared by G. taiwanensis and Grateloupia angusta (Okamura) S. Kawaguchi & H. W. Wang. We also used whole-genome alignments to compare G. taiwanensis to different groups of red algae, and these results are consistent with the currently accepted phylogeny of Rhodophyta. © 2014 Marine Biological Laboratory.

  15. DNABIT Compress - Genome compression algorithm.

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  16. Lung segment geometry study: simulation of largest possible tumours that fit into bronchopulmonary segments.

    Science.gov (United States)

    Welter, S; Stöcker, C; Dicken, V; Kühl, H; Krass, S; Stamatis, G

    2012-03-01

    Segmental resection in stage I non-small cell lung cancer (NSCLC) has been well described and is considered to have similar survival rates as lobectomy but with increased rates of local tumour recurrence due to inadequate parenchymal margins. In consequence, today segmentectomy is only performed when the tumour is smaller than 2 cm. Three-dimensional reconstructions from 11 thin-slice CT scans of bronchopulmonary segments were generated, and virtual spherical tumours were placed over the segments, respecting all segmental borders. As a next step, virtual parenchymal safety margins of 2 cm and 3 cm were subtracted and the size of the remaining tumour calculated. The maximum tumour diameters with a 30-mm parenchymal safety margin ranged from 26.1 mm in right-sided segments 7 + 8 to 59.8 mm in the left apical segments 1-3. Using a three-dimensional reconstruction of lung CT scans, we demonstrated that segmentectomy or resection of segmental groups should be feasible with adequate margins, even for larger tumours in selected cases. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Outdoor recreation activity trends by volume segments: U.S. and Northeast market analyses, 1982-1989

    Science.gov (United States)

    Rodney B. Warnick

    1992-01-01

    The purpose of this review was to examine volume segmentation within three selected outdoor recreational activities -- swimming, hunting and downhill skiing over an eight-year period, from 1982 through 1989 at the national level and within the Northeast Region of the U.S.; and to determine if trend patterns existed within any of these activities when the market size...

  18. Genome-Wide Identification and Evolution of HECT Genes in Soybean

    Directory of Open Access Journals (Sweden)

    Xianwen Meng

    2015-04-01

    Full Text Available Proteins containing domains homologous to the E6-associated protein (E6-AP carboxyl terminus (HECT are an important class of E3 ubiquitin ligases involved in the ubiquitin proteasome pathway. HECT-type E3s play crucial roles in plant growth and development. However, current understanding of plant HECT genes and their evolution is very limited. In this study, we performed a genome-wide analysis of the HECT domain-containing genes in soybean. Using high-quality genome sequences, we identified 19 soybean HECT genes. The predicted HECT genes were distributed unevenly across 15 of 20 chromosomes. Nineteen of these genes were inferred to be segmentally duplicated gene pairs, suggesting that in soybean, segmental duplications have made a significant contribution to the expansion of the HECT gene family. Phylogenetic analysis showed that these HECT genes can be divided into seven groups, among which gene structure and domain architecture was relatively well-conserved. The Ka/Ks ratios show that after the duplication events, duplicated HECT genes underwent purifying selection. Moreover, expression analysis reveals that 15 of the HECT genes in soybean are differentially expressed in 14 tissues, and are often highly expressed in the flowers and roots. In summary, this work provides useful information on which further functional studies of soybean HECT genes can be based.

  19. Achromatic shearing phase sensor for generating images indicative of measure(s) of alignment between segments of a segmented telescope's mirrors

    Science.gov (United States)

    Stahl, H. Philip (Inventor); Walker, Chanda Bartlett (Inventor)

    2006-01-01

    An achromatic shearing phase sensor generates an image indicative of at least one measure of alignment between two segments of a segmented telescope's mirrors. An optical grating receives at least a portion of irradiance originating at the segmented telescope in the form of a collimated beam and the collimated beam into a plurality of diffraction orders. Focusing optics separate and focus the diffraction orders. Filtering optics then filter the diffraction orders to generate a resultant set of diffraction orders that are modified. Imaging optics combine portions of the resultant set of diffraction orders to generate an interference pattern that is ultimately imaged by an imager.

  20. Genomic comparison of the endophyte Herbaspirillum seropedicae SmR1 and the phytopathogen Herbaspirillum rubrisubalbicans M1 by suppressive subtractive hybridization and partial genome sequencing.

    Science.gov (United States)

    Monteiro, Rose A; Balsanelli, Eduardo; Tuleski, Thalita; Faoro, Helison; Cruz, Leonardo M; Wassem, Roseli; de Baura, Valter A; Tadra-Sfeir, Michelle Z; Weiss, Vinícius; DaRocha, Wanderson D; Muller-Santos, Marcelo; Chubatsu, Leda S; Huergo, Luciano F; Pedrosa, Fábio O; de Souza, Emanuel M

    2012-05-01

    Herbaspirillum rubrisubalbicans M1 causes the mottled stripe disease in sugarcane cv. B-4362. Inoculation of this cultivar with Herbaspirillum seropedicae SmR1 does not produce disease symptoms. A comparison of the genomic sequences of these closely related species may permit a better understanding of contrasting phenotype such as endophytic association and pathogenic life style. To achieve this goal, we constructed suppressive subtractive hybridization (SSH) libraries to identify DNA fragments present in one species and absent in the other. In a parallel approach, partial genomic sequence from H. rubrisubalbicans M1 was directly compared in silico with the H. seropedicae SmR1 genome. The genomic differences between the two organisms revealed by SSH suggested that lipopolysaccharide and adhesins are potential molecular factors involved in the different phenotypic behavior. The cluster wss probably involved in cellulose biosynthesis was found in H. rubrisubalbicans M1. Expression of this gene cluster was increased in H. rubrisubalbicans M1 cells attached to the surface of maize root, and knockout of wssD gene led to decrease in maize root surface attachment and endophytic colonization. The production of cellulose could be responsible for the maize attachment pattern of H. rubrisubalbicans M1 that is capable of outcompeting H. seropedicae SmR1. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. The genomic structure of the DMBT1 gene

    DEFF Research Database (Denmark)

    Mollenhauer, J; Holmskov, U; Wiemann, S

    1999-01-01

    Increasing evidence has accumulated for an involvement of the inactivation of tumour suppressor genes at chromosome 10q in the carcinogenesis of brain tumours, melanomas, and carcinomas of the lung, the prostate, the pancreas, and the endometrium. The gene DMBT1 (Deleted in Malignant Brain Tumours...... 1) is located at chromosome 10q25.3-q26.1, within one of the putative intervals for tumour suppressor genes. DMBT1 is a member of the scavenger-receptor cysteine-rich (SRCR) superfamily and displays homozygous deletions or lack of expression in glioblastoma multiforme, medulloblastoma......, and in gastrointestinal and lung cancers. Based on these properties, DMBT1 has been proposed to be a candidate tumour suppressor gene. We have determined the genomic sequence of DMBT1 to allow analyses of mutations. The gene has at least 54 exons that span a genomic region of about 80 kb. We have identified a putative...

  2. NSD1 mutations generate a genome-wide DNA methylation signature.

    LENUS (Irish Health Repository)

    Choufani, S

    2015-12-22

    Sotos syndrome (SS) represents an important human model system for the study of epigenetic regulation; it is an overgrowth\\/intellectual disability syndrome caused by mutations in a histone methyltransferase, NSD1. As layered epigenetic modifications are often interdependent, we propose that pathogenic NSD1 mutations have a genome-wide impact on the most stable epigenetic mark, DNA methylation (DNAm). By interrogating DNAm in SS patients, we identify a genome-wide, highly significant NSD1(+\\/-)-specific signature that differentiates pathogenic NSD1 mutations from controls, benign NSD1 variants and the clinically overlapping Weaver syndrome. Validation studies of independent cohorts of SS and controls assigned 100% of these samples correctly. This highly specific and sensitive NSD1(+\\/-) signature encompasses genes that function in cellular morphogenesis and neuronal differentiation, reflecting cardinal features of the SS phenotype. The identification of SS-specific genome-wide DNAm alterations will facilitate both the elucidation of the molecular pathophysiology of SS and the development of improved diagnostic testing.

  3. Common developmental genome deprogramming in schizophrenia - Role of Integrative Nuclear FGFR1 Signaling (INFS).

    Science.gov (United States)

    Narla, S T; Lee, Y-W; Benson, C A; Sarder, P; Brennand, K J; Stachowiak, E K; Stachowiak, M K

    2017-07-01

    The watershed-hypothesis of schizophrenia asserts that over 200 different mutations dysregulate distinct pathways that converge on an unspecified common mechanism(s) that controls disease ontogeny. Consistent with this hypothesis, our RNA-sequencing of neuron committed cells (NCCs) differentiated from established iPSCs of 4 schizophrenia patients and 4 control subjects uncovered a dysregulated transcriptome of 1349 mRNAs common to all patients. Data reveals a global dysregulation of developmental genome, deconstruction of coordinated mRNA networks, and the formation of aberrant, new coordinated mRNA networks indicating a concerted action of the responsible factor(s). Sequencing of miRNA transcriptomes demonstrated an overexpression of 16 miRNAs and deconstruction of interactive miRNA-mRNA networks in schizophrenia NCCs. ChiPseq revealed that the nuclear (n) form of FGFR1, a pan-ontogenic regulator, is overexpressed in schizophrenia NCCs and overtargets dysregulated mRNA and miRNA genes. The nFGFR1 targeted 54% of all human gene promoters and 84.4% of schizophrenia dysregulated genes. The upregulated genes reside within major developmental pathways that control neurogenesis and neuron formation, whereas downregulated genes are involved in oligodendrogenesis. Our results indicate (i) an early (preneuronal) genomic etiology of schizophrenia, (ii) dysregulated genes and new coordinated gene networks are common to unrelated cases of schizophrenia, (iii) gene dysregulations are accompanied by increased nFGFR1-genome interactions, and (iv) modeling of increased nFGFR1 by an overexpression of a nFGFR1 lead to up or downregulation of selected genes as observed in schizophrenia NCCs. Together our results designate nFGFR1 signaling as a potential common dysregulated mechanism in investigated patients and potential therapeutic target in schizophrenia. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Segmentation: Identification of consumer segments

    DEFF Research Database (Denmark)

    Høg, Esben

    2005-01-01

    It is very common to categorise people, especially in the advertising business. Also traditional marketing theory has taken in consumer segments as a favorite topic. Segmentation is closely related to the broader concept of classification. From a historical point of view, classification has its...... origin in other sciences as for example biology, anthropology etc. From an economic point of view, it is called segmentation when specific scientific techniques are used to classify consumers to different characteristic groupings. What is the purpose of segmentation? For example, to be able to obtain...... a basic understanding of grouping people. Advertising agencies may use segmentation totarget advertisements, while food companies may usesegmentation to develop products to various groups of consumers. MAPP has for example investigated the positioning of fish in relation to other food products...

  5. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses.

    Science.gov (United States)

    Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A; Janke, Axel

    2015-05-27

    The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications.

    Science.gov (United States)

    Smith, Jeramiah J; Keinath, Melissa C

    2015-08-01

    It is generally accepted that many genes present in vertebrate genomes owe their origin to two whole-genome duplications that occurred deep in the ancestry of the vertebrate lineage. However, details regarding the timing and outcome of these duplications are not well resolved. We present high-density meiotic and comparative genomic maps for the sea lamprey (Petromyzon marinus), a representative of an ancient lineage that diverged from all other vertebrates ∼550 million years ago. Linkage analyses yielded a total of 95 linkage groups, similar to the estimated number of germline chromosomes (1n ∼ 99), spanning a total of 5570.25 cM. Comparative mapping data yield strong support for the hypothesis that a single whole-genome duplication occurred in the basal vertebrate lineage, but do not strongly support a hypothetical second event. Rather, these comparative maps reveal several evolutionarily independent segmental duplications occurring over the last 600+ million years of chordate evolution. This refined history of vertebrate genome duplication should permit more precise investigations of vertebrate evolution. © 2015 Smith and Keinath; Published by Cold Spring Harbor Laboratory Press.

  7. Streptococcus iniae SF1: complete genome sequence, proteomic profile, and immunoprotective antigens.

    Directory of Open Access Journals (Sweden)

    Bao-cun Zhang

    Full Text Available Streptococcus iniae is a Gram-positive bacterium that is reckoned one of the most severe aquaculture pathogens. It has a broad host range among farmed marine and freshwater fish and can also cause zoonotic infection in humans. Here we report for the first time the complete genome sequence as well as the host factor-induced proteomic profile of a pathogenic S. iniae strain, SF1, a serotype I isolate from diseased fish. SF1 possesses a single chromosome of 2,149,844 base pairs, which contains 2,125 predicted protein coding sequences (CDS, 12 rRNA genes, and 45 tRNA genes. Among the protein-encoding CDS are genes involved in resource acquisition and utilization, signal sensing and transduction, carbohydrate metabolism, and defense against host immune response. Potential virulence genes include those encoding adhesins, autolysins, toxins, exoenzymes, and proteases. In addition, two putative prophages and a CRISPR-Cas system were found in the genome, the latter containing a CRISPR locus and four cas genes. Proteomic analysis detected 21 secreted proteins whose expressions were induced by host serum. Five of the serum-responsive proteins were subjected to immunoprotective analysis, which revealed that two of the proteins were highly protective against lethal S. iniae challenge when used as purified recombinant subunit vaccines. Taken together, these results provide an important molecular basis for future study of S. iniae in various aspects, in particular those related to pathogenesis and disease control.

  8. Streptococcus iniae SF1: Complete Genome Sequence, Proteomic Profile, and Immunoprotective Antigens

    Science.gov (United States)

    Zhang, Bao-cun; Zhang, Jian; Sun, Li

    2014-01-01

    Streptococcus iniae is a Gram-positive bacterium that is reckoned one of the most severe aquaculture pathogens. It has a broad host range among farmed marine and freshwater fish and can also cause zoonotic infection in humans. Here we report for the first time the complete genome sequence as well as the host factor-induced proteomic profile of a pathogenic S. iniae strain, SF1, a serotype I isolate from diseased fish. SF1 possesses a single chromosome of 2,149,844 base pairs, which contains 2,125 predicted protein coding sequences (CDS), 12 rRNA genes, and 45 tRNA genes. Among the protein-encoding CDS are genes involved in resource acquisition and utilization, signal sensing and transduction, carbohydrate metabolism, and defense against host immune response. Potential virulence genes include those encoding adhesins, autolysins, toxins, exoenzymes, and proteases. In addition, two putative prophages and a CRISPR-Cas system were found in the genome, the latter containing a CRISPR locus and four cas genes. Proteomic analysis detected 21 secreted proteins whose expressions were induced by host serum. Five of the serum-responsive proteins were subjected to immunoprotective analysis, which revealed that two of the proteins were highly protective against lethal S. iniae challenge when used as purified recombinant subunit vaccines. Taken together, these results provide an important molecular basis for future study of S. iniae in various aspects, in particular those related to pathogenesis and disease control. PMID:24621602

  9. Accounting for the Confound of Meninges in Segmenting Entorhinal and Perirhinal Cortices in T1-Weighted MRI.

    Science.gov (United States)

    Xie, Long; Wisse, Laura E M; Das, Sandhitsu R; Wang, Hongzhi; Wolk, David A; Manjón, Jose V; Yushkevich, Paul A

    2016-10-01

    Quantification of medial temporal lobe (MTL) cortices, including entorhinal cortex (ERC) and perirhinal cortex (PRC), from in vivo MRI is desirable for studying the human memory system as well as in early diagnosis and monitoring of Alzheimer's disease. However, ERC and PRC are commonly over-segmented in T1-weighted (T1w) MRI because of the adjacent meninges that have similar intensity to gray matter in T1 contrast. This introduces errors in the quantification and could potentially confound imaging studies of ERC/PRC. In this paper, we propose to segment MTL cortices along with the adjacent meninges in T1w MRI using an established multi-atlas segmentation framework together with super-resolution technique. Experimental results comparing the proposed pipeline with existing pipelines support the notion that a large portion of meninges is segmented as gray matter by existing algorithms but not by our algorithm. Cross-validation experiments demonstrate promising segmentation accuracy. Further, agreement between the volume and thickness measures from the proposed pipeline and those from the manual segmentations increase dramatically as a result of accounting for the confound of meninges. Evaluated in the context of group discrimination between patients with amnestic mild cognitive impairment and normal controls, the proposed pipeline generates more biologically plausible results and improves the statistical power in discriminating groups in absolute terms comparing to other techniques using T1w MRI. Although the performance of the proposed pipeline is inferior to that using T2-weighted MRI, which is optimized to image MTL sub-structures, the proposed pipeline could still provide important utilities in analyzing many existing large datasets that only have T1w MRI available.

  10. SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation.

    Science.gov (United States)

    Xue, Yuan; Xu, Tao; Zhang, Han; Long, L Rodney; Huang, Xiaolei

    2018-05-03

    Inspired by classic Generative Adversarial Networks (GANs), we propose a novel end-to-end adversarial neural network, called SegAN, for the task of medical image segmentation. Since image segmentation requires dense, pixel-level labeling, the single scalar real/fake output of a classic GAN's discriminator may be ineffective in producing stable and sufficient gradient feedback to the networks. Instead, we use a fully convolutional neural network as the segmentor to generate segmentation label maps, and propose a novel adversarial critic network with a multi-scale L 1 loss function to force the critic and segmentor to learn both global and local features that capture long- and short-range spatial relationships between pixels. In our SegAN framework, the segmentor and critic networks are trained in an alternating fashion in a min-max game: The critic is trained by maximizing a multi-scale loss function, while the segmentor is trained with only gradients passed along by the critic, with the aim to minimize the multi-scale loss function. We show that such a SegAN framework is more effective and stable for the segmentation task, and it leads to better performance than the state-of-the-art U-net segmentation method. We tested our SegAN method using datasets from the MICCAI BRATS brain tumor segmentation challenge. Extensive experimental results demonstrate the effectiveness of the proposed SegAN with multi-scale loss: on BRATS 2013 SegAN gives performance comparable to the state-of-the-art for whole tumor and tumor core segmentation while achieves better precision and sensitivity for Gd-enhance tumor core segmentation; on BRATS 2015 SegAN achieves better performance than the state-of-the-art in both dice score and precision.

  11. The complete genome sequence of herpesvirus papio 2 (Cercopithecine herpesvirus 16) shows evidence of recombination events among various progenitor herpesviruses.

    Science.gov (United States)

    Tyler, Shaun D; Severini, Alberto

    2006-02-01

    We have sequenced the entire genome of herpesvirus papio 2 (HVP-2; Cercopithecine herpesvirus 16) strain X313, a baboon herpesvirus with close homology to other primate alphaherpesviruses, such as SA8, monkey B virus, and herpes simplex virus (HSV) type 1 and type 2. The genome of HVP-2 is 156,487 bp in length, with an overall GC content of 76.5%. The genome organization is identical to that of the other members of the genus Simplexvirus, with a long and a short unique region, each bordered by inverted repeats which end with an "a" sequence. All of the open reading frames detected in this genome were homologous and colinear with those of SA8 and B virus. The HSV gene RL1 (gamma(1)34.5; neurovirulence factor) is not present in HVP-2, as is the case for SA8 and B virus. The HVP-2 genome is 85% homologous to its closest relative, SA8. However, segment-by-segment bootstrap analysis of the genome revealed at least two regions that display closer homology to the corresponding sequences of B virus. The first region comprises the UL41 to UL44 genes, and the second region is located within the UL36 gene. We hypothesize that this localized and defined shift in homology is due to recombination events between an SA8-like progenitor of HVP-2 and a herpesvirus species more closely related to the B virus. Since some of the genes involved in these putative recombination events are determinants of virulence, a comparative analysis of their function may provide insight into the pathogenic mechanism of simplexviruses.

  12. Genetics in Ophthalmology III – Posterior Segment Diseases

    Directory of Open Access Journals (Sweden)

    Canan Aslı Utine

    2012-10-01

    Full Text Available Genetic diseases are congenital or acquired hereditary diseases that result from structural/functional disorders of the human genome. Today, the genetic factors that play a role in many diseases are being highlighted with the rapid progress in the field of genetics science. It becomes increasingly important that physicians from all disciplines have knowledge about the basic principles of genetics, patterns of inheritance, etc., so that they can follow the new developments. In genetic eye diseases, ophthalmologists should know the basic clinical and recently rapidly developing genetic characteristics of these diseases in order to properly approach the diagnosis and treatment and to provide genetic counseling. In this paper, posterior segment eye diseases of genetic origin are reviewed, and retinoblastoma, mitochondrial diseases, retinal dysplasia, retinitis pigmentosa, choroideremia, gyrate atrophy, Alström disease, ocular albinism, optic nerve hypoplasia, anophthalmia/microphthalmia and Leber’s congenital amaurosis are covered. (Turk J Ophthalmol 2012; 42: 386-92

  13. Methods of evaluating segmentation characteristics and segmentation of major faults

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kie Hwa; Chang, Tae Woo; Kyung, Jai Bok [Seoul National Univ., Seoul (Korea, Republic of)] (and others)

    2000-03-15

    Seismological, geological, and geophysical studies were made for reasonable segmentation of the Ulsan fault and the results are as follows. One- and two- dimensional electrical surveys revealed clearly the fault fracture zone enlarges systematically northward and southward from the vicinity of Mohwa-ri, indicating Mohwa-ri is at the seismic segment boundary. Field Geological survey and microscope observation of fault gouge indicates that the Quaternary faults in the area are reactivated products of the preexisting faults. Trench survey of the Chonbuk fault Galgok-ri revealed thrust faults and cumulative vertical displacement due to faulting during the late Quaternary with about 1.1-1.9 m displacement per event; the latest event occurred from 14000 to 25000 yrs. BP. The seismic survey showed the basement surface os cut by numerous reverse faults and indicated the possibility that the boundary between Kyeongsangbukdo and Kyeongsannamdo may be segment boundary.

  14. Methods of evaluating segmentation characteristics and segmentation of major faults

    International Nuclear Information System (INIS)

    Lee, Kie Hwa; Chang, Tae Woo; Kyung, Jai Bok

    2000-03-01

    Seismological, geological, and geophysical studies were made for reasonable segmentation of the Ulsan fault and the results are as follows. One- and two- dimensional electrical surveys revealed clearly the fault fracture zone enlarges systematically northward and southward from the vicinity of Mohwa-ri, indicating Mohwa-ri is at the seismic segment boundary. Field Geological survey and microscope observation of fault gouge indicates that the Quaternary faults in the area are reactivated products of the preexisting faults. Trench survey of the Chonbuk fault Galgok-ri revealed thrust faults and cumulative vertical displacement due to faulting during the late Quaternary with about 1.1-1.9 m displacement per event; the latest event occurred from 14000 to 25000 yrs. BP. The seismic survey showed the basement surface os cut by numerous reverse faults and indicated the possibility that the boundary between Kyeongsangbukdo and Kyeongsannamdo may be segment boundary

  15. Structural determinants and mechanism of HIV-1 genome packaging.

    Science.gov (United States)

    Lu, Kun; Heng, Xiao; Summers, Michael F

    2011-07-22

    Like all retroviruses, the human immunodeficiency virus selectively packages two copies of its unspliced RNA genome, both of which are utilized for strand-transfer-mediated recombination during reverse transcription-a process that enables rapid evolution under environmental and chemotherapeutic pressures. The viral RNA appears to be selected for packaging as a dimer, and there is evidence that dimerization and packaging are mechanistically coupled. Both processes are mediated by interactions between the nucleocapsid domains of a small number of assembling viral Gag polyproteins and RNA elements within the 5'-untranslated region of the genome. A number of secondary structures have been predicted for regions of the genome that are responsible for packaging, and high-resolution structures have been determined for a few small RNA fragments and protein-RNA complexes. However, major questions regarding the RNA structures (and potentially the structural changes) that are responsible for dimeric genome selection remain unanswered. Here, we review efforts that have been made to identify the molecular determinants and mechanism of human immunodeficiency virus type 1 genome packaging. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Evaluation of multimodal segmentation based on 3D T1-, T2- and FLAIR-weighted images - the difficulty of choosing.

    Science.gov (United States)

    Lindig, Tobias; Kotikalapudi, Raviteja; Schweikardt, Daniel; Martin, Pascal; Bender, Friedemann; Klose, Uwe; Ernemann, Ulrike; Focke, Niels K; Bender, Benjamin

    2018-04-15

    Voxel-based morphometry is still mainly based on T1-weighted MRI scans. Misclassification of vessels and dura mater as gray matter has been previously reported. Goal of the present work was to evaluate the effect of multimodal segmentation methods available in SPM12, and their influence on identification of age related atrophy and lesion detection in epilepsy patients. 3D T1-, T2- and FLAIR-images of 77 healthy adults (mean age 35.8 years, 19-66 years, 45 females), 7 patients with malformation of cortical development (MCD) (mean age 28.1 years,19-40 years, 3 females), and 5 patients with left hippocampal sclerosis (LHS) (mean age 49.0 years, 25-67 years, 3 females) from a 3T scanner were evaluated. Segmentation based on T1-only, T1+T2, T1+FLAIR, T2+FLAIR, and T1+T2+FLAIR were compared in the healthy subjects. Clinical VBM results based on the different segmentation approaches for MCD and for LHS were compared. T1-only segmentation overestimated total intracranial volume by about 80ml compared to the other segmentation methods. This was due to misclassification of dura mater and vessels as GM and CSF. Significant differences were found for several anatomical regions: the occipital lobe, the basal ganglia/thalamus, the pre- and postcentral gyrus, the cerebellum, and the brainstem. None of the segmentation methods yielded completely satisfying results for the basal ganglia/thalamus and the brainstem. The best correlation with age could be found for the multimodal T1+T2+FLAIR segmentation. Highest T-scores for identification of LHS were found for T1+T2 segmentation, while highest T-scores for MCD were dependent on lesion and anatomical location. Multimodal segmentation is superior to T1-only segmentation and reduces the misclassification of dura mater and vessels as GM and CSF. Depending on the anatomical region and the pathology of interest (atrophy, lesion detection, etc.), different combinations of T1, T2 and FLAIR yield optimal results. Copyright © 2017 Elsevier

  17. A competition in unsupervised color image segmentation

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Mikeš, Stanislav

    2016-01-01

    Roč. 57, č. 9 (2016), s. 136-151 ISSN 0031-3203 R&D Projects: GA ČR(CZ) GA14-10911S Institutional support: RVO:67985556 Keywords : Unsupervised image segmentation * Segmentation contest * Texture analysis Subject RIV: BD - Theory of Information Impact factor: 4.582, year: 2016 http://library.utia.cas.cz/separaty/2016/RO/haindl-0459179.pdf

  18. Contribution of Chromosomes 1HchS and 6HchS to Fertility Restoration in the Wheat msH1 CMS System under Different Environmental Conditions.

