WorldWideScience

Sample records for s-transferases gst polymorphisms

  1. EFEK POLIMORFISME GENA GSTP-1 TERHADAP AKTIVITAS GLUTATION S-TRANSFERASE (GST PADA INDIVIDU TERPAPAR LOGAM BERAT TIMBAL (Effect of GSTP-1 Gene Polymorphismson Glutation S- Transferase (GST Activity in Heavy Metals Lead-Exposed Individual

    Directory of Open Access Journals (Sweden)

    Hernayanti Hernayanti

    2015-11-01

    Full Text Available ABSTRAK Gena GSTP-1 merupakan penghasil enzim glutation S- transferase (GST, yang berfungsi dalam proses detoksifikasi senyawa toksik di hati. Faktor keberadaan polimorfisme gena GSTP-1 akan menyebabkan penurunan ekspresi GST, sehingga proses detoksifikasi terhadap senyawa toksik akan terhambat. Kerentanan terhadap paparan senyawa toksik pada manusia akan meningkat apabila dijumpai polimorfisme gena. Salah satu senyawa toksik yang dapat menghambat aktivitas GST adalah timbal (Pb, terutama dalam bentuk tetra ethyl lead (TEL. Tujuan penelitian adalah untuk mengetahui pengaruh polimorfisme gena GSTP-1 terhadap aktivitas GST pada individu terpapar Pb, yang diwakili pekerja bengkel mobil. Faktor keberadaan polimorfisme gena individu ditentukan dengan metode PCR-RFLP dan enzim restriksi BsmA1. Parameter yang diukur adalah kadar Pb dan aktivitas GST. Analisis molekuler gena GSTP-1 dilakukan secara deskriptif. Data kadar Pb dan aktivitas GST dianalisis dengan uji t independent. Hasil analisis gena GSTP-1 dari 40 orang subyek kasus setelah dilakukan digesti dengan enzim BsmA1, ditemukan sebanyak 10 orang individu dengan polimorfisme Ile105Val gena GSTP 1 atau sekitar 25% dengan genotip Ile-Val, sedangkan 30 orang atau 75% ditemukan tanpa polimorfisme dengan genotip Ile-Ile. Pita DNA individu dengan polimorfisme terpotong menjadi 3 fragmen sepanjang 176, 91 dan 85 pp (mutan heterozygot, sedangkan tanpa polimorfisme terletak pada 176 bp. Subyek kasus dengan polimorfisme gena GSTP-1 memiliki kadar Pb lebih tinggi dan aktivitas GST lebih rendah dibandingkan individu non polimorfisme. Telah terbukti bahwa polimorfisme gena GSTP-1 menyebabkan penurunan ekspresi enzim GST. Pada individu terpapar Pb dengan polimorfisme gena GSTP-1 memiliki aktivitas GST lebih rendah dibandingkan individu tanpa polimorfisme. ABSTRACT GSTP-1 gene regulates the expression of gluthation S-transferase enzyme, which role in detoxification of toxicant on liver. If the polymorphisms

  2. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam

    International Nuclear Information System (INIS)

    Agusa, Tetsuro; Iwata, Hisato; Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Tu Binh Minh; Pham Thi Kim Trang; Pham Hung Viet; Tanabe, Shinsuke

    2010-01-01

    To elucidate the role of genetic factors in arsenic metabolism, we investigated associations of genetic polymorphisms in the members of glutathione S-transferase (GST) superfamily with the arsenic concentrations in hair and urine, and urinary arsenic profile in residents in the Red River Delta, Vietnam. Genotyping was conducted for GST ω1 (GSTO1) Ala140Asp, Glu155del, Glu208Lys, Thr217Asn, and Ala236Val, GST ω2 (GSTO2) Asn142Asp, GST π1 (GSTP1) Ile105Val, GST μ1 (GSTM1) wild/null, and GST θ1 (GSTT1) wild/null. There were no mutation alleles for GSTO1 Glu208Lys, Thr217Asn, and Ala236Val in this population. GSTO1 Glu155del hetero type showed higher urinary concentration of As V than the wild homo type. Higher percentage of DMA V in urine of GSTM1 wild type was observed compared with that of the null type. Strong correlations between GSTP1 Ile105Val and arsenic exposure level and profile were observed in this study. Especially, heterozygote of GSTP1 Ile105Val had a higher metabolic capacity from inorganic arsenic to monomethyl arsenic, while the opposite trend was observed for ability of metabolism from As V to As III . Furthermore, other factors including sex, age, body mass index, arsenic level in drinking water, and genotypes of As (+ 3 oxidation state) methyltransferase (AS3MT) were also significantly co-associated with arsenic level and profile in the Vietnamese. To our knowledge, this is the first study indicating the associations of genetic factors of GST superfamily with arsenic metabolism in a Vietnamese population.

  3. The role of glutathione S-transferase and claudin-1 gene polymorphisms in contact sensitization

    DEFF Research Database (Denmark)

    Ross-Hansen, K; Linneberg, A; Johansen, J D

    2013-01-01

    BACKGROUND: Contact sensitization is frequent in the general population and arises from excessive or repeated skin exposure to chemicals and metals. However, little is known about its genetic susceptibility. OBJECTIVES: To determine the role of polymorphisms of glutathione S-transferase (GST) genes...

  4. Identification of Protein-Protein Interactions with Glutathione-S-Transferase (GST) Fusion Proteins.

    Science.gov (United States)

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-08-01

    INTRODUCTIONGlutathione-S-transferase (GST) fusion proteins have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis. This article describes the use of GST fusion proteins as probes for the identification of protein-protein interactions.

  5. Glutathione S-transferase gene polymorphisms in presbycusis.

    Science.gov (United States)

    Ateş, Nurcan Aras; Unal, Murat; Tamer, Lülüfer; Derici, Ebru; Karakaş, Sevim; Ercan, Bahadir; Pata, Yavuz Selim; Akbaş, Yücel; Vayisoğlu, Yusuf; Camdeviren, Handan

    2005-05-01

    Glutathione and glutathione-related antioxidant enzymes are involved in the metabolism and detoxification of cytotoxic and carcinogenic compounds as well as reactive oxygen species. Reactive oxygen species generation occurs in prolonged relative hypoperfusion conditions such as in aging. The etiology of presbycusis is much less certain; however, a complex genetic cause is most likely. The effect of aging shows a wide interindividual range; we aimed to investigate whether profiles of (glutathione S-transferase (GST) M1, T1 and P1 genotypes may be associated with the risk of age-related hearing loss. We examined 68 adults with presbycusis and 69 healthy controls. DNA was extracted from whole blood, and the GSTM1, GSTT1 and GSTP1 polymorphisms were determined using a real-time polymerase chain reaction and fluorescence resonance energy transfer with a Light-Cycler Instrument. Associations between specific genotypes and the development of presbycusis were examined by use of logistic regression analyses to calculate odds ratios and 95% confidence intervals. Gene polymorphisms at GSTM1, GSTT1, and GSTP1 in subjects with presbycusis were not significantly different than in the controls (p > 0.05). Also, the combinations of different GSTM1, GSTT1, and GSTP1 genotypes were not an increased risk of presbycusis (p > 0.05). We could not demonstrate any significant association between the GSTM1, GSTT1, and GSTP1 polymorphism and age-related hearing loss in this population. This may be because of our sample size, and further studies need to investigate the exact role of GST gene polymorphisms in the etiopathogenesis of the presbycusis.

  6. Polymorphisms in the GST (M1 andT1) gene and their possible ...

    African Journals Online (AJOL)

    Glutathione S-transferases (GSTs) are enzymes involved in the detoxification of several environmental mutagens, carcinogens and anticancer drugs. GST polymorphisms resulting in decreased enzymatic activity have been associated with several types of solid tumors. We determined the frequencies of the deletion of two ...

  7. Genetic polymorphism in three glutathione s-transferase genes and breast cancer risk

    Energy Technology Data Exchange (ETDEWEB)

    Woldegiorgis, S.; Ahmed, R.C.; Zhen, Y.; Erdmann, C.A.; Russell, M.L.; Goth-Goldstein, R.

    2002-04-01

    The role of the glutathione S-transferase (GST) enzyme family is to detoxify environmental toxins and carcinogens and to protect organisms from their adverse effects, including cancer. The genes GSTM1, GSTP1, and GSTT1 code for three GSTs involved in the detoxification of carcinogens, such as polycyclic aromatic hydrocarbons (PAHs) and benzene. In humans, GSTM1 is deleted in about 50% of the population, GSTT1 is absent in about 20%, whereas the GSTP1 gene has a single base polymorphism resulting in an enzyme with reduced activity. Epidemiological studies indicate that GST polymorphisms increase the level of carcinogen-induced DNA damage and several studies have found a correlation of polymorphisms in one of the GST genes and an increased risk for certain cancers. We examined the role of polymorphisms in genes coding for these three GST enzymes in breast cancer. A breast tissue collection consisting of specimens of breast cancer patients and non-cancer controls was analyzed by polymerase chain reaction (PCR) for the presence or absence of the GSTM1 and GSTT1 genes and for GSTP1 single base polymorphism by PCR/RFLP. We found that GSTM1 and GSTT1 deletions occurred more frequently in cases than in controls, and GSTP1 polymorphism was more frequent in controls. The effective detoxifier (putative low-risk) genotype (defined as presence of both GSTM1 and GSTT1 genes and GSTP1 wild type) was less frequent in cases than controls (16% vs. 23%, respectively). The poor detoxifier (putative high-risk) genotype was more frequent in cases than controls. However, the sample size of this study was too small to provide conclusive results.

  8. Interactions of GST Polymorphisms in Air Pollution Exposure and Respiratory Diseases and Allergies.

    Science.gov (United States)

    Bowatte, Gayan; Lodge, Caroline J; Perret, Jennifer L; Matheson, Melanie C; Dharmage, Shyamali C

    2016-11-01

    The purpose of this review is to summarize the evidence from recently published original studies investigating how glutathione S-transferase (GST) gene polymorphisms modify the impact of air pollution on asthma, allergic diseases, and lung function. Current studies in epidemiological and controlled human experiments found evidence to suggest that GSTs modify the impact of air pollution exposure on respiratory diseases and allergies. Of the nine articles included in this review, all except one identified at least one significant interaction with at least one of glutathione S-transferase pi 1 (GSTP1), glutathione S-transferase mu 1 (GSTM1), or glutathione S-transferase theta 1 (GSTT1) genes and air pollution exposure. The findings of these studies, however, are markedly different. This difference can be partially explained by regional variation in the exposure levels and oxidative potential of different pollutants and by other interactions involving a number of unaccounted environment exposures and multiple genes. Although there is evidence of an interaction between GST genes and air pollution exposure for the risk of respiratory disease and allergies, results are not concordant. Further investigations are needed to explore the reasons behind the discordancy.

  9. Glutathione S Transferases Polymorphisms Are Independent Prognostic Factors in Lupus Nephritis Treated with Cyclophosphamide.

    Directory of Open Access Journals (Sweden)

    Alexandra Audemard-Verger

    Full Text Available To investigate association between genetic polymorphisms of GST, CYP and renal outcome or occurrence of adverse drug reactions (ADRs in lupus nephritis (LN treated with cyclophosphamide (CYC. CYC, as a pro-drug, requires bioactivation through multiple hepatic cytochrome P450s and glutathione S transferases (GST.We carried out a multicentric retrospective study including 70 patients with proliferative LN treated with CYC. Patients were genotyped for polymorphisms of the CYP2B6, CYP2C19, GSTP1, GSTM1 and GSTT1 genes. Complete remission (CR was defined as proteinuria ≤0.33g/day and serum creatinine ≤124 µmol/l. Partial remission (PR was defined as proteinuria ≤1.5g/day with a 50% decrease of the baseline proteinuria value and serum creatinine no greater than 25% above baseline.Most patients were women (84% and 77% were Caucasian. The mean age at LN diagnosis was 41 ± 10 years. The frequency of patients carrying the GST null genotype GSTT1-, GSTM1-, and the Ile→105Val GSTP1 genotype were respectively 38%, 60% and 44%. In multivariate analysis, the Ile→105Val GSTP1 genotype was an independent factor of poor renal outcome (achievement of CR or PR (OR = 5.01 95% CI [1.02-24.51] and the sole factor that influenced occurrence of ADRs was the GSTM1 null genotype (OR = 3.34 95% CI [1.064-10.58]. No association between polymorphisms of cytochrome P450s gene and efficacy or ADRs was observed.This study suggests that GST polymorphisms highly impact renal outcome and occurrence of ADRs related to CYC in LN patients.

  10. Examination of polymorphic glutathione S-transferase (GST) genes, tobacco smoking and prostate cancer risk among Men of African Descent: A case-control study

    International Nuclear Information System (INIS)

    Lavender, Nicole A; Benford, Marnita L; VanCleave, Tiva T; Brock, Guy N; Kittles, Rick A; Moore, Jason H; Hein, David W; Kidd, La Creis R

    2009-01-01

    Polymorphisms in glutathione S-transferase (GST) genes may influence response to oxidative stress and modify prostate cancer (PCA) susceptibility. These enzymes generally detoxify endogenous and exogenous agents, but also participate in the activation and inactivation of oxidative metabolites that may contribute to PCA development. Genetic variations within selected GST genes may influence PCA risk following exposure to carcinogen compounds found in cigarette smoke and decreased the ability to detoxify them. Thus, we evaluated the effects of polymorphic GSTs (M1, T1, and P1) alone and combined with cigarette smoking on PCA susceptibility. In order to evaluate the effects of GST polymorphisms in relation to PCA risk, we used TaqMan allelic discrimination assays along with a multi-faceted statistical strategy involving conventional and advanced statistical methodologies (e.g., Multifactor Dimensionality Reduction and Interaction Graphs). Genetic profiles collected from 873 men of African-descent (208 cases and 665 controls) were utilized to systematically evaluate the single and joint modifying effects of GSTM1 and GSTT1 gene deletions, GSTP1 105 Val and cigarette smoking on PCA risk. We observed a moderately significant association between risk among men possessing at least one variant GSTP1 105 Val allele (OR = 1.56; 95%CI = 0.95-2.58; p = 0.049), which was confirmed by MDR permutation testing (p = 0.001). We did not observe any significant single gene effects among GSTM1 (OR = 1.08; 95%CI = 0.65-1.82; p = 0.718) and GSTT1 (OR = 1.15; 95%CI = 0.66-2.02; p = 0.622) on PCA risk among all subjects. Although the GSTM1-GSTP1 pairwise combination was selected as the best two factor LR and MDR models (p = 0.01), assessment of the hierarchical entropy graph suggested that the observed synergistic effect was primarily driven by the GSTP1 Val marker. Notably, the GSTM1-GSTP1 axis did not provide additional information gain when compared to either loci alone based on a

  11. Polymorphisms of glutathione-S-transferase M1, T1, P1 and the risk of prostate cancer: a case-control study

    Directory of Open Access Journals (Sweden)

    Račay Peter

    2009-03-01

    Full Text Available Abstract Background It has been suggested that polymorphisms in glutathione-S-transferases (GST could predispose to prostate cancer through a heritable deficiency in detoxification pathways for environmental carcinogens. Yet, studies linking GST polymorphism and prostate cancer have so far failed to unambiguously establish this relation in patients. A retrospective study on healthy, unrelated subjects was conducted in order to estimate the population GST genotype frequencies in the Slovak population of men and compare our results with already published data (GSEC project-Genetic Susceptibility to Environmental Carcinogens. A further aim of the study was to evaluate polymorphisms in GST also in patients with prostate cancer in order to compare the evaluated proportions with those found in the control subjects. Methods We determined the GST genotypes in 228 healthy, unrelated subjects who attended regular prostate cancer screening between May 2005 and June 2007 and in 129 histologically verified prostate cancer patients. Analysis for the GST gene polymorphisms was performed by PCR and PCR-RFLP. Results We found that the GST frequencies are not significantly different from those estimated in a European multicentre study or from the results published by another group in Slovakia. Our results suggest that Val/Val genotype of GSTP1 gene could modulate the risk of prostate cancer, even if this association did not reach statistical significance. We did not observe significantly different crude rates of the GSTM1 and GSTT1 null genotypes in the men diagnosed with prostate cancer and those in the control group. Conclusion Understanding the contribution of GST gene polymorphisms and their interactions with other relevant factors may improve screening diagnostic assays for prostate cancer. We therefore discuss issues of study feasibility, study design, and statistical power, which should be taken into account in planning further trials.

  12. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene.

    OpenAIRE

    Itzhaki, H; Maxson, J M; Woodson, W R

    1994-01-01

    The increased production of ethylene during carnation petal senescence regulates the transcription of the GST1 gene encoding a subunit of glutathione-S-transferase. We have investigated the molecular basis for this ethylene-responsive transcription by examining the cis elements and trans-acting factors involved in the expression of the GST1 gene. Transient expression assays following delivery of GST1 5' flanking DNA fused to a beta-glucuronidase receptor gene were used to functionally define ...

  13. Mechanism of Gene Expression of Arabidopsis Glutathione S-Transferase, AtGST1, and AtGST11 in Response to Aluminum Stress1

    Science.gov (United States)

    Ezaki, Bunichi; Suzuki, Masakatsu; Motoda, Hirotoshi; Kawamura, Masako; Nakashima, Susumu; Matsumoto, Hideaki

    2004-01-01

    The gene expression of two Al-induced Arabidopsis glutathione S-transferase genes, AtGST1 and AtGST11, was analyzed to investigate the mechanism underlying the response to Al stress. An approximately 1-kb DNA fragment of the 5′-upstream region of each gene was fused to a β-glucuronidase (GUS) reporter gene (pAtGST1::GUS and pAtGST11::GUS) and introduced into Arabidopsis ecotype Landsberg erecta. The constructed transgenic lines showed a time-dependent gene expression to a different degree in the root and/or leaf by Al stress. The pAtGST1::GUS gene was induced after a short Al treatment (maximum expression after a 2-h exposure), while the pAtGST11::GUS gene was induced by a longer Al treatment (approximately 8 h for maximum expression). Since the gene expression was observed in the leaf when only the root was exposed to Al stress, a signaling system between the root and shoot was suggested in Al stress. A GUS staining experiment using an adult transgenic line carrying the pAtGST11::GUS gene supported this suggestion. Furthermore, Al treatment simultaneously with various Ca depleted conditions in root region enhanced the gene expression of the pAtGST11::GUS in the shoot region. This result suggested that the degree of Al toxicity in the root reflects the gene response of pAtGST11::GUS in the shoot via the deduced signaling system. Both transgenic lines also showed an increase of GUS activity after cold stress, heat stress, metal toxicity, and oxidative damages, suggesting a common induction mechanism in response to the tested stresses including Al stress. PMID:15047894

  14. Glutathione S-Transferase (GST Gene Diversity in the Crustacean Calanus finmarchicus--Contributors to Cellular Detoxification.

    Directory of Open Access Journals (Sweden)

    Vittoria Roncalli

    Full Text Available Detoxification is a fundamental cellular stress defense mechanism, which allows an organism to survive or even thrive in the presence of environmental toxins and/or pollutants. The glutathione S-transferase (GST superfamily is a set of enzymes involved in the detoxification process. This highly diverse protein superfamily is characterized by multiple gene duplications, with over 40 GST genes reported in some insects. However, less is known about the GST superfamily in marine organisms, including crustaceans. The availability of two de novo transcriptomes for the copepod, Calanus finmarchicus, provided an opportunity for an in depth study of the GST superfamily in a marine crustacean. The transcriptomes were searched for putative GST-encoding transcripts using known GST proteins from three arthropods as queries. The identified transcripts were then translated into proteins, analyzed for structural domains, and annotated using reciprocal BLAST analysis. Mining the two transcriptomes yielded a total of 41 predicted GST proteins belonging to the cytosolic, mitochondrial or microsomal classes. Phylogenetic analysis of the cytosolic GSTs validated their annotation into six different subclasses. The predicted proteins are likely to represent the products of distinct genes, suggesting that the diversity of GSTs in C. finmarchicus exceeds or rivals that described for insects. Analysis of relative gene expression in different developmental stages indicated low levels of GST expression in embryos, and relatively high expression in late copepodites and adult females for several cytosolic GSTs. A diverse diet and complex life history are factors that might be driving the multiplicity of GSTs in C. finmarchicus, as this copepod is commonly exposed to a variety of natural toxins. Hence, diversity in detoxification pathway proteins may well be key to their survival.

  15. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea

    Directory of Open Access Journals (Sweden)

    Harshavardhanan Vijayakumar

    2016-07-01

    Full Text Available Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18 are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS. Currently, understanding of their function(s during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT and cold susceptible (CS lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants.

  16. THE EFFECT OF POLYMORPHISM IN GLUTATHIONE S-TRANSFERASES ON THE DEVELOPING SECOND MALIGNANT NEOPLASMS AFTER LEUKEMIA TREATMENT IN CHILDHOOD

    Directory of Open Access Journals (Sweden)

    Janez Jazbec

    2004-12-01

    Full Text Available Background. Survivors of childhood leukemia have an increased risk of developing second malignant neoplasms and specific treatment factors such as alkylating agents, topoisomerase inhibitors and radiation have been associated with their occurrence. Genetic polymorphism in drug-metabolizing enzymes may result in impared detoxification of chemotherapeutics and may lead to increased risk for cancer.Methods. To test if polymorphism in glutathione S-transferases (GST genes is associated with occurrence of secondary malignant neoplasms, we compared GSTM1, GSTT1 and GSTP1 genotypes among 16 patients treated for childhood leukemia in whom second neoplasm occurred and matched the control group.Results. GSTM1 null genotype was found in 44% of patients with second neoplasms and in 50% in control group (p = 0.768, GSTT1 null genotype in 19% of cases and in 29% of controls (p = 0.729 and GSTP1 105 Ile/ile in 50% of cases and 37% of controls (p = 0.537. Differences in distribution of GST genotypes in patients with second neoplasms after childhood leukemia, compared to a matched control group of patients were not statistically significant.Conclusions. In our study we were not able to show relation between GST genotype and occurrence of second neoplasms after the childhood acute leukemia.

  17. Role of induced glutathione-S-transferase from Helicoverpa armigera (Lepidoptera: Noctuidae) HaGST-8 in detoxification of pesticides.

    Science.gov (United States)

    Labade, Chaitali P; Jadhav, Abhilash R; Ahire, Mehul; Zinjarde, Smita S; Tamhane, Vaijayanti A

    2018-01-01

    The present study deals with glutathione-S-transferase (GST) based detoxification of pesticides in Helicoverpa armigera and its potential application in eliminating pesticides from the environment. Dietary exposure of a pesticide mixture (organophosphates - chlorpyrifos and dichlorvos, pyrethroid - cypermethrin; 2-15ppm each) to H. armigera larvae resulted in a dose dependant up-regulation of GST activity and gene expression. A variant GST from H. armigera (HaGST-8) was isolated from larvae fed with 10ppm pesticide mixture and it was recombinantly expressed in yeast (Pichia pastoris HaGST-8). HaGST-8 had a molecular mass of 29kDa and was most active at pH 9 at 30°C. GC-MS and LC-HRMS analysis validated that HaGST-8 was effective in eliminating organophosphate type of pesticides and partially reduced the cypermethrin content (53%) from aqueous solutions. Unlike the untransformed yeast, P. pastoris HaGST-8 grew efficiently in media supplemented with pesticide mixtures (200 and 400ppm each pesticide) signifying the detoxification ability of HaGST-8. The amino acid sequence of HaGST-8 and the already reported sequence of HaGST-7 had just 2 mismatches. The studies on molecular interaction strengths revealed that HaGST-8 had stronger binding affinities with organophosphate, pyrethroid, organochloride, carbamate and neonicotinoid type of pesticides. The abilities of recombinant HaGST-8 to eliminate pesticides and P. pastoris HaGST-8 to grow profusely in the presence of high level of pesticide content can be applied for removal of such residues from food, water resources and bioremediation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Analysis of selected glutathione S-transferase gene polymorphisms in Malaysian type 2 diabetes mellitus patients with and without cardiovascular disease.

    Science.gov (United States)

    Etemad, A; Vasudevan, R; Aziz, A F A; Yusof, A K M; Khazaei, S; Fawzi, N; Jamalpour, S; Arkani, M; Mohammad, N A; Ismail, P

    2016-04-07

    Type 2 diabetes mellitus (T2DM) is believed to be associated with excessive production of reactive oxygen species. Glutathione S-transferase (GST) polymorphisms result in decreased or absent enzyme activity and altered oxidative stress, and have been associated with cardiovascular disease (CVD). The present study assessed the effect of GST polymorphisms on the risk of developing T2DM in individuals of Malaysian Malay ethnicity. A total of 287 subjects, consisting of 87 T2DM and 64 CVD/T2DM patients, as well as 136 healthy gender- and age-matched controls were genotyped for selected polymorphisms to evaluate associations with T2DM susceptibility. Genomic DNA was extracted using commercially available kits, and GSTM1, GSTT1, and α-globin sequences were amplified by multiplex polymerase chain reaction. Biochemical parameters were measured with a Hitachi autoanalyzer. The Fisher exact test, the chi-square statistic, and means ± standard deviations were calculated using the SPSS software. Overall, we observed no significant differences regarding genotype and allele frequencies between each group (P = 0.224 and 0.199, respectively). However, in the combined analysis of genotypes and blood measurements, fasting plasma glucose, HbA1c, and triglyceride levels, followed by age, body mass index, waist-hip ratio, systolic blood pressure, and history of T2DM significantly differed according to GST polymorphism (P ˂ 0.05). Genetically induced absence of the GSTT1 enzyme is an independent and powerful predictor of premature vascular morbidity and death in individuals with T2DM, and might be triggered by cigarette smoking's oxidative effects. These polymorphisms could be screened in other ethnicities within Malaysia to determine further possible risk factors.

  19. Geniposide activates GSH S-transferase by the induction of GST M1 and GST M2 subunits involving the transcription and phosphorylation of MEK-1 signaling in rat hepatocytes

    International Nuclear Information System (INIS)

    Kuo, W.-H.; Chou, F.-P.; Young, S.-C.; Chang, Y.-C.; Wang, C.-J.

    2005-01-01

    Geniposide, an iridoid glycoside isolated from the fruit of Gardenia jasminoides Ellis, has biological capabilities of detoxication, antioxidation, and anticarcinogenesis. We have recently found that geniposide possesses a potential for detoxication by inducing GST activity and the expression of GST M1 and GST M2 subunits. In this study, the signaling pathway of geniposide leading to the activation of GSH S-transferase (GST) was investigated. Primary cultured rat hepatocytes were treated with geniposide in the presence or absence of mitogen-activated protein kinase (MAPK) inhibitors and examined for GST activity, expression of GST M1 and M2 subunits, and protein levels of MAPK signaling proteins. Western blotting data demonstrated that geniposide induced increased protein levels of GST M1 and GST M2 (∼1.76- and 1.50-fold of control, respectively). The effect of geniposide on the increased protein levels of GST M1 and GST M2 was inhibited by the MEK-1 inhibitor PD98059, but not by other MAPK inhibitors. The GST M1 and GST M2 transcripts as determined by RT-PCR and GST activity were also inhibited concurrently by the MEK-1 inhibitor PD98059. The protein levels of up- and down-stream effectors of the MEK-1, including Ras, Raf, and Erk1/2, and the phosphorylation state of Erk1/2 were found to be induced by geniposide, indicating a two-phase influence of geniposide. The results suggest that geniposide induced GST activity and the expression of GST M1 and GST M2 acting through MEK-1 pathway by activating and increasing expression of Ras/Raf/MEK-1 signaling mediators

  20. Genome-Wide Identification, Characterization, and Expression Profiling of Glutathione S-Transferase (GST) Family in Pumpkin Reveals Likely Role in Cold-Stress Tolerance

    Science.gov (United States)

    Abdul Kayum, Md.; Nath, Ujjal Kumar; Park, Jong-In; Choi, Eung Kyoo; Song, Jae-Young; Kim, Hoy-Taek; Nou, Ill-Sup

    2018-01-01

    Plant growth and development can be adversely affected by cold stress, limiting productivity. The glutathione S-transferase (GST) family comprises important detoxifying enzymes, which play major roles in biotic and abiotic stress responses by reducing the oxidative damage caused by reactive oxygen species. Pumpkins (Cucurbita maxima) are widely grown, economically important, and nutritious; however, their yield can be severely affected by cold stress. The identification of putative candidate genes responsible for cold-stress tolerance, including the GST family genes, is therefore vital. For the first time, we identified 32 C. maxima GST (CmaGST) genes using a combination of bioinformatics approaches and characterized them by expression profiling. These CmaGST genes represent seven of the 14 known classes of plant GSTs, with 18 CmaGSTs categorized into the tau class. The CmaGSTs were distributed across 13 of pumpkin’s 20 chromosomes, with the highest numbers found on chromosomes 4 and 6. The large number of CmaGST genes resulted from gene duplication; 11 and 5 pairs of CmaGST genes were segmental- and tandem-duplicated, respectively. In addition, all CmaGST genes showed organ-specific expression. The expression of the putative GST genes in pumpkin was examined under cold stress in two lines with contrasting cold tolerance: cold-tolerant CP-1 (C. maxima) and cold-susceptible EP-1 (Cucurbita moschata). Seven genes (CmaGSTU3, CmaGSTU7, CmaGSTU8, CmaGSTU9, CmaGSTU11, CmaGSTU12, and CmaGSTU14) were highly expressed in the cold-tolerant line and are putative candidates for use in breeding cold-tolerant crop varieties. These results increase our understanding of the cold-stress-related functions of the GST family, as well as potentially enhancing pumpkin breeding programs. PMID:29439434

  1. Differential Roles for VviGST1, VviGST3, and VviGST4 in Proanthocyanidin and Anthocyanin Transport in Vitis vinífera.

    Science.gov (United States)

    Pérez-Díaz, Ricardo; Madrid-Espinoza, José; Salinas-Cornejo, Josselyn; González-Villanueva, Enrique; Ruiz-Lara, Simón

    2016-01-01

    In plant cells, flavonoids are synthesized in the cytosol and then are transported and accumulated in the vacuole. Glutathione S-transferase-mediated transport has been proposed as a mechanism involved in flavonoid transport, however, whether binding of flavonoids to glutathione S-transferase (GST) or their transport is glutathione-dependent is not well understood. Glutathione S-transferases from Vitis vinífera (VviGSTs) have been associated with the transport of anthocyanins, however, their ability to transport other flavonoids such as proanthocyanidins (PAs) has not been established. Following bioinformatics approaches, we analyzed the capability of VviGST1, VviGST3, VviGST4, and Arabidopsis TT19 to bind different flavonoids. Analyses of protein-ligand interactions indicate that these GSTs can bind glutathione and monomers of anthocyanin, PAs and flavonols. A total or partial overlap of the binding sites for glutathione and flavonoids was found in VviGST1, and a similar condition was observed in VviGST3 using anthocyanin and flavonols as ligands, whereas VviGST4 and TT19 have both sites for GSH and flavonoids separated. To validate the bioinformatics predictions, functional complementation assays using the Arabidopsis tt19 mutant were performed. Overexpression of VviGST3 in tt19-1 specifically rescued the dark seed coat phenotype associated to correct PA transport, which correlated with higher binding affinity for PA precursors. VviGST4, originally characterized as an anthocyanin-related GST, complemented both the anthocyanin and PA deposition, resembling the function of TT19. By contrast, VviGST1 only partially rescued the normal seed color. Furthermore the expression pattern of these VviGSTs showed that each of these genes could be associated with the accumulation of different flavonoids in specific tissues during grapevine fruit development. These results provide new insights into GST-mediated PA transport in grapevine and suggest that VviGSTs present

  2. Effects of glutathione s-transferase (GST) M1 and T1 polymorphisms on antioxidant vitamins and oxidative stress-related parameters in Korean subclinical hypertensive subjects after kale juice (Brassica oleracea acephala) supplementation.

    Science.gov (United States)

    Lee, Hye-Jin; Han, Jeong-Hwa; Park, Yoo Kyoung; Kang, Myung-Hee

    2018-04-01

    Glutathione s-transferase ( GST ) is involved in the formation of a multigene family comprising phase II detoxification enzymes, involved in the detoxification of reactive oxygen species. This study evaluated whether daily supplementation with kale juice could modulate levels of plasma antioxidant vitamins and oxidative stress-related parameters. We further examined whether this modulation was affected by combined GSTM1 and T1 polymorphisms. Totally, 84 subclinical hypertensive patients having systolic blood pressure (BP) over 130 mmHg or diastolic BP over 85 mmHg, received 300 mL of kale juice daily for 6 weeks. Blood samples were drawn before start of study and after completion of 6 weeks. After supplementation, we observed significant decrease in DNA damage and increase in erythrocyte catalase activity in all genotypes. Plasma level of vitamin C was significantly increased in the wild/null and double null genotypes. The plasma levels of β-carotene, erythrocyte glutathione peroxidase activity, and nitric oxide were increased only in the wild/null genotype after kale juice supplementation. The effect of kale juice was significantly greater in the GSTM1 null genotype and wild/null genotype groups, suggesting possibility of personalized nutritional prescriptions based on personal genetics.

  3. Glutathione S-transferase (GST) activity in the blood plasma of examines occupationally exposed to low doses: sex differences and confounding factor consequences

    International Nuclear Information System (INIS)

    Zunic, Z.; Djuric, J.; Sukalo, I.; Blagojevic, D; Spasic, M.B.; Saicic, Z.S.

    1998-01-01

    Studies on glutathione S-transferases (GSTs) in humans demonstrated that the changes in enzyme activities are substrate selective, as well as sex-dependent. Contrary to males, GST activities are found to be relatively stable with age in females. The paper deals with determination of GST activities in the blood plasma of healthy examines occupationally exposed to ionizing radiation. The control group consisted of the examines not exposed to sources of ionizing radiation by profession. Simultaneously, standard hematological and biochemical analyses were performed, respectively. Groups were subdivided by sex and smoking habits. GST activity (nmol GSH/min/L plasma) in male control group was 4.71±0.18 (1.05) and in female 4.53±0.15 (0.97). Exposure to ionizing radiation led to an increased GST activity in the blood plasma of both sexes (exposed males 5.17±0.35 (1.22), exposed females 4.91±1.00 (2.64). Values in the group of exposed females vary widely. Differences between GST activity of male smokers (5.12±0.19 (1.07)) and male controls, as well as between female smokers (4.93±0.22 (1.39)) and female controls were observed. Difference in GST value distributions was evident in the group of female smokers in comparison with female controls. Presented results indicate that measuring GST activity in the blood plasma might be an useful parameter for examination of ionizing radiation effects. (author)

  4. Glutathione transferase (GST) as a candidate molecular-based biomarker for soil toxin exposure in the earthworm Lumbricus rubellus

    International Nuclear Information System (INIS)

    LaCourse, E. James; Hernandez-Viadel, Mariluz; Jefferies, James R.; Svendsen, Claus; Spurgeon, David J.; Barrett, John; John Morgan, A.; Kille, Peter; Brophy, Peter M.

    2009-01-01

    The earthworm Lumbricus rubellus (Hoffmeister, 1843) is a terrestrial pollution sentinel. Enzyme activity and transcription of phase II detoxification superfamily glutathione transferases (GST) is known to respond in earthworms after soil toxin exposure, suggesting GST as a candidate molecular-based pollution biomarker. This study combined sub-proteomics, bioinformatics and biochemical assay to characterise the L. rubellus GST complement as pre-requisite to initialise assessment of the applicability of GST as a biomarker. L. rubellus possesses a range of GSTs related to known classes, with evidence of tissue-specific synthesis. Two affinity-purified GSTs dominating GST protein synthesis (Sigma and Pi class) were cloned, expressed and characterised for enzyme activity with various substrates. Electrospray ionisation mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) following SDS-PAGE were superior in retaining subunit stability relative to two-dimensional gel electrophoresis (2-DE). This study provides greater understanding of Phase II detoxification GST superfamily status of an important environmental pollution sentinel organism. - This study currently provides the most comprehensive view of the Phase II detoxification enzyme superfamily of glutathione transferases within the important environmental pollution sentinel earthworm Lumbricus rubellus.

  5. Glutathione transferase (GST) as a candidate molecular-based biomarker for soil toxin exposure in the earthworm Lumbricus rubellus

    Energy Technology Data Exchange (ETDEWEB)

    LaCourse, E. James, E-mail: james.la-course@liverpool.ac.u [Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA (United Kingdom); Hernandez-Viadel, Mariluz; Jefferies, James R. [Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA (United Kingdom); Svendsen, Claus; Spurgeon, David J. [Centre for Ecology and Hydrology, Huntingdon PE28 2LS (United Kingdom); Barrett, John [Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA (United Kingdom); John Morgan, A.; Kille, Peter [Biosciences, University of Cardiff, Cardiff CF10 3TL (United Kingdom); Brophy, Peter M. [Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA (United Kingdom)

    2009-08-15

    The earthworm Lumbricus rubellus (Hoffmeister, 1843) is a terrestrial pollution sentinel. Enzyme activity and transcription of phase II detoxification superfamily glutathione transferases (GST) is known to respond in earthworms after soil toxin exposure, suggesting GST as a candidate molecular-based pollution biomarker. This study combined sub-proteomics, bioinformatics and biochemical assay to characterise the L. rubellus GST complement as pre-requisite to initialise assessment of the applicability of GST as a biomarker. L. rubellus possesses a range of GSTs related to known classes, with evidence of tissue-specific synthesis. Two affinity-purified GSTs dominating GST protein synthesis (Sigma and Pi class) were cloned, expressed and characterised for enzyme activity with various substrates. Electrospray ionisation mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) following SDS-PAGE were superior in retaining subunit stability relative to two-dimensional gel electrophoresis (2-DE). This study provides greater understanding of Phase II detoxification GST superfamily status of an important environmental pollution sentinel organism. - This study currently provides the most comprehensive view of the Phase II detoxification enzyme superfamily of glutathione transferases within the important environmental pollution sentinel earthworm Lumbricus rubellus.

  6. Association of glutathione S-transferase (GSTM1, T1 and P1 gene polymorphisms with type 2 diabetes mellitus in north Indian population

    Directory of Open Access Journals (Sweden)

    Bid H

    2010-01-01

    Full Text Available Background: Diabetes mellitus is associated with an increased production of reactive oxygen species (ROS and a reduction in antioxidant defense. The oxidative stress becomes evident as a result of accumulation of ROS in conditions of inflammation and Type 2 diabetes mellitus (T2DM. The genes involved in redox balance, which determines the susceptibility to T2DM remain unclear. In humans, the glutathione S-transferase (GST family comprises several classes of GST isozymes, the polymorphic variants of GSTM1, T1 and P1 genes result in decreased or loss of enzyme activity. Aims: The present study evaluated the effect of genetic polymorphisms of the GST gene family on the risk of developing T2DM in the North Indian population. Settings and Design: GSTM1, T1 and P1 polymorphisms were genotyped in 100 T2DM patients and 200 healthy controls from North India to analyze their association with T2DM susceptibility. Materials and Methods: Analysis of GSTM1 and GSTT1 gene polymorphisms was performed by multiplex polymerase chain reaction (PCR and GSTP1 by PCR-Restriction Fragment Length Polymorphism (RFLP. Statistical Analysis: Fisher′s exact test and χ2 statistics using SPSS software (Version-15.0. Results: We observed significant association of GSTM1 null (P=0.004, OR= 2.042, 95%CI= 1.254-3.325 and GSTP1 (I/V (P=0.001, OR= 0.397, 95%CI=0.225-0.701 with T2DM and no significant association with GSTT1 (P=0.493. The combined analysis of the three genotypes GSTM1 null, T1 present and P1 (I/I demonstrated an increase in T2DM risk (P= 0.005, OR= 2.431 95% CI=1.315-4.496. Conclusions: This is the first study showing the association of a combined effect of GSTM1, T1 and P1 genotypes in a representative cohort of Indian patients with T2DM. Since significant association was seen in GSTM1 null and GSTP1 (I/V and multiple association in GSTM1 null, T1 present and P1 (I/I, these polymorphisms can be screened in the population to determine the diabetic risk.

  7. Glutathione S - transferases class Pi and Mi and their significance in oncology

    Directory of Open Access Journals (Sweden)

    Zofia Marchewka

    2017-06-01

    Full Text Available In this article the current data, which shows that glutathione S-transferases (GST class Pi and Mi are interesting and promising biomarkers in acute and chronic inflammatory processes as well as in the oncology, were presented based on the review of the latest experimental and clinical studies. The article shows their characteristics, functions and participation (direct - GST Pi, indirect - GST Mi in the regulation of signaling pathways of JNK kinases, which are involved in cell differentiation. Overexpression of glutathione S-transferases class Pi and Mi in many cancer cells plays a key role in cancer treatment, making them resistant to chemotherapy. GST isoenzymes are involved in the metabolism of various types of xenobiotics and endogenous substrates, so their altered expression in cancer tissues as well as in serum and urine could be an important potential marker of the cancer and an indicator of oxidative stress. The study shows the role of glutathione S-transferases in redox homeostasis of tumor cells and in the mechanism of resistance to anticancer drugs.

  8. Glutathione S - transferases class Pi and Mi and their significance in oncology.

    Science.gov (United States)

    Marchewka, Zofia; Piwowar, Agnieszka; Ruzik, Sylwia; Długosz, Anna

    2017-06-19

    In this article the current data, which shows that glutathione S-transferases (GST) class Pi and Mi are interesting and promising biomarkers in acute and chronic inflammatory processes as well as in the oncology, were presented based on the review of the latest experimental and clinical studies. The article shows their characteristics, functions and participation (direct - GST Pi, indirect - GST Mi) in the regulation of signaling pathways of JNK kinases, which are involved in cell differentiation. Overexpression of glutathione S-transferases class Pi and Mi in many cancer cells plays a key role in cancer treatment, making them resistant to chemotherapy. GST isoenzymes are involved in the metabolism of various types of xenobiotics and endogenous substrates, so their altered expression in cancer tissues as well as in serum and urine could be an important potential marker of the cancer and an indicator of oxidative stress. The study shows the role of glutathione S-transferases in redox homeostasis of tumor cells and in the mechanism of resistance to anticancer drugs.

  9. Mechanistic insights into EgGST1, a Mu class glutathione S-transferase from the cestode parasite Echinococcus granulosus.

    Science.gov (United States)

    Arbildi, Paula; Turell, Lucía; López, Verónica; Alvarez, Beatriz; Fernández, Verónica

    2017-11-01

    Glutathione transferases (GSTs) comprise a major detoxification system in helminth parasites, displaying both catalytic and non-catalytic activities. The kinetic mechanism of these enzymes is complex and depends on the isoenzyme which is being analyzed. Here, we characterized the kinetic mechanism of rEgGST1, a recombinant form of a cytosolic GST from Echinococcus granulosus (EgGST1), which is related to the Mu-class of mammalian enzymes, using the canonical substrates glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB). Initial rate and product inhibition studies were consistent with a steady-state random sequential mechanism, where both substrates are bound to the enzyme before the products are released. Kinetic constants were also determined (pH 6.5 and 30 °C). Moreover, rEgGST1 lowered the pK a of GSH from 8.71 ± 0.07 to 6.77 ± 0.08, and enzyme-bound GSH reacted with CDNB 1 × 10 5 times faster than free GSH at pH 7.4. Finally, the dissociation of the enzyme-GSH complex was studied by means of intrinsic fluorescence, as well as that of the complex with the anthelminth drug mebendazole. This is the first report on mechanistic issues related to a helminth parasitic GST. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene.

    Science.gov (United States)

    Itzhaki, H; Maxson, J M; Woodson, W R

    1994-09-13

    The increased production of ethylene during carnation petal senescence regulates the transcription of the GST1 gene encoding a subunit of glutathione-S-transferase. We have investigated the molecular basis for this ethylene-responsive transcription by examining the cis elements and trans-acting factors involved in the expression of the GST1 gene. Transient expression assays following delivery of GST1 5' flanking DNA fused to a beta-glucuronidase receptor gene were used to functionally define sequences responsible for ethylene-responsive expression. Deletion analysis of the 5' flanking sequences of GST1 identified a single positive regulatory element of 197 bp between -667 and -470 necessary for ethylene-responsive expression. The sequences within this ethylene-responsive region were further localized to 126 bp between -596 and -470. The ethylene-responsive element (ERE) within this region conferred ethylene-regulated expression upon a minimal cauliflower mosaic virus-35S TATA-box promoter in an orientation-independent manner. Gel electrophoresis mobility-shift assays and DNase I footprinting were used to identify proteins that bind to sequences within the ERE. Nuclear proteins from carnation petals were shown to specifically interact with the 126-bp ERE and the presence and binding of these proteins were independent of ethylene or petal senescence. DNase I footprinting defined DNA sequences between -510 and -488 within the ERE specifically protected by bound protein. An 8-bp sequence (ATTTCAAA) within the protected region shares significant homology with promoter sequences required for ethylene responsiveness from the tomato fruit-ripening E4 gene.

  11. Glutathione S-transferase M1 and T1 gene polymorphisms with consumption of high fruit-juice and vegetable diet affect antioxidant capacity in healthy adults.

    Science.gov (United States)

    Yuan, Linhong; Zhang, Ling; Ma, Weiwei; Zhou, Xin; Ji, Jian; Li, Nan; Xiao, Rong

    2013-01-01

    To our knowledge, no data have yet shown the combined effects of GSTM1/GSTT1 gene polymorphisms with high consumption of a fruit and vegetable diet on the body's antioxidant capacity. A 2-wk dietary intervention in healthy participants was conducted to test the hypothesis that the antioxidant biomarkers in individuals with different glutathione-S-transferases (GST) genotypes will be different in response to a high fruit-juice and vegetable diet. In our study, 24 healthy volunteers with different GST genotypes (12 GSTM1+/GSTT1+ and 12 GSTM1-/GSTT1- participants) consumed a controlled diet high in fruit-juice and vegetables for 2 wk. Blood and first-void urine specimens were obtained at baseline, 1-wk, and 2-wk intervals. The antioxidant capacity-related biomarkers in blood and urine were observed and recorded at the scheduled times. Erythrocyte GST and glutathione reductase (GR) activities response to a high fruit-juice and vegetable diet are GST genotype-dependent. Two weeks on the high fruit-juice and vegetable diet increased GST and GR activities in the GSTM1+/GSTT1+ group (P juice and vegetable diet than GSTM1-/GSTT1- participants. The diet intervention was effective in enhancing glutathione peroxidase and catalase activities in all participants (P 0.05). The effects of a diet rich in fruit-juice and vegetables on antioxidant capacity were dependent on GSTM1/GSTT1 genotypes. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Two pear glutathione S-transferases genes are regulated during fruit development and involved in response to salicylic acid, auxin, and glucose signaling.

    Directory of Open Access Journals (Sweden)

    Hai-Yan Shi

    Full Text Available Two genes encoding putative glutathione S-transferase proteins were isolated from pear (Pyrus pyrifolia and designated PpGST1 and PpGST2. The deduced PpGST1 and PpGST2 proteins contain conserved Glutathione S-transferase N-terminal domain (GST_N and Glutathione S-transferase, C-terminal domain (GST_C. Using PCR amplification technique, the genomic clones corresponding to PpGST1 and PpGST2 were isolated and shown to contain two introns and a singal intron respectively with typical GT/AG boundaries defining the splice junctions. Phylogenetic analysis clearly demonstrated that PpGST1 belonged to Phi class of GST superfamilies and had high homology with apple MdGST, while PpGST2 was classified into the Tau class of GST superfamilies. The expression of PpGST1 and PpGST2 genes was developmentally regulated in fruit. Further study demonstrated that PpGST1 and PpGST2 expression was remarkably induced by glucose, salicylic acid (SA and indole-3-aceticacid (IAA treatments in pear fruit, and in diseased fruit. These data suggested that PpGST1 and PpGST2 might be involved in response to sugar, SA, and IAA signaling during fruit development of pear.

  13. The Association between Gene-Environment Interactions and Diseases Involving the Human GST Superfamily with SNP Variants

    Directory of Open Access Journals (Sweden)

    Antoinesha L. Hollman

    2016-03-01

    Full Text Available Exposure to environmental hazards has been associated with diseases in humans. The identification of single nucleotide polymorphisms (SNPs in human populations exposed to different environmental hazards, is vital for detecting the genetic risks of some important human diseases. Several studies in this field have been conducted on glutathione S-transferases (GSTs, a phase II detoxification superfamily, to investigate its role in the occurrence of diseases. Human GSTs consist of cytosolic and microsomal superfamilies that are further divided into subfamilies. Based on scientific search engines and a review of the literature, we have found a large amount of published articles on human GST super- and subfamilies that have greatly assisted in our efforts to examine their role in health and disease. Because of its polymorphic variations in relation to environmental hazards such as air pollutants, cigarette smoke, pesticides, heavy metals, carcinogens, pharmaceutical drugs, and xenobiotics, GST is considered as a significant biomarker. This review examines the studies on gene-environment interactions related to various diseases with respect to single nucleotide polymorphisms (SNPs found in the GST superfamily. Overall, it can be concluded that interactions between GST genes and environmental factors play an important role in human diseases.

  14. Insecticide resistance and glutathione S-transferases in mosquitoes ...

    African Journals Online (AJOL)

    Mosquito glutathione S-transferases (GSTs) have received considerable attention in the last 20 years because of their role in insecticide metabolism producing resistance. Many different compounds, including toxic xenobiotics and reactive products of intracellular processes such as lipid peroxidation, act as GST substrates.

  15. Preparation of GST Fusion Proteins.

    Science.gov (United States)

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-04-01

    INTRODUCTIONThis protocol describes the preparation of glutathione-S-transferase (GST) fusion proteins, which have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis.

  16. Differential roles for VviGST1, VviGST3 and VviGST4 in proanthocyanidin and anthocyanin transport in Vitis vinífera

    Directory of Open Access Journals (Sweden)

    Ricardo Pérez-Díaz

    2016-08-01

    Full Text Available In plant cells, flavonoids are synthesized in the cytosol and then are transported and accumulated in the vacuole. Glutathione S-transferase-mediated transport has been proposed as a mechanism involved in flavonoid transport however whether binding of flavonoids to GST or their transport is glutathione-dependent is not well understood. Glutathione S-transferases from Vitis vinífera (VviGSTs have been associated with the transport of anthocyanins, however their ability to transport other flavonoids such as proanthocyanidins (PAs has not been established. Following bioinformatics approaches, we analyzed the capability of VviGST1, VviGST3, VviGST4 and Arabidopsis TT19 to bind different flavonoids. Analyses of protein-ligand interactions indicate that these GSTs can bind glutathione and monomers of anthocyanin, PAs and flavonols. A total or partial overlap of the binding sites for glutathione and flavonoids was found in VviGST1, and a similar condition was observed in VviGST3 using anthocyanin and flavonols as ligands, whereas VviGST4 and TT19 have both sites for GSH and flavonoids separated. To validate the bioinformatics predictions, functional complementation assays using the Arabidopsis tt19 mutant were performed. Overexpression of VviGST3 in tt19-1 specifically rescued the dark seed coat phenotype associated to correct PA transport, which correlated with higher binding affinity for PA precursors. VviGST4, originally characterized as an anthocyanin-related GST, complemented both the anthocyanin and PA deposition, resembling the function of TT19. By contrast, VviGST1 only partially rescued the normal seed color. Furthermore the expression pattern of these VviGSTs showed that each of these genes could be associated with the accumulation of different flavonoids in specific tissues during grapevine fruit development. These results provide new insights into GST-mediated PA transport in grapevine and suggest that VviGSTs present different

  17. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants

    International Nuclear Information System (INIS)

    Zhang, Yuanyuan; Liu, Junhong

    2011-01-01

    Transgenic alfalfa plants simultaneously expressing human CYP2E1 and glutathione S-transferase (GST) were generated from hypocotyl segments by the use of an Agrobacterium transformation system for the phytoremediation of the mixed contaminated soil with heavy metals and organic pollutants. The transgenic alfalfa plants were screened by a combination of kanamycin resistance, PCR, GST and CYP2E1 activity and Western blot analysis. The capabilities of mixed contaminants (heavy metals-organic compounds) resistance of pKHCG transgenic alfalfa plants became markedly increased compared with the transgenic alfalfa plants expressing single gene (GST or CYP2E1) and the non-transgenic control plants. The pKHCG alfalfa plants exhibited strong resistance towards the mixtures of cadmium (Cd) and trichloroethylene (TCE) that were metabolized by the introduced GST and CYP2E1 in combination. Our results show that the pKHCG transgenic alfalfa plants have good potential for phytoremediation because they have cross-tolerance towards the complex contaminants of heavy metals and organic pollutants. Therefore, these transgenic alfalfa plants co-expressing GST and human P450 CDNAs may have a great potential for phytoremediation of mixed environmental contaminants.

  18. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China); Liu, Junhong, E-mail: liujh@qust.edu.cn [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China)

    2011-05-15

    Transgenic alfalfa plants simultaneously expressing human CYP2E1 and glutathione S-transferase (GST) were generated from hypocotyl segments by the use of an Agrobacterium transformation system for the phytoremediation of the mixed contaminated soil with heavy metals and organic pollutants. The transgenic alfalfa plants were screened by a combination of kanamycin resistance, PCR, GST and CYP2E1 activity and Western blot analysis. The capabilities of mixed contaminants (heavy metals-organic compounds) resistance of pKHCG transgenic alfalfa plants became markedly increased compared with the transgenic alfalfa plants expressing single gene (GST or CYP2E1) and the non-transgenic control plants. The pKHCG alfalfa plants exhibited strong resistance towards the mixtures of cadmium (Cd) and trichloroethylene (TCE) that were metabolized by the introduced GST and CYP2E1 in combination. Our results show that the pKHCG transgenic alfalfa plants have good potential for phytoremediation because they have cross-tolerance towards the complex contaminants of heavy metals and organic pollutants. Therefore, these transgenic alfalfa plants co-expressing GST and human P450 CDNAs may have a great potential for phytoremediation of mixed environmental contaminants.

  19. Crystallization and preliminary X-ray diffraction analysis of a glutathione S-transferase from Xylella fastidiosa

    International Nuclear Information System (INIS)

    Garcia, Wanius; Travensolo, Regiane F.; Rodrigues, Nathalia C.; Muniz, João R. C.; Caruso, Célia S.; Lemos, Eliana G. M.; Araujo, Ana Paula U.; Carrilho, Emanuel

    2008-01-01

    Glutathione S-transferase from X. fastidiosa (xfGST) has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 2.23 Å. Glutathione S-transferases (GSTs) form a group of multifunctional isoenzymes that catalyze the glutathione-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GST from Xylella fastidiosa (xfGST) was overexpressed in Escherichia coli and purified by conventional affinity chromatography. In this study, the crystallization and preliminary X-ray analysis of xfGST is described. The purified protein was crystallized by the vapour-diffusion method, producing crystals that belonged to the triclinic space group P1. The unit-cell parameters were a = 47.73, b = 87.73, c = 90.74 Å, α = 63.45, β = 80.66, γ = 94.55°. xfGST crystals diffracted to 2.23 Å resolution on a rotating-anode X-ray source

  20. Crystallization and preliminary X-ray diffraction analysis of a glutathione S-transferase from Xylella fastidiosa

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Wanius, E-mail: wanius@if.sc.usp.br [Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Travensolo, Regiane F. [Grupo de Bioanalítica, Microfabricação e Separações, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Rodrigues, Nathalia C.; Muniz, João R. C. [Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Caruso, Célia S. [Grupo de Bioanalítica, Microfabricação e Separações, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Lemos, Eliana G. M. [Laboratório de Bioquímica de Microrganismos e de Plantas, Departamento de Tecnologia, UNESP, Jaboticabal (Brazil); Araujo, Ana Paula U. [Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Carrilho, Emanuel, E-mail: wanius@if.sc.usp.br [Grupo de Bioanalítica, Microfabricação e Separações, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil)

    2008-02-01

    Glutathione S-transferase from X. fastidiosa (xfGST) has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 2.23 Å. Glutathione S-transferases (GSTs) form a group of multifunctional isoenzymes that catalyze the glutathione-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GST from Xylella fastidiosa (xfGST) was overexpressed in Escherichia coli and purified by conventional affinity chromatography. In this study, the crystallization and preliminary X-ray analysis of xfGST is described. The purified protein was crystallized by the vapour-diffusion method, producing crystals that belonged to the triclinic space group P1. The unit-cell parameters were a = 47.73, b = 87.73, c = 90.74 Å, α = 63.45, β = 80.66, γ = 94.55°. xfGST crystals diffracted to 2.23 Å resolution on a rotating-anode X-ray source.

  1. The relationship of glutathione-S-transferases copy number variation and indoor air pollution to symptoms and markers of respiratory disease

    DEFF Research Database (Denmark)

    Hersoug, Lars-Georg; Brasch-Andersen, Charlotte; Husemoen, Lise-Lotte

    2012-01-01

    Introduction: Exposure to particulate matter (PM) may induce inflammation and oxidative stress in the airways. Carriers of null polymorphisms of glutathione S-transferases (GSTs), which detoxify reactive oxygen species, may be particularly susceptible to the effects of PM. Objectives: To investig....... The relationship of glutathione-S-transferases copy number variation and indoor air pollution to symptoms and markers of respiratory disease. Clin Respir J 2011; DOI:10.1111/j.1752-699X.2011.00258.x.......: To investigate whether deletions of GSTM1 and GSTT1 modify the potential effects of exposure to indoor sources of PM on symptoms and objective markers of respiratory disease. Methods: We conducted a population-based, cross-sectional study of 3471 persons aged 18-69 years. Information about exposure to indoor......: We found that none of the symptoms and objective markers of respiratory disease were significantly associated with the GST null polymorphisms. An increasing number of positive alleles of the GSTM1 polymorphism tended to be associated lower prevalence of wheeze, cough, and high forced expiratory...

  2. Neuroantibodies (NAB) in African-American Children: Associations with Gender, Glutathione-S-Transferase (GST)Pi Polymorphisms (SNP) and Heavy Metals

    Science.gov (United States)

    CONTACT (NAME ONLY): Hassan El-Fawal Abstract Details PRESENTATION TYPE: Platform or Poster CURRENT CATEGORY: Neurodegenerative Disease | Biomarkers | Neurotoxicity, Metals KEYWORDS: Autoantibodies, Glutathione-S-Transferase, DATE/TIME LAST MODIFIED: DATE/TIME SUBMITTED: Abs...

  3. Assessment of cumulative evidence for the association between glutathione S-transferase polymorphisms and lung cancer: application of the Venice interim guidelines.

    Science.gov (United States)

    Langevin, Scott M; Ioannidis, John P A; Vineis, Paolo; Taioli, Emanuela

    2010-10-01

    There is an overwhelming abundance of genetic association studies available in the literature, which can often be collectively difficult to interpret. To address this issue, the Venice interim guidelines were established for determining the credibility of the cumulative evidence. The objective of this report is to evaluate the literature on the association of common glutathione S-transferase (GST) variants (GSTM1 null, GSTT1 null and GSTP1 Ile105Val polymorphism) and lung cancer, and to assess the credibility of the associations using the newly proposed cumulative evidence guidelines. Information from the literature was enriched with an updated meta-analysis and a pooled analysis using data from the Genetic Susceptibility to Environmental Carcinogens database. There was a significant association between GSTM1 null and lung cancer for the meta-analysis (meta odds ratio=1.17, 95% confidence interval: 1.10-1.25) and pooled analysis (adjusted odds ratio=1.10, 95% confidence interval: 1.04-1.16), although substantial heterogeneity was present. No overall association between lung cancer and GSTT1 null or GSTP1 Ile105Val was found. When the Venice criteria was applied, cumulative evidence for all associations were considered 'weak', with the exception of East Asian carriers of the G allele of GSTP1 Ile105Val, which was graded as 'moderate' evidence. Despite the large amounts of studies, and several statistically significant summary estimates produced by meta-analyses, the application of the Venice criteria suggests extensive heterogeneity and susceptibility to bias for the studies on association of common genetic polymorphisms, such as with GST variants and lung cancer.

  4. Identification of the GST-T1 and GST-M1 null genotypes using high resolution melting analysis.

    Science.gov (United States)

    Drobná, Zuzana; Del Razo, Luz Maria; Garcia-Vargas, Gonzalo; Sánchez-Ramírez, Blanca; González-Horta, Carmen; Ballinas-Casarrubias, Lourdes; Loomis, Dana; Stýblo, Miroslav

    2012-01-13

    Glutathione S-transferases, including GST-T1 and GST-M1, are known to be involved in the phase II detoxification pathways for xenobiotics as well as in the metabolism of endogenous compounds. Polymorphisms in these genes have been linked to an increased susceptibility to carcinogenesis and associated with risk factors that predispose to certain inflammatory diseases. In addition, GST-T1 and GST-M1 null genotypes have been shown to be responsible for interindividual variations in the metabolism of arsenic, a known human carcinogen. To assess the specific GST genotypes in the Mexican population chronically exposed to arsenic, we have developed a multiplex High Resolution Melting PCR (HRM-PCR) analysis using a LightCycler480 instrument. This method is based on analysis of the PCR product melting curve that discriminates PCR products according to their lengths and base sequences. Three pairs of primers that specifically recognize GST-T1, GST-M1, and β-globin, an internal control, to produce amplicons of different length were designed and combined with LightCycler480 High Resolution Melting Master Mix containing ResoLight, a completely saturating DNA dye. Data collected from melting curve analysis were evaluated using LightCycler480 software to determine specific melting temperatures of individual melting curves representing target genes. Using this newly developed multiplex HRM-PCR analysis, we evaluated GST-T1 and GST-M1 genotypes in 504 DNA samples isolated from the blood of individuals residing in Zimapan, Lagunera, and Chihuahua regions in Mexico. We found that the Zimapan and Lagunera populations have similar GST-T1 and GST-M1 genotype frequencies which differ from those of the Chihuahua population. In addition, 14 individuals have been identified as carriers of the double null genotype, i.e., null genotypes in both GST-T1 and GST-M1 genes. Although this procedure does not distinguish between biallelic (+/+) and monoallelic (+/-) genotypes, it can be used in an

  5. Association of Neuroantibodies(NAB) with Glutathione-S-Tranferase(GST) Isozyme Polymorphisms(SNP) in African-American Children with Heavy Metal Exposure

    Science.gov (United States)

    Polymorphisms in GST isozymes have implications in heavy metal accumulation, neurodegeneration, and immune-mediated disease. Blood cell DNA and sera from 131 African-American children were used to determine GST Pi [rs947895 (C>A), rs17593068 (G>T), rs6591256 (A>G), rs187...

  6. Glutathione S-transferase Pi expression predicts response to adjuvant chemotherapy for stage C colon cancer: a matched historical control study

    Directory of Open Access Journals (Sweden)

    Jankova Lucy

    2012-05-01

    Full Text Available Abstract Background This study examined the association between overall survival and Glutathione S-transferase Pi (GST Pi expression and genetic polymorphism in stage C colon cancer patients after resection alone versus resection plus 5-fluourouracil-based adjuvant chemotherapy. Methods Patients were drawn from a hospital registry of colorectal cancer resections. Those receiving chemotherapy after it was introduced in 1992 were compared with an age and sex matched control group from the preceding period. GST Pi expression was assessed by immunohistochemistry. Overall survival was analysed by the Kaplan-Meier method and Cox regression. Results From an initial 104 patients treated with chemotherapy and 104 matched controls, 26 were excluded because of non-informative immunohistochemistry, leaving 95 in the treated group and 87 controls. Survival did not differ significantly among patients with low GST Pi who did or did not receive chemotherapy and those with high GST Pi who received chemotherapy (lowest pair-wise p = 0.11 whereas patients with high GST Pi who did not receive chemotherapy experienced markedly poorer survival than any of the other three groups (all pair-wise p Conclusion Stage C colon cancer patients with low GST Pi did not benefit from 5-fluourouracil-based adjuvant chemotherapy whereas those with high GST Pi did.

  7. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    Directory of Open Access Journals (Sweden)

    Chin-Soon Chee

    2014-01-01

    Full Text Available Glutathione transferases (GST were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW of 23 kDa. 2-dimensional (2-D gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5 and GST2 (pI 6.2 with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase and F0KKB0 (glutathione S-transferase III of Acinetobacter calcoaceticus strain PHEA-2, respectively.

  8. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    Science.gov (United States)

    Chee, Chin-Soon; Tan, Irene Kit-Ping; Alias, Zazali

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively. PMID:24892084

  9. GST polymorphisms and early-onset coronary artery disease in ...

    African Journals Online (AJOL)

    Dysfunctional detoxification enzymes are responsible for prolonged exposure to reactive molecules and can contribute to endothelial damage, an underlying factor in coronary artery disease (CAD). Objectives. We aimed to assess 2 common polymorphic variant isoforms in GSTM1 and GSTP1 of GST in young CAD patients ...

  10. A model to environmental monitoring based on glutathione-S-transferase activity and branchial lesions in catfish

    Science.gov (United States)

    Neta, Raimunda Nonata Fortes Carvalho; Torres, Audalio Rebelo

    2017-11-01

    In this work, we validate the glutathione-S-transferase and branchial lesions as biomarkers in catfish Sciades herzbergii to obtain a predictive model of the environmental impact effects in a harbor of Brazil. The catfish were sampled from a port known to be contaminated with heavy metals and organic compounds and from a natural reserve in São Marcos Bay, Maranhão. Two biomarkers, hepatic glutathione S-transferase (GST) activity and branchial lesions were analyzed. The values for GST activity were modeled with the occurrence of branchial lesions by fitting a third order polynomial. Results from the mathematical model indicate that GST activity has a strong polynomial relationship with the occurrence of branchial lesions in both the wet and the dry seasons, but only at the polluted port site. Our mathematic model indicates that when the GST ceases to act, serious branchial lesions are observed in the catfish of the contaminated port area.

  11. Glutathione-S-transferase profiles in the emerald ash borer, Agrilus planipennis.

    Science.gov (United States)

    Rajarapu, Swapna Priya; Mittapalli, Omprakash

    2013-05-01

    The emerald ash borer, Agrilus planipennis Fairmaire is a recently discovered invasive insect pest of ash, Fraxinus spp. in North America. Glutathione-S-transferases (GST) are a multifunctional superfamily of enzymes which function in conjugating toxic compounds to less toxic and excretable forms. In this study, we report the molecular characterization and expression patterns of different classes of GST genes in different tissues and developmental stages plus their specific activity. Multiple sequence alignment of all six A. planipennis GSTs (ApGST-E1, ApGST-E2, ApGST-E3, ApGST-O1, ApGST-S1 and ApGST-μ1) revealed conserved features of insect GSTs and a phylogenetic analysis grouped the GSTs within the epsilon, sigma, omega and microsomal classes of GSTs. Real time quantitative PCR was used to study field collected samples. In larval tissues high mRNA levels for ApGST-E1, ApGST-E3 and ApGST-O1 were obtained in the midgut and Malpighian tubules. On the other hand, ApGST-E2 and ApGST-S1 showed high mRNA levels in fat body and ApGST-μ1 showed constitutive levels in all the tissues assayed. During development, mRNA levels for ApGST-E2 were observed to be the highest in feeding instars, ApGST-S1 in prepupal instars; while the others showed constitutive patterns in all the developmental stages examined. At the enzyme level, total GST activity was similar in all the tissues and developmental stages assayed. Results obtained suggest that A. planipennis is potentially primed with GST-driven detoxification to metabolize ash allelochemicals. To our knowledge this study represents the first report of GSTs in A. planipennis and also in the family of wood boring beetles. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. GST Theta null genotype is associated with an increased risk for ulcerative colitis: a case-control study and meta-analysis of GST Mu and GST Theta polymorphisms in inflammatory bowel disease

    NARCIS (Netherlands)

    Broekman, M.M.T.J.; Bos, C.; Morsche, R.H.M. te; Hoentjen, F.; Roelofs, H.M.J.; Peters, W.H.M.; Wanten, G.J.A.; Jong, D.J. de

    2014-01-01

    Glutathione S-transferases (GSTs) are important in the detoxification of many compounds, including reactive oxygen species. Polymorphisms in GSTs resulting in a decreased enzyme activity might enhance the risk for inflammatory bowel disease by eliciting a state of oxidative stress. Previous

  13. The relationship of glutathione-S-transferases copy number variation and indoor air pollution to symptoms and markers of respiratory disease.

    Science.gov (United States)

    Hersoug, Lars-Georg; Brasch-Andersen, Charlotte; Husemoen, Lise Lotte Nystrup; Sigsgaard, Torben; Linneberg, Allan

    2012-07-01

    Exposure to particulate matter (PM) may induce inflammation and oxidative stress in the airways. Carriers of null polymorphisms of glutathione S-transferases (GSTs), which detoxify reactive oxygen species, may be particularly susceptible to the effects of PM. To investigate whether deletions of GSTM1 and GSTT1 modify the potential effects of exposure to indoor sources of PM on symptoms and objective markers of respiratory disease. We conducted a population-based, cross-sectional study of 3471 persons aged 18-69 years. Information about exposure to indoor sources of PM and respiratory symptoms was obtained by a self-administered questionnaire. In addition, measurements of lung function (spirometry) and fractional exhaled nitric oxide were performed. Copy number variation of GSTM1 and GSTT1 was determined by polymerase chain reaction-based assays. We found that none of the symptoms and objective markers of respiratory disease were significantly associated with the GST null polymorphisms. An increasing number of positive alleles of the GSTM1 polymorphism tended to be associated lower prevalence of wheeze, cough, and high forced expiratory volume in 1 s (FEV(1) ), but these trends were not statistically significant. Furthermore, we did not observe any statistically significant interactions between GST copy number variation and exposure to indoor sources of PM in relation to respiratory symptoms and markers. In this adult population, GST copy number variations were not significantly associated with respiratory outcomes and did not modify the effects of self-reported exposure to indoor sources of PM on respiratory outcomes. © 2011 Blackwell Publishing Ltd.

  14. Development of enzyme-linked immunosorbent assay (ELISA) for glutathione S-transferase (GST-S) protein in the intertidal copepod Tigriopus japonicus and its application for environmental monitoring.