    Science.gov (United States)

    Castillo, Almudena; Rodríguez-Suárez, Cristina; Martín, Azahara C; Pistón, Fernando

    2015-01-01

    Exploiting hybrid wheat heterosis has been long pursued to increase crop yield, stability and uniformity. Cytoplasmic male sterility (CMS) systems based in the nuclear-cytoplasmic incompatible interactions are a classic way for hybrid seed production, but to date, no definitive system is available in wheat. The msH1 CMS system results from the incompatibility between the nuclear genome of wheat and the cytoplasmic genome of the wild barley Hordeum chilense. Fertility restoration of the CMS phenotype was first associated with the disomic addition of the short arm of chromosome 6H from H. chilense. In further studies it was observed that chromosome arm 1HchS was also implicated, and the combination of genes in both chromosome arms restored fertility more efficiently. In this work we aim to dissect the effect of each chromosome in fertility restoration when combined in different genomic backgrounds and under different environmental conditions. We propose a model to explain how restoration behaves in the msH1 system and generate valuable information necessary to develop an efficient system for hybrid wheat production.

  19. Color Texture Segmentation by Decomposition of Gaussian Mixture Model

    Czech Academy of Sciences Publication Activity Database

    Grim, Jiří; Somol, Petr; Haindl, Michal; Pudil, Pavel

    2006-01-01

    Roč. 19, č. 4225 (2006), s. 287-296 ISSN 0302-9743. [Iberoamerican Congress on Pattern Recognition. CIARP 2006 /11./. Cancun, 14.11.2006-17.11.2006] R&D Projects: GA AV ČR 1ET400750407; GA MŠk 1M0572; GA MŠk 2C06019 EU Projects: European Commission(XE) 507752 - MUSCLE Institutional research plan: CEZ:AV0Z10750506 Keywords : texture segmentation * gaussian mixture model * EM algorithm Subject RIV: IN - Informatics, Computer Science Impact factor: 0.402, year: 2005 http://library.utia.cas.cz/separaty/historie/grim-color texture segmentation by decomposition of gaussian mixture model.pdf

  20. Complete genome of Pieris rapae, a resilient alien, a cabbage pest, and a source of anti-cancer proteins [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jinhui Shen

    2016-11-01

    Full Text Available The Small Cabbage White (Pieris rapae is originally a Eurasian butterfly. Being accidentally introduced into North America, Australia, and New Zealand a century or more ago, it spread throughout the continents and rapidly established as one of the most abundant butterfly species. Although it is a serious pest of cabbage and other mustard family plants with its caterpillars reducing crops to stems, it is also a source of pierisin, a protein unique to the Whites that shows cytotoxicity to cancer cells. To better understand the unusual biology of this omnipresent agriculturally and medically important butterfly, we sequenced and annotated the complete genome from USA specimens. At 246 Mbp, it is among the smallest Lepidoptera genomes reported to date. While 1.5% positions in the genome are heterozygous, they are distributed highly non-randomly along the scaffolds, and nearly 20% of longer than 1000 base-pair segments are SNP-free (median length: 38000 bp. Computational simulations of population evolutionary history suggest that American populations started from a very small number of introduced individuals, possibly a single fertilized female, which is in agreement with historical literature. Comparison to other Lepidoptera genomes reveals several unique families of proteins that may contribute to the unusual resilience of Pieris. The nitrile-specifier proteins divert the plant defense chemicals to non-toxic products. The apoptosis-inducing pierisins could offer a defense mechanism against parasitic wasps. While only two pierisins from Pieris rapae were characterized before, the genome sequence revealed eight, offering additional candidates as anti-cancer drugs. The reference genome we obtained lays the foundation for future studies of the Cabbage White and other Pieridae species.

  1. The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution

    OpenAIRE

    Elsik, Christine G.; Tellam, Ross L.; Worley, Kim C.; Gibbs, Richard A.; Abatepaulo, Antonio R. R.; Abbey, Colette A.; Adelson, David L.; Aerts, Jan; Ahola, Virpi; Alexander, Lee; Alioto, Tyler; Almeida, Iassudara G.; Amadio, Ariel F.; Anatriello, Elen; Antonarakis, Stylianos E.

    2009-01-01

    To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specifi...

  2. Histone deacetylase inhibitors reduce the number of herpes simplex virus-1 genomes initiating expression in individual cells

    Directory of Open Access Journals (Sweden)

    Lev Shapira

    2016-12-01

    Full Text Available Although many viral particles can enter a single cell, the number of viral genomes per cell that establish infection is limited. However, mechanisms underlying this restriction were not explored in depth. For herpesviruses, one of the possible mechanisms suggested is chromatinization and silencing of the incoming genomes. To test this hypothesis, we followed infection with three herpes simplex virus 1 (HSV-1 fluorescence-expressing recombinants in the presence or absence of histone deacetylases inhibitors (HDACi’s. Unexpectedly, a lower number of viral genomes initiated expression in the presence of these inhibitors. This phenomenon was observed using several HDACi: Trichostatin A (TSA, Suberohydroxamic Acid (SBX, Valporic Acid (VPA and Suberoylanilide Hydoxamic Acid (SAHA. We found that HDACi presence did not change the progeny outcome from the infected cells but did alter the kinetic of the gene expression from the viral genomes. Different cell types (HFF, Vero and U2OS, which vary in their capability to activate intrinsic and innate immunity, show a cell specific basal average number of viral genomes establishing infection. Importantly, in all cell types, treatment with TSA reduced the number of viral genomes. ND10 nuclear bodies are known to interact with the incoming herpes genomes and repress viral replication. The viral immediate early protein, ICP0, is known to disassemble the ND10 bodies and to induce degradation of some of the host proteins in these domains. HDACi treated cells expressed higher levels of some of the host ND10 proteins (PML and ATRX, which may explain the lower number of viral genomes initiating expression per cell. Corroborating this hypothesis, infection with three HSV-1 recombinants carrying a deletion in the gene coding for ICP0, show a reduction in the number of genomes being expressed in U2OS cells. We suggest that alterations in the levels of host proteins involved in intrinsic antiviral defense may result in

  3. LDR segmented mirror technology assessment study

    Science.gov (United States)

    Krim, M.; Russo, J.

    1983-01-01

    In the mid-1990s, NASA plans to orbit a giant telescope, whose aperture may be as great as 30 meters, for infrared and sub-millimeter astronomy. Its primary mirror will be deployed or assembled in orbit from a mosaic of possibly hundreds of mirror segments. Each segment must be shaped to precise curvature tolerances so that diffraction-limited performance will be achieved at 30 micron (nominal operating wavelength). All panels must lie within 1 micron on a theoretical surface described by the optical precipitation of the telescope's primary mirror. To attain diffraction-limited performance, the issues of alignment and/or position sensing, position control of micron tolerances, and structural, thermal, and mechanical considerations for stowing, deploying, and erecting the reflector must be resolved. Radius of curvature precision influences panel size, shape, material, and type of construction. Two superior material choices emerged: fused quartz (sufficiently homogeneous with respect to thermal expansivity to permit a thin shell substrate to be drape molded between graphite dies to a precise enough off-axis asphere for optical finishing on the as-received a segment) and a Pyrex or Duran (less expensive than quartz and formable at lower temperatures). The optimal reflector panel size is between 1-1/2 and 2 meters. Making one, two-meter mirror every two weeks requires new approaches to manufacturing off-axis parabolic or aspheric segments (drape molding on precision dies and subsequent finishing on a nonrotationally symmetric dependent machine). Proof-of-concept developmental programs were identified to prove the feasibility of the materials and manufacturing ideas.

  4. Semiautomatic segmentation of liver metastases on volumetric CT images

    International Nuclear Information System (INIS)

    Yan, Jiayong; Schwartz, Lawrence H.; Zhao, Binsheng

    2015-01-01

    Purpose: Accurate segmentation and quantification of liver metastases on CT images are critical to surgery/radiation treatment planning and therapy response assessment. To date, there are no reliable methods to perform such segmentation automatically. In this work, the authors present a method for semiautomatic delineation of liver metastases on contrast-enhanced volumetric CT images. Methods: The first step is to manually place a seed region-of-interest (ROI) in the lesion on an image. This ROI will (1) serve as an internal marker and (2) assist in automatically identifying an external marker. With these two markers, lesion contour on the image can be accurately delineated using traditional watershed transformation. Density information will then be extracted from the segmented 2D lesion and help determine the 3D connected object that is a candidate of the lesion volume. The authors have developed a robust strategy to automatically determine internal and external markers for marker-controlled watershed segmentation. By manually placing a seed region-of-interest in the lesion to be delineated on a reference image, the method can automatically determine dual threshold values to approximately separate the lesion from its surrounding structures and refine the thresholds from the segmented lesion for the accurate segmentation of the lesion volume. This method was applied to 69 liver metastases (1.1–10.3 cm in diameter) from a total of 15 patients. An independent radiologist manually delineated all lesions and the resultant lesion volumes served as the “gold standard” for validation of the method’s accuracy. Results: The algorithm received a median overlap, overestimation ratio, and underestimation ratio of 82.3%, 6.0%, and 11.5%, respectively, and a median average boundary distance of 1.2 mm. Conclusions: Preliminary results have shown that volumes of liver metastases on contrast-enhanced CT images can be accurately estimated by a semiautomatic segmentation

  5. Expression of the pair-rule gene homologs runt, Pax3/7, even-skipped-1 and even-skipped-2 during larval and juvenile development of the polychaete annelid Capitella teleta does not support a role in segmentation

    Directory of Open Access Journals (Sweden)

    Seaver Elaine C

    2012-04-01

    Full Text Available Abstract Background Annelids and arthropods each possess a segmented body. Whether this similarity represents an evolutionary convergence or inheritance from a common segmented ancestor is the subject of ongoing investigation. Methods To investigate whether annelids and arthropods share molecular components that control segmentation, we isolated orthologs of the Drosophila melanogaster pair-rule genes, runt, paired (Pax3/7 and eve, from the polychaete annelid Capitella teleta and used whole mount in situ hybridization to characterize their expression patterns. Results When segments first appear, expression of the single C. teleta runt ortholog is only detected in the brain. Later, Ct-runt is expressed in the ventral nerve cord, foregut and hindgut. Analysis of Pax genes in the C. teleta genome reveals the presence of a single Pax3/7 ortholog. Ct-Pax3/7 is initially detected in the mid-body prior to segmentation, but is restricted to two longitudinal bands in the ventral ectoderm. Each of the two C. teleta eve orthologs has a unique and complex expression pattern, although there is partial overlap in several tissues. Prior to and during segment formation, Ct-eve1 and Ct-eve2 are both expressed in the bilaterial pair of mesoteloblasts, while Ct-eve1 is expressed in the descendant mesodermal band cells. At later stages, Ct-eve2 is expressed in the central and peripheral nervous system, and in mesoderm along the dorsal midline. In late stage larvae and adults, Ct-eve1 and Ct-eve2 are expressed in the posterior growth zone. Conclusions C. teleta eve, Pax3/7 and runt homologs all have distinct expression patterns and share expression domains with homologs from other bilaterians. None of the pair-rule orthologs examined in C. teleta exhibit segmental or pair-rule stripes of expression in the ectoderm or mesoderm, consistent with an independent origin of segmentation between annelids and arthropods.

  6. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica

    Science.gov (United States)

    2011-01-01

    Background Angiosperm mitochondrial genomes are more complex than those of other organisms. Analyses of the mitochondrial genome sequences of at least 11 angiosperm species have showed several common properties; these cannot easily explain, however, how the diverse mitotypes evolved within each genus or species. We analyzed the evolutionary relationships of Brassica mitotypes by sequencing. Results We sequenced the mitotypes of cam (Brassica rapa), ole (B. oleracea), jun (B. juncea), and car (B. carinata) and analyzed them together with two previously sequenced mitotypes of B. napus (pol and nap). The sizes of whole single circular genomes of cam, jun, ole, and car are 219,747 bp, 219,766 bp, 360,271 bp, and 232,241 bp, respectively. The mitochondrial genome of ole is largest as a resulting of the duplication of a 141.8 kb segment. The jun mitotype is the result of an inherited cam mitotype, and pol is also derived from the cam mitotype with evolutionary modifications. Genes with known functions are conserved in all mitotypes, but clear variation in open reading frames (ORFs) with unknown functions among the six mitotypes was observed. Sequence relationship analysis showed that there has been genome compaction and inheritance in the course of Brassica mitotype evolution. Conclusions We have sequenced four Brassica mitotypes, compared six Brassica mitotypes and suggested a mechanism for mitochondrial genome formation in Brassica, including evolutionary events such as inheritance, duplication, rearrangement, genome compaction, and mutation. PMID:21988783

  7. Photoreceptor inner segment ellipsoid band integrity on spectral domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Saxena S

    2014-12-01

    Full Text Available Sandeep Saxena,1 Khushboo Srivastav,1 Chui M Cheung,2 Joanne YW Ng,3 Timothy YY Lai3 1Retina Service, Department of Ophthalmology, King George’s Medical University Lucknow, India; 2Singapore National Eye Centre, Singapore; 3Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong Abstract: Spectral domain optical coherence tomography cross-sectional imaging of the macula has conventionally been resolved into four bands. However, some doubts were raised regarding authentication of the existence of these bands. Recently, a number of studies have suggested that the second band appeared to originate from the inner segment ellipsoids of the foveal cone photoreceptors, and therefore the previously called inner segment-outer segment junction is now referred to as inner segment ellipsoidband. Photoreceptor dysfunction may be a significant predictor of visual acuity in a spectrum of surgical and medical retinal diseases. This review aims to provide an overview and summarizes the role of the photoreceptor inner segment ellipsoid band in the management and prognostication of various vitreoretinal diseases. Keywords: spectral domain optical coherence tomography, inner segment-outer segment junction, external limiting membrane, macular hole, diabetic macular edema, age relate macular degeneration

  8. W-curve alignments for HIV-1 genomic comparisons.

    Directory of Open Access Journals (Sweden)

    Douglas J Cork

    2010-06-01

    Full Text Available The W-curve was originally developed as a graphical visualization technique for viewing DNA and RNA sequences. Its ability to render features of DNA also makes it suitable for computational studies. Its main advantage in this area is utilizing a single-pass algorithm for comparing the sequences. Avoiding recursion during sequence alignments offers advantages for speed and in-process resources. The graphical technique also allows for multiple models of comparison to be used depending on the nucleotide patterns embedded in similar whole genomic sequences. The W-curve approach allows us to compare large numbers of samples quickly.We are currently tuning the algorithm to accommodate quirks specific to HIV-1 genomic sequences so that it can be used to aid in diagnostic and vaccine efforts. Tracking the molecular evolution of the virus has been greatly hampered by gap associated problems predominantly embedded within the envelope gene of the virus. Gaps and hypermutation of the virus slow conventional string based alignments of the whole genome. This paper describes the W-curve algorithm itself, and how we have adapted it for comparison of similar HIV-1 genomes. A treebuilding method is developed with the W-curve that utilizes a novel Cylindrical Coordinate distance method and gap analysis method. HIV-1 C2-V5 env sequence regions from a Mother/Infant cohort study are used in the comparison.The output distance matrix and neighbor results produced by the W-curve are functionally equivalent to those from Clustal for C2-V5 sequences in the mother/infant pairs infected with CRF01_AE.Significant potential exists for utilizing this method in place of conventional string based alignment of HIV-1 genomes, such as Clustal X. With W-curve heuristic alignment, it may be possible to obtain clinically useful results in a short time-short enough to affect clinical choices for acute treatment. A description of the W-curve generation process, including a comparison

  9. W-curve alignments for HIV-1 genomic comparisons.

    Science.gov (United States)

    Cork, Douglas J; Lembark, Steven; Tovanabutra, Sodsai; Robb, Merlin L; Kim, Jerome H

    2010-06-01

    The W-curve was originally developed as a graphical visualization technique for viewing DNA and RNA sequences. Its ability to render features of DNA also makes it suitable for computational studies. Its main advantage in this area is utilizing a single-pass algorithm for comparing the sequences. Avoiding recursion during sequence alignments offers advantages for speed and in-process resources. The graphical technique also allows for multiple models of comparison to be used depending on the nucleotide patterns embedded in similar whole genomic sequences. The W-curve approach allows us to compare large numbers of samples quickly. We are currently tuning the algorithm to accommodate quirks specific to HIV-1 genomic sequences so that it can be used to aid in diagnostic and vaccine efforts. Tracking the molecular evolution of the virus has been greatly hampered by gap associated problems predominantly embedded within the envelope gene of the virus. Gaps and hypermutation of the virus slow conventional string based alignments of the whole genome. This paper describes the W-curve algorithm itself, and how we have adapted it for comparison of similar HIV-1 genomes. A treebuilding method is developed with the W-curve that utilizes a novel Cylindrical Coordinate distance method and gap analysis method. HIV-1 C2-V5 env sequence regions from a Mother/Infant cohort study are used in the comparison. The output distance matrix and neighbor results produced by the W-curve are functionally equivalent to those from Clustal for C2-V5 sequences in the mother/infant pairs infected with CRF01_AE. Significant potential exists for utilizing this method in place of conventional string based alignment of HIV-1 genomes, such as Clustal X. With W-curve heuristic alignment, it may be possible to obtain clinically useful results in a short time-short enough to affect clinical choices for acute treatment. A description of the W-curve generation process, including a comparison technique of

  10. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line

    DEFF Research Database (Denmark)

    Xu, Xun; Pan, Shengkai; Liu, Xin

    2011-01-01

    Chinese hamster ovary (CHO)-derived cell lines are the preferred host cells for the production of therapeutic proteins. Here we present a draft genomic sequence of the CHO-K1 ancestral cell line. The assembly comprises 2.45 Gb of genomic sequence, with 24,383 predicted genes. We associate most....... Homologs of most human glycosylation-associated genes are present in the CHO-K1 genome, although 141 of these homologs are not expressed under exponential growth conditions. Many important viral entry genes are also present in the genome but not expressed, which may explain the unusual viral resistance...... property of CHO cell lines. We discuss how the availability of this genome sequence may facilitate genome-scale science for the optimization of biopharmaceutical protein production....

  11. An Innovative Technique to Assess Spontaneous Baroreflex Sensitivity with Short Data Segments: Multiple Trigonometric Regressive Spectral Analysis.

    Science.gov (United States)

    Li, Kai; Rüdiger, Heinz; Haase, Rocco; Ziemssen, Tjalf

    2018-01-01

    Objective: As the multiple trigonometric regressive spectral (MTRS) analysis is extraordinary in its ability to analyze short local data segments down to 12 s, we wanted to evaluate the impact of the data segment settings by applying the technique of MTRS analysis for baroreflex sensitivity (BRS) estimation using a standardized data pool. Methods: Spectral and baroreflex analyses were performed on the EuroBaVar dataset (42 recordings, including lying and standing positions). For this analysis, the technique of MTRS was used. We used different global and local data segment lengths, and chose the global data segments from different positions. Three global data segments of 1 and 2 min and three local data segments of 12, 20, and 30 s were used in MTRS analysis for BRS. Results: All the BRS-values calculated on the three global data segments were highly correlated, both in the supine and standing positions; the different global data segments provided similar BRS estimations. When using different local data segments, all the BRS-values were also highly correlated. However, in the supine position, using short local data segments of 12 s overestimated BRS compared with those using 20 and 30 s. In the standing position, the BRS estimations using different local data segments were comparable. There was no proportional bias for the comparisons between different BRS estimations. Conclusion: We demonstrate that BRS estimation by the MTRS technique is stable when using different global data segments, and MTRS is extraordinary in its ability to evaluate BRS in even short local data segments (20 and 30 s). Because of the non-stationary character of most biosignals, the MTRS technique would be preferable for BRS analysis especially in conditions when only short stationary data segments are available or when dynamic changes of BRS should be monitored.

  12. SL1 revisited: functional analysis of the structure and conformation of HIV-1 genome RNA.

    Science.gov (United States)

    Sakuragi, Sayuri; Yokoyama, Masaru; Shioda, Tatsuo; Sato, Hironori; Sakuragi, Jun-Ichi

    2016-11-11

    The dimer initiation site/dimer linkage sequence (DIS/DLS) region of HIV is located on the 5' end of the viral genome and suggested to form complex secondary/tertiary structures. Within this structure, stem-loop 1 (SL1) is believed to be most important and an essential key to dimerization, since the sequence and predicted secondary structure of SL1 are highly stable and conserved among various virus subtypes. In particular, a six-base palindromic sequence is always present at the hairpin loop of SL1 and the formation of kissing-loop structure at this position between the two strands of genomic RNA is suggested to trigger dimerization. Although the higher-order structure model of SL1 is well accepted and perhaps even undoubted lately, there could be stillroom for consideration to depict the functional SL1 structure while in vivo (in virion or cell). In this study, we performed several analyses to identify the nucleotides and/or basepairing within SL1 which are necessary for HIV-1 genome dimerization, encapsidation, recombination and infectivity. We unexpectedly found that some nucleotides that are believed to contribute the formation of the stem do not impact dimerization or infectivity. On the other hand, we found that one G-C basepair involved in stem formation may serve as an alternative dimer interactive site. We also report on our further investigation of the roles of the palindromic sequences on viral replication. Collectively, we aim to assemble a more-comprehensive functional map of SL1 on the HIV-1 viral life cycle. We discovered several possibilities for a novel structure of SL1 in HIV-1 DLS. The newly proposed structure model suggested that the hairpin loop of SL1 appeared larger, and genome dimerization process might consist of more complicated mechanism than previously understood. Further investigations would be still required to fully understand the genome packaging and dimerization of HIV.

  13. Market segmentation in behavioral perspective.

    OpenAIRE

    Wells, V.K.; Chang, S.W.; Oliveira-Castro, J.M.; Pallister, J.

    2010-01-01

    A segmentation approach is presented using both traditional demographic segmentation bases (age, social class/occupation, and working status) and a segmentation by benefits sought. The benefits sought in this case are utilitarian and informational reinforcement, variables developed from the Behavioral Perspective Model (BPM). Using data from 1,847 consumers and from a total of 76,682 individual purchases, brand choice and price and reinforcement responsiveness were assessed for each segment a...

  14. Using sheep genomes from diverse U.S. breeds to identify missense variants in genes affecting fecundity

    Science.gov (United States)

    Background: Access to sheep genome sequences significantly improves the chances of identifying genes that may influence the health, welfare, and productivity of these animals. Methods: A public, searchable DNA sequence resource for U.S. sheep was created with whole genome sequence (WGS) of 96 rams. ...

  15. Genome editing: The efficient tool CRISPR–Cpf1

    KAUST Repository

    Mahfouz, Magdy M.

    2017-01-01

    The novel features of the CRISPR–Cpf1 RNA-guided endonuclease system facilitate precise and efficient genome engineering. Application of CRISPR–Cpf1 in plants shows promise for robust gene editing and regulation, opening exciting possibilities for targeted trait improvement in crops.

  16. Genome editing: The efficient tool CRISPR–Cpf1

    KAUST Repository

    Mahfouz, Magdy M.

    2017-03-01

    The novel features of the CRISPR–Cpf1 RNA-guided endonuclease system facilitate precise and efficient genome engineering. Application of CRISPR–Cpf1 in plants shows promise for robust gene editing and regulation, opening exciting possibilities for targeted trait improvement in crops.

  17. A new framework for interactive images segmentation

    International Nuclear Information System (INIS)

    Ashraf, M.; Sarim, M.; Shaikh, A.B.

    2017-01-01

    Image segmentation has become a widely studied research problem in image processing. There exist different graph based solutions for interactive image segmentation but the domain of image segmentation still needs persistent improvements. The segmentation quality of existing techniques generally depends on the manual input provided in beginning, therefore, these algorithms may not produce quality segmentation with initial seed labels provided by a novice user. In this work we investigated the use of cellular automata in image segmentation and proposed a new algorithm that follows a cellular automaton in label propagation. It incorporates both the pixel's local and global information in the segmentation process. We introduced the novel global constraints in automata evolution rules; hence proposed scheme of automata evolution is more effective than the automata based earlier evolution schemes. Global constraints are also effective in deceasing the sensitivity towards small changes made in manual input; therefore proposed approach is less dependent on label seed marks. It can produce the quality segmentation with modest user efforts. Segmentation results indicate that the proposed algorithm performs better than the earlier segmentation techniques. (author)

  18. Variable Copy Number, Intra-Genomic Heterogeneities and Lateral Transfers of the 16S rRNA Gene in Pseudomonas

    Science.gov (United States)

    Bodilis, Josselin; Nsigue-Meilo, Sandrine; Besaury, Ludovic; Quillet, Laurent

    2012-01-01

    Even though the 16S rRNA gene is the most commonly used taxonomic marker in microbial ecology, its poor resolution is still not fully understood at the intra-genus level. In this work, the number of rRNA gene operons, intra-genomic heterogeneities and lateral transfers were investigated at a fine-scale resolution, throughout the Pseudomonas genus. In addition to nineteen sequenced Pseudomonas strains, we determined the 16S rRNA copy number in four other Pseudomonas strains by Southern hybridization and Pulsed-Field Gel Electrophoresis, and studied the intra-genomic heterogeneities by Denaturing Gradient Gel Electrophoresis and sequencing. Although the variable copy number (from four to seven) seems to be correlated with the evolutionary distance, some close strains in the P. fluorescens lineage showed a different number of 16S rRNA genes, whereas all the strains in the P. aeruginosa lineage displayed the same number of genes (four copies). Further study of the intra-genomic heterogeneities revealed that most of the Pseudomonas strains (15 out of 19 strains) had at least two different 16S rRNA alleles. A great difference (5 or 19 nucleotides, essentially grouped near the V1 hypervariable region) was observed only in two sequenced strains. In one of our strains studied (MFY30 strain), we found a difference of 12 nucleotides (grouped in the V3 hypervariable region) between copies of the 16S rRNA gene. Finally, occurrence of partial lateral transfers of the 16S rRNA gene was further investigated in 1803 full-length sequences of Pseudomonas available in the databases. Remarkably, we found that the two most variable regions (the V1 and V3 hypervariable regions) had probably been laterally transferred from another evolutionary distant Pseudomonas strain for at least 48.3 and 41.6% of the 16S rRNA sequences, respectively. In conclusion, we strongly recommend removing these regions of the 16S rRNA gene during the intra-genus diversity studies. PMID:22545126

  19. Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max.