    Science.gov (United States)

    Rhee, Jae-Sung; Kim, Bo-Mi; Jeong, Chang-Bum; Leung, Kenneth Mei Yee; Park, Gyung Soo; Lee, Jae-Seong

    2013-11-01

    To utilize the GST-S protein as a useful biomarker for environmental contamination, we developed a polyclonal antibody-based enzyme-linked immunosorbent assay (ELISA) in the intertidal copepod Tigriopus japonicus. Two polyclonal antibodies, TJ-GST-S1 and TJ-GST-S2, were raised against two TJ-GST-S synthetic peptides. Also a recombinant TJ-GST-S protein was purified as a standard for ELISA development. Each polyclonal antibody was tested by Western blot analysis and indirect ELISA. Of two polyclonal antibodies, TJ-GST-S2 ELISA was further employed due to its wide range of detection and the limit of specificity compared to those of TJ-GST-S1 ELISA system. After exposure to 4 metals (Ag, As, Cd, and Cu) to T. japonicus, the amount of TJ-GST-S protein was significantly elevated in a concentration-dependent manner. Also, TJ-GST-S protein was upregulated at relative high concentrations of B[α]P, PCB, and TBT. In this paper, we suggest that T. japonicas ELISA for TJ-GST-S2 is useful as a potential indicator system for marine contaminants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Acute cadmium intoxication induces alpha-class glutathione S-transferase protein synthesis and enzyme activity in rat liver

    International Nuclear Information System (INIS)

    Casalino, Elisabetta; Sblano, Cesare; Calzaretti, Giovanna; Landriscina, Clemente

    2006-01-01

    Acute cadmium intoxication affects glutathione S-transferase (GST) in rat liver. It has been found that 24 h after i.p. cadmium administration to rats, at a dose of 2.5 mg CdCl 2 kg -1 body weight, the activity of this enzyme in liver cytosol increased by 40%. A less stimulatory effect persisted till 48 h and thereafter the enzyme activity normalized. Since, GST isoenzymes belong to different classes in mammalian tissues, we used quantitative immunoassays to verify which family of GST isoenzymes is influenced by this intoxication. Only alpha-class glutathione S-transferase (α-GST) proteins were detected in rat liver cytosol and their level increased by about 25%, 24 h after cadmium treatment. No pi-GST isoforms were found in liver cytosol from either normal or cadmium-treated rats. Co-administration of actinomycin D with cadmium normalized both the protein level and the activity of α-GST, suggesting that some effect occurs on enzyme transcription of these isoenzymes by this metal. On the other hand, it seems unlikely that the stimulatory effect is due to the high level of peroxides caused by lipid peroxidation, since Vitamin E administration strongly reduced the TBARS level, but did not cause any GST activity decrease

  16. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies

    International Nuclear Information System (INIS)

    Dusinska, Maria; Staruchova, Marta; Horska, Alexandra; Smolkova, Bozena; Collins, Andrew; Bonassi, Stefano; Volkovova, Katarina

    2012-01-01

    Glutathione S-transferases (GSTs) are members of a multigene family of isoenzymes that are important in the control of oxidative stress and in phase II metabolism. Acting non-enzymically, GSTs can modulate signalling pathways of cell proliferation, cell differentiation and apoptosis. Using a molecular epidemiology approach, we have investigated a potential involvement of GSTs in DNA damage processing, specifically the modulation of DNA repair in a group of 388 healthy adult volunteers; 239 with at least 5 years of occupational exposure to asbestos, stone wool or glass fibre, and 149 reference subjects. We measured DNA damage in lymphocytes using the comet assay (alkaline single cell gel electrophoresis): strand breaks (SBs) and alkali-labile sites, oxidised pyrimidines with endonuclease III, and oxidised purines with formamidopyrimidine DNA glycosylase. We also measured GST activity in erythrocytes, and the capacity for base excision repair (BER) in a lymphocyte extract. Polymorphisms in genes encoding three GST isoenzymes were determined, namely deletion of GSTM1 and GSTT1 and single nucleotide polymorphism Ile105Val in GSTP1. Consumption of vegetables and wine correlated negatively with DNA damage and modulated BER. GST activity correlated with oxidised bases and with BER capacity, and differed depending on polymorphisms in GSTP1, GSTT1 and GSTM1. A significantly lower BER rate was associated with the homozygous GSTT1 deletion in all asbestos site subjects and in the corresponding reference group. Multifactorial analysis revealed effects of sex and exposure in GSTP1 Ile/Val heterozygotes but not in Ile/Ile homozygotes. These variants affected also SBs levels, mainly by interactions of GSTP1 genotype with exposure, with sex, and with smoking habit; and by an interaction between sex and smoking. Our results show that GST polymorphisms and GST activity can apparently influence DNA stability and repair of oxidised bases, suggesting a potential new role for these

  17. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies

    Energy Technology Data Exchange (ETDEWEB)

    Dusinska, Maria, E-mail: Maria.DUSINSKA@nilu.no [CEE-Health Effects Group, NILU - Norwegian Institute for Air Research, Kjeller (Norway); Staruchova, Marta; Horska, Alexandra [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia); Smolkova, Bozena [Laboratory of Cancer Genetics, Cancer Research Institute of the Slovak Academy of Sciences, Bratislava (Slovakia); Collins, Andrew [Department of Nutrition, Faculty of Medicine, University of Oslo (Norway); Bonassi, Stefano [Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Rome (Italy); Volkovova, Katarina [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia)

    2012-08-01

    Glutathione S-transferases (GSTs) are members of a multigene family of isoenzymes that are important in the control of oxidative stress and in phase II metabolism. Acting non-enzymically, GSTs can modulate signalling pathways of cell proliferation, cell differentiation and apoptosis. Using a molecular epidemiology approach, we have investigated a potential involvement of GSTs in DNA damage processing, specifically the modulation of DNA repair in a group of 388 healthy adult volunteers; 239 with at least 5 years of occupational exposure to asbestos, stone wool or glass fibre, and 149 reference subjects. We measured DNA damage in lymphocytes using the comet assay (alkaline single cell gel electrophoresis): strand breaks (SBs) and alkali-labile sites, oxidised pyrimidines with endonuclease III, and oxidised purines with formamidopyrimidine DNA glycosylase. We also measured GST activity in erythrocytes, and the capacity for base excision repair (BER) in a lymphocyte extract. Polymorphisms in genes encoding three GST isoenzymes were determined, namely deletion of GSTM1 and GSTT1 and single nucleotide polymorphism Ile105Val in GSTP1. Consumption of vegetables and wine correlated negatively with DNA damage and modulated BER. GST activity correlated with oxidised bases and with BER capacity, and differed depending on polymorphisms in GSTP1, GSTT1 and GSTM1. A significantly lower BER rate was associated with the homozygous GSTT1 deletion in all asbestos site subjects and in the corresponding reference group. Multifactorial analysis revealed effects of sex and exposure in GSTP1 Ile/Val heterozygotes but not in Ile/Ile homozygotes. These variants affected also SBs levels, mainly by interactions of GSTP1 genotype with exposure, with sex, and with smoking habit; and by an interaction between sex and smoking. Our results show that GST polymorphisms and GST activity can apparently influence DNA stability and repair of oxidised bases, suggesting a potential new role for these

  18. Cantharidin Impedes Activity of Glutathione S-Transferase in the Midgut of Helicoverpa armigera Hübner

    Directory of Open Access Journals (Sweden)

    Ya Lin Zhang

    2013-03-01

    Full Text Available Previous investigations have implicated glutathione S-transferases (GSTs as one of the major reasons for insecticide resistance. Therefore, effectiveness of new candidate compounds depends on their ability to inhibit GSTs to prevent metabolic detoxification by insects. Cantharidin, a terpenoid compound of insect origin, has been developed as a bio-pesticide in China, and proves highly toxic to a wide range of insects, especially lepidopteran. In the present study, we test cantharidin as a model compound for its toxicity, effects on the mRNA transcription of a model Helicoverpa armigera glutathione S-transferase gene (HaGST and also for its putative inhibitory effect on the catalytic activity of GSTs, both in vivo and in vitro in Helicoverpa armigera, employing molecular and biochemical methods. Bioassay results showed that cantharidin was highly toxic to H. armigera. Real-time qPCR showed down-regulation of the HaGST at the mRNA transcript ranging from 2.5 to 12.5 folds while biochemical assays showed in vivo inhibition of GSTs in midgut and in vitro inhibition of rHaGST. Binding of cantharidin to HaGST was rationalized by homology and molecular docking simulations using a model GST (1PN9 as a template structure. Molecular docking simulations also confirmed accurate docking of the cantharidin molecule to the active site of HaGST impeding its catalytic activity.

  19. Response of Glutathione and Glutathione S-transferase in Rice Seedlings Exposed to Cadmium Stress

    Directory of Open Access Journals (Sweden)

    Chun-hua ZHANG

    2008-03-01

    Full Text Available A hydroponic culture experiment was done to investigate the effect of Cd stress on glutathione content (GSH and glutathione S-transferase (GST, EC 2.5.1.18 activity in rice seedlings. The rice growth was severely inhibited when Cd level in the solution was higher than 10 mg/L. In rice shoots, GSH content and GST activity increased with the increasing Cd level, while in roots, GST was obviously inhibited by Cd treatments. Compared with shoots, the rice roots had higher GSH content and GST activity, indicating the ability of Cd detoxification was much higher in roots than in shoots. There was a significant correlation between Cd level and GSH content or GST activity, suggesting that both parameters may be used as biomarkers of Cd stress in rice.

  20. Inhibition of the recombinant cattle tick Rhipicephalus (Boophilus) annulatus glutathione S-transferase.

    Science.gov (United States)

    Guneidy, Rasha A; Shahein, Yasser E; Abouelella, Amira M K; Zaki, Eman R; Hamed, Ragaa R

    2014-09-01

    Rhipicephalus (Boophilus) annulatus is a bloodsucking ectoparasite that causes severe production losses in the cattle industry. This study aims to evaluate the in vitro effects of tannic acid, hematin (GST inhibitors) and different plant extracts (rich in tannic acid) on the activity of the recombinant glutathione S-transferase enzyme of the Egyptian cattle tick R. annulatus (rRaGST), in order to confirm their ability to inhibit the parasitic essential detoxification enzyme glutathione S-transferase. Extraction with 70% ethanol of Hibiscus cannabinus (kenaf flowers), Punica granatum (red and white pomegranate peel), Musa acuminata (banana peel) (Musaceae), Medicago sativa (alfalfa seeds), Tamarindus indicus (seed) and Cuminum cyminum (cumin seed) were used to assess: (i) inhibitory capacities of rRaGST and (ii) their phenolic and flavonoid contents. Ethanol extraction of red pomegranate peel contained the highest content of phenolic compounds (29.95mg gallic acid/g dry tissue) compared to the other studied plant extracts. The highest inhibition activities of rRaGST were obtained with kenaf and red pomegranate peel (P. granatum) extracts with IC50 values of 0.123 and 0.136mg dry tissue/ml, respectively. Tannic acid was the more effective inhibitor of rRaGST with an IC50 value equal to 4.57μM compared to delphinidine-HCl (IC50=14.9±3.1μM). Gossypol had a weak inhibitory effect (IC50=43.7μM), and caffeic acid had almost no effect on tick GST activity. The IC50 values qualify ethacrynic acid as a potent inhibitor of rRaGST activity (IC50=0.034μM). Cibacron blue and hematin showed a considerable inhibition effect on rRaGST activity, and their IC50 values were 0.13μM and 7.5μM, respectively. The activity of rRaGST was highest for CDNB (30.2μmol/min/mg protein). The enzyme had also a peroxidatic activity (the specific activity equals 26.5μmol/min/mg protein). Both tannic acid and hematin inhibited rRaGST activity non-competitively with respect to GSH and

  1. Glutathione s-transferase isoenzymes in relation to their role in detoxification of xenobiotics

    NARCIS (Netherlands)

    Vos, R.M.E.

    1989-01-01

    The glutathione S-transferases (GST) are a family of isoenzymes serving a major part in the biotransformation of many reactive compounds. The isoenzymes from rat, man and mouse are divided into three classes, alpha, mu and pi, on the basis of similar structural and enzymatic

  2. Characterization of glutathione S-transferase and its immunodiagnostic potential for detecting Taenia multiceps.

    Science.gov (United States)

    Sun, Ying; Wang, Yu; Huang, Xing; Gu, Xiaobing; Lai, Weimin; Peng, Xuerong; Yang, Guangyou

    2017-08-15

    Taenia multiceps is a widespread zoonotic tapeworm parasite which infects cloven-hoofed animals around the world. Animal infection with Coenurus cerebralis, the coenurus larvae of T. multiceps (Tm), is often fatal, which is a major cause of economic losses in stockbreeding. This study amplified the glutathione S-transferase (GST) gene from the total RNA of C. cerebralis. The resulting protein, Tm-GST, consisted of 201 amino acids, and had a predicted molecular mass of 23.1kDa. Its amino acid sequence shares 77.61% similarity with Echinococcus granulosus GST. Recombinant Tm-GST (rTm-GST) was expressed in Escherichia coli. The protein reacted with serum from goats infected with T. multiceps. Immunofluorescence signals indicated that Tm-GST was largely localized in the parenchymatous area of adult T. multiceps; in addition, it was also apparent in the coenurus. An enzyme-linked immunosorbent assay based on rTm-GST showed specificity of 92.8% (13/14) and sensitivity of 90% (18/20) in detecting anti-GST antibodies in serum from naturally infected animals. This study suggests that Tm-GST has the potential to be used as a diagnostic antigen for Coenurosis. Copyright © 2017. Published by Elsevier B.V.

  3. Analyses of Genetic Variations of Glutathione S-Transferase Mu1 and Theta1 Genes in Bangladeshi Tannery Workers and Healthy Controls

    Directory of Open Access Journals (Sweden)

    Jobaida Akther

    2016-01-01

    Full Text Available Glutathione S-transferases (GSTs belong to a group of multigene detoxification enzymes, which defend cells against oxidative stress. Tannery workers are at risk of oxidative damage that is usually detoxified by GSTs. This study investigated the genotypic frequencies of GST Mu1 (GSTM1 and GST Theta1 (GSTT1 in Bangladeshi tannery workers and healthy controls followed by their status of oxidative stress and total GST activity. Of the 188 individuals, 50.0% had both GSTM1 and GSTT1 (+/+, 12.2% had GSTM1 (+/−, 31.4% had GSTT1 (−/+ alleles, and 6.4% had null genotypes (−/− with respect to both GSTM1 and GSTT1 alleles. Among 109 healthy controls, 54.1% were double positive, 9.2% had GSTM1 allele, 32.1% had GSTT1 allele, and 4.6% had null genotypes. Out of 79 tannery workers, 44.3% were +/+, 16.8% were +/−, 30.5% were −/+, and 8.4% were −/−. Though the polymorphic genotypes or allelic variants of GSTM1 and GSTT1 were distributed among the study subjects with different frequencies, the differences between the study groups were not statistically significant. GST activity did not vary significantly between the two groups and also among different genotypes while level of lipid peroxidation was significantly higher in tannery workers compared to controls irrespective of their GST genotypes.

  4. Analyses of Genetic Variations of Glutathione S-Transferase Mu1 and Theta1 Genes in Bangladeshi Tannery Workers and Healthy Controls

    Science.gov (United States)

    Akther, Jobaida; Ebihara, Akio; Nakagawa, Tsutomu; Islam, Laila N.; Suzuki, Fumiaki; Hosen, Md. Ismail; Hossain, Mahmud; Nabi, A. H. M. Nurun

    2016-01-01

    Glutathione S-transferases (GSTs) belong to a group of multigene detoxification enzymes, which defend cells against oxidative stress. Tannery workers are at risk of oxidative damage that is usually detoxified by GSTs. This study investigated the genotypic frequencies of GST Mu1 (GSTM1) and GST Theta1 (GSTT1) in Bangladeshi tannery workers and healthy controls followed by their status of oxidative stress and total GST activity. Of the 188 individuals, 50.0% had both GSTM1 and GSTT1 (+/+), 12.2% had GSTM1 (+/−), 31.4% had GSTT1 (−/+) alleles, and 6.4% had null genotypes (−/−) with respect to both GSTM1 and GSTT1 alleles. Among 109 healthy controls, 54.1% were double positive, 9.2% had GSTM1 allele, 32.1% had GSTT1 allele, and 4.6% had null genotypes. Out of 79 tannery workers, 44.3% were +/+, 16.8% were +/−, 30.5% were −/+, and 8.4% were −/−. Though the polymorphic genotypes or allelic variants of GSTM1 and GSTT1 were distributed among the study subjects with different frequencies, the differences between the study groups were not statistically significant. GST activity did not vary significantly between the two groups and also among different genotypes while level of lipid peroxidation was significantly higher in tannery workers compared to controls irrespective of their GST genotypes. PMID:27294127

  5. Isolation and purification of glutathione S-transferases from Brachionus plicatilis and B. calyciflorus (Rotifera).

    Science.gov (United States)

    Bowman, B P; Snell, T W; Cochrane, B J

    1990-01-01

    1. The enzyme glutathione S-transferase (GST), a critical element in xenobiotic metabolism, was isolated from the marine rotifer Brachionus plicatilis and its freshwater congener B. calyciflorus. 2. In B. plicatilis, GST comprised 4.2% of cytosolic protein and was present as three separate isozymes with mol. wts 30,000, 31,400 and 33,700. Specific activity of crude homogenates was 56 nmol min-1 mg-1 protein, while that of affinity chromatography purified GST was 1850. 3. In B. calyciflorus, GST was present as two isozymes with mol. wts of 26,300 and 28,500, representing 1.0% of cytosolic protein. Crude GST specific activity was 1750 nmol min-1 mg-1 protein and purified was 72,400. 4. Rotifer GSTs are unusual because they are monomers whereas all other animals thus far investigated posses dimeric GSTs.

  6. Molecular cloning and expression of five glutathione S-transferase (GST) genes from Banana (Musa acuminata L. AAA group, cv. Cavendish).

    Science.gov (United States)

    Wang, Zhuo; Huang, Suzhen; Jia, Caihong; Liu, Juhua; Zhang, Jianbin; Xu, Biyu; Jin, Zhiqiang

    2013-09-01

    Three tau class MaGSTs responded to abiotic stress, MaGSTF1 and MaGSTL1 responded to signaling molecules, they may play an important role in the growth of banana plantlet. Glutathione S-transferases (GST) are multifunctional detoxification enzymes that participate in a variety of cellular processes, including stress responses. In this study, we report the molecular characteristics of five GST genes (MaGSTU1, MaGSTU2, MaGSTU3, MaGSTF1 and MaGSTL1) cloned from banana (Musa acuminate L. AAA group, cv. Cavendish) using a RACE-PCR-based strategy. The predicted molecular masses of these GSTs range from 23.4 to 27.7 kDa and their pIs are acidic. At the amino acid level, they share high sequence similarity with GSTs in the banana DH-Pahang (AA group) genome. Phylogenetic analysis showed that the deduced amino acid sequences of MaGSTs also have high similarity to GSTs of other plant species. Expression analysis by semi-quantitative RT-PCR revealed that these genes are differentially expressed in various tissues. In addition, their expression is regulated by various stress conditions, including exposure to signaling molecules, cold, salinity, drought and Fusarium oxysporum f specialis(f. Sp) cubense Tropical Race 4 (Foc TR4) infection. The expression of the tau class MaGSTs (MaGSTU1, MaGSTU2 and MaGSTU3) mainly responded to cold, salinity and drought while MaGSTF1 and MaGSTL1 expressions were upregulated by signaling molecules. Our findings suggest that MaGSTs play a key role in both development and abiotic stress responses.

  7. Association of ACE, FABP2 and GST genes polymorphism with essential hypertension risk among a North Indian population.

    Science.gov (United States)

    Abbas, Shania; Raza, Syed Tasleem; Chandra, Anu; Rizvi, Saliha; Ahmed, Faisal; Eba, Ale; Mahdi, Farzana

    2015-01-01

    Hypertension has a multi-factorial background based on genetic and environmental interactive factors. ACE, FABP2 and GST genes have been suggested to be involved in the development of hypertension. However, the results have been inconsistent. The present study was carried out to investigate the association of ACE (rs4646994), FABP2 (rs1799883) and GST (GSTM1 null or positive genotype and GSTT1 null or positive genotype) genes polymorphism with essential HTN cases and controls. This study includes 138 essential hypertension (HTN) patients and 116 age-, sex- and ethnicity-matched control subjects. GST (GSTM1 null or positive genotype and GSTT1 null or positive genotype) genes polymorphisms were evaluated by multiplex PCR, ACE (rs4646994) gene polymorphisms by PCR and FABP2 (rs1799883) gene polymorphisms by PCR-RFLP method. Significant differences were obtained in the frequencies of ACE DD, II genotype (p = 0.006, 0.003), GSTT1 null, GSTM1 positive genotype (p = 0.048, 0.010) and FABP2 Ala54/Ala54 genotype (p = 0.049) between essential HTN cases and controls. It is concluded that ACE (rs 4646994), FABP2 (rs1799883) and GST (GSTM1 null or positive genotype and GSTT1 null or positive genotype) genes polymorphism are associated with HTN. Further investigation with a larger sample size may be required to validate this study.

  8. Activity-Based Probes for Isoenzyme- and Site-Specific Functional Characterization of Glutathione S -Transferases

    Energy Technology Data Exchange (ETDEWEB)

    Stoddard, Ethan G. [Chemical Biology and Exposure; Killinger, Bryan J. [Chemical Biology and Exposure; Nair, Reji N. [Chemical Biology and Exposure; Sadler, Natalie C. [Chemical Biology and Exposure; Volk, Regan F. [Chemical Biology and Exposure; Purvine, Samuel O. [Chemical Biology and Exposure; Shukla, Anil K. [Chemical Biology and Exposure; Smith, Jordan N. [Chemical Biology and Exposure; Wright, Aaron T. [Chemical Biology and Exposure

    2017-11-01

    Glutathione S-transferases (GSTs) comprise a highly diverse family of phase II drug metabolizing enzymes whose shared function is the conjugation of reduced glutathione to various endo- and xenobiotics. Although the conglomerate activity of these enzymes can be measured by colorimetric assays, measurement of the individual contribution from specific isoforms and their contribution to the detoxification of xenobiotics in complex biological samples has not been possible. For this reason, we have developed two activity-based probes that characterize active glutathione transferases in mammalian tissues. The GST active site is comprised of a glutathione binding “G site” and a distinct substrate binding “H site”. Therefore, we developed (1) a glutathione-based photoaffinity probe (GSH-ABP) to target the “G site”, and (2) a probe designed to mimic a substrate molecule and show “H site” activity (GST-ABP). The GSH-ABP features a photoreactive moiety for UV-induced covalent binding to GSTs and glutathione-binding enzymes. The GST-ABP is a derivative of a known mechanism-based GST inhibitor that binds within the active site and inhibits GST activity. Validation of probe targets and “G” and “H” site specificity was carried out using a series of competitors in liver homogenates. Herein, we present robust tools for the novel characterization of enzyme- and active site-specific GST activity in mammalian model systems.

  9. Differential roles of tau class glutathione S-transferases in oxidative stress

    DEFF Research Database (Denmark)

    Kilili, Kimiti G; Atanassova, Neli; Vardanyan, Alla

    2004-01-01

    The plant glutathione S-transferase BI-GST has been identified as a potent inhibitor of Bax lethality in yeast, a phenotype associated with oxidative stress and disruption of mitochondrial functions. Screening of a tomato two-hybrid library for BI-GST interacting proteins identified five homologous...... Tau class GSTs, which readily form heterodimers between them and BI-GST. All six LeGSTUs were found to be able to protect yeast cells from prooxidant-induced cell death. The efficiency of each LeGSTU was prooxidant-specific, indicating a different role for each LeGSTU in the oxidative stress......-response mechanism. The prooxidant protective effect of all six proteins was suppressed in the absence of YAP1, a transcription factor that regulates hydroperoxide homeostasis in Saccharomyces cerevisiae, suggesting a role for the LeGSTUs in the context of the YAP1-dependent stress-responsive machinery...

  10. Glutathione S-transferase T1, O1 and O2 polymorphisms are associated with survival in muscle invasive bladder cancer patients.

    Directory of Open Access Journals (Sweden)

    Tatjana I Djukic

    Full Text Available OBJECTIVE: To examine the association of six glutathione transferase (GST gene polymorphisms (GSTT1, GSTP1/rs1695, GSTO1/rs4925, GSTO2/rs156697, GSTM1, GSTA1/rs3957357 with the survival of patients with muscle invasive bladder cancer and the genotype modifying effect on chemotherapy. PATIENTS AND METHODS: A total of 105 patients with muscle invasive bladder cancer were included in the study. The follow-up lasted 5 years. The effect of GSTs polymorphisms on predicting mortality was analyzed by the Cox proportional hazard models, while Kaplan-Meier analysis was performed to assess differences in survival. RESULTS: GSTT1 active, GSTO1 Asp140Asp or GSTO2 Asp142Asp genotypes were independent predictors of a higher risk of death among bladder cancer patients (HR = 2.5, P = 0.028; HR = 2.9, P = 0.022; HR = 3.9, P = 0.001; respectively and significantly influenced the overall survival. There was no association between GSTP1, GSTM1 and GSTA1 gene variants with overall mortality. Only GSTO2 polymorphism showed a significant effect on the survival in the subgroup of patients who received chemotherapy (P = 0.006. CONCLUSION: GSTT1 active genotype and GSTO1 Asp140Asp and GSTO2 Asp142Asp genotypes may have a prognostic/pharmacogenomic role in patients with muscle invasive bladder cancer.

  11. Does occupational exposure to solvents and pesticides in association with glutathione S-transferase A1, M1, P1, and T1 polymorphisms increase the risk of bladder cancer? The Belgrade case-control study.

    Directory of Open Access Journals (Sweden)

    Marija G Matic

    Full Text Available OBJECTIVE: We investigated the role of the glutathione S-transferase A1, M1, P1 and T1 gene polymorphisms and potential effect modification by occupational exposure to different chemicals in Serbian bladder cancer male patients. PATIENTS AND METHODS: A hospital-based case-control study of bladder cancer in men comprised 143 histologically confirmed cases and 114 age-matched male controls. Deletion polymorphism of glutathione S-transferase M1 and T1 was identified by polymerase chain reaction method. Single nucleotide polymorphism of glutathione S-transferase A1 and P1 was identified by restriction fragment length polymorphism method. As a measure of effect size, odds ratio (OR with corresponding 95% confidence interval (95%CI was calculated. RESULTS: The glutathione S-transferase A1, T1 and P1 genotypes did not contribute independently toward the risk of bladder cancer, while the glutathione S-transferase M1-null genotype was overrepresented among cases (OR = 2.1, 95% CI = 1.1-4.2, p = 0.032. The most pronounced effect regarding occupational exposure to solvents and glutathione S-transferase genotype on bladder cancer risk was observed for the low activity glutathione S-transferase A1 genotype (OR = 9.2, 95% CI = 2.4-34.7, p = 0.001. The glutathione S-transferase M1-null genotype also enhanced the risk of bladder cancer among subjects exposed to solvents (OR = 6,5, 95% CI = 2.1-19.7, p = 0.001. The risk of bladder cancer development was 5.3-fold elevated among glutathione S-transferase T1-active patients exposed to solvents in comparison with glutathione S-transferase T1-active unexposed patients (95% CI = 1.9-15.1, p = 0.002. Moreover, men with glutathione S-transferase T1-active genotype exposed to pesticides exhibited 4.5 times higher risk in comparison with unexposed glutathione S-transferase T1-active subjects (95% CI = 0.9-22.5, p = 0.067. CONCLUSION: Null or low-activity genotypes of the

  12. Involvement of human glutathione S-transferase isoenzymes in the conjugation of cyclophosphamide metabolites with glutathione

    NARCIS (Netherlands)

    Dirven, H.A.A.M.; Ommen, B. van; Bladeren, P.J. van

    1994-01-01

    Alkylating agents can be detoxified by conjugation with glutathione (GSH). One of the physiological significances of this lies in the observation that cancer cells resistant to the cytotoxic effects of alkylating agents have higher levels of GSH and high glutathione S-transferase (GST) activity.

  13. GSTP1, GSTM1 and GSTT1 genetic polymorphisms and total serum GST concentration in stable male COPD

    Directory of Open Access Journals (Sweden)

    Žuntar Irena

    2014-03-01

    Full Text Available The aim of this study was to test the hypothesis that glutathione- S-transferase (GST genotypes were associated with COPD. GSTP1, GSTM1 and GSTT1 genotypes were determined by DNA methods and GST activity spectrophotometrically in older male Caucasian Croats (non- -smokers, ex-smokers, and smokers with stable COPD (n = 30 and sex/age matched controls (n = 60. The distribution of GSTP1 genotypes and alleles in controls vs. COPD showed a statistical difference (p < 0.05. The odds ratio of CC/CT+TT (wild type GSTP1 exon 6 vs. joint heterozygous and mutant homozygous GSTP1 exon 6 was 10.000 and statistically different (p = 0.002. In this study, the GSTP1 mutant genotype of exon 5 (GG, as well as GSTP1 mutant and heterozygous genotypes of exon 6 (TT and CT, were suggested to be genetic contributors to COPD susceptibility. Null GSTM1, null GSTT1 and joint GSTM1/GSTT1 null genotypes were not disease associated. Serum GST was not associated with GST genotypes and COPD or smoking history in our study subjects. Conclusions drawn from the study should be further supported and clarified by studies with larger sample sizes.

  14. The association of glutathione S-transferase GSTT1 and GSTM1 gene polymorphism with pseudoexfoliative glaucoma in a Pakistani population.

    NARCIS (Netherlands)

    Khan, M.I.; Micheal, S.; Akhtar, F.; Ahmed, W.; Ijaz, B.; Ahmed, A.; Qamar, R.

    2010-01-01

    PURPOSE: The aim of the present study was to investigate the association of glutathione S-transferase GSTT1 and GSTM1 genotypes with pseudoexfoliative glaucoma (PEXG) in a group of Pakistani patients. METHODS: Multiplex polymerase chain reaction was used to study the GSTT1 and GSTM1 polymorphisms in

  15. Isolation and characterization of an auxin-inducible glutathione S-transferase gene of Arabidopsis thaliana

    NARCIS (Netherlands)

    Kop, D.A.M. van der; Schuyer, M.; Scheres, B.J.G.; Zaal, B.J. van der; Hooykaas, P.J.J.

    1996-01-01

    Genes homologous to the auxin-inducible Nt103 glutathione S-transferase (GST) gene of tobacco, were isolated from a genomic library of Arabidopsis thaliana. We isolated a λ clone containing an auxin-inducible gene, At103-1a, and part of a constitutively expressed gene, At103-1b. The coding regions

  16. Human glutathione transferases catalyzing the bioactivation of anticancer thiopurine prodrugs.

    Science.gov (United States)

    Eklund, Birgitta I; Gunnarsdottir, Sjofn; Elfarra, Adnan A; Mannervik, Bengt

    2007-06-01

    cis-6-(2-Acetylvinylthio)purine (cAVTP) and trans-6-(2-acetylvinylthio)guanine (tAVTG) are thiopurine prodrugs provisionally inactivated by an alpha,beta-unsaturated substituent on the sulfur of the parental thiopurines 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG). The active thiopurines are liberated intracellularly by glutathione (GSH) in reactions catalyzed by glutathione transferases (GSTs) (EC 2.5.1.18). Catalytic activities of 13 human GSTs representing seven distinct classes of soluble GSTs have been determined. The bioactivation of cAVTP and tAVTG occurs via a transient addition of GSH to the activated double bond of the S-substituent of the prodrug, followed by elimination of the thiopurine. The first of these consecutive reactions is rate-limiting for thiopurine release, but GST-activation of this first addition is shifting the rate limitation to the subsequent elimination. Highly active GSTs reveal the transient intermediate, which is detectable by UV spectroscopy and HPLC analysis. LC/MS analysis of the reaction products demonstrates that the primary GSH conjugate, 4-glutathionylbuten-2-one, can react with a second GSH molecule to form the 4-(bis-glutathionyl)butan-2-one. GST M1-1 and GST A4-4 were the most efficient enzymes with tAVTG, and GST M1-1 and GST M2-2 had highest activity with cAVTP. The highly efficient GST M1-1 is polymorphic and is absent in approximately half of the human population. GST P1-1, which is overexpressed in many cancer cells, had no detectable activity with cAVTP and only minor activity with tAVTG. Other GST-activated prodrugs have targeted GST P1-1-expressing cancer cells. Tumors expressing high levels of GST M1-1 or GST A4-4 can be predicted to be particularly vulnerable to chemotherapy with cAVTP or tAVTG.

  17. The effect of glutathione S-transferase M1 and T1 polymorphisms on blood pressure, blood glucose, and lipid profiles following the supplementation of kale (Brassica oleracea acephala) juice in South Korean subclinical hypertensive patients.

    Science.gov (United States)

    Han, Jeong-Hwa; Lee, Hye-Jin; Kim, Tae-Seok; Kang, Myung-Hee

    2015-02-01

    Glutathione S-transferase (GST) forms a multigene family of phase II detoxification enzymes which are involved in the detoxification of reactive oxygen species. This study examines whether daily supplementation of kale juice can modulate blood pressure (BP), levels of lipid profiles, and blood glucose, and whether this modulation could be affected by the GSTM1 and GSTT1 polymorphisms. 84 subclinical hypertensive patients showing systolic BP over 130 mmHg or diastolic BP over 85 mmHg received 300 ml/day of kale juice for 6 weeks, and blood samples were collected on 0-week and 6-week in order to evaluate plasma lipid profiles (total cholesterol, triglyceride, HDL-cholesterol, and LDL-cholesterol) and blood glucose. Systolic and diastolic blood pressure was significantly decreased in all patients regardless of their GSTM1 or GSTT1 polymorphisms after kale juice supplementation. Blood glucose level was decreased only in the GSTM1-present genotype, and plasma lipid profiles showed no difference in both the GSTM1-null and GSTM1-present genotypes. In the case of GSTT1, on the other hand, plasma HDL-C was increased and LDL-C was decreased only in the GSTT1-present type, while blood glucose was decreased only in the GSTT1-null genotype. These findings suggest that the supplementation of kale juice affected blood pressure, lipid profiles, and blood glucose in subclinical hypertensive patients depending on their GST genetic polymorphisms, and the improvement of lipid profiles was mainly greater in the GSTT1-present genotype and the decrease of blood glucose was greater in the GSTM1-present or GSTT1-null genotypes.

  18. A glutathione s-transferase confers herbicide tolerance in rice

    Directory of Open Access Journals (Sweden)

    Tingzhang Hu

    2014-07-01

    Full Text Available Plant glutathione S-transferases (GSTs have been a focus of attention due to their role in herbicide detoxification. OsGSTL2 is a glutathione S-transferase, lambda class gene from rice (Oryza sativa L.. Transgenic rice plants over-expressing OsGSTL2 were generated from rice calli by the use of an Agrobacterium transformation system, and were screened by a combination of hygromycin resistance, PCR and Southern blot analysis. In the vegetative tissues of transgenic rice plants, the over-expression of OsGSTL2 not only increased levels of OsGSTL2 transcripts, but also GST and GPX expression, while reduced superoxide. Transgenic rice plants also showed higher tolerance to glyphosate and chlorsulfuron, which often contaminate agricultural fields. The findings demonstrate the detoxification role of OsGSTL2 in the growth and development of rice plants. It should be possible to apply the present results to crops for developing herbicide tolerance and for limiting herbicide contamination in the food chain.

  19. The role of glutathione transferases in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ćorić Vesna

    2016-01-01

    Full Text Available Mounting evidence suggest that members of the subfamily of cytosolic glutathione S-transferases (GSTs possess roles far beyond the classical glutathione-dependent enzymatic conjugation of electrophilic metabolites and xenobiotics. Namely, monomeric forms of certain GSTs are capable of forming protein: protein interactions with protein kinases and regulate cell apoptotic pathways. Due to this dual functionality of cytosolic GSTs, they might be implicated in both the development and the progression of renal cell carcinoma (RCC. Prominent genetic heterogeneity, resulting from the gene deletions, as well as from SNPs in the coding and non-coding regions of GST genes, might affect GST isoenzyme profiles in renal parenchyma and therefore serve as a valuable indicator for predicting the risk of cancer development. Namely, GSTs are involved in the biotransformation of several compounds recognized as risk factors for RCC. The most potent carcinogen of polycyclic aromatic hydrocarbon diol epoxides, present in cigarette smoke, is of benzo(apyrene (BPDE, detoxified by GSTs. So far, the relationship between GST genotype and BPDE-DNA adduct formation, in determining the risk for RCC, has not been evaluated in patients with RCC. Although the association between certain individual and combined GST genotypes and RCC risk has been debated in a the literature, the data on the prognostic value of GST polymorphism in patients with RCC are scarce, probably due to the fact that the molecular mechanism supporting the role of GSTs in RCC progression has not been clarified as yet.

  20. Analysis of glutathione S-transferase (M1, T1 and P1) gene ...

    African Journals Online (AJOL)

    Glutathione S-transferase enzymes are active in detoxifying a wide number of endogenous and exogenous chemical carcinogens and subsequently, are crucial in protecting the DNA. Several studies show some differences in association of glutathione S-transferase M1, T1 and P1 genetic polymorphisms with the risk of ...

  1. Urinary collagen IV and πGST: potential biomarkers for detecting localized kidney injury in diabetes--a pilot study.

    LENUS (Irish Health Repository)

    Cawood, T J

    2010-01-01

    Urinary biomarkers can identify damage to specific parts of the nephron. We performed a cross-sectional study to characterise the pattern of diabetic nephropathy using urinary biomarkers of glomerular fibrosis (collagen IV), proximal tubular damage (α-glutathione-S-transferase, GST) and distal tubular damage (πGST).

  2. Cloning and characterization of a glutathione S-transferase homologue from the plant pathogenic fungus Botrytis cinerea

    NARCIS (Netherlands)

    Prins, T.W.; Wagemakers, L.; Schouten, A.; Kan, van J.A.L.

    2000-01-01

    A gene was cloned from Botrytis cinerea that encodes a protein homologous to glutathione S-transferase (GST). The gene, denominated Bcgst1, is present in a single copy and represents the first example of such a gene from a filamentous fungus. The biochemical function of GSTs is to conjugate toxic

  3. Comparative structural analysis of a novel glutathioneS-transferase (ATU5508) from Agrobacterium tumefaciens at 2.0 A resolution.

    Science.gov (United States)

    Kosloff, Mickey; Han, Gye Won; Krishna, S Sri; Schwarzenbacher, Robert; Fasnacht, Marc; Elsliger, Marc-André; Abdubek, Polat; Agarwalla, Sanjay; Ambing, Eileen; Astakhova, Tamara; Axelrod, Herbert L; Canaves, Jaume M; Carlton, Dennis; Chiu, Hsiu-Ju; Clayton, Thomas; DiDonato, Michael; Duan, Lian; Feuerhelm, Julie; Grittini, Carina; Grzechnik, Slawomir K; Hale, Joanna; Hampton, Eric; Haugen, Justin; Jaroszewski, Lukasz; Jin, Kevin K; Johnson, Hope; Klock, Heath E; Knuth, Mark W; Koesema, Eric; Kreusch, Andreas; Kuhn, Peter; Levin, Inna; McMullan, Daniel; Miller, Mitchell D; Morse, Andrew T; Moy, Kin; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Page, Rebecca; Paulsen, Jessica; Quijano, Kevin; Reyes, Ron; Rife, Christopher L; Sims, Eric; Spraggon, Glen; Sridhar, Vandana; Stevens, Raymond C; van den Bedem, Henry; Velasquez, Jeff; White, Aprilfawn; Wolf, Guenter; Xu, Qingping; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2006-11-15

    Glutathione S-transferases (GSTs) comprise a diverse superfamily of enzymes found in organisms from all kingdoms of life. GSTs are involved in diverse processes, notably small-molecule biosynthesis or detoxification, and are frequently also used in protein engineering studies or as biotechnology tools. Here, we report the high-resolution X-ray structure of Atu5508 from the pathogenic soil bacterium Agrobacterium tumefaciens (atGST1). Through use of comparative sequence and structural analysis of the GST superfamily, we identified local sequence and structural signatures, which allowed us to distinguish between different GST classes. This approach enables GST classification based on structure, without requiring additional biochemical or immunological data. Consequently, analysis of the atGST1 crystal structure suggests a new GST class, distinct from previously characterized GSTs, which would make it an attractive target for further biochemical studies. (c) 2006 Wiley-Liss, Inc.

  4. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    Science.gov (United States)

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Genetic polymorphism of glutathion S-transferase P1 (GSTP1 Ile105Val and susceptibility to atherogenesis in patients with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Grubiša Ivana

    2013-01-01

    Full Text Available One of the characteristics of type 2 diabetes mellitus (T2DM is the state of persistent oxidative stress (OS that has been implicated in the pathogenesis of diseases such is atherosclerosis mainly through chronic hyperglycemia that stimulates production of reactive oxygen species (ROS and increases OS. Glutathione S-transferase P1 (GSTP1 is a member of the cytosolic GST superfamily. It plays an important role in neutralizing OS as an enzyme. Also, it participates in regulation of stress signaling and protects cells against apoptosis via its noncatalytic ligand-binding activity. GSTP1 Ile105Val functional polymorphism influences protein catalytic activity and stability and the aim of this study was to determine whether this gene variation influences susceptibility to atherogenesis in T2DM patients. A total of 240 individuals (140 patients with T2DM, accompanied with clinical manifestations of atherosclerosis, and 100 healthy controls were included in this study. Genomic DNA was isolated from peripheral blood cells and genotyping was performed using polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP analysis. We obtained no statistically significant differences in the distribution of alleles and genotypes between cases and controls (P>0.05 but association between Ile/Val (OR=0.6, 95%CI=0.35-1.05, P=0.08 and Val/Val (OR=0.45, 95%CI=0.18-1.11, P=0.08 genotypes and disease approached significance (P=0.08. Our results indicated that a larger study group is needed to establish the true relationship between potentialiy protective allele Val and the disease, and to determine the influence of other GSTP1 polymorphisms on atherogenesis in T2DM patients. [Projekat Ministarstva nauke Republike Srbije, br. 175075

  6. Association between Glutathione S-Transferase GSTM1-T1 and P1 Polymorphisms with Metabolic Syndrome in Zoroastrians in Yazd, Iran

    Science.gov (United States)

    AFRAND, Mohammadhosain; BASHARDOOST, Nasrollah; SHEIKHHA, Mohammad Hasan; AFKHAMI-ARDEKANI, Mohammad

    2015-01-01

    Background: The aim of this study was to assess the possible association between genetic polymorphisms of the glutathione S-transferase (GST) gene family and the risk of the development of metabolic syndrome (MS) in Zoroastrian females in Yazd, Iran. Methods: In this case-control study, GSTM1, T1, and P1 polymorphisms were genotyped in 51 randomly selected MS patients and 50 randomly selected healthy controls on February 2014 among Zoroastrian females whose ages ranged from 40 to 70 yr. DNA was extracted from peripheral blood. Data were analyzed with SPSS version 17. Results: We observed a significant association of GSTP1-I/V (Isoleucine/Valine) allele and GSTP1-V/V (Valine / Valine) allele with MS (P = 0.047 and P = 0.044, respectively). The combined analysis of the two genotypes, the present genotype of GSTT1, I/V and V/V alleles of GSTP1 genotype demonstrated a decrease in the risk of acquiring MS (OR = 0.246, P = 0.031). The null genotype of GSTM1, I/V, and V/V alleles of the GSTP1 genotype showed a lower risk in double combinations (OR = 0.15, P = 0.028 and OR = 0.13, P = 0.013, respectively). The combinations of the GSTM1 null genotypes and GSTT1 present genotypes and the GSTP1 I/V and V/V alleles together were associated with decreased risk of having MS in triple combinations (OR = 0.071, P = 0.039 and OR = 0.065, P = 0.022, respectively). Conclusion: GSTP1-I/V and V/V alleles, alone or in association with GSTM1 null and GSTT1 present genotypes, are related with decreased susceptibility to the development of MS in Zoroastrian females. PMID:26284209

  7. Transfected Babesia bovis Expressing a Tick GST as a Live Vector Vaccine

    Science.gov (United States)

    Oldiges, Daiane P.; Laughery, Jacob M.; Tagliari, Nelson Junior; Leite Filho, Ronaldo Viana; Davis, William C.; da Silva Vaz, Itabajara; Termignoni, Carlos; Knowles, Donald P.; Suarez, Carlos E.

    2016-01-01

    The Rhipicephalus microplus tick is a notorious blood-feeding ectoparasite of livestock, especially cattle, responsible for massive losses in animal production. It is the main vector for transmission of pathogenic bacteria and parasites, including Babesia bovis, an intraerythrocytic apicomplexan protozoan parasite responsible for bovine Babesiosis. This study describes the development and testing of a live B. bovis vaccine expressing the protective tick antigen glutathione-S-transferase from Haemaphysalis longicornis (HlGST). The B. bovis S74-T3B parasites were electroporated with a plasmid containing the bidirectional Ef-1α (elongation factor 1 alpha) promoter of B. bovis controlling expression of two independent genes, the selectable marker GFP-BSD (green fluorescent protein–blasticidin deaminase), and HlGST fused to the MSA-1 (merozoite surface antigen 1) signal peptide from B. bovis. Electroporation followed by blasticidin selection resulted in the emergence of a mixed B. bovis transfected line (termed HlGST) in in vitro cultures, containing parasites with distinct patterns of insertion of both exogenous genes, either in or outside the Ef-1α locus. A B. bovis clonal line termed HlGST-Cln expressing intracellular GFP and HlGST in the surface of merozoites was then derived from the mixed parasite line HlGST using a fluorescent activated cell sorter. Two independent calf immunization trials were performed via intravenous inoculation of the HlGST-Cln and a previously described control consisting of an irrelevant transfected clonal line of B. bovis designated GFP-Cln. The control GFP-Cln line contains a copy of the GFP-BSD gene inserted into the Ef-1α locus of B. bovis in an identical fashion as the HIGST-Cln parasites. All animals inoculated with the HlGST-Cln and GFP-Cln transfected parasites developed mild babesiosis. Tick egg fertility and fully engorged female tick weight was reduced significantly in R. microplus feeding on HlGST-Cln-immunized calves

  8. Transfected Babesia bovis Expressing a Tick GST as a Live Vector Vaccine.

    Directory of Open Access Journals (Sweden)

    Daiane P Oldiges

    2016-12-01

    Full Text Available The Rhipicephalus microplus tick is a notorious blood-feeding ectoparasite of livestock, especially cattle, responsible for massive losses in animal production. It is the main vector for transmission of pathogenic bacteria and parasites, including Babesia bovis, an intraerythrocytic apicomplexan protozoan parasite responsible for bovine Babesiosis. This study describes the development and testing of a live B. bovis vaccine expressing the protective tick antigen glutathione-S-transferase from Haemaphysalis longicornis (HlGST. The B. bovis S74-T3B parasites were electroporated with a plasmid containing the bidirectional Ef-1α (elongation factor 1 alpha promoter of B. bovis controlling expression of two independent genes, the selectable marker GFP-BSD (green fluorescent protein-blasticidin deaminase, and HlGST fused to the MSA-1 (merozoite surface antigen 1 signal peptide from B. bovis. Electroporation followed by blasticidin selection resulted in the emergence of a mixed B. bovis transfected line (termed HlGST in in vitro cultures, containing parasites with distinct patterns of insertion of both exogenous genes, either in or outside the Ef-1α locus. A B. bovis clonal line termed HlGST-Cln expressing intracellular GFP and HlGST in the surface of merozoites was then derived from the mixed parasite line HlGST using a fluorescent activated cell sorter. Two independent calf immunization trials were performed via intravenous inoculation of the HlGST-Cln and a previously described control consisting of an irrelevant transfected clonal line of B. bovis designated GFP-Cln. The control GFP-Cln line contains a copy of the GFP-BSD gene inserted into the Ef-1α locus of B. bovis in an identical fashion as the HIGST-Cln parasites. All animals inoculated with the HlGST-Cln and GFP-Cln transfected parasites developed mild babesiosis. Tick egg fertility and fully engorged female tick weight was reduced significantly in R. microplus feeding on HlGST

  9. Corneal aldehyde dehydrogenase and glutathione S-transferase activity after excimer laser keratectomy in guinea pigs.

    Science.gov (United States)

    Bilgihan, K; Bilgihan, A; Hasanreisoğlu, B; Turkozkan, N

    1998-03-01

    The free radical balance of the eye may be changed by excimer laser keratectomy. Previous studies have demonstrated that excimer laser keratectomy increases the corneal temperature, decreases the superoxide dismutase activity of the aqueous, and induces lipid peroxidation in the superficial corneal stroma. Aldehyde dehydrogenase (ALDH) and glutathione S-transferase (GST) are known to play an important role in corneal metabolism, particularly in detoxification of aldehydes, which are generated from free radical reactions. In three groups of guinea pigs mechanical corneal de-epithelialisation was performed in group I, superficial corneal photoablation in group II, and deep corneal photoablation in group III, and the corneal ALDH and GST activities measured after 48 hours. The mean ALDH and GST activities of group I and II showed no differences compared with the controls (p > 0.05). The corneal ALDH activities were found to be significantly decreased (p < 0.05) and GST activities increased (p < 0.05) in group III. These results suggest that excimer laser treatment of high myopia may change the ALDH and GST activities, metabolism, and free radical balance of the cornea.

  10. Atividade de glutationa S-transferase na metabolização de acetochlor, atrazine e oxyfluorfen em milho (Zea mays L., sorgo (Sorghum bicolor L. e trigo (Triticum aestivum L. (Poaceae Glutathione S-transferase activity in acetochlor, atrazine and oxyfluorfen metabolization in maize (Zea mays L., sorghum (Sorghum bicolor L. and wheat (Triticum aestivumL. (Poaceae

    Directory of Open Access Journals (Sweden)

    Ethel Lourenzi Barbosa Novelli

    2002-05-01

    Full Text Available Este experimento foi conduzido para avaliar a seletividade em plantas dos herbicidas acetochlor, atrazine e oxyfluorfen em relação à atividade da glutationa S-transferase (GST em plantas de milho (Zea mays L., sorgo (Sorghum bicolor L. e trigo (Triticum aestivum L. (Poaceae. A atividade da GST foi detectada às 24, 48 e 72 horas após as aplicaç��es dos tratamentos. Os tratamentos do experimento consistiram de aplicação com água (controle, acetochlor (3 L.ha-1, atrazine (4 L.ha-1 e oxyfluorfen (1 L.ha-1. As maiores atividades de GST foram observadas na presença de acetochlor, principalmente às 48 horas após o tratamento. Esses aumentos foram 105, 148 e 118% em relação ao controle para milho, sorgo e trigo, respectivamente. É sugerido que a GST pode ter papel na degradação de acetochlor e pode ser uma das razões para a seletividade desse herbicida para essas culturas.This experiment was conducted to evaluate the acetochlor, atrazine and oxyfluorfen herbicides plant selectivity, in relation to glutathione S-transferase activity (GST in maize (Zea mays L., sorghum (Sorghum bicolor L. and wheat (Triticum aestivum L (Poaceae plants. GST activity was detected 24, 48 and 72 hours after treatment applications. The experiment's treatments consisted of spraying plants with water (control, acetochlor (3 L.ha-1`, atrazine (4 L.ha-1 and oxyfluorfen (1 L.ha-1. The highest GST activities were observed in presence of acetochlor, mainly at 48 hours after treatment. These increments were 105, 148 and 118% when compared to maize, sorghum and wheat control groups, respectively. It is suggested that the GST may have a role in acetochlor degradation and it may be a reason for this herbicide's selectivity in these crops.

  11. Variable Levels of Glutathione S-Transferases Are Responsible for the Differential Tolerance to Metolachlor between Maize (Zea mays) Shoots and Roots.

    Science.gov (United States)

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Wang, Kai; Wang, Chengju

    2017-01-11

    Glutathione S-transferases (GSTs) play important roles in herbicide tolerance. However, studies on GST function in herbicide tolerance among plant tissues are still lacking. To explore the mechanism of metolachlor tolerance difference between maize shoots and roots, the effects of metolachlor on growth, GST activity, and the expression of the entire GST gene family were investigated. It was found that this differential tolerance to metolachlor was correlated with contrasting GST activity between the two tissues and can be eliminated by a GST inhibitor. An in vitro metolachlor-glutathione conjugation assay confirmed that the transformation of metolachlor is 2-fold faster in roots than in shoots. The expression analysis of the GST gene family revealed that most GST genes are expressed much higher in roots than shoots, both in control and in metolachlor-treated plants. Taken together, higher level expression of most GST genes, leading to higher GST activity and faster herbicide transformation, appears to be responsible for the higher tolerance to metolachlor of maize roots than shoots.

  12. A SERS protocol as a potential tool to access 6-mercaptopurine release accelerated by glutathione-S-transferase.

    Science.gov (United States)

    Wang, Ying; Sun, Jie; Yang, Qingran; Lu, Wenbo; Li, Yan; Dong, Jian; Qian, Weiping

    2015-11-21

    The developed method for monitoring GST, an important drug metabolic enzyme, could greatly facilitate researches on relative biological fields. In this work, we have developed a SERS technique to monitor the absorbance behaviour of 6-mercaptopurine (6-MP) and its glutathione-S-transferase (GST)-accelerated glutathione (GSH)-triggered release behaviour on the surface of gold nanoflowers (GNFs), using the GNFs as excellent SERS substrates. The SERS signal was used as an indicator of absorbance or release of 6-MP on the gold surface. We found that GST can accelerate GSH-triggered release behaviour of 6-MP from the gold surface. We speculated that GST catalyzes nucleophilic GSH to competitively bind with the electrophilic substance 6-MP. Experimental results have proved that the presented SERS protocol can be utilized as an effective tool for accessing the release of anticancer drugs.

  13. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast

    DEFF Research Database (Denmark)

    Kampranis, S C; Damianova, R; Atallah, M

    2000-01-01

    The mammalian inducer of apoptosis Bax is lethal when expressed in yeast and plant cells. To identify potential inhibitors of Bax in plants we transformed yeast cells expressing Bax with a tomato cDNA library and we selected for cells surviving after the induction of Bax. This genetic screen allows...... for the identification of plant genes, which inhibit either directly or indirectly the lethal phenotype of Bax. Using this method a number of cDNA clones were isolated, the more potent of which encodes a protein homologous to the class theta glutathione S-transferases. This Bax-inhibiting (BI) protein was expressed...... in Escherichia coli and found to possess glutathione S-transferase (GST) and weak glutathione peroxidase (GPX) activity. Expression of Bax in yeast decreases the intracellular levels of total glutathione, causes a substantial reduction of total cellular phospholipids, diminishes the mitochondrial membrane...

  14. GST M1-T1 null allele frequency patterns in geographically assorted human populations: a phylogenetic approach.

    Directory of Open Access Journals (Sweden)

    Senthilkumar Pitchalu Kasthurinaidu

    Full Text Available Genetic diversity in drug metabolism and disposition is mainly considered as the outcome of the inter-individual genetic variation in polymorphism of drug-xenobiotic metabolizing enzyme (XME. Among the XMEs, glutathione-S-transferases (GST gene loci are an important candidate for the investigation of diversity in allele frequency, as the deletion mutations in GST M1 and T1 genotypes are associated with various cancers and genetic disorders of all major Population Affiliations (PAs. Therefore, the present population based phylogenetic study was focused to uncover the frequency distribution pattern in GST M1 and T1 null genotypes among 45 Geographically Assorted Human Populations (GAHPs. The frequency distribution pattern for GST M1 and T1 null alleles have been detected in this study using the data derived from literatures representing 44 populations affiliated to Africa, Asia, Europe, South America and the genome of PA from Gujarat, a region in western India. Allele frequency counting for Gujarat PA and scattered plot analysis for geographical distribution among the PAs were performed in SPSS-21. The GST M1 and GST T1 null allele frequencies patterns of the PAs were computed in Seqboot, Gendist program of Phylip software package (3.69 versions and Unweighted Pair Group method with Arithmetic Mean in Mega-6 software. Allele frequencies from South African Xhosa tribe, East African Zimbabwe, East African Ethiopia, North African Egypt, Caucasian, South Asian Afghanistan and South Indian Andhra Pradesh have been identified as the probable seven patterns among the 45 GAHPs investigated in this study for GST M1-T1 null genotypes. The patternized null allele frequencies demonstrated in this study for the first time addresses the missing link in GST M1-T1 null allele frequencies among GAHPs.

  15. Oxidative stress markers and genetic polymorphisms of glutathione S-transferase T1, M1, and P1 in a subset of children with autism spectrum disorder in Lagos, Nigeria.

    Science.gov (United States)

    Oshodi, Y; Ojewunmi, O; Oshodi, T A; Ijarogbe, G T; Ogun, O C; Aina, O F; Lesi, Fea

    2017-09-01

    The role of oxidative stress has been identified in the development of autism spectrum disorder (ASD), and polymorphisms of glutathione S-transferase have been associated with some diseases linked to oxidative stress. Hence, we evaluated the serum levels of oxidative stress markers and investigated genetic polymorphisms of glutathione S-transferase associated with autism. Forty-two children clinically diagnosed with ASD using the Diagnostic and Statistical Manual for Mental Disorders (DSM-5) criteria and a clinical interview were included in the study. Twenty-three age-matched controls without any known genetic/developmental disorder were also recruited. Oxidative stress markers along with the genetic polymorphisms of glutathione S-transferase were determined. Reduced glutathione in ASD patients was significantly lower than the control (P = 0.008), whereas other oxidative stress markers measured were not significantly different in both the control and case populations. The frequencies of GSTT1 and GSTM1 null genotypes were lower among the controls compared with the cases, however, no association risk was observed. The observed risk of carrying Val/Val genotype among the cases was approximately six times that of the controls. Individuals with ASD showed a significant diminished level of reduced glutathione, however, the distribution of GSTT1, GSTM1, and GSTP1 polymorphisms was not found to be associated with autism in this study population.

  16. In-vitro effect of flavonoids from Solidago canadensis extract on glutathione S-transferase.

    Science.gov (United States)

    Apáti, Pál; Houghton, Peter J; Kite, Geoffrey; Steventon, Glyn B; Kéry, Agnes

    2006-02-01

    Solidago canadensis is typical of a flavonoid-rich herb and the effect of an aqueous ethanol extract on glutathione-S-transferase (GST) activity using HepG2 cells was compared with those of the flavonol quercetin and its glycosides quercitrin and rutin, found as major constituents. The composition of the extract was determined by HPLC and rutin was found to be the major flavonoidal component of the extract. Total GST activity was assessed using 1-chloro-2,4-dinitrobenzene as a substrate. The glycosides rutin and quercitrin gave dose-dependent increases in GST activity, with a 50% and 24.5% increase at 250 mM, respectively, while the aglycone quercetin inhibited the enzyme by 30% at 250 mM. The total extract of the herb gave an overall dose-dependent increase, the fractions corresponding to the flavonoids showed activating effects while those containing caffeic acid derivatives were inhibitory. The activity observed corresponds to that reported for similar compounds in-vivo using rats, thus the HepG2 cell line could serve as a more satisfactory method of assessing the effects of extracts and compounds on GST.

  17. Nuclear translocation of glutathione S-transferase {pi} is mediated by a non-classical localization signal

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, Miho [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Goto, Shinji, E-mail: sgoto@nagasaki-u.ac.jp [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Yoshida, Takako; Urata, Yoshishige; Li, Tao-Sheng [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan)

    2011-08-12

    Highlights: {yields} Nuclear translocation of GST{pi} is abrogated by the deletion of the last 16 amino acid residues in the carboxy-terminal region, indicating that residues 195-208 of GST{pi} are required for nuclear translocation. {yields} The lack of a contiguous stretch of positively charged amino acid residues within the carboxy-terminal region of GST{pi}, suggests that the nuclear translocation of GST{pi} is mediated by a non-classical nuclear localization signal. {yields} An in vitro transport assay shows that the nuclear translocation of GST{pi} is dependent on cytosolic factors and ATP. -- Abstract: Glutathione S-transferase {pi} (GST{pi}), a member of the GST family of multifunctional enzymes, is highly expressed in human placenta and involved in the protection of cellular components against electrophilic compounds or oxidative stress. We have recently found that GST{pi} is expressed in the cytoplasm, mitochondria, and nucleus in some cancer cells, and that the nuclear expression of GST{pi} appears to correlate with resistance to anti-cancer drugs. Although the mitochondrial targeting signal of GST{pi} was previously identified in the amino-terminal region, the mechanism of nuclear translocation remains completely unknown. In this study, we find that the region of GST{pi}195-208 is critical for nuclear translocation, which is mediated by a novel and non-classical nuclear localization signal. In addition, using an in vitro transport assay, we demonstrate that the nuclear translocation of GST{pi} depends on the cytosolic extract and ATP. Although further experiments are needed to understand in depth the precise mechanism of nuclear translocation of GST{pi}, our results may help to establish more efficient anti-cancer therapy, especially with respect to resistance to anti-cancer drugs.

  18. Urinary Polycyclic Aromatic Hydrocarbon (OH-PAH) Metabolite Concentrations and the Effect of GST Polymorphisms Among US Air Force Personnel Exposed to Jet Fuel

    Science.gov (United States)

    Rodrigues, Ema G.; Smith, Kristen; Maule, Alexis L.; Sjodin, Andreas; Li, Zheng; Romanoff, Lovisa; Kelsey, Karl; Proctor, Susan; McClean, Michael D.

    2016-01-01

    Objective To evaluate the association between inhalation exposure to jet propulsion fuel 8 (JP-8) and urinary metabolites among US Air Force (USAF) personnel, and investigate the role of glutathione S-transferase polymorphisms. Methods Personal air samples were collected from 37 full-time USAF personnel during 4 consecutive workdays and analyzed for JP-8 constituents and total hydrocarbons. Pre- and postshift urine samples were collected each day and analyzed for polycyclic aromatic hydrocarbon urinary metabolites. Results Work shift exposure to total hydrocarbons was significantly associated with postshift urinary 1-naphthol (β = 0.17; P = <0.0001), 2-naphthol (β = 0.09; P = 0.005), and 2-hydroxyfluorene concentrations (β = 0.08; P = 0.006), and a significant gene-environment interaction was observed with glutathione S-transferase mu-1. Conclusions USAF personnel experience inhalation exposure to JP-8, which is associated with absorption of JP-8 constituents while performing typical job-related tasks, and in our data the glutathione S-transferase mu-1 polymorphism was associated with differential metabolism of naphthalene. PMID:24806557

  19. Photoaffinity labelling of the active site of the rat glutathione transferases 3-3 and 1-1 and human glutathione transferase A1-1.

    OpenAIRE

    Cooke, R J; Björnestedt, R; Douglas, K T; McKie, J H; King, M D; Coles, B; Ketterer, B; Mannervik, B

    1994-01-01

    The glutathione transferases (GSTs) form a group of enzymes responsible for a wide range of molecular detoxications. The photoaffinity label S-(2-nitro-4-azidophenyl)glutathione was used to study the hydrophobic region of the active site of the rat liver GST 1-1 and 2-2 isoenzymes (class Alpha) as well as the rat class-Mu GST 3-3. Photoaffinity labelling was carried out using a version of S-(2-nitro-4-azidophenyl)glutathione tritiated in the arylazido ring. The labelling occurred with higher ...

  20. Glutathione S-transferase genotypes modify lung function decline in the general population: SAPALDIA cohort study

    Directory of Open Access Journals (Sweden)

    Ackermann-Liebrich Ursula

    2007-01-01

    Full Text Available Abstract Background Understanding the environmental and genetic risk factors of accelerated lung function decline in the general population is a first step in a prevention strategy against the worldwide increasing respiratory pathology of chronic obstructive pulmonary disease (COPD. Deficiency in antioxidative and detoxifying Glutathione S-transferase (GST gene has been associated with poorer lung function in children, smokers and patients with respiratory diseases. In the present study, we assessed whether low activity variants in GST genes are also associated with accelerated lung function decline in the general adult population. Methods We examined with multiple regression analysis the association of polymorphisms in GSTM1, GSTT1 and GSTP1 genes with annual decline in FEV1, FVC, and FEF25–75 during 11 years of follow-up in 4686 subjects of the prospective SAPALDIA cohort representative of the Swiss general population. Effect modification by smoking, gender, bronchial hyperresponisveness and age was studied. Results The associations of GST genotypes with FEV1, FVC, and FEF25–75 were comparable in direction, but most consistent for FEV1. GSTT1 homozygous gene deletion alone or in combination with GSTM1 homozygous gene deletion was associated with excess decline in FEV1 in men, but not women, irrespective of smoking status. The additional mean annual decline in FEV1 in men with GSTT1 and concurrent GSTM1 gene deletion was -8.3 ml/yr (95% confidence interval: -12.6 to -3.9 relative to men without these gene deletions. The GSTT1 effect on the FEV1 decline comparable to the observed difference in FEV1 decline between never and persistent smoking men. Effect modification by gender was statistically significant. Conclusion Our results suggest that genetic GSTT1 deficiency is a prevalent and strong determinant of accelerated lung function decline in the male general population.

  1. Acrolein-detoxifying isozymes of glutathione transferase in plants.

    Science.gov (United States)

    Mano, Jun'ichi; Ishibashi, Asami; Muneuchi, Hitoshi; Morita, Chihiro; Sakai, Hiroki; Biswas, Md Sanaullah; Koeduka, Takao; Kitajima, Sakihito

    2017-02-01

    Acrolein is a lipid-derived highly reactive aldehyde, mediating oxidative signal and damage in plants. We found acrolein-scavenging glutathione transferase activity in plants and purified a low K M isozyme from spinach. Various environmental stressors on plants cause the generation of acrolein, a highly toxic aldehyde produced from lipid peroxides, via the promotion of the formation of reactive oxygen species, which oxidize membrane lipids. In mammals, acrolein is scavenged by glutathione transferase (GST; EC 2.5.1.18) isozymes of Alpha, Pi, and Mu classes, but plants lack these GST classes. We detected the acrolein-scavenging GST activity in four species of plants, and purified an isozyme showing this activity from spinach (Spinacia oleracea L.) leaves. The isozyme (GST-Acr), obtained after an affinity chromatography and two ion exchange chromatography steps, showed the K M value for acrolein 93 μM, the smallest value known for acrolein-detoxifying enzymes in plants. Peptide sequence homology search revealed that GST-Acr belongs to the GST Tau, a plant-specific class. The Arabidopsis thaliana GST Tau19, which has the closest sequence similar to spinach GST-Acr, also showed a high catalytic efficiency for acrolein. These results suggest that GST plays as a scavenger for acrolein in plants.

  2. Effect of Ginkgo biloba extract on the expressions of Cox-2 and GST ...

    African Journals Online (AJOL)

    2014-03-01

    Mar 1, 2014 ... Its underlying biological mechanism remains unclear and no well-documented drug and ... Objectives: To explore the effect of EGb on expressions of cyclooxygenase-2 (Cox-2) and glutathione S-transferase Pi. (GST-Pi) in the ..... in an animal model of Parkinson's disease: Therapeutic perspectives. Nutri-.

  3. Thermal- and urea-induced unfolding processes of glutathione S-transferase by molecular dynamics simulation.

    Science.gov (United States)

    Li, Jiahuang; Chen, Yuan; Yang, Jie; Hua, Zichun

    2015-05-01

    The Schistosoma juponicum 26 kDa glutathione S-transferase (sj26GST) consists of the N-terminal domain (N-domain), containing three alpha-helices (named H1-H3) and four anti-parallel beta-strands (S1-S4), and the C-terminal domain (C-domain), comprising five alpha-helices (named H4-H8). In present work, molecular dynamics simulations and fluorescence spectroscopic were used to gain insights into the unfolding process of sj26GST. The molecular dynamics simulations on sj26GST subunit both in water and in 8 M urea were carried out at 300 K, 400 K and 500 K, respectively. Spectroscopic measurements were employed to monitor structural changes. Molecular dynamics simulations of sj26GST subunit induced by urea and temperature showed that the initial unfolding step of sj26GST both in water and urea occurred on N-domain, involving the disruption of helices H2, H3 and strands S3 and S4, whereas H6 was the last region exposed to solution and was the last helix to unfold. Moreover, simulations analyses combining with fluorescence and circular dichroism spectra indicated that N-domain could not fold independent, suggesting that correct folding of N-domain depended on its interactions with C-domain. We further proposed that the folding of GSTs could begin with the hydrophobic collapse of C-domain whose H4, H5, H6 and H7 could move close to each other and form a hydrophobic core, especially H6 wrapped in the hydrophobic center and beginning spontaneous formation of the helix. S3, S4, H3, and H2 could form in the wake of the interaction between C-domain and N-domain. The paper can offer insights into the molecular mechanism of GSTs unfolding. © 2014 Wiley Periodicals, Inc.

  4. The role of the glutathione S-transferase genes GSTT1, GSTM1, and GSTP1 in acetaminophen-poisoned patients

    DEFF Research Database (Denmark)

    Buchard, Anders; Eefsen, Martin; Semb, Synne

    2012-01-01

    The aim of this study was to assess if genetic variants in the glutathione-S-transferase genes GST-T1, M1, and P1 reflect risk factors in acetaminophen (APAP)-poisoned patients assessed by investigation of the relation to prothrombin time (PT), which is a sensitive marker of survival in these pat...

  5. Association of N-acetyltransferase-2 and glutathione S-transferase polymorphisms with idiopathic male infertility in Vietnam male subjects.

    Science.gov (United States)

    Trang, Nguyen Thi; Huyen, Vu Thi; Tuan, Nguyen Thanh; Phan, Tran Duc

    2018-04-25

    N-acetyltransferase-2 (NAT2) and Glutathione S-transferases (GSTs) are phase-II xenobiotic metabolizing enzymes participating in detoxification of toxic arylamines, aromatic amines, hydrazines and reactive oxygen species (ROS), which are produced under oxidative and electrophile stresses. The purpose of this research was to investigate whether two common single-nucleotide polymorphisms (SNP) of NAT2 (rs1799929, rs1799930) and GSTP1 (rs1138272, rs1695) associated with susceptibility to idiopathic male infertility. A total 300 DNA samples (150 infertile patients and 150 healthy control) were genotyped for the polymorphisms by ARMS - PCR. We revealed a significant association between the NAT2 variant genotypes (CT + TT (rs1799929), (OR: 3.74; p male infertility in subjects from Vietnam. This pilot study is the first (as far as we know) to reveal that polymorphisms of NAT2 (rs1799929, rs1799930) and GSTP1 (rs1138272, rs1695) are some novel genetic markers for susceptibility to idiopathic male infertility. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Urinary polycyclic aromatic hydrocarbon (OH-PAH) metabolite concentrations and the effect of GST polymorphisms among US Air Force personnel exposed to jet fuel.

    Science.gov (United States)

    Rodrigues, Ema G; Smith, Kristen; Maule, Alexis L; Sjodin, Andreas; Li, Zheng; Romanoff, Lovisa; Kelsey, Karl; Proctor, Susan; McClean, Michael D

    2014-05-01

    To evaluate the association between inhalation exposure to jet propulsion fuel 8 (JP-8) and urinary metabolites among US Air Force (USAF) personnel, and investigate the role of glutathione S-transferase polymorphisms. Personal air samples were collected from 37 full-time USAF personnel during 4 consecutive workdays and analyzed for JP-8 constituents and total hydrocarbons. Pre- and postshift urine samples were collected each day and analyzed for polycyclic aromatic hydrocarbon urinary metabolites. Work shift exposure to total hydrocarbons was significantly associated with postshift urinary 1-naphthol (β = 0.17; P = inhalation exposure to JP-8, which is associated with absorption of JP-8 constituents while performing typical job-related tasks, and in our data the glutathione S-transferase mu-1 polymorphism was associated with differential metabolism of naphthalene.

  7. Effect of Ginkgo biloba extract on the expressions of Cox-2 and GST ...

    African Journals Online (AJOL)

    Objectives: This study was performed to explore the effect of EGb on expressions of cyclooxygenase-2 (Cox-2) and glutathione S-transferase Pi (GST-Pi) in the pathogenesis of HCC risk. Methods: 120 Wistar rats were divided into three groups at random: normal control group (control group), HCC risk group without ...

  8. Glutathione S-transferases in human renal cortex and neoplastic tissue: enzymatic activity, isoenzyme profile and immunohistochemical localization.

    Science.gov (United States)

    Rodilla, V; Benzie, A A; Veitch, J M; Murray, G I; Rowe, J D; Hawksworth, G M

    1998-05-01

    1. Glutathione S-transferase (GST) activity in the cytosol of renal cortex and tumours from eight men and eight women was measured using 1-chloro-2,4-dinitrobenzene (CDNB) as a substrate. GST activities ranged from 685 to 2192 nmol/min/mg protein in cortex (median 1213) and from non-detectable (minimum 45) to 2424 nmol/min/mg protein in tumours (median 469). The activities in the tumours were lower than those in the normal cortices (p 0.05). 3. The age of the patients ranged from 42 to 81 years (median 62) and was not found to play a role in the levels of GST activity observed in cortex or in renal tumours from either sex. 4. Immunoblotting and immunohistochemical studies confirmed that GST-alpha was the predominant form expressed both in normal cortex and tumour and probably accounted for most of the GST activity present in these samples. GST-mu and GST-phi were expressed in both tumours and normal cortex and, while in some cases the level of expression in the cortices was higher than that found in the tumours, the reverse was also observed. Within the GST-mu class, GST M1/M2 was only detected in one sample (tumour), which showed the highest overall expression of GST-mu. GSTM3 was the predominant isoenzyme of the mu class in normal and tumour tissue, whereas GTM4 and GSTM5 were not detected. 5. These differences could have functional significance where xenobiotics or cytotoxic drugs are specific substrates for the different classes of GSTs.