    Science.gov (United States)

    Liu, Yuan; Wei, Haichao

    2017-07-01

    Soybean (Glycine max) is one of the most important crop plants. Wild and cultivated soybean varieties have significant differences worth further investigation, such as plant morphology, seed size, and seed coat development; these characters may be related to auxin biology. The PIN gene family encodes essential transport proteins in cell-to-cell auxin transport, but little research on soybean PIN genes (GmPIN genes) has been done, especially with respect to the evolution and differences between wild and cultivated soybean. In this study, we retrieved 23 GmPIN genes from the latest updated G. max genome database; six GmPIN protein sequences were changed compared with the previous database. Based on the Plant Genome Duplication Database, 18 GmPIN genes have been involved in segment duplication. Three pairs of GmPIN genes arose after the second soybean genome duplication, and six occurred after the first genome duplication. The duplicated GmPIN genes retained similar expression patterns. All the duplicated GmPIN genes experienced purifying selection (K a /K s genome sequence of 17 wild and 14 cultivated soybean varieties. Our research provides useful and comprehensive basic information for understanding GmPIN genes.

  20. A reference genome and methylome for the Plasmodium knowlesi A1-H.1 line

    KAUST Repository

    Benavente, Ernest Diez

    2017-12-16

    Plasmodium knowlesi, a common parasite of macaques, is recognized as a significant cause of human malaria in Malaysia. The P. knowlesi A1H1 line has been adapted to continuous culture in human erythrocytes, successfully providing an in vitro model to study the parasite. We have assembled a reference genome for the PkA1-H.1 line using PacBio long read combined with Illumina short read sequence data. Compared with the H-strain reference, the new reference has improved genome coverage and a novel description of methylation sites. The PkA1-H.1 reference will enhance the capabilities of the in vitro model to improve the understanding of P. knowlesi infection in humans.

  1. A reference genome and methylome for the Plasmodium knowlesi A1-H.1 line

    KAUST Repository

    Benavente, Ernest Diez; de Sessions, Paola Florez; Moon, Robert W.; Grainger, Munira; Holder, Anthony A; Blackman, Michael J.; Roper, Cally; Drakeley, Christopher J.; Pain, Arnab; Sutherland, Colin J.; Hibberd, Martin L.; Campino, Susana; Clark, Taane G

    2017-01-01

    Plasmodium knowlesi, a common parasite of macaques, is recognized as a significant cause of human malaria in Malaysia. The P. knowlesi A1H1 line has been adapted to continuous culture in human erythrocytes, successfully providing an in vitro model to study the parasite. We have assembled a reference genome for the PkA1-H.1 line using PacBio long read combined with Illumina short read sequence data. Compared with the H-strain reference, the new reference has improved genome coverage and a novel description of methylation sites. The PkA1-H.1 reference will enhance the capabilities of the in vitro model to improve the understanding of P. knowlesi infection in humans.

  2. Complete genome sequences of three tomato spotted wilt virus isolates from tomato and pepper plants in Korea and their phylogenetic relationship to other TSWV isolates.

    Science.gov (United States)

    Lee, Jong-Seung; Cho, Won Kyong; Kim, Mi-Kyeong; Kwak, Hae-Ryun; Choi, Hong-Soo; Kim, Kook-Hyung

    2011-04-01

    Tomato spotted wilt virus (TSWV) infects numerous host plants and has three genome segments, called L, M and S. Here, we report the complete genome sequences of three Korean TSWV isolates (TSWV-1 to -3) infecting tomato and pepper plants. Although the nucleotide sequence of TSWV-1 genome isolated from tomato is very different from those of TSWV-2 and TSWV-3 isolated from pepper, the deduced amino acid sequences of the five TSWV genes are highly conserved among all three TSWV isolates. In phylogenetic analysis, deduced RdRp protein sequences of TSWV-2 and TSWV-3 were clustered together with two previously reported isolates from Japan and Korea, while TSWV-1 grouped together with a Hawaiian isolate. A phylogenetic tree based on N protein sequences, however, revealed four distinct groups of TSWV isolates, and all three Korean isolates belonged to group II, together with many other isolates, mostly from Europe and Asia. Interestingly, most American isolates grouped together as group I. Together, these results suggested that these newly identified TSWV isolates might have originated from an Asian ancestor and undergone divergence upon infecting different host plants.

  3. Producing genome structure populations with the dynamic and automated PGS software.

    Science.gov (United States)

    Hua, Nan; Tjong, Harianto; Shin, Hanjun; Gong, Ke; Zhou, Xianghong Jasmine; Alber, Frank

    2018-05-01

    Chromosome conformation capture technologies such as Hi-C are widely used to investigate the spatial organization of genomes. Because genome structures can vary considerably between individual cells of a population, interpreting ensemble-averaged Hi-C data can be challenging, in particular for long-range and interchromosomal interactions. We pioneered a probabilistic approach for the generation of a population of distinct diploid 3D genome structures consistent with all the chromatin-chromatin interaction probabilities from Hi-C experiments. Each structure in the population is a physical model of the genome in 3D. Analysis of these models yields new insights into the causes and the functional properties of the genome's organization in space and time. We provide a user-friendly software package, called PGS, which runs on local machines (for practice runs) and high-performance computing platforms. PGS takes a genome-wide Hi-C contact frequency matrix, along with information about genome segmentation, and produces an ensemble of 3D genome structures entirely consistent with the input. The software automatically generates an analysis report, and provides tools to extract and analyze the 3D coordinates of specific domains. Basic Linux command-line knowledge is sufficient for using this software. A typical running time of the pipeline is ∼3 d with 300 cores on a computer cluster to generate a population of 1,000 diploid genome structures at topological-associated domain (TAD)-level resolution.

  4. GenRGenS: Software for Generating Random Genomic Sequences and Structures

    OpenAIRE

    Ponty , Yann; Termier , Michel; Denise , Alain

    2006-01-01

    International audience; GenRGenS is a software tool dedicated to randomly generating genomic sequences and structures. It handles several classes of models useful for sequence analysis, such as Markov chains, hidden Markov models, weighted context-free grammars, regular expressions and PROSITE expressions. GenRGenS is the only program that can handle weighted context-free grammars, thus allowing the user to model and to generate structured objects (such as RNA secondary structures) of any giv...

  5. Kinetic magnetic resonance imaging analysis of lumbar segmental mobility in patients without significant spondylosis.

    Science.gov (United States)

    Tan, Yanlin; Aghdasi, Bayan G; Montgomery, Scott R; Inoue, Hirokazu; Lu, Chang; Wang, Jeffrey C

    2012-12-01

    The purpose of this study was to examine lumbar segmental mobility using kinetic magnetic resonance imaging (MRI) in patients with minimal lumbar spondylosis. Mid-sagittal images of patients who underwent weight-bearing, multi-position kinetic MRI for symptomatic low back pain or radiculopathy were reviewed. Only patients with a Pfirrmann grade of I or II, indicating minimal disc disease, in all lumbar discs from L1-2 to L5-S1 were included for further analysis. Translational and angular motion was measured at each motion segment. The mean translational motion of the lumbar spine at each level was 1.38 mm at L1-L2, 1.41 mm at L2-L3, 1.14 mm at L3-L4, 1.10 mm at L4-L5 and 1.01 mm at L5-S1. Translational motion at L1-L2 and L2-L3 was significantly greater than L3-4, L4-L5 and L5-S1 levels (P lumbar spine was highest at L2-L3 (22.45 %) and least at L5/S1 (14.71 %) (P lumbar segmental mobility in patients without significant degenerative disc disease and found that translational motion was greatest in the proximal lumbar levels whereas angular motion was similar in the mid-lumbar levels but decreased at L1-L2 and L5-S1.

  6. Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Thudi, Mahendar; Khan, Aamir W; Kumar, Vinay; Gaur, Pooran M; Katta, Krishnamohan; Garg, Vanika; Roorkiwal, Manish; Samineni, Srinivasan; Varshney, Rajeev K

    2016-01-27

    Chickpea (Cicer arietinum L.) is the second most important grain legume cultivated by resource poor farmers in South Asia and Sub-Saharan Africa. In order to harness the untapped genetic potential available for chickpea improvement, we re-sequenced 35 chickpea genotypes representing parental lines of 16 mapping populations segregating for abiotic (drought, heat, salinity), biotic stresses (Fusarium wilt, Ascochyta blight, Botrytis grey mould, Helicoverpa armigera) and nutritionally important (protein content) traits using whole genome re-sequencing approach. A total of 192.19 Gb data, generated on 35 genotypes of chickpea, comprising 973.13 million reads, with an average sequencing depth of ~10 X for each line. On an average 92.18 % reads from each genotype were aligned to the chickpea reference genome with 82.17 % coverage. A total of 2,058,566 unique single nucleotide polymorphisms (SNPs) and 292,588 Indels were detected while comparing with the reference chickpea genome. Highest number of SNPs were identified on the Ca4 pseudomolecule. In addition, copy number variations (CNVs) such as gene deletions and duplications were identified across the chickpea parental genotypes, which were minimum in PI 489777 (1 gene deletion) and maximum in JG 74 (1,497). A total of 164,856 line specific variations (144,888 SNPs and 19,968 Indels) with the highest percentage were identified in coding regions in ICC 1496 (21 %) followed by ICCV 97105 (12 %). Of 539 miscellaneous variations, 339, 138 and 62 were inter-chromosomal variations (CTX), intra-chromosomal variations (ITX) and inversions (INV) respectively. Genome-wide SNPs, Indels, CNVs, PAVs, and miscellaneous variations identified in different mapping populations are a valuable resource in genetic research and helpful in locating genes/genomic segments responsible for economically important traits. Further, the genome-wide variations identified in the present study can be used for developing high density SNP arrays for

  7. Complete mitochondrial genome of a wild Siberian tiger.

    Science.gov (United States)

    Sun, Yujiao; Lu, Taofeng; Sun, Zhaohui; Guan, Weijun; Liu, Zhensheng; Teng, Liwei; Wang, Shuo; Ma, Yuehui

    2015-01-01

    In this study, the complete mitochondrial genome of Siberian tiger (Panthera tigris altaica) was sequenced, using muscle tissue obtained from a male wild tiger. The total length of the mitochondrial genome is 16,996 bp. The genome structure of this tiger is in accordance with other Siberian tigers and it contains 12S rRNA gene, 16S rRNA gene, 22 tRNA genes, 13 protein-coding genes, and 1 control region.

  8. Forging New Cocoa Keys: The Impact of Unlocking the Cocoa Bean’s Genome on Pre-harvest Food Safety

    Science.gov (United States)

    Forging New Cocoa Keys: The Impact of Unlocking the Cocoa Bean’s Genome on Pre-harvest Food Safety David N. Kuhn, USDA ARS SHRS, Miami FL Sometimes it's hard to see the value and application of genomics to real world problems. How will sequencing the cacao genome affect West African farmers? Thi...

  9. An overview on genome organization of marine organisms.

    Science.gov (United States)

    Costantini, Maria

    2015-12-01

    In this review we will concentrate on some general genome features of marine organisms and their evolution, ranging from vertebrate to invertebrates until unicellular organisms. Before genome sequencing, the ultracentrifugation in CsCl led to high resolution of mammalian DNA (without seeing at the sequence). The analytical profile of human DNA showed that the vertebrate genome is a mosaic of isochores, typically megabase-size DNA segments that belong in a small number of families characterized by different GC levels. The recent availability of a number of fully sequenced genomes allowed mapping very precisely the isochores, based on DNA sequences. Since isochores are tightly linked to biological properties such as gene density, replication timing and recombination, the new level of detail provided by the isochore map helped the understanding of genome structure, function and evolution. This led the current level of knowledge and to further insights. Copyright © 2015. Published by Elsevier B.V.

  10. International team with Virginia Tech participation maps genome of dengue and yellow fever mosquito

    OpenAIRE

    Trulove, Susan

    2007-01-01

    Developing new strategies to prevent and control yellow fever and dengue fever has become more possible with the completion of the first draft of the genome sequence of Aedes aegypti mosquito by scientists led by Vishvanath Nene at The Institute for Genomic Research (TIGR) and David Severson at the University of Notre Dame. The genome is the complete set of genetic material including genes and other segments of DNA in an organism.

  11. A Simple Method to Decode the Complete 18-5.8-28S rRNA Repeated Units of Green Algae by Genome Skimming.

    Science.gov (United States)

    Lin, Geng-Ming; Lai, Yu-Heng; Audira, Gilbert; Hsiao, Chung-Der

    2017-11-06

    Green algae, Chlorella ellipsoidea , Haematococcus pluvialis and Aegagropila linnaei (Phylum Chlorophyta) were simultaneously decoded by a genomic skimming approach within 18-5.8-28S rRNA region. Whole genomic DNAs were isolated from green algae and directly subjected to low coverage genome skimming sequencing. After de novo assembly and mapping, the size of complete 18-5.8-28S rRNA repeated units for three green algae were ranged from 5785 to 6028 bp, which showed high nucleotide diversity (π is around 0.5-0.6) within ITS1 and ITS2 (Internal Transcribed Spacer) regions. Previously, the evolutional diversity of algae has been difficult to decode due to the inability design universal primers that amplify specific marker genes across diverse algal species. In this study, our method provided a rapid and universal approach to decode the 18-5.8-28S rRNA repeat unit in three green algal species. In addition, the completely sequenced 18-5.8-28S rRNA repeated units provided a solid nuclear marker for phylogenetic and evolutionary analysis for green algae for the first time.

  12. Genome-wide identification, sequence characterization, and protein-protein interaction properties of DDB1 (damaged DNA binding protein-1)-binding WD40-repeat family members in Solanum lycopersicum.

    Science.gov (United States)

    Zhu, Yunye; Huang, Shengxiong; Miao, Min; Tang, Xiaofeng; Yue, Junyang; Wang, Wenjie; Liu, Yongsheng

    2015-06-01

    One hundred DDB1 (damaged DNA binding protein-1)-binding WD40-repeat domain (DWD) family genes were identified in the S. lycopersicum genome. The DWD genes encode proteins presumably functioning as the substrate recognition subunits of the cullin4-ring ubiquitin E3 ligase complex. These findings provide candidate genes and a research platform for further gene functionality and molecular breeding study. A subclass of DDB1 (damaged DNA binding protein-1)-binding WD40-repeat domain (DWD) family proteins has been demonstrated to function as the substrate recognition subunits of the cullin4-ring ubiquitin E3 ligase complex. However, little information is available about the cognate subfamily genes in tomato (S. lycopersicum). In this study, based on the recently released tomato genome sequences, 100 tomato genes encoding DWD proteins that potentially interact with DDB1 were identified and characterized, including analyses of the detailed annotations, chromosome locations and compositions of conserved amino acid domains. In addition, a phylogenetic tree, which comprises of three main groups, of the subfamily genes was constructed. The physical interaction between tomato DDB1 and 14 representative DWD proteins was determined by yeast two-hybrid and co-immunoprecipitation assays. The subcellular localization of these 14 representative DWD proteins was determined. Six of them were localized in both nucleus and cytoplasm, seven proteins exclusively in cytoplasm, and one protein either in nucleus and cytoplasm, or exclusively in cytoplasm. Comparative genomic analysis demonstrated that the expansion of these subfamily members in tomato predominantly resulted from two whole-genome triplication events in the evolution history.

  13. Human genes for complement components C1r and C1s in a close tail-to-tail arrangement

    International Nuclear Information System (INIS)

    Kusumoto, H.; Hirosawa, S.; Salier, J.P.; Hagen, F.S.; Kurachi, K.

    1988-01-01

    Complementary DNA clones for human C1s were isolated from cDNA libraries that were prepared with poly(A) + RNAs of human liver and HepG2 cells. A clone with the largest cDNA insert of 2,664 base pairs (bp) was analyzed for its complete nucleotide sequence. It contained 202 bp of a 5' untranslated region, 45 bp of coding for a signal peptide (15 amino acid residues), 2,019 bp for complement component C1s zymogen (673 amino acid residues), 378 bp for a 3' untranslated region, a stop codon, and 17 bp of a poly(A) tail. The amino acid sequence of C1s was 40.5% identical to that of C1r, with excellent matches of tentative disulfide bond locations conserving the overall domain structure of C1r. DNA blotting and sequencing analyses of genomic DNA and of an isolated genomic DNA clone clearly showed that the human genes for C1r and C1s are closely located in a tail-to-tail arrangement at a distance of about 9.5 kilobases. Furthermore, RNA blot analyses showed that both C1r and C1s genes are primarily expressed in liver, whereas most other tissues expressed both C1r and C1s genes at much lower levels (less than 10% of that in liver). Multiple molecular sizes of specific mRNAs were observed in the RNA blot analyses for both C1r and C1s, indicating that alternative RNA processing(s), likely an alternative polyadenylylation, might take place for both genes

  14. DNABIT Compress – Genome compression algorithm

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923

  15. Attenuation of pathogenic Rift Valley fever virus strain through the chimeric S-segment encoding sandfly fever phlebovirus NSs or a dominant-negative PKR.

    Science.gov (United States)

    Nishiyama, Shoko; Slack, Olga A L; Lokugamage, Nandadeva; Hill, Terence E; Juelich, Terry L; Zhang, Lihong; Smith, Jennifer K; Perez, David; Gong, Bin; Freiberg, Alexander N; Ikegami, Tetsuro

    2016-11-16

    Rift Valley fever is a mosquito-borne zoonotic disease affecting ruminants and humans. Rift Valley fever virus (RVFV: family Bunyaviridae, genus Phlebovirus) causes abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or retinitis in humans. The live-attenuated MP-12 vaccine is conditionally licensed for veterinary use in the US. However, this vaccine lacks a marker for the differentiation of vaccinated from infected animals (DIVA). NSs gene is dispensable for RVFV replication, and thus, rMP-12 strains lacking NSs gene is applicable to monitor vaccinated animals. However, the immunogenicity of MP-12 lacking NSs was not as high as parental MP-12. Thus, chimeric MP-12 strains encoding NSs from either Toscana virus (TOSV), sandfly fever Sicilian virus (SFSV) or Punta Toro virus Adames strain (PTA) were characterized previously. Although chimeric MP-12 strains are highly immunogenic, the attenuation through the S-segment remains unknown. Using pathogenic ZH501 strain, we aimed to demonstrate the attenuation of ZH501 strain through chimeric S-segment encoding either the NSs of TOSV, SFSV, PTA, or Punta Toro virus Balliet strain (PTB). In addition, we characterized rZH501 encoding a human dominant-negative PKR (PKRΔE7), which also enhances the immunogenicity of MP-12. Study done on mice revealed that attenuation of rZH501 occurred through the S-segment encoding either PKRΔE7 or SFSV NSs. However, rZH501 encoding either TOSV, PTA, or PTB NSs in the S-segment uniformly caused lethal encephalitis. Our results indicated that the S-segments encoding PKRΔE7 or SFSV NSs are attenuated and thus applicable toward next generation MP-12 vaccine candidates that encode a DIVA marker.

  16. The NA50 segmented target and vertex recognition system

    International Nuclear Information System (INIS)

    Bellaiche, F.; Cheynis, B.; Contardo, D.; Drapier, O.; Grossiord, J.Y.; Guichard, A.; Haroutunian, R.; Jacquin, M.; Ohlsson-Malek, F.; Pizzi, J.R.

    1997-01-01

    The NA50 segmented target and vertex recognition system is described. The segmented target consists of 7 sub-targets of 1-2 mm thickness. The vertex recognition system used to determine the sub-target where an interaction has occured is based upon quartz elements which produce Cerenkov light when traversed by charged particles from the interaction. The geometrical arrangement of the quartz elements has been optimized for vertex recognition in 208 Pb-Pb collisions at 158 GeV/nucleon. A simple algorithm provides a vertex recognition efficiency of better than 85% for dimuon trigger events collected with a 1 mm sub-target set-up. A method for recognizing interactions of projectile fragments (nuclei and/or groups of nucleons) is presented. The segmented target allows a large target thickness which together with a high beam intensity (∼10 7 ions/s) enables high statistics measurements. (orig.)

  17. Long-Range Order and Fractality in the Structure and Organization of Eukaryotic Genomes

    Science.gov (United States)

    Polychronopoulos, Dimitris; Tsiagkas, Giannis; Athanasopoulou, Labrini; Sellis, Diamantis; Almirantis, Yannis

    2014-12-01

    The late Professor J.S. Nicolis always emphasized, both in his writings and in presentations and discussions with students and friends, the relevance of a dynamical systems approach to biology. In particular, viewing the genome as a "biological text" captures the dynamical character of both the evolution and function of the organisms in the form of correlations indicating the presence of a long-range order. This genomic structure can be expressed in forms reminiscent of natural languages and several temporal and spatial traces l by the functioning of dynamical systems: Zipf laws, self-similarity and fractality. Here we review several works of our group and recent unpublished results, focusing on the chromosomal distribution of biologically active genomic components: Genes and protein-coding segments, CpG islands, transposable elements belonging to all major classes and several types of conserved non-coding genomic elements. We report the systematic appearance of power-laws in the size distribution of the distances between elements belonging to each of these types of functional genomic elements. Moreover, fractality is also found in several cases, using box-counting and entropic scaling.We present here, for the first time in a unified way, an aggregative model of the genomic dynamics which can explain the observed patterns on the grounds of known phenomena accompanying genome evolution. Our results comply with recent findings about a "fractal globule" geometry of chromatin in the eukaryotic nucleus.

  18. Novel phage group infecting Lactobacillus delbrueckii subsp. lactis, as revealed by genomic and proteomic analysis of bacteriophage Ldl1.

    Science.gov (United States)

    Casey, Eoghan; Mahony, Jennifer; Neve, Horst; Noben, Jean-Paul; Dal Bello, Fabio; van Sinderen, Douwe

    2015-02-01

    Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 +/- 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species.

  19. Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species.

    Science.gov (United States)

    Teeling, Emma C; Vernes, Sonja C; Dávalos, Liliana M; Ray, David A; Gilbert, M Thomas P; Myers, Eugene

    2018-02-15

    Bats are unique among mammals, possessing some of the rarest mammalian adaptations, including true self-powered flight, laryngeal echolocation, exceptional longevity, unique immunity, contracted genomes, and vocal learning. They provide key ecosystem services, pollinating tropical plants, dispersing seeds, and controlling insect pest populations, thus driving healthy ecosystems. They account for more than 20% of all living mammalian diversity, and their crown-group evolutionary history dates back to the Eocene. Despite their great numbers and diversity, many species are threatened and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n∼1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>148 members as of writing), computational scientists, conservation organizations, genome technologists, and any interested individuals committed to a better understanding of the genetic and evolutionary mechanisms that underlie the unique adaptations of bats. Our aim is to catalog the unique genetic diversity present in all living bats to better understand the molecular basis of their unique adaptations; uncover their evolutionary history; link genotype with phenotype; and ultimately better understand, promote, and conserve bats. Here we review the unique adaptations of bats and highlight how chromosome-level genome assemblies can uncover the molecular basis of these traits. We present a novel sequencing and assembly strategy and review the striking societal and scientific benefits that will result from the Bat1K initiative.

  20. A 'new lease of life': FnCpf1 possesses DNA cleavage activity for genome editing in human cells.

    Science.gov (United States)

    Tu, Mengjun; Lin, Li; Cheng, Yilu; He, Xiubin; Sun, Huihui; Xie, Haihua; Fu, Junhao; Liu, Changbao; Li, Jin; Chen, Ding; Xi, Haitao; Xue, Dongyu; Liu, Qi; Zhao, Junzhao; Gao, Caixia; Song, Zongming; Qu, Jia; Gu, Feng

    2017-11-02

    Cpf1 nucleases were recently reported to be highly specific and programmable nucleases with efficiencies comparable to those of SpCas9. AsCpf1 and LbCpf1 require a single crRNA and recognize a 5'-TTTN-3' protospacer adjacent motif (PAM) at the 5' end of the protospacer for genome editing. For widespread application in precision site-specific human genome editing, the range of sequences that AsCpf1 and LbCpf1 can recognize is limited due to the size of this PAM. To address this limitation, we sought to identify a novel Cpf1 nuclease with simpler PAM requirements. Specifically, here we sought to test and engineer FnCpf1, one reported Cpf1 nuclease (FnCpf1) only requires 5'-TTN-3' as a PAM but does not exhibit detectable levels of nuclease-induced indels at certain locus in human cells. Surprisingly, we found that FnCpf1 possesses DNA cleavage activity in human cells at multiple loci. We also comprehensively and quantitatively examined various FnCpf1 parameters in human cells, including spacer sequence, direct repeat sequence and the PAM sequence. Our study identifies FnCpf1 as a new member of the Cpf1 family for human genome editing with distinctive characteristics, which shows promise as a genome editing tool with the potential for both research and therapeutic applications. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Genomic definition of species. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Crkvenjakov, R.; Dramanac, R.

    1992-06-01

    A genome is the sum total of the DNA sequences in the cells of an individual organism. The common usage that species possess genomes comes naturally to biochemists, who have shown that all protein and nucleic acid molecules are at the same time species and individual-specific, with minor individual variations being superimposed on a consensus sequence that is constant for a species. By extension, this property is attributed to the common features of DNA in the chromosomes of members of a given species and is called (species) genome. The definition of species based on chromosomes, genes, or genome common to its member organisms has been implied or mentioned in passing numerous times. Some population biologists think that members of species have similar ``homeostatic genotypes,`` which are to a degree resistant to mutation or environmental change in the production of a basic phenotype.

  2. Nucleotide compositional asymmetry between the leading and lagging strands of eubacterial genomes

    KAUST Repository

    Qu, Hongzhu

    2010-12-01

    Nucleotide compositional asymmetry (NCA) between leading and lagging strands (LeS and LaS) is dynamic and diverse among eubacterial genomes due to different mutation and selection forces. A thorough investigation is needed in order to study the relationship between nucleotide composition dynamics and gene distribution biases. Based on a collection of 364 eubacterial genomes that were grouped according to a DnaE-based scheme (DnaE1-DnaE1, DnaE2-DnaE1, and DnaE3-PolC), we investigated NCA and nucleotide composition gradients at three codon positions and found that there was universal G-enrichment on LeS among all groups. This was due to a strong selection for G-heading (codon position1 or cp1) codons and mutation pressure that led to more G-ending (cp3) codons. Moreover, a slight T-enrichment of LeS due to the mutation of cytosine deamination at cp3 was universal among DnaE1-DnaE1 and DnaE2-DnaE1 genomes, but was not clearly seen among DnaE3-PolC genomes, in which A-enrichment of LeS was proposed to be the effect of selections unique to polC and a mutation bias toward A-richness at cp1 that may be a result of transcription-coupled DNA repair mechanisms. Furthermore, strand-biased gene distribution enhances the purine-richness of LeS for DnaE3-PolC genomes and T-richness of LeS for DnaE1-DnaE1 and DnaE2-dnaE1 genomes. © 2010 Institut Pasteur.

  3. Nucleotide compositional asymmetry between the leading and lagging strands of eubacterial genomes

    KAUST Repository

    Qu, Hongzhu; Wu, Hao; Zhang, Tongwu; Zhang, Zhang; Hu, Songnian; Yu, Jun

    2010-01-01

    Nucleotide compositional asymmetry (NCA) between leading and lagging strands (LeS and LaS) is dynamic and diverse among eubacterial genomes due to different mutation and selection forces. A thorough investigation is needed in order to study the relationship between nucleotide composition dynamics and gene distribution biases. Based on a collection of 364 eubacterial genomes that were grouped according to a DnaE-based scheme (DnaE1-DnaE1, DnaE2-DnaE1, and DnaE3-PolC), we investigated NCA and nucleotide composition gradients at three codon positions and found that there was universal G-enrichment on LeS among all groups. This was due to a strong selection for G-heading (codon position1 or cp1) codons and mutation pressure that led to more G-ending (cp3) codons. Moreover, a slight T-enrichment of LeS due to the mutation of cytosine deamination at cp3 was universal among DnaE1-DnaE1 and DnaE2-DnaE1 genomes, but was not clearly seen among DnaE3-PolC genomes, in which A-enrichment of LeS was proposed to be the effect of selections unique to polC and a mutation bias toward A-richness at cp1 that may be a result of transcription-coupled DNA repair mechanisms. Furthermore, strand-biased gene distribution enhances the purine-richness of LeS for DnaE3-PolC genomes and T-richness of LeS for DnaE1-DnaE1 and DnaE2-dnaE1 genomes. © 2010 Institut Pasteur.

  4. Brain Tumor Image Segmentation in MRI Image

    Science.gov (United States)

    Peni Agustin Tjahyaningtijas, Hapsari

    2018-04-01

    Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

  5. Analysis of genomic alterations in neuroblastoma by multiplex ligation-dependent probe amplification and array comparative genomic hybridization: a comparison of results.

    Science.gov (United States)

    Combaret, Valérie; Iacono, Isabelle; Bréjon, Stéphanie; Schleiermacher, Gudrun; Pierron, Gäelle; Couturier, Jérôme; Bergeron, Christophe; Blay, Jean-Yves

    2012-12-01

    In cases of neuroblastoma, recurring genetic alterations--losses of the 1p, 3p, 4p, and 11q and/or gains of 1q, 2p, and 17q chromosome arms--are currently used to define the therapeutic strategy in therapeutic protocols for low- and intermediate-risk patients. Different genome-wide analysis techniques, such as array comparative genomic hybridization (aCGH) or multiplex ligation-dependent probe amplification (MLPA), have been suggested for detecting chromosome segmental abnormalities. In this study, we compared the results of the two technologies in the analyses of the DNA of tumor samples from 91 neuroblastoma patients. Similar results were obtained with the two techniques for 75 samples (82%). In five cases (5.5%), the MLPA results were not interpretable. Discrepancies between the aCGH and MLPA results were observed in 11 cases (12%). Among the discrepancies, a 18q21.2-qter gain and 16p11.2 and 11q14.1-q14.3 losses were detected only by aCGH. The MLPA results showed that the 7p, 7q, and 14q chromosome arms were affected in six cases, while in two cases, 2p and 17q gains were observed; these results were confirmed by neither aCGH nor fluorescence in situ hybridization (FISH) analysis. Because of the higher sensitivity and specificity of genome-wide information, reasonable cost, and shorter time of aCGH analysis, we recommend the aCGH procedure for the analysis of genomic alterations in neuroblastoma. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Comparison of pedicle screw-based dynamic stabilization and fusion surgery in the treatment of radiographic adjacent-segment degeneration: a retrospective analysis of single L5-S1 degenerative spondylosis covering 4 years.

    Science.gov (United States)

    Han, Yu; Sun, Jianguang; Luo, Chenghan; Huang, Shilei; Li, Liren; Ji, Xiang; Duan, Xiaozong; Wang, Zhenqing; Pi, Guofu

    2016-12-01

    OBJECTIVE Pedicle screw-based dynamic spinal stabilization systems (PDSs) were devised to decrease, theoretically, the risk of long-term complications such as adjacent-segment degeneration (ASD) after lumbar fusion surgery. However, to date, there have been few studies that fully proved that a PDS can reduce the risk of ASD. The purpose of this study was to examine whether a PDS can influence the incidence of ASD and to discuss the surgical coping strategy for L5-S1 segmental spondylosis with preexisting L4-5 degeneration with no related symptoms or signs. METHODS This study retrospectively compared 62 cases of L5-S1 segmental spondylosis in patients who underwent posterior lumbar interbody fusion (n = 31) or K-Rod dynamic stabilization (n = 31) with a minimum of 4 years' follow-up. The authors measured the intervertebral heights and spinopelvic parameters on standing lateral radiographs and evaluated preexisting ASD on preoperative MR images using the modified Pfirrmann grading system. Radiographic ASD was evaluated according to the results of radiography during follow-up. RESULTS All 62 patients achieved remission of their neurological symptoms without surgical complications. The Kaplan-Meier curve and Cox proportional-hazards model showed no statistically significant differences between the 2 surgical groups in the incidence of radiographic ASD (p > 0.05). In contrast, the incidence of radiographic ASD was 8.75 times (95% CI 1.955-39.140; p = 0.005) higher in the patients with a preoperative modified Pfirrmann grade higher than 3 than it was in patients with a modified Pfirrmann grade of 3 or lower. In addition, no statistical significance was found for other risk factors such as age, sex, and spinopelvic parameters. CONCLUSIONS Pedicle screw-based dynamic spinal stabilization systems were not found to be superior to posterior lumbar interbody fusion in preventing radiographic ASD (L4-5) during the midterm follow-up. Preexisting ASD with a modified Pfirrmann

  7. Trajectory Based Optimal Segment Computation in Road Network Databases

    DEFF Research Database (Denmark)

    Li, Xiaohui; Ceikute, Vaida; Jensen, Christian S.

    2013-01-01

    Finding a location for a new facility such that the facility attracts the maximal number of customers is a challenging problem. Existing studies either model customers as static sites and thus do not consider customer movement, or they focus on theoretical aspects and do not provide solutions...... that are shown empirically to be scalable. Given a road network, a set of existing facilities, and a collection of customer route traversals, an optimal segment query returns the optimal road network segment(s) for a new facility. We propose a practical framework for computing this query, where each route...... traversal is assigned a score that is distributed among the road segments covered by the route according to a score distribution model. The query returns the road segment(s) with the highest score. To achieve low latency, it is essential to prune the very large search space. We propose two algorithms...

  8. Trajectory Based Optimal Segment Computation in Road Network Databases

    DEFF Research Database (Denmark)

    Li, Xiaohui; Ceikute, Vaida; Jensen, Christian S.

    Finding a location for a new facility such that the facility attracts the maximal number of customers is a challenging problem. Existing studies either model customers as static sites and thus do not consider customer movement, or they focus on theoretical aspects and do not provide solutions...... that are shown empirically to be scalable. Given a road network, a set of existing facilities, and a collection of customer route traversals, an optimal segment query returns the optimal road network segment(s) for a new facility. We propose a practical framework for computing this query, where each route...... traversal is assigned a score that is distributed among the road segments covered by the route according to a score distribution model. The query returns the road segment(s) with the highest score. To achieve low latency, it is essential to prune the very large search space. We propose two algorithms...

  9. Comparative genome analysis of Bacillus cereus group genomes withBacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D' Souza, Mark; Larsen, Niels; Pusch,Gordon; Liolios, Konstantinos; Grechkin, Yuri; Lapidus, Alla; Goltsman,Eugene; Chu, Lien; Fonstein, Michael; Ehrlich, S. Dusko; Overbeek, Ross; Kyrpides, Nikos; Ivanova, Natalia

    2005-09-14

    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.

  10. The Complete Genome Sequence of Herpesvirus Papio 2 (Cercopithecine Herpesvirus 16) Shows Evidence of Recombination Events among Various Progenitor Herpesviruses†

    Science.gov (United States)

    Tyler, Shaun D.; Severini, Alberto

    2006-01-01

    We have sequenced the entire genome of herpesvirus papio 2 (HVP-2; Cercopithecine herpesvirus 16) strain X313, a baboon herpesvirus with close homology to other primate alphaherpesviruses, such as SA8, monkey B virus, and herpes simplex virus (HSV) type 1 and type 2. The genome of HVP-2 is 156,487 bp in length, with an overall GC content of 76.5%. The genome organization is identical to that of the other members of the genus Simplexvirus, with a long and a short unique region, each bordered by inverted repeats which end with an “a” sequence. All of the open reading frames detected in this genome were homologous and colinear with those of SA8 and B virus. The HSV gene RL1 (γ134.5; neurovirulence factor) is not present in HVP-2, as is the case for SA8 and B virus. The HVP-2 genome is 85% homologous to its closest relative, SA8. However, segment-by-segment bootstrap analysis of the genome revealed at least two regions that display closer homology to the corresponding sequences of B virus. The first region comprises the UL41 to UL44 genes, and the second region is located within the UL36 gene. We hypothesize that this localized and defined shift in homology is due to recombination events between an SA8-like progenitor of HVP-2 and a herpesvirus species more closely related to the B virus. Since some of the genes involved in these putative recombination events are determinants of virulence, a comparative analysis of their function may provide insight into the pathogenic mechanism of simplexviruses. PMID:16414998

  11. The role of duplications in the evolution of genomes highlights the need for evolutionary-based approaches in comparative genomics

    Directory of Open Access Journals (Sweden)

    Levasseur Anthony

    2011-02-01

    Full Text Available Abstract Understanding the evolutionary plasticity of the genome requires a global, comparative approach in which genetic events are considered both in a phylogenetic framework and with regard to population genetics and environmental variables. In the mechanisms that generate adaptive and non-adaptive changes in genomes, segmental duplications (duplication of individual genes or genomic regions and polyploidization (whole genome duplications are well-known driving forces. The probability of fixation and maintenance of duplicates depends on many variables, including population sizes and selection regimes experienced by the corresponding genes: a combination of stochastic and adaptive mechanisms has shaped all genomes. A survey of experimental work shows that the distinction made between fixation and maintenance of duplicates still needs to be conceptualized and mathematically modeled. Here we review the mechanisms that increase or decrease the probability of fixation or maintenance of duplicated genes, and examine the outcome of these events on the adaptation of the organisms. Reviewers This article was reviewed by Dr. Etienne Joly, Dr. Lutz Walter and Dr. W. Ford Doolittle.

  12. From Genome Sequence to Taxonomy - A Skeptic’s View

    DEFF Research Database (Denmark)

    Özen, Asli Ismihan; Vesth, Tammi Camilla; Ussery, David

    2012-01-01

    The relative ease of sequencing bacterial genomes has resulted in thousands of sequenced bacterial genomes available in the public databases. This same technology now allows for using the entire genome sequence as an identifier for an organism. There are many methods available which attempt to us...

  13. Adaptive evolution during the establishment of European avian-like H1N1 influenza A virus in swine.

    Science.gov (United States)

    Joseph, Udayan; Vijaykrishna, Dhanasekaran; Smith, Gavin J D; Su, Yvonne C F

    2018-04-01

    An H1N1 subtype influenza A virus with all eight gene segments derived from wild birds (including mallards), ducks and chickens, caused severe disease outbreaks in swine populations in Europe beginning in 1979 and successfully adapted to form the European avian-like swine (EA-swine) influenza lineage. Genes of the EA-swine lineage that are clearly segregated from its closest avian relatives continue to circulate in swine populations globally and represent a unique opportunity to study the adaptive process of an avian-to-mammalian cross-species transmission. Here, we used a relaxed molecular clock model to test whether the EA-swine virus originated through the introduction of a single avian ancestor as an entire genome, followed by an analysis of host-specific selection pressures among different gene segments. Our data indicated independent introduction of gene segments via transmission of avian viruses into swine followed by reassortment events that occurred at least 1-4 years prior to the EA-swine outbreak. All EA-swine gene segments exhibit greater selection pressure than avian viruses, reflecting both adaptive pressures and relaxed selective constraints that are associated with host switching. Notably, we identified key amino acid mutations in the viral surface proteins (H1 and N1) that play a role in adaptation to new hosts. Following the establishment of EA-swine lineage, we observed an increased frequency of intrasubtype reassortment of segments compared to the earlier strains that has been associated with adaptive amino acid replacements, disease severity and vaccine escape. Taken together, our study provides key insights into the adaptive changes in viral genomes following the transmission of avian influenza viruses to swine and the early establishment of the EA-swine lineage.

  14. Defining functional DNA elements in the human genome

    Science.gov (United States)

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  15. Comparative genome analysis of non-toxigenic non-O1 versus toxigenic O1 Vibrio cholerae

    OpenAIRE

    Mukherjee, Munmun; Kakarla, Prathusha; Kumar, Sanath; Gonzalez, Esmeralda; Floyd, Jared T.; Inupakutika, Madhuri; Devireddy, Amith Reddy; Tirrell, Selena R.; Bruns, Merissa; He, Guixin; Lindquist, Ingrid E.; Sundararajan, Anitha; Schilkey, Faye D.; Mudge, Joann; Varela, Manuel F.

    2014-01-01

    Pathogenic strains of Vibrio cholerae are responsible for endemic and pandemic outbreaks of the disease cholera. The complete toxigenic mechanisms underlying virulence in Vibrio strains are poorly understood. The hypothesis of this work was that virulent versus non-virulent strains of V. cholerae harbor distinctive genomic elements that encode virulence. The purpose of this study was to elucidate genomic differences between the O1 serotypes and non-O1 V. cholerae PS15, a non-toxigenic strain,...

  16. An integrated map of genetic variation from 1.092 human genomes

    DEFF Research Database (Denmark)

    Abecasis, Goncalo R.; Auton, Adam; Brooks, Lisa D.

    2012-01-01

    By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092 individuals from 14 populations, constructed using a combination ...

  17. Emergence of Salmonella genomic island 1 (SGI1) among Proteus mirabilis clinical isolates in Dijon, France.

    Science.gov (United States)

    Siebor, Eliane; Neuwirth, Catherine

    2013-08-01

    Salmonella genomic island 1 (SGI1) is often encountered in antibiotic-resistant Salmonella enterica and exceptionally in Proteus mirabilis. We investigated the prevalence of SGI1-producing clinical isolates of P. mirabilis in our hospital (Dijon, France). A total of 57 strains of P. mirabilis resistant to amoxicillin and/or gentamicin and/or trimethoprim/sulfamethoxazole isolated from August 2011 to February 2012 as well as 9 extended-spectrum β-lactamase (ESBL)-producing P. mirabilis from our collection were tested for the presence of SGI1 by PCR. The complete SGI1 structure from positive isolates [backbone and multidrug resistance (MDR) region] was sequenced. SGI1 was detected in 7 isolates; 5 out of the 57 isolates collected during the study period (9%) and 2 out of the 9 ESBL-producing strains of our collection. The structures of the seven SGI1s were distinct. Three different backbones were identified: one identical to the SGI1 backbone from the epidemic Salmonella Typhimurium DT104, one with variations already described in SGI1-K from Salmonella Kentucky (deletion and insertion of IS1359 in the region spanning from S005 to S009) and one with a variation never detected before (deletion from S005 to S009). Six different MDR regions were identified: four simple variants containing resistance genes already described and two variants harbouring a very complex structure including regions derived from several transposons and IS26 elements with aphA1a never reported to date in SGI1. SGI1 variants are widely distributed among P. mirabilis clinical strains and might spread to other commensal Enterobacteriaceae. This would become a serious public health problem.

  18. Somatic DNA recombination yielding circular DNA and deletion of a genomic region in embryonic brain

    International Nuclear Information System (INIS)

    Maeda, Toyoki; Chijiiwa, Yoshiharu; Tsuji, Hideo; Sakoda, Saburo; Tani, Kenzaburo; Suzuki, Tomokazu

    2004-01-01

    In this study, a mouse genomic region is identified that undergoes DNA rearrangement and yields circular DNA in brain during embryogenesis. External region-directed inverse polymerase chain reaction on circular DNA extracted from late embryonic brain tissue repeatedly detected DNA of this region containing recombination joints. Wide-range genomic PCR and digestion-circularization PCR analysis showed this region underwent recombination accompanied with deletion of intervening sequences, including the circularized regions. This region was mapped by fluorescence in situ hybridization to C1 on mouse chromosome 16, where no gene and no physiological DNA rearrangement had been identified. DNA sequence in the region has segmental homology to an orthologous region on human chromosome 3q.13. These observations demonstrated somatic DNA recombination yielding genomic deletions in brain during embryogenesis

  19. Plant STAND P-loop NTPases: a current perspective of genome distribution, evolution, and function : Plant STAND P-loop NTPases: genomic organization, evolution, and molecular mechanism models contribute broadly to plant pathogen defense.

    Science.gov (United States)

    Arya, Preeti; Acharya, Vishal

    2018-02-01

    STAND P-loop NTPase is the common weapon used by plant and other organisms from all three kingdoms of life to defend themselves against pathogen invasion. The purpose of this study is to review comprehensively the latest finding of plant STAND P-loop NTPase related to their genomic distribution, evolution, and their mechanism of action. Earlier, the plant STAND P-loop NTPase known to be comprised of only NBS-LRRs/AP-ATPase/NB-ARC ATPase. However, recent finding suggests that genome of early green plants comprised of two types of STAND P-loop NTPases: (1) mammalian NACHT NTPases and (2) NBS-LRRs. Moreover, YchF (unconventional G protein and members of P-loop NTPase) subfamily has been reported to be exceptionally involved in biotic stress (in case of Oryza sativa), thereby a novel member of STAND P-loop NTPase in green plants. The lineage-specific expansion and genome duplication events are responsible for abundance of plant STAND P-loop NTPases; where "moderate tandem and low segmental duplication" trajectory followed in majority of plant species with few exception (equal contribution of tandem and segmental duplication). Since the past decades, systematic research is being investigated into NBS-LRR function supported the direct recognition of pathogen or pathogen effectors by the latest models proposed via 'integrated decoy' or 'sensor domains' model. Here, we integrate the recently published findings together with the previous literature on the genomic distribution, evolution, and distinct models proposed for functional molecular mechanism of plant STAND P-loop NTPases.

  20. Tet1 is required for Rb phosphorylation during G1/S phase transition

    International Nuclear Information System (INIS)

    Huang, Shengsong; Zhu, Ziqi; Wang, Yiqin; Wang, Yanru; Xu, Longxia; Chen, Xuemei; Xu, Qing; Zhang, Qimin; Zhao, Xin; Yu, Yi; Wu, Denglong

    2013-01-01

    Highlights: •Tet1 was required for NIT3T3 proliferation. •Tet1 depletion inhibited G1-S entry. •Cyclin D1 accumulation and Rb phosphorylation was blocked by Tet1 knockdown. -- Abstract: DNA methylation plays an important role in many biological processes, including regulation of gene expression, maintenance of chromatin conformation and genomic stability. TET-family proteins convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which indicates that these enzymes may participate in DNA demethylation. The function of TET1 has not yet been well characterized in somatic cells. Here, we show that depletion of Tet1 in NIH3T3 cells inhibits cell growth. Furthermore, Tet1 knockdown blocks cyclin D1 accumulation in G1 phase, inhibits Rb phosphorylation and consequently delays entrance to G1/S phase. Taken together, this study demonstrates that Tet1 is required for cell proliferation and that this process is mediated through the Rb pathway

  1. Mapping of Transcription Termination within the S Segment of SFTS Phlebovirus Facilitated Generation of NSs Deletant Viruses.

    Science.gov (United States)

    Brennan, Benjamin; Rezelj, Veronica V; Elliott, Richard M

    2017-08-15

    to rationally attenuate bunyaviruses. Here we report the generation of several recombinant SFTS viruses that cannot express the NSs protein or have the NSs open reading frame replaced with a reporter gene. These viruses cannot antagonize the mammalian interferon (IFN) response mounted to virus infection. The generation of NSs-lacking viruses was achieved by mapping the transcriptional termination of two S-segment-derived subgenomic mRNAs, which revealed that transcription termination occurs upstream of a 5'-GCCAGCC-3' motif present in the virus genomic S RNA. Copyright © 2017 Brennan et al.

  2. The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays

    Science.gov (United States)

    2011-01-01

    Background Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates. Results We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution. Conclusions We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution. PMID:21627815

  3. Skip segment Hirschsprung's disease: a systematic review.

    LENUS (Irish Health Repository)

    O'Donnell, Anne-Marie

    2012-02-01

    PURPOSE: Hirschsprung\\'s disease is characterised by the congenital absence of ganglion cells beginning in the distal rectum and extending proximally for varying distances. \\'Zonal aganglionosis\\' is a phenomenon involving a zone of aganglionosis occurring within normally innervated intestine. \\'Skip segment\\' Hirschsprung\\'s disease (SSHD) involves a \\'skip area\\' of normally ganglionated intestine, surrounded proximally and distally by aganglionosis. While Hirschsprung\\'s disease is believed to be the result of incomplete craniocaudal migration of neural crest-derived cells, the occurrence of SSHD has no clear embryological explanation. The aim of this study was to perform a systematic review of SSHD, reported in the literature between 1954 and 2009, in order to determine the clinical characteristics of this rare entity and its significance. METHODS: The first reported case of SSHD was published in 1954. A systematic review of SSHD cases in the literature, from 1954 to 2009, was carried out using the electronic database \\'Pubmed\\'. Detailed information was recorded regarding the age, gender, presenting symptoms and location of the skip segment in each patient. RESULTS: 24 cases of SSHD have been reported in the literature to date. 18\\/24 (75%) of these cases were males and 6\\/24 (25%) were females. Of these, 22\\/24 (92%) were cases of total colonic aganglionosis (TCA), and 2\\/24 (8%) were rectosigmoid Hirschsprung\\'s disease. Of the 22 TCA cases, 9 (41%) had a skip segment in the transverse colon, 6 (27%) in the ascending colon, 2 (9%) in the caecum and 5 (23%) had multiple skip segments. In both rectosigmoid Hirschsprung\\'s disease cases, the skip segment was in the sigmoid colon. Overall, the length of the skip segment was variable, with the entire transverse colon ganglionated in some cases. CONCLUSION: SSHD occurs predominantly in patients with TCA. The existence of a skip area of normally innervated colon in TCA may influence surgical

  4. Cell Identity Switching Regulated by Retinoic Acid Signaling Maintains Homogeneous Segments in the Hindbrain.

    Science.gov (United States)

    Addison, Megan; Xu, Qiling; Cayuso, Jordi; Wilkinson, David G

    2018-06-04

    The patterning of tissues to form subdivisions with distinct and homogeneous regional identity is potentially disrupted by cell intermingling. Transplantation studies suggest that homogeneous segmental identity in the hindbrain is maintained by identity switching of cells that intermingle into another segment. We show that switching occurs during normal development and is mediated by feedback between segment identity and the retinoic acid degrading enzymes, cyp26b1 and cyp26c1. egr2, which specifies the segmental identity of rhombomeres r3 and r5, underlies the lower expression level of cyp26b1 and cyp26c1 in r3 and r5 compared with r2, r4, and r6. Consequently, r3 or r5 cells that intermingle into adjacent segments encounter cells with higher cyp26b1/c1 expression, which we find is required for downregulation of egr2b expression. Furthermore, egr2b expression is regulated in r2, r4, and r6 by non-autonomous mechanisms that depend upon the number of neighbors that express egr2b. These findings reveal that a community regulation of retinoid signaling maintains homogeneous segmental identity. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Parallel fuzzy connected image segmentation on GPU.

    Science.gov (United States)

    Zhuge, Ying; Cao, Yong; Udupa, Jayaram K; Miller, Robert W

    2011-07-01

    Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA's compute unified device Architecture (CUDA) platform for segmenting medical image data sets. In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as CUDA kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set.

  6. Anatomical pulmonary magnetic resonance imaging segmentation for regional structure-function measurements of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Guo, F. [Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Graduate Program in Biomedical Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada); Svenningsen, S.; Eddy, R. L.; Capaldi, D. P. I.; Sheikh, K. [Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Fenster, A.; Parraga, G., E-mail: gparraga@robarts.ca [Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Graduate Program in Biomedical Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada)

    2016-06-15

    in a randomized dataset, on five occasions, five consecutive days in a row. Segmentation accuracy was evaluated using the Dice-similarity-coefficient (DSC) of the segmented thoracic cavity with comparison to five-rounds of manual segmentation by an expert observer. The authors also evaluated the root-mean-squared-error (RMSE) of the Euclidean distance between lung surfaces, the absolute, and percent volume error. Reproducibility was measured using the coefficient of variation (CoV) and intraclass correlation coefficient (ICC) for two observers who repeated segmentation measurements five-times. Results: For five well-controlled asthmatics, forced expiratory volume in 1 s (FEV{sub 1})/forced vital capacity (FVC) was 83% ± 7% and FEV{sub 1} was 86 ± 9%{sub pred}. For 15 severe, poorly controlled asthmatics, FEV{sub 1}/FV C = 66% ± 17% and FEV{sub 1} = 72 ± 27%{sub pred}. The DSC for algorithm and manual segmentation was 91% ± 3%, 92% ± 2% and 91% ± 2% for the left, right, and whole lung, respectively. RMSE was 4.0 ± 1.0 mm for each of the left, right, and whole lung. The absolute (percent) volume errors were 0.1 l (∼6%) for each of right and left lung and ∼0.2 l (∼6%) for whole lung. Intra- and inter-CoV (ICC) were <0.5% (>0.91%) for DSC and <4.5% (>0.93%) for RMSE. While segmentation required 10 s including ∼6 s for user interaction, the smallest detectable difference was 0.24 l for algorithm measurements which was similar to manual measurements. Conclusions: This lung segmentation approach provided the necessary and sufficient precision and accuracy required for research and clinical studies.

  7. A Study of Segment Reporting Practices: Empirical Evidence from Romania�s Banks

    Directory of Open Access Journals (Sweden)

    Mariana Vlad

    2016-07-01

    Full Text Available Banking and capital market liberalization has substantially increased the level of information required to achieve financial stability, while providing useful information, appropriate to participants and their transactions has become essential for maintaining orderly and efficient markets. This requires banks to provide appropriate and timely information that will satisfy the requirements of every user of the banking and financial information. Disclosure provided by banks has gradually improved on the one hand by Basel Agreement, and on the other hand by the International Financial Reporting Standards. This paper investigates the adoption of IFRS 8 by the Romanian banks, providing a detailed image of the segment of information in accordance with this standard. The study shows that the primary format for segment reporting in banks is represented by the segmentation activities. At certain banks, because some operations carried out were not a subject to similar risks and benefits, both in terms of the economic environment and in terms of the type of activity, there has been no identification of segments which should be reported separately under the provisions of IAS 14 neither nor since applying IFRS 8.