  9. Determination of serum neuron specific enolase and glutathion S transferases levels in patients with acute cerebral infarction and its clinical significance

    International Nuclear Information System (INIS)

    Guo Jianyi; Lu Tianhe; Bao Yanmei

    2002-01-01

    Objective: To evaluate the variation of serum neuron specific enolase (NSE) and glutathion S transferases (GST) levels in patients with cerebral infarction and its clinical significance. Methods: The serum levels of NSE in cerebral infarction patients were determined with immunoradiometric assay (IRMA), and the serum level of GST were determined by enzyme immuno sandwich assay (ELISA). Results: Serum NSE levels linked in patients were significantly higher (p<0.01) and GST serum levels were significantly lower (p < 0.01) within 3 days after onset of disease than those at two weeks and those in the controls. There was a positive correlation between serum NSE levels and neurological deficit scores (p < 0.001) and a negative correlation with serum GST levels (p < 0.05). There was also a close relationship between the serum NSE levels and the volume of infarction (p < 0.001). Conclusion: There was a close relationship between the Serum levels of NSE, GST and clinical features of Patients in the early stage of cerebral infarction

  10. A study of the association of glutathione S-transferase M1/T1 polymorphisms with susceptibility to vitiligo in Egyptian patients.

    Science.gov (United States)

    Aly, Dalia Gamal; Salem, Samar Abdallah; Amr, Khalda Sayed; El-Hamid, Mahmoud Fawzy Abd

    2018-01-01

    The association of glutathione S-transferases M1/T1 (GSTM1/T1) null polymorphisms with vitiligo was proposed in several studies including two Egyptian studies with contradictory results. The aim here was to assess the association between GSTM1/T1 null polymorphisms and the susceptibility to vitiligo in a larger sample of Egyptian patients with generalized vitiligo. This study included 122 vitiligo patients and 200 healthy controls that were age, and gender matched. Assessment of GSTM1/T1 gene polymorphisms was done using a multiplex polymerase chain reaction (PCR). Increased odds of generalized vitiligo was observed with the null genotypes of GSTM1 and GSTT1 polymorphisms (Pvitiligo (OR=2.97, 95%CI=1.1-7.7) (P=0.02) compared with patients. Small sample size of patients. This study showed a significant trend towards an association with the combination of the GSTM1/GSTT1 double null polymorphism and generalized vitiligo. Individuals with GSTM1 null/GSTT1+ heterozygosis have a 2.97 odds protection from having generalized vitiligo compared with patients. It was is the first time, to our knowledge, that such an association has been reported.

  11. In silico genome-wide identification and characterization of the glutathione S-transferase gene family in Vigna radiata.

    Science.gov (United States)

    Vaish, Swati; Awasthi, Praveen; Tiwari, Siddharth; Tiwari, Shailesh Kumar; Gupta, Divya; Basantani, Mahesh Kumar

    2018-05-01

    Plant glutathione S-transferases (GSTs) are integral to normal plant metabolism and biotic and abiotic stress tolerance. The GST gene family has been characterized in diverse plant species using molecular biology and bioinformatics approaches. In the current study, in silico analysis identified 44 GSTs in Vigna radiata. Of the total 44 GSTs identified, chromosomal locations of 31 GSTs were confirmed. The pI value of GST proteins ranged from 5.10 to 9.40. The predicted molecular weights ranged from 13.12 to 50 kDa. Subcellular localization analysis revealed that all GSTs were predominantly localized in the cytoplasm. The active site amino acids were confirmed to be serine in tau, phi, theta, zeta, and TCHQD; cysteine in lambda, DHAR, and omega; and tyrosine in EF1G. The gene architecture conformed to the two-exon/one-intron and three-exon/two-intron organization in the case of tau and phi classes, respectively. MEME analysis identified 10 significantly conserved motifs with the width of 8-50 amino acids. The motifs identified were either specific to a specific GST class or were shared by multiple GST classes. The results of the current study will be of potential importance in the characterization of the GST gene family in V. radiata, an economically important leguminous crop.

  12. Germline glutathione S-transferase variants in breast cancer: Relation to diagnosis and cutaneous long-term adverse effects after two fractionation patterns of radiotherapy

    International Nuclear Information System (INIS)

    Edvardsen, Hege; Kristensen, Vessela N.; Grenaker Alnaes, Grethe Irene B.Sc.; Bohn, Mona; Erikstein, Bjorn; Helland, Aslaug; Borresen-Dale, Anne-Lise; Fossa, Sophie Dorothea

    2007-01-01

    Purpose: To explore whether certain glutathione S-transferase (GST) polymorphisms are associated with an increased risk of breast cancer or the level of radiation-induced adverse effects after two fractionation patterns of adjuvant radiotherapy. Methods and Materials: The prevalence of germline polymorphic variants in GSTM1, GSTP1, and GSTT1 was determined in 272 breast cancer patients and compared with that in a control group of 270 women from the general population with no known history of breast cancer. The genetic variants were determined using multiplex polymerase chain reaction followed by restriction enzyme fragment analysis. In 253 of the patients surveyed for radiotherapy-induced side effects after a median observation time of 13.7 years (range, 7-22.8 years), the genotypes were related to the long-term effects observed after two fractionation patterns (treatment A, 4.3 Gy in 10 fractions for 156 patients; and treatment B, 2.5 Gy in 20 fractions for 97; both administered within a 5-week period). Results: None of the GST polymorphisms conferred an increased risk of breast cancer, either alone or in combination. Compared with treatment B, treatment A was followed by an increased level of moderate to severe radiation-induced side effects for all the endpoints studied (i.e., degree of telangiectasia, subcutaneous fibrosis and atrophy, lung fibrosis, costal fractures, and pleural thickening; p <0.001 for all endpoints). A significant association was found between the level of pleural thickening and the GSTP1 Ile105Val variant. Conclusion: The results of this study have illustrated the impact of hypofractionation on the level of adverse effects and indicated that the specific alleles of GSTP1, M1, and T1 studied here may be significant in determining the level of adverse effects after radiotherapy

  13. Glutathione S-transferase M1 and T1, CYP1A2-2467T/delT ...

    African Journals Online (AJOL)

    The present study investigated the impact of metabolic gene polymorphisms in modulating lung cancer risk susceptibility. Gene polymorphisms encoding Cytochrome 1A2 (CYP1A2) and Glutathione-S-transferases (GSTT1 and GSTM1) are involved in the bioactivation and detoxification of tobacco carcinogens and may ...

  14. Purification and properties of the glutathione S-transferases from the anoxia-tolerant turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Willmore, William G; Storey, Kenneth B

    2005-07-01

    Glutathione S-transferases (GSTs) play critical roles in detoxification, response to oxidative stress, regeneration of S-thiolated proteins, and catalysis of reactions in nondetoxification metabolic pathways. Liver GSTs were purified from the anoxia-tolerant turtle, Trachemys scripta elegans. Purification separated a homodimeric (subunit relative molecular mass =34 kDa) and a heterodimeric (subunit relative molecular mass = 32.6 and 36.8 kDa) form of GST. The enzymes were purified 23-69-fold and 156-174-fold for homodimeric and heterodimeric GSTs, respectively. Kinetic data gathered using a variety of substrates and inhibitors suggested that both homodimeric and heterodimeric GSTs were of the alpha class although they showed significant differences in substrate affinities and responses to inhibitors. For example, homodimeric GST showed activity with known alpha class substrates, cumene hydroperoxide and p-nitrobenzylchloride, whereas heterodimeric GST showed no activity with cumene hydroperoxide. The specific activity of liver GSTs with chlorodinitrobenzene (CDNB) as the substrate was reduced by 2.6- and 8.7-fold for homodimeric and heterodimeric GSTs isolated from liver of anoxic turtles as compared with aerobic controls, suggesting an anoxia-responsive stable modification of the protein that may alter its function during natural anaerobiosis.

  15. Effect of recombinant glutathione S-transferase as vaccine antigen against Rhipicephalus appendiculatus and Rhipicephalus sanguineus infestation.

    Science.gov (United States)

    Sabadin, Gabriela Alves; Parizi, Luís Fernando; Kiio, Irene; Xavier, Marina Amaral; da Silva Matos, Renata; Camargo-Mathias, Maria Izabel; Githaka, Naftaly Wang'ombe; Nene, Vish; da Silva Vaz, Itabajara

    2017-12-04

    The ticks Rhipicephalus appendiculatus and Rhipicephalus sanguineus are the main vectors of Theileria parva and Babesia spp. in cattle and dogs, respectively. Due to their impact in veterinary care and industry, improved methods against R. appendiculatus and R. sanguineus parasitism are under development, including vaccines. We have previously demonstrated the induction of a cross-protective humoral response against Rhipicephalus microplus following vaccination with recombinant glutathione S-transferase from Haemaphysalis longicornis tick (rGST-Hl), suggesting that this protein could control tick infestations. In the present work, we investigated the effect of rGST-Hl vaccine against R. appendiculatus and R. sanguineus infestation in rabbits. In silico analysis revealed that GST from H. longicornis, R. appendiculatus and R. sanguineus have >80% protein sequence similarity, and multiple conserved antigenic sites. After the second vaccine dose, rGST-Hl-immunized rabbits showed elevated antibody levels which persisted until the end of experiment (75 and 60 days for R. appendiculatus and R. sanguineus, respectively). Western blot assays demonstrated cross-reactivity between anti-rGST-Hl antibodies and native R. appendiculatus and R. sanguineus GST extracts from ticks at different life stages. Vaccination with rGST-Hl decreased the number, weight, and fertility of engorged R. appendiculatus adults, leading to an overall vaccine efficacy of 67%. Interestingly, histological analysis of organ morphology showed damage to salivary glands and ovaries of R. appendiculatus adult females fed on vaccinated animals. In contrast, rGST-Hl vaccination did not affect R. appendiculatus nymphs, and it was ineffective against R. sanguineus across the stages of nymph and adult. Taken together, our results show the potential application of rGST-Hl as an antigen in anti-tick vaccine development, however indicating a broad difference in efficacy among tick species. Copyright © 2017 Elsevier

  16. Glutathione S-transferase M1-null genotype as risk factor for SOS in oxaliplatin-treated patients with metastatic colorectal cancer.

    Science.gov (United States)

    Vreuls, C P H; Olde Damink, S W M; Koek, G H; Winstanley, A; Wisse, E; Cloots, R H E; van den Broek, M A J; Dejong, C H C; Bosman, F T; Driessen, A

    2013-02-19

    Oxaliplatin is used as a neo-adjuvant therapy in hepatic colorectal carcinoma metastasis. This treatment has significant side effects, as oxaliplatin is toxic to the sinusoidal endothelial cells and can induce sinusoidal obstruction syndrome (SOS), which is related to decreased overall survival. Glutathione has an important role in the defence system, catalysed by glutathione S-transferase (GST), including two non-enzyme producing polymorphisms (GSTM1-null and GSTT1-null). We hypothesise that patients with a non-enzyme producing polymorphism have a higher risk of developing toxic injury owing to oxaliplatin. In the nontumour-bearing liver, the presence of SOS was studied histopathologically. The genotype was determined by a semi-nested PCR. Thirty-two of the 55 (58%) patients showed SOS lesions, consisting of 27% mild, 22% moderate and 9% severe lesions. The GSTM1-null genotype was present in 25 of the 55 (46%). Multivariate analysis showed that the GSTM1-null genotype significantly correlated with the presence of (moderate-severe) SOS (P=0.026). The GSTM1-null genotype is an independent risk factor for SOS. This finding allows us, in association with other risk factors, to conceive a potential risk profile predicting whether the patient is at risk of developing SOS, before starting oxaliplatin, and subsequently might result in adjustment of treatment.

  17. Prevalence of glutathione S-transferase gene deletions and their effect on sickle cell patients

    Directory of Open Access Journals (Sweden)

    Pandey Sanjay

    2012-01-01

    Full Text Available BACKGROUND: Glutathione S-transferase gene deletions are known detoxification agents and cause oxidative damage. Due to the different pathophysiology of anemia in thalassemia and sickle cell disease, there are significant differences in the pathophysiology of iron overload and iron-related complications in these disorders. OBJECTIVE: The aim of this study was to estimate the frequency of the GSTM1 and GSTT1 genotypes in sickle cell disease patients and their effect on iron status. METHODS: Forty sickle cell anemia and sixty sickle ß-thalassemia patients and 100 controls were evaluated to determine the frequency of GST gene deletions. Complete blood counts were performed by an automated cell analyzer. Hemoglobin F, hemoglobin A, hemoglobin A2 and hemoglobin S were measured and diagnosis of patients was achieved by high performance liquid chromatography with DNA extraction by the phenol-chloroform method. The GST null genotype was determined using multiplex polymerase chain reaction and serum ferritin was measured using an ELISA kit. Statistical analysis was by EpiInfo and GraphPad statistics software. RESULTS: An increased frequency of the GSTT1 null genotype (p-value = 0.05 was seen in the patients. The mean serum ferritin level was higher in patients with the GST genotypes than in controls; this was statistically significant for all genotypes except GSTM1, however the higher levels of serum ferritin were due to blood transfusions in patients. CONCLUSION: GST deletions do not play a direct role in iron overload of sickle cell patients.

  18. The association between glutathione S-transferase P1 ...

    African Journals Online (AJOL)

    Mahmoud I. Mahmoud

    2011-08-10

    Aug 10, 2011 ... B-adrenergic receptor polymorphisms and response to salmeterol. Am J Respir Crit Care ... transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 1997;18(4):641–4.

  19. Glutathione S transferase polymorphisms influence on iron overload in β-thalassemia patients

    Directory of Open Access Journals (Sweden)

    Serena Sclafani

    2013-11-01

    Full Text Available In patients with β-thalassemia iron overload that leads to damage to vital organs is observed. Glutathione S transferase (GST enzymes have an antioxidant role in detoxification processes of toxic substances. This role is determined genetically. In this study, we correlated GSTT1 and GSTM1 genotypes with iron overload measured with direct and indirect non-invasive methods; in particular, we used serum ferritin and signal intensity of the magnetic resonance image (MRI in 42 patients with β-thalassemia, which were regularly subjected to chelation and transfusion therapy. Multiplex polymerase chain reaction was used to determine the genotype. The loss of both alleles leads to a decreased value of liver and heart MRI-signal intensity with a consequent iron accumulation in these organs; the loss of only one allele doesn’t lead to relevant overload. Serum ferritin doesn’t appear to be correlated to iron overload instead. 对于β-地中海贫血患者,由于铁过量而造成重要器官受损的情况也在观察之中。谷胱甘肽S转移酶(GST 酶类在对有毒物质进行解毒的过程中有着抗氧化剂的作用。该作用是由基因决定的。 在这份研究中,我们运用了直接和间接非侵入性的方法对基因型铁过量GSTT1 和GSTM1进行了相关性测量;特别地,我们对42位定期接受螯合和输血治疗的β-地中海贫血患者进行了血清铁蛋白和磁共振强度图像(MRI 的测试。 多重聚合酶链反应的测试也被运用来确定该基因型。 该两种等位基因的缺失,导致了肝功能减损及心脏磁共振强度的下降,并造成了在这些器官中铁含量的积累;其中一种等位基因的缺失并不会导致过度的铁含量。血清蛋白和铁过量之间,看起来并不存在相关性。

  20. Effects of imidacloprid on detoxifying enzyme glutathione S-transferase on Folsomia candida (Collembola).

    Science.gov (United States)

    Sillapawattana, Panwad; Schäffer, Andreas

    2017-04-01

    Chemical analyses of the environment can document contamination by various xenobiotics, but it is also important to understand the effect of pollutants on living organisms. Thus, in the present work, we investigated the effect of the pesticide imidacloprid on the detoxifying enzyme glutathione S-transferase (GST) from Folsomia candida (Collembola), a standard test organism for estimating the effects of pesticides and environmental pollutants on non-target soil arthropods. Test animals were treated with different concentrations of imidacloprid for 48 h. Changes in steady-state levels of GST messenger RNA (mRNA) and GST enzyme activity were investigated. Extracted proteins were separated according to their sizes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the resolved protein bands were detected by silver staining. The size of the glutathione (GSH) pool in Collembola was also determined. A predicted protein sequence of putative GSTs was identified with animals from control group. A 3-fold up-regulation of GST steady-state mRNA levels was detected in the samples treated with 5.0 mg L -1 imidacloprid compared to the control, while a 2.5- and 2.0- fold up-regulation was found in organisms treated with 2.5 and 7.5 mg L -1 imidacloprid, respectively. GST activity increased with increasing imidacloprid amounts from an initial activity of 0.11 μmol min -1  mg -1 protein in the control group up to 0.25 μmol min -1  mg -1 protein in the sample treated with the 5.0 mg L -1 of pesticide. By contrast, the total amount of GSH decreased with increasing imidacloprid concentration. The results suggest that the alteration of GST activity, steady-state level of GST mRNA, and GSH level may be involved in the response of F. candida to the exposure of imidacloprid and can be used as biomarkers to monitor the toxic effects of imidacloprid and other environmental pollutants on Collembola.

  1. Glutathione S-Transferase of Brown Planthoppers (Nilaparvata lugens) Is Essential for Their Adaptation to Gramine-Containing Host Plants

    OpenAIRE

    Sun, Xiao-Qin; Zhang, Mao-Xin; Yu, Jing-Ya; Jin, Yu; Ling, Bing; Du, Jin-Ping; Li, Gui-Hua; Qin, Qing-Ming; Cai, Qing-Nian

    2013-01-01

    Plants have evolved complex processes to ward off attacks by insects. In parallel, insects have evolved mechanisms to thwart these plant defenses. To gain insight into mechanisms that mediate this arms race between plants and herbivorous insects, we investigated the interactions between gramine, a toxin synthesized by plants of the family Gramineae, and glutathione S transferase (GST), an enzyme found in insects that is known to detoxify xenobiotics. Here, we demonstrate that rice (Oryza sati...

  2. Targeting Glutathione-S Transferase Enzymes in Musculoskeletal Sarcomas: A Promising Therapeutic Strategy

    Directory of Open Access Journals (Sweden)

    Michela Pasello

    2011-01-01

    Full Text Available Recent studies have indicated that targeting glutathione-S-transferase (GST isoenzymes may be a promising novel strategy to improve the efficacy of conventional chemotherapy in the three most common musculoskeletal tumours: osteosarcoma, Ewing's sarcoma, and rhabdomyosarcoma. By using a panel of 15 drug-sensitive and drug-resistant human osteosarcoma, Ewing's sarcoma, and rhabdomyosarcoma cell lines, the efficay of the GST-targeting agent 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthiohexanol (NBDHEX has been assessed and related to GST isoenzymes expression (namely GSTP1, GSTA1, GSTM1, and MGST. NBDHEX showed a relevant in vitro activity on all cell lines, including the drug-resistant ones and those with higher GSTs levels. The in vitro activity of NBDHEX was mostly related to cytostatic effects, with a less evident apoptotic induction. NBDHEX positively interacted with doxorubicin, vincristine, cisplatin but showed antagonistic effects with methotrexate. In vivo studies confirmed the cytostatic efficay of NBDHEX and its positive interaction with vincristine in Ewing's sarcoma cells, and also indicated a positive effect against the metastatisation of osteosarcoma cells. The whole body of evidence found in this study indicated that targeting GSTs in osteosarcoma, Ewing's sarcoma and rhabdomyosarcoma may be an interesting new therapeutic option, which can be considered for patients who are scarcely responsive to conventional regimens.

  3. A novel method for screening the glutathione transferase inhibitors

    Directory of Open Access Journals (Sweden)

    Węgrzyn Grzegorz

    2009-03-01

    Full Text Available Abstract Background Glutathione transferases (GSTs belong to the family of Phase II detoxification enzymes. GSTs catalyze the conjugation of glutathione to different endogenous and exogenous electrophilic compounds. Over-expression of GSTs was demonstrated in a number of different human cancer cells. It has been found that the resistance to many anticancer chemotherapeutics is directly correlated with the over-expression of GSTs. Therefore, it appears to be important to find new GST inhibitors to prevent the resistance of cells to anticancer drugs. In order to search for glutathione transferase (GST inhibitors, a novel method was designed. Results Our results showed that two fragments of GST, named F1 peptide (GYWKIKGLV and F2 peptide (KWRNKKFELGLEFPNL, can significantly inhibit the GST activity. When these two fragments were compared with several known potent GST inhibitors, the order of inhibition efficiency (measured in reactions with 2,4-dinitrochlorobenzene (CDNB and glutathione as substrates was determined as follows: tannic acid > cibacron blue > F2 peptide > hematin > F1 peptide > ethacrynic acid. Moreover, the F1 peptide appeared to be a noncompetitive inhibitor of the GST-catalyzed reaction, while the F2 peptide was determined as a competitive inhibitor of this reaction. Conclusion It appears that the F2 peptide can be used as a new potent specific GST inhibitor. It is proposed that the novel method, described in this report, might be useful for screening the inhibitors of not only GST but also other enzymes.

  4. A novel biomarker for marine environmental pollution of pi-class glutathione S-transferase from Mytilus coruscus.

    Science.gov (United States)

    Liu, Huihui; He, Jianyu; Zhao, Rongtao; Chi, Changfeng; Bao, Yongbo

    2015-08-01

    Glutathione S-transferases (GSTs) are the superfamily of phase II detoxification enzymes that play crucial roles in innate immunity. In this study, a pi-class GST homolog was identified from Mytilus coruscus (named as McGST1, KC525103). The full-length cDNA sequence of McGST1 was 621bp with a 5' untranslated region (UTR) of 70bp and a 3'-UTR of 201bp. The deduced amino acid sequence was 206 residues in length with theoretical pI/MW of 5.60/23.72kDa, containing the conserved G-site and diversiform H-site. BLASTn analysis and phylogenetic relationship strongly suggested that this cDNA sequence was a member of pi class GST family. The prediction of secondary structure displayed a preserved N-terminal and a C-terminal comprised with α-helixes. Quantitative real time RT-PCR showed that constitutive expression of McGST1 was occurred, with increasing order in mantle, muscle, gill, hemocyte, gonad and hepatopancreas. The stimulation of bacterial infection, heavy metals and 180CST could up-regulate McGST1 mRNA expression in hepatopancreas with time-dependent manners. The maximum expression appeared at 6h after pathogenic bacteria injected, with 10-fold in Vibrio alginolyticus and 16-fold in Vibrio harveyi higher than that of the control. The highest point of McGST1 mRNA appeared at different time for exposure to copper (10-fold at day 15), cadmium (9-fold at day10) and 180 CST (10-fold at day 15). These results suggested that McGST1 played a significant role in antioxidation and might potentially be used as indicators and biomarkers for detection of marine environmental pollution. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Baculovirus-mediated expression and isolation of human ribosomal phosphoprotein P0 carrying a GST-tag in a functional state

    International Nuclear Information System (INIS)

    Abo, Yohichi; Hagiya, Akiko; Naganuma, Takao; Tohkairin, Yukiko; Shiomi, Kunihiro; Kajiura, Zenta; Hachimori, Akira; Uchiumi, Toshio; Nakagaki, Masao

    2004-01-01

    We constructed an overexpression system for human ribosomal phosphoprotein P0, together with P1 and P2, which is crucially important for translation. Genes for these proteins, fused with the glutathione S-transferase (GST)-tag at the N-terminus, were inserted into baculovirus and introduced to insect cells. The fusion proteins, but not the proteins without the tag, were efficiently expressed into cells as soluble forms. The fusion protein GST.P0 as well as GST.P1/GST.P2 was phosphorylated in cells as detected by incorporation of 32 P and reactivity with monoclonal anti-phosphoserine antibody. GST.P0 expressed in insect cells, but not the protein obtained in Escherichia coli, had the ability to form a complex with P1 and P2 proteins and to bind to 28S rRNA. Moreover, the GST.P0-P1-P2 complex participated in high eEF-2-dependent GTPase activity. Baculovirus expression systems appear to provide recombinant human P0 samples that can be used for studies on the structure and function

  6. Chaperone activity of human small heat shock protein-GST fusion proteins.

    Science.gov (United States)

    Arbach, Hannah; Butler, Caley; McMenimen, Kathryn A

    2017-07-01

    Small heat shock proteins (sHsps) are a ubiquitous part of the machinery that maintains cellular protein homeostasis by acting as molecular chaperones. sHsps bind to and prevent the aggregation of partially folded substrate proteins in an ATP-independent manner. sHsps are dynamic, forming an ensemble of structures from dimers to large oligomers through concentration-dependent equilibrium dissociation. Based on structural studies and mutagenesis experiments, it is proposed that the dimer is the smallest active chaperone unit, while larger oligomers may act as storage depots for sHsps or play additional roles in chaperone function. The complexity and dynamic nature of their structural organization has made elucidation of their chaperone function challenging. HspB1 and HspB5 are two canonical human sHsps that vary in sequence and are expressed in a wide variety of tissues. In order to determine the role of the dimer in chaperone activity, glutathione-S-transferase (GST) was genetically linked as a fusion protein to the N-terminus regions of both HspB1 and HspB5 (also known as Hsp27 and αB-crystallin, respectively) proteins in order to constrain oligomer formation of HspB1 and HspB5, by using GST, since it readily forms a dimeric structure. We monitored the chaperone activity of these fusion proteins, which suggest they primarily form dimers and monomers and function as active molecular chaperones. Furthermore, the two different fusion proteins exhibit different chaperone activity for two model substrate proteins, citrate synthase (CS) and malate dehydrogenase (MDH). GST-HspB1 prevents more aggregation of MDH compared to GST-HspB5 and wild type HspB1. However, when CS is the substrate, both GST-HspB1 and GST-HspB5 are equally effective chaperones. Furthermore, wild type proteins do not display equal activity toward the substrates, suggesting that each sHsp exhibits different substrate specificity. Thus, substrate specificity, as described here for full-length GST

  7. Genomic insights into the glutathione S-transferase gene family of two rice planthoppers, Nilaparvata lugens (Stal and Sogatella furcifera (Horvath (Hemiptera: Delphacidae.

    Directory of Open Access Journals (Sweden)

    Wen-Wu Zhou

    Full Text Available BACKGROUND: Glutathione S-transferase (GST genes control crucial traits for the metabolism of various toxins encountered by insects in host plants and the wider environment, including insecticides. The planthoppers Nilaparvata lugens and Sogatella furcifera are serious specialist pests of rice throughout eastern Asia. Their capacity to rapidly adapt to resistant rice varieties and to develop resistance to various insecticides has led to severe outbreaks over the last decade. METHODOLOGY/PRINCIPAL FINDINGS: Using the genome sequence of N. lugens, we identified for the first time the complete GST gene family of a delphacid insect whilst nine GST gene orthologs were identified from the closely related species S. furcifera. Nilaparvata lugens has 11 GST genes belonging to six cytosolic subclasses and a microsomal class, many fewer than seen in other insects with known genomes. Sigma is the largest GST subclass, and the intron-exon pattern deviates significantly from that of other species. Higher GST gene expression in the N. lugens adult migratory form reflects the higher risk of this life stage in encountering the toxins of non-host plants. After exposure to a sub-lethal dose of four insecticides, chlorpyrifos, imidacloprid, buprofezin or beta-cypermethrin, more GST genes were upregulated in S. furcifera than in N. lugens. RNA interference targeting two N. lugens GST genes, NlGSTe1 and NlGSTm2, significantly increased the sensitivity of fourth instar nymphs to chlorpyrifos but not to beta-cypermethrin. CONCLUSIONS/SIGNIFICANCE: This study provides the first elucidation of the nature of the GST gene family in a delphacid species, offering new insights into the evolution of metabolic enzyme genes in insects. Further, the use of RNA interference to identify the GST genes induced by insecticides illustrates likely mechanisms for the tolerance of these insects.

  8. A structural basis for cellular uptake of GST-fold proteins.

    Directory of Open Access Journals (Sweden)

    Melanie J Morris

    Full Text Available It has recently emerged that glutathione transferase enzymes (GSTs and other structurally related molecules can be translocated from the external medium into many different cell types. In this study we aim to explore in detail, the structural features that govern cell translocation and by dissecting the human GST enzyme GSTM2-2 we quantatively demonstrate that the α-helical C-terminal domain (GST-C is responsible for this property. Attempts to further examine the constituent helices within GST-C resulted in a reduction in cell translocation efficiency, indicating that the intrinsic GST-C domain structure is necessary for maximal cell translocation capacity. In particular, it was noted that the α-6 helix of GST-C plays a stabilising role in the fold of this domain. By destabilising the conformation of GST-C, an increase in cell translocation efficiency of up to ∼2-fold was observed. The structural stability profiles of these protein constructs have been investigated by circular dichroism and differential scanning fluorimetry measurements and found to impact upon their cell translocation efficiency. These experiments suggest that the globular, helical domain in the 'GST-fold' structural motif plays a role in influencing cellular uptake, and that changes that affect the conformational stability of GST-C can significantly influence cell translocation efficiency.

  9. Serum glutathione transferase does not respond to indole-3-carbinol: A pilot study

    Directory of Open Access Journals (Sweden)

    Daniel R McGrath

    2010-05-01

    Full Text Available Daniel R McGrath1, Hamid Frydoonfar2, Joshua J Hunt3, Chris J Dunkley3, Allan D Spigelman41Ipswich Hospital, Ipswich, UK; 2Hunter Pathology Service, New South Wales; 3Royal Newcastle Centre, Newcastle; 4St Vincent’s Clinical School, Sydney, AustraliaBackground: Despite the well recognized protective effect of cruciferous vegetables against various cancers, including human colorectal cancers, little is known about how this effect is conferred. It is thought that some phytochemicals found only in these vegetables confer the protection. These compounds include the glucosinolates, of which indole-3-carbinol is one. They are known to induce carcinogen-metabolizing (phase II enzymes, including the glutathione S-transferase (GST family. Other effects in humans are not well documented. We wished to assess the effect of indole-3-carbinol on GST enzymes.Methods: We carried out a placebo-controlled human volunteer study. All patients were given 400 mg daily of indole-3-carbinol for three months, followed by placebo. Serum samples were tested for the GSTM1 genotype by polymerase chain reaction. Serum GST levels were assessed using enzyme-linked immunosorbent assay and Western Blot methodologies.Results: Forty-nine volunteers completed the study. GSTM1 genotypes were obtained for all but two volunteers. A slightly greater proportion of volunteers were GSTM1-positive, in keeping with the general population. GST was detected in all patients. Total GST level was not affected by indole-3-carbinol dosing compared with placebo. Although not statistically significant, the GSTM1 genotype affected the serum GST level response to indole-3-carbinol.Conclusion: Indole-3-carbinol does not alter total serum GST levels during prolonged dosing.Keywords: pilot study, colorectal cancer, glutathione transferase, human, indole-3-carbinol

  10. Primary and secondary structural analyses of glutathione S-transferase pi from human placenta.

    Science.gov (United States)

    Ahmad, H; Wilson, D E; Fritz, R R; Singh, S V; Medh, R D; Nagle, G T; Awasthi, Y C; Kurosky, A

    1990-05-01

    The primary structure of glutathione S-transferase (GST) pi from a single human placenta was determined. The structure was established by chemical characterization of tryptic and cyanogen bromide peptides as well as automated sequence analysis of the intact enzyme. The structural analysis indicated that the protein is comprised of 209 amino acid residues and gave no evidence of post-translational modifications. The amino acid sequence differed from that of the deduced amino acid sequence determined by nucleotide sequence analysis of a cDNA clone (Kano, T., Sakai, M., and Muramatsu, M., 1987, Cancer Res. 47, 5626-5630) at position 104 which contained both valine and isoleucine whereas the deduced sequence from nucleotide sequence analysis identified only isoleucine at this position. These results demonstrated that in the one individual placenta studied at least two GST pi genes are coexpressed, probably as a result of allelomorphism. Computer assisted consensus sequence evaluation identified a hydrophobic region in GST pi (residues 155-181) that was predicted to be either a buried transmembrane helical region or a signal sequence region. The significance of this hydrophobic region was interpreted in relation to the mode of action of the enzyme especially in regard to the potential involvement of a histidine in the active site mechanism. A comparison of the chemical similarity of five known human GST complete enzyme structures, one of pi, one of mu, two of alpha, and one microsomal, gave evidence that all five enzymes have evolved by a divergent evolutionary process after gene duplication, with the microsomal enzyme representing the most divergent form.

  11. Yeast one-hybrid system used to identify the binding proteins for rat glutathione S-transferase P enhancer I.

    Science.gov (United States)

    Liao, Ming-Xiang; Liu, Dong-Yuan; Zuo, Jin; Fang, Fu-De

    2002-03-01

    To detect the trans-factors specifically binding to the strong enhancer element (GPEI) in the upstream of rat glutathione S-transferase P (GST-P) gene. Yeast one-hybrid system was used to screen rat lung MATCHMAKER cDNA library to identify potential trans-factors that can interact with core sequence of GPEI(cGPEI). Electrophoresis mobility shift assay (EMSA) was used to analyze the binding of transfactors to cGPEI. cDNA fragments coding for the C-terminal part of the transcription factor c-Jun and rat adenine nucleotide translocator (ANT) were isolated. The binding of c-Jun and ANT to GPEI core sequence were confirmed. Rat c-jun transcriptional factor and ANT may interact with cGPEI. They could play an important role in the induced expression of GST-P gene.

  12. Differential expression of glutathione s-transferase enzyme in different life stages of various insecticide-resistant strains of Anopheles stephensi: a malaria vector.

    Science.gov (United States)

    Sanil, D; Shetty, V; Shetty, N J

    2014-06-01

    Interest in insect glutathione s-transferases (GSTs) has primarily focused on their role in insecticide resistance. These play an important role in biotransformation and detoxification of many different xenobiotic and endogenous substances including insecticides. The GST activity among 10 laboratory selected insecticide resistant and susceptible/control strains of Anopheles stephensi was compared using the substrates 1-chloro-2,4-dinitrobenzene (CDNB). The difference in the GST activities of different life stages of diverse insecticide resistant strains was compared and presented. About 100 larvae, pupae, adult males, adult females and eggs (100 μg in total weight) were collected and used for the experiment. The extracts were prepared from each of the insecticide-resistant strains and control. Protein contents of the enzyme homogenate and GST activities were determined. Deltamethrin and cyfluthrin-resistant strains of An. stephensi showed significantly higher GST activity. Larvae and pupae of DDT-resistant strain showed peak GST activity followed by the propoxur-resistant strain. On contrary, the GST activity was found in reduced quantity in alphamethrin, bifenthrin, carbofuran and chloropyrifos resistant strains. Adults of either sexes showed higher GST activity in mosquito strain resistant to organophosphate group of insecticides namely, temephos and chloropyrifos. The GST activity was closely associated with almost all of the insecticides used in the study, strengthening the fact that one of the mechanisms associated with resistance includes an increase of GST activity. This comparative data on GST activity in An. stephensi can be useful database to identify possible underlying mechanisms governing insecticide-resistance by GSTs.

  13. Decreased expression of GST pi is correlated with a poor prognosis in human esophageal squamous carcinoma

    International Nuclear Information System (INIS)

    Wang, Zhihui; He, Wei; Yang, Guanrui; Wang, Junsheng; Wang, Zhong; Nesland, Jahn M; Holm, Ruth; Suo, Zhenhe

    2010-01-01

    Glutathione S-transferase pi (GST pi) is a subgroup of GST family, which provides cellular protection against free radical and carcinogenic compounds due to its detoxifying function. Expression patterns of GST pi have been studied in several carcinomas and its down-regulation was implicated to be involved in malignant transformation in patients with Barrett's esophagus. However, neither the exact role of GST pi in the pathogenesis nor its prognostic impact in squamous esophageal carcinoma is fully characterized. Immunohistochemistry was used to investigate GST pi expression on 153 archival squamous esophageal carcinoma specimens with a GST pi monoclonal antibody. Statistic analyses were performed to explore its association with clinicopathological factors and clinical outcome. The GST pi expression was greatly reduced in tissues of esophageal carcinomas compared to adjacent normal tissues and residual benign tissues. Absent of GST pi protein expression in cytoplasm, nuclear and cytoplasm/nucleus was found in 51%, 64.7% and 48% of all the carcinoma cases, respectively. GST pi deficiency in cytoplasm, nucleus and cytoplasm/nucleus was significantly correlated to poor differentiation (p < 0.001, p < 0.001 and p < 0.001, respectively). UICC stage and T stage were found significantly correlated to negative expression of GST pi in cytoplasm (p < 0.001 and p = 0.004, respectively) and cytoplasm/nucleus (p = 0.017 and p = 0.031, respectively). In univariate analysis, absent of GST pi protein expression in cytoplasm, nucleus and cytoplasm/nucleus was significantly associated with a shorter overall survival (p < 0.001, p < 0.001 and p < 0.001, respectively), whereas only GST pi cytoplasmic staining retained an independent prognostic significance (p < 0.001) in multivariate analysis. Our results show that GST pi expression is down regulated in the squamous esophageal carcinoma, and that the lack of GST pi expression is associated with poor prognosis. Therefore

  14. Influence of ethacrynic acid on glutathione S-transferase pi transcript and protein half-lives in human colon cancer cells.

    Science.gov (United States)

    Shen, H; Ranganathan, S; Kuzmich, S; Tew, K D

    1995-10-12

    Ethacrynic acid (EA) is a plant phenolic acid that is both an inhibitor and an inducer of glutathione S-transferase (GST) activity. To determine contributory factors in the increased GST activity caused by EA treatment, human colon carcinoma HT29 cells were compared with a cloned EA-resistant population (HT6-8) maintained in medium containing 72 microM EA. Several factors are involved in the increased expression of GST pi in HT6-8. For example, nuclear run-on experiments showed an approximately 2-fold increase in the rate of transcription of GST pi. In addition, the half-life of GST pi transcript was increased from 4.1 (wild type, HT29, HT4-1) to 8.4 hr. The half-life of GST pi protein was 1-2 hr in HT4-1 cells versus 8-9 hr in HT6-8 cells. When either human ovarian carcinoma cells (SKOV3) or human prostatic carcinoma cells (DU145) were treated with EA, the half-life of the GST pi transcript was also increased. The transcript half-lives of another thiol-metabolism enzyme, gamma-glutamylcysteine synthetase (gamma-GCS), and a phase II detoxification enzyme, dihydrodiol dehydrogenase (DDH), were also increased in HT6-8, SKOV3 and DU145 cells treated with EA. However, the half-lives of transcripts from "housekeeping genes," such as glyceraldehyde 3-phosphate dehydrogenase (G3PDH), beta-actin and beta-tubulin, were not changed in these cell lines following EA. Apparently, a number of coordinated factors are involved in EA-enhanced expression of GST pi and other detoxification enzymes.

  15. Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Vontas, John G; Small, Graham J; Nikou, Dimitra C; Ranson, Hilary; Hemingway, Janet

    2002-03-01

    A novel glutathione S-transferase (GST)-based pyrethroid resistance mechanism was recently identified in Nilaparvata lugens [Vontas, Small and Hemingway (2001) Biochem. J. 357, 65-72]. To determine the nature of GSTs involved in conferring this resistance, the GSTs from resistant and susceptible strains of N. lugens were partially purified by anion exchange and affinity chromatography. The majority of peroxidase activity, previously correlated with resistance, was confined to the fraction that bound to the affinity column, which was considerably elevated in the resistant insects. A cDNA clone encoding a GST (nlgst1-1) - the first reported GST sequence from Hemiptera with up to 54% deduced amino-acid identity with other insect class I GSTs - was isolated from a pyrethroid-resistant strain. Northern analysis showed that nlgst1-1 was overexpressed in resistant insects. nlgst1-1 was expressed in Escherichia coli, purified and characterized. The ability of the recombinant protein to bind to the S-hexylglutathione affinity matrix, its substrate specificities and its immunological properties confirmed that this GST was one from the elevated subset of N. lugens GSTs. Peroxidase activity of the recombinant nlgst1-1 indicated that it had a role in resistance, through detoxification of lipid peroxidation products induced by pyrethroids. Southern analysis of genomic DNA from the resistant and susceptible strains indicated that GST-based insecticide resistance may be associated with gene amplification in N. lugens.

  16. Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens.

    OpenAIRE

    Vontas, John G; Small, Graham J; Nikou, Dimitra C; Ranson, Hilary; Hemingway, Janet

    2002-01-01

    A novel glutathione S-transferase (GST)-based pyrethroid resistance mechanism was recently identified in Nilaparvata lugens [Vontas, Small and Hemingway (2001) Biochem. J. 357, 65-72]. To determine the nature of GSTs involved in conferring this resistance, the GSTs from resistant and susceptible strains of N. lugens were partially purified by anion exchange and affinity chromatography. The majority of peroxidase activity, previously correlated with resistance, was confined to the fraction tha...

  17. Liver Melanomacrophages and Gluthation S-Transferase Activity in Leptodactylus chaquensis (ANURA, LEPTODACTYLIDAE as Biomarkers of Oxidative Stress Due to Chlorpyrifos Exposition

    Directory of Open Access Journals (Sweden)

    Ivan Huespe

    2017-05-01

    Full Text Available We quantified and compared the hepatic melanomacrophage (MM and glutathione S-transferase (GST enzyme activity (two oxidative stress biomarkers in the liver of Leptodatylus chaquensis adults (Anura, Leptodactylidae collected in a rice field (CA in San Javier department, Santa Fe (Argentina, seven days after the application of chlorpyrifos and in a reference site (SR. The histological analysis revealed a significant amount (p = 0.028 and area occupied by MM (p = 0.017 in livers of CA compared to SR. Furthermore, a significant inhibition of GST activity was recorded in the CA frogs compared to the SR (p = 0.030. The histopathological and enzymatic effects provide evidences of ecotoxicological risk for anurans in rice field with CPF application.

  18. Interaction of Ferulic Acid with Glutathione S-Transferase and Carboxylesterase Genes in the Brown Planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Yang, Jun; Sun, Xiao-Qin; Yan, Shu-Ying; Pan, Wen-Jun; Zhang, Mao-Xin; Cai, Qing-Nian

    2017-07-01

    Plant phenolics are crucial defense phytochemicals against herbivores and glutathione S-transferase (GST) and carboxylesterase (CarE) in herbivorous insects are well-known detoxification enzymes for such xenobiotics. To understand relationship between a plant phenolic and herbivore GST or CarE genes, we evaluated the relationship between a rice phenolic ferulic acid and resistance to brown planthopper (BPH, Nilaparvata lugens), and investigated the interaction of ferulic acid with GST or CarE genes in BPH. The results indicate that ferulic acid content in tested rice varieties was highly associated with resistance to BPH. Bioassays using artificial diets show that the phenolic acid toxicity to BPH was dose dependent and the LC 25 and LC 50 were 5.81 and 23.30 μg/ml at 72 hr, respectively. Activities of the enzymes BPH GST and CarE were increased at concentrations below the LC 50 of ferulic acid. Moreover, low ferulic acid concentrations (gene silencing (DIGS) of GST or CarE, it was shown that suppressed expression levels of NlGSTD1, NlGSTE1 and NlCE were 14.6%-21.2%, 27.8%-34.2%, and 10.5%-19.8%, respectively. Combination of NlGSTD1, NlGSTE1 or NlCE knockdown with ferulic acid increased nymph mortality by 92.9%, 119.9%, or 124.6%, respectively. These results suggest that depletion of detoxification genes in herbivorous insects by plant-mediated RNAi technology might be a new potential resource for improving rice resistance to BPH.

  19. Genomic insights into the glutathione S-transferase gene family of two rice planthoppers, Nilaparvata lugens (Stål) and Sogatella furcifera (Horváth) (Hemiptera: Delphacidae).

    Science.gov (United States)

    Zhou, Wen-Wu; Liang, Qing-Mei; Xu, Yi; Gurr, Geoff M; Bao, Yan-Yuan; Zhou, Xue-Ping; Zhang, Chuan-Xi; Cheng, Jiaan; Zhu, Zeng-Rong

    2013-01-01

    Glutathione S-transferase (GST) genes control crucial traits for the metabolism of various toxins encountered by insects in host plants and the wider environment, including insecticides. The planthoppers Nilaparvata lugens and Sogatella furcifera are serious specialist pests of rice throughout eastern Asia. Their capacity to rapidly adapt to resistant rice varieties and to develop resistance to various insecticides has led to severe outbreaks over the last decade. Using the genome sequence of N. lugens, we identified for the first time the complete GST gene family of a delphacid insect whilst nine GST gene orthologs were identified from the closely related species S. furcifera. Nilaparvata lugens has 11 GST genes belonging to six cytosolic subclasses and a microsomal class, many fewer than seen in other insects with known genomes. Sigma is the largest GST subclass, and the intron-exon pattern deviates significantly from that of other species. Higher GST gene expression in the N. lugens adult migratory form reflects the higher risk of this life stage in encountering the toxins of non-host plants. After exposure to a sub-lethal dose of four insecticides, chlorpyrifos, imidacloprid, buprofezin or beta-cypermethrin, more GST genes were upregulated in S. furcifera than in N. lugens. RNA interference targeting two N. lugens GST genes, NlGSTe1 and NlGSTm2, significantly increased the sensitivity of fourth instar nymphs to chlorpyrifos but not to beta-cypermethrin. This study provides the first elucidation of the nature of the GST gene family in a delphacid species, offering new insights into the evolution of metabolic enzyme genes in insects. Further, the use of RNA interference to identify the GST genes induced by insecticides illustrates likely mechanisms for the tolerance of these insects.

  20. Decreased expression of GST pi is correlated with a poor prognosis in human esophageal squamous carcinoma

    Directory of Open Access Journals (Sweden)

    Wang Junsheng

    2010-07-01

    Full Text Available Abstract Background Glutathione S-transferase pi (GST pi is a subgroup of GST family, which provides cellular protection against free radical and carcinogenic compounds due to its detoxifying function. Expression patterns of GST pi have been studied in several carcinomas and its down-regulation was implicated to be involved in malignant transformation in patients with Barrett's esophagus. However, neither the exact role of GST pi in the pathogenesis nor its prognostic impact in squamous esophageal carcinoma is fully characterized. Methods Immunohistochemistry was used to investigate GST pi expression on 153 archival squamous esophageal carcinoma specimens with a GST pi monoclonal antibody. Statistic analyses were performed to explore its association with clinicopathological factors and clinical outcome. Results The GST pi expression was greatly reduced in tissues of esophageal carcinomas compared to adjacent normal tissues and residual benign tissues. Absent of GST pi protein expression in cytoplasm, nuclear and cytoplasm/nucleus was found in 51%, 64.7% and 48% of all the carcinoma cases, respectively. GST pi deficiency in cytoplasm, nucleus and cytoplasm/nucleus was significantly correlated to poor differentiation (p p p p p = 0.004, respectively and cytoplasm/nucleus (p = 0.017 and p = 0.031, respectively. In univariate analysis, absent of GST pi protein expression in cytoplasm, nucleus and cytoplasm/nucleus was significantly associated with a shorter overall survival (p p p p Conclusions Our results show that GST pi expression is down regulated in the squamous esophageal carcinoma, and that the lack of GST pi expression is associated with poor prognosis. Therefore, deficiency of GST pi protein expression may be an important mechanism involved in the carcinogenesis and progression of the squamous esophageal carcinoma, and the underlying mechanisms leading to decreased GST pi expression deserve further investigation.

  1. Echinococcus granulosus: Evidence of a heterodimeric glutathione transferase built up by phylogenetically distant subunits.

    Science.gov (United States)

    Arbildi, Paula; La-Rocca, Silvana; Lopez, Veronica; Da-Costa, Natalia; Fernandez, Veronica

    2017-01-01

    In the cestode parasite Echinococcus granulosus, three phylogenetically distant cytosolic glutathione transferases (GSTs) (EgGST1, 2 and 3) were identified. Interestingly, the C-terminal domains of EgGST3 and EgGST2 but not EgGST1, exhibit all amino acids involved in Sigma-class GST dimerization. Here, we provide evidence indicating that EgGST2 and EgGST3 naturally form a heterodimeric structure (EgGST2-3), and also we report the enzymatic activity of the recombinant heterodimer. EgGST2-3 might display novel properties able to influence the infection establishment. This is the first report of a stable heterodimeric GST built up by phylogenetically distant subunits. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Human cytosolic glutathione-S-transferases: quantitative analysis of expression, comparative analysis of structures and inhibition strategies of isozymes involved in drug resistance.

    Science.gov (United States)

    Mohana, Krishnamoorthy; Achary, Anant

    2017-08-01

    Glutathione-S-transferase (GST) inhibition is a strategy to overcome drug resistance. Several isoforms of human GSTs are present and they are expressed in almost all the organs. Specific expression levels of GSTs in various organs are collected from the human transcriptome data and analysis of the organ-specific expression of GST isoforms is carried out. The variations in the level of expressions of GST isoforms are statistically significant. The GST expression differs in diseased conditions as reported by many investigators and some of the isoforms of GSTs are disease markers or drug targets. Structure analysis of various isoforms is carried out and literature mining has been performed to identify the differences in the active sites of the GSTs. The xenobiotic binding H site is classified into H1, H2, and H3 and the differences in the amino acid composition, the hydrophobicity and other structural features of H site of GSTs are discussed. The existing inhibition strategies are compared. The advent of rational drug design, mechanism-based inhibition strategies, availability of high-throughput screening, target specific, and selective inhibition of GST isoforms involved in drug resistance could be achieved for the reversal of drug resistance and aid in the treatment of diseases.

  3. Identification and characterisation of multiple glutathione S-transferase genes from the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Chen, Xi'en; Zhang, Ya-lin

    2015-04-01

    The diamondback moth (DBM), Plutella xylostella, is one of the most harmful insect pests on crucifer crops worldwide. In this study, 19 cDNAs encoding glutathione S-transferases (GSTs) were identified from the genomic and transcriptomic database for DBM (KONAGAbase) and further characterized. Phylogenetic analysis showed that the 19 GSTs were classified into six different cytosolic classes, including four in delta, six in epsilon, three in omega, two in sigma, one in theta and one in zeta. Two GSTs were unclassified. RT-PCR analysis revealed that most GST genes were expressed in all developmental stages, with higher expression in the larval stages. Six DBM GSTs were expressed at the highest levels in the midgut tissue. Twelve purified recombinant GSTs showed varied enzymatic properties towards 1-chloro-2,4-dinitrobenzene and glutathione, whereas rPxGSTo2, rPxGSTz1 and rPxGSTu2 had no activity. Real-time quantitative PCR revealed that expression levels of the 19 DBM GST genes were varied and changed after exposure to acephate, indoxacarb, beta-cypermethrin and spinosad. PxGSTd3 was significantly overexpressed, while PxGSTe3 and PxGSTs2 were significantly downregulated by all four insecticide exposures. The changes in DBM GST gene expression levels exposed to different insecticides indicate that they may play individual roles in tolerance to insecticides and xenobiotics. © 2014 Society of Chemical Industry.

  4. Association of GSTO1 and GSTO2 Polymorphism with Risk of End-Stage Renal Disease Development and Patient Survival

    Directory of Open Access Journals (Sweden)

    Cimbaljevic Slavica

    2016-09-01

    Full Text Available Background: Oxidative stress in patients with end-stage renal disease (ESRD is associated with long-term cardiovascular complications. The cytosolic family of glutathione S-transferases (GSTs is involved in the detoxication of various toxic compounds and antioxidant protection. GST omega class members, GSTO1 and GSTO2 possess, unlike other GSTs, dehydroascorbate reductase and deglutathionylation activities. The aim of this study was to clarify the role of genetic polymorphisms of GSTO1 (rs4925 and GSTO2 (rs156697 as risk determinants for ESRD development, as well as in the survival of these patients.

  5. Comprehensive genome-wide analysis of Glutathione S-transferase gene family in potato (Solanum tuberosum L.) and their expression profiling in various anatomical tissues and perturbation conditions.

    Science.gov (United States)

    Islam, Md Shiful; Choudhury, Mouraj; Majlish, Al-Nahian Khan; Islam, Tahmina; Ghosh, Ajit

    2018-01-10

    Glutathione S-transferases (GSTs) are ubiquitous enzymes which play versatile functions including cellular detoxification and stress tolerance. In this study, a comprehensive genome-wide identification of GST gene family was carried out in potato (Solanum tuberosum L.). The result demonstrated the presence of at least 90 GST genes in potato which is greater than any other reported species. According to the phylogenetic analyses of Arabidopsis, rice and potato GST members, GSTs could be subdivided into ten different classes and each class is found to be highly conserved. The largest class of potato GST family is tau with 66 members, followed by phi and lambda. The chromosomal localization analysis revealed the highly uneven distribution of StGST genes across the potato genome. Transcript profiling of 55 StGST genes showed the tissue-specific expression for most of the members. Moreover, expression of StGST genes were mainly repressed in response to abiotic stresses, while largely induced in response to biotic and hormonal elicitations. Further analysis of StGST gene's promoter identified the presence of various stress responsive cis-regulatory elements. Moreover, one of the highly stress responsive StGST members, StGSTU46, showed strong affinity towards flurazole with lowest binding energy of -7.6kcal/mol that could be used as antidote to protect crop against herbicides. These findings will facilitate the further functional and evolutionary characterization of GST genes in potato. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Gene polymorphisms of glutathione S-transferase omega 1 and 2, urinary arsenic methylation profile and urothelial carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chi-Jung [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, Taipei, Taiwan (China); Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Huang, Chao-Yuan [Department of Urology, National Taiwan University Hospital, Taipei, Taiwan (China); Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2011-01-01

    Genetic polymorphisms in arsenic-metabolizing enzymes may be involved in the biotransformation of inorganic arsenic and may increase the risk of developing urothelial carcinoma (UC). The present study evaluated the roles of glutathione S-transferase omega 1 (GSTO1) and GSTO2 polymorphisms in UC carcinogenesis. A hospital-based case-control study was conducted. Questionnaire information and biological specimens were collected from 149 UC cases and 251 healthy controls in a non-obvious inorganic arsenic exposure area in Taipei, Taiwan. The urinary arsenic profile was determined using high-performance liquid chromatography and hydride generator-atomic absorption spectrometry. Genotyping for GSTO1 Ala140Asp and GSTO2 Asn142Asp was conducted using polymerase chain reaction-restriction fragment length polymerase. GSTO1 Glu208Lys genotyping was performed using high-throughput matrix-assisted laser desorption and ionization time-of-flight mass spectrometry. A significant positive association was found between total arsenic, inorganic arsenic percentage and monomethylarsonic acid percentage and UC, while dimethylarsinic acid percentage was significantly inversely associated with UC. The minor allele frequency of GSTO1 Ala140Asp, GSTO1 Glu208Lys and GSTO2 Asn142Asp was 18%, 1% and 26%, respectively. A significantly higher MMA% was found in people who carried the wild type of GSTO1 140 Ala/Ala compared to those who carried the GSTO1 140 Ala/Asp and Asp/Asp genotype (p = 0.02). The homogenous variant genotype of GSTO2 142 Asp/Asp was inversely associated with UC risk (OR = 0.17; 95% CI, 0.03 - 0.88; p = 0.03). Large-scale studies will be required to verify the association between the single nucleotide polymorphisms of arsenic-metabolism-related enzymes and UC risk. - Research Highlights: {yields} The homogenous variant genotype of GSTO2 was inversely associated with UC risk. {yields} A higher urinary MMA% was found in people carrying the wild type of GSTO1 Ala140Asp. {yields

  7. Meat consumption, N-acetyl transferase 1 and 2 polymorphism and risk of breast cancer, in Danish postmenopausal women

    DEFF Research Database (Denmark)

    Egeberg, Rikke; Olsen, Anja; Autrup, Herman

    2008-01-01

    The aim of this study was to investigate whether polymorphisms in N-acetyl transferase 1 and 2 modify the association between meat consumption and risk of breast cancer. A nested case-control study was conducted among 24697 postmenopausal women included in the 'Diet, Cancer and Health' cohort study...... (1993-2000). Three hundred and seventy-eight breast cancer cases were identified and matched to 378 controls. The incidence rate ratio (95% confidence interval) for breast cancer was 1.09 (1.02-1.17) for total meat, 1.15 (1.01-1.31) for red meat and 1.23 (1.04-1.45) for processed meat per 25 g daily...... total meat intake and red meat intake and breast cancer risk were confined to intermediate/fast N-acetyl transferase 2 acetylators (P-interaction=0.03 and 0.04). Our findings support an association between meat consumption and breast cancer risk and that N-acetyl transferase 2 polymorphism has...

  8. Glutathione S-transferase of brown planthoppers (Nilaparvata lugens is essential for their adaptation to gramine-containing host plants.

    Directory of Open Access Journals (Sweden)

    Xiao-Qin Sun

    Full Text Available Plants have evolved complex processes to ward off attacks by insects. In parallel, insects have evolved mechanisms to thwart these plant defenses. To gain insight into mechanisms that mediate this arms race between plants and herbivorous insects, we investigated the interactions between gramine, a toxin synthesized by plants of the family Gramineae, and glutathione S transferase (GST, an enzyme found in insects that is known to detoxify xenobiotics. Here, we demonstrate that rice (Oryza sativa, a hydrophytic plant, also produces gramine and that rice resistance to brown planthoppers (Nilaparvata lugens, BPHs is highly associated with in planta gramine content. We also show that gramine is a toxicant that causes BPH mortality in vivo and that knockdown of BPH GST gene nlgst1-1 results in increased sensitivity to diets containing gramine. These results suggest that the knockdown of key detoxification genes in sap-sucking insects may provide an avenue for increasing their sensitivity to natural plant-associated defense mechanisms.

  9. Glutathione S-transferase of brown planthoppers (Nilaparvata lugens) is essential for their adaptation to gramine-containing host plants.

    Science.gov (United States)

    Sun, Xiao-Qin; Zhang, Mao-Xin; Yu, Jing-Ya; Jin, Yu; Ling, Bing; Du, Jin-Ping; Li, Gui-Hua; Qin, Qing-Ming; Cai, Qing-Nian

    2013-01-01

    Plants have evolved complex processes to ward off attacks by insects. In parallel, insects have evolved mechanisms to thwart these plant defenses. To gain insight into mechanisms that mediate this arms race between plants and herbivorous insects, we investigated the interactions between gramine, a toxin synthesized by plants of the family Gramineae, and glutathione S transferase (GST), an enzyme found in insects that is known to detoxify xenobiotics. Here, we demonstrate that rice (Oryza sativa), a hydrophytic plant, also produces gramine and that rice resistance to brown planthoppers (Nilaparvata lugens, BPHs) is highly associated with in planta gramine content. We also show that gramine is a toxicant that causes BPH mortality in vivo and that knockdown of BPH GST gene nlgst1-1 results in increased sensitivity to diets containing gramine. These results suggest that the knockdown of key detoxification genes in sap-sucking insects may provide an avenue for increasing their sensitivity to natural plant-associated defense mechanisms.

  10. Characterization and expression profiling of glutathione S-transferases in the diamondback moth, Plutella xylostella (L.).

    Science.gov (United States)

    You, Yanchun; Xie, Miao; Ren, Nana; Cheng, Xuemin; Li, Jianyu; Ma, Xiaoli; Zou, Minming; Vasseur, Liette; Gurr, Geoff M; You, Minsheng

    2015-03-05

    Glutathione S-transferases (GSTs) are multifunctional detoxification enzymes that play important roles in insects. The completion of several insect genome projects has enabled the identification and characterization of GST genes over recent years. This study presents a genome-wide investigation of the diamondback moth (DBM), Plutella xylostella, a species in which the GSTs are of special importance because this pest is highly resistant to many insecticides. A total of 22 putative cytosolic GSTs were identified from a published P. xylostella genome and grouped into 6 subclasses (with two unclassified). Delta, Epsilon and Omega GSTs were numerically superior with 5 genes for each of the subclasses. The resulting phylogenetic tree showed that the P. xylostella GSTs were all clustered into Lepidoptera-specific branches. Intron sites and phases as well as GSH binding sites were strongly conserved within each of the subclasses in the GSTs of P. xylostella. Transcriptome-, RNA-seq- and qRT-PCR-based analyses showed that the GST genes were developmental stage- and strain-specifically expressed. Most of the highly expressed genes in insecticide resistant strains were also predominantly expressed in the Malpighian tubules, midgut or epidermis. To date, this is the most comprehensive study on genome-wide identification, characterization and expression profiling of the GST family in P. xylostella. The diversified features and expression patterns of the GSTs are inferred to be associated with the capacity of this species to develop resistance to a wide range of pesticides and biological toxins. Our findings provide a base for functional research on specific GST genes, a better understanding of the evolution of insecticide resistance, and strategies for more sustainable management of the pest.

  11. Glutathione S-transferase M1 null genotype: lack of association with tumour characteristics and survival in advanced breast cancer

    International Nuclear Information System (INIS)

    Lizard-Nacol, Sarab; Coudert, Bruno; Colosetti, Pascal; Riedinger, Jean-Marc; Fargeot, Pierre; Brunet-Lecomte, Patrick

    1999-01-01

    Glutathione S-transferase (GST)M1, a member of the μ class GST gene family, has been shown to be polymorphic because of a partial gene deletion. This results in a failure to express the GSTM1 gene in 50-60% of individuals. Several studies have demonstrated a possible link with the GSTM1-null genotype and susceptibility to cancer. Furthermore, a GSTM1 isoenzyme has been positively associated with protective effect against mutagenic drugs, such as alkylating agents and anthracyclines. To determine whether GSTM1 polymorphisms are associated with tumour characteristics and survival in advanced breast cancer patients, and whether it may constitute a prognostic factor. We genotyped 92 patients receiving primary chemotherapy, which included cyclophosphamide, doxorubicine and 5-fluorouracil. The relationships between allelism at GSTM1 and clinicopathological parameters including age, menopausal status, tumour size, grade hormone receptors, involved nodes and p53 gene mutations were analysed. Of the patients with GSTM1-positive genotype, tissue samples obtained before and after treatment were available from 28 cases, allowing RNA extraction and GSTM1 expression by reverse transcription polymerase chain reaction. Relationships with clinical response to chemotherapy, and disease-free and overall survival were also evaluated. The data obtained was analysed using logistic regression to estimate the odds ratio and 95% confidence interval. Of 92 patients, 57.6% (n = 53) were classified as heritably GSTM1-deficient, and 42.4% (n = 39) were of the GSTM1-positive genotype. There were no statistically significant relationships between GSTM1-null genotype and the clinicopathological parameters analysed. No relationship was observed between GSTM1 RNA expression and objective clinical response to chemotherapy. Objective clinical response to chemotherapy was related only to clinical tumour size (P = 0.0177) and to the absence of intraductal carcinoma (P = 0.0013). GSTM1-null genotype

  12. Copy number variation in glutathione-S-transferase T1 and M1 predicts incidence and 5-year survival from prostate and bladder cancer, and incidence of corpus uteri cancer in the general population

    DEFF Research Database (Denmark)

    Nørskov, M S; Frikke-Schmidt, R; Bojesen, S E

    2011-01-01

    Glutathione-S-transferase T1 (GSTT1) and GSTM1 detoxify carcinogens and thus potentially contribute to inter-individual susceptibility to cancer. We determined the ability of GST copy number variation (CNV) to predict the risk of cancer in the general population. Exact copy numbers of GSTT1 and G...

  13. Effect of cadmium on glutathione S-transferase and metallothionein gene expression in coho salmon liver, gill and olfactory tissues

    International Nuclear Information System (INIS)

    Espinoza, Herbert M.; Williams, Chase R.; Gallagher, Evan P.

    2012-01-01

    Highlights: ► Developed qPCR assays to distinguish closely related GST isoforms in salmon. ► Examined the effect of cadmium on GST and metallothionein genes in 3 tissues. ► Modulation of GST varied among isoforms, tissues, and included a loss of expression. ► Metallothionein outperformed, but generally complemented, GSTs as biomarkers. ► Salmon olfactory genes were among the most responsive to cadmium. - Abstract: The glutathione S-transferases (GSTs) are a multifunctional family of phase II enzymes that detoxify a variety of environmental chemicals, reactive intermediates, and secondary products of oxidative damage. GST mRNA expression and catalytic activity have been used as biomarkers of exposure to environmental chemicals. However, factors such as species differences in induction, partial analyses of multiple GST isoforms, and lack of understanding of fish GST gene regulation, have confounded the use of GSTs as markers of pollutant exposure. In the present study, we examined the effect of exposure to cadmium (Cd), a prototypical environmental contaminant and inducer of mammalian GST, on GST mRNA expression in coho salmon (Oncorhynchus kisutch) liver, gill, and olfactory tissues. GST expression data were compared to those for metallothionein (MT), a prototypical biomarker of metal exposure. Data mining of genomic databases led to the development of quantitative real-time PCR (qPCR) assays for salmon GST isoforms encompassing 9 subfamilies, including alpha, mu, pi, theta, omega, kappa, rho, zeta and microsomal GST. In vivo acute (8–48 h) exposures to low (3.7 ppb) and high (347 ppb) levels of Cd relevant to environmental scenarios elicited a variety of transient, albeit minor changes (<2.5-fold) in tissue GST profiles, including some reductions in GST mRNA expression. In general, olfactory GSTs were the earliest to respond to cadmium, whereas, more pronounced effects in olfactory and gill GST expression were observed at 48 h relative to earlier time

  14. Effects of three pesticides on superoxide dismutase and glutathione-S-transferase activities and reproduction of Daphnia magna

    Directory of Open Access Journals (Sweden)

    Song Yuzhi

    2017-03-01

    Full Text Available Applying pesticides to crops is one of the causes of water pollution by surface runoff, and chlorpyrifos, trifluralin and chlorothalonil are used respectively as insecticide, herbicide and fungicide for crop plants widely. To explore effects of three pesticides on aquatic organisms, superoxide dismutase (SOD and glutathione S-transferase (GST activities were determined after 24 h and 48 h exposure of D. magna with ages of 6–24 h to several low concentrations of chlorpyrifos (0.36, 0.72, 1.43, 2.86, 5.72 μg∙L−1, trifluralin (0.17, 0.33, 0.66, 1.33, 2.65 mg∙L−1 and chlorothalonil (0.09, 0.18, 0.36, 0.72, 1.43 mg∙L−1 respectively. Main reproductive parameters including first pregnancy time, first brood time, the number of first brood and total fecundity after 21 d exposures at the same concentrations of pesticides as described above were also measured. The results showed that the activities of GST increased in lower concentrations and decreased in higher concentrations after 24 h exposure to three pesticides, respectively. The activities of SOD showed the same changes after 48 h exposure. With the time prolonged, the activities of GST decreased while the activities of SOD increased. After 21 d exposure, the first pregnancy time and first brood time were delayed, while the number of the first brood and total fecundity per female decreased with increasing concentrations. These results corroborated that GST activity was more sensitive to those pesticides than SOD activity, and there was a significant relationship between total fecundity and pesticides-dose(r>0.94, n=6, GST activity after 48 h exposure and total fecundity after 21 d exposure (r>0.92, n=6.

  15. Growth hormone alters the glutathione S-transferase and mitochondrial thioredoxin systems in long-living Ames dwarf mice.

    Science.gov (United States)

    Rojanathammanee, Lalida; Rakoczy, Sharlene; Brown-Borg, Holly M

    2014-10-01

    Ames dwarf mice are deficient in growth hormone (GH), prolactin, and thyroid-stimulating hormone and live significantly longer than their wild-type (WT) siblings. The lack of GH is associated with stress resistance and increased longevity. However, the mechanism underlying GH's actions on cellular stress defense have yet to be elucidated. In this study, WT or Ames dwarf mice were treated with saline or GH (WT saline, Dwarf saline, and Dwarf GH) two times daily for 7 days. The body and liver weights of Ames dwarf mice were significantly increased after 7 days of GH administration. Mitochondrial protein levels of the glutathione S-transferase (GST) isozymes, K1 and M4 (GSTK1 and GSTM4), were significantly higher in dwarf mice (Dwarf saline) when compared with WT mice (WT saline). GH administration downregulated the expression of GSTK1 proteins in dwarf mice. We further investigated GST activity from liver lysates using different substrates. Substrate-specific GST activity (bromosulfophthalein, dichloronitrobenzene, and 4-hydrox-ynonenal) was significantly reduced in GH-treated dwarf mice. In addition, GH treatment attenuated the activity of thioredoxin and glutaredoxin in liver mitochondria of Ames mice. Importantly, GH treatment suppressed Trx2 and TrxR2 mRNA expression. These data indicate that GH has a role in stress resistance by altering the functional capacity of the GST system through the regulation of specific GST family members in long-living Ames dwarf mice. It also affects the regulation of thioredoxin and glutaredoxin, factors that regulate posttranslational modification of proteins and redox balance, thereby further influencing stress resistance. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Glutathione S-transferase activity in follicular fluid from women undergoing ovarian stimulation: role in maturation.

    Science.gov (United States)

    Meijide, Susana; Hernández, M Luisa; Navarro, Rosaura; Larreategui, Zaloa; Ferrando, Marcos; Ruiz-Sanz, José Ignacio; Ruiz-Larrea, M Begoña

    2014-10-01

    Female infertility involves an emotional impact for the woman, often leading to a state of anxiety and low self-esteem. The assisted reproduction techniques (ART) are used to overcome the problem of infertility. In a first step of the in vitro fertilization therapy women are subjected to an ovarian stimulation protocol to obtain mature oocytes, which will result in competent oocytes necessary for fertilization to occur. Ovarian stimulation, however, subjects the women to a high physical and psychological stress, thus being essential to improve ART and to find biomarkers of dysfunction and fertility. GSH is an important antioxidant, and is also used in detoxification reactions, catalysed by glutathione S-transferases (GST). In the present work, we have investigated the involvement of GST in follicular maturation. Patients with fertility problems and oocyte donors were recruited for the study. From each woman follicles at two stages of maturation were extracted at the preovulatory stage. Follicular fluid was separated from the oocyte by centrifugation and used as the enzyme source. GST activity was determined based on its conjugation with 3,4-dichloronitrobenzene and the assay was adapted to a 96-well microplate reader. The absorbance was represented against the incubation time and the curves were adjusted to linearity (R(2)>0.990). Results showed that in both donors and patients GST activity was significantly lower in mature oocytes compared to small ones. These results suggest that GST may play a role in the follicle maturation by detoxifying xenobiotics, thus contributing to the normal development of the oocyte. Supported by FIS/FEDER (PI11/02559), Gobierno Vasco (Dep. Educación, Universiades e Investigación, IT687-13), and UPV/EHU (CLUMBER UFI11/20 and PES13/58). The work was approved by the Ethics Committee of the UPV/EHU (CEISH/96/2011/RUIZLARREA), and performed according to the UPV/EHU and IVI-Bilbao agreement (Ref. 2012/01). Copyright © 2014. Published by

  17. JS-K, a glutathione S-transferase-activated nitric oxide donor with antineoplastic activity in malignant gliomas.

    Science.gov (United States)

    Weyerbrock, Astrid; Osterberg, Nadja; Psarras, Nikolaos; Baumer, Brunhilde; Kogias, Evangelos; Werres, Anna; Bette, Stefanie; Saavedra, Joseph E; Keefer, Larry K; Papazoglou, Anna

    2012-02-01

    Glutathione S-transferases (GSTs) control multidrug resistance and are upregulated in many cancers, including malignant gliomas. The diazeniumdiolate JS-K generates nitric oxide (NO) on enzymatic activation by glutathione and GST, showing promising NO-based anticancer efficacy. To evaluate the role of NO-based antitumor therapy with JS-K in U87 gliomas in vitro and in vivo. U87 glioma cells and primary glioblastoma cell lines were exposed to JS-K and a variety of inhibitors to study cell death by necrosis, apoptosis, and other mechanisms. GST expression was evaluated by immunocytochemistry, polymerase chain reaction, and Western blot, and NO release from JS-K was studied with a NO assay. The growth-inhibitory effect of JS-K was studied in a U87 xenograft model in vivo. Dose-dependent inhibition of cell proliferation was observed in human U87 glioma cells and primary glioblastoma cells in vitro. Cell death was partially induced by caspase-dependent apoptosis, which could be blocked by Z-VAD-FMK and Q-VD-OPH. Inhibition of GST by sulfasalazine, cGMP inhibition by ODQ, and MEK1/2 inhibition by UO126 attenuated the antiproliferative effect of JS-K, suggesting the involvement of various intracellular death signaling pathways. Response to JS-K correlated with mRNA and protein expression of GST and the amount of NO released by the glioma cells. Growth of U87 xenografts was reduced significantly, with immunohistochemical evidence for increased necrosis and apoptosis and reduced proliferation. Our data show for the first time the potent antiproliferative effect of JS-K in gliomas in vitro and in vivo. These findings warrant further investigation of this novel NO-releasing prodrug in gliomas.