  8. Safe Zone Quantification of the Third Sacral Segment in Normal and Dysmorphic Sacra.

    Science.gov (United States)

    Hwang, John S; Reilly, Mark C; Shaath, Mohammad K; Changoor, Stuart; Eastman, Jonathan; Routt, Milton Lee Chip; Sirkin, Michael S; Adams, Mark R

    2018-04-01

    To quantify the osseous anatomy of the dysmorphic third sacral segment and assess its ability to accommodate internal fixation. Retrospective chart review of a trauma database. University Level 1 Trauma Center. Fifty-nine patients over the age of 18 with computed tomography scans of the pelvis separated into 2 groups: a group with normal pelvic anatomy and a group with sacral dysmorphism. The sacral osseous area was measured on computed tomography scans in the axial, coronal, and sagittal planes in normal and dysmorphic pelves. These measurements were used to determine the possibility of accommodating a transiliac transsacral screw in the third sacral segment. In the normal group, the S3 coronal transverse width averaged 7.71 mm and the S3 axial transverse width averaged 7.12 mm. The mean S3 cross-sectional area of the normal group was 55.8 mm. The dysmorphic group was found to have a mean S3 coronal transverse width of 9.49 mm, an average S3 axial transverse width of 9.14 mm, and an S3 cross-sectional area of 77.9 mm. The third sacral segment of dysmorphic sacra has a larger osseous pathway available to safely accommodate a transiliac transsacral screw when compared with normal sacra. The S3 segment of dysmorphic sacra can serve as an additional site for screw placement when treating unstable posterior pelvic ring fractures.

  9. Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Roe Bruce A

    2005-08-01

    Full Text Available Abstract Background Recent genome sequencing enables mega-base scale comparisons between related genomes. Comparisons between animals, plants, fungi, and bacteria demonstrate extensive synteny tempered by rearrangements. Within the legume plant family, glimpses of synteny have also been observed. Characterizing syntenic relationships in legumes is important in transferring knowledge from model legumes to crops that are important sources of protein, fixed nitrogen, and health-promoting compounds. Results We have uncovered two large soybean regions exhibiting synteny with M. truncatula and with a network of segmentally duplicated regions in Arabidopsis. In all, syntenic regions comprise over 500 predicted genes spanning 3 Mb. Up to 75% of soybean genes are colinear with M. truncatula, including one region in which 33 of 35 soybean predicted genes with database support are colinear to M. truncatula. In some regions, 60% of soybean genes share colinearity with a network of A. thaliana duplications. One region is especially interesting because this 500 kbp segment of soybean is syntenic to two paralogous regions in M. truncatula on different chromosomes. Phylogenetic analysis of individual genes within these regions demonstrates that one is orthologous to the soybean region, with which it also shows substantially denser synteny and significantly lower levels of synonymous nucleotide substitutions. The other M. truncatula region is inferred to be paralogous, presumably resulting from a duplication event preceding speciation. Conclusion The presence of well-defined M. truncatula segments showing orthologous and paralogous relationships with soybean allows us to explore the evolution of contiguous genomic regions in the context of ancient genome duplication and speciation events.

  10. Genomic analysis of HIV type 1 strains derived from a mother and child pair of long-term nonprogressors

    Czech Academy of Sciences Publication Activity Database

    Reiniš, Milan; Weiser, B.; Kuiken, C.; Dong, T.; Lang, D.; Nachman, S.; Zhang, Y.; Rowland-Jones, S.; Burger, H.

    2007-01-01

    Roč. 23, č. 2 (2007), s. 309-315 ISSN 0889-2229 Grant - others:U.S. National Institue of Allergy and Infectious Disease (US) RO1-AI-42555; Fogarty International Center, the National Institute on Drug Abuse, and the National Heart Lung and Blood Institute(US) D43 TW000233 Institutional research plan: CEZ:AV0Z50520514 Keywords : HIV-1 * genomic analysis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.022, year: 2007

  11. Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome.

    Directory of Open Access Journals (Sweden)

    Keyan Zhao

    2010-05-01

    Full Text Available The domestication of Asian rice (Oryza sativa was a complex process punctuated by episodes of introgressive hybridization among and between subpopulations. Deep genetic divergence between the two main varietal groups (Indica and Japonica suggests domestication from at least two distinct wild populations. However, genetic uniformity surrounding key domestication genes across divergent subpopulations suggests cultural exchange of genetic material among ancient farmers.In this study, we utilize a novel 1,536 SNP panel genotyped across 395 diverse accessions of O. sativa to study genome-wide patterns of polymorphism, to characterize population structure, and to infer the introgression history of domesticated Asian rice. Our population structure analyses support the existence of five major subpopulations (indica, aus, tropical japonica, temperate japonica and GroupV consistent with previous analyses. Our introgression analysis shows that most accessions exhibit some degree of admixture, with many individuals within a population sharing the same introgressed segment due to artificial selection. Admixture mapping and association analysis of amylose content and grain length illustrate the potential for dissecting the genetic basis of complex traits in domesticated plant populations.Genes in these regions control a myriad of traits including plant stature, blast resistance, and amylose content. These analyses highlight the power of population genomics in agricultural systems to identify functionally important regions of the genome and to decipher the role of human-directed breeding in refashioning the genomes of a domesticated species.

  12. Conservation of Repeats at the Mammalian KCNQ1OT1-CDKN1C Region Suggests a Role in Genomic Imprinting

    Directory of Open Access Journals (Sweden)

    Marcos De Donato

    2017-06-01

    Full Text Available KCNQ1OT1 is located in the region with the highest number of genes showing genomic imprinting, but the mechanisms controlling the genes under its influence have not been fully elucidated. Therefore, we conducted a comparative analysis of the KCNQ1/KCNQ1OT1-CDKN1C region to study its conservation across the best assembled eutherian mammalian genomes sequenced to date and analyzed potential elements that may be implicated in the control of genomic imprinting in this region. The genomic features in these regions from human, mouse, cattle, and dog show a higher number of genes and CpG islands (detected using cpgplot from EMBOSS, but lower number of repetitive elements (including short interspersed nuclear elements and long interspersed nuclear elements, compared with their whole chromosomes (detected by RepeatMasker. The KCNQ1OT1-CDKN1C region contains the highest number of conserved noncoding sequences (CNS among mammals, where we found 16 regions containing about 38 different highly conserved repetitive elements (using mVista, such as LINE1 elements: L1M4, L1MB7, HAL1, L1M4a, L1Med, and an LTR element: MLT1H. From these elements, we found 74 CNS showing high sequence identity (>70% between human, cattle, and mouse, from which we identified 13 motifs (using Multiple Em for Motif Elicitation/Motif Alignment and Search Tool with a significant probability of occurrence, 3 of which were the most frequent and were used to find transcription factor–binding sites. We detected several transcription factors (using JASPAR suite from the families SOX, FOX, and GATA. A phylogenetic analysis of these CNS from human, marmoset, mouse, rat, cattle, dog, horse, and elephant shows branches with high levels of support and very similar phylogenetic relationships among these groups, confirming previous reports. Our results suggest that functional DNA elements identified by comparative genomics in a region densely populated with imprinted mammalian genes may be

  13. Ensembl Genomes 2016: more genomes, more complexity.

    Science.gov (United States)

    Kersey, Paul Julian; Allen, James E; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello-Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M; Howe, Kevin L; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M

    2016-01-04

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. The Salmonella genomic island 1 is specifically mobilized in trans by the IncA/C multidrug resistance plasmid family.

    Science.gov (United States)

    Douard, Gregory; Praud, Karine; Cloeckaert, Axel; Doublet, Benoît

    2010-12-20

    The Salmonella genomic island 1 (SGI1) is a Salmonella enterica-derived integrative mobilizable element (IME) containing various complex multiple resistance integrons identified in several S. enterica serovars and in Proteus mirabilis. Previous studies have shown that SGI1 transfers horizontally by in trans mobilization in the presence of the IncA/C conjugative helper plasmid pR55. Here, we report the ability of different prevalent multidrug resistance (MDR) plasmids including extended-spectrum β-lactamase (ESBL) gene-carrying plasmids to mobilize the multidrug resistance genomic island SGI1. Through conjugation experiments, none of the 24 conjugative plasmids tested of the IncFI, FII, HI2, I1, L/M, N, P incompatibility groups were able to mobilize SGI1 at a detectable level (transfer frequency IncA/C incompatibility group. Several conjugative IncA/C MDR plasmids as well as the sequenced IncA/C reference plasmid pRA1 of 143,963 bp were shown to mobilize in trans SGI1 from a S. enterica donor to the Escherichia coli recipient strain. Depending on the IncA/C plasmid used, the conjugative transfer of SGI1 occurred at frequencies ranging from 10(-3) to 10(-6) transconjugants per donor. Of particular concern, some large IncA/C MDR plasmids carrying the extended-spectrum cephalosporinase bla(CMY-2) gene were shown to mobilize in trans SGI1. The ability of the IncA/C MDR plasmid family to mobilize SGI1 could contribute to its spread by horizontal transfer among enteric pathogens. Moreover, the increasing prevalence of IncA/C plasmids in MDR S. enterica isolates worldwide has potential implications for the epidemic success of the antibiotic resistance genomic island SGI1 and its close derivatives.

  15. Evaluation of Descemet’s Membrane Detachment Using Anterior Segment Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Halil Hüseyin Çağatay

    2014-10-01

    Full Text Available We report the use of anterior segment optical coherence tomography (ASOCT in Descemet’s membrane detachment (DMD. A patient who developed DMD after uneventful cataract surgery with posterior chamber lens implantation is presented in this case report. At the follow-up examination after cataract surgery, slit-lamp evaluation showed stromal striae, but it was impossible to diagnose the DMD due to the corneal edema. ASOCT imaging of the cornea revealed a DMD, and the patient underwent intracameral air injection to the anterior chamber through the site which was identified as intact by ASOCT. Follow-up ASOCT imaging revealed the reattachment of the Descemet’s membrane and reduced corneal thickness. If DMD is suspected in any cases, ASOCT can be useful to document and follow the postsurgical detachment of DMD and also to determine the site, configuration, and extent of the DMD, thus guiding the treatment method and monitoring the treatment outcome. (Turk J Ophthalmol 2014; 44: 407-9

  16. Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics1

    Science.gov (United States)

    Weitemier, Kevin; Straub, Shannon C. K.; Cronn, Richard C.; Fishbein, Mark; Schmickl, Roswitha; McDonnell, Angela; Liston, Aaron

    2014-01-01

    • Premise of the study: Hyb-Seq, the combination of target enrichment and genome skimming, allows simultaneous data collection for low-copy nuclear genes and high-copy genomic targets for plant systematics and evolution studies. • Methods and Results: Genome and transcriptome assemblies for milkweed (Asclepias syriaca) were used to design enrichment probes for 3385 exons from 768 genes (>1.6 Mbp) followed by Illumina sequencing of enriched libraries. Hyb-Seq of 12 individuals (10 Asclepias species and two related genera) resulted in at least partial assembly of 92.6% of exons and 99.7% of genes and an average assembly length >2 Mbp. Importantly, complete plastomes and nuclear ribosomal DNA cistrons were assembled using off-target reads. Phylogenomic analyses demonstrated signal conflict between genomes. • Conclusions: The Hyb-Seq approach enables targeted sequencing of thousands of low-copy nuclear exons and flanking regions, as well as genome skimming of high-copy repeats and organellar genomes, to efficiently produce genome-scale data sets for phylogenomics. PMID:25225629

  17. Intercalary bone segment transport in treatment of segmental tibial defects

    International Nuclear Information System (INIS)

    Iqbal, A.; Amin, M.S.

    2002-01-01

    Objective: To evaluate the results and complications of intercalary bone segment transport in the treatment of segmental tibial defects. Design: This is a retrospective analysis of patients with segmental tibial defects who were treated with intercalary bone segment transport method. Place and Duration of Study: The study was carried out at Combined Military Hospital, Rawalpindi from September 1997 to April 2001. Subjects and methods: Thirteen patients were included in the study who had developed tibial defects either due to open fractures with bone loss or subsequent to bone debridement of infected non unions. The mean bone defect was 6.4 cms and there were eight associated soft tissue defects. Locally made unilateral 'Naseer-Awais' (NA) fixator was used for bone segment transport. The distraction was done at the rate of 1mm/day after 7-10 days of osteotomy. The patients were followed-up fortnightly during distraction and monthly thereafter. The mean follow-up duration was 18 months. Results: The mean time in external fixation was 9.4 months. The m ean healing index' was 1.47 months/cm. Satisfactory union was achieved in all cases. Six cases (46.2%) required bone grafting at target site and in one of them grafting was required at the level of regeneration as well. All the wounds healed well with no residual infection. There was no residual leg length discrepancy of more than 20 mm nd one angular deformity of more than 5 degrees. The commonest complication encountered was pin track infection seen in 38% of Shanz Screws applied. Loosening occurred in 6.8% of Shanz screws, requiring re-adjustment. Ankle joint contracture with equinus deformity and peroneal nerve paresis occurred in one case each. The functional results were graded as 'good' in seven, 'fair' in four, and 'poor' in two patients. Overall, thirteen patients had 31 (minor/major) complications with a ratio of 2.38 complications per patient. To treat the bone defects and associated complications, a mean of

  18. Cpf1-Database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cpf1.

    Science.gov (United States)

    Park, Jeongbin; Bae, Sangsu

    2018-03-15

    Following the type II CRISPR-Cas9 system, type V CRISPR-Cpf1 endonucleases have been found to be applicable for genome editing in various organisms in vivo. However, there are as yet no web-based tools capable of optimally selecting guide RNAs (gRNAs) among all possible genome-wide target sites. Here, we present Cpf1-Database, a genome-wide gRNA library design tool for LbCpf1 and AsCpf1, which have DNA recognition sequences of 5'-TTTN-3' at the 5' ends of target sites. Cpf1-Database provides a sophisticated but simple way to design gRNAs for AsCpf1 nucleases on the genome scale. One can easily access the data using a straightforward web interface, and using the powerful collections feature one can easily design gRNAs for thousands of genes in short time. Free access at http://www.rgenome.net/cpf1-database/. sangsubae@hanyang.ac.kr.

  19. Genomic Comparison among Lethal Invasive Strains of Streptococcus pyogenes Serotype M1

    Directory of Open Access Journals (Sweden)

    Gabriel R. Fernandes

    2017-10-01

    Full Text Available Streptococcus pyogenes, also known as group A Streptococcus (GAS, is a human pathogen that causes diverse human diseases including streptococcal toxic shock syndrome (STSS. A GAS outbreak occurred in Brasilia, Brazil, during the second half of the year 2011, causing 26 deaths. Whole genome sequencing was performed using Illumina platform. The sequences were assembled and genes were predicted for comparative analysis with emm type 1 strains: MGAS5005 and M1 GAS. Genomics comparison revealed one of the invasive strains that differ from others isolates and from emm 1 reference genomes. Also, the new invasive strain showed differences in the content of virulence factors compared to other isolated in the same outbreak. The evolution of contemporary GAS strains is strongly associated with horizontal gene transfer. This is the first genomic study of a Streptococcal emm 1 outbreak in Brazil, and revealed the rapid bacterial evolution leading to new clones. The emergence of new invasive strains can be a consequence of the injudicious use of antibiotics in Brazil during the past decades.

  20. The tiger genome and comparative analysis with lion and snow leopard genomes

    Science.gov (United States)

    Cho, Yun Sung; Hu, Li; Hou, Haolong; Lee, Hang; Xu, Jiaohui; Kwon, Soowhan; Oh, Sukhun; Kim, Hak-Min; Jho, Sungwoong; Kim, Sangsoo; Shin, Young-Ah; Kim, Byung Chul; Kim, Hyunmin; Kim, Chang-uk; Luo, Shu-Jin; Johnson, Warren E.; Koepfli, Klaus-Peter; Schmidt-Küntzel, Anne; Turner, Jason A.; Marker, Laurie; Harper, Cindy; Miller, Susan M.; Jacobs, Wilhelm; Bertola, Laura D.; Kim, Tae Hyung; Lee, Sunghoon; Zhou, Qian; Jung, Hyun-Ju; Xu, Xiao; Gadhvi, Priyvrat; Xu, Pengwei; Xiong, Yingqi; Luo, Yadan; Pan, Shengkai; Gou, Caiyun; Chu, Xiuhui; Zhang, Jilin; Liu, Sanyang; He, Jing; Chen, Ying; Yang, Linfeng; Yang, Yulan; He, Jiaju; Liu, Sha; Wang, Junyi; Kim, Chul Hong; Kwak, Hwanjong; Kim, Jong-Soo; Hwang, Seungwoo; Ko, Junsu; Kim, Chang-Bae; Kim, Sangtae; Bayarlkhagva, Damdin; Paek, Woon Kee; Kim, Seong-Jin; O’Brien, Stephen J.; Wang, Jun; Bhak, Jong

    2013-01-01

    Tigers and their close relatives (Panthera) are some of the world’s most endangered species. Here we report the de novo assembly of an Amur tiger whole-genome sequence as well as the genomic sequences of a white Bengal tiger, African lion, white African lion and snow leopard. Through comparative genetic analyses of these genomes, we find genetic signatures that may reflect molecular adaptations consistent with the big cats’ hypercarnivorous diet and muscle strength. We report a snow leopard-specific genetic determinant in EGLN1 (Met39>Lys39), which is likely to be associated with adaptation to high altitude. We also detect a TYR260G>A mutation likely responsible for the white lion coat colour. Tiger and cat genomes show similar repeat composition and an appreciably conserved synteny. Genomic data from the five big cats provide an invaluable resource for resolving easily identifiable phenotypes evident in very close, but distinct, species. PMID:24045858

  1. Complete genome sequence of 'Thermobaculum terrenum' type strain (YNP1).

    Science.gov (United States)

    Kiss, Hajnalka; Cleland, David; Lapidus, Alla; Lucas, Susan; Del Rio, Tijana Glavina; Nolan, Matt; Tice, Hope; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Lu, Megan; Brettin, Thomas; Detter, John C; Göker, Markus; Tindall, Brian J; Beck, Brian; McDermott, Timothy R; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Cheng, Jan-Fang

    2010-10-27

    'Thermobaculum terrenum' Botero et al. 2004 is the sole species within the proposed genus 'Thermobaculum'. Strain YNP1(T) is the only cultivated member of an acid tolerant, extremely thermophilic species belonging to a phylogenetically isolated environmental clone group within the phylum Chloroflexi. At present, the name 'Thermobaculum terrenum' is not yet validly published as it contravenes Rule 30 (3a) of the Bacteriological Code. The bacterium was isolated from a slightly acidic extreme thermal soil in Yellowstone National Park, Wyoming (USA). Depending on its final taxonomic allocation, this is likely to be the third completed genome sequence of a member of the class Thermomicrobia and the seventh type strain genome from the phylum Chloroflexi. The 3,101,581 bp long genome with its 2,872 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  2. Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity

    NARCIS (Netherlands)

    Joshi, Peter K; Pirastu, Nicola; Kentistou, Katherine A; Fischer, Krista; Hofer, Edith; Schraut, Katharina E; Clark, David W; Nutile, Teresa; Barnes, Catriona L K; Timmers, Paul R H J; Shen, Xia; Gandin, Ilaria; McDaid, Aaron F; Hansen, Thomas Folkmann; Gordon, Scott D; Giulianini, Franco; Boutin, Thibaud S; Abdellaoui, Abdel; Zhao, Wei; Medina-Gomez, Carolina; Bartz, Traci M; Trompet, Stella; Lange, Leslie A; Raffield, Laura; van der Spek, Ashley; Galesloot, Tessel E; Proitsi, Petroula; Yanek, Lisa R; Bielak, Lawrence F; Payton, Antony; Murgia, Federico; Concas, Maria Pina; Biino, Ginevra; Tajuddin, Salman M; Seppälä, Ilkka; Amin, Najaf; Boerwinkle, Eric; Børglum, Anders D; Campbell, Archie; Demerath, Ellen W; Demuth, Ilja; Faul, Jessica D; Ford, Ian; Gialluisi, Alessandro; Gögele, Martin; Graff, MariaElisa; Hingorani, Aroon; Hottenga, Jouke-Jan; Hougaard, David M; Hurme, Mikko A; Ikram, M Arfan; Jylhä, Marja; Kuh, Diana; Ligthart, Lannie; Lill, Christina M; Lindenberger, Ulman; Lumley, Thomas; Mägi, Reedik; Marques-Vidal, Pedro; Medland, Sarah E; Milani, Lili; Nagy, Reka; Ollier, William E R; Peyser, Patricia A; Pramstaller, Peter P; Ridker, Paul M; Rivadeneira, Fernando; Ruggiero, Daniela; Saba, Yasaman; Schmidt, Reinhold; Schmidt, Helena; Slagboom, P Eline; Smith, Blair H; Smith, Jennifer A; Sotoodehnia, Nona; Steinhagen-Thiessen, Elisabeth; van Rooij, Frank J A; Verbeek, André L; Vermeulen, Sita H; Vollenweider, Peter; Wang, Yunpeng; Werge, Thomas; Whitfield, John B; Zonderman, Alan B; Lehtimäki, Terho; Evans, Michele K; Pirastu, Mario; Fuchsberger, Christian; Bertram, Lars; Pendleton, Neil; Kardia, Sharon L R; Ciullo, Marina; Becker, Diane M; Wong, Andrew; Psaty, Bruce M; van Duijn, Cornelia M; Wilson, James G; Jukema, J Wouter; Kiemeney, Lambertus; Uitterlinden, André G; Franceschini, Nora; North, Kari E; Weir, David R; Metspalu, Andres; Boomsma, Dorret I; Hayward, Caroline; Chasman, Daniel; Martin, Nicholas G; Sattar, Naveed; Campbell, Harry; Esko, Tōnu; Kutalik, Zoltán; Wilson, James F

    2017-01-01

    Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE,

  3. Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity

    NARCIS (Netherlands)

    P.K. Joshi (Peter); N. Pirastu (Nicola); Kentistou, K.A. (Katherine A.); K. Fischer (Krista); E. Hofer (Edith); Schraut, K.E. (Katharina E.); Clark, D.W. (David W.); Nutile, T. (Teresa); Barnes, C.L.K. (Catriona L. K.); Timmers, P.R.H.J. (Paul R. H. J.); Shen, X. (Xia); I. Gandin (Ilaria); McDaid, A.F. (Aaron F.); Hansen, T.F. (Thomas Folkmann); S.D. Gordon (Scott D.); F. Giulianini (Franco); T. Boutin (Thibaud); A. Abdellaoui (Abdel); W. Zhao (Wei); M.C. Medina-Gomez (Carolina); T.M. Bartz (Traci M.); S. Trompet (Stella); L.A. Lange (Leslie); Raffield, L. (Laura); A. van der Spek (Ashley); T.E. Galesloot (Tessel); Proitsi, P. (Petroula); L.R. Yanek (Lisa); L.F. Bielak (Lawrence F.); A. Payton (Antony); D. Murgia (Daniela); M.P. Concas (Maria Pina); G. Biino (Ginevra); Tajuddin, S.M. (Salman M.); I. Seppälä (Ilkka); Amin, N. (Najaf); Boerwinkle, E. (Eric); Børglum, A.D. (Anders D.); A. Campbell (Archie); E.W. Demerath (Ellen); I. Demuth (Ilja); J.D. Faul (Jessica D.); I. Ford (Ian); Gialluisi, A. (Alessandro); M. Gögele (Martin); M.J. Graff (Maud J.L.); A. Hingorani (Aroon); J.J. Hottenga (Jouke Jan); D.M. Hougaard (David); Hurme, M.A. (Mikko A.); M.K. Ikram (Kamran); Jylhä, M. (Marja); Kuh, D. (Diana); L. Ligthart (Lannie); C.M. Lill (Christina); U. Lindenberger (Ulman); T. Lumley (Thomas); R. Mägi (Reedik); P. Marques-Vidal (Pedro); S.E. Medland (Sarah Elizabeth); L. Milani (Lili); Nagy, R. (Reka); W.E.R. Ollier (William); P.A. Peyser (Patricia A.); P.P. Pramstaller (Peter Paul); P.M. Ridker (Paul); Rivadeneira, F. (Fernando); D. Ruggiero; Y. Saba (Yasaman); R. Schmidt (Reinhold); H. Schmidt (Helena); P.E. Slagboom (Eline); B.H. Smith; J.A. Smith (Jennifer A); N. Sotoodehnia (Nona); E. Steinhagen-Thiessen (Elisabeth); F.J.A. van Rooij (Frank); A.L.M. Verbeek; S.H.H.M. Vermeulen (Sita); P. Vollenweider (Peter); Wang, Y. (Yunpeng); T.M. Werge (Thomas); J.B. Whitfield (John B.); A.B. Zonderman; T. Lehtimäki (Terho); M. Evans (Michele); M. Pirastu (Mario); C. Fuchsberger (Christian); L. Bertram (Lars); N. Pendleton (Neil); Kardia, S.L.R. (Sharon L. R.); Ciullo, M. (Marina); D.M. Becker (Diane); Wong, A. (Andrew); B.M. Psaty (Bruce M.); C.M. van Duijn (Cornelia); J.F. Wilson (James); J.W. Jukema (Jan Wouter); L.A.L.M. Kiemeney (Bart); A.G. Uitterlinden (André); N. Franceschini (Nora); K.E. North (Kari); Weir, D.R. (David R.); Metspalu, A. (Andres); D.I. Boomsma (Dorret); C. Hayward (Caroline); D.I. Chasman (Daniel); Martin, N.G. (Nicholas G.); N. Sattar (Naveed); H. Campbell (Harry); T. Esko (Tõnu); Z. Kutalik (Zoltán); J.F. Wilson (James)

    2017-01-01

    textabstractGenomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions

  4. Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity

    DEFF Research Database (Denmark)

    Joshi, Peter K; Pirastu, Nicola; Kentistou, Katherine A

    2017-01-01

    Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, ...

  5. Why close a bacterial genome? The plasmid of Alteromonas macleodii HOT1A3 is a vector for inter-specific transfer of a flexible genomic island

    Directory of Open Access Journals (Sweden)

    Eduard eFadeev

    2016-03-01

    Full Text Available Genome sequencing is rapidly becoming a staple technique in environmental and clinical microbiology, yet computational challenges still remain, leading to many draft genomes which are typically fragmented into many contigs. We sequenced and completely assembled the genome of a marine heterotrophic bacterium, Alteromonas macleodii HOT1A3, and compared its full genome to several draft genomes obtained using different reference-based and de-novo methods. In general, the de-novo assemblies clearly outperformed the reference-based or hybrid ones, covering>99% of the genes and representing essentially all of the gene functions. However, only the fully closed genome (~4.5Mbp allowed us to identify the presence of a large, 148 kbp plasmid, pAM1A3. While HOT1A3 belongs to Alteromonas macleodii, typically found in surface waters (surface ecotype, this plasmid consists of an almost complete flexible genomic island, containing many genes involved in metal resistance previously identified in the genomes of Alteromonas mediterranea (deep ecotype. Indeed, similar to A. mediterranea, A. macleodii HOT1A3 grows at concentrations of zinc, mercury and copper that are inhibitory for other A. macleodii strains. The presence of a plasmid encoding almost an entire flexible genomic island suggests that wholesale genomic exchange between heterotrophic marine bacteria belonging to related but ecologically different populations is not uncommon.

  6. Influenza A Viruses of Swine (IAV-S) in Vietnam from 2010 to 2015: Multiple Introductions of A(H1N1)pdm09 Viruses into the Pig Population and Diversifying Genetic Constellations of Enzootic IAV-S.

    Science.gov (United States)

    Takemae, Nobuhiro; Harada, Michiyo; Nguyen, Phuong Thanh; Nguyen, Tung; Nguyen, Tien Ngoc; To, Thanh Long; Nguyen, Tho Dang; Pham, Vu Phong; Le, Vu Tri; Do, Hoa Thi; Vo, Hung Van; Le, Quang Vinh Tin; Tran, Tan Minh; Nguyen, Thanh Duy; Thai, Phuong Duy; Nguyen, Dang Hoang; Le, Anh Quynh Thi; Nguyen, Diep Thi; Uchida, Yuko; Saito, Takehiko

    2017-01-01

    Active surveillance of influenza A viruses of swine (IAV-S) involving 262 farms and 10 slaughterhouses in seven provinces in northern and southern Vietnam from 2010 to 2015 yielded 388 isolates from 32 farms; these viruses were classified into H1N1, H1N2, and H3N2 subtypes. Whole-genome sequencing followed by phylogenetic analysis revealed that the isolates represented 15 genotypes, according to the genetic constellation of the eight segments. All of the H1N1 viruses were entirely A(H1N1)pdm09 viruses, whereas all of the H1N2 and H3N2 viruses were reassortants among 5 distinct ancestral viruses: H1 and H3 triple-reassortant (TR) IAV-S that originated from North American pre-2009 human seasonal H1, human seasonal H3N2, and A(H1N1)pdm09 viruses. Notably, 93% of the reassortant IAV-S retained M genes that were derived from A(H1N1)pdm09, suggesting some advantage in terms of their host adaptation. Bayesian Markov chain Monte Carlo analysis revealed that multiple introductions of A(H1N1)pdm09 and TR IAV-S into the Vietnamese pig population have driven the genetic diversity of currently circulating Vietnamese IAV-S. In addition, our results indicate that a reassortant IAV-S with human-like H3 and N2 genes and an A(H1N1)pdm09 origin M gene likely caused a human case in Ho Chi Minh City in 2010. Our current findings indicate that human-to-pig transmission as well as cocirculation of different IAV-S have contributed to diversifying the gene constellations of IAV-S in Vietnam. This comprehensive genetic characterization of 388 influenza A viruses of swine (IAV-S) isolated through active surveillance of Vietnamese pig farms from 2010 through 2015 provides molecular epidemiological insight into the genetic diversification of IAV-S in Vietnam after the emergence of A(H1N1)pdm09 viruses. Multiple reassortments among A(H1N1)pdm09 viruses and enzootic IAV-S yielded 14 genotypes, 9 of which carried novel gene combinations. The reassortants that carried M genes derived from A(H1N1

  7. Whole genome detection of rotavirus mixed infections in human, porcine and bovine samples co-infected with various rotavirus strains collected from sub-Saharan Africa.

    Science.gov (United States)

    Nyaga, Martin M; Jere, Khuzwayo C; Esona, Mathew D; Seheri, Mapaseka L; Stucker, Karla M; Halpin, Rebecca A; Akopov, Asmik; Stockwell, Timothy B; Peenze, Ina; Diop, Amadou; Ndiaye, Kader; Boula, Angeline; Maphalala, Gugu; Berejena, Chipo; Mwenda, Jason M; Steele, A Duncan; Wentworth, David E; Mphahlele, M Jeffrey

    2015-04-01

    Group A rotaviruses (RVA) are among the main global causes of severe diarrhea in children under the age of 5years. Strain diversity, mixed infections and untypeable RVA strains are frequently reported in Africa. We analysed rotavirus-positive human stool samples (n=13) obtained from hospitalised children under the age of 5years who presented with acute gastroenteritis at sentinel hospital sites in six African countries, as well as bovine and porcine stool samples (n=1 each), to gain insights into rotavirus diversity and evolution. Polyacrylamide gel electrophoresis (PAGE) analysis and genotyping with G-(VP7) and P-specific (VP4) typing primers suggested that 13 of the 15 samples contained more than 11 segments and/or mixed G/P genotypes. Full-length amplicons for each segment were generated using RVA-specific primers and sequenced using the Ion Torrent and/or Illumina MiSeq next-generation sequencing platforms. Sequencing detected at least one segment in each sample for which duplicate sequences, often having distinct genotypes, existed. This supported and extended the PAGE and RT-PCR genotyping findings that suggested these samples were collected from individuals that had mixed rotavirus infections. The study reports the first porcine (MRC-DPRU1567) and bovine (MRC-DPRU3010) mixed infections. We also report a unique genome segment 9 (VP7), whose G9 genotype belongs to lineage VI and clusters with porcine reference strains. Previously, African G9 strains have all been in lineage III. Furthermore, additional RVA segments isolated from humans have a clear evolutionary relationship with porcine, bovine and ovine rotavirus sequences, indicating relatively recent interspecies transmission and reassortment. Thus, multiple RVA strains from sub-Saharan Africa are infecting mammalian hosts with unpredictable variations in their gene segment combinations. Whole-genome sequence analyses of mixed RVA strains underscore the considerable diversity of rotavirus sequences and

  8. Draft Genome Sequence of Photobacterium halotolerans S2753, Producer of Bioactive Secondary Metabolites

    DEFF Research Database (Denmark)

    Machado, Henrique; Månsson, Maria; Gram, Lone

    2014-01-01

    We report here the whole draft genome sequence of marine isolate Photobacterium halotolerans S2753, which produces the known antibiotic holomycin and also ngercheumicins and solonamides A and B, which interfere with virulence of methicillin-resistant Staphylococcus aureus strains by interacting...

  9. Genomics in childhood acute myeloid leukemia comes of age | Office of Cancer Genomics

    Science.gov (United States)

    TARGET investigator’s study of nearly 1,000 pediatric acute myeloid leukemia (AML) cases reveals marked differences between the genomic landscapes of pediatric and adult AML and offers directions for future work.

  10. Genome-wide identification of galactinol synthase (GolS) genes in Solanum lycopersicum and Brachypodium distachyon.

    Science.gov (United States)

    Filiz, Ertugrul; Ozyigit, Ibrahim Ilker; Vatansever, Recep

    2015-10-01

    GolS genes stand as potential candidate genes for molecular breeding and/or engineering programs in order for improving abiotic stress tolerance in plant species. In this study, a total of six galactinol synthase (GolS) genes/proteins were retrieved for Solanum lycopersicum and Brachypodium distachyon. GolS protein sequences were identified to include glyco_transf_8 (PF01501) domain structure, and to have a close molecular weight (36.40-39.59kDa) and amino acid length (318-347 aa) with a slightly acidic pI (5.35-6.40). The sub-cellular location was mainly predicted as cytoplasmic. S. lycopersicum genes located on chr 1 and 2, and included one segmental duplication while genes of B. distachyon were only on chr 1 with one tandem duplication. GolS sequences were found to have well conserved motif structures. Cis-acting analysis was performed for three abiotic stress responsive elements, including ABA responsive element (ABRE), dehydration and cold responsive elements (DRE/CRT) and low-temperature responsive element (LTRE). ABRE elements were found in all GolS genes, except for SlGolS4; DRE/CRT was not detected in any GolS genes and LTRE element found in SlGolS1 and BdGolS1 genes. AU analysis in UTR and ORF regions indicated that SlGolS and BdGolS mRNAs may have a short half-life. SlGolS3 and SlGolS4 genes may generate more stable transcripts since they included AATTAAA motif for polyadenylation signal POLASIG2. Seconder structures of SlGolS proteins were well conserved than that of BdGolS. Some structural divergences were detected in 3D structures and predicted binding sites exhibited various patterns in GolS proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Multi-scale Gaussian representation and outline-learning based cell image segmentation

    Science.gov (United States)

    2013-01-01

    Background High-throughput genome-wide screening to study gene-specific functions, e.g. for drug discovery, demands fast automated image analysis methods to assist in unraveling the full potential of such studies. Image segmentation is typically at the forefront of such analysis as the performance of the subsequent steps, for example, cell classification, cell tracking etc., often relies on the results of segmentation. Methods We present a cell cytoplasm segmentation framework which first separates cell cytoplasm from image background using novel approach of image enhancement and coefficient of variation of multi-scale Gaussian scale-space representation. A novel outline-learning based classification method is developed using regularized logistic regression with embedded feature selection which classifies image pixels as outline/non-outline to give cytoplasm outlines. Refinement of the detected outlines to separate cells from each other is performed in a post-processing step where the nuclei segmentation is used as contextual information. Results and conclusions We evaluate the proposed segmentation methodology using two challenging test cases, presenting images with completely different characteristics, with cells of varying size, shape, texture and degrees of overlap. The feature selection and classification framework for outline detection produces very simple sparse models which use only a small subset of the large, generic feature set, that is, only 7 and 5 features for the two cases. Quantitative comparison of the results for the two test cases against state-of-the-art methods show that our methodology outperforms them with an increase of 4-9% in segmentation accuracy with maximum accuracy of 93%. Finally, the results obtained for diverse datasets demonstrate that our framework not only produces accurate segmentation but also generalizes well to different segmentation tasks. PMID:24267488

  12. The parietal epithelial cell: a key player in the pathogenesis of focal segmental glomerulosclerosis in Thy-1.1 transgenic mice.

    Science.gov (United States)

    Smeets, Bart; Te Loeke, Nathalie A J M; Dijkman, Henry B P M; Steenbergen, Mark L M; Lensen, Joost F M; Begieneman, Mark P V; van Kuppevelt, Toin H; Wetzels, Jack F M; Steenbergen, Eric J

    2004-04-01

    Focal segmental glomerulosclerosis (FSGS) is a hallmark of progressive renal disease. Podocyte injury and loss have been proposed as the critical events that lead to FSGS. In the present study, the authors have examined the development of FSGS in Thy-1.1 transgenic (tg) mice, with emphasis on the podocyte and parietal epithelial cell (PEC). Thy-1.1 tg mice express the Thy-1.1 antigen on podocytes. Injection of anti-Thy-1.1 mAb induces an acute albuminuria and development of FSGS lesions that resemble human collapsing FSGS. The authors studied FSGS lesions at days 1, 3, 6, 7, 10, 14, and 21, in relation to changes in the expression of specific markers for normal podocytes (WT-1, synaptopodin, ASD33, and the Thy-1.1 antigen), for mouse PEC (CD10), for activated podocytes (desmin), for macrophages (CD68), and for proliferation (Ki-67). The composition of the extracellular matrix (ECM) that forms tuft adhesions or scars was studied using mAb against collagen IV alpha2 and alpha4 chains and antibodies directed against different heparan sulfate species. The first change observed was severe PEC injury at day 1, which increased in time, and resulted in denuded segments of Bowman's capsule at days 6 and 7. Podocytes showed foot process effacement and microvillous transformation. There was no evidence of podocyte loss or denudation of the GBM. Podocytes became hypertrophic at day 3, with decreased expression of ASD33 and synaptopodin and normal expression of WT-1 and Thy-1.1. Podocyte bridges were formed by attachment of hypertrophic podocytes to PEC and podocyte apposition against denuded segments of Bowman's capsule. At day 6, there was a marked proliferation of epithelial cells in Bowman's space. These proliferating cells were negative for desmin and all podocyte markers, but stained for CD10, and thus appeared to be PEC. The staining properties of the early adhesions were identical to that of Bowman's capsule, suggesting that the ECM in the adhesions was produced by PEC

  13. BRIT1/MCPH1 is essential for mitotic and meiotic recombination DNA repair and maintaining genomic stability in mice.

    Directory of Open Access Journals (Sweden)

    Yulong Liang

    2010-01-01

    Full Text Available BRIT1 protein (also known as MCPH1 contains 3 BRCT domains which are conserved in BRCA1, BRCA2, and other important molecules involved in DNA damage signaling, DNA repair, and tumor suppression. BRIT1 mutations or aberrant expression are found in primary microcephaly patients as well as in cancer patients. Recent in vitro studies suggest that BRIT1/MCPH1 functions as a novel key regulator in the DNA damage response pathways. To investigate its physiological role and dissect the underlying mechanisms, we generated BRIT1(-/- mice and identified its essential roles in mitotic and meiotic recombination DNA repair and in maintaining genomic stability. Both BRIT1(-/- mice and mouse embryonic fibroblasts (MEFs were hypersensitive to gamma-irradiation. BRIT1(-/- MEFs and T lymphocytes exhibited severe chromatid breaks and reduced RAD51 foci formation after irradiation. Notably, BRIT1(-/- mice were infertile and meiotic homologous recombination was impaired. BRIT1-deficient spermatocytes exhibited a failure of chromosomal synapsis, and meiosis was arrested at late zygotene of prophase I accompanied by apoptosis. In mutant spermatocytes, DNA double-strand breaks (DSBs were formed, but localization of RAD51 or BRCA2 to meiotic chromosomes was severely impaired. In addition, we found that BRIT1 could bind to RAD51/BRCA2 complexes and that, in the absence of BRIT1, recruitment of RAD51 and BRCA2 to chromatin was reduced while their protein levels were not altered, indicating that BRIT1 is involved in mediating recruitment of RAD51/BRCA2 to the damage site. Collectively, our BRIT1-null mouse model demonstrates that BRIT1 is essential for maintaining genomic stability in vivo to protect the hosts from both programmed and irradiation-induced DNA damages, and its depletion causes a failure in both mitotic and meiotic recombination DNA repair via impairing RAD51/BRCA2's function and as a result leads to infertility and genomic instability in mice.

  14. Draft Genome Sequence of Bacillus velezensis OSY-S3, a Producer of Potent Antimicrobial Agents Active against Bacteria and Fungi

    OpenAIRE

    Gerst, Michelle M.; Yesil, Mustafa; Yousef, Ahmed E.

    2018-01-01

    ABSTRACT Bacillus velezensis OSY-S3 produces anti-Listeria, anti-Escherichia coli, and antifungal compounds. Additionally, fermentate of B. velezensis OSY-S3 culture removes Staphylococcus aureus biofilms effectively. The draft genome sequence of B. velezensis OSY-S3 reported here had a genome size of ~3.90 Mb and a G+C content of 46.5%.

  15. Whole-genome sequencing of a laboratory-evolved yeast strain

    Directory of Open Access Journals (Sweden)

    Dunham Maitreya J

    2010-02-01

    Full Text Available Abstract Background Experimental evolution of microbial populations provides a unique opportunity to study evolutionary adaptation in response to controlled selective pressures. However, until recently it has been difficult to identify the precise genetic changes underlying adaptation at a genome-wide scale. New DNA sequencing technologies now allow the genome of parental and evolved strains of microorganisms to be rapidly determined. Results We sequenced >93.5% of the genome of a laboratory-evolved strain of the yeast Saccharomyces cerevisiae and its ancestor at >28× depth. Both single nucleotide polymorphisms and copy number amplifications were found, with specific gains over array-based methodologies previously used to analyze these genomes. Applying a segmentation algorithm to quantify structural changes, we determined the approximate genomic boundaries of a 5× gene amplification. These boundaries guided the recovery of breakpoint sequences, which provide insights into the nature of a complex genomic rearrangement. Conclusions This study suggests that whole-genome sequencing can provide a rapid approach to uncover the genetic basis of evolutionary adaptations, with further applications in the study of laboratory selections and mutagenesis screens. In addition, we show how single-end, short read sequencing data can provide detailed information about structural rearrangements, and generate predictions about the genomic features and processes that underlie genome plasticity.

  16. Market Segmentation from a Behavioral Perspective

    Science.gov (United States)

    Wells, Victoria K.; Chang, Shing Wan; Oliveira-Castro, Jorge; Pallister, John

    2010-01-01

    A segmentation approach is presented using both traditional demographic segmentation bases (age, social class/occupation, and working status) and a segmentation by benefits sought. The benefits sought in this case are utilitarian and informational reinforcement, variables developed from the Behavioral Perspective Model (BPM). Using data from 1,847…

  17. Hierarchical Image Segmentation of Remotely Sensed Data using Massively Parallel GNU-LINUX Software

    Science.gov (United States)

    Tilton, James C.

    2003-01-01

    A hierarchical set of image segmentations is a set of several image segmentations of the same image at different levels of detail in which the segmentations at coarser levels of detail can be produced from simple merges of regions at finer levels of detail. In [1], Tilton, et a1 describes an approach for producing hierarchical segmentations (called HSEG) and gave a progress report on exploiting these hierarchical segmentations for image information mining. The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HSWO) approach to region growing, which was described as early as 1989 by Beaulieu and Goldberg. The HSWO approach seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing (e.g. Horowitz and T. Pavlidis, [3]). In addition, HSEG optionally interjects between HSWO region growing iterations, merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the utility of the segmentation results, especially for larger images, it also significantly increases HSEG s computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) was devised, which includes special code to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. The recursive nature of RHSEG makes for a straightforward parallel implementation. This paper describes the HSEG algorithm, its recursive formulation (referred to as RHSEG), and the implementation of RHSEG using massively parallel GNU-LINUX software. Results with Landsat TM data are included comparing RHSEG with classic

  18. Transport of salicylate in proximal tubule (S2 segment) isolated from rabbit kidney

    International Nuclear Information System (INIS)

    Schild, L.; Roch-Ramel, F.

    1988-01-01

    The secretory and the reabsorptive transport of salicylate was studied in the isolated and perfused rabbit proximal tubule (S 2 segment). Salicylate secretion (J sal b→l ) fulfilled the criteria for a carrier-mediated transport system: J sal b→l was saturable, was reversibly inhibited by probenecid, and occurred against a concentration gradient. The K m and V max for this secretory transport were 80 μM and 3,200 fmol·min -1 ·mm -1 , respectively. At luminal pH of 7.4 and 6.6, salicylate reabsorption (J sal l→b ) was low. J sal l→b was stimulated by increasing the bath Pco 2 or by removing basolateral HCO 3 - ; J sal l→b was inhibited by ethoxyzolamide and by SITS in the bath. The results indicate that salicylate reabsorption depends on H + secretion, consistent with reabsorption by simple nonionic diffusion. When salicylate was present in the lumen only, J sal l→b increased after inhibition of the secretory transport by adding ouabain or probenecid in the bath or by lowering the bath temperature. These results are compatible with luminal recycling of salicylate, and suggest the presence of a mediated secretory transporter located at the luminal membrane

  19. ReMixT: clone-specific genomic structure estimation in cancer.

    Science.gov (United States)

    McPherson, Andrew W; Roth, Andrew; Ha, Gavin; Chauve, Cedric; Steif, Adi; de Souza, Camila P E; Eirew, Peter; Bouchard-Côté, Alexandre; Aparicio, Sam; Sahinalp, S Cenk; Shah, Sohrab P

    2017-07-27

    Somatic evolution of malignant cells produces tumors composed of multiple clonal populations, distinguished in part by rearrangements and copy number changes affecting chromosomal segments. Whole genome sequencing mixes the signals of sampled populations, diluting the signals of clone-specific aberrations, and complicating estimation of clone-specific genotypes. We introduce ReMixT, a method to unmix tumor and contaminating normal signals and jointly predict mixture proportions, clone-specific segment copy number, and clone specificity of breakpoints. ReMixT is free, open-source software and is available at http://bitbucket.org/dranew/remixt .

  20. Side chain requirements for affinity and specificity in D5, an HIV-1 antibody derived from the VH1-69 germline segment.

    Science.gov (United States)

    Stewart, Alex; Harrison, Joseph S; Regula, Lauren K; Lai, Jonathan R

    2013-04-08

    Analysis of factors contributing to high affinity antibody-protein interactions provides insight into natural antibody evolution, and guides the design of antibodies with new or enhanced function. We previously studied the interaction between antibody D5 and its target, a designed protein based on HIV-1 gp41 known as 5-Helix, as a model system [Da Silva, G. F.; Harrison, J. S.; Lai, J. R., Biochemistry, 2010, 49, 5464-5472]. Antibody D5 represents an interesting case study because it is derived from the VH1-69 germline segment; this germline segment is characterized by a hydrophobic second heavy chain complementarity determining region (HCDR2) that constitutes the major functional paratope in D5 and several antibodies derived from the same progenitor. Here we explore side chain requirements for affinity and specificity in D5 using phage display. Two D5-based libraries were prepared that contained diversity in all three light chain complementarity determining regions (LCDRs 1-3), and in the third HCDR (HCDR3). The first library allowed residues to vary among a restricted set of six amino acids (Tyr/Ala/Asp/Ser/His/Pro; D5-Lib-I). The second library was designed based on a survey of existing VH1-69 antibody structures (D5-Lib-II). Both libraries were subjected to multiple rounds of selection against 5-Helix, and individual clones characterized. We found that selectants from D5-Lib-I generally had moderate affinity and specificity, while many clones from D5-Lib-II exhibited D5-like properties. Additional analysis of the D5-Lib-II functional population revealed position-specific biases for particular amino acids, many that differed from the identity of those side chains in D5. Together these results suggest that there is some permissiveness for alternative side chains in the LCDRs and HCDR3 of D5, but that replacement with a minimal set of residues is not tolerated in this scaffold for 5-Helix recognition. This work provides novel information about this high

  1. Comparative Genomics Analysis and Phenotypic Characterization of Shewanella putrefaciens W3-18-1: Anaerobic Respiration, Bacterial Microcompartments, and Lateral Flagella

    International Nuclear Information System (INIS)

    Qiu, D.; Tu, Q.; He, Zhili; Zhou, Jizhong

    2010-01-01

    Respiratory versatility and psychrophily are the hallmarks of Shewanella. The ability to utilize a wide range of electron acceptors for respiration is due to the large number of c-type cytochrome genes present in the genome of Shewanella strains. More recently the dissimilatory metal reduction of Shewanella species has been extensively and intensively studied for potential applications in the bioremediation of radioactive wastes of groundwater and subsurface environments. Multiple Shewanella genome sequences are now available in the public databases (Fredrickson et al., 2008). Most of the sequenced Shewanella strains were isolated from marine environments and this genus was believed to be of marine origin (Hau and Gralnick, 2007). However, the well-characterized model strain, S. oneidensis MR-1, was isolated from the freshwater lake sediment of Lake Oneida, New York (Myers and Nealson, 1988) and similar bacteria have also been isolated from other freshwater environments (Venkateswaran et al., 1999). Here we comparatively analyzed the genome sequence and physiological characteristics of S. putrefaciens W3-18-1 and S. oneidensis MR-1, isolated from the marine and freshwater lake sediments, respectively. The anaerobic respirations, carbon source utilization, and cell motility have been experimentally investigated. Large scale horizontal gene transfers have been revealed and the genetic divergence between these two strains was considered to be critical to the bacterial adaptation to specific habitats, freshwater or marine sediments.

  2. Stepwise identification of HLA-A*0201-restricted CD8+ T-cell epitope peptides from herpes simplex virus type 1 genome boosted by a StepRank scheme.

    Science.gov (United States)

    Bi, Jianjun; Song, Rengang; Yang, Huilan; Li, Bingling; Fan, Jianyong; Liu, Zhongrong; Long, Chaoqin

    2011-01-01

    Identification of immunodominant epitopes is the first step in the rational design of peptide vaccines aimed at T-cell immunity. To date, however, it is yet a great challenge for accurately predicting the potent epitope peptides from a pool of large-scale candidates with an efficient manner. In this study, a method that we named StepRank has been developed for the reliable and rapid prediction of binding capabilities/affinities between proteins and genome-wide peptides. In this procedure, instead of single strategy used in most traditional epitope identification algorithms, four steps with different purposes and thus different computational demands are employed in turn to screen the large-scale peptide candidates that are normally generated from, for example, pathogenic genome. The steps 1 and 2 aim at qualitative exclusion of typical nonbinders by using empirical rule and linear statistical approach, while the steps 3 and 4 focus on quantitative examination and prediction of the interaction energy profile and binding affinity of peptide to target protein via quantitative structure-activity relationship (QSAR) and structure-based free energy analysis. We exemplify this method through its application to binding predictions of the peptide segments derived from the 76 known open-reading frames (ORFs) of herpes simplex virus type 1 (HSV-1) genome with or without affinity to human major histocompatibility complex class I (MHC I) molecule HLA-A*0201, and find that the predictive results are well compatible with the classical anchor residue theory and perfectly match for the extended motif pattern of MHC I-binding peptides. The putative epitopes are further confirmed by comparisons with 11 experimentally measured HLA-A*0201-restrcited peptides from the HSV-1 glycoproteins D and K. We expect that this well-designed scheme can be applied in the computational screening of other viral genomes as well.

  3. RNA interactions in the 5' region of the HIV-1 genome

    DEFF Research Database (Denmark)

    Damgaard, Christian Kroun; Andersen, Ebbe Sloth; Knudsen, Bjarne

    2004-01-01

    The untranslated leader of the dimeric HIV-1 RNA genome is folded into a complex structure that plays multiple and essential roles in the viral replication cycle. Here, we have investigated secondary and tertiary structural elements within the 5' 744 nucleotides of the HIV-1 genome using...... a combination of bioinformatics, enzymatic probing, native gel electrophoresis, and UV-crosslinking experiments. We used a recently developed RNA folding algorithm (Pfold) to predict the common secondary structure of an alignment of 20 divergent HIV-1 sequences. Combining this analysis with biochemical data, we...