  18. Association of oxidative stress gene polymorphisms with presbycusis.

    Science.gov (United States)

    Manche, Santoshi Kumari; Jangala, Madhavi; Putta, Padmavathi; Koralla, Raja Meganadh; Akka, Jyothy

    2016-11-30

    Presbycusis is characterised by etiopathological changes in the cochlea of the inner ear due to genetic and environmental factors and has a serious impact on quality of life. The present study was aimed to evaluate the role of oxidant stress gene polymorphisms in the development of presbycusis. 220 subjects with confirmed presbycusis from ENT specialists of MAA ENT hospital, Hyderabad, India from 2012 to 2014 were considered for the study. 270 age and sex matched controls were included in the study. Analysis of gene polymorphisms of SNPs cytochrome P450 1A1 (CYP1A1) 3801 T>C, 2455 A>G and 2453 A>C; glutathione S transferase (GST) T1 and M1; N-acetyl transferase (NAT2) 282 C>T and 857 G>A; uncoupled proteins (UCP1) (-3826) A>G and (UCP2) (866)G>A was carried out. Variations in the allelic and genotypic frequencies obtained were computed and analysed using appropriate statistical methods. The results of the study indicated that CYP1A1 gene polymorphism at 2453 C>A (adjusted OR: 1.59, 95% CI: 1.01-2.87) and 2455 A>G (adjusted OR: 1.87, 95% CI: 1.07-3.37), double null genotype of GSTM1 and GSTT1 (adjusted OR: 8.88, 95% CI: 4.10-19.19), NAT2 gene at C282T (adjusted OR: 1.77, 95% CI: 1.02-3.11) and G590 A (adjusted OR: 1.83, 95% CI 1.20-3.63) and UCP2 (-866) G>A (adjusted OR: 12.39; 95% CI: 6.51-23.56) showed increased risk for presbycusis while CYP1A1 at 3801 T>C and UCP1 (-3286) A>G exhibited no association. The haplotype combinations of T-G-A of CYP1A1 at 3801, 2455 and 2453 positions as well as T-A of NAT2*6 at 282 and 590 positions were found to contribute significant risk for the onset of presbycusis. Gene polymorphisms of CYP1A1 (A2455G, C2453A), NAT2*6 (C282T, G590 A), GST T1/M1 (double null genotype) and UCP2 (G-866 A) were found to contribute significant risk to presbycusis. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Glutathione S-Transferase as biomarker in Sciades herzbergii (Siluriformes: Ariidae for environmental monitoring: the case study of São Marcos Bay, Maranhão, Brazil

    Directory of Open Access Journals (Sweden)

    Raimunda N.F Carvalho-Neta

    2013-04-01

    Full Text Available The Glutathione S-Transferase (GST activity has been proposed as a biomarker of susceptibility to the presence of potentially damaging xenobiotics in aquatic organisms. The aim of this work was to measure GST activity in the liver of Sciades herzbergii (catfish in order to evaluate the biochemical effects of pollutants. The catfish samples were collected along known pollution gradients areas (A1 and from areas regarded as relatively free of anthropogenic input (A2, in São Marcos Bay, São Luis de Maranhão, Brazil. The variables analyzed in fish were: length, weight, gonadal stages, gonadosomatic index and GST activity. The databases from this analysis were compiled, and generalized linear models were used to analyze the dependence of enzyme activity on the areas of sampling and on selected biological parameters of fish. A significant difference was observed in GST activity in the liver of S. herzbergii in the comparison between fish from the contaminated site and those from the reference site (P < 0.05. Morphometric (length and weight parameters and gonadosomatic index of collected fish were significant in the linear model of GST activity only in the reference site. These results may be due to the activity pattern of the enzyme, which increases with the sexual maturity of the animals in healthy environments. In the contaminated area (A1 these correlations do not exist, probably as a result of the energy used in the biotransformation of the various contaminants.

  20. Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Prakash M. Gopalakrishnan [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of); Choi, Jinhee, E-mail: jinhchoi@uos.ac.kr [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of)

    2011-02-15

    In this study, we report the identification and characterization of 13 cytosolic GST genes in Chironomus riparius from Expressed Sequence Tags (ESTs) database generated using pyrosequencing. Comparative and phylogenetic analyses were undertaken with Drosophila melanogaster and Anopheles gambiae GSTs and 3 Delta, 4 Sigma, 1 each in Omega, Epsilon, Theta, Zeta and 2 unclassified classes of GSTs were identified and characterized. The relative mRNA expression levels of all of the C. riparius GSTs (CrGSTs) genes under different developmental stages were varied with low expression in the larval stage. The antioxidant role of CrGSTs was studied by exposing fourth instar larvae to a known oxidative stress inducer Paraquat and the relative mRNA expression to different concentrations of cadmium (Cd) and silver nanoparticles (AgNPs) for various time intervals were also studied. All the CrGSTs showed up- or down regulation to varying levels based upon the concentration, and duration of exposure. The highest mRNA expression was noticed in Delta3, Sigma4 and Epsilon1 GST class in all treatments. These results show the role of CrGST genes in defense against oxidative stress and its potential as a biomarker to Cd and AgNPs exposure.

  1. Contribution of liver mitochondrial membrane-bound glutathione transferase to mitochondrial permeability transition pores

    International Nuclear Information System (INIS)

    Hossain, Quazi Sohel; Ulziikhishig, Enkhbaatar; Lee, Kang Kwang; Yamamoto, Hideyuki; Aniya, Yoko

    2009-01-01

    We recently reported that the glutathione transferase in rat liver mitochondrial membranes (mtMGST1) is activated by S-glutathionylation and the activated mtMGST1 contributes to the mitochondrial permeability transition (MPT) pore and cytochrome c release from mitochondria [Lee, K.K., Shimoji, M., Quazi, S.H., Sunakawa, H., Aniya, Y., 2008. Novel function of glutathione transferase in rat liver mitochondrial membrane: role for cytochrome c release from mitochondria. Toxcol. Appl. Pharmacol. 232, 109-118]. In the present study we investigated the effect of reactive oxygen species (ROS), generator gallic acid (GA) and GST inhibitors on mtMGST1 and the MPT. When rat liver mitochondria were incubated with GA, mtMGST1 activity was increased to about 3 fold and the increase was inhibited with antioxidant enzymes and singlet oxygen quenchers including 1,4-diazabicyclo [2,2,2] octane (DABCO). GA-mediated mtMGST1 activation was prevented by GST inhibitors such as tannic acid, hematin, and cibacron blue and also by cyclosporin A (CsA). In addition, GA induced the mitochondrial swelling which was also inhibited by GST inhibitors, but not by MPT inhibitors CsA, ADP, and bongkrekic acid. GA also released cytochrome c from the mitochondria which was inhibited completely by DABCO, moderately by GST inhibitors, and somewhat by CsA. Ca 2+ -mediated mitochondrial swelling and cytochrome c release were inhibited by MPT inhibitors but not by GST inhibitors. When the outer mitochondrial membrane was isolated after treatment of mitochondria with GA, mtMGST1 activity was markedly increased and oligomer/aggregate of mtMGST1 was observed. These results indicate that mtMGST1 in the outer mitochondrial membrane is activated by GA through thiol oxidation leading to protein oligomerization/aggregation, which may contribute to the formation of ROS-mediated, CsA-insensitive MPT pore, suggesting a novel mechanism for regulation of the MPT by mtMGST1

  2. The Genetic Architecture of Murine Glutathione Transferases.

    Directory of Open Access Journals (Sweden)

    Lu Lu

    Full Text Available Glutathione S-transferase (GST genes play a protective role against oxidative stress and may influence disease risk and drug pharmacokinetics. In this study, massive multiscalar trait profiling across a large population of mice derived from a cross between C57BL/6J (B6 and DBA2/J (D2--the BXD family--was combined with linkage and bioinformatic analyses to characterize mechanisms controlling GST expression and to identify downstream consequences of this variation. Similar to humans, mice show a wide range in expression of GST family members. Variation in the expression of Gsta4, Gstt2, Gstz1, Gsto1, and Mgst3 is modulated by local expression QTLs (eQTLs in several tissues. Higher expression of Gsto1 in brain and liver of BXD strains is strongly associated (P < 0.01 with inheritance of the B6 parental allele whereas higher expression of Gsta4 and Mgst3 in brain and liver, and Gstt2 and Gstz1 in brain is strongly associated with inheritance of the D2 parental allele. Allele-specific assays confirmed that expression of Gsto1, Gsta4, and Mgst3 are modulated by sequence variants within or near each gene locus. We exploited this endogenous variation to identify coexpression networks and downstream targets in mouse and human. Through a combined systems genetics approach, we provide new insight into the biological role of naturally occurring variants in GST genes.

  3. Glutathione S-transferase expression and isoenzyme composition during cell differentiation of Caco-2 cells

    International Nuclear Information System (INIS)

    Scharmach, E.; Hessel, S.; Niemann, B.; Lampen, A.

    2009-01-01

    The human colon adenocarcinoma cell line Caco-2 is frequently used to study human intestinal metabolism and transport of xenobiotica. Previous studies have shown that both Caco-2 cells and human colon cells constitutively express the multigene family of detoxifying enzymes glutathione S-transferases (GSTs), particularly GST alpha and GST pi. GSTs may play a fundamental role in the molecular interplay between phase I, II enzymes and ABC-transporters. The gut fermentation product, butyrate, can modulate the potential for detoxification. The aim of this study was to investigate the basal expression of further cytosolic GSTs in Caco-2 cells during cell differentiation. In addition, a comparison was made with expression levels in MCF-7 and HepG2, two other cell types with barrier functions. Finally, the butyrate-mediated modulation of gene and protein expression was determined by real time PCR and western blot analysis. In Caco-2, gene and protein expression levels of GST alpha increased during cell differentiation. High levels of GSTO1 and GSTP1 were constantly expressed. No expression of GSTM5 and GSTT1 was detected. HepG2 expressed GSTO1 and MCF-7 GSTZ1 most intensively. No expression of GSTA5, GSTM5, or GSTP1 was detected in either cell. Incubation of Caco-2 cells with butyrate (5 mM) significantly induced GSTA1 and GSTM2 in proliferating Caco-2 cells. In differentiated cells, butyrate tended to increase GSTO1 and GSTP1. The results of this study show that a differentiation-dependent expression of GSTs in Caco-2 cells may reflect the in vivo situation and indicate the potential of butyrate to modify intestinal metabolism. GSTA1-A4 have been identified as good markers for cell differentiation. The Caco-2 cell line is a useful model for assessing the potential of food-related substances to modulate the GST expression pattern.

  4. Glutathione S-transferase expression and isoenzyme composition during cell differentiation of Caco-2 cells.

    Science.gov (United States)

    Scharmach, E; Hessel, S; Niemann, B; Lampen, A

    2009-11-30

    The human colon adenocarcinoma cell line Caco-2 is frequently used to study human intestinal metabolism and transport of xenobiotica. Previous studies have shown that both Caco-2 cells and human colon cells constitutively express the multigene family of detoxifying enzymes glutathione S-transferases (GSTs), particularly GST alpha and GST pi. GSTs may play a fundamental role in the molecular interplay between phase I, II enzymes and ABC-transporters. The gut fermentation product, butyrate, can modulate the potential for detoxification. The aim of this study was to investigate the basal expression of further cytosolic GSTs in Caco-2 cells during cell differentiation. In addition, a comparison was made with expression levels in MCF-7 and HepG2, two other cell types with barrier functions. Finally, the butyrate-mediated modulation of gene and protein expression was determined by real time PCR and western blot analysis. In Caco-2, gene and protein expression levels of GST alpha increased during cell differentiation. High levels of GSTO1 and GSTP1 were constantly expressed. No expression of GSTM5 and GSTT1 was detected. HepG2 expressed GSTO1 and MCF-7 GSTZ1 most intensively. No expression of GSTA5, GSTM5, or GSTP1 was detected in either cell. Incubation of Caco-2 cells with butyrate (5 mM) significantly induced GSTA1 and GSTM2 in proliferating Caco-2 cells. In differentiated cells, butyrate tended to increase GSTO1 and GSTP1. The results of this study show that a differentiation-dependent expression of GSTs in Caco-2 cells may reflect the in vivo situation and indicate the potential of butyrate to modify intestinal metabolism. GSTA1-A4 have been identified as good markers for cell differentiation. The Caco-2 cell line is a useful model for assessing the potential of food-related substances to modulate the GST expression pattern.

  5. Voltage-gated sodium channel polymorphism and metabolic resistance in pyrethroid-resistant Aedes aegypti from Brazil.

    Science.gov (United States)

    Martins, Ademir Jesus; Lins, Rachel Mazzei Moura de Andrade; Linss, Jutta Gerlinde Birgitt; Peixoto, Alexandre Afranio; Valle, Denise

    2009-07-01

    The nature of pyrethroid resistance in Aedes aegypti Brazilian populations was investigated. Quantification of enzymes related to metabolic resistance in two distinct populations, located in the Northeast and Southeast regions, revealed increases in Glutathione-S-transferase (GST) and Esterase levels. Additionally, polymorphism was found in the IIS6 region of Ae. aegypti voltage-gated sodium channel (AaNa(V)), the pyrethroid target site. Sequences were classified in two haplotype groups, A and B, according to the size of the intron in that region. Rockefeller, a susceptible control lineage, contains only B sequences. In field populations, some A sequences present a substitution in the 1011 site (Ile/Met). When resistant and susceptible individuals were compared, the frequency of both A (with the Met mutation) and B sequences were slightly increased in resistant specimens. The involvement of the AaNa(V) polymorphism in pyrethroid resistance and the metabolic mechanisms that lead to potential cross-resistance between organophosphate and pyrethroids are discussed.

  6. Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1.

    Science.gov (United States)

    Zhang, Yuanyuan; Liu, Junhong; Zhou, Yuanming; Gong, Tingyun; Wang, Jing; Ge, Yinlin

    2013-09-15

    Soil contamination is a global environmental problem and many efforts have been made to find efficient remediation methods over the last decade. Moreover, remediation of mixed contaminated soils are more difficult. In the present study, transgenic alfalfa plants pKHCG co-expressing glutathione S-transferase (GST) and human P450 2E1 (CYP2E1) genes were used for phytoremediation of mixed mercury (Hg)-trichloroethylene (TCE) contaminants. Simultaneous expression of GST and CYP2E1 may produce a significant synergistic effect, and leads to improved resistance and accumulation to heavy metal-organic complex contaminants. Based on the tolerance and accumulation assays, pKHCG transgenic plants were more resistant to Hg/TCE complex pollutants and many folds higher in Hg/TCE-accumulation than the non-transgenic control plants in mixed contaminated soil. It is confirmed that GST and CYP2E1 co-expression may be a useful strategy to help achieve mixed heavy metal-organic pollutants phytoremediation. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Impact of the Ile105Val Polymorphism of the Glutathione S-transferase P1 (GSTP1) Gene on Obesity and Markers of Cardiometabolic Risk in Young Adult Population.

    Science.gov (United States)

    Chielle, E O; Trott, A; da Silva Rosa, B; Casarin, J N; Fortuna, P C; da Cruz, I B M; Moretto, M B; Moresco, R N

    2017-05-01

    The aim of the study was to investigate the association between Glutathione S-transferase P1 (GSTP1) gene polymorphism with obesity and markers of cardiometabolic risk. A cross-sectional study was carried out in individuals aged≥18 and ≤30 years. The study included 54 normal weight, 27 overweight and 68 obese volunteers. Anthropometric measurements and biochemical parameters were evaluated, the DNA was extracted from blood samples and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to measure GSTP1 Ile 105 Val gene polymorphism of the study participants. Also, biochemical analysis and hormone assays were carried out. A positive association between GSTP1 polymorphism and obesity was observed on subjects carrying at least one G allele (AG and GG). GG genotype was found only in the obese group. The G allele carriers presented 2.4 times higher chance of obesity when compared to those with the AA genotype. These results were independent of sex and age. We suggest that despite a study in population regional (south of Brazil), the GSTP1 gene polymorphism may play a significant role in the increase of susceptibility of obesity and contribute to identify the cardiovascular risk in young adults. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Identification of the S-transferase like superfamily bacillithiol transferases encoded by Bacillus subtilis

    Science.gov (United States)

    Perera, Varahenage R.; Lapek, John D.; Newton, Gerald L.; Gonzalez, David J.; Pogliano, Kit

    2018-01-01

    Bacillithiol is a low molecular weight thiol found in Firmicutes that is analogous to glutathione, which is absent in these bacteria. Bacillithiol transferases catalyze the transfer of bacillithiol to various substrates. The S-transferase-like (STL) superfamily contains over 30,000 putative members, including bacillithiol transferases. Proteins in this family are extremely divergent and are related by structural rather than sequence similarity, leaving it unclear if all share the same biochemical activity. Bacillus subtilis encodes eight predicted STL superfamily members, only one of which has been shown to be a bacillithiol transferase. Here we find that the seven remaining proteins show varying levels of metal dependent bacillithiol transferase activity. We have renamed the eight enzymes BstA-H. Mass spectrometry and gene expression studies revealed that all of the enzymes are produced to varying levels during growth and sporulation, with BstB and BstE being the most abundant and BstF and BstH being the least abundant. Interestingly, several bacillithiol transferases are induced in the mother cell during sporulation. A strain lacking all eight bacillithiol transferases showed normal growth in the presence of stressors that adversely affect growth of bacillithiol-deficient strains, such as paraquat and CdCl2. Thus, the STL bacillithiol transferases represent a new group of proteins that play currently unknown, but potentially significant roles in bacillithiol-dependent reactions. We conclude that these enzymes are highly divergent, perhaps to cope with an equally diverse array of endogenous or exogenous toxic metabolites and oxidants. PMID:29451913

  9. Safety and immunogenicity of the Na-GST-1 hookworm vaccine in Brazilian and American adults.

    Directory of Open Access Journals (Sweden)

    David J Diemert

    2017-05-01

    Full Text Available Necator americanus Glutathione-S-Transferase-1 (Na-GST-1 plays a role in the digestion of host hemoglobin by adult N. americanus hookworms. Vaccination of laboratory animals with recombinant Na-GST-1 is associated with significant protection from challenge infection. Recombinant Na-GST-1 was expressed in Pichia pastoris and adsorbed to aluminum hydroxide adjuvant (Alhydrogel according to current Good Manufacturing Practice. Two Phase 1 trials were conducted in 142 healthy adult volunteers in the United States and Brazil, first in hookworm-naïve individuals and then in residents of a N. americanus endemic area in Brazil. Volunteers received one of three doses of recombinant Na-GST-1 (10, 30, or 100 μg adjuvanted with Alhydrogel, adjuvanted with Alhydrogel and co-administered with an aqueous formulation of Glucopyranosyl Lipid A (GLA-AF, or the hepatitis B vaccine. Vaccinations were administered via intramuscular injection on days 0, 56, and 112. Na-GST-1/Alhydrogel was well tolerated in both hookworm-naïve and hookworm-exposed adults, with the most common adverse events being mild to moderate injection site pain and tenderness, and mild headache and nausea; no vaccine-related severe or serious adverse events were observed. Antigen-specific IgG antibodies were induced in a dose-dependent fashion, with increasing levels observed after each vaccination in both trials. The addition of GLA-AF to Na-GST-1/Alhydrogel did not result in significant increases in specific IgG responses. In both the US and Brazil studies, the predominant IgG subclass induced against Na-GST-1 was IgG1, with lesser amounts of IgG3. Vaccination of both hookworm-naïve and hookworm-exposed adults with recombinant Na-GST-1 was safe, well tolerated, and resulted in significant antigen-specific IgG responses. Based on these results, this vaccine will be advanced into clinical trials in children and eventual efficacy studies.ClinicalTrials.gov (NCT01261130 for the Brazil trial

  10. A single amino acid substitution in isozyme GST mu in Triclabendazole resistant Fasciola hepatica (Sligo strain) can substantially influence the manifestation of anthelmintic resistance.

    Science.gov (United States)

    Fernández, V; Estein, S; Ortiz, P; Luchessi, P; Solana, V; Solana, H

    2015-12-01

    The helminth parasite Fasciola hepatica causes fascioliasis in human and domestic ruminants. Economic losses due to this infection are estimated in U$S 2000-3000 million yearly. The most common method of control is the use of anthelmintic drugs. However, there is an increased concern about the growing appearance of F. hepatica resistance to Triclabendazole (TCBZ), an anthelmintic with activity over adult and young flukes. F. hepatica has eight Glutathione S-Transferase (GST) isozymes, which are enzymes involved in the detoxification of a wide range of substrates through chemical conjugation with glutathione. In the present work we identified and characterized the GST mu gene isolated from the TCBZ-susceptible and TCBZ-resistant F. hepatica strains. Total RNA was transcribed into cDNA by reverse transcription and a 657 bp amplicon corresponding to the GST mu gene was obtained. The comparative genetic analysis of the GST mu gene of the TCBZ susceptible strain (Cullompton) and TCBZ resistant strain (Sligo) showed three nucleotide changes and one amino acid change at position 143 in the GST mu isozyme of the TCBZ-resistant strain. These results have potential relevance as they contribute better understand the mechanisms that generate resistance to anthelmintics. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Evaluation of glutathione S-transferase T1 deletion polymorphism on type 2 diabetes mellitus risk in Zoroastrian females in Yazd, Iran

    Science.gov (United States)

    Afrand, Mohammadhosain; Khalilzadeh, Saeedhossein; Bashardoost, Nasrollah; Sheikhha, Mohammad Hasan

    2015-01-01

    Background: There has been much interest in the role of free radicals and oxidative stress in the pathogenesis of diabetes mellitus (DM). The aim of this study was to assess the possible association between genetic polymorphisms of the glutathione S-transferase-Theta (GSTT1) and the risk of the development of DM in Zoroastrian females in Yazd, Iran. Materials and Methods: This was a case-control study in which GSTT1 polymorphism was genotyped in 51 randomly selected DM patients and 50 randomly selected healthy controls among Zoroastrian females whose ages ranged from 40 to 70. Results: The frequencies of GSTT1 null genotype and GSTT1 present were 72% and 28%, respectively, in control samples, while in patients with type 2 diabetes (T2DM), the frequencies of GSTT1 null genotype and GSTT1 present were 27.5% and 72.5%, respectively. There were higher levels of triglyceride (TG), fasting blood sugar (FBS), total cholesterol (TC), low-density lipoprotein (LDL), Urea, and high-density lipoprotein (HDL) in cases of GSTT1 null genotype compared to the GSTT1 present genotype in controls. Conclusions: Our results indicated that healthy subjects had a higher frequency of the GSTT1 null genotype than patients with T2DM. However, we observed no significant association between the GSTT1 null genotype and T2DM in the current study. PMID:25593839

  12. Cytokine responses to the anti-schistosome vaccine candidate antigen glutathione-S-transferase vary with host age and are boosted by praziquantel treatment.

    Directory of Open Access Journals (Sweden)

    Claire D Bourke

    2014-05-01

    Full Text Available Improved helminth control is required to alleviate the global burden of schistosomiasis and schistosome-associated pathologies. Current control efforts rely on the anti-helminthic drug praziquantel (PZQ, which enhances immune responses to crude schistosome antigens but does not prevent re-infection. An anti-schistosome vaccine based on Schistosoma haematobium glutathione-S-transferase (GST is currently in Phase III clinical trials, but little is known about the immune responses directed against this antigen in humans naturally exposed to schistosomes or how these responses change following PZQ treatment.Blood samples from inhabitants of a Schistosoma haematobium-endemic area were incubated for 48 hours with or without GST before (n = 195 and six weeks after PZQ treatment (n = 107. Concentrations of cytokines associated with innate inflammatory (TNFα, IL-6, IL-8, type 1 (Th1; IFNγ, IL-2, IL-12p70, type 2 (IL-4, IL-5, IL-13, type 17 (IL-17A, IL-21, IL-23p19 and regulatory (IL-10 responses were quantified in culture supernatants via enzyme-linked immunosorbent assay (ELISA. Factor analysis and multidimensional scaling were used to analyse multiple cytokines simultaneously.A combination of GST-specific type 2 (IL-5 and IL-13 and regulatory (IL-10 cytokines was significantly lower in 10-12 year olds, the age group at which S. haematobium infection intensity and prevalence peak, than in 4-9 or 13+ year olds. Following PZQ treatment there was an increase in the number of participants producing detectable levels of GST-specific cytokines (TNFα, IL-6, IL-8, IFNγ, IL-12p70, IL-13 and IL-23p19 and also a shift in the GST-specific cytokine response towards a more pro-inflammatory phenotype than that observed before treatment. Participant age and pre-treatment infection status significantly influenced post-treatment cytokine profiles.In areas where schistosomiasis is endemic host age, schistosome infection status and PZQ treatment affect the

  13. Gene-knockdown in the honey bee mite Varroa destructor by a non-invasive approach: studies on a glutathione S-transferase

    Directory of Open Access Journals (Sweden)

    Campbell Ewan M

    2010-08-01

    Full Text Available Abstract Background The parasitic mite Varroa destructor is considered the major pest of the European honey bee (Apis mellifera and responsible for declines in honey bee populations worldwide. Exploiting the full potential of gene sequences becoming available for V. destructor requires adaptation of modern molecular biology approaches to this non-model organism. Using a mu-class glutathione S-transferase (VdGST-mu1 as a candidate gene we investigated the feasibility of gene knockdown in V. destructor by double-stranded RNA-interference (dsRNAi. Results Intra-haemocoelic injection of dsRNA-VdGST-mu1 resulted in 97% reduction in VdGST-mu1 transcript levels 48 h post-injection compared to mites injected with a bolus of irrelevant dsRNA (LacZ. This gene suppression was maintained to, at least, 72 h. Total GST catalytic activity was reduced by 54% in VdGST-mu1 gene knockdown mites demonstrating the knockdown was effective at the translation step as well as the transcription steps. Although near total gene knockdown was achieved by intra-haemocoelic injection, only half of such treated mites survived this traumatic method of dsRNA administration and less invasive methods were assessed. V. destructor immersed overnight in 0.9% NaCl solution containing dsRNA exhibited excellent reduction in VdGST-mu1 transcript levels (87% compared to mites immersed in dsRNA-LacZ. Importantly, mites undergoing the immersion approach had greatly improved survival (75-80% over 72 h, approaching that of mites not undergoing any treatment. Conclusions Our findings on V. destructor are the first report of gene knockdown in any mite species and demonstrate that the small size of such organisms is not a major impediment to applying gene knockdown approaches to the study of such parasitic pests. The immersion in dsRNA solution method provides an easy, inexpensive, relatively high throughput method of gene silencing suitable for studies in V. destructor, other small mites and

  14. Combined glutathione S transferase M1/T1 null genotypes is associated with type 2 diabetes mellitus

    Science.gov (United States)

    POROJAN, MIHAI D.; BALA, CORNELIA; ILIES, ROXANA; CATANA, ANDREEA; POPP, RADU A.; DUMITRASCU, DAN L.

    2015-01-01

    Background Due to new genetic insights, a considerably large number of genes and polymorphic gene variants are screened and linked with the complex pathogenesis of type 2 diabetes (DM). Our study aimed to investigate the association between the two isoforms of the glutathione S-transferase genes (Glutathione S transferase isoemzyme type M1- GSTM1 and Glutathione S transferase isoemzyme type T1-GSTT1) and the prevalence of DM in the Northern Romanian population. Methods We conducted a cross-sectional, randomized, case-control study evaluating the frequency of GSTM1 and GSTT1 null alleles in patients diagnosed with DM. A total of 106 patients diagnosed with DM and 124 healthy controls were included in the study. GSTM1 and GSTT1 null alleles genotyping was carried out using Multiplex PCR amplification of relevant gene fragments, followed by gel electrophoresis analysis of the resulting amplicons. Results Molecular analysis did not reveal an increased frequency of the null GSTM1 and GSTT1 alleles (mutant genotypes) respectively in the DM group compared to controls (p=0.171, OR=1.444 CI=0.852–2.447; p=0.647, OR=0.854, CI=0.436–1.673). Nevertheless, the combined GSTM1/GSTT1 null genotypes were statistically significantly higher in DM patients compared to control subjects (p=0.0021, OR=0.313, CI=0.149–0.655) Conclusions The main finding of our study is that the combined, double GSTM1/GSTT1 null genotypes are to be considered among the polymorphic genetic risk factors for type 2 DM. PMID:26528065

  15. Are glutathione S-transferase polymorphisms (GSTM1, GSTT1) associated with primary open angle glaucoma? A meta-analysis.

    Science.gov (United States)

    Lu, Yan; Shi, Yuhua; Yin, Jie; Huang, Zhenping

    2013-09-15

    Glutathione S-transferase (GST) variants have been considered as risk factors for the pathogenesis of primary open angle glaucoma (POAG). However, the results have been inconsistent. In this study, we performed a meta-analysis to assess the association between GSTM1 and GSTT1 null genotypes and the risk for POAG. Published literature from PubMed and EMBASE databases was retrieved. All studies evaluating the association between GSTM1/GSTT1 variants and POAG were included. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using fixed- or random-effects model. 14 studies (1711 POAG cases and 1537 controls) were included in the meta-analysis of GSTM1 genotypes and 10 studies (1306 POAG cases and 1114 controls) were included in the meta-analysis of GSTT1 genotypes. The overall result showed that the association between GSTM1 and GSTT1 null genotypes and risk for POAG was not statistically significant (GSTM1: OR=1.19, 95% CI=0.82-1.73, p=0.361; GSTT1: OR=1.26, 95% CI=0.77-2.06, p=0.365). The results by ethnicity showed that the association between the GSTM1 null genotype and risk for POAG is statistically significant in East Asians (OR=1.41, 95% CI=1.04-1.90, p=0.026), but not in Caucasians (OR=1.13, 95% CI=0.69-1.84, p=0.638) and Latin-American (OR=1.09, 95% CI=0.62-1.92, p=0.767). In addition, there was no significant association of GSTT1 null genotype with risk for POAG in either ethnic population. The present meta-analysis suggested that there might be a significant association of GSTM1 null genotype with POAG risk in East Asians. © 2013 Elsevier B.V. All rights reserved.

  16. Glutathione Transferase from Trichoderma virens Enhances Cadmium Tolerance without Enhancing Its Accumulation in Transgenic Nicotiana tabacum

    Science.gov (United States)

    Dixit, Prachy; Mukherjee, Prasun K.; Ramachandran, V.; Eapen, Susan

    2011-01-01

    Background Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST) are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. Results Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST) showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. Conclusion The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for developing Cd tolerance and

  17. Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum.

    Directory of Open Access Journals (Sweden)

    Prachy Dixit

    Full Text Available BACKGROUND: Cadmium (Cd is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. RESULTS: Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. CONCLUSION: The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for

  18. Biochemical Characterization and Vaccine Potential of a Heme-Binding Glutathione Transferase from the Adult Hookworm Ancylostoma caninum

    Science.gov (United States)

    Zhan, Bin; Liu, Sen; Perally, Samirah; Xue, Jian; Fujiwara, Ricardo; Brophy, Peter; Xiao, Shuhua; Liu, Yueyuan; Feng, Jianjun; Williamson, Angela; Wang, Yan; Bueno, Lilian L.; Mendez, Susana; Goud, Gaddam; Bethony, Jeffrey M.; Hawdon, John M.; Loukas, Alex; Jones, Karen; Hotez, Peter J.

    2005-01-01

    We report the cloning and expression of Ac-GST-1, a novel glutathione S-transferase from the adult hookworm Ancylostoma caninum, and its possible role in parasite blood feeding and as a vaccine target. The predicted Ac-GST-1 open reading frame contains 207 amino acids (mass, 24 kDa) and exhibited up to 65% amino acid identity with other nematode GSTs. mRNA encoding Ac-GST-1 was detected in adults, eggs, and larval stages, but the protein was detected only in adult hookworm somatic extracts and excretory/secretory products. Using antiserum to the recombinant protein, Ac-GST-1 was immunolocalized to the parasite hypodermis and muscle tissue and weakly to the intestine. Recombinant Ac-GST-1 was enzymatically active, as determined by conjugation of glutathione to a model substrate, and exhibited a novel high-affinity binding site for hematin. The possible role of Ac-GST-1 in parasite heme detoxification during hemoglobin digestion or heme uptake prompted interest in evaluating it as a potential vaccine antigen. Vaccination of dogs with Ac-GST-1 resulted in a 39.4% reduction in the mean worm burden and 32.3% reduction in egg counts compared to control dogs following larval challenge, although the reductions were not statistically significant. However, hamsters vaccinated with Ac-GST-1 exhibited statistically significant worm reduction (53.7%) following challenge with heterologous Necator americanus larvae. These studies suggest that Ac-GST-1 is a possible drug and vaccine target for hookworm infection. PMID:16177370

  19. Skin barrier and contact allergy: Genetic risk factor analyses

    DEFF Research Database (Denmark)

    Ross-Hansen, Katrine

    2013-01-01

    allergy. Objectives To evaluate the effect of specific gene polymorphisms on the risk of developing contact allergy by a candidate gene approach. These included polymorphisms in the glutathione S-transferase genes (GSTM1, -T1 and -P1 variants), the claudin-1 gene (CLDN1), and the filaggrin gene (FLG......) in particular. Methods Epidemiological genetic association studies were performed on a general Danish population. Participants were patch tested, answered a questionnaire on general health and were genotyped for GST, CLDN1 and FLG polymorphisms. Filaggrin’s nickel binding potential was evaluated biochemically...

  20. Modulation of metallothionein, pi-GST and Se-GPx mRNA expression in the freshwater bivalve Dreissena polymorpha transplanted into polluted areas

    Directory of Open Access Journals (Sweden)

    Périne Doyen

    2015-04-01

    Full Text Available Glutathione S-transferases (GST, glutathione peroxidases (GPx and metallothioneins (MT are essential components of cellular detoxication systems. We studied the expression of pi-GST, Se-GPx, and MT transcripts in the digestive gland of Dreissena polymorpha exposed to organic and metallic pollutants. Mussels from a control site were transplanted during 3, 15 and 30 days into the Moselle River, upstream and downstream to the confluence with the Fensch River, a tributary highly polluted by polycyclic aromatic hydrocarbons and heavy metals. Se-GPx and pi-GST mRNA expression increased in mussels transplanted into the upstream site, Se-GPx response being the earliest. These genes were also induced after 3-days exposure at the downstream site. These inductions suggest an adaptative response to an alteration of the environment. Moreover, at this site, a significant decrease of the expression of MT, pi-GST and Se-GPx transcripts was observed after 30 days which could correspond to an inefficiency of detoxification mecanisms. The results are in correlation with the levels of pollutants in the sediments and their bioaccumulation in mussels, they confirm the environmental deleterious impact of the pollutants carried by the Fensch River.

  1. Genetic polymorphisms of glutathione-s-transferase M1 and T1 genes with risk of diabetic retinopathy in Iranian population

    Directory of Open Access Journals (Sweden)

    Elham Moasser

    2014-05-01

    Full Text Available Objective(s:To the best of our knowledge, this is the first report on the contributions of GST genetic variants to the risk of diabetic retinopathy in an Iranian population. Therefore, the objective of this study was to determine whether sequence variation in glutathione S-transferase gene (GSTM1 and GSTT1 is associated with development of diabetic retinopathy in type 2 diabetes mellitus (T2DM Iranian patients. Materials and Methods: A total of 605 subjects were investigated in this case-control study; Study groups consisted of 201 patients with diabetic retinopathy (DR, 203 subjects with no clinically significant signs of DR and a group of 201 cases of healthy volunteers with no clinical evidence of diabetes mellitus or any other diseases. The GSTM1 and GSTT1 were genotyped by multiplex-polymerase chain reaction (multiplex-PCR analysis in all 404 T2DM patients and 201 healthy individuals served as control. Results: Increased odds ratio showed that GSTM1-null genotype had a moderately higher occurrence in T2DM patients (OR=1.43, 95% CI=1.01–2.04; P=0.03 than in healthy individuals. However, the frequency of GSTT1 genotype (OR=1.41; 95% CI=0.92-2.18; P=0.09 was not significantly different comparing both groups. Although, regression analysis in T2DM patients showed that GSTM1 and GSTT1 genotypes are not associated with T2DM retinopathy development. Conclusion: Our findings suggest that GSTM1 and GSTT1 genotypes might not be involved in the pathogenesis of type 2 diabetes mellitus retinopathy in the Southern Iranian population. However, further investigations are needed to confirm these results in other larger populations.

  2. Isolation and characterization of a cDNA clone coding for a glutathione S-transferase class delta enzyme from the biting midge Culicoides variipennis sonorensis Wirth and Jones.

    Science.gov (United States)

    Abdallah, M A; Pollenz, R S; Droog, F N; Nunamaker, R A; Tabachnick, W J; Murphy, K E

    2000-12-01

    Culicoides variipennis sonorensis is the primary vector of bluetongue viruses in North America. Glutathione S-transferases (GSTs) are enzymes that catalyze nucleophilic substitutions, converting reactive lipophilic molecules into soluble conjugates. Increased GST activity is associated with development of insecticide resistance. Described here is the isolation of the first cDNA encoding a C. variipennis GST. The clone consists of 720 translated bases encoding a protein with a M(r) of approximately 24,800 composed of 219 amino acids. The deduced amino acid sequence is similar (64%-74%) to class Delta (previously named Theta) GSTs from the dipteran genera Musca, Drosophila, Lucilia and Anopheles. The cDNA was subcloned into pET-11b, expressed in Epicurian coli BL21 (DE3) and has a specific activity of approximately 28,000 units/mg for the substrate 1-chloro-2,4-dinitrobenzene.

  3. Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups.

    Science.gov (United States)

    Munyampundu, Jean-Pierre; Xu, You-Ping; Cai, Xin-Zhong

    2016-01-01

    Glutathione S-transferases (GSTs) constitute a superfamily of enzymes involved in detoxification of noxious compounds and protection against oxidative damage. GST class Phi (GSTF), one of the important classes of plant GSTs, has long been considered as plant specific but was recently found in basidiomycete fungi. However, the range of nonplant taxonomic groups containing GSTFs remains unknown. In this study, the distribution and phylogenetic relationships of nonplant GSTFs were investigated. We identified GSTFs in ascomycete fungi, myxobacteria, and protists Naegleria gruberi and Aureococcus anophagefferens. GSTF occurrence in these bacteria and protists correlated with their genome sizes and habitats. While this link was missing across ascomycetes, the distribution and abundance of GSTFs among ascomycete genomes could be associated with their lifestyles to some extent. Sequence comparison, gene structure, and phylogenetic analyses indicated divergence among nonplant GSTFs, suggesting polyphyletic origins during evolution. Furthermore, in silico prediction of functional partners suggested functional diversification among nonplant GSTFs.

  4. Possible gene dosage effect of glutathione-S-transferases on atopic asthma: using real-time PCR for quantification of GSTM1 and GSTT1 gene copy numbers

    DEFF Research Database (Denmark)

    Brasch-Andersen, Charlotte; Christiansen, L; Tan, Q

    2004-01-01

    -S-transferase (GST) involved in the antioxidant defense were tested for association to asthma using 246 Danish atopic families in a family-based transmission disequilibrium test (TDT) design. A real-time PCR assay for relative quantification of gene copy number of GSTM1 and GSTT1 was developed. The assay made......Asthma is a complex genetic disorder characterized by chronic inflammation in the airways. As oxidative stress is a key component of inflammation, variations in genes involved in antioxidant defense could therefore be likely candidates for asthma. Three enzymes from the superfamily glutathione...

  5. Improvement of a predictive model in ovarian cancer patients submitted to platinum-based chemotherapy: implications of a GST activity profile.

    Science.gov (United States)

    Pereira, Deolinda; Assis, Joana; Gomes, Mónica; Nogueira, Augusto; Medeiros, Rui

    2016-05-01

    The success of chemotherapy in ovarian cancer (OC) is directly associated with the broad variability in platinum response, with implications in patients survival. This heterogeneous response might result from inter-individual variations in the platinum-detoxification pathway due to the expression of glutathione-S-transferase (GST) enzymes. We hypothesized that GSTM1 and GSTT1 polymorphisms might have an impact as prognostic and predictive determinants for OC. We conducted a hospital-based study in a cohort of OC patients submitted to platinum-based chemotherapy. GSTM1 and GSTT1 genotypes were determined by multiplex PCR. GSTM1-null genotype patients presented a significantly longer 5-year survival and an improved time to progression when compared with GSTM1-wt genotype patients (log-rank test, P = 0.001 and P = 0.013, respectively). Multivariate Cox regression analysis indicates that the inclusion of genetic information regarding GSTM1 polymorphism increased the predictive ability of risk of death after OC platinum-based chemotherapy (c-index from 0.712 to 0.833). Namely, residual disease (HR, 4.90; P = 0.016) and GSTM1-wt genotype emerged as more important predictors of risk of death (HR, 2.29; P = 0.039; P = 0.036 after bootstrap). No similar effect on survival was observed regarding GSTT1 polymorphism, and there were no statistically significant differences between GSTM1 and GSTT1 genotypes and the assessed patients' clinical-pathological characteristics. GSTM1 polymorphism seems to have an impact in OC prognosis as it predicts a better response to platinum-based chemotherapy and hence an improved survival. The characterization of the GSTM1 genetic profile might be a useful molecular tool and a putative genetic marker for OC clinical outcome.

  6. Phylogenetic characterization of Clonorchis sinensis proteins homologous to the sigma-class glutathione transferase and their differential expression profiles.

    Science.gov (United States)

    Bae, Young-An; Kim, Jeong-Geun; Kong, Yoon

    2016-01-01

    Glutathione transferase (GST) is one of the major antioxidant proteins with diverse supplemental activities including peroxidase, isomerase, and thiol transferase. GSTs are classified into multiple classes on the basis of their primary structures and substrate/inhibitor specificity. However, the evolutionary routes and physiological environments specific to each of the closely related bioactive enzymes remain elusive. The sigma-like GSTs exhibit amino acid conservation patterns similar to the prostaglandin D synthases (PGDSs). In this study, we analyzed the phylogenetic position of the GSTs of the biocarcinogenic liver fluke, Clonorchis sinensis. We also observed induction profile of the GSTs in association with the parasite's maturation and in response to exogenous oxidative stresses, with special attention to sigma-class GSTs and PGDSs. The C. sinensis genome encoded 12 GST protein species, which were separately assigned to cytosolic (two omega-, one zeta-, two mu-, and five sigma-class), mitochondrial (one kappa-class), and microsomal (one membrane-associated proteins in eicosanoid and glutathione metabolism-like protein) GST families. Multiple sigma GST (or PGDS) orthologs were also detected in Opisthorchis viverrini. Other trematode species possessed only a single sigma-like GST gene. A phylogenetic analysis demonstrated that one of the sigma GST lineages duplicated in the common ancestor of trematodes were specifically expanded in the opisthorchiids, but deleted in other trematodes. The induction profiles of these sigma GST genes along with the development and aging of C. sinensis, and against various exogenous chemical stimuli strongly suggest that the paralogous sigma GST genes might be undergone specialized evolution to cope with the diverse hostile biochemical environments within the mammalian hepatobiliary ductal system. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Association Study of Glutathione S-transferases Gene Polymorphisms (GSTM1 and GSTT1 with Ulcerative Colitis and Crohn's Disease in the South of Iran

    Directory of Open Access Journals (Sweden)

    Maryam Moini

    2017-01-01

    Full Text Available Background: Inflammatory bowel diseases (IBDs, including ulcerative colitis (UC and Crohn's disease (CD, are chronic inflammatory disorders of the gastrointestinal tract. A combination of environmental factors and interactions with a genetic predisposition are suggested to play an important role in the etiology and pathogenesis of the IBD. Glutathione S-transferases (GSTs are multifunctional enzymes involved in the cellular oxidative stress handling. Possible associations between GSTs gene polymorphisms and susceptibility to UC and CD have been reported in different population. The relationship between GSTM1 and GSTT1 deletion polymorphisms and susceptibility to UC and CD were investigated in the Iranian population. Materials and Methods: The study was performed in 106 IBD patients and 243 age- and sex-matched healthy Iranian controls consulting the IBD registry center of the Motahari Clinic, Shiraz University of Medical Sciences, Shiraz, Iran, between 2011 and 2013. GSTM1 and GSTT1 genotyping were performed using multiplex polymerase chain reaction and differences in the distribution of gene polymorphisms were analyzed statistically between the studied groups. Results: Statistically significant higher frequency of GSTM1 null genotype was observed in IBD patients (P = 0.01 and in the subgroup of patients with UC (P = 0.04 compared to healthy controls, whereas this was not true for CD patients. No significant association was found between GSTT1 gene polymorphism and UC or CD. Conclusions: Absence of GSTT1 functional gene does not play an important role in the pathophysiology and development of IBD, UC, and CD in Iranian population whereas GSTM1 null genotype could be considered as a possible genetic predisposing factor for more susceptibility to IBD and UC.

  8. Comparative study of acetylcholinesterase and glutathione S-transferase activities of closely related cave and surface Asellus aquaticus (Isopoda: Crustacea.

    Directory of Open Access Journals (Sweden)

    Anita Jemec

    Full Text Available The freshwater isopod crustacean Asellus aquaticus has recently been developed as an emerging invertebrate cave model for studying evolutionary and developmental biology. Mostly morphological and genetic differences between cave and surface A. aquaticus populations have been described up to now, while scarce data are available on other aspects, including physiology. The purpose of this study was to advance our understanding of the physiological differences between cave A. aquaticus and its surface-dwelling counterparts. We sampled two surface populations from the surface section of the sinking Pivka River (central Slovenia, Europe, i.e. locality Pivka Polje, and locality Planina Polje, and one cave population from the subterranean section of the sinking Pivka River, i.e. locality Planina Cave. Animals were sampled in spring, summer and autumn. We measured the activities of acetylcholinesterase (AChE and glutathione S-transferase (GST in individuals snap-frozen in the field immediately after collection. Acetylcholinesterase is likely related to animals' locomotor activity, while GST activity is related to the metabolic activity of an organism. Our study shows significantly lower AChE and GST activities in the cave population in comparison to both surface A. aquaticus populations. This confirms the assumption that cave A. aquaticus have lower locomotor and metabolic activity than surface A. aquaticus in their respective natural environments. In surface A. aquaticus populations, seasonal fluctuations in GST activity were observed, while these were less pronounced in individuals from the more stable cave environment. On the other hand, AChE activity was generally season-independent in all populations. To our knowledge, this is the first study of its kind conducted in A. aquaticus. Our results show that among closely related cave and surface A. aquaticus populations also physiological differences are present besides the morphological and genetic

  9. Allyl isothiocyanate that induces GST and UGT expression confers oxidative stress resistance on C. elegans, as demonstrated by nematode biosensor.

    Directory of Open Access Journals (Sweden)

    Koichi Hasegawa

    Full Text Available BACKGROUND: Electrophilic xenobiotics and endogenous products from oxidative stresses induce the glutathione S-transferases (GSTs, which form a large family within the phase II enzymes over both animal and plant kingdoms. The GSTs thus induced in turn detoxify these external as well as internal stresses. Because these stresses are often linked to ageing and damage to health, the induction of phase II enzymes without causing adverse effects would be beneficial in slowing down ageing and keeping healthy conditions. METHODOLOGY/PRINCIPAL FINDINGS: We have tested this hypothesis by choosing allyl isothiocyanate (AITC, a functional ingredient in wasabi, as a candidate food ingredient that induces GSTs without causing adverse effects on animals' lives. To monitor the GST induction, we constructed a gst::gfp fusion gene and used it to transform Caenorhabditis elegans for use as a nematode biosensor. With the nematode biosensor, we found that AITC induced GST expression and conferred tolerance on the nematode against various oxidative stresses. We also present evidence that the transcription factor SKN-1 is involved in regulating the GST expression induced by AITC. CONCLUSIONS/SIGNIFICANCE: We show the applicability of the nematode biosensor for discovering and evaluating functional food substances and chemicals that would provide anti-ageing or healthful benefits.

  10. Oxidative Stress and Modulatory effects of the root extract of Phlogacanthus tubiflorus on the activity of Glutathione-S-Transferase in Hydrogen Peroxide treated Lymphocyte

    Directory of Open Access Journals (Sweden)

    Ramteke A

    2012-04-01

    Full Text Available Glutathione-S-transferase is one of the important enzyme systems that plays vital role in decomposition of lipid hydro-peroxides formed due to oxidative stress. In the present study GST activity increased in the lymphocytes treated with increasing concentration of H2O2, and decrease in the levels of GSH was observed. For similar treatment conditions LDH activity and MDA levels increased significantly leading to decrease in the cell viability. Treatment of lymphocytes with the root extract of Phlogacanthus tubiflorus (PTE resulted in dose dependent decline in the GST activity and rise in GSH levels. LDH activity and MDA levels also declined that led to the increase of cell viability. Lymphocytes pre-treated with the PTE followed by H2O2 (0.1 and 1% treatment, decline in the activity of GST and increase in GSH levels was observed. Also we have observed decline in the activity of LDH and MDA levels in the lymphocytes for both 0.1 and 1% of H2O2 though the magnitude of change was higher in the lymphocytes pre-treated with the PTE followed with 1% of H2O2 treatment. Significant increase in the cell viability for similar conditions was also observed. These findings suggest protective function of the root extracts might be through modulation of GST activity and levels of GSH and might find application in Chemomodulation in future.

  11. Association between glutathione S-transferase M1 and T1 polymorphisms and colorectal cancer risk in patients from Kazakhstan.

    Science.gov (United States)

    Zhunussova, Gulnur; Zhunusbekova, Benazir; Djansugurova, Leyla

    2015-01-01

    Colorectal cancer (CRC) is one of the most common malignancies worldwide and the incidence is increasing in developed as well as developing countries including Kazakhstan. Glutathione S-transferases (GSTs) are considered to be cancer susceptibility genes as they play a role in the detoxification of carcinogenic species. In this case-control study the influence of GSTM1 and GSTT1 polymorphisms on CRC risk in Kazakhstan population were evaluated. Blood samples were collected from patients diagnosed with rectal or colon cancer (300 individuals) as well as a control cohort of healthy volunteers (300 individuals), taking into account the age, gender, ethnicity, and smoking habits of the CRC patients. Deletion polymorphisms were genotyped employing a multiplex PCR amplification method. Association between polymorphisms and CRC susceptibility risk was calculated using multivariate analysis and logistic regression for odd ratio (OR). The homozygous GSTM1 null genotype was associated with significantly increased risk of CRC (OR = 2.01, 95% CI = 1.45-2.79, p = 0.0001) while the homozygous GSST1 null genotype was not associated with the risk of developing CRC (OR = 1.10, 95% CI = 0.78-1.55, p = 0.001), but the heterozygous genotype correlated with CRC susceptibility (OR = 1.98, 95% CI = 1.30-3.00, p = 0.001). Also, separate analyses of each of the main ethnic groups (Kazakh and Russian) showed a strong association of GSTM1 null genotype with CRC risk (for Kazakhs OR = 2.36, 95% CI = 1.35-4.10, p = 0.006 and for Russians OR = 1.84, 95% CI = 1.17-2.89, p = 0.003). The CRC risk of GSTM1 null genotype in smokers was considerably higher (OR = 3.37, 95% CI = 1.78-6.38, p = 0.0007). The combination of the GSTM1 and GSTT1 null genotypes in combined mixed population of Kazakhstan showed a trend to increasing the risk of developing CRC (OR = 1.60, 95% CI = 1.00-2.56), but it was not statistically significant. In conclusion, the results of this case-control study for sporadic cases of

  12. The study of relationship between scintimammography of breast cancer and the expression of P-glycoprotein and GST

    International Nuclear Information System (INIS)

    Cheng Bing; Liu Baoping; Han Xingmin

    2003-01-01

    Objective: To study the relationship of 99 Tc m -MIBI uptake and washout in untreated breast cancer with immunohistochemically determined glutathione-S-transferase π(GST-π) and P-glycoprotein (P-gp) expression. Methods: Thirty-six patients with untreated breast cancer were studied prospectively. 99 Tc m -MIBI scintigraphy and immunohistochemical analyses of P-gp and GST-π expression were used to evaluate the expected tumor tissues after surgical operations. Anterior planar images were acquired 10 and 180 min after intravenous injection of 740 MBq 99 Tc m -MIBI. The tumor-to-normal breast ratio (T/N) and washout index (WI) were calculated. Results: The early T/N ratios were significantly lower in 9 patients with negative P-gp expression when compared with that in 27 patients with positive P-gp expression (main scores were 8.33 vs 21.89 and Z=-3.32, P=0.002). The WI was significantly different between the two groups (t=3.59, P=0.001). On the other hand there was no significant relationship between negative and positive GST-π expression when calculated the early T/N ratio and WI. Significant relationship between GST-π and P-gp expression was found in these patients. Conclusions: The coexpression of P-gp and GST-π is one of the major characteristics of drug resistance in untreated breast cancer. Double-phase scintimammography and WI of 99 Tc m -MIBI can be used as a simple functional test for in vivo imaging of tumoral P-gp expression in patients with untreated breast cancer

  13. Role of household exposure, dietary habits and glutathione S-Transferases M1, T1 polymorphisms in susceptibility to lung cancer among women in Mizoram India.

    Science.gov (United States)

    Phukan, Rup Kumar; Saikia, Bhaskar Jyoti; Borah, Prasanta Kumar; Zomawia, Eric; Sekhon, Gaganpreet Singh; Mahanta, Jagadish

    2014-01-01

    A case-control study was conducted to evaluate the effect of household exposure, dietary habits, smoking and Glutathione S-Transferases M1, T1 polymorphisms on lung cancer among women in Mizoram, India. We selected 230 newly diagnosed primary lung cases and 460 controls from women in Mizoram. Multivariate logistic regression analysis was performed to estimate adjusted odds ratio (OR). Exposure of cooking oil fumes (pkitchen inside living room (p=0.001), improper ventilated house (p=0.003), roasting of soda in kitchen (p=0.001), current smokers of tobacco (p=0.043), intake of smoked fish (p=0.006), smoked meat (p=0.001), Soda (poil emission and wood smoke, intake of smoked meat, smoked fish and soda (an alkali preparation used as food additives in Mizoram) and tobacco consumption for increase risk of lung cancer among Women in Mizoram.

  14. Glutathione-binding site of a bombyx mori theta-class glutathione transferase.

    Directory of Open Access Journals (Sweden)

    M D Tofazzal Hossain

    Full Text Available The glutathione transferase (GST superfamily plays key roles in the detoxification of various xenobiotics. Here, we report the isolation and characterization of a silkworm protein belonging to a previously reported theta-class GST family. The enzyme (bmGSTT catalyzes the reaction of glutathione with 1-chloro-2,4-dinitrobenzene, 1,2-epoxy-3-(4-nitrophenoxy-propane, and 4-nitrophenethyl bromide. Mutagenesis of highly conserved residues in the catalytic site revealed that Glu66 and Ser67 are important for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTT and into the metabolism of exogenous chemical agents.

  15. Superoxide dismutase, catalase, glutathione peroxidase and gluthatione S-transferases M1 and T1 gene polymorphisms in three Brazilian population groups.

    Science.gov (United States)

    de Oliveira Hiragi, Cássia; Miranda-Vilela, Ana Luisa; Rocha, Dulce Maria Sucena; de Oliveira, Silviene Fabiana; Hatagima, Ana; de Nazaré Klautau-Guimarães, Maria

    2011-01-01

    Antioxidants such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX1) reduce the oxidation rates in the organism. Gluthatione S-transferases (GSTs) play a vital role in phase 2 of biotransformation of many substances. Variation in the expression of these enzymes suggests individual differences for the degree of antioxidant protection and geographical differences in the distribution of these variants. We described the distribution frequency of CAT (21A/T), SOD2 (Ala9Val), GPX1 (Pro198Leu), GSTM1 and GSTT1 polymorphisms in three Brazilian population groups: Kayabi Amerindians (n = 60), Kalunga Afro-descendants (n = 72), and an urban mixed population from Federal District (n = 162). Frequencies of the variants observed in Kalunga (18% to 58%) and Federal District (33% to 63%) were similar to those observed in Euro and Afro-descendants, while in Kayabi (3% to 68%), depending on the marker, frequencies were similar to the ones found in different ethnic groups. Except for SOD2 in all population groups studied here, and for GPX1 in Kalunga, the genotypic distributions were in accordance with Hardy-Weinberg Equilibrium. These data can clarify the contribution of different ethnicities in the formation of mixed populations, such as that of Brazil. Moreover, outcomes will be valuable resources for future functional studies and for genetic studies in specific populations. If these studies are designed to comprehensively explore the role of these genetic polymorphisms in the etiology of human diseases they may help to prevent inconsistent genotype-phenotype associations in pharmacogenetic studies.

  16. Glutathione S-transferase M1 and P1 polymorphisms and risk of breast cancer and fibrocystic breast conditions in Chinese women.

    Science.gov (United States)

    Sakoda, Lori C; Blackston, Christie R; Xue, Kan; Doherty, Jennifer A; Ray, Roberta M; Lin, Ming Gang; Stalsberg, Helge; Gao, Dao Li; Feng, Ziding; Thomas, David B; Chen, Chu

    2008-05-01

    Enzymes encoded by the glutathione S-tranferase mu 1 (GSTM1) and pi 1 (GSTP1) genes, which are expressed in breast tissue, catalyze the detoxification of endogenous and exogenous electrophiles. Reduced enzyme activity, due to carriage of the GSTM1 deletion or the GSTP1 Ile105Val Val allele, may therefore affect susceptibility to breast cancer and related conditions. In a case-control study of Chinese women, we examined whether these polymorphisms were associated with risk of breast cancer and fibrocystic breast conditions. Women diagnosed with breast cancer (n=615) or fibrocystic breast conditions (n=467) were compared to women without clinical breast disease (n=878). We also examined whether these associations differed by menopausal status or by presence of proliferation in the extra-tumoral epithelium among women with breast cancer and in lesions among women with fibrocystic conditions. No overall association of either GST polymorphism with risk of breast cancer or fibrocystic breast conditions was observed. There was some evidence of slightly elevated cancer risk associated with carriage of the GSTM1 null genotype and at least one GSTP1 105-Val allele (OR=1.33, 95% CI, 0.99-1.80), compared to carriage of the GSTM1 non-null and GSTP1 Ile/Ile genotypes. This relationship was stronger in women who had breast cancer with extra-tumoral tissue proliferation (OR=1.77, 95% CI, 1.03-3.04). Our results suggest that GSTM1 and GSTP1 genotypes do not individually influence susceptibility to breast cancer or fibrocystic breast conditions. The observed increased risk of breast cancer associated with joint carriage of the GSTM1 null genotype and GSTP1 105-Val allele needs confirmation in other studies.

  17. Functional analysis and localisation of a delta-class glutathione S-transferase from Sarcoptes scabiei.

    Science.gov (United States)

    Pettersson, Eva U; Ljunggren, Erland L; Morrison, David A; Mattsson, Jens G

    2005-01-01

    The mite Sarcoptes scabiei causes sarcoptic mange, or scabies, a disease that affects both animals and humans worldwide. Our interest in S. scabiei led us to further characterise a glutathione S-transferase. This multifunctional enzyme is a target for vaccine and drug development in several parasitic diseases. The S. scabiei glutathione S-transferase open reading frame reported here is 684 nucleotides long and yields a protein with a predicted molecular mass of 26 kDa. Through phylogenetic analysis the enzyme was classified as a delta-class glutathione S-transferase, and our paper is the first to report that delta-class glutathione S-transferases occur in organisms other than insects. The recombinant S. scabiei glutathione S-transferase was expressed in Escherichia coli via three different constructs and purified for biochemical analysis. The S. scabiei glutathione S-transferase was active towards the substrate 1-chloro-2,4-dinitrobenzene, though the positioning of fusion partners influenced the kinetic activity of the enzyme. Polyclonal antibodies raised against S. scabiei glutathione S-transferase specifically localised the enzyme to the integument of the epidermis and cavities surrounding internal organs in adult parasites. However, some minor staining of parasite intestines was observed. No staining was seen in host tissues, nor could we detect any antibody response against S. scabiei glutathione S-transferase in sera from naturally S. scabiei infected dogs or pigs. Additionally, the polyclonal sera raised against recombinant S. scabiei glutathione S-transferase readily detected a protein from mites, corresponding to the predicted size of native glutathione S-transferase.

  18. Dual-phase 99mTc-MIBI imaging and the expressions of P-gp, GST-π, and MRP1 in hyperparathyroidism.

    Science.gov (United States)

    Xue, Jianjun; Liu, Yan; Yang, Danrong; Yu, Yan; Geng, Qianqian; Ji, Ting; Yang, Lulu; Wang, Qi; Wang, Yuanbo; Lu, Xueni; Yang, Aimin

    2017-10-01

    The aim of this study was to further elucidate the mechanisms of dual-phase technetium-99m methoxyisobutylisonitrile (Tc-MIBI) parathyroid imaging by exploring the association between early uptake results (EUR), delayed uptake results (DUR), and the retention index (RI) in dual-phase Tc-MIBI parathyroid imaging and P glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), and glutathione S-transferase-π (GST-π) expression in hyperparathyroidism (HPT). Preoperative dual-phase (early and delayed) Tc-MIBI imaging was performed on 74 patients undergoing parathyroidectomy for HPT. EUR, DUR, and RI were calculated. P-gp, MRP1, and GST-π expressions were assessed using immunohistochemistry in resected tissue from HPT and control patients. The association between P-gp, MRP1, and GST-π expressions and EUR, DUR, and RI in HPT was evaluated. The positive rate of dual-phase T c-MIBI imaging was 91.89% (68/74) and the false-negative rate was 8.11% (6/74). P-gp and GST-π expressions were higher in tissues resected from control compared with HPT patients (47.37 and 81.5%, P<0.05); there was no difference in MRP1. EUR were associated with P-gp and GST-π expressions, and DUR were associated with MRP1 expression. There was a significant difference in MRP1 expression between RI greater than or equal to 0 and RI less than 0. There was no relationship between the sensitivity of dual-phase Tc-MIBI imaging and P-gp, MRP1, and GST-π expressions in resected parathyroid tissue. The six false-negative HPT cases consisted of three P-gp (-)/MRP1 (-) tissues, three P-gp (-)/GST-π (-) tissues, and four MRP1 (-)/GST-π (-) tissues. As P-gp and GST-π expressions were higher in tissues resected from control compared with HPT patients, Tc-MIBI may wash out faster from normal parathyroid tissue surrounding the lesion compared with the lesion itself, facilitating detection.

  19. Gene Dose Effects of GSTM1, GSTT1 and GSTP1 Polymorphisms on Outcome in Childhood Acute Lymphoblastic Leukemia

    DEFF Research Database (Denmark)

    Borst, Louise; Buchard, Anders; Rosthoj, Susanne

    2012-01-01

    Children with acute lymphoblastic leukemia (ALL) react very differently to chemotherapy. One explanation for this is inherited genetic variation. The glutathione S-transferase (GST) enzymes inactivate a number of chemotherapeutic drugs administered in childhood ALL therapy. Two multiplexing methods...

  20. Expression profiling of selected glutathione transferase genes in Zea mays (L.) seedlings infested with cereal aphids.

    Science.gov (United States)

    Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2•-) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2•- was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2•- generation in comparison with the Tasty Sweet genotype.

  1. Genetic polymorphisms of GSTO2, GSTM1, and GSTT1 and risk of gastric cancer.

    Science.gov (United States)

    Masoudi, Mohammad; Saadat, Iraj; Omidvari, Shahpour; Saadat, Mostafa

    2009-04-01

    The glutathione S-transferases (GSTs) are a superfamily of proteins that participates in detoxification. The GSTs were dividing into several classes including omega (GSTO), micro (GSTM) and theta (GSTT) classes. In human GSTO2, GSTM1, and GSTT1 are polymorphic. In order to study whether GSTO2, GSTM1, and GSTT1 polymorphisms are associated with increased gastric cancer risk in Iranian patients, the present case-control study was done. Genomic DNA was extracted from peripheral blood of 67 gastric cancer patients and 134 control subjects. The genotyping was performed using PCR-based method. The possible association of gastric cancer with the GSTO2 N142D polymorphism was estimated with assuming additive, dominant, and recessive effect of the variant 142D allele. To investigate whether profiles of GST genotypes are associated with the risk of gastric cancer, we used unconditional logistic regression analysis. The GSTO2 142D allele in additive, dominant and recessive models was not associated with the risk. Because GSTM1, GSTT1, and GSTO2 genes belong to low-penetrance genes which might be involved in the carcinogenesis, patients and controls without family of cancer in first-degree relatives were also analyzes separately. To investigate whether profiles of GST genotypes are associated with the risk of gastric cancer, we used unconditional logistic regression analysis with GSTM1, GSTT1, and GSTO2 genotypes as predictor factors. The GSTO2 DD genotype was associated with decreased risk as compared to GSTO2 NN genotype (OR = 0.21, 95% CI: 0.05-0.92, P = 0.038). Present findings show that GSTO2 DD genotype decreases the risk of gastric cancer in individuals without history of cancer in their first-degree relatives.

  2. Identification and expression profiles of nine glutathione S-transferase genes from the important rice phloem sap-sucker and virus vector Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae).

    Science.gov (United States)

    Zhou, Wen-Wu; Li, Xi-Wang; Quan, Yin-Hua; Cheng, Jiaan; Zhang, Chuan-Xi; Gurr, Geoff; Zhu, Zeng-Rong

    2012-09-01

    Glutathione S-transferases (GSTs) have received considerable attention in insects for their roles in insecticide resistance. Laodelphax striatellus (Fallén) is a serious rice pest. L. striatellus outbreaks occur frequently throughout eastern Asia. A key problem in controlling this pest is its rapid adaptation to numerous insecticides. In this research, nine cDNAs encoding GSTs in L. striatellus were cloned and characterised. The cloned GSTs of L. striatellus belonged to six cytosolic classes and a microsomal subgroup. Exposure to sublethal concentrations of each of the six insecticides, DDT, chlorpyrifos, fipronil, imidacloprid, buprofezin and beta-cypermethrin, quickly induced (6 h) up-expression of LsGSTe1. The expression of LsGSTs2 was increased by chlorpyrifos, fipronil and beta-cypermethrin. Furthermore, exposure of L. striatellus to fipronil, imidacloprid, buprofezin and beta-cypermethrin increased the expression of the LsGSTm gene after 24 or 48 h. This work is the first identification of GST genes from different GST groups in Auchenorrhyncha species and their induction characteristics with insecticide types and time. The elevated expression of GST genes induced by insecticides might be related to the enhanced tolerance of this insect to insecticides and xenobiotics. Copyright © 2012 Society of Chemical Industry.

  3. Inhibition of glutathione S-transferases (GSTs) activity from cowpea ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Inhibition effect of the plant extracts on the GST was studied by spectrophotometric method. The ... of assuring food security in developing countries like ..... studies on African cat fish (Clarias gariepinus) liver glutathione s-.

  4. Genetic polymorphisms in glutathione S-transferase (GST superfamily and risk of arsenic-induced urothelial carcinoma in residents of southwestern Taiwan

    Directory of Open Access Journals (Sweden)

    Hsueh Yu-Mei

    2011-07-01

    Full Text Available Abstract Background Arsenic exposure is an important public health issue worldwide. Dose-response relationship between arsenic exposure and risk of urothelial carcinoma (UC is consistently observed. Inorganic arsenic is methylated to form the metabolites monomethylarsonic acid and dimethylarsinic acid while ingested. Variations in capacity of xenobiotic detoxification and arsenic methylation might explain individual variation in susceptibility to arsenic-induced cancers. Methods To estimate individual susceptibility to arsenic-induced UC, 764 DNA specimens from our long-term follow-up cohort in Southwestern Taiwan were used and the genetic polymorphisms in GSTM1, GSTT1, GSTP1 and arsenic methylation enzymes including GSTO1 and GSTO2 were genotyped. Results The GSTT1 null was marginally associated with increased urothelial carcinoma (UC risk (HR, 1.91, 95% CI, 1.00-3.65, while the association was not observed for other GSTs. Among the subjects with cumulative arsenic exposure (CAE ≥ 20 mg/L*year, the GSTT1 null genotype conferred a significantly increased cancer risk (RR, 3.25, 95% CI, 1.20-8.80. The gene-environment interaction between the GSTT1 and high arsenic exposure with respect to cancer risk was statistically significant (multiplicative model, p = 0.0151 and etiologic fraction was as high as 0.86 (95% CI, 0.51-1.22. The genetic effects of GSTO1/GSTO2 were largely confined to high arsenic level (CAE ≥ 20. Diplotype analysis showed that among subjects exposed to high levels of arsenic, the AGG/AGG variant of GSTO1 Ala140Asp, GSTO2 5'UTR (-183A/G, and GSTO2 Asn142Asp was associated with an increased cancer risk (HRs, 4.91, 95% CI, 1.02-23.74 when compared to the all-wildtype reference, respectively. Conclusions The GSTs do not play a critical role in arsenic-induced urothelial carcinogenesis. The genetic effects of GSTT1 and GSTO1 on arsenic-induced urothelial carcinogenesis are largely confined to very high exposure level.

  5. Expression Profiling of Selected Glutathione Transferase Genes in Zea mays (L.) Seedlings Infested with Cereal Aphids

    Science.gov (United States)

    Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2 •−) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2 •− was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2 •− generation in comparison with the Tasty Sweet genotype. PMID:25365518

  6. A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco.

    Science.gov (United States)

    George, Suja; Venkataraman, Gayatri; Parida, Ajay

    2010-03-01

    Plant growth and productivity are adversely affected by various abiotic stress factors. In our previous study, we used Prosopis juliflora, a drought-tolerant tree species of Fabaceae, as a model plant system for mining genes functioning in abiotic stress tolerance. Large-scale random EST sequencing from a cDNA library obtained from drought-stressed leaves of 2-month-old P. juliflora plants resulted in identification of three different auxin-inducible glutathione S-transferases. In this paper, we report the cellular localization and the ability to confer drought tolerance in transgenic tobacco of one of these GSTs (PjGSTU1). PjGSTU1 was overexpressed in Escherichia coli and GST and GPX activities in total protein samples were assayed and compared with controls. The results indicated that PjGSTU1 protein forms a functional homo-dimer in recombinant bacteria with glutathione transferase as well as glutathione peroxidase activities. PjGSTU1 transgenic tobacco lines survived better under conditions of 15% PEG stress compared with control un-transformed plants. In vivo localization studies for PjGSTU1 using GFP fusion revealed protein localization in chloroplasts of transgenic plants. The peroxidase activity of PjGSTU1 and its localization in the chloroplast indicates a possible role for PjGSTU1 in ROS removal. Copyright 2009 Elsevier GmbH. All rights reserved.

  7. Proteomic Profiling of Cytosolic Glutathione Transferases from Three Bivalve Species: Corbicula fluminea, Mytilus galloprovincialis and Anodonta cygnea

    Directory of Open Access Journals (Sweden)

    José Carlos Martins

    2014-01-01

    Full Text Available Suspension-feeding bivalves are considered efficient toxin vectors with a relative insensitivity to toxicants compared to other aquatic organisms. This fact highlights the potential role of detoxification enzymes, such as glutathione transferases (GSTs, in this bivalve resistance. Nevertheless, the GST system has not been extensively described in these organisms. In the present study, cytosolic GSTs isoforms (cGST were surveyed in three bivalves with different habitats and life strategies: Corbicula fluminea, Anodonta cygnea and Mytilus galloprovincialis. GSTs were purified by glutathione-agarose affinity chromatography, and the collection of expressed cGST classes of each bivalve were identified using a proteomic approach. All the purified extracts were also characterized kinetically. Results reveal variations in cGST subunits collection (diversity and properties between the three tested bivalves. Using proteomics, four pi-class and two sigma-class GST subunits were identified in M. galloprovincialis. C. fluminea also yielded four pi-class and one sigma-class GST subunits. For A. cygnea, two mu-class and one pi-class GST subunits were identified, these being the first record of GSTs from these freshwater mussels. The affinity purified extracts also show differences regarding enzymatic behavior among species. The variations found in cGST collection and kinetics might justify diverse selective advantages for each bivalve organism.

  8. Nickel in Soil Modifies Sensitivity to Diazinon Measured by the Activity of Acetylcholinesterase, Catalase, and Glutathione S-Transferase in Earthworm Eisenia fetida

    Directory of Open Access Journals (Sweden)

    Agnieszka Zawisza-Raszka

    2013-01-01

    Full Text Available Nickel in typical soils is present in a very low concentration, but in the contaminated soils it occurs in locally elevated concentrations. The aim of this study was to examine the effect of nickel in the concentrations of 300 (very high, close to LOEC for reproduction and 900 (extremely high, close to LOEC for mortality mg/kg dry soil on the life history and acetylcholinesterase, catalase, and glutathione S-transferase activities in earthworm Eisenia fetida and to establish how nickel modifies the sensitivity to organophosphorous pesticide—diazinon. Cocoons production and juveniles’ number were significantly lower only in groups exposed to Ni in the concentration of 900 mg/kg dry soil for two months. Diazinon administration diminished the AChE activity in the GI tract and in the body wall. The interaction between diazinon and nickel was observed, and, in consequence, the AChE activity after the pesticide treatment was similar to controls in worms preexposed to nickel. Both pesticide administration and exposure to nickel caused an increase in the GST activity in examined organs and CAT activity in body wall. Both biometric and development data and simple enzymatic analysis, especially the AChE and GST, show a Ni pretreatment effect on the subsequent susceptibility to pesticide.

  9. Molecular cloning, biochemical characterization, and expression analysis of two glutathione S-transferase paralogs from the big-belly seahorse (Hippocampus abdominalis).

    Science.gov (United States)

    Tharuka, M D Neranjan; Bathige, S D N K; Lee, Jehee

    2017-12-01

    Glutathione S-transferases (GSTs, EC 2.5.1.18) are important Phase II detoxifying enzymes that catalyze hydrophobic, electrophilic xenobiotic substance with the conjugation of reduced glutathione (GSH). In this study, GSTμ and GSTρ paralogs of GST in the big belly seahorse (Hippocampus abdominalis; HaGSTρ, HaGSTμ) were biochemically, molecularly, functionally characterized to determine their detoxification range and protective capacities upon different pathogenic stresses. HaGSTρ and HaGSTμ are composed of coding sequences of 681bp and 654bp, which encode proteins 225 and 217 amino acids, with predicted molecular masses of 26.06kDa and 25.74kDa respectively. Sequence analysis revealed that both HaGSTs comprise the characteristic GSH-binding site in the thioredoxin-like N-terminal domain and substrate binding site in the C-terminal domain. The recombinant HaGSTρ and HaGSTμ proteins catalyzed the model GST substrate 1-chloro-2, 4-dinitrobenzene (CDNB). Enzyme kinetic analysis revealed different K m and V max values for each rHaGST, suggesting that they have different conjugation rates. The optimum conditions (pH, temperature) and inhibitory assays of each protein demonstrated different optimal ranges. However, HaGSTμ was highly expressed in the ovary and gill, whereas HaGSTρ was highly expressed in the gill and pouch. mRNA expression of HaGSTρ and HaGSTμ was significantly elevated upon lipopolysaccharide, Poly (I:C), and Edwardsiella tarda challenges in liver and in blood cells as well as with Streptococcus iniae challenge in blood cells. From these collective experimental results, we propose that HaGSTρ and HaGSTμ are effective in detoxifying xenobiotic toxic agents, and importantly, their mRNA expression could be stimulated by immunological stress signals in the aquatic environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Recognition and Detoxification of the Insecticide DDT by Drosophila melanogaster Glutathione S-Transferase D1

    Energy Technology Data Exchange (ETDEWEB)

    Low, Wai Yee; Feil, Susanne C.; Ng, Hooi Ling; Gorman, Michael A.; Morton, Craig J.; Pyke, James; McConville, Malcolm J.; Bieri, Michael; Mok, Yee-Foong; Robin, Charles; Gooley, Paul R.; Parker, Michael W.; Batterham, Philip (SVIMR-A); (Melbourne)

    2010-06-14

    GSTD1 is one of several insect glutathione S-transferases capable of metabolizing the insecticide DDT. Here we use crystallography and NMR to elucidate the binding of DDT and glutathione to GSTD1. The crystal structure of Drosophila melanogaster GSTD1 has been determined to 1.1 {angstrom} resolution, which reveals that the enzyme adopts the canonical GST fold but with a partially occluded active site caused by the packing of a C-terminal helix against one wall of the binding site for substrates. This helix would need to unwind or be displaced to enable catalysis. When the C-terminal helix is removed from the model of the crystal structure, DDT can be computationally docked into the active site in an orientation favoring catalysis. Two-dimensional {sup 1}H,{sup 15}N heteronuclear single-quantum coherence NMR experiments of GSTD1 indicate that conformational changes occur upon glutathione and DDT binding and the residues that broaden upon DDT binding support the predicted binding site. We also show that the ancestral GSTD1 is likely to have possessed DDT dehydrochlorinase activity because both GSTD1 from D. melanogaster and its sibling species, Drosophila simulans, have this activity.

  11. Disruption of Smad-dependent signaling for growth of GST-P-positive lesions from the early stage in a rat two-stage hepatocarcinogenesis model

    International Nuclear Information System (INIS)

    Ichimura, Ryohei; Mizukami, Sayaka; Takahashi, Miwa; Taniai, Eriko; Kemmochi, Sayaka; Mitsumori, Kunitoshi; Shibutani, Makoto

    2010-01-01

    To clarify the involvement of signaling of transforming growth factor (TGF)-β during the hepatocarcinogenesis, the immunohistochemical distribution of related molecules was analyzed in relation with liver cell lesions expressing glutathione S-transferase placental form (GST-P) during liver tumor promotion by fenbendazole, phenobarbital, piperonyl butoxide, or thioacetamide, using rats. Our study focused on early-stage promotion (6 weeks after starting promotion) and late-stage promotion (57 weeks after starting promotion). With regard to Smad-dependent signaling, cytoplasmic accumulation of phosphorylated Smad (phospho-Smad)-2/3 - identified as Smad3 by later immunoblot analysis - increased in the subpopulation of GST-P + foci, while Smad4, a nuclear transporter of Smad2/3, decreased during early-stage promotion. By late-stage promotion, GST-P + lesions lacking phospho-Smad2/3 had increased in accordance with lesion development from foci to carcinomas, while Smad4 largely disappeared in most proliferative lesions. With regard to Smad-independent mitogen-activated protein kinases, GST-P + foci that co-expressed phospho-p38 mitogen-activated protein kinase increased during early-stage promotion; however, p38-downstream phospho-activating transcriptional factor (ATF)-2, ATF3, and phospho-c-Myc, were inversely downregulated without relation to promotion. By late-stage promotion, proliferative lesions downregulated phospho-ATF2 and phospho-c-Myc along with lesion development, as with downregulation of phospho-p38 in all lesions. These results suggest that from the early stages, carcinogenic processes were facilitated by disruption of tumor suppressor functions of Smad-dependent signaling, while Smad-independent activation of p38 was an early-stage phenomenon. GST-P - foci induced by promotion with agonists of peroxisome proliferator-activated receptor-α did not change Smad expression, suggesting an aberration in the Smad-dependent signaling prerequisites for induction

  12. Expression of P-gp, MRP, LRP, GST-π and TopoIIα and intrinsic resistance in human lung cancer cell lines.

    Science.gov (United States)

    Wang, Jiarui; Zhang, Jinhui; Zhang, Lichuan; Zhao, Long; Fan, Sufang; Yang, Zhonghai; Gao, Fei; Kong, Ying; Xiao, Gary Guishan; Wang, Qi

    2011-11-01

    This study aimed to determine the relationship between the endogenous levels of P-glycoprotein (P-gp), multidrug resistance-associated protein (MRP), lung resistance-related protein (LRP), glutathione-s-transferase-π (GST‑π) and topoisomerase IIα (TopoIIα) and intrinsic drug resistance in four human lung cancer cell lines, SK-MES-1, SPCA-1, NCI-H-460 and NCI-H-446, of different histological types. The expression of P-gp, MRP, LRP, GST-π and TopoIIα was measured by immunofluorescence, Western blotting and RT-PCR. Drug resistance to cisplatin, doxorubicin and VP-16 was determined using MTT assays. The correlation between expression of the resistance-related proteins and their roles in the resistance to drugs in these cancer cell lines was analyzed. We found that the endogenous levels of P-gp, MRP, LRP, GST-π and TopoIIα in the four cell lines varied. The level of GST-π in the SK-MES-1 cells was the highest, whereas the level of P-gp in the SPCA-1 cells was the lowest. The chemoresistance to cisplatin, doxorubicin and VP-16 in the four cell lines was different. The SPCA-1 cell line was most resistance to cisplatin; SK-MES-1 was most resistance to VP-16; whereas SK-MES-1 was most sensitive to doxorubicin. There was a positive correlation between GST-π expression and resistance to cisplatin, between TopoIIα expression and resistance to VP-16; and a negative correlation was noted between TopoIIα expression and resistance to doxorubicin. In summary, the endogenous expression of P-gp, MRP, LRP, GST-π and TopoIIα was different in the four human lung cancer cell lines of different histological types, and this variance may be associated with the variation in chemosensitivity to cisplatin, doxorubicin and VP-16. Among the related proteins, GST-π may be useful for the prediction of the intrinsic resistance to cisplatin, whereas TopoIIα may be useful to predict resistance to doxorubicin and VP-16 in human lung cancer cell lines.

  13. Differential activation of diverse glutathione transferases of Clonorchis sinensis in response to the host bile and oxidative stressors.

    Directory of Open Access Journals (Sweden)

    Young-An Bae

    intravascular trematodes. Interestingly, secretion of a 28 kDa σ-class GST (Cs28σGST3 was significantly affected by the host bile, involving reduced secretion of the 28 kDa species and augmented secretion of Cs28σGST3-related high-molecular-weight 85 kDa protein. Oxidative stressors induced upregulated secretion of 28 kDa Cs28σGST3, but not an 85 kDa species. A secretory 26 kDa μ-class GST (Cs26μGST2 was increased upon treatment with oxidative stressors and bile juice, while another 28 kDa σ-class GST (Cs28σGST1 showed negligible responses. CONCLUSIONS/SIGNIFICANCE: Our results represent the first analysis of the genuine nature of the C. sinensis ESP proteome in the presence of host bile mimicking the natural host environments. The behavioral patterns of migration and maturation of C. sinensis in the bile ducts might contribute to the secretion of copious amounts of diverse GSTs, but a smaller quantity and fewer kinds of cysteine proteases. The Cs28σGST1 and its paralog(s detoxify endogenous oxidative molecules, while Cs28σGST3 and Cs26μGST2 conjugate xenobiotics/hydrophobic substances in the extracellular environments, which imply that diverse C. sinensis GSTs might have evolved for each of the multiple specialized functions.

  14. Differential Activation of Diverse Glutathione Transferases of Clonorchis sinensis in Response to the Host Bile and Oxidative Stressors

    Science.gov (United States)

    Bae, Young-An; Ahn, Do-Whan; Lee, Eung-Goo; Kim, Seon-Hee; Cai, Guo-Bin; Kang, Insug; Sohn, Woon-Mok; Kong, Yoon

    2013-01-01

    trematodes. Interestingly, secretion of a 28 kDa σ-class GST (Cs28σGST3) was significantly affected by the host bile, involving reduced secretion of the 28 kDa species and augmented secretion of Cs28σGST3-related high-molecular-weight 85 kDa protein. Oxidative stressors induced upregulated secretion of 28 kDa Cs28σGST3, but not an 85 kDa species. A secretory 26 kDa μ-class GST (Cs26μGST2) was increased upon treatment with oxidative stressors and bile juice, while another 28 kDa σ-class GST (Cs28σGST1) showed negligible responses. Conclusions/Significance Our results represent the first analysis of the genuine nature of the C. sinensis ESP proteome in the presence of host bile mimicking the natural host environments. The behavioral patterns of migration and maturation of C. sinensis in the bile ducts might contribute to the secretion of copious amounts of diverse GSTs, but a smaller quantity and fewer kinds of cysteine proteases. The Cs28σGST1 and its paralog(s) detoxify endogenous oxidative molecules, while Cs28σGST3 and Cs26μGST2 conjugate xenobiotics/hydrophobic substances in the extracellular environments, which imply that diverse C. sinensis GSTs might have evolved for each of the multiple specialized functions. PMID:23696907

  15. A glutathione S-transferase gene associated with antioxidant properties isolated from Apis cerana cerana

    Science.gov (United States)

    Liu, Shuchang; Liu, Feng; Jia, Haihong; Yan, Yan; Wang, Hongfang; Guo, Xingqi; Xu, Baohua

    2016-06-01

    Glutathione S-transferases (GSTs) are an important family of multifunctional enzymes in aerobic organisms. They play a crucial role in the detoxification of exogenous compounds, especially insecticides, and protection against oxidative stress. Most previous studies of GSTs in insects have largely focused on their role in insecticide resistance. Here, we isolated a theta class GST gene designated AccGSTT1 from Apis cerana cerana and aimed to explore its antioxidant and antibacterial attributes. Analyses of homology and phylogenetic relationships suggested that the predicted amino acid sequence of AccGSTT1 shares a high level of identity with the other hymenopteran GSTs and that it was conserved during evolution. Quantitative real-time PCR showed that AccGSTT1 is most highly expressed in adult stages and that the expression profile of this gene is significantly altered in response to various abiotic stresses. These results were confirmed using western blot analysis. Additionally, a disc diffusion assay showed that a recombinant AccGSTT1 protein may be roughly capable of inhibiting bacterial growth and that it reduces the resistance of Escherichia coli cells to multiple adverse stresses. Taken together, these data indicate that AccGSTT1 may play an important role in antioxidant processes under adverse stress conditions.

  16. The effect of glutathione S-transferase gene polymorphisms on susceptibility to uterine myoma

    Directory of Open Access Journals (Sweden)

    Salva Sadat Mostafavi Dehraisi

    2015-01-01

    Conclusion: The findings suggest that the GSTM1 and GSTT1 genetic polymorphisms are associated with the development of endometriosis in Iranian women which is in agreement with previous results obtained in other populations. However, the ethnic variations of polymorphisms should be evaluated in detail and differences should be incorporated into investigations of susceptibility variants for this disease.

  17. Association of Environmental Arsenic Exposure, Genetic Polymorphisms of Susceptible Genes, and Skin Cancers in Taiwan

    Directory of Open Access Journals (Sweden)

    Ling-I Hsu

    2015-01-01

    Full Text Available Deficiency in the capability of xenobiotic detoxification and arsenic methylation may be correlated with individual susceptibility to arsenic-related skin cancers. We hypothesized that glutathione S-transferase (GST M1, T1, and P1, reactive oxygen species (ROS related metabolic genes (NQO1, EPHX1, and HO-1, and DNA repair genes (XRCC1, XPD, hOGG1, and ATM together may play a role in arsenic-induced skin carcinogenesis. We conducted a case-control study consisting of 70 pathologically confirmed skin cancer patients and 210 age and gender matched participants with genotyping of 12 selected polymorphisms. The skin cancer risks were estimated by odds ratio (OR and 95% confidence interval (CI using logistic regression. EPHX1 Tyr113His, XPD C156A, and GSTT1 null genotypes were associated with skin cancer risk (OR = 2.99, 95% CI = 1.01–8.83; OR = 2.04, 95% CI = 0.99–4.27; OR = 1.74, 95% CI = 1.00–3.02, resp.. However, none of these polymorphisms showed significant association after considering arsenic exposure status. Individuals carrying three risk polymorphisms of EPHX1 Tyr113His, XPD C156A, and GSTs presented a 400% increased skin cancer risk when compared to those with less than or equal to one polymorphism. In conclusion, GSTs, EPHX1, and XPD are potential genetic factors for arsenic-induced skin cancers. The roles of these genes for arsenic-induced skin carcinogenesis need to be further evaluated.

  18. Catalysis of Silver catfish Major Hepatic Glutathione Transferase proceeds via rapid equilibrium sequential random Mechanism

    Directory of Open Access Journals (Sweden)

    Ayodele O. Kolawole

    Full Text Available Fish hepatic glutathione transferases are connected with the elimination of intracellular pollutants and detoxification of organic micro-pollutants in their aquatic ecosystem. The two-substrate steady state kinetic mechanism of Silver catfish (Synodontis eupterus major hepatic glutathione transferases purified to apparent homogeneity was explored. The enzyme was dimeric enzyme with a monomeric size of 25.6 kDa. Initial-velocity studies and Product inhibition patterns by methyl glutathione and chloride with respect to GSH-CDNB; GSH-ρ-nitrophenylacetate; and GSH-Ethacrynic acid all conforms to a rapid equilibrium sequential random Bi Bi kinetic mechanism rather than steady state sequential random Bi Bi kinetic. α was 2.96 ± 0.35 for the model. The pH profile of Vmax/KM (with saturating 1-chloro-2,4-dinitrobenzene and variable GSH concentrations showed apparent pKa value of 6.88 and 9.86. Inhibition studies as a function of inhibitor concentration show that the enzyme is a homodimer and near neutral GST. The enzyme poorly conjugates 4-hydroxylnonenal and cumene hydroperoxide and may not be involved in oxidative stress protection. The seGST is unique and overwhelmingly shows characteristics similar to those of homodimeric class Pi GSTs, as was indicated by its kinetic mechanism, substrate specificity and inhibition studies. The rate- limiting step, probably the product release, of the reaction is viscosity-dependent and is consequential if macro-viscosogen or micro-viscosogen. Keywords: Silver catfish, Glutathione transferase, Steady-state, Kinetic mechanism, Inhibition

  19. Active biomonitoring of a subtropical river using glutathione-S ...

    African Journals Online (AJOL)

    Active biomonitoring of a subtropical river using glutathione-S-transferase (GST) and heat shock proteins (HSP 70) in. Oreochromis niloticusas surrogate biomarkers of metal contamination. Victor Kurauone Muposhi1, Beaven Utete1*, Idah Sithole-Niang2 and Stanley Mukangenyama2. 1Wildlife Ecology and Conservation, ...

  20. Erythrocyte Glutathione S-transferase Activity of Non-Malarious Male ...

    African Journals Online (AJOL)

    Hilaire

    Cameroon Journal of Experimental Biology 2009 Vol. 05 N° 02, 112-116. ... GST activity from the inhibitory action of the drugs. The results of these findings suggested the capability of these drugs to bind to the human erythrocyte GST, accompanied with ... of the five antimalarial drugs constituted the control sample analysis.

  1. Glutathione transferase-mediated benzimidazole-resistance in Fusarium graminearum.

    Science.gov (United States)

    Sevastos, A; Labrou, N E; Flouri, F; Malandrakis, A

    2017-09-01

    Fusarium graminearum laboratory mutants moderately (MR) and highly (HR) benzimidazole-resistant, carrying or not target-site mutations at the β 2 -tubulin gene were utilized in an attempt to elucidate the biochemical mechanism(s) underlying the unique BZM-resistance paradigm of this fungal plant pathogen. Relative expression analysis in the presence or absence of carbendazim (methyl-2-benzimidazole carbamate) using a quantitative Real Time qPCR (RT-qPCR) revealed differences between resistant and the wild-type parental strain although no differences in expression levels of either β 1 - or β 2 -tubulin homologue genes were able to fully account for two of the highly resistant phenotypes. Glutathione transferase (GST)-mediated detoxification was shown to be -at least partly- responsible for the elevated resistance levels of a HR isolate bearing the β 2 -tubulin Phe200Tyr resistance mutation compared with another MR isolate carrying the same mutation. This benzimidazole-resistance mechanism is reported for the first time in F. graminearum. No indications of detoxification involved in benzimidazole resistance were found for the rest of the isolates as revealed by GST and glutathione peroxidase (GPx) activities and bioassays using monoxygenase and hydrolase detoxification enzyme inhibiting synergists. Interestingly, besides the Phe200Tyr mutation-carrying HR isolate, the remaining highly-carbendazim resistant phenotypes could not be associated with any of the target site modification/overproduction, detoxification or reduced uptake-increased efflux mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Glutathione S-transferase P protects against cyclophosphamide-induced cardiotoxicity in mice

    Energy Technology Data Exchange (ETDEWEB)

    Conklin, Daniel J., E-mail: dj.conklin@louisville.edu [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292 (United States); Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292 (United States); Haberzettl, Petra; Jagatheesan, Ganapathy; Baba, Shahid [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292 (United States); Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292 (United States); Merchant, Michael L. [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292 (United States); Division of Nephrology, Department of Medicine, University of Louisville, Louisville, KY 40292 (United States); Prough, Russell A. [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292 (United States); Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40292 (United States); Williams, Jessica D. [University of Cincinnati College of Medicine, Internal Medicine, Cincinnati, OH 45267 (United States); Prabhu, Sumanth D. [Division of Cardiovascular Disease, University of Alabama-Birmingham, Birmingham, AL 35294 (United States); Bhatnagar, Aruni [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292 (United States); Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292 (United States); Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40292 (United States)

    2015-06-01

    High-dose chemotherapy regimens using cyclophosphamide (CY) are frequently associated with cardiotoxicity that could lead to myocyte damage and congestive heart failure. However, the mechanisms regulating the cardiotoxic effects of CY remain unclear. Because CY is converted to an unsaturated aldehyde acrolein, a toxic, reactive CY metabolite that induces extensive protein modification and myocardial injury, we examined the role of glutathione S-transferase P (GSTP), an acrolein-metabolizing enzyme, in CY cardiotoxicity in wild-type (WT) and GSTP-null mice. Treatment with CY (100–300 mg/kg) increased plasma levels of creatine kinase-MB isoform (CK·MB) and heart-to-body weight ratio to a significantly greater extent in GSTP-null than WT mice. In addition to modest yet significant echocardiographic changes following acute CY-treatment, GSTP insufficiency was associated with greater phosphorylation of c-Jun and p38 as well as greater accumulation of albumin and protein–acrolein adducts in the heart. Mass spectrometric analysis revealed likely prominent modification of albumin, kallikrein-1-related peptidase, myoglobin and transgelin-2 by acrolein in the hearts of CY-treated mice. Treatment with acrolein (low dose, 1–5 mg/kg) also led to increased heart-to-body weight ratio and myocardial contractility changes. Acrolein induced similar hypotension in GSTP-null and WT mice. GSTP-null mice also were more susceptible than WT mice to mortality associated with high-dose acrolein (10–20 mg/kg). Collectively, these results suggest that CY cardiotoxicity is regulated, in part, by GSTP, which prevents CY toxicity by detoxifying acrolein. Thus, humans with low cardiac GSTP levels or polymorphic forms of GSTP with low acrolein-metabolizing capacity may be more sensitive to CY toxicity. - Graphical abstract: Cyclophosphamide (CY) treatment results in P450-mediated metabolic formation of phosphoramide mustard and acrolein (3-propenal). Acrolein is either metabolized and

  3. Glutathione S-transferase P protects against cyclophosphamide-induced cardiotoxicity in mice

    International Nuclear Information System (INIS)

    Conklin, Daniel J.; Haberzettl, Petra; Jagatheesan, Ganapathy; Baba, Shahid; Merchant, Michael L.; Prough, Russell A.; Williams, Jessica D.; Prabhu, Sumanth D.; Bhatnagar, Aruni

    2015-01-01

    High-dose chemotherapy regimens using cyclophosphamide (CY) are frequently associated with cardiotoxicity that could lead to myocyte damage and congestive heart failure. However, the mechanisms regulating the cardiotoxic effects of CY remain unclear. Because CY is converted to an unsaturated aldehyde acrolein, a toxic, reactive CY metabolite that induces extensive protein modification and myocardial injury, we examined the role of glutathione S-transferase P (GSTP), an acrolein-metabolizing enzyme, in CY cardiotoxicity in wild-type (WT) and GSTP-null mice. Treatment with CY (100–300 mg/kg) increased plasma levels of creatine kinase-MB isoform (CK·MB) and heart-to-body weight ratio to a significantly greater extent in GSTP-null than WT mice. In addition to modest yet significant echocardiographic changes following acute CY-treatment, GSTP insufficiency was associated with greater phosphorylation of c-Jun and p38 as well as greater accumulation of albumin and protein–acrolein adducts in the heart. Mass spectrometric analysis revealed likely prominent modification of albumin, kallikrein-1-related peptidase, myoglobin and transgelin-2 by acrolein in the hearts of CY-treated mice. Treatment with acrolein (low dose, 1–5 mg/kg) also led to increased heart-to-body weight ratio and myocardial contractility changes. Acrolein induced similar hypotension in GSTP-null and WT mice. GSTP-null mice also were more susceptible than WT mice to mortality associated with high-dose acrolein (10–20 mg/kg). Collectively, these results suggest that CY cardiotoxicity is regulated, in part, by GSTP, which prevents CY toxicity by detoxifying acrolein. Thus, humans with low cardiac GSTP levels or polymorphic forms of GSTP with low acrolein-metabolizing capacity may be more sensitive to CY toxicity. - Graphical abstract: Cyclophosphamide (CY) treatment results in P450-mediated metabolic formation of phosphoramide mustard and acrolein (3-propenal). Acrolein is either metabolized and

  4. Regulation of epigenetic traits of the glutathione S-transferase P1 gene:From detoxification towards cancer prevention and diagnosis

    Directory of Open Access Journals (Sweden)

    Marc eDiederich

    2014-07-01

    Full Text Available Glutathione S-transferases (GSTs are phase II drug detoxifying enzymes that play an essential role in maintenance of cell integrity and protection against DNA damage by catalyzing the conjugation of glutathione to a wide variety of exo- and endogenous electrophilic substrates. GSTP1, the gene encoding the pi­class GST is frequently inactivated by acquired somatic CpG island promoter hypermethylation in multiple cancer subtypes including prostate, breast, liver and blood cancers. Epigenetically mediated GSTP1 silencing is associated with enhanced cancer susceptibility by decreasing its caretaker gene function, which tends to promote neoplastic transformation allowing the cell to acquire additional alterations. Thus, this epigenetic alteration is now considered as a cancer biomarker but could as well play a driving role in multistep cancer development especially well documented in prostate cancer development.The present review discusses application of epigenetic alterations affecting GSTP1 in cancer medicine used alone or in combination with other biomarkers for cancer detection and diagnosis as well as for future targeted preventive and therapeutic interventions including by dietary agents.

  5. Placental biomarkers of PAH exposure and glutathione-S-transferase biotransformation enzymes in an obstetric population from Tijuana, Baja California, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Dodd-Butera, Teresa, E-mail: tdbutera@csusb.edu [California State University San Bernardino, Department of Nursing, 5500 University Parkway, San Bernardino, CA 92407 (United States); San Diego State University, Graduate School of Public Health, San Diego, CA (United States); Union Institute & University, Cincinnati, OH (United States); Quintana, Penelope J.E., E-mail: jquintan@mail.sdsu.edu [San Diego State University, Graduate School of Public Health, San Diego, CA (United States); Ramirez-Zetina, Martha, E-mail: martharz8@hotmail.com [Instituto Mexicano del Seguro Social Tijuana, BC (Mexico); Batista-Castro, Ana C., E-mail: anabatista101@hotmail.com [Instituto Mexicano del Seguro Social Tijuana, BC (Mexico); Hospital General de Tijuana, Tijuana (Mexico); Sierra, Maria M., E-mail: sierramer@gmail.com [San Diego State University, Graduate School of Public Health, San Diego, CA (United States); Shaputnic, Carolyn, E-mail: cshaputnic@ucsd.edu [San Diego State University, Graduate School of Public Health, San Diego, CA (United States); University of California, San Diego, Western FASD Practice and Implementation Center, Department of Pediatrics, Division of Dysmorphology-Teratology, San Diego, CA (United States); Garcia-Castillo, Maura, E-mail: mauragarcia@gmail.com [Xochicalco Universidad Escuela de Medicina, BC (Mexico); Institute for Public Health, San Diego State University, San Diego, CA (United States); Ingmanson, Sonja, E-mail: sonejah@yahoo.com [San Diego State University, Graduate School of Public Health, San Diego, CA (United States); Hull, Stacy, E-mail: hulst74@hotmail.com [San Diego State University, Graduate School of Public Health, San Diego, CA (United States)

    2017-01-15

    Environmental exposures along the US-Mexico border have the potential to adversely affect the maternal-fetal environment. The purpose of this study was to assess placental biomarkers of environmental exposures in an obstetric population at the California-Baja California border in relation to detoxifying enzymes in the placenta and nutritional status. This study was conducted on consenting, full-term, obstetric patients (n=54), delivering in a hospital in Tijuana, Baja California (BC), Mexico. Placental polyaromatic hydrocarbon (PAH)-DNA adducts were measured in addition to placental glutathione-S-transferase (GST) activity and genotype, maternal serum folate, and maternal and umbilical cord blood lead and cadmium levels. A questionnaire was administered to the mothers to determine maternal occupation in a maquiladora, other exposures, and obstetric indicators. In univariate analysis, maternal serum folate levels were inversely correlated with total PAH-DNA adducts (rho=−0.375, p=0.007); adduct #1 (rho=−0.388, p=0.005); and adduct #3 (rho =−0.430, p=0.002). Maternal lead levels were significantly positively correlated with cord blood lead levels (rho=0.512, p<0.001). Cadmium levels were generally very low but significantly higher in mothers exposed to environmental tobacco smoke (ETS) (either at work or at home, n=10). In multivariate analysis, only maternal serum folate levels remained as a significant negative predictor of total DNA-PAH adducts levels in placenta. These findings affirm that placental tissue is a valuable and readily available source of human tissue for biomonitoring; and indicate that further study of the role of nutrition in detoxification and mitigation of environmental exposures in pregnant women is warranted. - Highlights: • Maternal-fetal environment susceptible to toxic exposures at US-Mexico border. • Lower serum folate was correlated with higher PAH-DNA adduct levels at birth. • Placental DNA adducts in GST mu (-) cord blood

  6. Placental biomarkers of PAH exposure and glutathione-S-transferase biotransformation enzymes in an obstetric population from Tijuana, Baja California, Mexico

    International Nuclear Information System (INIS)

    Dodd-Butera, Teresa; Quintana, Penelope J.E.; Ramirez-Zetina, Martha; Batista-Castro, Ana C.; Sierra, Maria M.; Shaputnic, Carolyn; Garcia-Castillo, Maura; Ingmanson, Sonja; Hull, Stacy

    2017-01-01

    Environmental exposures along the US-Mexico border have the potential to adversely affect the maternal-fetal environment. The purpose of this study was to assess placental biomarkers of environmental exposures in an obstetric population at the California-Baja California border in relation to detoxifying enzymes in the placenta and nutritional status. This study was conducted on consenting, full-term, obstetric patients (n=54), delivering in a hospital in Tijuana, Baja California (BC), Mexico. Placental polyaromatic hydrocarbon (PAH)-DNA adducts were measured in addition to placental glutathione-S-transferase (GST) activity and genotype, maternal serum folate, and maternal and umbilical cord blood lead and cadmium levels. A questionnaire was administered to the mothers to determine maternal occupation in a maquiladora, other exposures, and obstetric indicators. In univariate analysis, maternal serum folate levels were inversely correlated with total PAH-DNA adducts (rho=−0.375, p=0.007); adduct #1 (rho=−0.388, p=0.005); and adduct #3 (rho =−0.430, p=0.002). Maternal lead levels were significantly positively correlated with cord blood lead levels (rho=0.512, p<0.001). Cadmium levels were generally very low but significantly higher in mothers exposed to environmental tobacco smoke (ETS) (either at work or at home, n=10). In multivariate analysis, only maternal serum folate levels remained as a significant negative predictor of total DNA-PAH adducts levels in placenta. These findings affirm that placental tissue is a valuable and readily available source of human tissue for biomonitoring; and indicate that further study of the role of nutrition in detoxification and mitigation of environmental exposures in pregnant women is warranted. - Highlights: • Maternal-fetal environment susceptible to toxic exposures at US-Mexico border. • Lower serum folate was correlated with higher PAH-DNA adduct levels at birth. • Placental DNA adducts in GST mu (-) cord blood

  7. Functional Characterization of the Tau Class Glutathione-S-Transferases Gene (SbGSTU) Promoter of Salicornia brachiata under Salinity and Osmotic Stress.

    Science.gov (United States)

    Tiwari, Vivekanand; Patel, Manish Kumar; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Reactive oxygen or nitrogen species are generated in the plant cell during the extreme stress condition, which produces toxic compounds after reacting with the organic molecules. The glutathione-S-transferase (GST) enzymes play a significant role to detoxify these toxins and help in excretion or sequestration of them. In the present study, we have cloned 1023 bp long promoter region of tau class GST from an extreme halophyte Salicornia brachiata and functionally characterized using the transgenic approach in tobacco. Computational analysis revealed the presence of abiotic stress responsive cis-elements like ABRE, MYB, MYC, GATA, GT1 etc., phytohormones, pathogen and wound responsive motifs. Three 5'-deletion constructs of 730 (GP2), 509 (GP3) and 348 bp (GP4) were made from 1023 (GP1) promoter fragment and used for tobacco transformation. The single event transgenic plants showed notable GUS reporter protein expression in the leaf tissues of control as well as treated plants. The expression level of the GUS gradually decreases from GP1 to GP4 in leaf tissues, whereas the highest level of expression was detected with the GP2 construct in root and stem under control condition. The GUS expression was found higher in leaves and stems of salinity or osmotic stress treated transgenic plants than that of the control plants, but, lower in roots. An efficient expression level of GUS in transgenic plants suggests that this promoter can be used for both constitutive as well as stress inducible expression of gene(s). And this property, make it as a potential candidate to be used as an alternative promoter for crop genetic engineering.

  8. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism.

    Science.gov (United States)

    Tan, Ming-pu

    2010-01-01

    Water stress is known to alter cytosine methylation, which generally represses transcription. However, little is known about the role of methylation alteration in maize under osmotic stress. Here, methylation-sensitive amplified polymorphism (MSAP) was used to screen PEG- or NaCl-induced methylation alteration in maize seedlings. The sequences of 25 differentially amplified fragments relevant to stress were successfully obtained. Two stress-specific fragments from leaves, LP166 and LPS911, shown to be homologous to retrotransposon Gag-Pol protein genes, suggested that osmotic stress-induced methylation of retrotransposons. Three MSAP fragments, representing drought-induced or salt-induced methylation in leaves, were homologous to a maize aluminum-induced transporter. Besides these, heat shock protein HSP82, Poly [ADP-ribose] polymerase 2, Lipoxygenase, casein kinase (CK2), and dehydration-responsive element-binding (DREB) factor were also homologs of MSAP sequences from salt-treated roots. One MSAP fragment amplified from salt-treated roots, designated RS39, was homologous to the first intron of maize protein phosphatase 2C (zmPP2C), whereas - LS103, absent from salt-treated leaves, was homologous to maize glutathione S-transferases (zmGST). Expression analysis showed that salt-induced intron methylation of root zmPP2C significantly downregulated its expression, while salt-induced demethylation of leaf zmGST weakly upregulated its expression. The results suggested that salinity-induced methylation downregulated zmPP2C expression, a negative regulator of the stress response, while salinity-induced demethylation upregulated zmGST expression, a positive effecter of the stress response. Altered methylation, in response to stress, might also be involved in stress acclimation. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  9. The Potato Aphid Salivary Effector Me47 Is a Glutathione-S-Transferase Involved in Modifying Plant Responses to Aphid Infestation.

    Science.gov (United States)

    Kettles, Graeme J; Kaloshian, Isgouhi

    2016-01-01

    Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae) is a notable pest of solanaceous crops, however, the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculated that these proteins function in a manner analagous to secreted effectors from phytopathogenic bacteria, fungi and oomycetes. Here, we describe a novel aphid effector (Me47) which was identified from the potato aphid salivary secretome as a putative glutathione-S-transferase (GST). Expression of Me47 in Nicotiana benthamiana enhanced reproductive performance of green peach aphid (Myzus persicae). Similarly, delivery of Me47 into leaves of tomato (Solanum lycopersicum) by Pseudomonas spp. enhanced potato aphid fecundity. In contrast, delivery of Me47 into Arabidopsis thaliana reduced GPA reproductive performance, indicating that Me47 impacts the outcome of plant-aphid interactions differently depending on the host species. Delivery of Me47 by the non-pathogenic Pseudomonas fluorescens revealed that Me47 protein or activity triggers defense gene transcriptional upregulation in tomato but not Arabidopsis. Recombinant Me47 was purified and demonstrated to have GST activity against two specific isothiocyanates (ITCs), compounds implicated in herbivore defense. Whilst GSTs have previously been associated with development of aphid resistance to synthetic insecticides, the findings described here highlight a novel function as both an elicitor and suppressor of plant defense when delivered into host tissues.

  10. Glutathione S-Transferases: Role in Combating Abiotic Stresses Including Arsenic Detoxification in Plants

    Directory of Open Access Journals (Sweden)

    Smita Kumar

    2018-06-01

    Full Text Available Arsenic (As, naturally occurring metalloid and a potential hazardous material, is found in low concentrations in the environment and emerges from natural sources and anthropogenic activities. The presence of As in ground water, which is used for irrigation, is a matter of great concern since it affects crop productivity and contaminates food chain. In plants, As alters various metabolic pathways in cells including the interaction of substrates/enzymes with the sulfhydryl groups of proteins and the replacement of phosphate in ATP for energy. In addition, As stimulates the generation of free radicals and reactive oxygen species (ROS, resulting in oxidative stress. Glutathione S-transferases (GSTs quench reactive molecules with the addition of glutathione (GSH and protect the cell from oxidative damage. GSTs are a multigene family of isozymes, known to catalyze the conjugation of GSH to miscellany of electrophilic and hydrophobic substrates. GSTs have been reported to be associated with plant developmental processes and are responsive to multitude of stressors. In past, several studies suggested involvement of plant GST gene family in As response due to the requirement of sulfur and GSH in the detoxification of this toxic metalloid. This review provides updated information about the role of GSTs in abiotic and biotic stresses with an emphasis on As uptake, metabolism, and detoxification in plants. Further, the genetic manipulations that helped in enhancing the understanding of the function of GSTs in abiotic stress response and heavy metal detoxification has been reviewed.

  11. Purification of human hepatic glutathione S-transferases and the development of a radioimmunoassay for their measurement in plasma

    International Nuclear Information System (INIS)

    Hayes, J.D.; Gilligan, D.; Beckett, G.J.

    1983-01-01

    A purification scheme is described for six human hepatic glutathione S-transferases from a single liver. Five of the transferases comprised Ya monomers and had a molecular mass of 44000. The remaining enzyme comprised Yb monomers and had a molecular mass of 47000. Data are presented demonstrating that there are at least two distinct Ya monomers. A radioimmunoassay has been developed that has sufficient precision and sensitivity to allow direct measurement of glutathione S-transferase concentrations in unextracted plasma. A comparison of aminotransferase and glutathione S-transferase levels, in three patients who had taken a paracetamol overdose, indicated that glutathione S-transferase measurements provided a far more sensitive index of hepatocellular integrity than the more conventional aminotransferase measurements. (Auth.)

  12. Purification of human hepatic glutathione S-transferases and the development of a radioimmunoassay for their measurement in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.D.; Gilligan, D.; Beckett, G.J. (Edinburgh Univ. (UK). Dept. of Clinical Chemistry); Chapman, B.J. (Royal Infirmary, Edinburgh (UK))

    1983-10-31

    A purification scheme is described for six human hepatic glutathione S-transferases from a single liver. Five of the transferases comprised Ya monomers and had a molecular mass of 44000. The remaining enzyme comprised Yb monomers and had a molecular mass of 47000. Data are presented demonstrating that there are at least two distinct Ya monomers. A radioimmunoassay has been developed that has sufficient precision and sensitivity to allow direct measurement of glutathione S-transferase concentrations in unextracted plasma. A comparison of aminotransferase and glutathione S-transferase levels, in three patients who had taken a paracetamol overdose, indicated that glutathione S-transferase measurements provided a far more sensitive index of hepatocellular integrity than the more conventional aminotransferase measurements.

  13. The dyad palindromic glutathione transferase P enhancer binds multiple factors including AP1.

    OpenAIRE

    Diccianni, M B; Imagawa, M; Muramatsu, M

    1992-01-01

    Glutathione Transferase P (GST-P) gene expression is dominantly regulated by an upstream enhancer (GPEI) consisting of a dyad of palindromically oriented imperfect TPA (12-O-tetradecanoyl-phorbol-13-acetate)-responsive elements (TRE). GPEI is active in AP1-lacking F9 cells as well in AP1-containing HeLa cells. Despite GPEI's similarity to a TRE, c-jun co-transfection has only a minimal effect on transactivation. Antisense c-jun and c-fos co-transfection experiments further demonstrate the lac...

  14. Molecular cloning of a cDNA and chromosomal localization of a human theta-class glutathione S-transferase gene (GSTT2) to chromosome 22

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K.L.; Baker, R.T.; Board, P.G. [Australian National Univ., Canberra (Australia)] [and others

    1995-01-20

    Until recently the Theta-class glutathione S-transferases (GSTs) were largely overlooked due to their low activity with the model substrate 1-chloro-2,4-dinitrobenzene (CDNB) and their failure to bind to immobilized glutathione affinity matrices. Little is known about the number of genes in this class. Recently, Pemble et al. reported the cDNA cloning of a human Theta-class GST, termed GSTT1. In this study, we describe the molecular cloning of a cDNA encoding a second human Theta-class GST (GSTT2) from a {lambda}gt11 human liver 5{prime}-stretch cDNA library. The encoded protein contains 244 amino acids and has 78.3% sequence identity with the rat subunit 12 and only 55.0% identity with human GSTT1. GSTT2 has been mapped to chromosome 22 by somatic cell hybrid analysis. The precise position of the gene was localized to subband 22q11.2 by in situ hybridization. The absence of other regions of hybridization suggests that there are no closely related sequences (e.g., reverse transcribed pseudogenes) scattered throughout the genome and that if there are closely related genes, they must be clustered near GSTT2. Southern blot analysis of human DNA digested with BamHI shows that the size of the GSTT2 gene is relatively small, as the coding sequence falls within a 3.6-kb BamHI fragment. 35 refs., 6 figs.

  15. The temperature--dependent expression of GST of Schistosoma japonicum (Philippine strain).

    Science.gov (United States)

    Cai, Z H; Song, G C; Xu, Y X; Liu, S X

    1993-03-01

    Obtained from pSj5, the cDNA gene encoding GST antigen of Schistosoma japonicum (Philippine strain) was ligated with efficient temperature-dependent PBV220 vector which was constructed in CAPM, and then introduced into host bacterium-DH5 alpha (E. coli) by transformation. Transformants were selected by ampicillin and recombinant clones were identified by restriction mapping. The result showed that recombinant clone 43 was the one carrying recombinant plasmid PBV 220 with the correct insertion of the gene fragment. The GST expression ability of clone 43 was investigated by GST enzymic activity assay and SDS-PAGE. A relatively high level of GST enzymic activity was expressed by this clone under the temperature-dependent condition, that is, cultured at 30 degrees C and expressed at 42 degrees C. A more strongly stained 26 kDa protein band was identified by SDS-PAGE. The result indicated that GST of S. japonicum (Philippine strain) could be expressed not only by IPTG induction, but also by the temperature-dependent method.

  16. The role of a topologically conserved isoleucine in glutathione transferase structure, stability and function

    International Nuclear Information System (INIS)

    Achilonu, Ikechukwu; Gildenhuys, Samantha; Fisher, Loren; Burke, Jonathan; Fanucchi, Sylvia; Sewell, B. Trevor; Fernandes, Manuel; Dirr, Heini W.

    2010-01-01

    The role of a topologically conserved isoleucine in the structure of glutathione transferase was investigated by replacing the Ile71 residue in human GSTA1-1 by alanine or valine. The common fold shared by members of the glutathione-transferase (GST) family has a topologically conserved isoleucine residue at the N-terminus of helix 3 which is involved in the packing of helix 3 against two β-strands in domain 1. The role of the isoleucine residue in the structure, function and stability of GST was investigated by replacing the Ile71 residue in human GSTA1-1 by alanine or valine. The X-ray structures of the I71A and I71V mutants resolved at 1.75 and 2.51 Å, respectively, revealed that the mutations do not alter the overall structure of the protein compared with the wild type. Urea-induced equilibrium unfolding studies using circular dichroism and tryptophan fluorescence suggest that the mutation of Ile71 to alanine or valine reduces the stability of the protein. A functional assay with 1-chloro-2,4-dinitrobenzene shows that the mutation does not significantly alter the function of the protein relative to the wild type. Overall, the results suggest that conservation of the topologically conserved Ile71 maintains the structural stability of the protein but does not play a significant role in catalysis and substrate binding

  17. The potato aphid salivary effector Me47 is a glutathione-S-transferase involved in modifying plant responses to aphid infestation

    Directory of Open Access Journals (Sweden)

    Graeme James Kettles

    2016-08-01

    Full Text Available Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae is a notable pest of solanaceous crops, however the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculated that these proteins function in a manner analagous to secreted effectors from phytopathogenic bacteria, fungi and oomycetes. Here we describe a novel aphid effector (Me47 which was identified from the potato aphid salivary secretome as a putative glutathione-S-transferase (GST. Expression of Me47 in Nicotiana benthamiana enhanced reproductive performance of green peach aphid (Myzus persicae. Similarly, delivery of Me47 into leaves of tomato (Solanum lycopersicum by Pseudomonas spp. enhanced potato aphid fecundity. In contrast, delivery of Me47 into Arabidopsis thaliana reduced GPA reproductive performance, indicating that Me47 impacts the outcome of plant-aphid interactions differently depending on the host species. Delivery of Me47 by the non-pathogenic Pseudomonas fluorescens revealed that Me47 protein or activity triggers defense gene transcriptional upregulation in tomato but not Arabidopsis. Recombinant Me47 was purified and demonstrated to have GST activity against two specific isothiocyanates (ITCs, compounds implicated in herbivore defense. Whilst GSTs have previously been associated with development of aphid resistance to synthetic insecticides, the findings described here highlight a novel function as both an elicitor and suppressor of plant defense when delivered into host tissues.

  18. Oxidative Stress Markers and Genetic Polymorphisms of Glutathione ...

    African Journals Online (AJOL)

    Hence, we evaluated the serum levels of oxidative stress markers and investigated genetic polymorphisms of glutathione S-transferase associated with autism. Materials and Methods: Forty-two children clinically diagnosed with ASD using the Diagnostic and Statistical Manual for Mental Disorders (DSM-5) criteria and a ...

  19. Modulation of ethoxyresorufin O-deethylase and glutathione S-transferase activities in Nile tilapia (Oreochromis niloticus) by polycyclic aromatic hydrocarbons containing two to four rings: implications in biomonitoring aquatic pollution.

    Science.gov (United States)

    Pathiratne, Asoka; Hemachandra, Chamini K

    2010-08-01

    Despite ubiquity of polycyclic aromatic hydrocarbons (PAHs) in the tropical environments, little information is available concerning responses of tropical fish to PAHs and associated toxicity. In the present study, effects of five PAHs containing two to four aromatic rings on hepatic CYP1A dependent ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST) and serum sorbitol dehydrogenase (SDH) activities in Nile tilapia, a potential fish species for biomonitoring pollution in tropical waters, were evaluated. Results showed that EROD activities were induced by the PAHs containing four aromatic rings (pyrene and chrysene) in a dose dependent manner. However PAHs with two to three aromatic rings (naphthalene, phenanthrene and fluoranthene) caused no effect or inhibition of EROD activities depending on the dose and the duration. Fluoranthene was the most potent inhibitor. SDH results demonstrated that high doses of fluoranthene induced hepatic damage. GST activity was induced by the lowest dose of phenanthrene, fluoranthene and chrysene but high doses had no effect. The results indicate that induction of EROD enzyme in Nile tilapia is a useful biomarker of exposure to PAHs such as pyrene and chrysene. However EROD inhibiting PAHs such as fluoranthene in the natural environment may modulate the EROD inducing potential of other PAHs thereby influencing PAH exposure assessments.

  20. Cyclopentenone prostaglandins as potential inducers of phase II detoxification enzymes. 15-deoxy-delta(12,14)-prostaglandin j2-induced expression of glutathione S-transferases.

    Science.gov (United States)

    Kawamoto, Y; Nakamura, Y; Naito, Y; Torii, Y; Kumagai, T; Osawa, T; Ohigashi, H; Satoh, K; Imagawa, M; Uchida, K

    2000-04-14

    Exposure of cells to a wide variety of chemoprotective compounds confers resistance to a broad set of carcinogens. For a subset of the chemoprotective compounds, protection is generated by an increase in the abundance of protective enzymes, such as glutathione S-transferases (GSTs). In the present study, we developed a cell culture system that potently responds to phenolic antioxidants and found that antitumor prostaglandins (PGs) are potential inducers of GSTs. We screened primary hepatocytes and multiple cell lines for inducing GST activity upon incubation with the phenolic antioxidant (tert-butylhydroquinone) and found that rat liver epithelial RL34 cells most potently responded. Based on an extensive screening of diverse chemical agents on the induction of GST activity in RL34 cells, the J2 series of PGs, 15-deoxy-Delta(12,14)-prostaglandin J2 (15-deoxy-Delta(12,14)-PGJ2) in particular, were found to be potential inducers of GST. Enhanced gene expression of Class pi GST isozyme (GSTP1) by 15-deoxy-Delta(12,14)-PGJ2 was evident as a drastic elevation of the mRNA level. Hence, we examined the molecular mechanism underlying the 15-deoxy-Delta(12, 14)-PGJ2-induced GSTP1 gene expression. From functional analysis of various deletion mutant genes, we found that the 15-deoxy-Delta(12, 14)-PGJ2 reponse element was localized in a region containing a GSTP1 enhancer I (GPEI) that consists of two imperfect phorbol 12-O-tetradecanoylphorbol-13-acetate response elements. When the GPEI was combined with the minimum GSTP1 promoter, the element indeed showed an enhancer activity in response to 15-deoxy-Delta(12, 14)-PGJ2. Point mutations of either of the two imperfect 12-O-tetradecanoylphorbol-13-acetate response elements in GPEI completely abolished the enhancer activity. Gel mobility shift assays demonstrated that 15-deoxy-Delta(12,14)-PGJ2 specifically stimulated the binding of nuclear proteins including the transcription factor c-Jun, but not Nrf2, to GPEI. These results

  1. Effects of GST Polymorphism on Ameliorative Effect of Curcumin and Carvacrol against DNA Damage Induced by Combined Treatment of Malathion and Parathion

    Directory of Open Access Journals (Sweden)

    Neeraj Kumar

    2016-04-01

    Full Text Available Background: Organophosphorus pesticides has been widely used in agriculture fields to control various crop insects and their extensive use pose human life at threat because of their adverse effects on human health. In this study, we checked the effects of GST polymorphism on ameliorative effect of curcumin and carvacrol against DNA damages. Methods: Comet assay was used to assess the DNA damage and results were expressed as Tail moment. Heparinised fresh blood from healthy individuals was treated with combined concentration of malathion and parathion (i.e. 30 µg/ml of malathion and 2.5 µg/ml of parathion in presence of combination of curcumin and carvacrol (25 µg/ml curcumin + 2.5 µg/ml carvacrol and 50 µg/ml curcumin + 5.0 µg/ml carvacrol in order to observe the ameliorative role of curcumin and carvacrol. Multiplex PCR was performed for GSTM1 and GSTT1 genotyping. Results: Curcumin in combination with carvacrol (i.e. 25 µg/ml curcumin + 2.5 µg/ml carvacrol and 50 µg/ml curcumin + 5.0 µg/ml carvacrol significantly reduced the DNA damage caused by combined action of malathion and parathion which supports their antigenotoxic property. No significant relationship of GSTT1 and GSTM1 polymorphism with genotoxicity of both the pesticides and antigenotoxic potential of curcumin and carvacrol was observed. Conclusion: Malathion and parathion were genotoxic in human PBL. Curcumin and carvacrol had an antigenotoxic effect against the malathion and parathion while there was not any significant effect of GSTT1 and GSTM1 polymorphism on genotoxicity of these pesticides and antigenotoxicity of curcumin and carvacrol.

  2. Molecular evolution of Theta-class glutathione transferase for enhanced activity with the anticancer drug 1,3-bis-(2-chloroethyl)-1-nitrosourea and other alkylating agents.

    Science.gov (United States)

    Larsson, Anna-Karin; Shokeer, Abeer; Mannervik, Bengt

    2010-05-01

    Glutathione transferase (GST) displaying enhanced activity with the cytostatic drug 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) and structurally related alkylating agents was obtained by molecular evolution. Mutant libraries created by recursive recombination of cDNA coding for human and rodent Theta-class GSTs were heterologously expressed in Escherichia coli and screened with the surrogate substrate 4-nitrophenethyl bromide (NPB) for enhanced alkyltransferase activity. A mutant with a 70-fold increased catalytic efficiency with NPB, compared to human GST T1-1, was isolated. The efficiency in degrading BCNU had improved 170-fold, significantly more than with the model substrate NPB. The enhanced catalytic activity of the mutant GST was also 2-fold higher with BCNU than wild-type mouse GST T1-1, which is 80-fold more efficient than wild-type human GST T1-1. We propose that GSTs catalyzing inactivation of anticancer drugs may find clinical use in protecting sensitive normal tissues to toxic side-effects in treated patients, and as selectable markers in gene therapy. Copyright 2010 Elsevier Inc. All rights reserved.

  3. RNA interference of two glutathione S-transferase genes, Diaphorina citri DcGSTe2 and DcGSTd1, increases the susceptibility of Asian citrus psyllid (Hemiptera: Liviidae) to the pesticides fenpropathrin and thiamethoxam.

    Science.gov (United States)

    Yu, Xiudao; Killiny, Nabil

    2018-03-01

    The Asian citrus psyllid, Diaphorina citri Kuwayama, is an important agricultural pest of citrus globally. Foliar application of chemical insecticides is the most widely used option for reducing D. citri populations. Knockdown of glutathione S-transferase (GST) in several insect species leads to increased susceptibility to insecticides; however, information about the detoxifying role of GST genes in D. citri is unavailable. Via a sequence homology search, we isolated and characterized three DcGST genes (DcGSTd1, DcGSTe1 and DcGSTe2) from D. citri. Phylogenetic analysis grouped DcGSTd1 into the delta class of GST genes, whereas DcGSTe1 and DcGSTe2 were clustered in the epsilon clade. Gene expression analysis revealed that chlorpyrifos treatment increased the mRNA levels of DcGSTe1 and fenpropathrin enhanced the expression level of DcGSTd1, while DcGSTe2 was significantly up-regulated after exposure to thiamethoxam at a dose of 30% lethal concentration (LC30). RNA interference (RNAi) of DcGSTe2 and DcGSTd1 followed by an insecticide bioassay increased the mortalities of thiamethoxam-treated psyllids by 23.0% and fenpropathrin-treated psyllids by 15.0%. In contrast, knockdown of DcGSTe1 did not significantly increase the susceptibility of D. citri to any of these three insecticides. Further, feeding with double-stranded RNA (dsDcGSTe2-d1) interfusion co-silenced DcGSTe2 and DcGSTd1 expression in D. citri, and led to an increase of susceptibility to both fenpropathrin and thiamethoxam. The findings suggest that DcGSTe2 and DcGSTd1 play unique roles in detoxification of the pesticides thiamethoxam and fenpropathrin. In addition, co-silencing by creating a well-designed dsRNA interfusion against multiple genes was a good RNAi strategy in D. citri. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Overlapping protective roles for glutathione transferase gene family members in chemical and oxidative stress response in Agrobacterium tumefaciens.

    Science.gov (United States)

    Skopelitou, Katholiki; Muleta, Abdi W; Pavli, Ourania; Skaracis, Georgios N; Flemetakis, Emmanouil; Papageorgiou, Anastassios C; Labrou, Nikolaos E

    2012-03-01

    In the present work, we describe the characterisation of the glutathione transferase (GST) gene family from Agrobacterium tumefaciens C58. A genome survey revealed the presence of eight GST-like proteins in A. tumefaciens (AtuGSTs). Comparison by multiple sequence alignment generated a dendrogram revealing the phylogenetic relationships of AtuGSTs-like proteins. The beta and theta classes identified in other bacterial species are represented by five members in A. tumefaciens C58. In addition, there are three "orphan" sequences that do not fit into any previously recognised GST classes. The eight GST-like genes were cloned, expressed in Escherichia coli and their substrate specificity was determined towards 17 different substrates. The results showed that AtuGSTs catalyse a broad range of reactions, with different members of the family exhibiting quite varied substrate specificity. The 3D structures of AtuGSTs were predicted using molecular modelling. The use of comparative sequence and structural analysis of the AtuGST isoenzymes allowed us to identify local sequence and structural characteristics between different GST isoenzymes and classes. Gene expression profiling was conducted under normal culture conditions as well as under abiotic stress conditions (addition of xenobiotics, osmotic stress and cold and heat shock) to induce and monitor early stress-response mechanisms. The results reveal the constitutive expression of GSTs in A. tumefaciens and a modulation of GST activity after treatments, indicating that AtuGSTs presumably participate in a wide range of functions, many of which are important in counteracting stress conditions. These functions may be relevant to maintaining cellular homeostasis as well as in the direct detoxification of toxic compounds.

  5. Modulation of xenobiotic metabolising enzymes by anticarcinogens-focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Pool-Zobel, Beatrice [Department of Nutritional Toxicology, Institute for Nutrition, Friedrich Schiller University Jena, 07743 Jena (Germany)]. E-mail: b8pobe@uni-jena.de; Veeriah, Selvaraju [Department of Nutritional Toxicology, Institute for Nutrition, Friedrich Schiller University Jena, 07743 Jena (Germany); Boehmer, Frank-D. [Institute of Molecular Cell Biology, University Hospital, Friedrich Schiller University Jena, 07743 Jena (Germany)

    2005-12-11

    There is evidence that consumption of certain dietary ingredients may favourably modulate biotransformation of carcinogens. Associated with this is the hypothesis that the risk for developing colorectal cancer could be reduced, since its incidence is related to diet. Two main groups of biotransformation enzymes metabolize carcinogens, namely Phase I enzymes, which convert hydrophobic compounds to more water-soluble moieties, and Phase II enzymes (e.g. glutathione S-transferases [GST]), which primarily catalyze conjugation reactions. The conjugation of electrophilic Phase I intermediates with glutathione, for instance, frequently results in detoxification. Several possible colon carcinogens may serve as substrates for GST isoenzymes that can have marked substrate specificity. The conjugated products could be less toxic/genotoxic if GSTs are induced, thereby reducing exposure. Thus, numerous studies have shown that the induction of GSTs by antioxidants enables experimental animals to tolerate exposure to carcinogens. One important mechanism of GST induction involves an antioxidant-responsive response element (ARE) and the transcription factor nuclear factor E2-related factor 2 (Nrf2), which is bound to the Kelch-like ECH associated protein 1 (Keap1) in the cytoplasm. Antioxidants may disrupt the Keap-Nrf2 complex, allowing Nrf2 to translocate to the nucleus and mediate expression of Phase II genes via interaction with the ARE. GSTs are also induced by butyrate, a product of gut flora-derived fermentation of plant foods, which may act via different mechanisms, e.g. by increasing histone acetylation. GSTs are expressed with high inter-individual variability in human colonocytes, which points to large differences in cellular susceptibility to xenobiotics. Enhancing expression of GSTs in human colon tissue could therefore contribute to reducing cancer risks. However, it has not been demonstrated in humans that this mechanism is associated with cancer prevention. In the

  6. Modulation of xenobiotic metabolising enzymes by anticarcinogens-focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis

    International Nuclear Information System (INIS)

    Pool-Zobel, Beatrice; Veeriah, Selvaraju; Boehmer, Frank-D.

    2005-01-01

    There is evidence that consumption of certain dietary ingredients may favourably modulate biotransformation of carcinogens. Associated with this is the hypothesis that the risk for developing colorectal cancer could be reduced, since its incidence is related to diet. Two main groups of biotransformation enzymes metabolize carcinogens, namely Phase I enzymes, which convert hydrophobic compounds to more water-soluble moieties, and Phase II enzymes (e.g. glutathione S-transferases [GST]), which primarily catalyze conjugation reactions. The conjugation of electrophilic Phase I intermediates with glutathione, for instance, frequently results in detoxification. Several possible colon carcinogens may serve as substrates for GST isoenzymes that can have marked substrate specificity. The conjugated products could be less toxic/genotoxic if GSTs are induced, thereby reducing exposure. Thus, numerous studies have shown that the induction of GSTs by antioxidants enables experimental animals to tolerate exposure to carcinogens. One important mechanism of GST induction involves an antioxidant-responsive response element (ARE) and the transcription factor nuclear factor E2-related factor 2 (Nrf2), which is bound to the Kelch-like ECH associated protein 1 (Keap1) in the cytoplasm. Antioxidants may disrupt the Keap-Nrf2 complex, allowing Nrf2 to translocate to the nucleus and mediate expression of Phase II genes via interaction with the ARE. GSTs are also induced by butyrate, a product of gut flora-derived fermentation of plant foods, which may act via different mechanisms, e.g. by increasing histone acetylation. GSTs are expressed with high inter-individual variability in human colonocytes, which points to large differences in cellular susceptibility to xenobiotics. Enhancing expression of GSTs in human colon tissue could therefore contribute to reducing cancer risks. However, it has not been demonstrated in humans that this mechanism is associated with cancer prevention. In the

  7. Haemoglobin adducts of acrylonitrile and ethylene oxide in acrylonitrile workers, dependent on polymorphisms of the glutathione transferases GSTT1 and GSTM1.

    Science.gov (United States)

    Thier, R; Lewalter, J; Kempkes, M; Selinski, S; Brüning, T; Bolt, H M

    1999-01-01

    Fifty-nine persons with industrial handling of low levels of acrylonitrile (AN) were studied. As part of a medical surveillance programme an extended haemoglobin adduct monitoring [N-(cyanoethyl)valine, CEV; N-(methyl)valine. MV: N-(hydroxyethyl)valine, HEV] was performed. Moreover, the genetic states of the polymorphic glutathione transferases GSTM1 and GSTT1 were assayed by polymerase chain reaction (PCR). Repetitive analyses of CEV and MV in subsequent years resulted in comparable values (means, 59.8 and 70.3 microg CEV/1 blood; 6.7 and 6.7 microg MV/1 blood). Hence, the industrial AN exposures were well below current official standards. Monitoring the haemoglobin adduct CEV appears as a suitable means of biomonitoring and medical surveillance under such exposure conditions. There was also no apparent correlation between the CEV and HEV or CEV and MV adduct levels. The MV and HEV values observed represented background levels, which apparently are not related to any occupational chemical exposure. There was no consistent effect of the genetic GSTM1 or GSTT1 state on CEV adduct levels induced by acrylonitrile exposure. Therefore, neither GSTM1 nor GSTT1 appears as a major AN metabolizing isoenzyme in humans. The low and physiological background levels of MV were also not influenced by the genetic GSTM1 state, but the MV adduct levels tended to be higher in GSTT1- individuals compared to GSTT1 + persons. With respect to the background levels of HEV adducts observed, there was no major influence of the GSTM1 state, but GST- individuals displayed adduct levels that were about 1/3 higher than those of GSTT1 + individuals. The coincidence with known differences in rates of background sister chromatid exchange between GSTT1- and GSTT1 + persons suggests that the lower ethylene oxide (EO) detoxification rate in GSTT1- persons, indicated by elevated blood protein hydroxyethyl adduct levels, leads to an increased genotoxic effect of the physiological EO background.

  8. Glutathione S-transferase M1, T1 and P1 gene polymorphisms and ...

    African Journals Online (AJOL)

    Moyassar Ahmad Zaki

    2014-04-18

    Apr 18, 2014 ... (CIMT) was done using a b-mode ultrasound to detect peripheral atherosclerotic ..... Diagnosis and classification of · diabetes mellitus. .... Breast cancer and CYP1A1, GSTM1, and GSTT1 polymorphism: · evidence of a lack of ...

  9. Multiple Pesticides Detoxification Function of Maize (Zea mays) GST34.

    Science.gov (United States)

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Zhao, Weisong; Wang, Chengju

    2017-03-08

    ZmGST34 is a maize Tau class GST gene and was found to be differently expressed between two maize cultivars differing in tolerance to herbicide metolachlor. To explore the possible role of ZmGST34 in maize development, the expression pattern and substrate specificity of ZmGST34 were characterized by quantitative RT-PCR and heterologous expression system, respectively. The results indicated that the expression level of ZmGST34 was increased ∼2-5-fold per day during the second-leaf stage of maize seedling. Chloroacetanilide herbicides or phytohormone treatments had no influence on the expression level of ZmGST34, suggesting that ZmGST34 is a constitutively expressed gene in maize seedling. Heterologous expression in Escherichia coli and in Arabidopsis thaliana proved that ZmGST34 can metabolize most chloroacetanilide herbicides and increase tolerance to these herbicides in transgenic Arabidopsis thaliana. The constitutive expression pattern and broad substrate activity of ZmGST34 suggested that this gene may play an important role in maize development in addition to the detoxification of pesticides.

  10. Structure of a Highly Active Cephalopod S-crystallin Mutant: New Molecular Evidence for Evolution from an Active Enzyme into Lens-Refractive Protein.

    Science.gov (United States)

    Tan, Wei-Hung; Cheng, Shu-Chun; Liu, Yu-Tung; Wu, Cheng-Guo; Lin, Min-Han; Chen, Chiao-Che; Lin, Chao-Hsiung; Chou, Chi-Yuan

    2016-08-08

    Crystallins are found widely in animal lenses and have important functions due to their refractive properties. In the coleoid cephalopods, a lens with a graded refractive index provides good vision and is required for survival. Cephalopod S-crystallin is thought to have evolved from glutathione S-transferase (GST) with various homologs differentially expressed in the lens. However, there is no direct structural information that helps to delineate the mechanisms by which S-crystallin could have evolved. Here we report the structural and biochemical characterization of novel S-crystallin-glutathione complex. The 2.35-Å crystal structure of a S-crystallin mutant from Octopus vulgaris reveals an active-site architecture that is different from that of GST. S-crystallin has a preference for glutathione binding, although almost lost its GST enzymatic activity. We've also identified four historical mutations that are able to produce a "GST-like" S-crystallin that has regained activity. This protein recapitulates the evolution of S-crystallin from GST. Protein stability studies suggest that S-crystallin is stabilized by glutathione binding to prevent its aggregation; this contrasts with GST-σ, which do not possess this protection. We suggest that a tradeoff between enzyme activity and the stability of the lens protein might have been one of the major driving force behind lens evolution.

  11. Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling

    International Nuclear Information System (INIS)

    Singhal, Sharad S.; Singh, Sharda P.; Singhal, Preeti; Horne, David; Singhal, Jyotsana; Awasthi, Sanjay

    2015-01-01

    4-Hydroxy-2-trans-nonenal (4HNE), one of the major end products of lipid peroxidation (LPO), has been shown to induce apoptosis in a variety of cell lines. It appears to modulate signaling processes in more than one way because it has been suggested to have a role in signaling for differentiation and proliferation. It has been known that glutathione S-transferases (GSTs) can reduce lipid hydroperoxides through their Se-independent glutathione-peroxidase activity and that these enzymes can also detoxify LPO end-products such as 4HNE. Available evidence from earlier studies together with results of recent studies in our laboratories strongly suggests that LPO products, particularly hydroperoxides and 4HNE, are involved in the mechanisms of stress-mediated signaling and that it can be modulated by the alpha-class GSTs through the regulation of the intracellular concentrations of 4HNE. We demonstrate that 4HNE induced apoptosis in various cell lines is accompanied with c-Jun-N-terminal kinase (JNK) and caspase-3 activation. Cells exposed to mild, transient heat or oxidative stress acquire the capacity to exclude intracellular 4HNE at a faster rate by inducing GSTA4-4 which conjugates 4HNE to glutathione (GSH), and RLIP76 which mediates the ATP-dependent transport of the GSH-conjugate of 4HNE (GS-HNE). The balance between formation and exclusion promotes different cellular processes — higher concentrations of 4HNE promote apoptosis; whereas, lower concentrations promote proliferation. In this article, we provide a brief summary of the cellular effects of 4HNE, followed by a review of its GST-catalyzed detoxification, with an emphasis on the structural attributes that play an important role in the interactions with alpha-class GSTA4-4. Taken together, 4HNE is a key signaling molecule and that GSTs being determinants of its intracellular concentrations, can regulate stress-mediated signaling, are reviewed in this article. - Highlights: • GSTs are the major

  12. Functional characterization of a gluthathione S- transferase gene ...

    African Journals Online (AJOL)

    ONOS

    2010-08-09

    Aug 9, 2010 ... Real time polymerase chain reaction (RT-PCR) indicated that the LbGST1 can be differentially ... stress signaling pathways (Dixon et al., 2002a, b;. Edwards et al., 2000 .... Construction of the yeast expression vector and yeast.

  13. GST – the idea and recommendations for the prevention of criminal behaviour

    Directory of Open Access Journals (Sweden)

    Robert Agnew

    2011-12-01

    Full Text Available The article is a presentation of the main assumptions of the General Strain Theory (GST and the possibility to put theory into practice in the field of prevention of criminal behaviour. The GST was created in the ‘90s by Robert Agnew as a continuation of previous structural theories (Merton, Cloward – Ohlin, Cohen. Up to this day it has been widely verified empirically and along with other criminology theories (the theory of social learning/theory of different relations, theory of social control, theories of interaction is both a fundamental but also alternative ground for interpreting social behaviour. Due to its universal assumptions, GST is now being developed also by Polish researchers. In the article are presented the fundamental strategies of prevention of criminal behaviour based on GST and examples of particular programs being carried out in the US and Poland. Pilot studies on building in Poland a pioneer local system of prevention, based on GST, are presented. In the conclusions the authors stress the importance of GST in the genesis of criminal behaviour. The content of this article is therefore a result of an American-Polish cooperation in the field of prevention of criminal behaviour. It seems that international and based on mutual partnership approach is the hallmark of the current stage of the Polish resocialization system development.

  14. Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene

    International Nuclear Information System (INIS)

    Dixit, Prachy; Mukherjee, Prasun K.; Sherkhane, Pramod D.; Kale, Sharad P.; Eapen, Susan

    2011-01-01

    Highlights: → Transgenic plants expressing a TvGST gene were tested for tolerance, uptake and degradation of anthracene. → Transgenic plants were more tolerant to anthracene and take up more anthracene from soil and solutions compared to control plants. → Using in vitro T 1 seedlings, we showed that anthracene-a three fused benzene ring compound was phytodegraded to naphthalene derivatives, having two benzene rings. → This is the first time that a transgenic plant was shown to have the potential to phytodegrade anthracene. - Abstract: Plants can be used for remediation of polyaromatic hydrocarbons, which are known to be a major concern for human health. Metabolism of xenobiotic compounds in plants occurs in three phases and glutathione transferases (GST) mediate phase II of xenobiotic transformation. Plants, although have GSTs, they are not very efficient for degradation of exogenous recalcitrant xenobiotics including polyaromatic hydrocarbons. Hence, heterologous expression of efficient GSTs in plants may improve their remediation and degradation potential of xenobiotics. In the present study, we investigated the potential of transgenic tobacco plants expressing a Trichoderma virens GST for tolerance, remediation and degradation of anthracene-a recalcitrant polyaromatic hydrocarbon. Transgenic plants with fungal GST showed enhanced tolerance to anthracene compared to control plants. Remediation of 14 C uniformly labeled anthracene from solutions and soil by transgenic tobacco plants was higher compared to wild-type plants. Transgenic plants (T 0 and T 1 ) degraded anthracene to naphthalene derivatives, while no such degradation was observed in wild-type plants. The present work has shown that in planta expression of a fungal GST in tobacco imparted enhanced tolerance as well as higher remediation potential of anthracene compared to wild-type plants.