  4. A combined segmenting and non-segmenting approach to signal quality estimation for ambulatory photoplethysmography

    International Nuclear Information System (INIS)

    Wander, J D; Morris, D

    2014-01-01

    Continuous cardiac monitoring of healthy and unhealthy patients can help us understand the progression of heart disease and enable early treatment. Optical pulse sensing is an excellent candidate for continuous mobile monitoring of cardiovascular health indicators, but optical pulse signals are susceptible to corruption from a number of noise sources, including motion artifact. Therefore, before higher-level health indicators can be reliably computed, corrupted data must be separated from valid data. This is an especially difficult task in the presence of artifact caused by ambulation (e.g. walking or jogging), which shares significant spectral energy with the true pulsatile signal. In this manuscript, we present a machine-learning-based system for automated estimation of signal quality of optical pulse signals that performs well in the presence of periodic artifact. We hypothesized that signal processing methods that identified individual heart beats (segmenting approaches) would be more error-prone than methods that did not (non-segmenting approaches) when applied to data contaminated by periodic artifact. We further hypothesized that a fusion of segmenting and non-segmenting approaches would outperform either approach alone. Therefore, we developed a novel non-segmenting approach to signal quality estimation that we then utilized in combination with a traditional segmenting approach. Using this system we were able to robustly detect differences in signal quality as labeled by expert human raters (Pearson’s r = 0.9263). We then validated our original hypotheses by demonstrating that our non-segmenting approach outperformed the segmenting approach in the presence of contaminated signal, and that the combined system outperformed either individually. Lastly, as an example, we demonstrated the utility of our signal quality estimation system in evaluating the trustworthiness of heart rate measurements derived from optical pulse signals. (paper)

  5. Liver segmentation in contrast enhanced CT data using graph cuts and interactive 3D segmentation refinement methods

    Energy Technology Data Exchange (ETDEWEB)

    Beichel, Reinhard; Bornik, Alexander; Bauer, Christian; Sorantin, Erich [Departments of Electrical and Computer Engineering and Internal Medicine, Iowa Institute for Biomedical Imaging, University of Iowa, Iowa City, Iowa 52242 (United States); Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16, A-8010 Graz (Austria); Department of Electrical and Computer Engineering, Iowa Institute for Biomedical Imaging, University of Iowa, Iowa City, Iowa 52242 (United States); Department of Radiology, Medical University Graz, Auenbruggerplatz 34, A-8010 Graz (Austria)

    2012-03-15

    Purpose: Liver segmentation is an important prerequisite for the assessment of liver cancer treatment options like tumor resection, image-guided radiation therapy (IGRT), radiofrequency ablation, etc. The purpose of this work was to evaluate a new approach for liver segmentation. Methods: A graph cuts segmentation method was combined with a three-dimensional virtual reality based segmentation refinement approach. The developed interactive segmentation system allowed the user to manipulate volume chunks and/or surfaces instead of 2D contours in cross-sectional images (i.e, slice-by-slice). The method was evaluated on twenty routinely acquired portal-phase contrast enhanced multislice computed tomography (CT) data sets. An independent reference was generated by utilizing a currently clinically utilized slice-by-slice segmentation method. After 1 h of introduction to the developed segmentation system, three experts were asked to segment all twenty data sets with the proposed method. Results: Compared to the independent standard, the relative volumetric segmentation overlap error averaged over all three experts and all twenty data sets was 3.74%. Liver segmentation required on average 16 min of user interaction per case. The calculated relative volumetric overlap errors were not found to be significantly different [analysis of variance (ANOVA) test, p = 0.82] between experts who utilized the proposed 3D system. In contrast, the time required by each expert for segmentation was found to be significantly different (ANOVA test, p = 0.0009). Major differences between generated segmentations and independent references were observed in areas were vessels enter or leave the liver and no accepted criteria for defining liver boundaries exist. In comparison, slice-by-slice based generation of the independent standard utilizing a live wire tool took 70.1 min on average. A standard 2D segmentation refinement approach applied to all twenty data sets required on average 38.2 min of

  6. Liver segmentation in contrast enhanced CT data using graph cuts and interactive 3D segmentation refinement methods

    International Nuclear Information System (INIS)

    Beichel, Reinhard; Bornik, Alexander; Bauer, Christian; Sorantin, Erich

    2012-01-01

    Purpose: Liver segmentation is an important prerequisite for the assessment of liver cancer treatment options like tumor resection, image-guided radiation therapy (IGRT), radiofrequency ablation, etc. The purpose of this work was to evaluate a new approach for liver segmentation. Methods: A graph cuts segmentation method was combined with a three-dimensional virtual reality based segmentation refinement approach. The developed interactive segmentation system allowed the user to manipulate volume chunks and/or surfaces instead of 2D contours in cross-sectional images (i.e, slice-by-slice). The method was evaluated on twenty routinely acquired portal-phase contrast enhanced multislice computed tomography (CT) data sets. An independent reference was generated by utilizing a currently clinically utilized slice-by-slice segmentation method. After 1 h of introduction to the developed segmentation system, three experts were asked to segment all twenty data sets with the proposed method. Results: Compared to the independent standard, the relative volumetric segmentation overlap error averaged over all three experts and all twenty data sets was 3.74%. Liver segmentation required on average 16 min of user interaction per case. The calculated relative volumetric overlap errors were not found to be significantly different [analysis of variance (ANOVA) test, p = 0.82] between experts who utilized the proposed 3D system. In contrast, the time required by each expert for segmentation was found to be significantly different (ANOVA test, p = 0.0009). Major differences between generated segmentations and independent references were observed in areas were vessels enter or leave the liver and no accepted criteria for defining liver boundaries exist. In comparison, slice-by-slice based generation of the independent standard utilizing a live wire tool took 70.1 min on average. A standard 2D segmentation refinement approach applied to all twenty data sets required on average 38.2 min of

  7. Liver segmentation in contrast enhanced CT data using graph cuts and interactive 3D segmentation refinement methods.

    Science.gov (United States)

    Beichel, Reinhard; Bornik, Alexander; Bauer, Christian; Sorantin, Erich

    2012-03-01

    Liver segmentation is an important prerequisite for the assessment of liver cancer treatment options like tumor resection, image-guided radiation therapy (IGRT), radiofrequency ablation, etc. The purpose of this work was to evaluate a new approach for liver segmentation. A graph cuts segmentation method was combined with a three-dimensional virtual reality based segmentation refinement approach. The developed interactive segmentation system allowed the user to manipulate volume chunks and∕or surfaces instead of 2D contours in cross-sectional images (i.e, slice-by-slice). The method was evaluated on twenty routinely acquired portal-phase contrast enhanced multislice computed tomography (CT) data sets. An independent reference was generated by utilizing a currently clinically utilized slice-by-slice segmentation method. After 1 h of introduction to the developed segmentation system, three experts were asked to segment all twenty data sets with the proposed method. Compared to the independent standard, the relative volumetric segmentation overlap error averaged over all three experts and all twenty data sets was 3.74%. Liver segmentation required on average 16 min of user interaction per case. The calculated relative volumetric overlap errors were not found to be significantly different [analysis of variance (ANOVA) test, p = 0.82] between experts who utilized the proposed 3D system. In contrast, the time required by each expert for segmentation was found to be significantly different (ANOVA test, p = 0.0009). Major differences between generated segmentations and independent references were observed in areas were vessels enter or leave the liver and no accepted criteria for defining liver boundaries exist. In comparison, slice-by-slice based generation of the independent standard utilizing a live wire tool took 70.1 min on average. A standard 2D segmentation refinement approach applied to all twenty data sets required on average 38.2 min of user interaction

  8. Segmental and global lordosis changes with two-level axial lumbar interbody fusion and posterior instrumentation

    Science.gov (United States)

    Melgar, Miguel A; Tobler, William D; Ernst, Robert J; Raley, Thomas J; Anand, Neel; Miller, Larry E; Nasca, Richard J

    2014-01-01

    Background Loss of lumbar lordosis has been reported after lumbar interbody fusion surgery and may portend poor clinical and radiographic outcome. The objective of this research was to measure changes in segmental and global lumbar lordosis in patients treated with presacral axial L4-S1 interbody fusion and posterior instrumentation and to determine if these changes influenced patient outcomes. Methods We performed a retrospective, multi-center review of prospectively collected data in 58 consecutive patients with disabling lumbar pain and radiculopathy unresponsive to nonsurgical treatment who underwent L4-S1 interbody fusion with the AxiaLIF two-level system (Baxano Surgical, Raleigh NC). Main outcomes included back pain severity, Oswestry Disability Index (ODI), Odom's outcome criteria, and fusion status using flexion and extension radiographs and computed tomography scans. Segmental (L4-S1) and global (L1-S1) lumbar lordosis measurements were made using standing lateral radiographs. All patients were followed for at least 24 months (mean: 29 months, range 24-56 months). Results There was no bowel injury, vascular injury, deep infection, neurologic complication or implant failure. Mean back pain severity improved from 7.8±1.7 at baseline to 3.3±2.6 at 2 years (p lordosis, defined as a change in Cobb angle ≤ 5°, was identified in 84% of patients at L4-S1 and 81% of patients at L1-S1. Patients with loss or gain in segmental or global lordosis experienced similar 2-year outcomes versus those with less than a 5° change. Conclusions/Clinical Relevance Two-level axial interbody fusion supplemented with posterior fixation does not alter segmental or global lordosis in most patients. Patients with postoperative change in lordosis greater than 5° have similarly favorable long-term clinical outcomes and fusion rates compared to patients with less than 5° lordosis change. PMID:25694920

  9. Reciprocal Regulation between DNA-PKcs and Snail1 Conferring Genomic Instability

    International Nuclear Information System (INIS)

    Seo, Haeng Ran; Lee, Hae June; Jin, Yeung Bae; Bae, Sang Woo; Lee, Yun Sil; Kim, Nam Hee; Kim, Hyun Sil; Nam, Hyung Wook; Yook, Jong In

    2010-01-01

    Although the roles of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) involving non-homologous end joining (NHEJ) of DNA repair are well recognized, the biological mechanisms and regulators by which DNA-PKcs regulate genomic instability are not clearly defined. We show herein that DNA-PKcs activity resulting from DNA damage caused by ionizing radiation (IR) phosphorylates Snail1 at serine 100, which results in increased Snail1 expression and its function by inhibition of GSK-3-mediated phosphorylation. Furthermore, Snail1 phosphorylated at serine 100 can reciprocally inhibit kinase activity of DNA-PKcs, resulting in an inhibition to recruit DNA-PKcs or Ku70/80 to a DNA double-strand break site, and ultimately inhibition of DNA repair activity. The impairment of repair activity by a direct interaction between Snail1 and DNA-PKcs increases the resistance to DNA damaging agents, such as IR, and genomic instability. Our findings provide a novel cellular mechanism for induction of genomic instability by reciprocal regulation of DNA-PKcs and Snail1

  10. Name segmentation using hidden Markov models and its application in record linkage

    Directory of Open Access Journals (Sweden)

    Rita de Cassia Braga Gonçalves

    2014-10-01

    Full Text Available This study aimed to evaluate the use of hidden Markov models (HMM for the segmentation of person names and its influence on record linkage. A HMM was applied to the segmentation of patient’s and mother’s names in the databases of the Mortality Information System (SIM, Information Subsystem for High Complexity Procedures (APAC, and Hospital Information System (AIH. A sample of 200 patients from each database was segmented via HMM, and the results were compared to those from segmentation by the authors. The APAC-SIM and APAC-AIH databases were linked using three different segmentation strategies, one of which used HMM. Conformity of segmentation via HMM varied from 90.5% to 92.5%. The different segmentation strategies yielded similar results in the record linkage process. This study suggests that segmentation of Brazilian names via HMM is no more effective than traditional segmentation approaches in the linkage process.

  11. Genomic analysis reveals Nairobi sheep disease virus to be highly diverse and present in both Africa, and in India in the form of the Ganjam virus variant.

    Science.gov (United States)

    Yadav, Pragya D; Vincent, Martin J; Khristova, Marina; Kale, Charuta; Nichol, Stuart T; Mishra, Akhilesh C; Mourya, Devendra T

    2011-07-01

    Nairobi sheep disease (NSD) virus, the prototype tick-borne virus of the genus Nairovirus, family Bunyaviridae is associated with acute hemorrhagic gastroenteritis in sheep and goats in East and Central Africa. The closely related Ganjam virus found in India is associated with febrile illness in humans and disease in livestock. The complete S, M and L segment sequences of Ganjam and NSD virus and partial sequence analysis of Ganjam viral RNA genome S, M and L segments encoding regions (396 bp, 701 bp and 425 bp) of the viral nucleocapsid (N), glycoprotein precursor (GPC) and L polymerase (L) proteins, respectively, was carried out for multiple Ganjam virus isolates obtained from 1954 to 2002 and from various regions of India. M segments of NSD and Ganjam virus encode a large ORF for the glycoprotein precursor (GPC), (1627 and 1624 amino acids in length, respectively) and their L segments encode a very large L polymerase (3991 amino acids). The complete S, M and L segments of NSD and Ganjam viruses were more closely related to one another than to other characterized nairoviruses, and no evidence of reassortment was found. However, the NSD and Ganjam virus complete M segment differed by 22.90% and 14.70%, for nucleotide and amino acid respectively, and the complete L segment nucleotide and protein differing by 9.90% and 2.70%, respectively among themselves. Ganjam and NSD virus, complete S segment differed by 9.40-10.40% and 3.2-4.10 for nucleotide and proteins while among Ganjam viruses 0.0-6.20% and 0.0-1.4%, variation was found for nucleotide and amino acids. Ganjam virus isolates differed by up to 17% and 11% at the nucleotide level for the partial S and L gene fragments, respectively, with less variation observed at the deduced amino acid level (10.5 and 2%, S and L, respectively). However, the virus partial M gene fragment (which encodes the hypervariable mucin-like domain) of these viruses differed by as much as 56% at the nucleotide level. Phylogenetic

  12. Molecular characteristics of Salmonella genomic island 1 in Proteus mirabilis isolates from poultry farms in China.

    Science.gov (United States)

    Lei, Chang-Wei; Zhang, An-Yun; Liu, Bi-Hui; Wang, Hong-Ning; Guan, Zhong-Bin; Xu, Chang-Wen; Xia, Qing-Qing; Cheng, Han; Zhang, Dong-Dong

    2014-12-01

    Six out of the 64 studied Proteus mirabilis isolates from 11 poultry farms in China contained Salmonella genomic island 1 (SGI1). PCR mapping showed that the complete nucleotide sequences of SGI1s ranged from 33.2 to 42.5 kb. Three novel variants, SGI1-W, SGI1-X, and SGI1-Y, have been characterized. Resistance genes lnuF, dfrA25, and qnrB2 were identified in SGI1 for the first time. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Complete mitochondrial genome of Cynopterus sphinx (Pteropodidae: Cynopterus).

    Science.gov (United States)

    Li, Linmiao; Li, Min; Wu, Zhengjun; Chen, Jinping

    2015-01-01

    We have characterized the complete mitochondrial genome of Cynopterus sphinx (Pteropodidae: Cynopterus) and described its organization in this study. The total length of C. sphinx complete mitochondrial genome was 16,895 bp with the base composition of 32.54% A, 14.05% G, 25.82% T and 27.59% C. The complete mitochondrial genome included 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes (12S rRNA and 16S rRNA) and 1 control region (D-loop). The control region was 1435 bp long with the sequence CATACG repeat 64 times. Three protein-coding genes (ND1, COI and ND4) were ended with incomplete stop codon TA or T.

  14. Fine organization of genomic regions tagged to the 5S rDNA locus of the bread wheat 5B chromosome.

    Science.gov (United States)

    Sergeeva, Ekaterina M; Shcherban, Andrey B; Adonina, Irina G; Nesterov, Michail A; Beletsky, Alexey V; Rakitin, Andrey L; Mardanov, Andrey V; Ravin, Nikolai V; Salina, Elena A

    2017-11-14

    The multigene family encoding the 5S rRNA, one of the most important structurally-functional part of the large ribosomal subunit, is an obligate component of all eukaryotic genomes. 5S rDNA has long been a favored target for cytological and phylogenetic studies due to the inherent peculiarities of its structural organization, such as the tandem arrays of repetitive units and their high interspecific divergence. The complex polyploid nature of the genome of bread wheat, Triticum aestivum, and the technically difficult task of sequencing clusters of tandem repeats mean that the detailed organization of extended genomic regions containing 5S rRNA genes remains unclear. This is despite the recent progress made in wheat genomic sequencing. Using pyrosequencing of BAC clones, in this work we studied the organization of two distinct 5S rDNA-tagged regions of the 5BS chromosome of bread wheat. Three BAC-clones containing 5S rDNA were identified in the 5BS chromosome-specific BAC-library of Triticum aestivum. Using the results of pyrosequencing and assembling, we obtained six 5S rDNA- containing contigs with a total length of 140,417 bp, and two sets (pools) of individual 5S rDNA sequences belonging to separate, but closely located genomic regions on the 5BS chromosome. Both regions are characterized by the presence of approximately 70-80 copies of 5S rDNA, however, they are completely different in their structural organization. The first region contained highly diverged short-type 5S rDNA units that were disrupted by multiple insertions of transposable elements. The second region contained the more conserved long-type 5S rDNA, organized as a single tandem array. FISH using probes specific to both 5S rDNA unit types showed differences in the distribution and intensity of signals on the chromosomes of polyploid wheat species and their diploid progenitors. A detailed structural organization of two closely located 5S rDNA-tagged genomic regions on the 5BS chromosome of bread

  15. The origin and evolution of fibromelanosis in domesticated chickens: Genomic comparison of Indonesian Cemani and Chinese Silkie breeds.

    Directory of Open Access Journals (Sweden)

    Anik Budhi Dharmayanthi

    Full Text Available Like Chinese Silkie, Indonesian Ayam Cemani exhibits fibromelanosis or dermal hyperpigmentation and possesses complex segmental duplications on chromosome 20 that involve the endothelin 3 gene, EDN3. A genomic region, DR1 of 127 kb, together with another region, DR2 of 171 kb, was duplicated by unequal crossing over, accompanied by inversion of one DR2. Quantitative PCR and copy number variation analyses on the Cemani genome sequence confirmed the duplication of EDN3. These genetic arrangements are identical in Cemani and Silkie, indicating a single origin of the genetic cause of Fm. The two DR1s harbor two distinct EDN3 haplotypes in a form of permanent heterozygosity, although they remain allelic in the ancestral Red Jungle Fowl population and some domesticated chicken breeds, with their allelic divergence time being as recent as 0.3 million years ago. In Cemani and Silkie breeds, artificial selection favoring the Fm phenotype has left an unambiguous record for selective sweep that extends in both directions from tandemly duplicated EDN3 loci. This highly homozygous tract is different in length between Cemani and Silkie, reflecting their distinct breeding histories. It is estimated that the Fm phenotype came into existence at least 6600-9100 years ago, prior to domestication of Cemani and Silkie, and that throughout domestication there has been intense artificial selection with strength s > 50% in each breed.

  16. The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice.

    Science.gov (United States)

    Metreveli, Giorgi; Gao, Qinshan; Mena, Ignacio; Schmolke, Mirco; Berg, Mikael; Albrecht, Randy A; García-Sastre, Adolfo

    2014-08-08

    Swine appear to be a key species in the generation of novel human influenza pandemics. Previous pandemic viruses are postulated to have evolved in swine by reassortment of avian, human, and swine influenza viruses. The human pandemic influenza viruses that emerged in 1957 and 1968 as well as swine viruses circulating since 1998 encode PB1 segments derived from avian influenza viruses. Here we investigate the possible role in viral replication and virulence of the PB1 gene segments present in two swine H1N2 influenza A viruses, A/swine/Sweden/1021/2009(H1N2) (sw 1021) and A/swine/Sweden/9706/2010(H1N2) (sw 9706), where the sw 1021 virus has shown to be more pathogenic in mice. By using reverse genetics, we swapped the PB1 genes of these two viruses. Similar to the sw 9706 virus, chimeric sw 1021 virus carrying the sw 9706 PB1 gene was not virulent in mice. In contrast, replacement of the PB1 gene of the sw 9706 virus by that from sw 1021 virus resulted in increased pathogenicity. Our study demonstrated that differences in virulence of swine influenza virus subtype H1N2 are attributed at least in part to the PB1 segment. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Draft Genome Sequence of Bacillus velezensis OSY-S3, a Producer of Potent Antimicrobial Agents Active against Bacteria and Fungi.

    Science.gov (United States)

    Gerst, Michelle M; Yesil, Mustafa; Yousef, Ahmed E

    2018-01-18

    Bacillus velezensis OSY-S3 produces anti- Listeria , anti- Escherichia coli , and antifungal compounds. Additionally, fermentate of B. velezensis OSY-S3 culture removes Staphylococcus aureus biofilms effectively. The draft genome sequence of B. velezensis OSY-S3 reported here had a genome size of ~3.90 Mb and a G+C content of 46.5%. Copyright © 2018 Gerst et al.

  18. Ancestry, admixture and fitness in Colombian genomes

    Science.gov (United States)

    Rishishwar, Lavanya; Conley, Andrew B.; Wigington, Charles H.; Wang, Lu; Valderrama-Aguirre, Augusto; King Jordan, I.

    2015-01-01

    The human dimension of the Columbian Exchange entailed substantial genetic admixture between ancestral source populations from Africa, the Americas and Europe, which had evolved separately for many thousands of years. We sought to address the implications of the creation of admixed American genomes, containing novel allelic combinations, for human health and fitness via analysis of an admixed Colombian population from Medellin. Colombian genomes from Medellin show a wide range of three-way admixture contributions from ancestral source populations. The primary ancestry component for the population is European (average = 74.6%, range = 45.0%–96.7%), followed by Native American (average = 18.1%, range = 2.1%–33.3%) and African (average = 7.3%, range = 0.2%–38.6%). Locus-specific patterns of ancestry were evaluated to search for genomic regions that are enriched across the population for particular ancestry contributions. Adaptive and innate immune system related genes and pathways are particularly over-represented among ancestry-enriched segments, including genes (HLA-B and MAPK10) that are involved in defense against endemic pathogens such as malaria. Genes that encode functions related to skin pigmentation (SCL4A5) and cutaneous glands (EDAR) are also found in regions with anomalous ancestry patterns. These results suggest the possibility that ancestry-specific loci were differentially retained in the modern admixed Colombian population based on their utility in the New World environment. PMID:26197429

  19. MetReS, an Efficient Database for Genomic Applications.

    Science.gov (United States)

    Vilaplana, Jordi; Alves, Rui; Solsona, Francesc; Mateo, Jordi; Teixidó, Ivan; Pifarré, Marc

    2018-02-01

    MetReS (Metabolic Reconstruction Server) is a genomic database that is shared between two software applications that address important biological problems. Biblio-MetReS is a data-mining tool that enables the reconstruction of molecular networks based on automated text-mining analysis of published scientific literature. Homol-MetReS allows functional (re)annotation of proteomes, to properly identify both the individual proteins involved in the processes of interest and their function. The main goal of this work was to identify the areas where the performance of the MetReS database performance could be improved and to test whether this improvement would scale to larger datasets and more complex types of analysis. The study was started with a relational database, MySQL, which is the current database server used by the applications. We also tested the performance of an alternative data-handling framework, Apache Hadoop. Hadoop is currently used for large-scale data processing. We found that this data handling framework is likely to greatly improve the efficiency of the MetReS applications as the dataset and the processing needs increase by several orders of magnitude, as expected to happen in the near future.

  20. LLNL's Big Science Capabilities Help Spur Over $796 Billion in U.S. Economic Activity Sequencing the Human Genome

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Jeffrey S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-28

    LLNL’s successful history of taking on big science projects spans beyond national security and has helped create billions of dollars per year in new economic activity. One example is LLNL’s role in helping sequence the human genome. Over $796 billion in new economic activity in over half a dozen fields has been documented since LLNL successfully completed this Grand Challenge.

  1. Identification of balanced chromosomal rearrangements previously unknown among participants in the 1000 Genomes Project: implications for interpretation of structural variation in genomes and the future of clinical cytogenetics.

    Science.gov (United States)

    Dong, Zirui; Wang, Huilin; Chen, Haixiao; Jiang, Hui; Yuan, Jianying; Yang, Zhenjun; Wang, Wen-Jing; Xu, Fengping; Guo, Xiaosen; Cao, Ye; Zhu, Zhenzhen; Geng, Chunyu; Cheung, Wan Chee; Kwok, Yvonne K; Yang, Huanming; Leung, Tak Yeung; Morton, Cynthia C; Cheung, Sau Wai; Choy, Kwong Wai

    2017-11-02

    PurposeRecent studies demonstrate that whole-genome sequencing enables detection of cryptic rearrangements in apparently balanced chromosomal rearrangements (also known as balanced chromosomal abnormalities, BCAs) previously identified by conventional cytogenetic methods. We aimed to assess our analytical tool for detecting BCAs in the 1000 Genomes Project without knowing which bands were affected.MethodsThe 1000 Genomes Project provides an unprecedented integrated map of structural variants in phenotypically normal subjects, but there is no information on potential inclusion of subjects with apparent BCAs akin to those traditionally detected in diagnostic cytogenetics laboratories. We applied our analytical tool to 1,166 genomes from the 1000 Genomes Project with sufficient physical coverage (8.25-fold).ResultsWith this approach, we detected four reciprocal balanced translocations and four inversions, ranging in size from 57.9 kb to 13.3 Mb, all of which were confirmed by cytogenetic methods and polymerase chain reaction studies. One of these DNAs has a subtle translocation that is not readily identified by chromosome analysis because of the similarity of the banding patterns and size of exchanged segments, and another results in disruption of all transcripts of an OMIM gene.ConclusionOur study demonstrates the extension of utilizing low-pass whole-genome sequencing for unbiased detection of BCAs including translocations and inversions previously unknown in the 1000 Genomes Project.GENETICS in MEDICINE advance online publication, 2 November 2017; doi:10.1038/gim.2017.170.

  2. The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, William C.; Stegen, James C.

    2015-07-21

    Candidate phylum OD1 bacteria (also referred to as Parcubacteria) have been identified in broad range of anoxic environments through community survey analysis. Although none of these species have been isolated in the laboratory, several genome sequences have been reconstructed from metagenomic sequence data and single-cell sequencing. The organisms have small (generally <1 Mb) genomes with severely reduced metabolic capabilities. We have reconstructed 8 partial to near-complete OD1 genomes from oxic groundwater samples, and compared them against existing genomic data. The conserved core gene set comprises 202 genes, or ~28% of the genomic complement. ‘Housekeeping’ genes and genes for biosynthesis of peptidoglycan and Type IV pilus production are conserved. Gene sets for biosynthesis of cofactors, amino acids, nucleotides and fatty acids are absent entirely or greatly reduced. The only aspects of energy metabolism conserved are the non-oxidative branch of the pentose-phosphate shunt and central glycolysis. These organisms also lack some activities conserved in almost all other known bacterial genomes, including signal recognition particle, pseudouridine synthase A, and FAD synthase. Pan-genome analysis indicates a broad genotypic diversity and perhaps a highly fluid gene complement, indicating historical adaptation to a wide range of growth environments and a high degree of specialization. The genomes were examined for signatures suggesting either a free-living, streamlined lifestyle or a symbiotic lifestyle. The lack of biosynthetic capabilities and DNA repair, along with the presence of potential attachment and adhesion proteins suggest the Parcubacteria are ectosymbionts or parasites of other organisms. The wide diversity of genes that potentially mediate cell-cell contact suggests a broad range of partner/prey organisms across the phylum.