  15. Reactive metabolites and antioxidant gene polymorphisms in Type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Monisha Banerjee

    2014-01-01

    Full Text Available Type 2 diabetes mellitus (T2DM, by definition is a heterogeneous, multifactorial, polygenic syndrome which results from insulin receptor dysfunction. It is an outcome of oxidative stress caused by interactions of reactive metabolites (RMs interactions with lipids, proteins and other mechanisms of human body. Production of RMs mainly superoxide (O2·− has been found in a variety of predominating cellular enzyme systems including NAD(PH oxidase, xanthine oxidase (XO, cyclooxygenase (COX, uncoupled endothelial nitric oxide synthase (eNOS and myeloperoxidase (MPO. The four main RM related molecular mechanisms are: increased polyol pathway flux; increased advanced glycation end-product (AGE formation; activation of protein kinase C (PKC isoforms and increased hexosamine pathway flux which have been implicated in glucose-mediated vascular damage. Superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, glutathione-S-transferase (GST, nitric oxide synthase (NOS are antioxidant enzymes involved in scavenging RMs in normal individuals. Functional polymorphisms of these antioxidant enzymes have been reported to be involved in pathogenesis of T2DM individuals. The low levels of antioxidant enzymes or their non-functionality results in excessive RMs which initiate stress related pathways thereby leading to insulin resistance and T2DM. An attempt has been made to review the role of RMs and antioxidant enzymes in oxidative stress resulting in T2DM.

  16. The expression of GST isoenzymes and p53 in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    MĂźzeyyen Ozhavzali

    2010-06-01

    Full Text Available This study investigated the immunohistochemical staining characteristics of glutathione-S-transferase alpha, pi, mu, theta and p53 in non-small cell lung carcinoma and normal lung tissue from 50 patients. The relationships between expressions of the Glutathione-S-transferase isoenzymes and some clinicopathological features were also examined. Expression of glutathione-S-transferase pi, mu, alpha, theta and p53 was assessed by immunohistochemistry for primary lung carcinomas of 50 patients from the Sanitarium Education and Research Hospital, Ankara lung cancer collection. The relationships between expression of the glutathione-S-transferase isoenzymes, p53 in normal and tumor tissue by Student T test and the clinicopathological data were also examined by Spearman Rank tests. When the normal and tumor tissue of these cases were compared according to their staining intensity and percentage of positive staining, glutathione-S-transferase alpha, pi, mu, theta expressions in tumor cells was significantly higher than normal cells (p<0.05. There was no significant difference in the expression of p53 between normal and tumor cells (p>0.05. When the immunohistochemical results of glutathione-S-transferase isoenzymes and p53 were correlated with the clinical parameters, there were no significant associations between glutathione-S-transferases and p53 expressions and tumor stage, tumor grade and smoking status (p>0.05.

  17. In vivo induction of phase II detoxifying enzymes, glutathione transferase and quinone reductase by citrus triterpenoids

    Directory of Open Access Journals (Sweden)

    Ahmad Hassan

    2010-09-01

    Full Text Available Abstract Background Several cell culture and animal studies demonstrated that citrus bioactive compounds have protective effects against certain types of cancer. Among several classes of citrus bioactive compounds, limonoids were reported to prevent different types of cancer. Furthermore, the structures of citrus limonoids were reported to influence the activity of phase II detoxifying enzymes. The purpose of the study was to evaluate how variations in the structures of citrus limonoids (namely nomilin, deacetyl nomilin, and isoobacunoic acid and a mixture of limonoids would influence phase II enzyme activity in excised tissues from a mouse model. Methods In the current study, defatted sour orange seed powder was extracted with ethyl acetate and subjected to silica gel chromatography. The HPLC, NMR and mass spectra were used to elucidate the purity and structure of compounds. Female A/J mice were treated with three limonoids and a mixture in order to evaluate their effect on phase II enzymes in four different tissues. Assays for glutathione S-transferase and NAD(PH: quinone reductase (QR were used to evaluate induction of phase II enzymatic activity. Results The highest induction of GST against 1-chloro-2,4-dinitrobenzene (CDNB was observed in stomach (whole, 58% by nomilin, followed by 25% isoobacunoic acid and 19% deacetyl nomilin. Deacetyl nomilin in intestine (small as well as liver significantly reduced GST activity against CDNB. Additionally isoobacunoic acid and the limonoid mixture in liver demonstrated a significant reduction of GST activity against CDNB. Nomilin significantly induced GST activity against 4-nitroquinoline 1-oxide (4NQO, intestine (280% and stomach (75% while deacetyl nomilin showed significant induction only in intestine (73%. Induction of GST activity was also observed in intestine (93% and stomach (45% treated with the limonoid mixture. Finally, a significant induction of NAD(PH: quinone reductase (QR activity was

  18. Is Increased Susceptibility to Balkan Endemic Nephropathy in Carriers of Common GSTA1 (*A/*B Polymorphism Linked with the Catalytic Role of GSTA1 in Ochratoxin A Biotransformation? Serbian Case Control Study and In Silico Analysis

    Directory of Open Access Journals (Sweden)

    Zorica Reljic

    2014-08-01

    Full Text Available Although recent data suggest aristolochic acid as a putative cause of Balkan endemic nephropathy (BEN, evidence also exists in favor of ochratoxin A (OTA exposure as risk factor for the disease. The potential role of xenobiotic metabolizing enzymes, such as the glutathione transferases (GSTs, in OTA biotransformation is based on OTA glutathione adducts (OTHQ-SG and OTB-SG in blood and urine of BEN patients. We aimed to analyze the association between common GSTA1, GSTM1, GSTT1, and GSTP1 polymorphisms and BEN susceptibility, and thereafter performed an in silico simulation of particular GST enzymes potentially involved in OTA transformations. GSTA1, GSTM1, GSTT1 and GSTP1 genotypes were determined in 207 BEN patients and 138 non-BEN healthy individuals from endemic regions by polymerase chain reaction (PCR. Molecular modeling in silico was performed for GSTA1 protein. Among the GST polymorphisms tested, only GSTA1 was significantly associated with a higher risk of BEN. Namely, carriers of the GSTA1*B gene variant, associated with lower transcriptional activation, were at a 1.6-fold higher BEN risk than those carrying the homozygous GSTA1*A/*A genotype (OR = 1.6; p = 0.037. In in silico modeling, we found four structures, two OTB-SG and two OTHQ-SG, bound in a GSTA1 monomer. We found that GSTA1 polymorphism was associated with increased risk of BEN, and suggested, according to the in silico simulation, that GSTA1-1 might be involved in catalyzing the formation of OTHQ-SG and OTB-SG conjugates.

  19. Taxpayers’ Competency Level in Governing Goods Services Tax (GST Compliance: Malaysia Scenario

    Directory of Open Access Journals (Sweden)

    Hambali Siti Syaqilah

    2017-01-01

    Full Text Available GST implementation in Malaysia in April 2015 is part of the tax reformation with the goal of having a more efficient and effective taxation system. A successful tax reformation requires a high acceptance from taxpayers. In order to aid in the acceptance of GST implementation, taxpayers need to have a good competency level reflected through proper knowledge and awareness of the GST system, also known as GST literacy. Thus, the main objective of this study is to assess the level of GST literacy of taxpayers. Secondly, the current study aims to identify the relationship between GST literacy level with the GST acceptance of the taxpayers. Questionnaires were distributed to 150 secondary school teachers in Johor, one of the states in Malaysia. The finding indicates that the respondents’ literacy rate towards the GST implementation in Malaysia is fair. The results imply that secondary school teachers have a moderate knowledge level and high awareness level on GST implementation in Malaysia. The study proves statistically that there is a positive significant relationship between GST literacy with GST acceptance.

  20. Cloning and expression of a tomato glutathione S- transferase (GST ...

    African Journals Online (AJOL)

    In this study, ShGSTU1 was cloned into plasmid pET-28a, efficiently expressed in Escherichia coli upon isopropyl-β-D-1-thiogalactopyronoside (IPTG) induction, purified with Ni2+ affinity chromatography and biochemically characterized. The results show that the optimal conditions for the expression of recombinant ...

  1. Cloning and expression of a tomato glutathione S- transferase (GST ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-03-20

    Mar 20, 2012 ... activated by stress tolerances including herbicide application ... underlined) by reverse transcription polymerase chain reaction (RT-. PCR). RT-PCR was .... improved stress tolerance by genetic engineering. In our previous ...

  2. DNA damage and oxidative stress in marine gastropod Morula granulata exposed to phenanthrene

    Digital Repository Service at National Institute of Oceanography (India)

    Bhagat, J.; Sarkar, A.; Ingole, B.S.

    oxidative stress was assessed using a battery of biomarkers such as glutathione-S-transferase (GST), catalase (CAT), and lipid peroxidation (LPO). Our data showed concentration-dependent increase in percentage DNA in tail (TDNA), LPO, and GST activity...

  3. Effects of heavy metals and nitroaromatic compounds on horseradish glutathione S-transferase and peroxidase

    Czech Academy of Sciences Publication Activity Database

    Nepovím, Aleš; Podlipná, Radka; Soudek, Petr; Schröder, P.; Vaněk, Tomáš

    2004-01-01

    Roč. 57, - (2004), s. 1007-1015 ISSN 0045-6535 R&D Projects: GA ČR GP206/02/P065; GA MŠk OC 837.10 Institutional research plan: CEZ:AV0Z4055905 Keywords : GST * POX * heavy metals Subject RIV: CE - Biochemistry Impact factor: 2.359, year: 2004

  4. Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Prachy; Mukherjee, Prasun K.; Sherkhane, Pramod D.; Kale, Sharad P. [Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Eapen, Susan, E-mail: eapenhome@yahoo.com [Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2011-08-15

    Highlights: {yields} Transgenic plants expressing a TvGST gene were tested for tolerance, uptake and degradation of anthracene. {yields} Transgenic plants were more tolerant to anthracene and take up more anthracene from soil and solutions compared to control plants. {yields} Using in vitro T{sub 1} seedlings, we showed that anthracene-a three fused benzene ring compound was phytodegraded to naphthalene derivatives, having two benzene rings. {yields} This is the first time that a transgenic plant was shown to have the potential to phytodegrade anthracene. - Abstract: Plants can be used for remediation of polyaromatic hydrocarbons, which are known to be a major concern for human health. Metabolism of xenobiotic compounds in plants occurs in three phases and glutathione transferases (GST) mediate phase II of xenobiotic transformation. Plants, although have GSTs, they are not very efficient for degradation of exogenous recalcitrant xenobiotics including polyaromatic hydrocarbons. Hence, heterologous expression of efficient GSTs in plants may improve their remediation and degradation potential of xenobiotics. In the present study, we investigated the potential of transgenic tobacco plants expressing a Trichoderma virens GST for tolerance, remediation and degradation of anthracene-a recalcitrant polyaromatic hydrocarbon. Transgenic plants with fungal GST showed enhanced tolerance to anthracene compared to control plants. Remediation of {sup 14}C uniformly labeled anthracene from solutions and soil by transgenic tobacco plants was higher compared to wild-type plants. Transgenic plants (T{sub 0} and T{sub 1}) degraded anthracene to naphthalene derivatives, while no such degradation was observed in wild-type plants. The present work has shown that in planta expression of a fungal GST in tobacco imparted enhanced tolerance as well as higher remediation potential of anthracene compared to wild-type plants.

  5. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    OpenAIRE

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-01-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did no...

  6. Expression of the glutathione enzyme system of human colon mucosa by localisation, gender and age.

    NARCIS (Netherlands)

    Hoensch, H.; Peters, W.H.M.; Roelofs, H.M.J.; Kirch, W.

    2006-01-01

    BACKGROUND: The glutathione S-transferases (GST) can metabolise endogenous and exogenous toxins and carcinogens by catalysing the conjugation of diverse electrophiles with reduced glutathione (GSH). Variations of GST enzyme activity could influence the susceptibility of developing cancers in certain

  7. Sublethal Toxic Effects and Induction of gGutathione S-transferase by Short-Chain Chlorinated Paraffins (SCCPs and C-12 alkane (dodecane in Xenopus laevis Frog Embryos

    Directory of Open Access Journals (Sweden)

    B. Burýšková

    2006-01-01

    Full Text Available Short chain chlorinated paraffins (SCCPs are important industrial chemicals with high persistence in the environment but poorly characterized ecotoxicological effects. We studied embryotoxic effects of commercial mixture of SCCP (carbon length C-12, 56% of chlorine; CP56-12 and non-chlorinated n-alkane (dodecane, C-12 in the 96h Frog Embryo Teratogenesis Assay - Xenopus (FETAX. Only weak lethal effects were observed for both substances (the highest tested concentration 500 mg/L of both chemicals caused up to 11% mortality. On the other hand, we observed developmental malformations and reduced embryo growth at 5 mg/l and higher concentrations. However, the effects were not related to chlorination pattern as both SCCPs and dodecane induced qualitatively similar effects. SCCPs also significantly induced phase II detoxification enzyme glutathione S-transferase (GST in Xenopus laevis embryos even at 0.5 mg/L, and this biomarker might be used as another early warning of chronic toxic effects. Our results newly indicate significant developmental toxicity of both SCCPs and n-dodecane to aquatic organisms along with inductions of specific biochemical toxicity mechanisms.

  8. Identification and characterization of an Apis cerana cerana Delta class glutathione S-transferase gene ( AccGSTD) in response to thermal stress

    Science.gov (United States)

    Yan, Huiru; Jia, Haihong; Wang, Xiuling; Gao, Hongru; Guo, Xingqi; Xu, Baohua

    2013-02-01

    Glutathione S-transferases (GSTs) are members of a multifunctional enzyme super family that plays a pivotal role in both insecticide resistance and protection against oxidative stress. In this study, we identified a single-copy gene, AccGSTD, as being a Delta class GST in the Chinese honey bee ( Apis cerana cerana). A predicted antioxidant response element, CREB, was found in the 1,492-bp 5'-flanking region, suggesting that AccGSTD may be involved in oxidative stress response pathways. Real-time PCR and immunolocalization studies demonstrated that AccGSTD exhibited both developmental- and tissue-specific expression patterns. During development, AccGSTD transcript was increased in adults. The AccGSTD expression level was the highest in the honey bee brain. Thermal stress experiments demonstrated that AccGSTD could be significantly upregulated by temperature changes in a time-dependent manner. It is hypothesized that high expression levels might be due to the increased levels of oxidative stress caused by the temperature challenges. Additionally, functional assays of the recombinant AccGSTD protein revealed that AccGSTD has the capability to protect DNA from oxidative damage. Taken together, these data suggest that AccGSTD may be responsible for antioxidant defense in adult honey bees.

  9. Global deletion of glutathione S-Transferase A4 exacerbates developmental nonalcoholic steatohepatitis

    Science.gov (United States)

    We established a mouse model of developmental nonalcoholic steatohepatitis (NASH) by feeding a high polyunsaturated fat liquid diet to female glutathione-S-transferase 4-4 (Gsta4-/-)/peroxisome proliferator activated receptor a (Ppara-/-) double knockout 129/SvJ mice for 12 weeks from weaning. We us...

  10. Analysis of Polymorphisms in Genes (AGT, MTHFR, GPIIIa, and GSTP1) Associated with Hypertension, Thrombophilia and Oxidative Stress in Mestizo and Amerindian Populations of México

    Science.gov (United States)

    Juárez-Velázquez, Rocio; Canto, Patricia; Canto-Cetina, Thelma; Rangel-Villalobos, Hector; Rosas-Vargas, Haydee; Rodríguez, Maricela; Canizales-Quinteros, Samuel; Velázquez Wong, Ana Claudia; Ordoñez-Razo, Rosa María; Vilchis-Dorantes, Guadalupe; Coral-Vázquez, Ramón Mauricio

    2010-01-01

    Several polymorphisms related to hypertension, thrombophilia, and oxidative stress has been associated with the development of cardiovascular disease. We analyzed the frequency of M235T angiotensinogen (AGT), A222V 5,10 methylenete-trahydrofolate reductase (MTHFR), L33P glycoprotein IIIa (GPIIIa), and I105V glutathione S-transferase P1 (GSTP1) polymorphisms in 285 individuals belonging to Mexican-Mestizo and five Amerindian population from México, by real time PCR allelic discrimination. Allele and genotype frequencies were compared using χ2 tests. All populations followed the Hardy Weinberg equilibrium for assay markers with the exception of the Triki, whose were in Hardy Weinberg dysequilibrium for the glutathione S-transferase P1 polymorphism. Interestingly, according to all the analyzed single nucleotide polymorphisms (SNPs), the Triki population was the most differentiated and homogeneous group of the six populations analyzed. A comparison of our data with those previously published for some Caucasian, Asian and Black populations showed quite significant differences. These differences were remarkable with all the Mexican populations having a lower frequency of the 105V allele of the glutathione S-transferase P1 and reduced occurrence of the 222A allele of the 5,10 methylenetetrahydrofolate reductase. Our results show the genetic diversity among different Mexican populations and with other racial groups. PMID:20592457

  11. How arbuscular mycorrhizal fungi influence the defense system of sunflower during different abiotic stresses.

    Science.gov (United States)

    Mayer, Zoltán; Duc, Nguyen Hong; Sasvári, Zita; Posta, Katalin

    2017-12-01

    The association between terrestrial plants and arbuscular mycorrhizal (AM) fungi is one of the most common and widespread mutualistic plant-fungi interaction. AM fungi are of beneficial effects on the water and nutrient uptake of plants and increase plant defense mechanisms to alleviate different stresses. The aim of this study was to determine the level of polyphenol oxidase (PPO), guaiacol peroxidase (POX) and glutathione S-transferase (GST) enzyme activities and to track the expression of glutathione S-transferase (GST) gene in plant-arbuscular mycorrhizal system under temperature- and mechanical stress conditions. Our results suggest that induced tolerance of mycorrhizal sunflower to high temperature may be attributed to the induction of GST, POX and PPO enzyme activities as well as to the elevated expression of GST. However, the degree of tolerance of the plant is significantly influenced by the age which is probably justified by the energy considerations.

  12. Structures of a putative ζ-class glutathione S-transferase from the pathogenic fungus Coccidioides immitis

    International Nuclear Information System (INIS)

    Edwards, Thomas E.; Bryan, Cassie M.; Leibly, David J.; Dieterich, Shellie H.; Abendroth, Jan; Sankaran, Banumathi; Sivam, Dhileep; Staker, Bart L.; Van Voorhis, Wesley C.; Myler, Peter J.; Stewart, Lance J.

    2011-01-01

    The pathogenic fungus C. immitis causes coccidioidomycosis, a potentially fatal disease. Here, apo and glutathione-bound crystal structures of a previously uncharacterized protein from C. immitis that appears to be a ζ-class glutathione S-transferase are presented. Coccidioides immitis is a pathogenic fungus populating the southwestern United States and is a causative agent of coccidioidomycosis, sometimes referred to as Valley Fever. Although the genome of this fungus has been sequenced, many operons are not properly annotated. Crystal structures are presented for a putative uncharacterized protein that shares sequence similarity with ζ-class glutathione S-transferases (GSTs) in both apo and glutathione-bound forms. The apo structure reveals a nonsymmetric homodimer with each protomer comprising two subdomains: a C-terminal helical domain and an N-terminal thioredoxin-like domain that is common to all GSTs. Half-site binding is observed in the glutathione-bound form. Considerable movement of some components of the active site relative to the glutathione-free form was observed, indicating an induced-fit mechanism for cofactor binding. The sequence homology, structure and half-site occupancy imply that the protein is a ζ-class glutathione S-transferase, a maleylacetoacetate isomerase (MAAI)

  13. Adsorption of GST-PI3Kγ at the Air-Buffer Interface and at Substrate and Nonsubstrate Phospholipid Monolayers

    Science.gov (United States)

    Hermelink, Antje; Kirsch, Cornelia; Klinger, Reinhard; Reiter, Gerald; Brezesinski, Gerald

    2009-01-01

    The recruitment of phosphoinositide 3-kinase γ (PI3Kγ) to the cell membrane is a crucial requirement for the initiation of inflammation cascades by second-messenger production. In addition to identifying other regulation pathways, it has been found that PI3Kγ is able to bind phospholipids directly. In this study, the adsorption behavior of glutathione S-transferase (GST)-PI3Kγ to nonsubstrate model phospholipids, as well as to commercially available substrate inositol phospholipids (phosphoinositides), was investigated by use of infrared reflection-absorption spectroscopy (IRRAS). The nonsubstrate phospholipid monolayers also yielded important information about structural requirements for protein adsorption. The enzyme did not interact with condensed zwitterionic or anionic monolayers; however, it could penetrate into uncompressed fluid monolayers. Compression to values above its equilibrium pressure led to a squeezing out and desorption of the protein. Protein affinity for the monolayer surface increased considerably when the lipid had an anionic headgroup and contained an arachidonoyl fatty acyl chain in sn-2 position. Similar results on a much higher level were observed with substrate phosphoinositides. No structural response of GST-PI3Kγ to lipid interaction was detected by IRRAS. On the other hand, protein adsorption caused a condensing effect in phosphoinositide monolayers. In addition, the protein reduced the charge density at the interface probably by shifting the pK values of the phosphate groups attached to the inositol headgroups. Because of their strongly polar headgroups, an interaction of the inositides with the water molecules of the subphase can be expected. This interaction is disturbed by protein adsorption, causing the ionization state of the phosphates to change. PMID:19186139

  14. Adsorption of GST-PI3Kgamma at the air-buffer interface and at substrate and nonsubstrate phospholipid monolayers.

    Science.gov (United States)

    Hermelink, Antje; Kirsch, Cornelia; Klinger, Reinhard; Reiter, Gerald; Brezesinski, Gerald

    2009-02-01

    The recruitment of phosphoinositide 3-kinase gamma (PI3Kgamma) to the cell membrane is a crucial requirement for the initiation of inflammation cascades by second-messenger production. In addition to identifying other regulation pathways, it has been found that PI3Kgamma is able to bind phospholipids directly. In this study, the adsorption behavior of glutathione S-transferase (GST)-PI3Kgamma to nonsubstrate model phospholipids, as well as to commercially available substrate inositol phospholipids (phosphoinositides), was investigated by use of infrared reflection-absorption spectroscopy (IRRAS). The nonsubstrate phospholipid monolayers also yielded important information about structural requirements for protein adsorption. The enzyme did not interact with condensed zwitterionic or anionic monolayers; however, it could penetrate into uncompressed fluid monolayers. Compression to values above its equilibrium pressure led to a squeezing out and desorption of the protein. Protein affinity for the monolayer surface increased considerably when the lipid had an anionic headgroup and contained an arachidonoyl fatty acyl chain in sn-2 position. Similar results on a much higher level were observed with substrate phosphoinositides. No structural response of GST-PI3Kgamma to lipid interaction was detected by IRRAS. On the other hand, protein adsorption caused a condensing effect in phosphoinositide monolayers. In addition, the protein reduced the charge density at the interface probably by shifting the pK values of the phosphate groups attached to the inositol headgroups. Because of their strongly polar headgroups, an interaction of the inositides with the water molecules of the subphase can be expected. This interaction is disturbed by protein adsorption, causing the ionization state of the phosphates to change.

  15. Taxpayers’ Competency Level in Governing Goods Services Tax (GST) Compliance: Malaysia Scenario

    OpenAIRE

    Hambali Siti Syaqilah; Kamaluddin Amrizah

    2017-01-01

    GST implementation in Malaysia in April 2015 is part of the tax reformation with the goal of having a more efficient and effective taxation system. A successful tax reformation requires a high acceptance from taxpayers. In order to aid in the acceptance of GST implementation, taxpayers need to have a good competency level reflected through proper knowledge and awareness of the GST system, also known as GST literacy. Thus, the main objective of this study is to assess the level of GST literacy...

  16. Genetic polymorphism of six DNA loci in six population groups of India.

    Science.gov (United States)

    Ahmad, Shazia; Seshadri, M

    2007-08-01

    The genetic profile based on autosomal markers, four microsatellite DNA markers (D8S315, FES, D8S592, and D2S1328) and two minisatellite DNA markers (TPMT and PDGFA), were analyzed in six endogamous populations to examine the effect of geographic and linguistic affiliation on the genetic affinities among the groups. The six populations are from three different states of India and are linguistically different. Marathas from western India speak Marathi, an Indo-European language. Arayas, Muslims, Ezhavas, and Nairs from Kerala state of South India speak Malayalam, and Iyers from Tamil Nadu state speak Tamil. Genomic DNA was extracted from peripheral blood samples of random, normal, healthy individuals. Locus-specific PCR amplification was carried out, followed by electrophoresis of the amplicons and genotyping. All the loci were highly polymorphic and followed Hardy-Weinberg equilibrium, except for loci D8S315 and PDGFA in Iyers and Marathas, respectively. All six loci had high heterozygosity (average heterozygosity ranged from 0.73 to 0.76) and high polymorphism information content (0.57-0.90). The extent of gene differentiation among the six populations (G(ST) = 0.030) was greater than that for four Kerala populations (G(ST) = 0.011), suggesting proximity between the four Kerala populations. This result conforms with the cultural and linguistic background of the populations. The extent of diversity found among the populations probably resulted from the strict endogamous practices that they follow.

  17. Glutathione S-transferase genes and the risk of type 2 diabetes mellitus: Role of sexual dimorphism, gene-gene and gene-smoking interactions in disease susceptibility.

    Science.gov (United States)

    Azarova, Iuliia; Bushueva, Olga; Konoplya, Alexander; Polonikov, Alexey

    2018-05-01

    Compromised defense against reactive oxygen species (ROS) is considered important in the pathogenesis of type 2 diabetes mellitus (T2DM); therefore, genes encoding antioxidant defense enzymes may contribute to disease susceptibility. This study investigated whether polymorphisms in genes encoding glutathione S-transferase M1 (GSTM1), T1 (GSTT1), and P1 (GSTP1) jointly contribute to the risk of T2DM. In all, 1120 unrelated Russian subjects (600 T2DM patients, 520 age- and sex-matched healthy subjects), were recruited to the study. Genotyping was performed by multiplex polymerase chain reaction (PCR; del/del polymorphisms of GSTM1 and GSTT1) and TaqMan-based PCR (polymorphisms I105V and A114V of GSTP1). Plasma ROS and glutathione levels in study subjects were analyzed by fluorometric and colorimetric assays, respectively. Genotype del/del GSTT1 was significantly associated with the risk of T2DM (odds ratio [OR] 1.60, 95% confidence interval [CI] 1.17-2.21, P = 0.003). Gender-stratified analysis showed that the deletion genotypes of GSTM1 (OR 1.99, 95% CI 1.30-3.05; P = 0.0002, Q = 0.016) and GSTT1 (OR 2.23, 95% CI 1.22-4.09; P = 0.008, Q = 0.0216), as well as genotype 114A/V of GSTP1 (OR 2.85, 95% CI 1.44-5.62; P = 0.005, Q = 0.02) were associated with an increased risk of T2DM exclusively in males. Three genotype combinations (i.e. GSTM1+ × GSTT1+, GSTM1+ × GSTP1 114A/A and GSTT1+ × GSTP1 114A/A) showed significant associations with a decreased risk of T2DM in males. This study demonstrates, for the first time, that genes encoding glutathione S-transferases jointly contribute to the risk of T2DM, and that their effects on disease susceptibility are gender specific. © 2017 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  18. Association study on glutathione S-transferase omega 1 and 2 and familial ALS

    NARCIS (Netherlands)

    van de Giessen, Elsmarieke; Fogh, Isabella; Gopinath, Sumana; Smith, Bradley; Hu, Xun; Powell, John; Andersen, Peter; Nicholson, Garth; Al Chalabi, Ammar; Shaw, Christopher E.

    2008-01-01

    Glutathione S-transferase omega 1 and 2 (GSTO1 and 2) protect from oxidative stress, a possible pathogenic mechanism underlying the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. Significant association of age of onset in Alzheimer's

  19. Functional characterization of glutathione S-transferases associated with insecticide resistance in Tetranychus urticae

    NARCIS (Netherlands)

    Pavlidi, N.; Tseliou, V.; Riga, M.; Nauen, R.; Van Leeuwen, T.; Labrou, N.E.; Vontas, J.

    2015-01-01

    The two-spotted spider mite Tetranychus urticae is one of the most important agricultural pests world-wide. It is extremely polyphagous and develops resistance to acaricides. The overexpression of several glutathione S-transferases (GSTs) has been associated with insecticide resistance. Here, we

  20. Fish biomarkers for environmental monitoring: An integrated model supporting enzyme activity and histopathological lesions

    Science.gov (United States)

    Neta, Raimunda Nonata Fortes Carvalho; Torres Junior, Audalio Rebelo

    2014-10-01

    We present a mathematical model describing the association between glutathione-S-transferase activity and brachial lesions in the catfish, Sciades herzbergii (Ariidae) from a polluted port. The catfish were sampled from a port known to be contaminated with heavy metals and organic compounds and from a natural reserve in São Marcos Bay, Brazil. Two biomarkers, hepatic glutathione S-transferase (GST) activity and histopathological lesions, in gills tissue were measured. The values for GST activity were modeled with the occurrence of branchial lesions by fitting a third order polynomial. Results from the mathematical model indicate that GST activity has a strong polynomial relationship with the occurrence of branchial lesions in both the wet and the dry seasons, but only at the polluted port site. The model developed in this study indicates that branchial and hepatic lesions are initiated when GST activity reaches 2.15 μmol min-1 mg protein-1. Beyond this limit, GST activity decreased to very low levels and irreversible histopathological lesions occurred. This mathematical model provides a realistic approach to analyze predictive biomarkers of environmental health status.

  1. The Effect of GST on Farm Management Information Systems and Business Management Skills

    Directory of Open Access Journals (Sweden)

    Tony Lewis

    2005-05-01

    Full Text Available In 1989 New Zealand farmers were confronted by the introduction of a GST. Despite the short to medium term difficulties, many farmers have benefited from the experience. The introduction of the GST forced many New Zealand farmers to improve their record systems as they were required to submit more extensive and accurate information to comply with their new GST requirements. This increase in sophistication of their record systems also meant that farmers had a larger store of more accurate information available to support their farm business management decision-making. It is expected that the introduction of GST and PAYG reporting requirements in Australia is also acting as a catalyst in the evolution of dairy farm record systems and increase in dairy farmer’s store of business management skills. This paper reports the results of a survey that describes the characteristics of dairy farm management information systems and indicates the business management skills that dairy farmers perceive they need to acquire in the short term in order to improve their farm management information systems and comply with their GST requirements. Overall, the importance of bookkeeping/ accounting skills is strongly related to BAS. However, the results also show that as the level of sophistication of dairy farm record systems grows the demand for business skills shifts from accounting/ bookkeeping skills to computer and analytical skills.

  2. Oxygen incorporation into GST phase-change memory matrix

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R., E-mail: holovchakr@apsu.edu [Department of Physics and Astronomy, Austin Peay State University, Clarksville, TN 37044 (United States); Choi, Y.G. [Department of Materials Science and Engineering, Korea Aerospace University, Gyeonggi 412-791 (Korea, Republic of); Kozyukhin, S. [Kurnakov Institute of General and Inorganic Chemistry of RAS, 31 Leninsky Pr., Moscow 119991 (Russian Federation); National Research Tomsk State University, 36 Lenin Pr., Tomsk 634050 (Russian Federation); Chigirinsky, Yu. [Scientific-Research Physicotechnical Institute at the Nizhnii Novgorod State University, Nizhnii Novgorod 603600 (Russian Federation); Kovalskiy, A.; Xiong-Skiba, P.; Trimble, J. [Department of Physics and Astronomy, Austin Peay State University, Clarksville, TN 37044 (United States); Pafchek, R.; Jain, H. [Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States)

    2015-03-30

    Graphical abstract: - Highlights: • Surfaces of GST-225 films are depleted in Te as a result of the reaction with oxygen. • Top layers of oxidized GST-225 are formed by Sb and Ge oxide complexes. • Depth profiles of Sb and Ge oxide complexes are found to be different. • Crystallization at 300 °C in O{sub 2} atmosphere leads to Ge redistribution. - Abstract: Structural changes in amorphous and crystallized GST-225 films induced by the reaction with oxygen are studied at different depth scales. The mechanism of interaction of the very top surface layers with oxygen is studied with low-energy ion scattering (LEIS) technique, while the modifications of chemistry in the underlying surface layers are investigated with high-resolution X-ray photoelectron spectroscopy (XPS). The changes averaged through the overall film thickness are characterized by micro-Raman spectroscopy. The oxygen exposure leads to a depletion of GST-225 film surfaces in Te and formation of the antimony and germanium oxides. The antimony oxide complexes are found throughout the whole thickness of the films after their prolonged storage in air, whereas no evidence for formation of pure GeO{sub 2} phase is found in the volume of the films through Raman spectroscopy. A tendency to form Ge-rich phase within the ∼10 nm surface layer is additionally observed by LEIS profiling during crystallization of GST-225 film at 300 °C in oxygen atmosphere.

  3. Isoenzyme-specific up-regulation of glutathione transferase and aldo-keto reductase mRNA expression by dietary quercetin in rat liver.

    Science.gov (United States)

    Odbayar, Tseye-Oidov; Kimura, Toshinori; Tsushida, Tojiro; Ide, Takashi

    2009-05-01

    The impact of quercetin on the mRNA expression of hepatic enzymes involved in drug metabolism was evaluated with a DNA microarray and real-time PCR. Male Sprague-Dawley rats were fed an experimental diet containing either 0, 2.5, 5, 10, or 20 g/kg of quercetin for 15 days. The DNA microarray analysis of the gene expression profile in pooled RNA samples from rats fed diets containing 0, 5, and 20 g/kg of quercetin revealed genes of some isoenzymes of glutathione transferase (Gst) and aldo-keto reductase (Akr) to be activated by this flavonoid. Real-time PCR conducted with RNA samples from individual rats fed varying amounts of quercetin together with the microarray analysis showed that quercetin caused marked dose-dependent increases in the mRNA expression of Gsta3, Gstp1, and Gstt3. Some moderate increases were also noted in the mRNA expression of isoenzymes belonging to the Gstm class. Quercetin also dose-dependently increased the mRNA expression of Akr1b8 and Akr7a3. However, it did not affect the parameters of the other Gst and Akr isoenzymes. It is apparent that quercetin increases the mRNA expression of Gst and Akr involved in drug metabolism in an isoenzyme-specific manner. Inasmuch as Gst and Akr isoenzymes up-regulated in their gene expression are involved in the prevention and attenuation of cancer development, this consequence may account for the chemopreventive propensity of quercetin.

  4. S-Nitrosation destabilizes glutathione transferase P1-1.

    Science.gov (United States)

    Balchin, David; Stoychev, Stoyan H; Dirr, Heini W

    2013-12-23

    Protein S-nitrosation is a post-translational modification that regulates the function of more than 500 human proteins. Despite its apparent physiological significance, S-nitrosation is poorly understood at a molecular level. Here, we investigated the effect of S-nitrosation on the activity, structure, stability, and dynamics of human glutathione transferase P1-1 (GSTP1-1), an important detoxification enzyme ubiquitous in aerobes. S-Nitrosation at Cys47 and Cys101 reduces the activity of the enzyme by 94%. Circular dichroism spectroscopy, acrylamide quenching, and amide hydrogen-deuterium exchange mass spectrometry experiments indicate that the loss of activity is caused by the introduction of local disorder at the active site of GSTP1-1. Furthermore, the modification destabilizes domain 1 of GSTP1-1 against denaturation, smoothing the unfolding energy landscape of the protein and introducing a refolding defect. In contrast, S-nitrosation at Cys101 alone introduces a refolding defect in domain 1 but compensates by stabilizing the domain kinetically. These data elucidate the physical basis for the regulation of GSTP1-1 by S-nitrosation and provide general insight into the consequences of S-nitrosation on protein stability and dynamics.

  5. Description of a cellulose-binding domain and a linker sequence from Aspergillus fungi

    NARCIS (Netherlands)

    Quentin, M; Ebbelaar, M; Derksen, J; Mariani, C; van der Valk, H

    A family I cellulose-binding domain (CBD) and a serine- and threonine-rich linker peptide were cloned from the fungi Aspergillus japonicus and Aspergillus aculeatus. A glutathione S-transferase (GST) fusion protein comprising GST and a peptide linker with the CBD fused to its C-terminus, was

  6. A short-term intervention trial with selenate, selenium-enriched yeast and selenium-enriched milk: effects on oxidative defence regulation

    DEFF Research Database (Denmark)

    Ravn-Haren, Gitte; Bugel, Susanne; Krath, Britta

    2008-01-01

    -enriched yeast or Se-enriched milk. We found no effect on plasma lipid resistance to oxidation, total cholesterol, TAG, HDL- and LDL-cholesterol, GPX, glutathione reductase (GR) and glutathione S-transferase (GST) activities measured in erythrocytes, GPX and GR activities determined in plasma, or GR and GST...

  7. Polymorphisms in xenobiotic metabolizing enzymes and diet influence colorectal adenoma risk.

    Science.gov (United States)

    Northwood, Emma L; Elliott, Faye; Forman, David; Barrett, Jennifer H; Wilkie, Murray J V; Carey, Francis A; Steele, Robert J C; Wolf, Roland; Bishop, Timothy; Smith, Gillian

    2010-05-01

    We have earlier shown that diet and xenobiotic metabolizing enzyme genotypes influence colorectal cancer risk, and now investigate whether similar associations are seen in patients with premalignant colorectal adenomas (CRA), recruited during the pilot phase of the Scottish Bowel Screening Programme. Nineteen polymorphisms in 13 genes [cytochrome P450 (P450), glutathione S-transferase (GST), N-acetyl transferase, quinone reductase (NQ01) and microsomal epoxide hydrolase (EPHX1) genes] were genotyped using multiplex PCR or Taqman-based allelic discrimination assays and analyzed in conjunction with diet, assessed by food frequency questionnaire, in a case-control study [317 CRA cases (308 cases genotyped), 296 controls]. Findings significant at a nominal 5% level are reported. CRA risk was inversely associated with fruit (P=0.02, test for trend) and vegetable (P=0.001, test for trend) consumption. P450 CYP2C9*3 heterozygotes had reduced CRA risk compared with homozygotes for the reference allele [odds ratio (OR): 0.60; 95% confidence interval (CI): 0.36-0.99], whereas CYP2D6*4 homozygotes (OR: 2.72; 95% CI: 1.18-6.27) and GSTM1 'null' individuals (OR: 1.43; 95% CI: 1.04-1.98) were at increased risk. The protective effect of fruit consumption was confined to GSTP1 (Ala114Val) reference allele homozygotes (OR: 0.49; 95% CI: 0.34-0.71, P=0.03 for interaction). CRA risk was not associated with meat consumption, although a significant interaction between red meat consumption and EPHX1 (His139Arg) genotype was noted (P=0.02 for interaction). We report the novel associations between P450 genotype and CRA risk, and highlight the risk association with GSTM1 genotype, common to our CRA and cancer case-control series. In addition, we report a novel modifying influence of GSTP1 genotype on dietary chemoprevention. These novel findings require independent confirmation.

  8. Glutathione S-Transferase M1 and T1 Null Genotype Frequency ...

    Indian Academy of Sciences (India)

    Bluebird

    2017-10-25

    Oct 25, 2017 ... A comparative analysis with different tribal as well as world ..... T1 and P1) gene polymorphisms with type 2 diabetes mellitus in north .... Houlston R. S. 2000 CYP1A1 polymorphisms and lung cancer risk: a meta-analysis.

  9. No association of GSTM1 null polymorphism with endometriosis in women from central and southern Iran

    Directory of Open Access Journals (Sweden)

    Razieh Dehghani Firouzabadi

    2012-01-01

    Full Text Available Background: Endometriosis is one of the most common gynecologic disorders. It is a complex trait and both genetic and environmental factors have been implicated in its pathogenesis. There is growing evidence indicating that exposure to environmental contaminants is a risk factor for endometriosis. Glutathione-S-Transferase M1 (GSTM1 is one of the genes involved in detoxification of endogenous and exogenous compounds. Objective: Several studies have indicated an association between GSTM1 null mutation and endometriosis. In this study, the possible association between the GSTM1 gene null genotype and susceptibility to endometriosis in woman from central and southern Iran was investigated.Materials and Methods: One hundred and one unrelated premenopausal women with endometriosis and 142 unrelated healthy premenopausal women without endometriosis were enrolled in the study. Genomic DNA was extracted from Peripheral blood in all subjects. GSTM1 null genotyping was performed by polymerase chain reaction (PCR.Results: There was no significant difference between frequencies of GSTM1 null genotype in case and control groups (50.5% Vs. 52.1%, p=0.804. Furthermore, this genotype was not associated with severity of endometriosis in our sample (p=0.77. Conclusion: further studies involving gene-environment and gene-gene interactions, particularly combination of GSTM1 and other GST gene family polymorphisms are needed.

  10. Simulation studies of GST phase change alloys

    Science.gov (United States)

    Martyna, Glenn

    2008-03-01

    In order to help drive post-Moore's Law technology development, switching processes involving novel materials, in particular, GeSbTe (GST) alloys are being investigated for use in memory and eFuse applications. An anneal/quench thermal process crystallizes/amorphosizes a GST alloy which then has a low/high resistance and thereby forms a readable/writeable bit; for example, a ``one'' might be the low resistance, conducting crystalline state and a ``zero'' might be the high resistance, glassy state. There are many open questions about the precise nature of the structural transitions and the coupling to electronic structure changes. Computational and experimental studies of the effect of pressure on the GST materials were initiated in order to probe the physics behind the thermal switching process. A new pathway to reversible phase change involving pressure-induced structural metal insulator transitions was discovered. In a binary GS system, a room-temperature, direct, pressure-induced transformation from the high resistance amorphous phase to the low resistance crystalline phase was observed experimentally while the reverse process under tensile load was demonstrated via ab initio MD simulations performed on IBM's Blue Gene/L enabled by massively parallel software. Pressure induced transformations of the ternary material GST-225 (Ge2Sb2Te5) were, also, examined In the talk, the behavior of the two systems will be compared and insight into the nature of the phase change given.

  11. GST IN INDIA: A KEY TAX REFORM AND ITS IMPLEMENTATION

    OpenAIRE

    Dr.Prashant Patil

    2018-01-01

    GST is one of the most crucial tax reforms in India which has been long waiting. It was hypothetical to be implemented from April 2010, but due to political issues and contradictory interests of various stakeholders it was still awaiting The Good and services tax (GST) is the prime and significant indirect tax reform since independence. The main idea of GST is to replace existing taxes like value-added tax, excise duty, service tax and sales tax. It is levied on manufacture sale and consumpti...

  12. Studies on the Effect of 99Tc in colloid on enzyme activity(G.p.x ,G.S.T,SOD) before and after used diadzain

    International Nuclear Information System (INIS)

    Ahmood, A. M.; Alwan, I. F.; Abd Al-Kream, H. M.

    2012-12-01

    This study was conducted to determine the effect of Tin -colloid labeled with Technetium -99m on some enzyme activities of treated mice. it was noticed that an increase in the level of Glutathione-S- transferase (GST) glutathione peroxidase (Gpx), super oxide dismutase (SOD) and malonaldehyde (MDA) levels for treated (20) mice compared to the level of control mice Group (20). After That, the use diadzein extracted from soy been and linseed with concentrate of (0.250 mg/Kg), (0.500/Kg) on mice Group (20). It was found decreased activities GST, Gpx , SOD and MDA compared with 9 9mT c Tin-colloid Group without diadzein. (Author)

  13. Effects of curcumin on cytochrome P450 and glutathione S-transferase activities in rat liver.

    NARCIS (Netherlands)

    Oetari, S.; Sudibyo, M.; Commandeur, J.N.M.; Samhoedi, R.; Vermeulen, N.P.E.

    1996-01-01

    The stability of curcumin, as well as the interactions between curcumin and cytochrome P450s (P450s) and glutathione S-transferases (GSTs) in rat liver, were studied. Curcumin is relatively unstable in phosphate buffer at pH 7.4. The stability of curcumin was strongly improved by lowering the pH or

  14. Glutathione S-transferase genotype and p53 mutations in adenocarcinoma of the small intestine

    DEFF Research Database (Denmark)

    Pedersen, Lisbeth Nørum; Kaerlev, L; Stubbe Teglbjaerg, P

    2003-01-01

    Adenocarcinoma of the small intestine (ASI) is a rare disease of unknown aetiology. The glutathione S-transferase M1 (GSTM1) enzyme catalyses the detoxification of compounds involved in carcinogenesis of adenocarcinoma of the stomach, colon and lung, including constituents of tobacco smoke. We in...

  15. An Application of General System Theory (GST) to Group Therapy.

    Science.gov (United States)

    Matthews, Charles O.

    1992-01-01

    Demonstrates the compatibility of General System Theory (GST) with the traditional counseling literature in explicating a therapy group's progression through Tuckman's (1965, 1977) developmental stages (forming, storming, norming, performing, and adjourning). Description uses both traditional group literature and GST concepts. (Author/NB)

  16. Stratification for smoking in case-cohort studies of genetic polymorphisms and lung cancer

    DEFF Research Database (Denmark)

    Sørensen, Mette; López, Ana García; Andersen, Per Kragh

    2009-01-01

    and adjustment for smoking on the estimated effect of polymorphisms on lung cancer risk was explored in the case-cohort design. We used an empirical and a statistical simulation approach. The stratification strategies were: no smoking stratification, stratification for smoking status and stratification......The risk estimates obtained in studies of genetic polymorphisms and lung cancer differ markedly between studies, which might be due to chance or differences in study design, in particular the stratification/match of comparison group. The effect of different strategies for stratification...... for smoking duration. The study base was a prospective follow-up study with 57,053 participants. In the simulation approach the glutathione S-transferase T1 null polymorphism, as a model of any polymorphism, was added to simulated data in two different ways, assuming either absence or presence of association...

  17. Characterization of glutathione transferases involved in the pathogenicity of Alternaria brassicicola.

    Science.gov (United States)

    Calmes, Benoit; Morel-Rouhier, Mélanie; Bataillé-Simoneau, Nelly; Gelhaye, Eric; Guillemette, Thomas; Simoneau, Philippe

    2015-06-18

    Glutathione transferases (GSTs) represent an extended family of multifunctional proteins involved in detoxification processes and tolerance to oxidative stress. We thus anticipated that some GSTs could play an essential role in the protection of fungal necrotrophs against plant-derived toxic metabolites and reactive oxygen species that accumulate at the host-pathogen interface during infection. Mining the genome of the necrotrophic Brassica pathogen Alternaria brassicicola for glutathione transferase revealed 23 sequences, 17 of which could be clustered into the main classes previously defined for fungal GSTs and six were 'orphans'. Five isothiocyanate-inducible GSTs from five different classes were more thoroughly investigated. Analysis of their catalytic properties revealed that two GSTs, belonging to the GSTFuA and GTT1 classes, exhibited GSH transferase activity with isothiocyanates (ITC) and peroxidase activity with cumene hydroperoxide, respectively. Mutant deficient for these two GSTs were however neither more susceptible to ITC nor less aggressive than the wild-type parental strain. By contrast mutants deficient for two other GSTs, belonging to the Ure2pB and GSTO classes, were distinguished by their hyper-susceptibility to ITC and low aggressiveness against Brassica oleracea. In particular AbGSTO1 could participate in cell tolerance to ITC due to its glutathione-dependent thioltransferase activity. The fifth ITC-inducible GST belonged to the MAPEG class and although it was not possible to produce the soluble active form of this protein in a bacterial expression system, the corresponding deficient mutant failed to develop normal symptoms on host plant tissues. Among the five ITC-inducible GSTs analyzed in this study, three were found essential for full aggressiveness of A. brassicicola on host plant. This, to our knowledge is the first evidence that GSTs might be essential virulence factors for fungal necrotrophs.

  18. Glutathione S-transferase P1, gene-gene interaction, and lung cancer susceptibility in the Chinese population: An updated meta-analysis and review

    Directory of Open Access Journals (Sweden)

    Xue-Ming Li

    2015-01-01

    Full Text Available Aim of Study: To assess the impact of glutathione S-transferase P1 (GSTP1 Ile105Val polymorphism on the risk of lung cancer in the Chinese population, an updated meta-analysis and review was performed. Materials and Methods: Relevant studies were identified from PubMed, Springer Link, Ovid, Chinese Wanfang Data Knowledge Service Platform, Chinese National Knowledge Infrastructure, and Chinese Biology Medicine published through January 22, 2015. The odds ratios (ORs and 95% confidence intervals (CIs were calculated to estimate the strength of the associations. Results: A total of 13 case-control studies, including 2026 lung cancer cases and 2451 controls, were included in this meta-analysis. Overall, significantly increased lung cancer risk was associated with the variant genotypes of GSTP1 polymorphism in the Chinese population (GG vs. AA: OR = 1.36, 95% CI = 1.01-1.84. In subgroup analyses stratified by geographic area and source of controls, the significant results were found in population-based studies (GG vs. AA: OR = 1.62, 95% CI: 1.13-2.31; GG vs. AG: OR = 1.49, 95% CI: 1.03-2.16; GG vs. AA + AG: OR = 1.55, 95% CI: 1.12-2.26. A gene-gene interaction analysis showed that there was an interaction for individuals with combination of GSTM1 (or GSTT1 null genotype and GSTP1 (AG + GG mutant genotype for lung cancer risk in Chinese. Conclusion: This meta-analysis suggests that GSTP1 Ile105Val polymorphism may increase the risk of lung cancer in the Chinese population.

  19. Serum vitamin C and other biomarkers differ by genotype of phase 2 enzyme genes GSTM1 and GSTT1123

    Science.gov (United States)

    Shaikh, Nishat; Jensen, Christopher D; Volberg, Vitaly; Holland, Nina

    2011-01-01

    Background: Glutathione S-transferases (GSTs) detoxify environmental chemicals and are involved in oxidative stress pathways. Deletion polymorphisms affect enzyme activities and have been associated with risk of disease. Objective: The objective was to clarify whether biomarkers of oxidation, antioxidation, inflammation, and nutritional factors differ by GST genotype in healthy adults. Design: Subjects (n = 383) consisted of nonsmokers and nonusers of antiinflammatory drugs and antioxidant vitamin supplements. Deletion polymorphisms of GSTM1 and GSTT1 were genotyped. F2-isoprostanes, malondialdehyde, C-reactive protein, serum vitamin C, carotenoids, tocopherols, and other nutritional factors were assessed. Results: The concentration of serum vitamin C was higher in persons with the inactive GSTM1-0 genotype (P = 0.006). This relation was unchanged after adjustment for age, sex, BMI, or dietary vitamin C. F2-isoprostanes and malondialdehyde were lower in the GSTM1-0 and GSTT1-0 groups, respectively, but significance was lost after control for serum vitamin C. The dual deletion, GSTM1-0/GSTT1-0 (n = 37), was associated with higher serum iron and total and LDL-cholesterol concentrations (all P ascorbic acid in the GST enzyme system. This trial is registered at clinicaltrials.gov as NCT00079963. PMID:21813807

  20. Susceptibility to breast cancer and three polymorphisms of GSTZ1.

    Science.gov (United States)

    Saadat, Iraj; Khalili, Maryam; Nafissi, Samane; Omidvari, Shahpour; Saadat, Mostafa

    2012-03-01

    Glutathione S-transferases class zeta (GSTζ) is involved in the detoxification of xenobiotic compounds and catalyzes the biotransformation of a variety of α-haloacids including dichloroacetic acid and chlorofluoroacetic acid. It has been reported that, in mice, deficiency of Gstz1 (a member of GSTζ) resulted in the generation of a constant level of oxidative stress. The present study was carried out to investigate the association between genetic polymorphisms of GSTZ1 (in promoter site G-1002A and in coding sites Glu32Lys and Gly42Arg) and risk of breast cancer. We included 106 females with breast cancer and 106 healthy females frequency matched for age. The study polymorphisms were not associated with risk of breast cancer (p>0.05). The polymorphisms of GSTZ1 showed strong linkage disequilibrium among cancer patients and control subjects (p0.05). It seems there is no meaningful relationship between the genetic polymorphisms of GSTZ1 and risk of breast cancer.

  1. Production of monoclonal antibodies and development of a quantitative immuno-polymerase chain reaction assay to detect and quantify recombinant Glutathione S-transferase.

    Science.gov (United States)

    Abud, J E; Luque, E H; Ramos, J G; Rodriguez, H A

    2017-07-01

    GST-tagged proteins are important tools for the production of recombinant proteins. Removal of GST tag from its fusion protein, frequently by harsh chemical treatments or proteolytic methods, is often required. Thus, the monitoring of the proteins in tag-free form requires a significant effort to determine the remnants of GST during purification process. In the present study, we developed both a conventional enzyme-linked immunosorbent assay (ELISA) and an immuno-polymerase chain reaction (IPCR) assay, both specific for detection of recombinant GST (rGST). rGST was expressed in Escherichia coli JM109, using a pGEX4T-3 vector, and several anti-rGST monoclonal antibodies were generated using hybridoma technology. Two of these were rationally selected as capture and detection antibodies, allowing the development of a sandwich ELISA with a limit of detection (LOD) of 0.01 μg/ml. To develop the rGST-IPCR assay, we selected "Universal-IPCR" format, comprising the biotin-avidin binding as the coupling system. In addition, the rGST-IPCR was developed in standard PCR tubes, and the surface adsorption of antibodies on PCR tubes, the optimal neutravidin concentrations, the generation of a reporter DNA and the concentration effect were studied and determined. Under optimized assay conditions, the rGST-IPCR assay provided a 100-fold increase in the LOD as well as an expanded working range, in comparison with rGST-ELISA. The proposed method exhibited great potentiality for application in several fields in which measurement of very low levels of GST is necessary, and might provide a model for other IPCR assays. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Goods and Services Tax (GST: Challenges Faced by Business Operators in Malaysia

    Directory of Open Access Journals (Sweden)

    Chen Loo Ern

    2017-01-01

    Full Text Available The objective of this study is to identify the factors affecting business operators’ awareness on the implementation of Goods and Services Tax (GST and the perceived issues and problems they may likely encounter with the implementation of GST in Malaysia. Questionnaires were distributed to 302 registered members (business operators of three Chambers of Commerce in Melaka. The findings of this study show that more than 70% of the respondents are aware of the GST mechanism and issues. The majority of the respondents also agreed that to comply with GST legislations, business operators need to have sufficient knowledge on appropriate and adequate documentation thus leading to increased compliance costs.

  3. Effects of low dose radiation on antioxidant enzymes after radiotherapy of tumor-bearing mice

    International Nuclear Information System (INIS)

    Li Jin; Gao Gang; Wang Qin; Tang Weisheng; Liu Xiaoqiu; Wang Zhiquan

    2005-01-01

    Objective: To search for effects of low dose radiation on the activities of antioxidant enzymes after radiotherapy of tumor-bearing mice. Methods: Superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT) were all determined by chemical colorimetry. Results: Low dose radiation increase the activities of antioxidant enzymes superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT) in serum of tumor-bearing mice more markedly than those in the unirradiated controls. The activities of antioxidant enzymes SOD, GST, CAT in serum of tumor-bearing mice (d 5 , d 3 ) irradiated with 5cGy 6h before 2.0 Gy radiation are obviously higher than those of the group (c 3 , c 5 ) given with radiotherapy only. Conclusion: The increase in the activities of antioxidant enzymes in serum of tumor-bearing mice triggered by low dose radiation could partly contribute to the protective mechanism. (authors)

  4. Goods and Services Tax (GST: The Importance of Comprehension Towards Achieving the Desired Awareness Among Malaysian

    Directory of Open Access Journals (Sweden)

    Othman Rani Diana

    2017-01-01

    Full Text Available In line with the implementation of value added tax (VAT by 160 countries, Malaysia has taken its own path with the introduction of goods and services tax (GST starting from 1 April 2015 to replace its previous tax system. This new tax system has been announced on 25 October 2013, which has given about 17 months for businesses and people in Malaysia to make a complete preparation for GST. GST is proven to be the fairer tax system to overcome the previous one which was not only limited in scope, but also came with a number of inherent weaknesses. Therefore, in order to achieve the desired awareness regarding GST, it is essential that all Malaysians have the required level of understanding in terms of its concepts, scopes, charges and mechanisms. This paper discusses the benefits of GST for the nation in the long run as well as the negative perceptions from the public. This should reveal the additional steps to be taken by the regulators in ensuring a better comprehension of this new tax system among the citizens as a support for the government’s tax reform, which has been programmed for Malaysia to move towards a high-income nation.

  5. The dyad palindromic glutathione transferase P enhancer binds multiple factors including AP1.

    Science.gov (United States)

    Diccianni, M B; Imagawa, M; Muramatsu, M

    1992-10-11

    Glutathione Transferase P (GST-P) gene expression is dominantly regulated by an upstream enhancer (GPEI) consisting of a dyad of palindromically oriented imperfect TPA (12-O-tetradecanoyl-phorbol-13-acetate)-responsive elements (TRE). GPEI is active in AP1-lacking F9 cells as well in AP1-containing HeLa cells. Despite GPEI's similarity to a TRE, c-jun co-transfection has only a minimal effect on transactivation. Antisense c-jun and c-fos co-transfection experiments further demonstrate the lack of a role for AP1 in GPEI mediated trans-activation in F9 cells, although endogenously present AP1 can influence GPEI in HeLa cells. Co-transfection of delta fosB with c-jun, which forms an inactive c-Jun/delta FosB heterodimer that binds TRE sequences, inhibits GPEI-mediated transcription in AP1-lacking F9 cells as well as AP1-containing HeLa cells. These data suggest novel factor(s) other than AP1 are influencing GPEI. Binding studies reveal multiple nucleoproteins bind to GPEI. These factors are likely responsible for the high level of GPEI-mediated transcription observed in the absence of AP1 and during hepatocarcinogenesis.

  6. The GST/HST: Creating an Integrated Sales Tax in a Federal Country

    Directory of Open Access Journals (Sweden)

    Richard M. Bird

    2012-03-01

    Full Text Available Canada is not a country with a reputation for bold experimentation. However, decades of federal-provincial compromises have successfully disproved the belief that an invoice-credit, destination-based value-added tax (VAT is unworkable at the subnational level. Canada’s experiences with the GST, as well as with subordinate VATs like the HST and independent vats like the QST, have three important and interlinked consequences for future tax reform in Canada. First, the exact shape of provincial-level taxes is largely irrelevant to the smooth functioning of a federal VAT — although lack of provincial-federal coordination inevitably raises administrative costs. Second, the nature of a subordinate sales tax is extremely important at the provincial level. As the furor over British Columbia’s HST demonstrates, governments can’t ignore voters’ views and must retain the freedom to tailor provincial-level taxes to meet them, even when public opinion leads to suboptimal outcomes. And third, the best way Ottawa can avoid such outcomes is to provide the provinces with critical support and encouragement in the form of administrative and economic assistance. Since the federal government controls Canada’s borders, over which imports and exports flow, and administers its own sales tax, there is plenty of scope for cooperation. This paper traces the history of federal sales taxation, from the first turnover tax in 1920 right up the present-day GST, along with comprehensive examinations of regional sales tax issues in every corner of Canada, making it one of the best available summary treatments of the GST.

  7. ANALYSIS OF Treponema pallidum RECOMBINANT ANTIGENS FOR DIAGNOSIS OF SYPHILIS BY WESTERN BLOTTING TECHNIQUE Análise de antígenos recombinantes de Treponema pallidum no diagnóstico da sífilis utilizando a técnica de Western Blotting

    Directory of Open Access Journals (Sweden)

    Neuza Satomi SATO

    1999-03-01

    Full Text Available Three GST fusion recombinant antigen of Treponema pallidum, described as GST-rTp47, GST-rTp17 and GST-rTp15 were analyzed by Western blotting techniques. We have tested 53 serum samples: 25 from patients at different clinical stages of syphilis, all of them presenting anti-treponemal antibody, 25 from healthy blood donors and three from patients with sexually transmitted disease (STD other than syphilis. Almost all samples from patients with syphilis presented a strong reactivity with GST-rTp17 antigen. Some samples were non-reactive or showed a weak reaction with GST-rTp47 and/or GST-rTp15, and apparently there was no correlation with the stage of disease. There was no seropositivity among blood donors. No sample reacted with purified GST. We concluded that due to their specificity these recombinant antigens can be used as GST fusion protein for development of syphilis diagnostic assays.Os antígenos recombinantes de Treponema pallidum GST-rTp47, GST-rTp17 e GST-rTp15, produzidos em fusão com glutationa S-transferase (GST em E. coli, foram analisados quanto ao potencial diagnóstico da sífilis pela técnica de Western blotting. Foram testadas 53 amostras, sendo 25 de pacientes em diferentes estágios clínicos da sífilis, com resultados positivos no teste treponêmico clássico; 25 amostras procedentes de doadores de banco de sangue, com sorologia negativa e 3 de pacientes com doença sexualmente transmissível não relacionado à sífilis. Todas as amostras de pacientes com sífilis apresentaram alta reatividade com o antígeno GST-rTp17. Quanto aos antígenos GST-rTp47 e GST-Tp15 verificou-se uma variação na presença ou na intensidade da reação em diferentes amostras de pacientes com sífilis, sem mostrar correlação com o estágio da doença. Nenhuma reatividade contra quaisquer desses antígenos foi observada com as amostras do grupo controle. Nenhuma das amostras testadas apresentaram reatividade com a GST purificada. A

  8. Expression of an enzymatically active Yb3 glutathione S-transferase in Escherichia coli and identification of its natural form in rat brain.

    Science.gov (United States)

    Abramovitz, M; Ishigaki, S; Felix, A M; Listowsky, I

    1988-11-25

    Glutathione S-transferases containing Yb3 subunits are relatively uncommon forms that are expressed in a tissue-specific manner and have not been identified unequivocally or characterized. A cDNA clone containing the entire coding sequence of Yb3 glutathione S-transferase mRNA was incorporated into a pIN-III expression vector used to transform Escherichia coli. A fusion Yb3-protein containing 14 additional amino acid residues at its N terminus was purified to homogeneity. Recombinant Yb3 was enzymatically active with both 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene as substrates but lacked glutathione peroxidase activity. Substrate specificity patterns of recombinant Yb3 were more limited than those of glutathione S-transferase isoenzymes containing Yb1- or Yb2-type subunits. Peptides corresponding to unique amino acid sequences of Yb3 as well as a peptide from a region of homology with Yb1 and Yb2 subunits were synthesized. These synthetic peptides were used to raise antibodies specific to Yb3 and others that cross-reacted with all Yb forms. Immunoblotting was utilized to identify the natural counterpart of recombinant Yb3 among rat glutathione transferases. Brain and testis glutathione S-transferases were rich in Yb3 subunits, but very little was found in liver or kidney. Physical properties, substrate specificities, and binding patterns of the recombinant protein paralleled properties of the natural isoenzyme isolated from brain.

  9. Uridine diphosphate glucuronide transferase 1A1FNx0128 gene polymorphism and the toxicity of irinotecan in recurrent and refractory small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Fan Yun

    2014-01-01

    Full Text Available Objective: The aim was to investigate the association between uridine diphosphate glucuronide transferase 1A1 (UGT1A1 gene promoter region polymorphism and irinotecan-related adverse effects and efficacy on recurrent and refractory small cell lung cancer (SCLC. Materials and Methods: A total of 31 patients with recurrent and refractory SCLC were enrolled in this study from June 2012 to August 2013 and received at least two cycles of single-agent irinotecan chemotherapy. The efficacy and adverse effects of irinotecan were evaluated. DNA was extracted from peripheral blood and direct sequencing method was employed to test UGT1A1FNx0128 polymorphism, thus analyzing the correlation between UGT1A1FNx0128 polymorphism and irinotecan-related side-effects and efficacy. Results: A total of 25 cases (80.6% were UGT1A1FNx0128 wild-type (TA 6 /(TA 6 ; 6 cases (19.4% were heterozygous mutant (TA 6 /(TA 7 , no homozygous mutant genotype (TA 7 /(TA 7 was found. The incidences of grade 3/4 neutropenia, diarrhea and thrombocytopenia were 35.5%, 25.8% and 22.6% in all the patients, respectively. The incidence of 3/4 adverse effects in patients with genotype (TA 6 /(TA 6 and heterozygous (TA 6 /(TA 7 had no statistical difference (P > 0.05 for all. The overall response rate (ORR was 32.3%. Median progression free survival (PFS and overall survival (OS were 4 months and 7.5 months in all patients, respectively. There was no statistical difference in ORR, PFS and OS between genotype (TA 6 /(TA 6 patients and heterozygous (TA 6 /(TA 7 patients. Conclusion: Irinotecan showed efficacy in patients with recurrent and refractory SCLC; UGT1A1 FNx01 28 polymorphism failed to predict the incidence of serious adverse effects and efficacy of irinotecan.

  10. Inhibition of rat, mouse, and human glutathione S-transferase by eugenol and its oxidation products

    NARCIS (Netherlands)

    Rompelberg, C.J.M.; Ploemen, J.H.T.M.; Jespersen, S.; Greef, J. van der; Verhagen, H.; Bladeren, P.J. van

    1996-01-01

    The irreversible and reversible inhibition of glutathione S-transferases (GSTs) by eugenol was studied in rat, mouse and man. Using liver cytosol of human, rat and mouse, species differences were found in the rate of irreversible inhibition of GSTs by eugenol in the presence of the enzyme

  11. Glutathione transferases are structural and functional outliers in the thioredoxin fold.

    Science.gov (United States)

    Atkinson, Holly J; Babbitt, Patricia C

    2009-11-24

    Glutathione transferases (GSTs) are ubiquitous scavengers of toxic compounds that fall, structurally and functionally, within the thioredoxin fold suprafamily. The fundamental catalytic capability of GSTs is catalysis of the nucleophilic addition or substitution of glutathione at electrophilic centers in a wide range of small electrophilic compounds. While specific GSTs have been studied in detail, little else is known about the structural and functional relationships between different groupings of GSTs. Through a global analysis of sequence and structural similarity, it was determined that variation in the binding of glutathione between the two major subgroups of cytosolic (soluble) GSTs results in a different mode of glutathione activation. Additionally, the convergent features of glutathione binding between cytosolic GSTs and mitochondrial GST kappa are described. The identification of these structural and functional themes helps to illuminate some of the fundamental contributions of the thioredoxin fold to catalysis in the GSTs and clarify how the thioredoxin fold can be modified to enable new functions.

  12. Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling.

    Science.gov (United States)

    Singhal, Sharad S; Singh, Sharda P; Singhal, Preeti; Horne, David; Singhal, Jyotsana; Awasthi, Sanjay

    2015-12-15

    4-Hydroxy-2-trans-nonenal (4HNE), one of the major end products of lipid peroxidation (LPO), has been shown to induce apoptosis in a variety of cell lines. It appears to modulate signaling processes in more than one way because it has been suggested to have a role in signaling for differentiation and proliferation. It has been known that glutathione S-transferases (GSTs) can reduce lipid hydroperoxides through their Se-independent glutathione-peroxidase activity and that these enzymes can also detoxify LPO end-products such as 4HNE. Available evidence from earlier studies together with results of recent studies in our laboratories strongly suggests that LPO products, particularly hydroperoxides and 4HNE, are involved in the mechanisms of stress-mediated signaling and that it can be modulated by the alpha-class GSTs through the regulation of the intracellular concentrations of 4HNE. We demonstrate that 4HNE induced apoptosis in various cell lines is accompanied with c-Jun-N-terminal kinase (JNK) and caspase-3 activation. Cells exposed to mild, transient heat or oxidative stress acquire the capacity to exclude intracellular 4HNE at a faster rate by inducing GSTA4-4 which conjugates 4HNE to glutathione (GSH), and RLIP76 which mediates the ATP-dependent transport of the GSH-conjugate of 4HNE (GS-HNE). The balance between formation and exclusion promotes different cellular processes - higher concentrations of 4HNE promote apoptosis; whereas, lower concentrations promote proliferation. In this article, we provide a brief summary of the cellular effects of 4HNE, followed by a review of its GST-catalyzed detoxification, with an emphasis on the structural attributes that play an important role in the interactions with alpha-class GSTA4-4. Taken together, 4HNE is a key signaling molecule and that GSTs being determinants of its intracellular concentrations, can regulate stress-mediated signaling, are reviewed in this article. Copyright © 2015 Elsevier Inc. All rights

  13. Stop Sale, Use, or Removal Order: WellPlant, Inc. and GST International, Inc.

    Science.gov (United States)

    Stop Sale, Use, or Removal Order (“Order”) issued by the U.S. Environmental Protection Agency Region 9 (EPA) to WelIPlant Inc. and GST International, Inc., concerning all pesticide products bearing the name Mold Manager and any alternate brand names.

  14. GST-PRIME: an algorithm for genome-wide primer design.

    Science.gov (United States)

    Leister, Dario; Varotto, Claudio

    2007-01-01

    The profiling of mRNA expression based on DNA arrays has become a powerful tool to study genome-wide transcription of genes in a number of organisms. GST-PRIME is a software package created to facilitate large-scale primer design for the amplification of probes to be immobilized on arrays for transcriptome analyses, even though it can be also applied in low-throughput approaches. GST-PRIME allows highly efficient, direct amplification of gene-sequence tags (GSTs) from genomic DNA (gDNA), starting from annotated genome or transcript sequences. GST-PRIME provides a customer-friendly platform for automatic primer design, and despite the relative simplicity of the algorithm, experimental tests in the model plant species Arabidopsis thaliana confirmed the reliability of the software. This chapter describes the algorithm used for primer design, its input and output files, and the installation of the standalone package and its use.

  15. The 341C/T polymorphism in the GSTP1 gene is associated with increased risk of oesophageal cancer

    Directory of Open Access Journals (Sweden)

    Dandara Collet

    2010-06-01

    Full Text Available Abstract Background The Glutathione S-transferases (GSTs comprise a group of enzymes that are critical in the detoxification of carcinogens. In this study the effects of polymorphisms in these genes on the risk of developing oesophageal squamous cell carcinoma (OSCC were evaluated in a hospital-based case-control study in two South African population groups. Genetic polymorphisms in GSTs were investigated in 245 patients and 288 controls samples by PCR-RFLP analysis. Results The GSTP1 341T variant was associated with significantly increased risk of developing OSCC as observed from the odds ratios for the GSTP1 341C/T and GSTP1 341T/T genotypes (OR = 4.98; 95%CI 3.05-8.11 and OR = 10.9; 95%CI 2.43-49.1, respectively when compared to the homozygous GSTP1 341C/C genotype. The risk for OSCC in the combined GSTP1 341C/T and T/T genotypes was higher in tobacco smokers (OR = 7.51, 95% CI 3.82-14.7, alcohol consumers (OR = 15.3, 95% CI 1.81-12.9 and those using wood or charcoal for cooking and heating (OR = 12.1, 95% CI 3.26-49 when compared to those who did not smoke tobacco, or did not consume alcohol or user other forms of fuel for cooking and heating. Despite the close proximity of the two GSTP1 SNPs (313A>G and 341C>T, they were not in linkage disequilibrium in these two population groups (D':1.0, LOD: 0.52, r2: 0.225. The GSTP1 313A/G polymorphism on the other hand, did not display any association with OSSC. The homozygous GSTT1*0 genotype was associated with increased risk of OSCC (OR = 1.71, 95%CI 1.18-2.46 while the homozygous GSTM1*0 genotype was associated with significantly decreased risk of OSCC in the Mixed Ancestry subjects (OR= 0.39, 95%CI 0.25-0.62. Conclusions This study shows that the risk of developing OSCC in the South African population can be partly explained by genetic polymorphisms in GST coding genes and their interaction with environmental factors such as tobacco smoke and alcohol consumption.

  16. Role of Metabolic Genes in Blood Aluminum Concentrations of Jamaican Children with and without Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Mohammad H. Rahbar

    2016-11-01

    Full Text Available Aluminum is a neurotoxic metal with known health effects in animals and humans. Glutathione-S-transferase (GST genes and enzymes play a major role in detoxification of several heavy metals. Besides a direct relationship with oxidative stress; aluminum decreases GST enzyme activities. Using data from 116 Jamaican children; age 2–8 years; with Autism Spectrum Disorder (ASD and 116 sex- and age-matched typically developing (TD children; we investigated the association of polymorphisms in three GST genes (GSTP1; GSTM1; and GSTT1 with mean blood aluminum concentrations in children with and without ASD. Using log-transformed blood aluminum concentration as the dependent variable in a linear regression model; we assessed the additive and interactive effects of ASD status and polymorphisms in the three aforementioned GST genes in relation to blood aluminum concentrations. Although none of the additive effects were statistically significant (all p > 0.16; we observed a marginally significant interaction between GSTP1 Ile105Val (rs1695 and ASD status (p = 0.07; even after controlling for parental education level and consumption of avocado; root vegetables; and tuna (canned fish. Our findings indicate a significantly lower (p < 0.03 adjusted geometric mean blood aluminum concentration for TD children who had the Val/Val genotype (14.57 µg/L; compared with those with Ile/Ile or Ile/Val genotypes who had an adjusted geometric mean of 23.75 µg/L. However; this difference was not statistically significant among the ASD cases (p = 0.76. Our findings indicate that ASD status may be a potential effect modifier when assessing the association between GSTP1 rs1695 and blood aluminum concentrations among Jamaican children. These findings require replication in other populations.

  17. Cys-X scanning for expansion of active-site residues and modulation of catalytic functions in a glutathione transferase.

    Science.gov (United States)

    Norrgård, Malena A; Hellman, Ulf; Mannervik, Bengt

    2011-05-13

    We propose Cys-X scanning as a semisynthetic approach to engineer the functional properties of recombinant proteins. As in the case of Ala scanning, key residues in the primary structure are identified, and one of them is replaced by Cys via site-directed mutagenesis. The thiol of the residue introduced is subsequently modified by alternative chemical reagents to yield diverse Cys-X mutants of the protein. This chemical approach is orthogonal to Ala or Cys scanning and allows the expansion of the repertoire of amino acid side chains far beyond those present in natural proteins. In its present application, we have introduced Cys-X residues in human glutathione transferase (GST) M2-2, replacing Met-212 in the substrate-binding site. To achieve selectivity of the modifications, the Cys residues in the wild-type enzyme were replaced by Ala. A suite of simple substitutions resulted in a set of homologous Met derivatives ranging from normethionine to S-heptyl-cysteine. The chemical modifications were validated by HPLC and mass spectrometry. The derivatized mutant enzymes were assayed with alternative GST substrates representing diverse chemical reactions: aromatic substitution, epoxide opening, transnitrosylation, and addition to an ortho-quinone. The Cys substitutions had different effects on the alternative substrates and differentially enhanced or suppressed catalytic activities depending on both the Cys-X substitution and the substrate assayed. As a consequence, the enzyme specificity profile could be changed among the alternative substrates. The procedure lends itself to large-scale production of Cys-X modified protein variants.

  18. Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Jena, K.B.; Chainy, G.B.N.

    peroxidation (LPX). Increased activities of antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione-S-transferase (GST) both in gills and digestive glands under long...

  19. Homogentisate solanesyl transferase (HST) cDNA’s in maize

    Science.gov (United States)

    Maize white seedling 3 (w3) has served as a model albino-seedling mutant since its discovery in 1923. We show that the w3 phenotype is caused by disruptions in homogentisate solanesyl transferase (HST), an enzyme that catalyzes the committed step in plastoquinone-9 (PQ9) biosynthesis. This reaction ...

  20. Regular voluntary exercise cures stress-induced impairment of cognitive function and cell proliferation accompanied by increases in cerebral IGF-1 and GST activity in mice.

    Science.gov (United States)

    Nakajima, Sanae; Ohsawa, Ikuroh; Ohta, Shigeo; Ohno, Makoto; Mikami, Toshio

    2010-08-25

    Chronic stress impairs cognitive function and hippocampal neurogenesis. This impairment is attributed to increases in oxidative stress, which result in the accumulation of lipid peroxide. On the other hand, voluntary exercise enhances cognitive function, hippocampal neurogenesis, and antioxidant capacity in normal animals. However, the effects of voluntary exercise on cognitive function, neurogenesis, and antioxidants in stressed mice are unclear. This study was designed to investigate whether voluntary exercise cures stress-induced impairment of cognitive function accompanied by improvement of hippocampal neurogenesis and increases in antioxidant capacity. Stressed mice were exposed to chronic restraint stress (CRS), which consisted of 12h immobilization daily and feeding in a small cage, for 8 weeks. Exercised mice were allowed free access to a running wheel during their exposure to CRS. At the 6th week, cognitive function was examined using the Morris water maze (MWM) test. Daily voluntary exercise restored stress-induced impairment of cognitive function and the hippocampal cell proliferation of newborn cells but not cell survival. Voluntary exercise increased insulin-like growth factor 1 (IGF-1) protein and mRNA expression in the cerebral cortex and liver, respectively. In addition, CRS resulted in a significant increase in the number of 4-hydrosynonenal (4-HNE)-positive cells in the hippocampal dentate gyrus; whereas, voluntary exercise inhibited it and enhanced glutathione s-transferases (GST) activity in the brain. These findings suggest that voluntary exercise attenuated the stress-induced impairment of cognitive function accompanied by improvement of cell proliferation in the dentate gyrus. This exercise-induced improvement was attributed to exercise-induced enhancement of IGF-1 protein and GST activity in the brain. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Caractérisation biochimique et fonctionnelle de glutathion-S-transferases (GSTs) chez Phanerochaete chrysosporium

    OpenAIRE

    Anak Ngadin , Andrew

    2011-01-01

    Phanerochaete chrysosporium is a ligninolytic fungus widely studied because of its capacities to degrade wood and xenobiotics through an extracellular enzymatic system. Its genome has been sequenced and has provided researchers with a complete inventory of the predicted proteins produced by this organism. This has allowed the description of many protein superfamilies. Among them, Glutathione S-transferases (GSTs) constitute a complex and widespread superfamily classified as enzymes of seconda...

  2. Oxidative stress and antioxidant indices of marine alga Porphyra vietnamensis

    Digital Repository Service at National Institute of Oceanography (India)

    Pise, N.M.; Gaikwad, D.K.; Jagtap, T.G.

    stress markers. Antioxidant defences were measured as catalase (CAT), glutathione S-transferase (GST) and ascorbic acid (AsA), in order to understand their dissimilarity with respect to environmental conditions (pollution levels) from selective locations...

  3. Antioxidant responses in gills and digestive gland of oyster Crassostrea madrasensis (Preston) under lead exposure

    Digital Repository Service at National Institute of Oceanography (India)

    Shenai-Tirodkar, P.S.; Gauns, M.; Mujawar, M.W.A.; Ansari, Z.A.

    madrasensis against lead (Pb) exposure under laboratory conditions. Antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione-s-transferase (GST) and oxidative damage parameter lipid peroxidation (LPO) were measured in the gills...

  4. Humanizing π-class glutathione S-transferase regulation in a mouse model alters liver toxicity in response to acetaminophen overdose.

    Directory of Open Access Journals (Sweden)

    Matthew P Vaughn

    Full Text Available Glutathione S-transferases (GSTs metabolize drugs and xenobiotics. Yet despite high protein sequence homology, expression of π-class GSTs, the most abundant of the enzymes, varies significantly between species. In mouse liver, hepatocytes exhibit high mGstp expression, while in human liver, hepatocytes contain little or no hGSTP1 mRNA or hGSTP1 protein. π-class GSTs are known to be critical determinants of liver responses to drugs and toxins: when treated with high doses of acetaminophen, mGstp1/2+/+ mice suffer marked liver damage, while mGstp1/2-/- mice escape liver injury.To more faithfully model the contribution of π-class GSTs to human liver toxicology, we introduced hGSTP1, with its exons, introns, and flanking sequences, into the germline of mice carrying disrupted mGstp genes. In the resultant hGSTP1+mGstp1/2-/- strain, π-class GSTs were regulated differently than in wild-type mice. In the liver, enzyme expression was restricted to bile duct cells, Kupffer cells, macrophages, and endothelial cells, reminiscent of human liver, while in the prostate, enzyme production was limited to basal epithelial cells, reminiscent of human prostate. The human patterns of hGSTP1 transgene regulation were accompanied by human patterns of DNA methylation, with bisulfite genomic sequencing revealing establishment of an unmethylated CpG island sequence encompassing the gene promoter. Unlike wild-type or mGstp1/2-/- mice, when hGSTP1+mGstp1/2-/- mice were overdosed with acetaminophen, liver tissues showed limited centrilobular necrosis, suggesting that π-class GSTs may be critical determinants of toxin-induced hepatocyte injury even when not expressed by hepatocytes.By recapitulating human π-class GST expression, hGSTP1+mGstp1/2-/- mice may better model human drug and xenobiotic toxicology.

  5. Role of XPC, XPD, XRCC1, GSTP genetic polymorphisms and Barrett’s esophagus in a cohort of Italian subjects. A neural network analysis

    Directory of Open Access Journals (Sweden)

    Tarlarini C

    2012-08-01

    Full Text Available Claudia Tarlarini,1 Silvana Penco,1 Massimo Conio,2 Enzo Grossi3 On behalf of the Barrett Italian Study Group 1Department of Laboratory Medicine, Medical Genetics, Niguarda Ca’ Granda Hospital, Milan, Italy; 2Department of Gastroenterology, General Hospital, San Remo, Italy; 3Medical Department, Bracco Imaging SpA, Milan, ItalyBackground: Barrett’s esophagus (BE, a metaplastic premalignant disorder, represents the primary risk factor for the development of esophageal adenocarcinoma. Chronic gastroesophageal reflux disease and central obesity have been associated with BE and esophageal adenocarcinoma, but relatively little is known about the specific genes that confer susceptibility to BE carcinogenesis.Methods: A total of 74 patients with BE and 67 controls coming from six gastrointestinal Italian units were evaluated for six polymorphisms in four genes: XPC, XPD nucleotide excision repair (NER genes, XRCC1 (BER gene, and glutathione S-transferase P1. Smoking status was analyzed together with the genetic data. Statistical analysis was performed through Artificial Neural Networks.Results: Distributions of sex, smoking history, and polymorphisms among BE cases and controls did not show statistically significant differences. The r-value from linear correlation allowed us to identify possible protective factors as well as possible risk factors. The application of advanced intelligent systems allowed for the selection of a subgroup of nine variables. Artificial Neural Networks applied on the final data set reached mean global accuracy of 60%, reaching as high as 65.88%.Conclusion: We report here results from an exploratory study. Results from this study failed to find an association among the tested single nucleotide polymorphisms and BE phenotype through classical statistical methods. On the contrary, advanced intelligent systems are really able to handle the disease complexity, not treating the data with reductionist approaches unable to detect

  6. Solubilization and purification of Escherichia coli expressed GST ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... expressed GST-fusion human vascular endothelial growth factors ... prognosis, monitoring of therapy and diagnosis. ... Alternative splicing of a single ..... Distamycin-A derivatives potentiate tumor–necrosis-factor activity via.

  7. The association between glutathione S-transferase P1 ...

    African Journals Online (AJOL)

    Background: Asthma is an inflammatory airways disease caused by an interaction between susceptibility genes and a diverse group of environmental factors. The GSTP1 Ile105Val polymorphism has been associated with asthma in several studies. Objective: To examine the hypothesis that polymorphism in the GSTP1 ...

  8. Sanitary survey af produktionsområder i Løgstør Bredning

    DEFF Research Database (Denmark)

    Larsen, Martin Mørk; Jakobsen, Hans Henrik; Göke, Cordula

    with the algae area A6. For editorial reasons, the production areas are regarded under one term “Løgstør Broads’, knowing that the production areas also include other bordering geographical areas. The covered production areas within Løgstør Broads are marked as A6 The report recommends a microbiological sampling...

  9. Transferases in Polymer Chemistry

    NARCIS (Netherlands)

    van der Vlist, Jeroen; Loos, Katja; Palmans, ARA; Heise, A

    2010-01-01

    Transferases are enzymes that catalyze reactions in which a group is transferred from one compound to another. This makes these enzymes ideal catalysts for polymerization reactions. In nature, transferases are responsible for the synthesis of many important natural macromolecules. In synthetic

  10. Differential transcription of cytochrome P450s and glutathione S transferases in DDT-susceptible and resistant Drosophila melanogaster strains in response to DDT and oxidative stress

    Science.gov (United States)

    Metabolic DDT resistance in Drosophila melanogaster has previously been associated with constitutive over-transcription of cytochrome P450s. Increased P450 activity has also been associated with increased oxidative stress. In contrast, over-transcription of glutathione S transferases (GSTs) has been...

  11. Employment of colorimetric enzyme assay for monitoring expression and solubility of GST fusion proteins targeted to inclusion bodies.

    Science.gov (United States)

    Mačinković, Igor S; Abughren, Mohamed; Mrkic, Ivan; Grozdanović, Milica M; Prodanović, Radivoje; Gavrović-Jankulović, Marija

    2013-12-01

    High levels of recombinant protein expression can lead to the formation of insoluble inclusion bodies. These complex aggregates are commonly solubilized in strong denaturants, such as 6-8M urea, although, if possible, solubilization under milder conditions could facilitate subsequent refolding and purification of bioactive proteins. Commercially available GST-tag assays are designed for quantitative measurement of GST activity under native conditions. GST fusion proteins accumulated in inclusion bodies are considered to be undetectable by such assays. In this work, solubilization of recombinantly produced proteins was performed in 4M urea. The activity of rGST was assayed in 2M urea and it was shown that rGST preserves 85% of its activity under such denaturing conditions. A colorimetric GST activity assay with 1-chloro-2, 4-dinitrobenzene (CDNB) was examined for use in rapid detection of expression targeted to inclusion bodies and for the identification of inclusion body proteins which can be solubilized in low concentrations of chaotropic agents. Applicability of the assay was evaluated by tracking protein expression of two GST-fused allergens of biopharmaceutical value in E. coli, GST-Der p 2 and GST-Mus a 5, both targeted to inclusion bodies. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    Science.gov (United States)

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-07-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did not stimulate GPEI-mediated gene expression. On the other hand, the antioxidant reagents butylhydroxyanisole and t-butylhydroquinone, stimulated GPEI-mediated gene expression, but the level of GSTP1 mRNA was not elevated. Our observations suggest that EGF and TGF alpha induce GSTP1 by the same signal transduction pathway as PenCB. Since the sequence of GPEI is similar to that of the antioxidant responsive element (ARE), some factors which bind to ARE might play a role in GPEI-mediated gene expression.

  13. Modulation of antioxidant defences in digestive gland of Perna viridis (L.), on mercury exposures

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Jena, K.B.; Chainy, G.B.N.

    by defense sys- tems. Antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione S-transferase (GST) and non enzymatic antioxidant molecules such as reduced glutathione (GSH...- sures include lipid peroxidation (LPX), protein carbonyl (PC), hydrogen peroxide (H 2 O 2 ), GSH, ascorbic acid (ASA) and antioxidant enzymes such as SOD, CAT, GPX, GR and GST. In addition DNA strand breaks, as an index of genotoxic stress and MT...

  14. Expression and evaluation of IgE-binding capacity of recombinant Pacific mackerel parvalbumin

    OpenAIRE

    Hamada, Yuki; Tanaka, Hiroyuki; Sato, Ayako; Ishizaki, Shoichiro; Nagashima, Yuji; Shiomi, Kazuo

    2004-01-01

    Background: Parvalbumin is the major and cross-reactive allergen in fish. Sufficient amounts of IgE-reactive recombinant fish parvalbumin are needed for diagnosis and immunotherapy of fish allergy. Methods: A DNA fragment corresponding to parvalbumin of the Pacific mackerel Scomber japonicus was synthesized and cloned into the expression vector pGEX-6p-3 to produce glutathione S-transferase (GST)-fusion parvalbumin in Escherichia coli. The GST-free recombinant parvalbumin was purified usin...

  15. Assessment of oxidative stress indices in a marine macro brown alga Padina tetrastromatica (Hauck) from comparable polluted coastal regions of the Arabian Sea, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Maharana, D.; Jena, K.B.; Pise, N.M.; Jagtap, T.G.

    , and antioxidant defences were measured as catalase (CAT), glutathione S-transferase (GST) and ascorbic acid (AsA), in order to understand their dissimilarity with respect to pollution levels from selective locations along the central west coast of India...

  16. DICHLOROACETATE TOXICOKINETICS AND DISRUPTION OF TYROSINE CATABOLISM IN B6C3F1 MICE: DOSE RESPONSE RELATIONSHIPS AND AGE AS A MODIFYING FACTOR. (R825954)

    Science.gov (United States)

    Dichloroacetate (DCA) is a rodent carcinogen commonly found in municipal drinking water supplies. Toxicokinetic studies have established that elimination of DCA is controlled by liver metabolism, which occurs by the cytosolic enzyme glutathione-S-transferase-zeta (GST-z...

  17. Hibiscus cannabinus feruloyl-coa:monolignol transferase

    Science.gov (United States)

    Wilkerson, Curtis; Ralph, John; Withers, Saunia; Mansfield, Shawn D.

    2016-11-15

    The invention relates to isolated nucleic acids encoding a feruloyl-CoA:monolignol transferase and feruloyl-CoA:monolignol transferase enzymes. The isolated nucleic acids and/or the enzymes enable incorporation of monolignol ferulates into the lignin of plants, where such monolignol ferulates include, for example, p-coumaryl ferulate, coniferyl ferulate, and/or sinapyl ferulate. The invention also includes methods and plants that include nucleic acids encoding a feruloyl-CoA:monolignol transferase enzyme and/or feruloyl-CoA:monolignol transferase enzymes.

  18. GST(phi) gene from Macrophyte Lemna minor is involved in cadmium exposure responses

    Institute of Scientific and Technical Information of China (English)

    CHEN Shihua; CHEN Xin; DOU Weihong; WANG Liang; YIN Haibo; GUO Shanli

    2016-01-01

    Reactive oxygen species (ROS) scavengers,including ascorbate peroxidase,superoxide dismutase,catalase and peroxidase,are the most commonly used biomarkers in assessing an organisms' response to many biotic and abiotic stresses.In this study,we cloned an 866 bp GST(phi) gene in Lemna minor and investigated its characteristics,expression and enzymatic activities under 75 μmol/L cadmium concentrations in comparison with other ROS scavengers.GST(phi) gene expression patterns were similar to those of other scavengers of ROS.This suggests that GST(phi) might be involved in responding to heavy metal (cadmium) stress and that its expression level could be used as a bio-indicator in monitoring cadmium pollution.

  19. GST ( phi) gene from Macrophyte Lemna minor is involved in cadmium exposure responses

    Science.gov (United States)

    Chen, Shihua; Chen, Xin; Dou, Weihong; Wang, Liang; Yin, Haibo; Guo, Shanli

    2016-03-01

    Reactive oxygen species (ROS) scavengers, including ascorbate peroxidase, superoxide dismutase, catalase and peroxidase, are the most commonly used biomarkers in assessing an organisms' response to many biotic and abiotic stresses. In this study, we cloned an 866 bp GST ( phi) gene in Lemna minor and investigated its characteristics, expression and enzymatic activities under 75 μmol/L cadmium concentrations in comparison with other ROS scavengers. GST ( phi) gene expression patterns were similar to those of other scavengers of ROS. This suggests that GST ( phi) might be involved in responding to heavy metal (cadmium) stress and that its expression level could be used as a bio-indicator in monitoring cadmium pollution.

  20. Oxidative stress enzyme and histopathological lesions in Colossoma macropomum (pisces, ariidae) for environmental impact assessment

    Science.gov (United States)

    Andrade, Ticianne de Sousa de Oliveira Mota; Sousa, Debora Batista Pinheiro; Dantas, Janaina Gomes; Castro, Jonatas da Silva; Neta, Raimunda Nonata Fortes Carvalho

    2015-12-01

    This study used oxidative stress enzyme (Glutathione S-Transferase and Catalase), histopathological lesions (Branchial lesions) and biometric data in the freshwater fish tambaqui, Colossoma macropomum, to assess environmental impacts in an Environmental Protection Area at São Luis, Brazil. Fish were sampled from two locations (A1 = contaminated area and A2 = reference site) within the protected area on four occasions. The activity of catalase (CAT) and glutathione S-transferase (GST) in C. macropomum was compared with biometric data and histopathological lesions. Results have shown that biometric data decreased significantly in fish (p<0.05) at the contaminated site. The activity of CAT was higher in fish specifically caught in A1. A significant difference was observed in the GST activity in the liver of C. macropomum when comparing fish from the contaminated site and those from the reference site (p<0.05).

  1. Effect of long term selenium yeast intervention on activity and gene expression of antioxidant and xenbiotic metabolising enzymes in healthy elderly volunteers from the Danish Prevention of Cancer by Intervention by Selenium (PRECISE) Pilot Study

    DEFF Research Database (Denmark)

    Ravn-Haren, Gitte; Krath, Britta; Overvad, Kim

    2008-01-01

    Numerous mechanisms have been proposed to explain the anti-carcinogenic effects of Se, among them altered carcinogen metabolism. We investigated the effect of Se supplementation on activities of glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione S-transferase (GST...

  2. Low Resolution Structure of RAR1-GST-Tag Fusion Protein in Solution

    International Nuclear Information System (INIS)

    Taube, M.; Kozak, M.; Jarmolowski, A.

    2010-01-01

    RAR1 is a protein required for resistance mediated by many R genes and function upstream of signaling pathways leading to H 2 O 2 accumulation. The structure and conformation of RAR1-GST-Tag fusion protein from barley (Hordeum vulgare) in solution was studied by the small angle scattering of synchrotron radiation. It was found that the dimer of RAR1-GST-Tag protein is characterized in solution by radius of gyration R G = 6.19 nm and maximal intramolecular vector D max = 23 nm. On the basis of the small angle scattering of synchrotron radiation SAXS data two bead models obtained by ab initio modeling are proposed. Both models show elongated conformations. We also concluded that molecules of fusion protein form: dimers in solution via interaction of GST domains. (authors)

  3. Evaluation of antioxidant and antimicrobial activity of seaweed ( Sargassum sp.) extract: A study on inhibition of glutathione-S-transferase Activity

    Digital Repository Service at National Institute of Oceanography (India)

    Patra, J.K.; Rath, S.K.; Jena, K.B.; Rathod, V.K.; Thatoi, H.

    In the present study, the free radical scavenging potentials (DPPH radical and hydroxyl radical), inhibition of lipid peroxidation, and glutathione-S-transferase and antimicrobial properties of Sargassum sp. extract were investigated. The tested...

  4. Accumulation and detoxication responses of the gastropod Lymnaea stagnalis to single and combined exposures to natural (cyanobacteria) and anthropogenic (the herbicide RoundUp® Flash) stressors

    DEFF Research Database (Denmark)

    Lance, Emilie; Desprat, J.; Holbech, B. F.

    2016-01-01

    , and ii) activities of anti-oxidant (catalase CAT) and biotransformation (glutathione-S-transferase GST) enzymes. During the intoxication, the cyanobacterial exposure induced an early increase of CAT activity, independently of the MC content, probably related to the production of secondary cyanobacterial...

  5. Genetic Polymorphism Of Glutathione-S-Transferase And ...

    African Journals Online (AJOL)

    Chronic tobacoo smoking is a major risk factor in the development of. COPD. However, it is estimated that only 10-20% of chronic heavy smokers will develop symptomatic COPD. This indicates the possible contribution of environmental or genetic cofactors to the development of COPD in smokers. The present work aimed ...

  6. Molecular characterization of kappa class glutathione S-transferase from the disk abalone (Haliotis discus discus) and changes in expression following immune and stress challenges.

    Science.gov (United States)

    Sandamalika, W M Gayashani; Priyathilaka, Thanthrige Thiunuwan; Liyanage, D S; Lee, Sukkyoung; Lim, Han-Kyu; Lee, Jehee

    2018-06-01

    Glutathione S-transferase (GST; EC 2.5.1.18) isoenzymes represent a complex group of proteins that are involved in phase II detoxification in several organisms. In this study, GST kappa (GSTκ) from the disk abalone (Haliotis discus discus; AbGSTκ) was characterized at both the transcriptional and functional levels to determine its potential capacity to perform as a detoxification agent under conditions of different stress. The predicted AbGSTκ protein consists of 227 amino acids, with a predicted molecular weight of 25.6 kDa and a theoretical isoelectric point (pI) of 7.78. In silico analysis reveals that AbGSTκ is a disulfide bond formation protein A (DsbA), consisting of a thioredoxin domain, GSH binding sites (G-sites), and a catalytic residue. In contrast, no hydrophobic ligand binding site (H-site), or signal peptides, were detected. AbGSTκ showed the highest sequence identity with the orthologue from pufferfish (Takifugu obscurus) (60.0%). In a phylogenetic tree, AbGSTκ clustered closely together with other fish GSTκs, and was evolutionarily distanced from other cytosolic GSTs. The predicted three-dimensional structure clearly demonstrates that the dimer adopts a butterfly-like shape. A tissue distribution analysis revealed that GSTκ was highly expressed in the digestive tract, suggesting it has detoxification ability. Depending on the tissue and time, AbGSTκ showed different expression patterns, and levels of expression, following challenge of the abalone with immune stimulants. Enzyme kinetics of the purified recombinant proteins demonstrated its conjugating ability using 1-Chloro-2,4-dinitrobenzene (CDNB) and glutathione (GSH) as substrates, and suggested it has a low affinity for both substrates. The optimum temperature and pH for the rAbGSTκ GSH: CDNB conjugating activity were found to be 35 °C and pH 8, respectively indicating that the abalone is well adapted to a wide range of environmental conditions. Cibacron blue (100 μM) was

  7. An integrated approach to study the biomarker responses in marine gastropod Nerita chamaeleon environmentally exposed to polycyclic aromatic hydrocarbons

    Digital Repository Service at National Institute of Oceanography (India)

    Bhagat, J.; Sarkar, A.; Deepti, V.; Singh, V.; Raiker, L.; Ingole, B.S.

    are well documented in marine organisms (Niyogi et al., 2001a, b; Pan et al., 2006). Among the oxidative stress biomarkers superoxide dismutase (SOD), catalase (CAT), Glutathione S- transferase (GST), and lipid peroxidation (LPO) have been widely used... information regarding mechanisms of biological effects of contaminants (Marigómez et al., 2013). Beliaeff and Burgeot (2002) were the first to construct star plot using IBR values in flounder Platichthys flesus using EROD, GST, CAT, AChE enzymatic...

  8. SWOC ANALYSIS OF GOODS AND SERVICES TAX (GST): IMPLEMENTATION IN INDIA

    OpenAIRE

    Raghavendra Holla

    2016-01-01

    Goods and Services Tax (GST) is a type of indirect tax and it is one of biggest reform in Indian tax structure. The Goods and Service Tax Bill or GST Bill, officially known as The Constitution (One Hundred and Twenty-Second Amendment) Bill, 2014. 16 years wait is almost finished when Rajya Sabha and Lokh Sabha passed ’The Goods and Service Tax Bill’ in the month of August, 2017. Good and Service tax is also known as ‘National Value Added Tax’. India is a developing country; the main source fo...

  9. Induction of glutathione S-transferase placental form positive foci in liver and epithelial hyperplasia in urinary bladder, but no tumor development in male Fischer 344 rats treated with monomethylarsonic acid for 104 weeks

    International Nuclear Information System (INIS)

    Shen Jun; Wanibuchi, Hideki; Salim, Elsayed I.; Wei Min; Doi, Kenichiro; Yoshida, Kaoru; Endo, Ginji; Morimura,; Fukushima, Shoji

    2003-01-01

    The carcinogenicity of monomethylarsonic acid (MMA(V)), a major metabolite of inorganic arsenics in human and experimental animals, was investigated in male Fischer 344 rats. A total of 129 rats at 10 weeks of age were randomly divided into three groups and received drinking water containing MMA(V) at doses of 0 (Control), 50, and 200 ppm ad libitum for 104 weeks. No significant differences were found between the control and the MMA(V)-treated groups regarding clinical signs, mortality, hematological, and serum biochemistry findings. Quantitative analysis of glutathione S-transferase placental form (GST-P) positive foci in liver revealed a significant increase of numbers and areas in the 200 ppm MMA(V)-treated group. In the urinary bladder MMA(V) induced simple hyperplasia and significantly elevated the proliferating cell nuclear antigen (PCNA)-positive index in the urothelium. A variety of tumors developed in rats of all groups, including the controls, but all were histologically similar to those known to occur spontaneously in F344 rats and there were no significant differences among the groups. Thus, it could be concluded that, under the present experimental conditions, MMA(V) induced lesions in the liver and urinary bladder, but did not cause tumor development in male F344 rats even after 2 years exposure

  10. Large-scale determination of sequence, structure, and function relationships in cytosolic glutathione transferases across the biosphere.

    Science.gov (United States)

    Mashiyama, Susan T; Malabanan, M Merced; Akiva, Eyal; Bhosle, Rahul; Branch, Megan C; Hillerich, Brandan; Jagessar, Kevin; Kim, Jungwook; Patskovsky, Yury; Seidel, Ronald D; Stead, Mark; Toro, Rafael; Vetting, Matthew W; Almo, Steven C; Armstrong, Richard N; Babbitt, Patricia C

    2014-04-01

    The cytosolic glutathione transferase (cytGST) superfamily comprises more than 13,000 nonredundant sequences found throughout the biosphere. Their key roles in metabolism and defense against oxidative damage have led to thousands of studies over several decades. Despite this attention, little is known about the physiological reactions they catalyze and most of the substrates used to assay cytGSTs are synthetic compounds. A deeper understanding of relationships across the superfamily could provide new clues about their functions. To establish a foundation for expanded classification of cytGSTs, we generated similarity-based subgroupings for the entire superfamily. Using the resulting sequence similarity networks, we chose targets that broadly covered unknown functions and report here experimental results confirming GST-like activity for 82 of them, along with 37 new 3D structures determined for 27 targets. These new data, along with experimentally known GST reactions and structures reported in the literature, were painted onto the networks to generate a global view of their sequence-structure-function relationships. The results show how proteins of both known and unknown function relate to each other across the entire superfamily and reveal that the great majority of cytGSTs have not been experimentally characterized or annotated by canonical class. A mapping of taxonomic classes across the superfamily indicates that many taxa are represented in each subgroup and highlights challenges for classification of superfamily sequences into functionally relevant classes. Experimental determination of disulfide bond reductase activity in many diverse subgroups illustrate a theme common for many reaction types. Finally, sequence comparison between an enzyme that catalyzes a reductive dechlorination reaction relevant to bioremediation efforts with some of its closest homologs reveals differences among them likely to be associated with evolution of this unusual reaction

  11. Large-scale determination of sequence, structure, and function relationships in cytosolic glutathione transferases across the biosphere.

    Directory of Open Access Journals (Sweden)

    Susan T Mashiyama

    2014-04-01

    Full Text Available The cytosolic glutathione transferase (cytGST superfamily comprises more than 13,000 nonredundant sequences found throughout the biosphere. Their key roles in metabolism and defense against oxidative damage have led to thousands of studies over several decades. Despite this attention, little is known about the physiological reactions they catalyze and most of the substrates used to assay cytGSTs are synthetic compounds. A deeper understanding of relationships across the superfamily could provide new clues about their functions. To establish a foundation for expanded classification of cytGSTs, we generated similarity-based subgroupings for the entire superfamily. Using the resulting sequence similarity networks, we chose targets that broadly covered unknown functions and report here experimental results confirming GST-like activity for 82 of them, along with 37 new 3D structures determined for 27 targets. These new data, along with experimentally known GST reactions and structures reported in the literature, were painted onto the networks to generate a global view of their sequence-structure-function relationships. The results show how proteins of both known and unknown function relate to each other across the entire superfamily and reveal that the great majority of cytGSTs have not been experimentally characterized or annotated by canonical class. A mapping of taxonomic classes across the superfamily indicates that many taxa are represented in each subgroup and highlights challenges for classification of superfamily sequences into functionally relevant classes. Experimental determination of disulfide bond reductase activity in many diverse subgroups illustrate a theme common for many reaction types. Finally, sequence comparison between an enzyme that catalyzes a reductive dechlorination reaction relevant to bioremediation efforts with some of its closest homologs reveals differences among them likely to be associated with evolution of this

  12. Mapping important nucleotides in the peptidyl transferase centre of 23 S rRNA using a random mutagenesis approach

    DEFF Research Database (Denmark)

    Porse, B T; Garrett, R A

    1995-01-01

    Random mutations were generated in the lower half of the peptidyl transferase loop in domain V of 23 S rRNA from Escherichia coli using a polymerase chain reaction (PCR) approach, a rapid procedure for identifying mutants and a plasmid-based expression system. The effects of 21 single-site mutati...

  13. Analysis of Polymorphisms in Genes (AGT, MTHFR, GPIIIa, and GSTP1 Associated with Hypertension, Thrombophilia and Oxidative Stress in Mestizo and Amerindian Populations of México

    Directory of Open Access Journals (Sweden)

    Rocio Juárez-Velázquez

    2010-01-01

    Full Text Available Several polymorphisms related to hypertension, thrombophilia, and oxidative stress has been associated with the development of cardiovascular disease. We analyzed the frequency of M235T angiotensinogen (AGT, A222V 5,10 methylenete-trahydrofolate reductase (MTHFR, L33P glycoprotein IIIa (GPIIIa, and I105V glutathione S-transferase P1 (GSTP1 polymorphisms in 285 individuals belonging to Mexican-Mestizo and five Amerindian population from México, by real time PCR allelic discrimination. Allele and genotype frequencies were compared using χ2 tests.

  14. Salicylic Acid Alters Antioxidant and Phenolics Metabolism in ...

    African Journals Online (AJOL)

    Key words: Antioxidant enzymes; Catharanthus roseus; indole alkaloids; phenolic metabolism; salicylic acid; salinity stress. Abbreviations: CAT - catalase; Chl - chlorophyll; Car - carotenoids; DTNB - 5,5-dithiobis-2-nitrobenzoic acid; GR - glutathione reductase; GST - Glutathione-S-transferase; H2O2 - hydrogen peroxide; ...

  15. Hepatic Antioxidant, Oxidative Stress And Histopathological ...

    African Journals Online (AJOL)

    Hepatic Antioxidant, Oxidative Stress And Histopathological Changes Induced By Nicotine In A Gender Based Study In Adult Rats. ... Antioxidant status was assessed in liver by measuring the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and ...

  16. Analysis of Photoconductive Properties in Ge2Sb2Te5 (GST) Chalcogenide Films for Applications in Novel Electronics

    National Research Council Canada - National Science Library

    Chezem, John R

    2006-01-01

    ... of coupling the GST with photosensitive DNA material for novel optical device applications. Modeling and testing of GST were researched with the approach that GST would react as a resistive mechanism through thermal manipulation...

  17. GSTM1, GSTP1, and GSTT1 genetic variability in Turkish and worldwide populations.

    Science.gov (United States)

    Karaca, Sefayet; Karaca, Mehmet; Cesuroglu, Tomris; Erge, Sema; Polimanti, Renato

    2015-01-01

    Glutathione S-transferase (GST) variants have been widely investigated to better understand their role in several pathologic conditions. To our knowledge, no data about these genetic polymorphisms within the Turkish population are currently available. The aim of this study was to analyze GSTM1 positive/null, GSTT1 positive/null, GSTP1*I105V (rs1695), and GSTP1*A114V (rs1138272) variants in the general Turkish population, to provide information about its genetic diversity, and predisposition to GST-related diseases. Genotyping was performed in 500 Turkish individuals using the Sequenom MassARRAY platform. A comparative analysis was executed using the data from the HapMap and Human Genome Diversity Projects (HGDP). Sequence variation was deeply explored using the Phase 1 data of the 1,000 Genomes Project. The variability of GSTM1, GSTT1, and GSTP1 polymorphisms in the Turkish population was similar to that observed in Central Asian, European, and Middle Eastern populations. The high linkage disequilibrium between GSTP1*I105V and GSTP1*A114V in these populations may have a confounding effect on GSTP1 genetic association studies. In analyzing GSTM1, GSTT1, and GSTP1 sequence variation, we observed other common functional variants that may be candidates for associated studies of diseases related to GST genes (e.g., cancer, cardiovascular disease, and allergy). This study provides novel data about GSTM1 positive/null, GSTT1 positive/null, GSTP1*I105V, and GSTP1*A114V variants in the Turkish population, and other functional variants that may affect GSTM1, GSTT1, and GSTP1 functions among worldwide populations. This information can assist in the design of future genetic association studies investigating oxidative stress-related diseases. © 2014 Wiley Periodicals, Inc.

  18. Earthworm tolerance to residual agricultural pesticide contamination

    DEFF Research Database (Denmark)

    Givaudan, Nicolas; Binet, Françoise; Le Bot, Barbara

    2014-01-01

    of soluble glutathione-S-transferases (sGST) and catalase increased with soil pesticide contamination in A. caliginosa. Pesticide stress was reflected in depletion of energy reserves in A. chlorotica. Acute exposure of pre-adapted and naïve A. caliginosa to pesticides (fungicide Opus ®, 0.1 μg active...

  19. Urinary cystatin C as a renal biomarker and its immunohistochemical localization in anti-GBM glomerulonephritis rats.

    Science.gov (United States)

    Togashi, Yuko; Imura, Naoko; Miyamoto, Yohei

    2013-11-01

    The usefulness of urinary cystatin C for the early detection of renal damage in anti-glomerular basement membrane (GBM) glomerulonephritis rats was investigated and compared to other biomarkers (β2-microglobulin, calbindin, clusterin, epidermal growth factor (EGF), alpha-glutathione S-transferase (GST-α), mu-glutathione S-transferase (GST-μ), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), osteopontin, tissue inhibitor of metalloprotease-1 (TIMP-1), and vascular endothelial growth factor (VEGF)). Urinary levels of cystatin C increased in anti-GBM glomerulonephritis rats, whereas the conventional markers, plasma creatinine and UN did not, demonstrating its usefulness for the early detection of renal damage associated with anti-GBM glomerulonephritis. As well as cystatin C, urinary β2-microglobulin, clusterin, GST-α, GST-μ, KIM-1, and NGAL also had the potential to detect renal damage associated with anti-GBM glomerulonephritis. Furthermore, the immunohistochemical localization of cystatin C in the kidney was examined. Cystatin C expression was mainly observed in the proximal renal tubules in anti-GBM glomerulonephritis rats, and its expression barely changed with the progression of glomerulonephritis. Cystatin C expression was also observed in the tubular lumen of the cortex and medulla when glomerulonephritis was marked, which was considered to be characteristic of renal damage. In conclusion, urinary cystatin C, β2-microglobulin, clusterin, GST-α, GST-μ, KIM-1, and NGAL could be useful biomarkers of renal damage in anti-GBM glomerulonephritis rats. Immunohistochemical cystatin C expression in the proximal renal tubules was barely changed by the progression of glomerulonephritis, but it was newly observed in the tubular lumen when renal damage was apparent. Crown Copyright © 2013. Published by Elsevier GmbH. All rights reserved.

  20. Isozyme-specific fluorescent inhibitor of glutathione s-transferase omega 1.

    Science.gov (United States)

    Son, Junghyun; Lee, Jae-Jung; Lee, Jun-Seok; Schüller, Andreas; Chang, Young-Tae

    2010-05-21

    Recently, the glutathione S-transferase omega 1 (GSTO1) is suspected to be involved in certain cancers and neurodegenerative diseases. However, profound investigation on the pathological roles of GSTO1 has been hampered by the lack of specific methods to determine or modulate its activity in biological systems containing other isoforms with similar catalytic function. Here, we report a fluorescent compound that is able to inhibit and monitor the activity of GSTO1. We screened 43 fluorescent chemicals and found a compound (6) that binds specifically to the active site of GSTO1. We observed that compound 6 inhibits GSTO1 by covalent modification but spares other isoforms in HEK293 cells and demonstrated that compound 6 could report the activity of GSTO1 in NIH/3T3 or HEK293 cells by measuring the fluorescence intensity of the labeled amount of GSTO1 in SDS-PAGE. Compound 6 is a useful tool to study GSTO1, applicable as a specific inhibitor and an activity reporter.

  1. Serotonin transporter (SERT gene polymorphism in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Mahmut Özkaya

    2004-06-01

    Full Text Available Background: Parkinson disease (PD is the second most common neurodegenerative disorder with a prevalence of about 2% in persons older than 65 years of age. Neurodegenerative process in PD is not restricted to the dopaminergic neurons of the substantia nigra but also affects serotoninergic neurons. It has been shown that PD brains with Lewy bodies in the substantia nigra also had Lewy bodies in the raphe nuclei. The re-uptake of 5HT released into the synaptic cleft is mediated by the 5HT transporter (SERT. The SERT gene has been mapped to the chromosome of 17q11.1-q12 and has two main polymorphisms: intron two VNTR polymorphism and promoter region 44 bp insertion/deletion polymorphism. Objective: In this study we investigated whether two polymorphic regions in the serotonin transporter gene are associated with PD. Material and Method: After obtaining informed consent, blood samples were collected from 76 patients and 54 healthy volunteers. Genomic DNA was extracted from peripheral leucocytes using standard methods. The SERT gene genotypes were determined using polymerase chain reaction (PCR method. Results: Based on the intron 2 VNTR polymorphism of SERT gene, the distribution of 12/12, 12/10 and 10/10 genotypes were found as, 56.6 %, 35.5 %, 7.9 % in patients whereas this genotype distribution in control group was 40.7 %, 46.3 % and 13 %, respectively. According to 5-HTTLPR polymorphism, the distribution of L/L, L/S and S/S genotypes were found as 27.6 % 51.3 % and 21.1 % in patients whereas this genotype distribution in control group was 33.4 %, 50.0 % and 16.6 %, respectively. Despite the fact that the genotype distribution of SERT gene polymorphism in patients and control group seemed to be different from each other, this difference was not found to be statistically significant. Conclusion: This finding suggests that polymorphisms within the SERT gene do not play a major role in PD susceptibility in the Turkish population.

  2. Does maternal exposure to artificial food coloring additives increase oxidative stress in the skin of rats?

    Science.gov (United States)

    Başak, K; Başak, P Y; Doğuç, D K; Aylak, F; Oğuztüzün, S; Bozer, B M; Gültekin, F

    2017-10-01

    Glutathione-S-transferase (GST) and cytochrome P450 family 1 subfamily A polypeptide 1 (CYP1A1) metabolize and detoxify carcinogens, drugs, environmental pollutants, and reactive oxygen species. Changes of GST expression in tissues and gene mutations have been reported in association with many neoplastic skin diseases and dermatoses. Widely used artificial food coloring additives (AFCAs) also reported to effect primarily behavioral and cognitive function and cause neoplastic diseases and several inflammatory skin diseases. We aimed to identify the changes in expression of GSTs, CYP1A1, and vascular endothelial growth factor (VEGF) in rat skin which were maternally exposed AFCAs. A rat model was designed to evaluate the effects of maternal exposure of AFCAs on skin in rats. "No observable adverse effect levels" of commonly used AFCAs as a mixture were given to female rats before and during gestation. Immunohistochemical expression of GSTs, CYP1A1, and VEGF was evaluated in their offspring. CYP1A1, glutathione S-transferase pi (GSTP), glutathione S-transferase alpha (GSTA), glutathione S-transferase mu (GSTM), glutathione S-transferase theta (GSTT), and VEGF were expressed by epidermal keratinocytes, dermal fibroblasts, sebaceous glands, hair follicle, and subcutaneous striated muscle in the normal skin. CYP1A1, GSTA, and GSTT were expressed at all microanatomical sites of skin in varying degrees. The expressions of CYP1A1, GSTA, GSTT, and VEGF were decreased significantly, while GSTM expression on sebaceous gland and hair follicle was increased. Maternal exposure of AFCAs apparently effects expression of the CYP1A1, GSTs, and VEGF in the skin. This prominent change of expressions might play role in neoplastic and nonneoplastic skin diseases.

  3. Acceptance towards Goods and Services Tax (GST and Quality of Life: Antecedent and outcome using partial least square method

    Directory of Open Access Journals (Sweden)

    Arlinah Abd Rashid

    2016-06-01

    Full Text Available The good and service tax (GST in Malaysia was implemented in 2015 as a tax reform program to generate a stable source of revenue. This study explores the respondents’ behaviour towards GST, a week post-implementation. The partial least square (PLS modelling was used to establish the relationship between acceptance, knowledge and feelings towards GST as well as the household quality of life. There is a positive relationship between the antecedents and the quality of life. Acceptance of GST exerts a significant relationship towards feelings and quality of life. The study concludes that Malaysians, in general, accept GST that ensures a better quality of life in the future.

  4. Genetic polymorphisms of alcohol and aldehyde dehydrogenases and glutathione S-transferase M1 and drinking, smoking, and diet in Japanese men with esophageal squamous cell carcinoma.

    Science.gov (United States)

    Yokoyama, Akira; Kato, Hoichi; Yokoyama, Tetsuji; Tsujinaka, Toshimasa; Muto, Manabu; Omori, Tai; Haneda, Tatsumasa; Kumagai, Yoshiya; Igaki, Hiroyasu; Yokoyama, Masako; Watanabe, Hiroshi; Fukuda, Haruhiko; Yoshimizu, Haruko

    2002-11-01

    The genetic polymorphisms of aldehyde dehydrogenase-2 (ALDH2), alcohol dehydrogenase-2 (ADH2), ADH3, and glutathione S-transferase M1 (GSTM1) influence the metabolism of alcohol and other carcinogens. The ALDH2*1/2*2 genotype, which encodes inactive ALDH2, and ADH2*1/2*1, which encodes the low-activity form of ADH2, enhance the risk for esophageal cancer in East Asian alcoholics. This case-control study of whether the enzyme-related vulnerability for esophageal cancer can be extended to a general population involved 234 Japanese men with esophageal squamous cell carcinoma and 634 cancer-free Japanese men who received annual health checkups. The GSTM1 genotype was not associated with the risk for this cancer. Light drinkers (1-8.9 units/week) with ALDH2*1/2*2 had an esophageal cancer risk 5.82 times that of light drinkers with ALDH2*1/2*1 (reference category), and their risk was similar to that of moderate drinkers (9-17.9 units/week) with ALDH2*1/2*1 (odds ratio = 5.58). The risk for moderate drinkers with ALDH2*1/2*2 (OR = 55.84) exceeded that for heavy drinkers (18+ units/week) with ALDH2*1/2*1 (OR = 10.38). Similar increased risks were observed for those with ADH2*1/2*1. A multiple logistic model including ALDH2, ADH2, and ADH3 genotypes showed that the ADH3 genotype does not significantly affect the risk for esophageal cancer. For individuals with both ALDH2*1/2*2 and ADH2*1/2*1, the risk of esophageal cancer was enhanced in a multiplicative fashion (OR = 30.12), whereas for those with either ALDH2*1/2*2 or ADH2*1/2*1 alone the ORs were 7.36 and 4.11. In comparison with the estimated population-attributable risks for preference for strong alcoholic beverages (30.7%), smoking (53.6%) and for lower intake of green and yellow vegetables (25.7%) and fruit (37.6%), an extraordinarily high proportion of the excessive risk for esophageal cancer in the Japanese males can be attributed to drinking (90.9%), particularly drinking by persons with inactive heterozygous ALDH

  5. Comparison of different assays to assess human papillomavirus (HPV) type 16- and 18-specific antibodies after HPV infection and vaccination

    NARCIS (Netherlands)

    Scherpenisse, Mirte; Schepp, Rutger M.; Mollers, Madelief; Mooij, Sofie H.; Meijer, Chris J. L. M.; Berbers, Guy A. M.; van der Klis, Fiona R. M.

    2013-01-01

    We compared the measurement of human papillomavirus (HPV)-specific serum antibody levels with the virus-like-particle multiplex immunoassay (VLP-MIA), competitive Luminex immunoassay (cLIA), and glutathione S-transferase (GST) L1-based MIA. Using a large panel of serum samples, these assays showed

  6. COMBINED INVITRO MODULATION OF ADRIAMYCIN RESISTANCE

    NARCIS (Netherlands)

    MEIJER, C; MULDER, NH; TIMMERBOSSCHA, H; PETERS, WHM; DEVRIES, EGE

    1991-01-01

    In a P-glycoprotein-negative cell line, GLC4-Adr90, a 75-fold acquired Adriamycin (Adr) resistance coincided with a reduced cellular Adr level, an increased detoxifying capacity (glutathione (GSH) and glutathione S-transferase (GST) elevated), and a reduced topoisomerase-II (topo-II) activity

  7. Insertion and deletion polymorphisms of the ancient AluS family in the human genome.

    Science.gov (United States)

    Kryatova, Maria S; Steranka, Jared P; Burns, Kathleen H; Payer, Lindsay M

    2017-01-01

    Polymorphic Alu elements account for 17% of structural variants in the human genome. The majority of these belong to the youngest AluY subfamilies, and most structural variant discovery efforts have focused on identifying Alu polymorphisms from these currently retrotranspositionally active subfamilies. In this report we analyze polymorphisms from the evolutionarily older AluS subfamily, whose peak activity was tens of millions of years ago. We annotate the AluS polymorphisms, assess their likely mechanism of origin, and evaluate their contribution to structural variation in the human genome. Of 52 previously reported polymorphic AluS elements ascertained for this study, 48 were confirmed to belong to the AluS subfamily using high stringency subfamily classification criteria. Of these, the majority (77%, 37/48) appear to be deletion polymorphisms. Two polymorphic AluS elements (4%) have features of non-classical Alu insertions and one polymorphic AluS element (2%) likely inserted by a mechanism involving internal priming. Seven AluS polymorphisms (15%) appear to have arisen by the classical target-primed reverse transcription (TPRT) retrotransposition mechanism. These seven TPRT products are 3' intact with 3' poly-A tails, and are flanked by target site duplications; L1 ORF2p endonuclease cleavage sites were also observed, providing additional evidence that these are L1 ORF2p endonuclease-mediated TPRT insertions. Further sequence analysis showed strong conservation of both the RNA polymerase III promoter and SRP9/14 binding sites, important for mediating transcription and interaction with retrotransposition machinery, respectively. This conservation of functional features implies that some of these are fairly recent insertions since they have not diverged significantly from their respective retrotranspositionally competent source elements. Of the polymorphic AluS elements evaluated in this report, 15% (7/48) have features consistent with TPRT-mediated insertion

  8. Protective role for ovarian glutathione S-transferase isoform pi during 7,12-dimethylbenz[a]anthracene-induced ovotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Poulomi, E-mail: poulomib@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2012-04-15

    7,12-Dimethylbenz[a]anthracene (DMBA) destroys ovarian follicles at all developmental stages. This study investigated a role for the glutathione S-transferase (Gst) isoforms alpha (a), mu (m) and pi (p) and the transcription factors, Ahr and Nrf2, during DMBA-induced ovotoxicity, and their regulation by phosphatidylinositol-3 kinase (PI3K) signaling. Negative regulation of JNK by GSTP during DMBA exposure was also studied. Post-natal day (PND) 4 Fischer 344 rat ovaries were exposed to vehicle control (1% DMSO) ± DMBA (1 μM) or vehicle control (1% DMSO) ± LY294002 (PI3K inhibitor; 20 μM) for 1, 2, 4, or 6 days. Total RNA or protein was isolated, followed by RT-PCR or Western blotting to determine mRNA or protein level, respectively. Immunoprecipitation using an anti-GSTP antibody was performed to determine interaction between GSTP and JNK, followed by Western blotting to determine JNK and p-c-Jun protein level. DMBA had no impact on Gsta, Gstm or Nrf2 mRNA level, but increased Gstp mRNA and protein after 2 days. Ahr mRNA and protein increased after 2 and 4 days of DMBA exposure, respectively and DMBA increased NRF2 protein level after 4 days. JNK bound to GSTP was increased during DMBA exposure, with a concomitant decrease in unbound JNK and p-c-Jun. Ahr and Gstp mRNA were decreased (2 days) and increased (4 days) by PI3K inhibition, while Gstm mRNA increased (P < 0.05) after both time points, and there was no effect on Nrf2 mRNA. PI3K inhibition increased AHR, NRF2 and GSTP protein level. These findings support involvement of ovarian GSTP during DMBA exposure, and indicate a regulatory role for the PI3K signaling pathway on ovarian xenobiotic metabolism gene expression. -- Highlights: ► Ovarian GSTP is activated in response to DMBA exposure. ► AhR and Nrf2 transcription factors are up-regulated by DMBA. ► PI3K signaling regulates Ahr, Nrf2 and Gstp expression. ► GSTP negatively regulates ovarian JNK in response to DMBA exposure.

  9. The interaction of glutathione S-transferase M1-null variants with tobacco smoke exposure and the development of childhood asthma

    DEFF Research Database (Denmark)

    Rogers, A J; Brasch-Andersen, C; Ionita-Laza, I

    2009-01-01

    BACKGROUND: The glutathione S-transferase M1 (GSTM1)-null variant is a common copy number variant associated with adverse pulmonary outcomes, including asthma and airflow obstruction, with evidence of important gene-by-environment interactions with exposures to oxidative stress. OBJECTIVE: To exp...

  10. Clinical response to chemotherapy in locally advanced breast cancer was not associated with several polymorphisms in detoxification enzymes and DNA repair genes.

    Science.gov (United States)

    Saadat, Mostafa; Khalili, Maryam; Nasiri, Meysam; Rajaei, Mehrdad; Omidvari, Shahpour; Saadat, Iraj

    2012-03-02

    The main aim of the present study was to investigate the association between several genetic polymorphisms (in glutathione S-transferase members and DNA repair genes) and clinical response to chemotherapy in locally advanced breast cancer. A sequential series of 101 patients were prospectively included in this study. Clinical assessment of treatment was accomplished by comparing initial tumor size with preoperative tumor size using revised RECIST guideline (version 1.1). Clinical response was regarded as a response or no response. There was no difference between non-responders and responders for the prevalence of genotypes of the study polymorphisms. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Goods and Services Tax (GST): The Importance of Comprehension Towards Achieving the Desired Awareness Among Malaysian

    OpenAIRE

    Othman Rani Diana; Mohd Pauzi Nur Farahah; Abu Bakar Siti Anis Nadia; Sapari Afidah; Karim Mohd Syazwan

    2017-01-01

    In line with the implementation of value added tax (VAT) by 160 countries, Malaysia has taken its own path with the introduction of goods and services tax (GST) starting from 1 April 2015 to replace its previous tax system. This new tax system has been announced on 25 October 2013, which has given about 17 months for businesses and people in Malaysia to make a complete preparation for GST. GST is proven to be the fairer tax system to overcome the previous one which was not only limited in sco...

  12. Enzyme activity of a Phanerochaete chrysosporium cellobiohydrolase

    African Journals Online (AJOL)

    The aim of this study was to produce a secreted, heterologously expressed Phanerochaete chrysosporium cellobiohydrolase (CBHI.1) protein that required no in vitro chemical refolding and to investigate the cellulolytic activity of the clone expressing the glutathione S-transferase (GST) fused CBHI.1 protein. Plate enzyme ...

  13. Metabolic rate of spiders (Pardosa prativage) feed on prey species of different diet quality measured by colorimetry

    DEFF Research Database (Denmark)

    Nielsen, Søren Achim; Kynde, Bjarke; Westh, Peter

    The metabolic rate was measured in the wolf spider Pardosa prativaga after preying different species of aphids, collembolans and fruit flies raised on common commercial medium. The activity of detoxification enzyme systems Glutathione S-Transferase (GST), Glutathione Peroxidase (GSTpx) was invest......The metabolic rate was measured in the wolf spider Pardosa prativaga after preying different species of aphids, collembolans and fruit flies raised on common commercial medium. The activity of detoxification enzyme systems Glutathione S-Transferase (GST), Glutathione Peroxidase (GSTpx......) was investigated for spiders preying the different species. The heat production of starved P. prativaga was ca. 1.5 mW per mg fresh weight. For specimens feed on fruit flies (Drosophila melanogaster) the heat production was appreciable higher whereas feed on the aphids Sitobion avenae and Rhopalosiphum padi...... the heat production was on the same level or lower than in the staved spiders. The variation of the observed metabolic changes was in concordance with the variations in enzyme activities....

  14. The associations between two vital GSTs genetic polymorphisms and lung cancer risk in the Chinese population: evidence from 71 studies.

    Directory of Open Access Journals (Sweden)

    Kui Liu

    Full Text Available BACKGROUND: The genetic polymorphisms of glutathione S-transferase (GSTs have been suspected to be related to the development of lung cancer while the current results are conflicting, especially in the Chinese population. METHODS: Data on genetic polymorphisms of glutathione S-transferase Mu 1 (GSTM1 from 68 studies, glutathione S-transferase theta 1 (GSTT1 from 17 studies and GSTM1-GSTT1 from 8 studies in the Chinese population were reanalyzed on their association with lung cancer risk. Odds ratios (OR were pooled using forest plots. 9 subgroups were all or partly performed in the subgroup analyses. The Galbraith plot was used to identify the heterogeneous records. Potential publication biases were detected by Begg's and Egger's tests. RESULTS: 71 eligible studies were identified after screening of 1608 articles. The increased association between two vital GSTs genetic polymorphisms and lung cancer risk was detected by random-effects model based on a comparable heterogeneity. Subgroup analysis showed a significant relationship between squamous carcinoma (SC, adenocarcinoma (AC or small cell lung carcinoma (SCLC and GSTM1 null genotype, as well as SC or AC and GSTT1 null genotype. Additionally, smokers with GSTM1 null genotype had a higher lung cancer risk than non-smokers. Our cumulative meta-analysis demonstrated a stable and reliable result of the relationship between GSTM1 null genotype and lung cancer risk. After the possible heterogeneous articles were omitted, the adjusted risk of GSTs and lung cancer susceptibility increased (fixed-effects model: ORGSTM1 = 1.23, 95% CI: 1.19 to 1.27, P<0.001; ORGSTT1 = 1.18, 95% CI: 1.10 to 1.26, P<0.001; ORGSTM1-GSTT1 = 1.33, 95% CI: 1.10 to 1.61, P = 0.004. CONCLUSIONS: An increased risk of lung cancer with GSTM1 and GSTT1 null genotype, especially with dual null genotype, was found in the Chinese population. In addition, special histopathological classification of lung cancers and a

  15. AS3MT, GSTO, and PNP polymorphisms: impact on arsenic methylation and implications for disease susceptibility.

    Science.gov (United States)

    Antonelli, Ray; Shao, Kan; Thomas, David J; Sams, Reeder; Cowden, John

    2014-07-01

    Oral exposure to inorganic arsenic (iAs) is associated with adverse health effects. Epidemiological studies suggest differences in susceptibility to these health effects, possibly due to genotypic variation. Genetic polymorphisms in iAs metabolism could lead to increased susceptibility by altering urinary iAs metabolite concentrations. To examine the impact of genotypic polymorphisms on iAs metabolism. We screened 360 publications from PubMed and Web of Science for data on urinary mono- and dimethylated arsenic (MMA and DMA) percentages and polymorphic genes encoding proteins that are hypothesized to play roles in arsenic metabolism. The genes we examined were arsenic (+3) methyltransferase (AS3MT), glutathione-s-transferase omega (GSTO), and purine nucleoside phosphorylase (PNP). Relevant data were pooled to determine which polymorphisms are associated across studies with changes in urinary metabolite concentration. In our review, AS3MT polymorphisms rs3740390, rs11191439, and rs11191453 were associated with statistically significant changes in percent urinary MMA. Studies of GSTO polymorphisms did not indicate statistically significant associations with methylation, and there are insufficient data on PNP polymorphisms to evaluate their impact on metabolism. Collectively, these data support the hypothesis that AS3MT polymorphisms alter in vivo metabolite concentrations. Preliminary evidence suggests that AS3MT genetic polymorphisms may impact disease susceptibility. GSTO polymorphisms were not associated with iAs-associated health outcomes. Additional data are needed to evaluate the association between PNP polymorphisms and iAs-associated health outcomes. Delineation of these relationships may inform iAs mode(s) of action and the approach for evaluating low-dose health effects for iAs. Genotype impacts urinary iAs metabolite concentrations and may be a potential mechanism for iAs-related disease susceptibility. Published by Elsevier Inc.

  16. Females with paired occurrence of cancers in the UADT and genital region have a higher frequency of either Glutathione S-transferase M1/T1 null genotype

    Directory of Open Access Journals (Sweden)

    Jhavar Sameer G

    2005-03-01

    Full Text Available Abstract Upper Aero digestive Tract (UADT is the commonest site for the development of second cancer in females after primary cervical cancer. Glutathione S-transferase (GSTM1 and / or T1 null genotype modulates the risk of developing UADT cancer (primary as well as second cancer. The aim of this study was to evaluate the difference in GST null genotype frequencies in females with paired cancers in the UADT and genital region as compared to females with paired cancers in the UADT and non-genital region. Forty-nine females with a cancer in the UADT and another cancer (at all sites-genital and non-genital were identified from a database of patients with multiple primary neoplasms and were analyzed for the GSTM1 and T1 genotype in addition to known factors such as age, tobacco habits, alcohol habits and family history of cancer. Frequencies of GSTM1 null, GSTT1 null, and either GSTM1/T1 null were higher in females with paired occurrence of cancer in the UADT and genital site (54%, 33% and 75% respectively in comparison to females with paired occurrence of cancer in the UADT and non-genital sites (22%, 6% and 24% respectively. The significantly higher inherited frequency of either GSTM1/T1 null genotype in females with a paired occurrence of cancers in UADT and genital region (p = 0.01, suggests that these females are more susceptible to damage by carcinogens as compared to females who have UADT cancers in association with cancers at non-genital sites.

  17. A Premature Termination of Human Epidermal Growth Factor Receptor Transcription in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jihene Elloumi-Mseddi

    2014-01-01

    Full Text Available Our success in producing an active epidermal growth factor receptor (EGFR tyrosine kinase in Escherichia coli encouraged us to express the full-length receptor in the same host. Despite its large size, we were successful at producing the full-length EGFR protein fused to glutathione S-transferase (GST that was detected by Western blot analysis. Moreover, we obtained a majoritarian truncated GST-EGFR form detectable by gel electrophoresis and Western blot. This truncated protein was purified and confirmed by MALDI-TOF/TOF analysis to belong to the N-terminal extracellular region of the EGFR fused to GST. Northern blot analysis showed two transcripts suggesting the occurrence of a transcriptional arrest.

  18. Evaluation of the precision-cut liver and lung slice systems for the study of induction of CYP1, epoxide hydrolase and glutathione S-transferase activities.

    Science.gov (United States)

    Pushparajah, Daphnee S; Umachandran, Meera; Plant, Kathryn E; Plant, Nick; Ioannides, Costas

    2007-02-28

    The principal objective was to ascertain whether precision-cut tissue slices can be used to evaluate the potential of chemicals to induce CYP1, epoxide hydrolase and glutathione S-transferase activities, all being important enzymes involved in the metabolism of polycyclic aromatic hydrocarbons. Precision-cut rat liver and lung slices were incubated with a range of benzo[a]pyrene concentrations for various time periods. A rise in the O-deethylation of ethoxyresorufin was seen in both liver and lung slices exposed to benzo[a]pyrene, which was accompanied by increased CYP1A apoprotein levels. Pulmonary CYP1B1 apoprotein levels and hepatic mRNA levels were similarly enhanced. Elevated epoxide hydrolase and glutathione S-transferase activities were also observed in liver slices following incubation for 24h; similarly, a rise in apoprotein levels of both enzymes was evident, peak levels occurring at the same time point. When mRNA levels were monitored, a rise in the levels of both enzymes was seen as early as 4h after incubation, but maximum levels were attained at 24 h. In lung slices, induction of epoxide hydrolase by benzo[a]pyrene was observed after a 24-h incubation, and at a concentration of 1 microM; a rise in apoprotein levels was seen at this time point. Glutathione S-transferase activity was not inducible in lung slices by benzo[a]pyrene but a modest increase was observed in hepatic slices. Collectively, these studies confirmed CYP1A induction in rat liver slices and established that CYP1B1 expression, and epoxide hydrolase and glutathione S-transferase activities are inducible in precision-cut tissue slices.

  19. Genetic Diversity of Myanmar and Indonesia Native Chickens Together with Two Jungle Fowl Species by Using 102 Indels Polymorphisms

    Directory of Open Access Journals (Sweden)

    Aye Aye Maw

    2012-07-01

    Full Text Available The efficiency of insertion and/or deletion (indels polymorphisms as genetic markers was evaluated by genotyping 102 indels loci in native chicken populations from Myanmar and Indonesia as well as Red jungle fowls and Green jungle fowls from Java Island. Out of the 102 indel markers, 97 were polymorphic. The average observed and expected heterozygosities were 0.206 to 0.268 and 0.229 to 0.284 in native chicken populations and 0.003 to 0.101 and 0.012 to 0.078 in jungle fowl populations. The coefficients of genetic differentiation (Gst of the native chicken populations from Myanmar and Indonesia were 0.041 and 0.098 respectively. The genetic variability is higher among native chicken populations than jungle fowl populations. The high Gst value was found between native chicken populations and jungle fowl populations. Neighbor-joining tree using genetic distance revealed that the native chickens from two countries were genetically close to each other and remote from Red and Green jungle fowls of Java Island.

  20. Quantum Mechanical/Molecular Mechanical Free Energy Simulations of the Glutathione S-Transferase (M1-1) Reaction with Phenanthrene 9,10-Oxide

    NARCIS (Netherlands)

    Ridder, L.; Rietjens, I.M.C.M.; Vervoort, J.J.M.; Mulholland, A.J.

    2002-01-01

    Glutathione S-transferases (GSTs) play an important role in the detoxification of xenobiotics in mammals. They catalyze the conjugation of glutathione to a wide range of electrophilic compounds. Phenanthrene 9,10-oxide is a model substrate for GSTs, representing an important group of epoxide

  1. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The initial attempts at hyper-expressing buffalo/goat growth hormone (GH)-ORFs in Escherichia coli directly under various strong promoters were not successful despite the presence of a functional gene. High level expression of GH was achieved as a fusion protein with glutathione-S-transferase (GST). To produce native ...

  2. Molecular evolution and the role of oxidative stress in the expansion and functional diversification of cytosolic glutathione transferases

    Directory of Open Access Journals (Sweden)

    Vasconcelos Vítor

    2010-09-01

    Full Text Available Abstract Background Cytosolic glutathione transferases (cGST are a large group of ubiquitous enzymes involved in detoxification and are well known for their undesired side effects during chemotherapy. In this work we have performed thorough phylogenetic analyses to understand the various aspects of the evolution and functional diversification of cGSTs. Furthermore, we assessed plausible correlations between gene duplication and substrate specificity of gene paralogs in humans and selected species, notably in mammalian enzymes and their natural substrates. Results We present a molecular phylogeny of cytosolic GSTs that shows that several classes of cGSTs are more ubiquitous and thus have an older ancestry than previously thought. Furthermore, we found that positive selection is implicated in the diversification of cGSTs. The number of duplicate genes per class is generally higher for groups of enzymes that metabolize products of oxidative damage. Conclusions 1 Protection against oxidative stress seems to be the major driver of positive selection in mammalian cGSTs, explaining the overall expansion pattern of this subfamily; 2 Given the functional redundancy of GSTs that metabolize xenobiotic chemicals, we would expect the loss of gene duplicates, but by contrast we observed a gene expansion of this family, which likely has been favored by: i the diversification of endogenous substrates; ii differential tissue expression; and iii increased specificity for a particular molecule; 3 The increased availability of sequence data from diversified taxa is likely to continue to improve our understanding of the early origin of the different cGST classes.

  3. RESEARCH ARTICLE Glutathione S-Transferase P1 Gene ...

    Indian Academy of Sciences (India)

    Navya

    2017-03-13

    Mar 13, 2017 ... logistic regression analysis showed significant association of A/G (OR: 1.6, 95% CI: ... hypertension, diabetes mellitus and dyslipidemia are associated with ..... polymorphisms with the risk of prostate cancer: A meta-analysis.

  4. Analysis of genetic susceptibility to mercury contamination evaluated through molecular biomarkers in at-risk Amazon Amerindian populations

    Directory of Open Access Journals (Sweden)

    Maria de Nazare Klautau-Guimarães

    2005-12-01

    Full Text Available We investigated Individual differences in susceptibility to methylmercury (MeHg contamination and its relationship with polymorphisms of the detoxifying enzyme glutathione S-transferase (GST. In Brazil, some Amerindian tribes from the Amazon region have an increased level of mercury in their hair. Samples of hair and blood were taken from inhabitants of two villages in the Kayabi and Munduruku Amerindian communities to investigate mercury levels in association with genetic polymorphism of GSTs. Other molecular biological markers were also studied, such as hemoglobin, haptoglobin and glucose 6-phosphate dehydrogenase (G-6-PDH. Higher levels of mercury contamination were found in the Kayabi villagers, who had a null genotype (GSTM1 0/0, also denominated GSTM1 null frequency of 26%, than in the Munduruku villagers, for which the null genotype frequency was 0%. Individuals with the GSTM1 null phenotype had higher concentrations of mercury in their hair than individuals with GSTM1+/+ phenotypes (F = 21.51, p < 0.0001. No association with other markers studied was observed. This study suggests that GSTM1 may be involved in the biotransformation of mercury in humans.

  5. Effects and Molecular Mechanism of GST-Irisin on Lipolysis and Autocrine Function in 3T3-L1 Adipocytes.

    Directory of Open Access Journals (Sweden)

    Shanshan Gao

    Full Text Available Irisin, which was recently identified as a myokine and an adipokine, transforms white adipose tissue to brown adipose tissue and has increasingly caught the attention of the medical and scientific community. However, the signaling pathway of irisin and the molecular mechanisms responsible for the lipolysis effect remain unclear. In this study, we established an efficient system for the expression and purification of GST-irisin in Escherichia coli. The biological activity of GST-irisin was verified using the cell counting kit-8 assay and by detecting the mRNA expression of uncoupling protein 1. Our data showed that GST-irisin regulates mRNA levels of lipolysis-related genes such as adipose triglyceride lipase and hormone-sensitive lipase and proteins such as the fatty acid-binding protein 4, leading to increased secretion of glycerol and decreased lipid accumulation in 3T3-L1 adipocytes. In addition, exogenous GST-irisin can increase its autocrine function in vitro by regulating the expression of fibronectin type III domain-containing protein 5. GST-irisin could regulate glucose uptake in 3T3-L1 adipocytes. Hence, we believe that recombinant GST-irisin could promote lipolysis and its secretion in vitro and can potentially prevent obesity and related metabolic diseases.

  6. GST genotypes in head and neck cancer patients and its clinical ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-05

    Nov 5, 2008 ... carcinogens found in tobacco smoke, are relatively common in most populations. ... It is possible that the decreased activity of GST affects various ..... Difference in genotypes between patients and non-smoking controls.