  3. Multilevel segmentation of intracranial aneurysms in CT angiography images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan [Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94122 and University of Lyon, CREATIS, CNRS UMR 5220, INSERM U1206, UCB Lyon1, INSA Lyon, Lyon 69100 (France); Zhang, Yue, E-mail: y.zhang525@gmail.com [Veterans Affairs Medical Center, San Francisco, California 94121 and University of Lyon, CREATIS, CNRS UMR 5220, INSERM U1206, UCB Lyon1, INSA Lyon, Lyon 69100 (France); Navarro, Laurent [Ecole Nationale Superieure des Mines de Saint-Etienne, Saint-Etienne 42015 (France); Eker, Omer Faruk [CHU Montpellier, Neuroradiologie, Montpellier 34000 (France); Corredor Jerez, Ricardo A. [Ecole Polytechnique Federale de Lausanne, Lausanne 1015 (Switzerland); Chen, Yu; Zhu, Yuemin; Courbebaisse, Guy [University of Lyon, CREATIS, CNRS UMR 5220, INSERM U1206, UCB Lyon1, INSA Lyon, Lyon 69100 (France)

    2016-04-15

    Purpose: Segmentation of aneurysms plays an important role in interventional planning. Yet, the segmentation of both the lumen and the thrombus of an intracranial aneurysm in computed tomography angiography (CTA) remains a challenge. This paper proposes a multilevel segmentation methodology for efficiently segmenting intracranial aneurysms in CTA images. Methods: The proposed methodology first uses the lattice Boltzmann method (LBM) to extract the lumen part directly from the original image. Then, the LBM is applied again on an intermediate image whose lumen part is filled by the mean gray-level value outside the lumen, to yield an image region containing part of the aneurysm boundary. After that, an expanding disk is introduced to estimate the complete contour of the aneurysm. Finally, the contour detected is used as the initial contour of the level set with ellipse to refine the aneurysm. Results: The results obtained on 11 patients from different hospitals showed that the proposed segmentation was comparable with manual segmentation, and that quantitatively, the average segmentation matching factor (SMF) reached 86.99%, demonstrating good segmentation accuracy. Chan–Vese method, Sen’s model, and Luca’s model were used to compare the proposed method and their average SMF values were 39.98%, 40.76%, and 77.11%, respectively. Conclusions: The authors have presented a multilevel segmentation method based on the LBM and level set with ellipse for accurate segmentation of intracranial aneurysms. Compared to three existing methods, for all eleven patients, the proposed method can successfully segment the lumen with the highest SMF values for nine patients and second highest SMF values for the two. It also segments the entire aneurysm with the highest SMF values for ten patients and second highest SMF value for the one. This makes it potential for clinical assessment of the volume and aspect ratio of the intracranial aneurysms.

  4. SU-E-J-168: Automated Pancreas Segmentation Based On Dynamic MRI

    International Nuclear Information System (INIS)

    Gou, S; Rapacchi, S; Hu, P; Sheng, K

    2014-01-01

    Purpose: MRI guided radiotherapy is particularly attractive for abdominal targets with low CT contrast. To fully utilize this modality for pancreas tracking, automated segmentation tools are needed. A hybrid gradient, region growth and shape constraint (hGReS) method to segment 2D upper abdominal dynamic MRI is developed for this purpose. Methods: 2D coronal dynamic MR images of 2 healthy volunteers were acquired with a frame rate of 5 f/second. The regions of interest (ROIs) included the liver, pancreas and stomach. The first frame was used as the source where the centers of the ROIs were annotated. These center locations were propagated to the next dynamic MRI frame. 4-neighborhood region transfer growth was performed from these initial seeds for rough segmentation. To improve the results, gradient, edge and shape constraints were applied to the ROIs before final refinement using morphological operations. Results from hGReS and 3 other automated segmentation methods using edge detection, region growth and level set were compared to manual contouring. Results: For the first patient, hGReS resulted in the organ segmentation accuracy as measure by the Dices index (0.77) for the pancreas. The accuracy was slightly superior to the level set method (0.72), and both are significantly more accurate than the edge detection (0.53) and region growth methods (0.42). For the second healthy volunteer, hGReS reliably segmented the pancreatic region, achieving a Dices index of 0.82, 0.92 and 0.93 for the pancreas, stomach and liver, respectively, comparing to manual segmentation. Motion trajectories derived from the hGReS, level set and manual segmentation methods showed high correlation to respiratory motion calculated using a lung blood vessel as the reference while the other two methods showed substantial motion tracking errors. hGReS was 10 times faster than level set. Conclusion: We have shown the feasibility of automated segmentation of the pancreas anatomy based on

  5. Complete genome sequences of cowpea polerovirus 1 and cowpea polerovirus 2 infecting cowpea plants in Burkina Faso.

    Science.gov (United States)

    Palanga, Essowè; Martin, Darren P; Galzi, Serge; Zabré, Jean; Bouda, Zakaria; Neya, James Bouma; Sawadogo, Mahamadou; Traore, Oumar; Peterschmitt, Michel; Roumagnac, Philippe; Filloux, Denis

    2017-07-01

    The full-length genome sequences of two novel poleroviruses found infecting cowpea plants, cowpea polerovirus 1 (CPPV1) and cowpea polerovirus 2 (CPPV2), were determined using overlapping RT-PCR and RACE-PCR. Whereas the 5845-nt CPPV1 genome was most similar to chickpea chlorotic stunt virus (73% identity), the 5945-nt CPPV2 genome was most similar to phasey bean mild yellow virus (86% identity). The CPPV1 and CPPV2 genomes both have a typical polerovirus genome organization. Phylogenetic analysis of the inferred P1-P2 and P3 amino acid sequences confirmed that CPPV1 and CPPV2 are indeed poleroviruses. Four apparently unique recombination events were detected within a dataset of 12 full polerovirus genome sequences, including two events in the CPPV2 genome. Based on the current species demarcation criteria for the family Luteoviridae, we tentatively propose that CPPV1 and CPPV2 should be considered members of novel polerovirus species.

  6. Draft genome sequence of the intestinal parasite Blastocystis subtype 4-isolate WR1

    NARCIS (Netherlands)

    Wawrzyniak, Ivan; Courtine, Damien; Osman, Marwan; Hubans-Pierlot, Christine; Cian, Amandine; Nourrisson, Céline; Chabe, Magali; Poirier, Philippe; Bart, Aldert; Polonais, Valérie; Delgado-Viscogliosi, Pilar; El Alaoui, Hicham; Belkorchia, Abdel; van Gool, Tom; Tan, Kevin S. W.; Ferreira, Stéphanie; Viscogliosi, Eric; Delbac, Frédéric

    2015-01-01

    (ST1-ST17) described to date. Only the whole genome of a human ST7 isolate was previously sequenced. Here we report the draft genome sequence of Blastocystis ST4-WR1 isolated from a laboratory rodent at Singapore. (C) 2015 The Authors. Published by Elsevier Inc

  7. High-resolution comparative mapping among man, cattle and mouse suggests a role for repeat sequences in mammalian genome evolution

    Directory of Open Access Journals (Sweden)

    Rodolphe François

    2006-08-01

    Full Text Available Abstract Background Comparative mapping provides new insights into the evolutionary history of genomes. In particular, recent studies in mammals have suggested a role for segmental duplication in genome evolution. In some species such as Drosophila or maize, transposable elements (TEs have been shown to be involved in chromosomal rearrangements. In this work, we have explored the presence of interspersed repeats in regions of chromosomal rearrangements, using an updated high-resolution integrated comparative map among cattle, man and mouse. Results The bovine, human and mouse comparative autosomal map has been constructed using data from bovine genetic and physical maps and from FISH-mapping studies. We confirm most previous results but also reveal some discrepancies. A total of 211 conserved segments have been identified between cattle and man, of which 33 are new segments and 72 correspond to extended, previously known segments. The resulting map covers 91% and 90% of the human and bovine genomes, respectively. Analysis of breakpoint regions revealed a high density of species-specific interspersed repeats in the human and mouse genomes. Conclusion Analysis of the breakpoint regions has revealed specific repeat density patterns, suggesting that TEs may have played a significant role in chromosome evolution and genome plasticity. However, we cannot rule out that repeats and breakpoints accumulate independently in the few same regions where modifications are better tolerated. Likewise, we cannot ascertain whether increased TE density is the cause or the consequence of chromosome rearrangements. Nevertheless, the identification of high density repeat clusters combined with a well-documented repeat phylogeny should highlight probable breakpoints, and permit their precise dating. Combining new statistical models taking the present information into account should help reconstruct ancestral karyotypes.

  8. VaProS: a database-integration approach for protein/genome information retrieval

    KAUST Repository

    Gojobori, Takashi; Ikeo, Kazuho; Katayama, Yukie; Kawabata, Takeshi; Kinjo, Akira R.; Kinoshita, Kengo; Kwon, Yeondae; Migita, Ohsuke; Mizutani, Hisashi; Muraoka, Masafumi; Nagata, Koji; Omori, Satoshi; Sugawara, Hideaki; Yamada, Daichi; Yura, Kei

    2016-01-01

    Life science research now heavily relies on all sorts of databases for genome sequences, transcription, protein three-dimensional (3D) structures, protein–protein interactions, phenotypes and so forth. The knowledge accumulated by all the omics research is so vast that a computer-aided search of data is now a prerequisite for starting a new study. In addition, a combinatory search throughout these databases has a chance to extract new ideas and new hypotheses that can be examined by wet-lab experiments. By virtually integrating the related databases on the Internet, we have built a new web application that facilitates life science researchers for retrieving experts’ knowledge stored in the databases and for building a new hypothesis of the research target. This web application, named VaProS, puts stress on the interconnection between the functional information of genome sequences and protein 3D structures, such as structural effect of the gene mutation. In this manuscript, we present the notion of VaProS, the databases and tools that can be accessed without any knowledge of database locations and data formats, and the power of search exemplified in quest of the molecular mechanisms of lysosomal storage disease. VaProS can be freely accessed at http://p4d-info.nig.ac.jp/vapros/.

  9. VaProS: a database-integration approach for protein/genome information retrieval

    KAUST Repository

    Gojobori, Takashi

    2016-12-24

    Life science research now heavily relies on all sorts of databases for genome sequences, transcription, protein three-dimensional (3D) structures, protein–protein interactions, phenotypes and so forth. The knowledge accumulated by all the omics research is so vast that a computer-aided search of data is now a prerequisite for starting a new study. In addition, a combinatory search throughout these databases has a chance to extract new ideas and new hypotheses that can be examined by wet-lab experiments. By virtually integrating the related databases on the Internet, we have built a new web application that facilitates life science researchers for retrieving experts’ knowledge stored in the databases and for building a new hypothesis of the research target. This web application, named VaProS, puts stress on the interconnection between the functional information of genome sequences and protein 3D structures, such as structural effect of the gene mutation. In this manuscript, we present the notion of VaProS, the databases and tools that can be accessed without any knowledge of database locations and data formats, and the power of search exemplified in quest of the molecular mechanisms of lysosomal storage disease. VaProS can be freely accessed at http://p4d-info.nig.ac.jp/vapros/.

  10. Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation

    Directory of Open Access Journals (Sweden)

    Richard eBeare

    2016-03-01

    Full Text Available Measuring the distribution of brain tissue types (tissue classification in neonates is necessary for studying typical and atypical brain development, such as that associated with preterm birth, and may provide biomarkers for neurodevelopmental outcomes. Compared with magnetic resonance images of adults, neonatal images present specific challenges that require the development of specialized, population-specific methods. This paper introduces MANTiS (Morphologically Adaptive Neonatal Tissue Segmentation, which extends the unified segmentation approach to tissue classification implemented in Statistical Parametric Mapping (SPM software to neonates. MANTiS utilizes a combination of unified segmentation, template adaptation via morphological segmentation tools and topological filtering, to segment the neonatal brain into eight tissue classes: cortical gray matter, white matter, deep nuclear gray matter, cerebellum, brainstem, cerebrospinal fluid (CSF, hippocampus and amygdala. We evaluated the performance of MANTiS using two independent datasets. The first dataset, provided by the NeoBrainS12 challenge, consisted of coronal T2-weighted images of preterm infants (born ≤30 weeks’ gestation acquired at 30 weeks’ corrected gestational age (n= 5, coronal T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5 and axial T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5. The second dataset, provided by the Washington University NeuroDevelopmental Research (WUNDeR group, consisted of T2-weighted images of preterm infants (born <30 weeks’ gestation acquired shortly after birth (n= 12, preterm infants acquired at term-equivalent age (n= 12, and healthy term-born infants (born ≥38 weeks’ gestation acquired within the first nine days of life (n= 12. For the NeoBrainS12 dataset, mean Dice scores comparing MANTiS with manual segmentations were all above 0.7, except for

  11. Unleashing the genome of Brassica rapa

    Directory of Open Access Journals (Sweden)

    Haibao eTang

    2012-07-01

    Full Text Available The completion and release of the Brassica rapa genome is of great benefit to researchers of the Brassicas, Arabidopsis, and genome evolution. While its lineage is closely related to the model organism Arabidopsis thaliana, the Brassicas experienced a whole genome triplication subsequent to their divergence. This event contemporaneously created three copies of its ancestral genome, which had diploidized through the process of homeologous gene loss known as fractionation. By the fractionation of homeologous gene content and genetic regulatory binding sites, Brassica’s genome is well placed to use comparative genomic techniques to identify syntenic regions, homeologous gene duplications, and putative regulatory sequences. Here, we use the comparative genomics platform CoGe to perform several different genomic analyses with which to study structural changes of its genome and dynamics of various genetic elements. Starting with whole genome comparisons, the Brassica paleohexaploidy is characterized, syntenic regions with Arabidopsis thaliana are identified, and the TOC1 gene in the circadian rhythm pathway from Arabidopsis thaliana is used to find duplicated orthologs in Brassica rapa. These TOC1 genes are further analyzed to identify conserved noncoding sequences that contain cis-acting regulatory elements and promoter sequences previously implicated in circadian rhythmicity. Each 'cookbook style' analysis includes a step-by-step walkthrough with links to CoGe to quickly reproduce each step of the analytical process.

  12. Mms1 binds to G-rich regions in Saccharomyces cerevisiae and influences replication and genome stability

    NARCIS (Netherlands)

    Wanzek, Katharina; Schwindt, Eike; Capra, John A.; Paeschke, Katrin

    2017-01-01

    The regulation of replication is essential to preserve genome integrity. Mms1 is part of the E3 ubiquitin ligase complex that is linked to replication fork progression. By identifying Mms1 binding sites genome-wide in Saccharomyces cerevisiae we connected Mms1 function to genome integrity and

  13. Extensive structural variations between mitochondrial genomes of CMS and normal peppers (Capsicum annuum L.) revealed by complete nucleotide sequencing.

    Science.gov (United States)

    Jo, Yeong Deuk; Choi, Yoomi; Kim, Dong-Hwan; Kim, Byung-Dong; Kang, Byoung-Cheorl

    2014-07-04

    Cytoplasmic male sterility (CMS) is an inability to produce functional pollen that is caused by mutation of the mitochondrial genome. Comparative analyses of mitochondrial genomes of lines with and without CMS in several species have revealed structural differences between genomes, including extensive rearrangements caused by recombination. However, the mitochondrial genome structure and the DNA rearrangements that may be related to CMS have not been characterized in Capsicum spp. We obtained the complete mitochondrial genome sequences of the pepper CMS line FS4401 (507,452 bp) and the fertile line Jeju (511,530 bp). Comparative analysis between mitochondrial genomes of peppers and tobacco that are included in Solanaceae revealed extensive DNA rearrangements and poor conservation in non-coding DNA. In comparison between pepper lines, FS4401 and Jeju mitochondrial DNAs contained the same complement of protein coding genes except for one additional copy of an atp6 gene (ψatp6-2) in FS4401. In terms of genome structure, we found eighteen syntenic blocks in the two mitochondrial genomes, which have been rearranged in each genome. By contrast, sequences between syntenic blocks, which were specific to each line, accounted for 30,380 and 17,847 bp in FS4401 and Jeju, respectively. The previously-reported CMS candidate genes, orf507 and ψatp6-2, were located on the edges of the largest sequence segments that were specific to FS4401. In this region, large number of small sequence segments which were absent or found on different locations in Jeju mitochondrial genome were combined together. The incorporation of repeats and overlapping of connected sequence segments by a few nucleotides implied that extensive rearrangements by homologous recombination might be involved in evolution of this region. Further analysis using mtDNA pairs from other plant species revealed common features of DNA regions around CMS-associated genes. Although large portion of sequence context was

  14. Complete genome sequence of an attenuated Sparfloxacin resistant Streptococcus agalactiae strain 138spar

    Science.gov (United States)

    Through selection of resistance to sparfloxacin, an attenuated Streptococcus agalactiae strain 138spar was obtained from its virulent parent strain S. agalactiae 138P. The full genome of S. agalactiae 138spar is 1,838,126 bp. The availability of this genome will allow comparative genomics to identi...

  15. Patient-controlled encrypted genomic data: an approach to advance clinical genomics

    Directory of Open Access Journals (Sweden)

    Trakadis Yannis J

    2012-07-01

    Full Text Available Abstract Background The revolution in DNA sequencing technologies over the past decade has made it feasible to sequence an individual’s whole genome at a relatively low cost. The potential value of the information generated by genomic technologies for medicine and society is enormous. However, in order for exome sequencing, and eventually whole genome sequencing, to be implemented clinically, a number of major challenges need to be overcome. For instance, obtaining meaningful informed-consent, managing incidental findings and the great volume of data generated (including multiple findings with uncertain clinical significance, re-interpreting the genomic data and providing additional counselling to patients as genetic knowledge evolves are issues that need to be addressed. It appears that medical genetics is shifting from the present “phenotype-first” medical model to a “data-first” model which leads to multiple complexities. Discussion This manuscript discusses the different challenges associated with integrating genomic technologies into clinical practice and describes a “phenotype-first” approach, namely, “Individualized Mutation-weighed Phenotype Search”, and its benefits. The proposed approach allows for a more efficient prioritization of the genes to be tested in a clinical lab based on both the patient’s phenotype and his/her entire genomic data. It simplifies “informed-consent” for clinical use of genomic technologies and helps to protect the patient’s autonomy and privacy. Overall, this approach could potentially render widespread use of genomic technologies, in the immediate future, practical, ethical and clinically useful. Summary The “Individualized Mutation-weighed Phenotype Search” approach allows for an incremental integration of genomic technologies into clinical practice. It ensures that we do not over-medicalize genomic data but, rather, continue our current medical model which is based on serving

  16. Genome sequence determination and metagenomic characterization of a Dehalococcoides mixed culture grown on cis-1,2-dichloroethene.

    Science.gov (United States)

    Yohda, Masafumi; Yagi, Osami; Takechi, Ayane; Kitajima, Mizuki; Matsuda, Hisashi; Miyamura, Naoaki; Aizawa, Tomoko; Nakajima, Mutsuyasu; Sunairi, Michio; Daiba, Akito; Miyajima, Takashi; Teruya, Morimi; Teruya, Kuniko; Shiroma, Akino; Shimoji, Makiko; Tamotsu, Hinako; Juan, Ayaka; Nakano, Kazuma; Aoyama, Misako; Terabayashi, Yasunobu; Satou, Kazuhito; Hirano, Takashi

    2015-07-01

    A Dehalococcoides-containing bacterial consortium that performed dechlorination of 0.20 mM cis-1,2-dichloroethene to ethene in 14 days was obtained from the sediment mud of the lotus field. To obtain detailed information of the consortium, the metagenome was analyzed using the short-read next-generation sequencer SOLiD 3. Matching the obtained sequence tags with the reference genome sequences indicated that the Dehalococcoides sp. in the consortium was highly homologous to Dehalococcoides mccartyi CBDB1 and BAV1. Sequence comparison with the reference sequence constructed from 16S rRNA gene sequences in a public database showed the presence of Sedimentibacter, Sulfurospirillum, Clostridium, Desulfovibrio, Parabacteroides, Alistipes, Eubacterium, Peptostreptococcus and Proteocatella in addition to Dehalococcoides sp. After further enrichment, the members of the consortium were narrowed down to almost three species. Finally, the full-length circular genome sequence of the Dehalococcoides sp. in the consortium, D. mccartyi IBARAKI, was determined by analyzing the metagenome with the single-molecule DNA sequencer PacBio RS. The accuracy of the sequence was confirmed by matching it to the tag sequences obtained by SOLiD 3. The genome is 1,451,062 nt and the number of CDS is 1566, which includes 3 rRNA genes and 47 tRNA genes. There exist twenty-eight RDase genes that are accompanied by the genes for anchor proteins. The genome exhibits significant sequence identity with other Dehalococcoides spp. throughout the genome, but there exists significant difference in the distribution RDase genes. The combination of a short-read next-generation DNA sequencer and a long-read single-molecule DNA sequencer gives detailed information of a bacterial consortium. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. EVOLUTION OF CUSTOMERS’ SEGMENTATION TECHNIQUES IN RETAIL BANKING

    Directory of Open Access Journals (Sweden)

    PASCU ADRIAN IONUT

    2017-11-01

    Full Text Available In the context of a highly competitive market influenced by legislative changes, the technology evolution and the changes of customer’s behavior, traditional banks must be able to provide the services and products expected by customers. The most important method in retail banking by which a bank can interact with as many customers as possible to ensure satisfaction and loyalty is the notion of customers’ segmentation. The current situation from the perspective of customers’ expectations will be brought to your attention, as well as the future situation from the perspective of legislative changes and which are the main variables and techniques that allow us a relevant customers’ segmentation in this context. The challenges and opportunities of the Directive PDS2 (Payment Service Directive [7] will be analyzed, which together with the results of a study carried out by Ernst & Young "The relevance of the challenge: what retail banks must do to remain in the game" [5], make me say that now, more than ever, commercial banks must pay special attention to customer‘ segmentation. The objective of this paper is to present the evolution of the customers’ segmentation process starting from the 50’s – 60’s, when the first segmentation techniques appeared, until now, when because of the large quantities of data, there are used increasingly advanced techniques for extracting and interpreting data.

  18. A Genome-Wide Landscape of Retrocopies in Primate Genomes.

    Science.gov (United States)

    Navarro, Fábio C P; Galante, Pedro A F

    2015-07-29

    Gene duplication is a key factor contributing to phenotype diversity across and within species. Although the availability of complete genomes has led to the extensive study of genomic duplications, the dynamics and variability of gene duplications mediated by retrotransposition are not well understood. Here, we predict mRNA retrotransposition and use comparative genomics to investigate their origin and variability across primates. Analyzing seven anthropoid primate genomes, we found a similar number of mRNA retrotranspositions (∼7,500 retrocopies) in Catarrhini (Old Word Monkeys, including humans), but a surprising large number of retrocopies (∼10,000) in Platyrrhini (New World Monkeys), which may be a by-product of higher long interspersed nuclear element 1 activity in these genomes. By inferring retrocopy orthology, we dated most of the primate retrocopy origins, and estimated a decrease in the fixation rate in recent primate history, implying a smaller number of species-specific retrocopies. Moreover, using RNA-Seq data, we identified approximately 3,600 expressed retrocopies. As expected, most of these retrocopies are located near or within known genes, present tissue-specific and even species-specific expression patterns, and no expression correlation to their parental genes. Taken together, our results provide further evidence that mRNA retrotransposition is an active mechanism in primate evolution and suggest that retrocopies may not only introduce great genetic variability between lineages but also create a large reservoir of potentially functional new genomic loci in primate genomes. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Bluejay 1.0: genome browsing and comparison with rich customization provision and dynamic resource linking

    Directory of Open Access Journals (Sweden)

    Turinsky Andrei L

    2008-10-01

    Full Text Available Abstract Background The Bluejay genome browser has been developed over several years to address the challenges posed by the ever increasing number of data types as well as the increasing volume of data in genome research. Beginning with a browser capable of rendering views of XML-based genomic information and providing scalable vector graphics output, we have now completed version 1.0 of the system with many additional features. Our development efforts were guided by our observation that biologists who use both gene expression profiling and comparative genomics gain functional insights above and beyond those provided by traditional per-gene analyses. Results Bluejay 1.0 is a genome viewer integrating genome annotation with: (i gene expression information; and (ii comparative analysis with an unlimited number of other genomes in the same view. This allows the biologist to see a gene not just in the context of its genome, but also its regulation and its evolution. Bluejay now has rich provision for personalization by users: (i numerous display customization features; (ii the availability of waypoints for marking multiple points of interest on a genome and subsequently utilizing them; and (iii the ability to take user relevance feedback of annotated genes or textual items to offer personalized recommendations. Bluejay 1.0 also embeds the Seahawk browser for the Moby protocol, enabling users to seamlessly invoke hundreds of Web Services on genomic data of interest without any hard-coding. Conclusion Bluejay offers a unique set of customizable genome-browsing features, with the goal of allowing biologists to quickly focus on, analyze, compare, and retrieve related information on the parts of the genomic data they are most interested in. We expect these capabilities of Bluejay to benefit the many biologists who want to answer complex questions using the information available from completely sequenced genomes.

  20. The complex jujube genome provides insights into fruit tree biology.

    Science.gov (United States)

    Liu, Meng-Jun; Zhao, Jin; Cai, Qing-Le; Liu, Guo-Cheng; Wang, Jiu-Rui; Zhao, Zhi-Hui; Liu, Ping; Dai, Li; Yan, Guijun; Wang, Wen-Jiang; Li, Xian-Song; Chen, Yan; Sun, Yu-Dong; Liu, Zhi-Guo; Lin, Min-Juan; Xiao, Jing; Chen, Ying-Ying; Li, Xiao-Feng; Wu, Bin; Ma, Yong; Jian, Jian-Bo; Yang, Wei; Yuan, Zan; Sun, Xue-Chao; Wei, Yan-Li; Yu, Li-Li; Zhang, Chi; Liao, Sheng-Guang; He, Rong-Jun; Guang, Xuan-Min; Wang, Zhuo; Zhang, Yue-Yang; Luo, Long-Hai

    2014-10-28

    The jujube (Ziziphus jujuba Mill.), a member of family Rhamnaceae, is a major dry fruit and a traditional herbal medicine for more than one billion people. Here we present a high-quality sequence for the complex jujube genome, the first genome sequence of Rhamnaceae, using an integrated strategy. The final assembly spans 437.65 Mb (98.6% of the estimated) with 321.45 Mb anchored to the 12 pseudo-chromosomes and contains 32,808 genes. The jujube genome has undergone frequent inter-chromosome fusions and segmental duplications, but no recent whole-genome duplication. Further analyses of the jujube-specific genes and transcriptome data from 15 tissues reveal the molecular mechanisms underlying some specific properties of the jujube. Its high vitamin C content can be attributed to a unique high level expression of genes involved in both biosynthesis and regeneration. Our study provides insights into jujube-specific biology and valuable genomic resources for the improvement of Rhamnaceae plants and other fruit trees.