  7. Potential improvement of Lymantria dispar L. management by quercetin

    Directory of Open Access Journals (Sweden)

    Perić-Mataruga Vesna

    2014-01-01

    Full Text Available Lymantria dispar, a polyphagous insect pest, copes with a wide variety of host-specific allelochemicals. Glutathione S-transferases (GST are important for catalyzing detoxification in L. dispar. Larval mortality, GST activity in midgut tissue and mass of L. dispar with different trophic adaptations (originating from two forests with a suitable host, Quercus robur, and an unsuitable host, Robinia pseudoacacia, differed after feeding on quercetin supplemented diets (2% or 5% w/w. Quercetin inhibited GST most potently in oak forest larvae that were less adapted to flavonoids in their diet. The larvicidal effect of quercetin on L. dispar larvae depended on the host-use history. We believe this is important in strategies for sustainable control of insect pests. [Projekat Ministarstva nauke Republike Srbije, br. 173027

  8. [Detection of UGT1A1*28 Polymorphism Using Fragment Analysis].

    Science.gov (United States)

    Huang, Ying; Su, Jian; Huang, Xiaosui; Lu, Danxia; Xie, Zhi; Yang, Suqing; Guo, Weibang; Lv, Zhiyi; Wu, Hongsui; Zhang, Xuchao

    2017-12-20

    Uridine-diphosphoglucuronosyl transferase 1A1 (UGT1A1), UGT1A1*28 polymorphism can reduce UGT1A1 enzymatic activity, which may lead to severe toxicities in patients who receive irinotecan. This study tries to build a fragment analysis method to detect UGT1A1*28 polymorphism. A total of 286 blood specimens from the lung cancer patients who were hospitalized in Guangdong General Hospital between April 2014 to May 2015 were detected UGT1A1*28 polymorphism by fragment analysis method. Comparing with Sanger sequencing, precision and accuracy of the fragment analysis method were 100%. Of the 286 patients, 236 (82.5% harbored TA6/6 genotype, 48 (16.8%) TA 6/7 genotype and 2 (0.7%) TA7/7 genotype. Our data suggest hat the fragment analysis method is robust for detecting UGT1A1*28 polymorphism in clinical practice. It's simple, time-saving, and easy-to-carry.

  9. Post Implementation of Goods and Services Tax (GST in Malaysia: Tax Agents’ Perceptions on Clients’ Compliance Behaviour and Tax Agents’ Roles in Promoting Compliance

    Directory of Open Access Journals (Sweden)

    Muhammad Izlawanie

    2017-01-01

    Full Text Available The Malaysian government introduced the Goods and Services Tax (GST starting from 1 April 2015 to enhance the revenue collections and mitigate the transfer pricing manipulation. Tax agents play a significant role to help businesses to comply with GST law and regulations. After one year of GST implementation, it is vital to understand tax agents’ perceptions on clients’ compliance behaviour and tax agents’ roles in influencing compliance. A total of 30 registered tax agents completed a survey questionnaire. The analysis shows that tax agents devote their time to provide advice to their clients on meeting their GST requirements, and recording and reporting of GST transactions. Tax agents assert that clients pass on their GST responsibilities to tax agents to some extent. Tax agents also perceive that clients’ compliance level is low because clients occasionally submit GST03 after the deadline, compromise the accuracy of GST03 in order to get it done on time and intentionally make errors in their records. In terms of tax agents’ role in promoting compliance, the tax agents strongly agree that it is important for them to act as trusted advisors for their clients. After one year of GST implementation, this is the first study that explores tax agents’ perceptions on clients’ compliance and tax agents’ roles in promoting compliance. The findings benefit the Royal Malaysian Customs Department (RMCD in assisting tax agents and the public for future compliance. Similar study should be adopted by countries that have recently implemented GST (for example, India and it should be conducted to other GST players (i.e. taxpayers and RMCD officers on annual basis to analyse the behavioural trends and identify weaknesses in GST administration.

  10. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals

    Energy Technology Data Exchange (ETDEWEB)

    Goodrich, Jaclyn M.; Wang, Yi [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Gillespie, Brenda [Department of Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Werner, Robert [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Department of Physical Medicine and Rehabilitation, University of Michigan, 325 E. Eisenhower Parkway Suite 100, Ann Arbor, MI 48108 (United States); Franzblau, Alfred [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Basu, Niladri, E-mail: niladri@umich.edu [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States)

    2011-12-15

    Mercury is a potent toxicant of concern to both the general public and occupationally exposed workers (e.g., dentists). Recent studies suggest that several genes mediating the toxicokinetics of mercury are polymorphic in humans and may influence inter-individual variability in mercury accumulation. This work hypothesizes that polymorphisms in key glutathione synthesizing enzyme, glutathione s-transferase, and selenoprotein genes underlie inter-individual differences in mercury body burden as assessed by analytical mercury measurement in urine and hair, biomarkers of elemental mercury and methylmercury, respectively. Urine and hair samples were collected from a population of dental professionals (n = 515), and total mercury content was measured. Average urine (1.06 {+-} 1.24 ug/L) and hair mercury levels (0.49 {+-} 0.63 ug/g) were similar to national U.S. population averages. Taqman assays were used to genotype DNA from buccal swab samples at 15 polymorphic sites in genes implicated in mercury metabolism. Linear regression modeling assessed the ability of polymorphisms to modify the relationship between mercury biomarker levels and exposure sources (e.g., amalgams, fish consumption). Five polymorphisms were significantly associated with urine mercury levels (GSTT1 deletion), hair mercury levels (GSTP1-105, GSTP1-114, GSS 5 Prime ), or both (SEPP1 3 Prime UTR). Overall, this study suggests that polymorphisms in selenoproteins and glutathione-related genes may influence elimination of mercury in the urine and hair or mercury retention following exposures to elemental mercury (via dental amalgams) and methylmercury (via fish consumption). -- Highlights: Black-Right-Pointing-Pointer We explore the influence of 15 polymorphisms on urine and hair Hg levels. Black-Right-Pointing-Pointer Urine and hair Hg levels in dental professionals were similar to the US population. Black-Right-Pointing-Pointer GSTT1 and SEPP1 polymorphisms associated with urine Hg levels. Black

  11. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals

    International Nuclear Information System (INIS)

    Goodrich, Jaclyn M.; Wang, Yi; Gillespie, Brenda; Werner, Robert; Franzblau, Alfred; Basu, Niladri

    2011-01-01

    Mercury is a potent toxicant of concern to both the general public and occupationally exposed workers (e.g., dentists). Recent studies suggest that several genes mediating the toxicokinetics of mercury are polymorphic in humans and may influence inter-individual variability in mercury accumulation. This work hypothesizes that polymorphisms in key glutathione synthesizing enzyme, glutathione s-transferase, and selenoprotein genes underlie inter-individual differences in mercury body burden as assessed by analytical mercury measurement in urine and hair, biomarkers of elemental mercury and methylmercury, respectively. Urine and hair samples were collected from a population of dental professionals (n = 515), and total mercury content was measured. Average urine (1.06 ± 1.24 ug/L) and hair mercury levels (0.49 ± 0.63 ug/g) were similar to national U.S. population averages. Taqman assays were used to genotype DNA from buccal swab samples at 15 polymorphic sites in genes implicated in mercury metabolism. Linear regression modeling assessed the ability of polymorphisms to modify the relationship between mercury biomarker levels and exposure sources (e.g., amalgams, fish consumption). Five polymorphisms were significantly associated with urine mercury levels (GSTT1 deletion), hair mercury levels (GSTP1-105, GSTP1-114, GSS 5′), or both (SEPP1 3′UTR). Overall, this study suggests that polymorphisms in selenoproteins and glutathione-related genes may influence elimination of mercury in the urine and hair or mercury retention following exposures to elemental mercury (via dental amalgams) and methylmercury (via fish consumption). -- Highlights: ► We explore the influence of 15 polymorphisms on urine and hair Hg levels. ► Urine and hair Hg levels in dental professionals were similar to the US population. ► GSTT1 and SEPP1 polymorphisms associated with urine Hg levels. ► Accumulation of Hg in hair following exposure from fish was modified by genotype. ► GSTP1, GSS

  12. SIKLODEKSTRIN GLIKOSIL TRANSFERASE DAN PEMANFAATANNYA DALAM INDUSTRI [Cyclodextrin Glycosyl Transferase and its application in industries

    Directory of Open Access Journals (Sweden)

    Budiasih Wahyuntari

    2005-12-01

    Full Text Available Cyclodextrin glycosyl transferase (CGT-ase is mainly produced by Bacilli. Systematical name of the enzyme is E.C. 2.4.1.19 a-1,4 glucan-4-glycosyl transferase. The enzyme catalyzes hydrolysis of starch intramolecular, and intermolecular transglycosylation of a-1,4, glucan chains. Cyclodextrins are a-1,4 linked cyclic oligosaccharides resulting from enzymatic degradation of starch by cyclodextrin glycosyl transferase through untramolecular transglycosylation. The major cyclodextrins are made up of 6, 7 and 8 glucopyranose units which are known as a-, b-, and y-cyclodextrin. All CGT-ase catalyze three kinds of cyclodextrins, the proportion of the cyclodextrins depends on the enzyme source and reaction conditions. The intermolecular transglycosylation ability of the enzyme has been applied in transfering glycosyl residues into suitable acceptor. Transglycosylation by the enzymes have been tested to improve solubility of some flavonoids and to favor precipitation ci some glycosides.

  13. The influence of heroin abuse on glutathione-dependent enzymes in human brain.

    Science.gov (United States)

    Gutowicz, Marzena; Kaźmierczak, Beata; Barańczyk-Kuźma, Anna

    2011-01-01

    Heroin is an illicit narcotic abused by millions of people worldwide. In our earlier studies we have shown that heroin intoxication changes the antioxidant status in human brain. In the present work we continued our studies by estimating the effect of heroin abuse on reduced glutathione (GSH) and enzymes related to this cofactor, such as glutathione S-transferase detoxifying electrophilics (GST) and organic peroxides (as Se-independent glutathione peroxidase-GSHPx), and Se-dependent glutathione peroxidase (Se-GSHPx) specific mainly for hydrogen peroxide. Studies were conducted on human brains obtained from autopsy of 9 heroin abusers and 8 controls. The level of GSH and the activity of glutathione-related enzymes were determined spectrophotometrically. The expression of GST pi on mRNA and protein level was studied by RT-PCR and Western blotting, respectively. The results indicated significant increase of GST and GSHPx activities, unchanged Se-GSHPx activity, and decreased level of GSH in frontal, temporal, parietal and occipital cortex, brain stem, hippocampus, and white matter of heroin abusers. GST pi expression was increased on both mRNA and protein levels, however the increase was lower in brain stem than in other regions. Heroin affects all regions of human brain, and especially brain stem. Its intoxication leads to an increase of organic rather then inorganic peroxides in various brain regions. Glutathione S-transferase plays an important role during heroin intoxication, however its protective effect is lower in brain stem than in brain cortex or hippocampus. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. CYP1A2*1C, CYP2E1*5B, and GSTM1 polymorphisms are predictors of risk and poor outcome in head and neck squamous cell carcinoma patients

    DEFF Research Database (Denmark)

    Olivieri, Eloisa Helena Ribeiro; da Silva, Sabrina Daniela; Mendonça, Fernando Fernandes

    2009-01-01

    is performed by glutathione S-transferases (GSTs). It has been suggested that genetic alterations, such as polymorphisms, play an important role in tumorigenesis and HNSCC progression. The aim of this study was to investigate CYP1A1, CYP1A2, CYP2E1, GSTM1, and GSTT1 polymorphisms as risk factors in HNSCC...... and their association with clinicopathologic data. The patients comprised 153 individuals with HNSCC (cases) and 145 with no current or previous diagnosis of cancer (controls). Genotyping of the single nucleotide polymorphisms (SNPs) of the CYP1A1, CYP1A2, and CYP2E1 genes was performed by PCR-RFLP and the GSTM1...... for determining the parameters associated with tumor progression and poor outcomes in HNSCC....

  15. Trends in detoxification enzymes and heavy metal accumulation in ground beetles (Coleoptera: Carabidae) inhabiting a gradient of pollution.

    Science.gov (United States)

    Stone, David; Jepson, Paul; Laskowski, Ryszard

    2002-05-01

    Non-specfic carboxylesterase and glutathione S-transferase activity was measured in the ground beetle, Pterosthicus oblongopunctatus (Coleoptera: Carabidae), from five sites along a gradient of heavy metal pollution. A previous study determined that beetles from the two most polluted sites (site codes OLK2 and OLK3) were more susceptible to additional stressors compared with beetles from the reference site (Stone et al., Environ. Pollut. 113, 239-244 2001), suggesting the possibility of physiological impairment. Metal body burdens in ground beetles from five sites along the gradient ranged from 79 to 201 microg/g Zn, 0.174 to 8.66 microg/g Pb and 1.14 to 10.8 microg/g Cd, whereas Cu seemed to be efficiently regulated regardless of metal levels in the soil. Beetle mid- and hindguts were homogenized and the soluble fraction containing glutathione S-transferase (GST) and carboxylesterase (CaE) was assayed using kinetic analyses. Significantly higher levels of GST were found only in female beetles from the most polluted sites (OLK2 and OLK3; P=0.049, Pground beetles in association with metal body burdens.

  16. The activity of glutathione S-transferase in hepatopancreas of Procambarus clarkii: seasonal variations and the influence of environmental pollutants.

    Science.gov (United States)

    Nies, E; Almar, M M; Hermenegildo, C; Monsalve, E; Romero, F J

    1991-01-01

    1. The glutathione S-transferase activity in hepatopancreas of the American red crayfish Procambarus clarkii after 15 days' acclimatization in tap water aquaria was measured in specimens collected monthly for a whole year, and shows seasonal variation. 2. Previous data on the environmental pollution of Lake Albufera suggest a possible correlation with the activity tested in the different seasons of the year considering the results of non-acclimatized animals.

  17. Activity and Transcriptional Responses of Hepatopancreatic Biotransformation and Antioxidant Enzymes in the Oriental River Prawn Macrobrachium nipponense Exposed to Microcystin-LR

    Directory of Open Access Journals (Sweden)

    Julin Yuan

    2015-10-01

    Full Text Available Microcystins (MCs are a major group of cyanotoxins with side effects in many organisms; thus, compounds in this group are recognized as potent stressors and health hazards in aquatic ecosystems. In order to assess the toxicity of MCs and detoxification mechanism of freshwater shrimp Macrobrachium nipponense, the full-length cDNAs of the glutathione S-transferase (gst and catalase (cat genes were isolated from the hepatopancreas. The transcription level and activity changes in the biotransformation enzyme (glutathione S-transferase (GST and antioxidant enzymes (superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx in the hepatopancreas of M. nipponense exposed to MC-LR (0.2, 1, 5, and 25 μg/L for 12, 24, 72 and 96 h were analyzed. The results showed that the isolated full-length cDNAs of cat and gst genes from M. nipponense displayed a high similarity to other crustaceans, and their mRNAs were mainly expressed in the hepatopancreas. MC-LR caused significant increase of GST activity following 48–96 h (p < 0.05 and an increase in SOD activity especially in 24- and 48-h exposures. CAT activity was activated when exposed to MC-LR in 12-, 24- and 48-h exposures and then it was inhibited at 96-h exposure. There was no significant effect on GPx activity after the 12- and 24-h exposures, whereas it was significantly stimulated after the 72- and 96-h exposures (p < 0.05. The transcription was altered similarly to enzyme activity, but the transcriptional response was generally more immediate and had greater amplitude than enzymatic response, particularly for GST. All of the results suggested that MC-LR can induce antioxidative modulation variations in M. nipponense hepatopancreas in order to eliminate oxidative damage.

  18. Toxicological responses on cytochrome P450 and metabolic transferases in liver of goldfish (Carassius auratus) exposed to lead and paraquat.

    Science.gov (United States)

    Xu, Xiaoming; Cui, Zhaojie; Wang, Xinlei; Wang, Xixin; Zhang, Su

    2018-04-30

    As the producer of reactive oxygen species (ROS), both lead (Pb) and paraquat (PQ) can generate serious oxidative stress in target organs which result in irreversible toxic effects on organisms. They can disturb the normal catalytic activities of many enzymes by means of different toxicity mechanism. The changed responses of enzymes are frequently used as the biomarkers for indicating the relationship between toxicological effects and exposure levels. In this work, goldfish was exposed to a series of test groups containing lead and paraquat in the range of 0.05-10mg/L, respectively. Four hepatic enzyme activities, including 7-ethoxyresorufinO-deethylase (EROD), 7-benzyloxy-4-trifluoromethyl-coumarin-O-debenzyloxylase (BFCOD), glutathione S-transferase (GST) and UDP-glucuronosyltransferase (UGT) were determined after 1, 7, 14, 28 days exposure. The results showed that the activities of EROD and BFCOD in fish were significantly inhibited in response to paraquat at all exposure levels during the whole experiment. Similarly, the inhibitory effects of lead exposure on BFCOD activity were found in our study, while different responses of lead on EROD were observed. There were no significant differences on EROD activity under lower concentrations of lead (less than 0.1mg/L) before 14 days until an obvious increase was occurred for the 0.5mg/L lead treatment group at day 14. Furthermore, lead showed stronger inhibition on GST activity than paraquat when the concentrations of the two toxicants were more than 0.5mg/L. However, the similar dose and time-dependent manners of UGT activity were found under lead and paraquat exposure. Our results indicated that higher exposure levels and longer accumulations caused inhibitory effects on the four enzymes regardless of lead or paraquat stress. In addition, the responses of phase I enzymes were more sensitive than that of phase II enzymes and they may be served as the acceptable biomarkers for evaluating the toxicity effects of both

  19. Advances in neglected tropical disease vaccines: Developing relative potency and functional assays for the Na-GST-1/Alhydrogel hookworm vaccine.

    Directory of Open Access Journals (Sweden)

    Jill B Brelsford

    2017-02-01

    Full Text Available A new generation of vaccines for the neglected tropical diseases (NTDs have now advanced into clinical development, with the Na-GST-1/Alhydrogel Hookworm Vaccine already being tested in Phase 1 studies in healthy adults. The current manuscript focuses on the often overlooked critical aspects of NTD vaccine product development, more specifically, vaccine stability testing programs. A key measure of vaccine stability testing is "relative potency" or the immunogenicity of the vaccine during storage. As with most NTD vaccines, the Na-GST-1/Alhydrogel Hookworm Vaccine was not developed by attenuation or inactivation of the pathogen (Necator americanus, so conventional methods for measuring relative potency are not relevant for this investigational product. Herein, we describe a novel relative potency testing program and report for the first time on the clinical lot of this NTD vaccine during its first 60 months of storage at 2-8°C. We also describe the development of a complementary functional assay that measures the ability of IgG from animals or humans immunized with Na-GST-1/Alhydrogel to neutralize this important hookworm enzyme. While 90% inhibition of the catalytic activity of Na-GST-1 was achieved in animals immunized with Na-GST-1/Alhydrogel, lower levels of inhibition were observed in immunized humans. Moreover, anti-Na-GST-1 antibodies from volunteers in non-hookworm endemic areas were better able to inhibit catalytic activity than anti-Na-GST-1 antibodies from volunteers resident in hookworm endemic areas. The results described herein provide the critical tools for the product development of NTD vaccines.

  20. Advances in neglected tropical disease vaccines: Developing relative potency and functional assays for the Na-GST-1/Alhydrogel hookworm vaccine

    Science.gov (United States)

    Brelsford, Jill B.; Plieskatt, Jordan L.; Yakovleva, Anna; Jariwala, Amar; Keegan, Brian P.; Peng, Jin; Xia, Pengjun; Li, Guangzhao; Campbell, Doreen; Periago, Maria Victoria; Correa-Oliveira, Rodrigo; Bottazzi, Maria Elena; Hotez, Peter J.

    2017-01-01

    A new generation of vaccines for the neglected tropical diseases (NTDs) have now advanced into clinical development, with the Na-GST-1/Alhydrogel Hookworm Vaccine already being tested in Phase 1 studies in healthy adults. The current manuscript focuses on the often overlooked critical aspects of NTD vaccine product development, more specifically, vaccine stability testing programs. A key measure of vaccine stability testing is "relative potency" or the immunogenicity of the vaccine during storage. As with most NTD vaccines, the Na-GST-1/Alhydrogel Hookworm Vaccine was not developed by attenuation or inactivation of the pathogen (Necator americanus), so conventional methods for measuring relative potency are not relevant for this investigational product. Herein, we describe a novel relative potency testing program and report for the first time on the clinical lot of this NTD vaccine during its first 60 months of storage at 2–8°C. We also describe the development of a complementary functional assay that measures the ability of IgG from animals or humans immunized with Na-GST-1/Alhydrogel to neutralize this important hookworm enzyme. While 90% inhibition of the catalytic activity of Na-GST-1 was achieved in animals immunized with Na-GST-1/Alhydrogel, lower levels of inhibition were observed in immunized humans. Moreover, anti-Na-GST-1 antibodies from volunteers in non-hookworm endemic areas were better able to inhibit catalytic activity than anti-Na-GST-1 antibodies from volunteers resident in hookworm endemic areas. The results described herein provide the critical tools for the product development of NTD vaccines. PMID:28192438

  1. Steroid sulfatase and sulfuryl transferase activities in human brain tumors

    Czech Academy of Sciences Publication Activity Database

    Kříž, L.; Bičíková, M.; Mohapl, M.; Hill, M.; Černý, Ivan; Hampl, R.

    2008-01-01

    Roč. 109, č. 1 (2008), s. 31-39 ISSN 0960-0760 Institutional research plan: CEZ:AV0Z40550506 Keywords : dehydroepiandrosterone * steroid sulfatase * steroid sulfuryl transferase * brain Subject RIV: CC - Organic Chemistry Impact factor: 2.827, year: 2008

  2. Anorexia nervosa and the Val158Met polymorphism of the COMT gene: meta-analysis and new data

    NARCIS (Netherlands)

    Brandys, Marek K.; Slof-Op't Landt, Margarita C. T.; van Elburg, Annemarie A.; Ophoff, Roel; Verduijn, Willem; Meulenbelt, Ingrid; Middeldorp, Christel M.; Boomsma, Dorret I.; van Furth, Eric F.; Slagboom, Eline; Kas, Martien J. H.; Adan, Roger A. H.

    2012-01-01

    Objectives This study aimed to test the association between the Val158Met polymorphism (rs4680) of the catechol-O-methyl transferase gene and anorexia nervosa (AN). Methods First, an association study on two cohorts (306 cases and 1009 controls from Utrecht, and 174 cases and 466 controls from

  3. Urinary excretion of alpha-GST and albumin in rheumatoid arthritis patients treated with methotrexate or other DMARDs alone or in combination with NSAIDs

    DEFF Research Database (Denmark)

    Svendsen, K B; Ellingsen, T; Bech, J N

    2005-01-01

    -term treatment with different DMARDs was compared with 79 healthy controls regarding urinary alpha-GST and albumin. alpha-GST was quantified by an enzyme immunoassay. Urine albumin was measured turbidimetrically. RESULTS: The urine-alpha-GST/urine-creatinine ratio and the urine-albumin/urine-creatinine ratio did...

  4. Glycoprotein I of herpes simplex virus type 1 contains a unique polymorphic tandem-repeated mucin region

    DEFF Research Database (Denmark)

    Norberg, Peter; Olofsson, Sigvard; Tarp, Mads Agervig

    2007-01-01

    Glycoprotein I (gI) of herpes simplex virus type 1 (HSV-1) contains a tandem repeat (TR) region including the amino acids serine and threonine, residues that can be utilized for O-glycosylation. The length of this TR region was determined for 82 clinical HSV-1 isolates and the results revealed......-glycosylation not only for the two most commonly expressed N-acetyl-d-galactosamine (GalNAc)-T1 and -T2 transferases, but also for the GalNAc-T3, -T4 and -T11 transferases. Immunoblotting of virus-infected cells showed that gI was exclusively O-glycosylated with GalNAc monosaccharides (Tn antigen). A polymorphic mucin...

  5. Bisubstrate Kinetics of Glutathione S-Transferase: A Colorimetric Experiment for the Introductory Biochemistry Laboratory

    Science.gov (United States)

    Stefanidis, Lazaros; Scinto, Krystal V.; Strada, Monica I.; Alper, Benjamin J.

    2018-01-01

    Most biochemical transformations involve more than one substrate. Bisubstrate enzymes catalyze multiple chemical reactions in living systems and include members of the transferase, oxidoreductase, and ligase enzyme classes. Working knowledge of bisubstrate enzyme kinetic models is thus of clear importance to the practicing biochemist. However,…

  6. Responses of the antioxidative and biotransformation enzymes in the aquatic fungus Mucor hiemalis exposed to cyanotoxins.

    Science.gov (United States)

    Balsano, Evelyn; Esterhuizen-Londt, Maranda; Hoque, Enamul; Lima, Stephan Pflugmacher

    2017-08-01

    To investigate antioxidative and biotransformation enzyme responses in Mucor hiemalis towards cyanotoxins considering its use in mycoremediation applications. Catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPx) in M. hiemalis maintained their activities at all tested microcystin-LR (MC-LR) exposure concentrations. Cytosolic glutathione S-transferase (GST) activity decreased with exposure to 100 µg MC-LR l -1 while microsomal GST remained constant. Cylindrospermopsin (CYN) at 100 µg l -1 led to an increase in CAT activity and inhibition of GR, as well as to a concentration-dependent GPx inhibition. Microsomal GST was inhibited at all concentrations tested. β-N-methylamino-L-alanine (BMAA) inhibited GR activity in a concentration-dependent manner, however, CAT, GPx, and GST remained unaffected. M. hiemalis showed enhanced oxidative stress tolerance and intact biotransformation enzyme activity towards MC-LR and BMAA in comparison to CYN, confirming its applicability in bioreactor technology in terms of viability and survival in their presence.

  7. Application of Various Statistical Models to Explore Gene-Gene Interactions in Folate, Xenobiotic, Toll-Like Receptor and STAT4 Pathways that Modulate Susceptibility to Systemic Lupus Erythematosus.

    Science.gov (United States)

    Rupasree, Yedluri; Naushad, Shaik Mohammad; Varshaa, Ravi; Mahalakshmi, Govindaraj Swathika; Kumaraswami, Konda; Rajasekhar, Liza; Kutala, Vijay Kumar

    2016-02-01

    In view of our previous studies showing an independent association of genetic polymorphisms in folate, xenobiotic, and toll-like receptor (TLR) pathways with the risk for systemic lupus erythematosus (SLE), we have developed three statistical models to delineate complex gene-gene interactions between folate, xenobiotic, TLR, and signal transducer and activator of transcription 4 (STAT4) signaling pathways in association with the molecular pathophysiology of SLE. We developed additive, multifactor dimensionality reduction (MDR), and artificial neural network (ANN) models. The additive model, although the simplest, suggested a moderate predictability of 30 polymorphisms of these four pathways (area under the curve [AUC] 0.66). MDR analysis revealed significant gene-gene interactions among glutathione-S-transferase (GST)T1 and STAT4 (rs3821236 and rs7574865) polymorphisms, which account for moderate predictability of SLE. The MDR model for specific auto-antibodies revealed the importance of gene-gene interactions among cytochrome P450, family1, subfamily A, polypeptide 1 (CYP1A1) m1, catechol-O-methyltransferase (COMT) H108L, solute carrier family 19 (folate transporter), member 1 (SLC19A1) G80A, estrogen receptor 1 (ESR1), TLR5, 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR), thymidylate synthase (TYMS). and STAT4 polymorphisms. The ANN model for disease prediction showed reasonably good predictability of SLE risk with 30 polymorphisms (AUC 0.76). These polymorphisms contribute towards the production of SSB and anti-dsDNA antibodies to the extent of 48 and 40%, respectively, while their contribution for the production of antiRNP, SSA, and anti-cardiolipin antibodies varies between 20 and 30%. The current study highlighted the importance of genetic polymorphisms in folate, xenobiotic, TLR, and STAT4 signaling pathways as moderate predictors of SLE risk and delineates the molecular pathophysiology associated with these single nucleotide

  8. Comparative assay of glutathione S-transferase (GSTs) activity of excretory-secretory materials and somatic extract of Fasciola spp parasites.

    Science.gov (United States)

    Alirahmi, Heshmatollah; Farahnak, Ali; Golmohamadi, Taghi; Esharghian, Mohammad Reza

    2010-01-01

    Fascioliasis is a worldwide parasitic disease in human and domestic animals. The causative agents of fascioliasis are Fasciola hepatica and Fasciola gigantica. In the recent years, fasciola resistance to drugs has been reported in the many of publications. Fasciola spp has detoxification system including GST enzyme which may be responsible for its resistance. Therefore , the aim of the study was to assay of GST enzyme activity in fasciola parasites. Fasciola gigantica and Fasciola hepatica helminths were collected from abattoir as a live and cultured in buffer media for 4 h at 37 °C. Excretory-Secretory products were collected and stored in -80◦C. F. gigantica and Fasciola hepatica were homogenized with homogenizing buffer in a glass homogenizer to prepare of somatic extract. Suspension was then centrifuged and supernatant was stored at -80°C. In order to assay the enzyme activity, excretory-secretory and somatic extracts in the form of cocktails (potassium phosphate buffer, reduced glutathione and 1-chloro-2,4-dinitrobenzene substrates) were prepared and their absorbance recorded for 5 minutes at 340 nm. The total and specific GST activity of F. gigantica somatic and ES products were obtained as 2916.00, 272.01 micromole/minute and 1.33, 1.70 micromole/minute/mg protein, respectively. Fasciola hepatica also showed 2705.00, 276.86 micromole/minute and 1.33, 1.52 micromole/minute/mg protein, respectively. These results are important for analysis of parasite survival / resistance to drugs which use for treatment of fascioliasis.

  9. Inhibitors for Androgen Receptor Activation Surfaces

    Science.gov (United States)

    2007-09-01

    times and the electron-rich iodine groups of Triac representing particularly good markers. Control soaks with solvent ( DMSO ) reveal no similar...electron-rich iodine groups of Triac represent particu- larly good markers. Control soaks with solvent ( DMSO ) reveal no similar effects on coregulator...3-(dibutylamino)-1-(4-hexylphenyl)propan-1-one DMSO , dimethylsulfoxide DTT, dithiothreitol ER, estrogen receptor GST, glutathione S-transferase

  10. A case-control study of association between genetic polymorphisms of metabolizing enzymes GSTM1 and lung cancer susceptibility for the people living in high radon-exposed area

    International Nuclear Information System (INIS)

    Qi Xuesong; Lu Huimin; Xia Ying; Shang Bing; Sun Quanfu; Cui Hongxing; Wang Liping

    2009-01-01

    A case-control study was performed with 53 lung cancer patients and 72 frequency-matched controls to assess the role of genetic polymorphisms of metabolizing enzymes Glutathione S-transferases M1(GSTM1) in risk of developing lung cancer for the people living in high radon-exposed area. The associations between genotypes and risk of developing lung cancer were estimated by odds ratios (ORs) and their 95% confidence intervals (CIs) calculated by unconditional logistic regression. The frequencies of GSTM1 positive polymorphism and null polymorphism were 38.9% and 64.1% respectively in lung cancer patients. The frequencies of GSTM1 positive polymorphism and null polymorphism were 43.1% and 56.9% respectively in controls. The risk of developing lung cancer for GSTM1 null polymorphism was 1.35-fold(95%CI 0.652-2.81). GSTM1 null polymorphism with effective dose <50 mSv could increase the risk of developing lung cancer (OR 1.14, 95%CI 0.198-6.60). The frequency of GSTM1 positive polymorphism of lung cancer patients was lower than that of the controls. Based on those data, the frequency of GSTM1 null polymorphism of lung cancer patients was higher than that of the controls. There was an association between genetic polymorphism of GSTM1 and lung cancer. But the differences were not all statistically significant. (authors)

  11. Glutathione oxidation in response to intracellular H2O2: Key but overlapping roles for dehydroascorbate reductases.

    Science.gov (United States)

    Rahantaniaina, Marie-Sylviane; Li, Shengchun; Chatel-Innocenti, Gilles; Tuzet, Andrée; Mhamdi, Amna; Vanacker, Hélène; Noctor, Graham

    2017-08-03

    Glutathione is a pivotal molecule in oxidative stress, during which it is potentially oxidized by several pathways linked to H 2 O 2 detoxification. We have investigated the response and functional importance of 3 potential routes for glutathione oxidation pathways mediated by glutathione S-transferases (GST), glutaredoxin-dependent peroxiredoxins (PRXII), and dehydroascorbate reductases (DHAR) in Arabidopsis during oxidative stress. Loss-of-function gstU8, gstU24, gstF8, prxIIE and prxIIF mutants as well as double gstU8 gstU24, gstU8 gstF8, gstU24 gstF8, prxIIE prxIIF mutants were obtained. No mutant lines showed marked changes in their phenotype and glutathione profiles in comparison to the wild-type plants in either optimal conditions or oxidative stress triggered by catalase inhibition. By contrast, multiple loss of DHAR functions markedly decreased glutathione oxidation triggered by catalase deficiency. To assess whether this effect was mediated directly by loss of DHAR enzyme activity, or more indirectly by upregulation of other enzymes involved in glutathione and ascorbate recycling, we measured expression of glutathione reductase (GR) and expression and activity of monodehydroascorbate reductases (MDHAR). No evidence was obtained that either GRs or MDHARs were upregulated in plants lacking DHAR function. Hence, interplay between different DHARs appears to be necessary to couple ascorbate and glutathione pools and to allow glutathione-related signaling during enhanced H 2 O 2 metabolism.

  12. Transferability of microsatellite markers located in candidate genes for wood properties between Eucalyptus species

    Directory of Open Access Journals (Sweden)

    Cintia V. Acuña

    2014-12-01

    Full Text Available Aim of study:  To analyze the feasibility of extrapolating conclusions on wood quality genetic control between different Eucalyptus species, particularly from species with better genomic information, to those less characterized. For this purpose, the first step is to analyze the conservation and cross-transferability of microsatellites markers (SSRs located in candidate genes.Area of study: Eucalyptus species implanted in Argentina coming from different Australian origins.Materials and methods: Twelve validated and polymorphic SSRs in candidate genes (SSR-CGs for wood quality in E. globulus were selected for cross species amplification in six species: E. grandis, E. saligna, E. dunnii, E. viminalis, E. camaldulensis and E. tereticornis.Main results: High cross-species transferability (92% to 100% was found for the 12 polymorphic SSRs detected in E. globulus. These markers revealed allelic diversity in nine important candidate genes: cinnamoyl CoA reductase (CCR, cellulose synthase 3 (CesA3, the transcription factor LIM1, homocysteine S-methyltransferase (HMT, shikimate kinase (SK, xyloglucan endotransglycosylase 2 (XTH2, glutathione S-transferase (GST, glutamate decarboxylase (GAD and peroxidase (PER.Research highlights: The markers described are potentially suitable for comparative QTL mapping, molecular marker assisted breeding (MAB and for population genetic studies across different species within the subgenus Symphyomyrtus.Keywords: validation; cross-transferability; SSR; functional markers; eucalypts; Symphyomyrtus.

  13. The association between the RAGE G82S polymorphism, sRAGE and chronic periodontitis in Taiwanese individuals with and without diabetes.

    Science.gov (United States)

    Wu, T-L; Tsai, C-C; Wang, Y-Y; Ho, K-Y; Wu, Y-M; Hung, H-C; Lin, Y-C

    2015-12-01

    The present study investigated the association between the RAGE G82S polymorphism, the plasma levels of sRAGE and chronic periodontitis in subjects with and without diabetes mellitus (DM). A total of 230 patients with DM and 264 non-DM participants were recruited for this study. Genotyping of the RAGE G82S polymorphism was accomplished using polymerase chain reaction-restriction fragment length polymorphism, and associations were analyzed with the chi-squared test and logistic regression analysis. In the non-DM group, the chi-squared test showed that the frequency distributions of the G82S polymorphism were significantly different between chronic periodontitis and non-chronic periodontitis subjects (χ(2) = 8.39, p = 0.02). A multivariate logistic regression model showed that the (G82S + S82S) genotypes were associated with a significantly increased risk of chronic periodontitis development compared to the G82G genotype (adjusted odds ratio = 2.06, 95% confidence interval: 1.08-4.07). In the DM group, there was no association between the G82S polymorphism and chronic periodontitis development when a multivariate logistic regression was performed. Plasma levels of sRAGE were significantly higher in subjects with the G82G genotype compared to those with the (G82S + S82S) genotypes in both the non-DM (856.6 ± 332.0 vs. 720.4 ± 311.4 pg/mL, p = 0.003) and DM groups (915.3 ± 497.1 vs. 603.5 ± 298.3 pg/mL, p chronic periodontitis and non-chronic periodontitis subjects in both the DM and non-DM groups. Moreover, when the subjects were further sub-divided by the G82S polymorphism, the difference in plasma levels of sRAGE between chronic periodontitis and non-chronic periodontitis subjects in the DM and non-DM groups remained statistically insignificant. The present study revealed that the RAGE G82S polymorphism was associated with chronic periodontitis in the non-DM group but not in the DM group. Our results also showed that the plasma levels of sRAGE were

  14. Accounting for Change: Adult and Community Education Organisations and the GST.

    Science.gov (United States)

    Gelade, Sue; Harris, Roger; Mason, Deb

    A study examined impact of the adult and community education (ACE) Amendment to the Goods and Services Tax (GST) on Australian adult and continuing education (ACE) providers. Telephone interviews were held with representatives of 232 ACE organizations. Most were small businesses; almost half had less than $100,000 annual revenue; two-thirds had…

  15. Sciades herzbergii oxidative stress biomarkers: an in situ study of an estuarine ecosystem (São Marcos' Bay, Maranhão, Brazil

    Directory of Open Access Journals (Sweden)

    Raimunda Nonata Fortes Carvalho-Neta

    2010-01-01

    Full Text Available In order to study the effects of environmental contamination on wild fish, sites were sampled in São Marcos' Bay. The first is located near the ALUMAR/ALCOA port, a potentially contaminated area. The second, located near the Coqueiro beach, was used as a reference area. The activity of antioxidant defence catalase (CAT and glutathione S-transferase (GST in S. herzbergii was compared with the biometric data and gonadosomatic index (GSI. The result showed that GSI decreased significantly in females (pO objetivo desse trabalho foi estudar os efeitos da contaminação ambiental em peixes amostrados em dois locais da Baía de São Marcos. O primeiro ponto está localizado próximo ao porto da ALUMAR/ALCOA, considerado como uma área potencialmente contaminada. O segundo ponto, situado na praia do Coqueiro, foi usado como uma área de referência. Dados da atividade da enzima de defesa antioxidante catalase (CAT e da glutationa S-transferase (GST em S. herzbergii foram comparados com os dados biométricos e o índice gonadossomático (GSI. Resultados mostraram que o GSI diminuiu significativamente em fêmeas (p <0.05 no local contaminado. A atividade da CAT foi mais alta nos peixes do local contaminado. Uma diferença significativa foi observada na atividade de GST de S. herzbergii no local contaminado e no local de referência (p <0.05. GSI possibilitou uma nova abordagem quanto à natureza da resposta de destoxificação nessa espécie de bagre porque este índice não apresentou correlação com as enzimas no local potencialmente contaminado, mas apresentou no local de referência. Assim, sugere-se que a boa correlação da GST/CAT e GSI poderia estar relacionada à reprodução dos animais no local de referência, mas não no local potencialmente contaminado. Se esse for o caso, pode-se concluir que GST/CAT e GSI podem ser utilizados como bons biomarcadores para avaliar contaminação aquática.

  16. Glutathione S-transferase P1 gene polymorphisms and susceptibility ...

    Indian Academy of Sciences (India)

    M. A. Bhat

    2017-11-28

    Nov 28, 2017 ... Binary logistic regression analysis showed significant association of A/G (odds ratio (OR): 1.6, 95% CI: 1.08–2.49, ... diet, advanced age, smoking, hypertension, diabetes mel- ..... risk of prostate cancer: A meta-analysis.

  17. sY116, a human Y-linked polymorphic STS

    Indian Academy of Sciences (India)

    linked STS, showed different electrophoretic mobilities in three males, two infertile and one fertile. A study of this STS among 35 other normal males showed that this locus is polymorphic. sY116 has a poly A-rich stretch whose instability ...

  18. Comparative Assay of Glutathione S- Transferase (GSTs Activity of Excretory-Secretory Materials and Somatic Extract of Fasciola spp Parasites

    Directory of Open Access Journals (Sweden)

    Heshmatollah Alirahmi

    2010-12-01

    Full Text Available Fascioliasis is a worldwide parasitic disease in human and domestic animals. The causative agents of fascioliasis are Fasciola hepatica and Fasciola gigantica. In the recent years, fasciola resistance to drugs has been reported in the many of publications. Fasciola spp has detoxification system including GST enzyme which may be responsible for its resistance. Therefore , the aim of the study was to assay of GST enzyme activity in fasciola parasites. Fasciola gigantica and Fasciola hepatica helminths were collected from abattoir as a live and cultured in buffer media for 4 h at 37 °C. Excretory-Secretory products were collected and stored in -80◦C. F. gigantica and Fasciola hepatica were homogenized with homogenizing buffer in a glass homogenizer to prepare of somatic extract. Suspension was then centrifuged and supernatant was stored at -80°C. In order to assay the enzyme activity, excretory-secretory and somatic extracts in the form of cocktails (potassium phosphate buffer, reduced glutathione and 1-chloro-2,4-dinitrobenzene substrates were prepared and their absorbance recorded for 5 minutes at 340 nm. The total and specific GST activity of F. gigantica somatic and ES products were obtained as 2916.00, 272.01 micromole/minute and 1.33, 1.70 micromole/minute/mg protein, respectively. Fasciola hepatica also showed 2705.00, 276.86 micromole/minute and 1.33, 1.52 micromole/minute/mg protein, respectively. These results are important for analysis of parasite survival / resistance to drugs which use for treatment of fascioliasis.

  19. Comparative Assay of Glutathione S- Transferase (GSTs Activity of Excretory-Secretory Materials and Somatic Extract of Fasciola spp Parasites

    Directory of Open Access Journals (Sweden)

    Taghi Golmohamadi

    2010-11-01

    Full Text Available Fascioliasis is a worldwide parasitic disease in human and domestic animals. The causative agents of fascioliasis are Fasciola hepatica and Fasciola gigantica. In the recent years, fasciola resistance to drugs has been reported in the many of publications. Fasciola spp has detoxification system including GST enzyme which may be responsible for its resistance. Therefore , the aim of the study was to assay of GST enzyme activity in fasciola parasites. Fasciola gigantica and Fasciola hepatica helminths were collected from abattoir as a live and cultured in buffer media for 4 h at 37 °C. Excretory-Secretory products were collected and stored in -80◦C. F. gigantica and Fasciola hepatica were homogenized with homogenizing buffer in a glass homogenizer to prepare of somatic extract. Suspension was then centrifuged and supernatant was stored at -80°C. In order to assay the enzyme activity, excretory-secretory and somatic extracts in the form of cocktails (potassium phosphate buffer, reduced glutathione and 1-chloro-2,4-dinitrobenzene substrates were prepared and their absorbance recorded for 5 minutes at 340 nm. The total and specific GST activity of F. gigantica somatic and ES products were obtained as 2916.00, 272.01 micromole/minute and 1.33, 1.70 micromole/minute/mg protein, respectively. Fasciola hepatica also showed 2705.00, 276.86 micromole/minute and 1.33, 1.52 micromole/minute/mg protein, respectively. These results are important for analysis of parasite survival / resistance to drugs which use for treatment of fascioliasis.

  20. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alanine amino transferase (ALT/SGPT) test system... Test Systems § 862.1030 Alanine amino transferase (ALT/SGPT) test system. (a) Identification. An alanine amino transferase (ALT/SGPT) test system is a device intended to measure the activity of the...

  1. Hatice BAŞ1,♠, Yusuf KALENDER2

    OpenAIRE

    Bas, Hatice; Kalender, Yusuf

    2010-01-01

    In this study, chlorpyrifos, catechin, quercetin and catechin- or quercetin+chlorpyrifos were given to Wistar rats for 4 weeks. Chlorpyrifos increased the levels of malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT); decreased glutathione peroxidase (GPx) and glutathione–S-transferase (GST) activities in heart compared to the control. In catechin- and quercetin+chlorpyrifos groups, we observed the protective effects of flavonoids on examining parameters. Light micr...

  2. The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome.

    Science.gov (United States)

    Poulsen, S M; Karlsson, M; Johansson, L B; Vester, B

    2001-09-01

    The pleuromutilin antibiotic derivatives, tiamulin and valnemulin, inhibit protein synthesis by binding to the 50S ribosomal subunit of bacteria. The action and binding site of tiamulin and valnemulin was further characterized on Escherichia coli ribosomes. It was revealed that these drugs are strong inhibitors of peptidyl transferase and interact with domain V of 23S RNA, giving clear chemical footprints at nucleotides A2058-9, U2506 and U2584-5. Most of these nucleotides are highly conserved phylogenetically and functionally important, and all of them are at or near the peptidyl transferase centre and have been associated with binding of several antibiotics. Competitive footprinting shows that tiamulin and valnemulin can bind concurrently with the macrolide erythromycin but compete with the macrolide carbomycin, which is a peptidyl transferase inhibitor. We infer from these and previous results that tiamulin and valnemulin interact with the rRNA in the peptidyl transferase slot on the ribosomes in which they prevent the correct positioning of the CCA-ends of tRNAs for peptide transfer.

  3. Cooperation of terminal deoxynucleotidyl transferase with DNA polymerase α in the replication of ultraviolet-irradiated DNA

    International Nuclear Information System (INIS)

    Yoshida, S.; Masaki, S.; Nakamura, H.; Morita, T.

    1981-01-01

    The amount of DNA synthesis in vitro with the ultraviolet-irradiated poly(dT).oligo(rA) template initiators catalysed by DNA polymerase α (Masaki, S. and Yoshida, S., Biochim. Biophys. Acta 521, 74-88) decreased with the dose of ultraviolet-irradiation. The ultraviolet irradiation to the template, however, did not affect the rate of incorporation of incorrect deoxynucleotides into the newly synthesized poly(dA). The addition of terminal deoxynucleotidyl transferase to this system enhanced the DNA synthesis to a level which is comparable to that of the control and it concomitantly increased the incorporation of the mismatched deoxynucleotide into the newly synthesized poly(dA) strands. On the other hand, with an unirradiated template initiator, the misincorporation was only slightly enhanced by the addition of terminal deoxynucleotidyl transferase. The sizes of newly synthesized DNA measured by the sedimentation velocities were found to be smaller with the ultraviolet-irradiated templates but they increased to the control level with the addition of terminal deoxynucleotidyl transferase to the systems. These results suggest that terminal deoxynucleotidyl transferase can help DNA polymerase α to bypass thymine dimers in vitro by the formation of mismatched regions at the positions opposite to pyrimidine dimers on the template. (Auth.)

  4. Glutathione S-transferase P influences redox and migration pathways in bone marrow.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    Full Text Available To interrogate why redox homeostasis and glutathione S-transferase P (GSTP are important in regulating bone marrow cell proliferation and migration, we isolated crude bone marrow, lineage negative and bone marrow derived-dendritic cells (BMDDCs from both wild type (WT and knockout (Gstp1/p2(-/- mice. Comparison of the two strains showed distinct thiol expression patterns. WT had higher baseline and reactive oxygen species-induced levels of S-glutathionylated proteins, some of which (sarco-endoplasmic reticulum Ca2(+-ATPase regulate Ca(2+ fluxes and subsequently influence proliferation and migration. Redox status is also a crucial determinant in the regulation of the chemokine system. CXCL12 chemotactic response was stronger in WT cells, with commensurate alterations in plasma membrane polarization/permeability and intracellular calcium fluxes; activities of the downstream kinases, ERK and Akt were also higher in WT. In addition, expression levels of the chemokine receptor CXCR4 and its associated phosphatase, SHP-2, were higher in WT. Inhibition of CXCR4 or SHP2 decreased the extent of CXCL12-induced migration in WT BMDDCs. The differential surface densities of CXCR4, SHP-2 and inositol trisphosphate receptor in WT and Gstp1/p2(-/- cells correlated with the differential CXCR4 functional activities, as measured by the extent of chemokine-induced directional migration and differences in intracellular signaling. These observed differences contribute to our understanding of how genetic ablation of GSTP causes different levels of myeloproliferation and migration [corrected

  5. Identification of an enhancer element of class Pi glutathione S-transferase gene required for expression by a co-planar polychlorinated biphenyl.

    OpenAIRE

    Matsumoto, M; Imagawa, M; Aoki, Y

    1999-01-01

    3,3',4,4',5-Pentachlorobiphenyl (PenCB), one of the most toxic co-planar polychlorinated biphenyl congeners, specifically induces class Pi glutathione S-transferase (GSTP1) as well as cytochrome P-450 1A1 in primary cultured rat liver parenchymal cells [Aoki, Matsumoto and Suzuki (1993) FEBS Lett. 333, 114-118]. However, the 5'-flanking sequence of the GSTP1 gene does not contain a xenobiotic responsive element, to which arylhydrocarbon receptor binds. Using a chloramphenicol acetyltransferas...

  6. Curcumin inhibits development and cell adhesion in Dictyostelium discoideum: Implications for YakA signaling and GST enzyme function

    Energy Technology Data Exchange (ETDEWEB)

    Garige, Mamatha; Walters, Eric, E-mail: ewalters@howard.edu

    2015-11-13

    The molecular basis for nutraceutical properties of the polyphenol curcumin (Curcuma longa, Turmeric) is complex, affecting multiple factors that regulate cell signaling and homeostasis. Here, we report the effect of curcumin on cellular and developmental mechanisms in the eukaryotic model, Dictyostelium discoideum. Dictyostelium proliferation was inhibited in the presence of curcumin, which also suppressed the prestarvation marker, discoidin I, members of the yakA-mediated developmental signaling pathway, and expression of the extracellular matrix/cell adhesion proteins (DdCAD and csA). This resulted in delayed chemotaxis, adhesion, and development of the organism. In contrast to the inhibitory effects on developmental genes, curcumin induced gstA gene expression, overall GST activity, and generated production of reactive oxygen species. These studies expand our knowledge of developmental and biochemical signaling influenced by curcumin, and lends greater consideration of GST enzyme function in eukaryotic cell signaling, development, and differentiation.

  7. Curcumin inhibits development and cell adhesion in Dictyostelium discoideum: Implications for YakA signaling and GST enzyme function

    International Nuclear Information System (INIS)

    Garige, Mamatha; Walters, Eric

    2015-01-01

    The molecular basis for nutraceutical properties of the polyphenol curcumin (Curcuma longa, Turmeric) is complex, affecting multiple factors that regulate cell signaling and homeostasis. Here, we report the effect of curcumin on cellular and developmental mechanisms in the eukaryotic model, Dictyostelium discoideum. Dictyostelium proliferation was inhibited in the presence of curcumin, which also suppressed the prestarvation marker, discoidin I, members of the yakA-mediated developmental signaling pathway, and expression of the extracellular matrix/cell adhesion proteins (DdCAD and csA). This resulted in delayed chemotaxis, adhesion, and development of the organism. In contrast to the inhibitory effects on developmental genes, curcumin induced gstA gene expression, overall GST activity, and generated production of reactive oxygen species. These studies expand our knowledge of developmental and biochemical signaling influenced by curcumin, and lends greater consideration of GST enzyme function in eukaryotic cell signaling, development, and differentiation.

  8. Single nucleotide polymorphisms as susceptibility, prognostic, and therapeutic markers of nonsmall cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zienolddiny S

    2011-12-01

    Full Text Available Shanbeh Zienolddiny, Vidar SkaugSection for Toxicology and Biological Work Environment, National Institute of Occupational Health, Oslo, NorwayAbstract: Lung cancer is a major public health problem throughout the world. Among the most frequent cancer types (prostate, breast, colorectal, stomach, lung, lung cancer is the leading cause of cancer-related deaths worldwide. Among the two major subtypes of small cell lung cancer and nonsmall cell lung cancer (NSCLC, 85% of tumors belong to the NSCLC histological types. Small cell lung cancer is associated with the shortest survival time. Although tobacco smoking has been recognized as the major risk factor for lung cancer, there is a great interindividual and interethnic difference in risk of developing lung cancer given exposure to similar environmental and lifestyle factors. This may indicate that in addition to chemical and environmental factors, genetic variations in the genome may contribute to risk modification. A common type of genetic variation in the genome, known as single nucleotide polymorphism, has been found to be associated with susceptibility to lung cancer. Interestingly, many of these polymorphisms are found in the genes that regulate major pathways of carcinogen metabolism (cytochrome P450 genes, detoxification (glutathione S-transferases, adduct removal (DNA repair genes, cell growth/apoptosis (TP53/MDM2, the immune system (cytokines/chemokines, and membrane receptors (nicotinic acetylcholine and dopaminergic receptors. Some of these polymorphisms have been shown to alter the level of mRNA, and protein structure and function. In addition to being susceptibility markers, several of these polymorphisms are emerging to be important for response to chemotherapy/radiotherapy and survival of patients. Therefore, it is hypothesized that single nucleotide polymorphisms will be valuable genetic markers in individual-based prognosis and therapy in future. Here we will review some of the most

  9. Polymorphisms in the selenoprotein S gene: lack of association with autoimmune inflammatory diseases

    Directory of Open Access Journals (Sweden)

    Díaz-Rubio Manuel

    2008-07-01

    Full Text Available Abstract Background Selenoprotein S (SelS protects the functional integrity of the endoplasmic reticulum against the deleterious effects of metabolic stress. SEPS1/SelS polymorphisms have been involved in the increased release of pro-inflammatory cytokines interleukin (IL-1β, tumor necrosis factor (TNF-α and IL-6 in macrophages. We aimed at investigating the role of the SEPS1 variants previously associated with higher plasma levels of these cytokines and of the SEPS1 haplotypes in the susceptibility to develop immune-mediated diseases characterized by an inflammatory component. Results Six polymorphisms distributed through the SEPS1 gene (rs11327127, rs28665122, rs4965814, rs12917258, rs4965373 and rs2101171 were genotyped in more than two thousand patients suffering from type 1 diabetes, rheumatoid arthritis or inflammatory bowel diseases and 550 healthy controls included in the case-control study. Conclusion Lack of association of SEPS1 polymorphisms or haplotypes precludes a major role of this gene increasing predisposition to these inflammatory diseases.

  10. Glutathione S-Transferase Gene Polymorphisms: Modulator of Genetic Damage in Gasoline Pump Workers.

    Science.gov (United States)

    Priya, Kanu; Yadav, Anita; Kumar, Neeraj; Gulati, Sachin; Aggarwal, Neeraj; Gupta, Ranjan

    2015-01-01

    This study investigated genetic damage in gasoline pump workers using the cytokinesis blocked micronucleus (CBMN) assay. Blood and urine samples were collected from 50 gasoline pump workers and 50 control participants matched with respect to age and other confounding factors except for exposure to benzene through gasoline vapors. To determine the benzene exposure, phenol was analyzed in urinary samples of exposed and control participants. Urinary mean phenol level was found to be significantly high (P gasoline pump workers (6.70 ± 1.78) when compared to control individuals (2.20 ± 0.63; P gasoline vapors can increase genotoxic risk in gasoline pump workers. © The Author(s) 2015.

  11. Genetic modification of the effect of maternal household air pollution exposure on birth weight in Guatemalan newborns.

    Science.gov (United States)

    Thompson, Lisa M; Yousefi, Paul; Peñaloza, Reneé; Balmes, John; Holland, Nina

    2014-12-01

    Low birth weight is associated with exposure to air pollution during pregnancy. The purpose of this study was to evaluate whether null polymorphisms of Glutathione S-transferases (GSTs), specifically GSTM1 and GSTT1 genes in infants or mothers, modify the association between high exposures to household air pollution (HAP) from cooking fires and birth weight. Pregnant women in rural Guatemala were randomized to receive a chimney stove or continue to use open fires for cooking. Newborns were measured within 48 h of birth. 132 mother-infant pairs provided infant genotypes (n=130) and/or maternal genotypes (n=116). Maternal null GSTM1 was associated with a 144 g (95% CI, -291, 1) and combined maternal/infant null GSTT1 was associated with a 155 g (95% CI, -303, -8) decrease in birth weight. Although there was a trend toward higher birth weights with increasing number of expressed GST genes, the effect modification by chimney stove use was not demonstrated. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. One-electron oxidation of diclofenac by human cytochrome P450s as a potential bioactivation mechanism for formation of 2'-(glutathion-S-yl)-deschloro-diclofenac.

    Science.gov (United States)

    Boerma, Jan Simon; Vermeulen, Nico P E; Commandeur, Jan N M

    2014-01-25

    Reactive metabolites have been suggested to play a role in the idiosyncratic hepatotoxicity observed with diclofenac (DF). By structural identification of the GSH conjugates formed after P450-catalyzed bioactivation of DF, it was shown that three types of reactive intermediates were formed: p-benzoquinone imines, o-imine methide and arene-oxide. Recently, detection of 2'-(glutathion-S-yl)-deschloro-diclofenac (DDF-SG), resulting from chlorine substitution, suggested the existence of a fourth type of P450-dependent reactive intermediate whose inactivation by GSH is completely dependent on presence of glutathione S-transferase. In this study, fourteen recombinant cytochrome P450s and three flavin-containing monooxygenases were tested for their ability to produce oxidative DF metabolites and their corresponding GSH conjugates. Concerning the hydroxymetabolites and their GSH conjugates, results were consistent with previous studies. Unexpectedly, all tested recombinant P450s were able to form DDF-SG to almost similar extent. DDF-SG formation was found to be partially independent of NADPH and even occurred by heat-inactivated P450. However, product formation was fully dependent on both GSH and glutathione-S-transferase P1-1. DDF-SG formation was also observed in reactions with horseradish peroxidase in absence of hydrogen peroxide. Because DDF-SG was not formed by free iron, it appears that DF can be bioactivated by iron in hemeproteins. This was confirmed by DDF-SG formation by other hemeproteins such as hemoglobin. As a mechanism, we propose that DF is subject to heme-dependent one-electron oxidation. The resulting nitrogen radical cation, which might activate the chlorines of DF, then undergoes a GST-catalyzed nucleophilic aromatic substitution reaction in which the chlorine atom of the DF moiety is replaced by GSH. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Post Implementation of Goods and Services Tax (GST) in Malaysia: Tax Agents’ Perceptions on Clients’ Compliance Behaviour and Tax Agents’ Roles in Promoting Compliance

    OpenAIRE

    Muhammad Izlawanie

    2017-01-01

    The Malaysian government introduced the Goods and Services Tax (GST) starting from 1 April 2015 to enhance the revenue collections and mitigate the transfer pricing manipulation. Tax agents play a significant role to help businesses to comply with GST law and regulations. After one year of GST implementation, it is vital to understand tax agents’ perceptions on clients’ compliance behaviour and tax agents’ roles in influencing compliance. A total of 30 registered tax agents completed a survey...

  14. Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides.

    Science.gov (United States)

    Wang, Zhiling; Zhao, Zhong; Cheng, Xiaofei; Liu, Suqi; Wei, Qin; Scott, Ian M

    2016-02-01

    Detoxification by glutathione S-transferases (GSTs) and esterases are important mechanisms associated with insecticide resistance. Discovery of novel GST and esterase inhibitors from phytochemicals could provide potential new insecticide synergists. Conifer tree species contain flavonoids, such as taxifolin, that inhibit in vitro GST activity. The objectives were to test the relative effectiveness of taxifolin as an enzyme inhibitor and as an insecticide synergist in combination with the organophosphorous insecticide, Guthion (50% azinphos-methyl), and the botanical insecticide, pyrethrum, using an insecticide-resistant Colorado potato beetle (CPB) Leptinotarsa decemlineata (Say) strain. Both taxifolin and its isomer, quercetin, increased the mortality of 1(st) instar CPB larvae after 48h when combined with Guthion, but not pyrethrum. Taxifolin had greater in vitro esterase inhibition compared with the commonly used esterase inhibitor, S, S, S-tributyl phosphorotrithioate (DEF). An in vivo esterase and GST inhibition effect after ingestion of taxifolin was measured, however DEF caused a greater suppression of esterase activity. This study demonstrated that flavonoid compounds have both in vitro and in vivo esterase inhibition, which is likely responsible for the insecticide synergism observed in insecticide-resistant CPB. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  15. High-pressure polymorphism of As2S3 and new AsS2 modification with layered structure

    Science.gov (United States)

    Bolotina, N. B.; Brazhkin, V. V.; Dyuzheva, T. I.; Katayama, Y.; Kulikova, L. F.; Lityagina, L. V.; Nikolaev, N. A.

    2014-01-01

    At normal pressure, the As2S3 compound is the most stable equilibrium modification with unique layered structure. The possibility of high-pressure polymorphism of this substance remains questionable. Our research showed that the As2S3 substance was metastable under pressures P > 6 GPa decomposing into two high-pressure phases: As2S3 → AsS2 + AsS. New AsS2 phase can be conserved in the single crystalline form in metastable state at room pressure up to its melting temperature (470 K). This modification has the layered structure with P1211 monoclinic symmetry group; the unit-cell values are a = 7.916(2) Å, b = 9.937(2) Å, c = 7.118(1) Å, β = 106.41° ( Z = 8, density 3.44 g/cm3). Along with the recently studied AsS high-pressure modification, the new AsS2 phase suggests that high pressure polymorphism is a very powerful tool to create new layered-structure phases with "wrong" stoichiometry.

  16. Maternal obesity and tobacco use modify the impact of genetic variants on the occurrence of conotruncal heart defects.

    Science.gov (United States)

    Tang, Xinyu; Nick, Todd G; Cleves, Mario A; Erickson, Stephen W; Li, Ming; Li, Jingyun; MacLeod, Stewart L; Hobbs, Charlotte A

    2014-01-01

    Conotruncal heart defects (CTDs) are among the most severe birth defects worldwide. Studies of CTDs indicate both lifestyle behaviors and genetic variation contribute to the risk of CTDs. Based on a hybrid design using data from 616 case-parental and 1645 control-parental triads recruited for the National Birth Defects Prevention Study between 1997 and 2008, we investigated whether the occurrence of CTDs is associated with interactions between 921 maternal and/or fetal single nucleotide polymorphisms (SNPs) and maternal obesity and tobacco use. The maternal genotypes of the variants in the glutamate-cysteine ligase, catalytic subunit (GCLC) gene and the fetal genotypes of the variants in the glutathione S-transferase alpha 3 (GSTA3) gene were associated with an elevated risk of CTDs among obese mothers. The risk of delivering infants with CTDs among obese mothers carrying AC genotype for a variant in the GCLC gene (rs6458939) was 2.00 times the risk among those carrying CC genotype (95% confidence interval: 1.41, 2.38). The maternal genotypes of several variants in the glutathione-S-transferase (GST) family of genes and the fetal genotypes of the variants in the GCLC gene interacted with tobacco exposures to increase the risk of CTDs. Our study suggests that the genetic basis underlying susceptibility of the developing heart to the adverse effects of maternal obesity and tobacco use involve both maternal and embryonic genetic variants. These results may provide insights into the underlying pathophysiology of CTDs, and ultimately lead to novel prevention strategies.

  17. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life

    DEFF Research Database (Denmark)

    Beld, Joris; Sonnenschein, Eva; Vickery, Christopher R.

    2013-01-01

    Covering: up to 2013 Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified...... knowledge on this class of enzymes that post-translationally install a 4′-phosphopantetheine arm on various carrier proteins....

  18. Polymorphisms for ghrelin with consequences on satiety and metabolic alterations.

    Science.gov (United States)

    Perret, Jason; De Vriese, Carine; Delporte, Christine

    2014-07-01

    To understand the current trend of ghrelin genetic variations on the control of satiety, eating behaviours, obesity, and metabolic alterations, and its development over the last 18 months. Several polymorphisms of the ghrelin gene, its receptor gene and ghrelin's acylating enzyme, ghrelin O-acyl transferase, have been identified and studied over the last decade in relation to control of satiety, obesity, eating behaviours, metabolic syndrome, glucose homeostasis, and type 2 diabetes. However, the effects described are either small or nonsignificant and often subjected to contradictory conclusions between studies. In the last 18 months, several of these areas of investigations have been revisited under more controlled conditions or have been subjected to meta-analysis. The effects of ghrelin gene polymorphism, is a complex area of investigation, due to ghrelin's interplay with a host of various factors part of an integrative network. However, taken together, results suggest that there are no or nonsignificant effects of the common genetic variants. A better understanding of the network, probably by a systems biology type approach, will be necessary to assign the exact role played by gene polymorphism of the component of the ghrelin axis.

  19. Association of TLR2 S450S and ICAM1 K469E polymorphisms with polycystic ovary syndrome (PCOS) and obesity.

    Science.gov (United States)

    Ojeda-Ojeda, Miriam; Martínez-García, M Ángeles; Alpañés, Macarena; Luque-Ramírez, Manuel; Escobar-Morreale, Héctor F

    2016-02-01

    Toll-like receptors (TLRs) are activated by inflammatory stimuli and influence endothelial functions, contributing to the pathogenesis of atherosclerosis. We investigate the influence of polymorphisms in the genes encoding toll-like receptor 2 (TLR2) and 4 (TLR4) and endothelial adhesion molecules on polycystic ovary syndrome (PCOS) and its interaction with obesity. Ten single nucleotide polymorphisms were genotyped in 305 women with PCOS and 166 non-hyperandrogenic control women. In obese women, TLR2 S450S and ICAM1 K469E polymorphisms differently influenced metabolic variables and PCOS, respectively. Irrespective of PCOS, variant alleles of TLR2 S450S increased triglycerides, fasting insulin levels, and insulin resistance in obese women. TLR2 S450S interacted with obesity and PCOS on androstenedione levels, mutant alleles were associated with increased androstenedione concentrations in all women, with the exception of obese patients with PCOS (P=0.034). Regarding ICAM1 K469E, homozygosis for K469 alleles was more frequent in PCOS, but only in obese women (P=0.014). K469 alleles were also related to increased body mass index (P=0.017) and diastolic blood pressure (P=0.034). Moreover, ICAM1 K469E interacted with obesity and PCOS on serum triglyceride levels (P=0.019) and with PCOS on serum sex hormone-binding globulin concentrations (P=0.006). In conclusion, TLR2 S450S and ICAM1 K469E polymorphisms may be associated with PCOS and metabolic comorbidities in obese women. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Disruptive cell cycle regulation involving epigenetic downregulation of Cdkn2a (p16Ink4a) in early-stage liver tumor-promotion facilitating liver cell regeneration in rats

    International Nuclear Information System (INIS)

    Tsuchiya, Takuma; Wang, Liyun; Yafune, Atsunori; Kimura, Masayuki; Ohishi, Takumi; Suzuki, Kazuhiko; Mitsumori, Kunitoshi; Shibutani, Makoto

    2012-01-01

    Cell cycle aberration was immunohistochemically examined in relation to preneoplastic liver cell foci expressing glutathione S-transferase placental form (GST-P) at early stages of tumor-promotion in rats with thioacetamide (TAA), a hepatocarcinogen facilitating liver cell regeneration. Immunoexpression of p16 Ink4a following exposure to other hepatocarcinogens/promoters and its DNA methylation status were also analyzed during early and late tumor-promotion stages. GST-P + liver cell foci increased cell proliferation and decreased apoptosis when compared with surrounding liver cells. In concordance with GST-P + foci, checkpoint proteins at G 1 /S (p21 Cip1 , p27 Kip1 and p16 Ink4a ) and G 2 /M (phospho-checkpoint kinase 1, Cdc25c and phospho-Wee1) were either up- or downregulated. Cellular distribution within GST-P + foci was either increased or decreased with proteins related to G 2 -M phase or DNA damage (topoisomerase IIα, phospho-histone H2AX, phospho-histone H3 and Cdc2). In particular, p16 Ink4a typically downregulated in GST-P + foci and regenerative nodules at early tumor-promotion stage with hepatocarcinogens facilitating liver cell regeneration and in neoplastic lesions at late tumor-promotion stage with hepatocarcinogens/promoters irrespective of regenerating potential. Hypermethylation at exon 2 of Cdkn2a was detected at both early- and late-stages. Thus, diverse disruptive expression of G 1 /S and G 2 /M proteins, which allows for clonal selection of GST-P + foci, results in the acquisition of multiple aberrant phenotypes to disrupt checkpoint function. Moreover, increased DNA-damage responses within GST-P + foci may be the signature of genetic alterations. Intraexonic hypermethylation may be responsible for p16 Ink4a -downregulation, which facilitates cell cycle progression in early preneoplastic lesions produced by repeated cell regeneration and late-stage neoplastic lesions irrespective of the carcinogenic mechanism.

  1. Ameliorating activity of ginger (Zingiber officinale) extract against lead induced renal toxicity in male rats.

    Science.gov (United States)

    Reddy, Y Amarnath; Chalamaiah, M; Ramesh, B; Balaji, G; Indira, P

    2014-05-01

    Lead poisoning has been known to be associated with structural and functional abnormalities of multiple organ systems of human body. The aim of this investigation was to study the renal protective effects of ginger (Zingiber officinale) extract in lead induced toxicity rats. In this study renal glutathione (GSH) level, glutathione peroxidase (GPX), glutathione-s-transferase (GST), and catalase enzymes were measured in lead nitrate (300 mg/kg BW), and lead nitrate plus ginger extract (150 mg/kg BW) treated rat groups for 1 week and 3 weeks respectively. The glutathione level and GSH dependent antioxidant enzymes such as glutathione peroxidase, glutathione-s-transferase, and catalase significantly (P < 0.05) increased in ginger extract treated rat groups. In addition, histological studies showed lesser renal changes in lead plus ginger extract treated rat groups than that of lead alone treated rat groups. These results indicate that ginger extract alleviated lead toxic effects by enhancing the levels of glutathione, glutathione peroxidase, glutathione-s-transferase and catalase.

  2. Seasonal variation of oxidative biomarkers in gills and digestive gland of green-lipped mussel Perna viridis from Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Jena, K.B.; Chainy, G.B.N.

    peroxidation (LPX), hydrogen peroxide (H sub(2) O sub(2)), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione transferase (GST), glutathione reductase (GR), reduced glutathione (GSH) and ascorbic acid (ASA) were measured...

  3. Carnitine palmityl transferase I deficiency

    NARCIS (Netherlands)

    Al-Aqeel, A. I.; Rashed, M. S.; Ruiter, J. P.; Al-Husseini, H. F.; Al-Amoudi, M. S.; Wanders, R. J.

    2001-01-01

    Carnitine palmityl transferase I is the key enzyme in the carnitine dependent transport of long chain fatty acids across the mitochondrial inner membrane and its deficiency results in a decrease rate of fatty acids beta-oxidation with decreased energy production. We reported a family of 3 affected

  4. Site-directed Mutagenesis of Cysteine Residues in Phi-class Glutathione S-transferase F3 from Oryza sativa

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hyunjoo; Lee, Juwon; Noh, Jinseok; Kong, Kwanghoon [Chung-Ang Univ., Seoul (Korea, Republic of)

    2012-12-15

    To elucidate the roles of cysteine residues in rice Phi-class GST F3, in this study, all three cysteine residues were replaced with alanine by site-directed mutagenesis in order to obtain mutants C22A, C73A and C77A. Three mutant enzymes were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. The substitutions of Cys73 and Cys77 residues in OsGSTF3 with alanine did not affect the glutathione conjugation activities, showing non-essentiality of these residues. On the other hand, the substitution of Cys22 residue with alanine resulted in approximately a 60% loss of specific activity toward ethacrynic acid. Moreover, the K{sub m}{sup CDNB} value of the mutant C22A was approximately 2.2 fold larger than that of the wild type. From these results, the evolutionally conserved cysteine 22 residue seems to participate rather in the structural stability of the active site in OsGSTF3 by stabilizing the electrophilic substrates-binding site's conformation than in the substrate binding directly.

  5. The role of human demographic history in determining the distribution and frequency of transferase-deficient galactosaemia mutations.

    LENUS (Irish Health Repository)

    Flanagan, J M

    2010-02-01

    Classical or transferase-deficient galactosaemia is an inherited metabolic disorder caused by mutation in the human Galactose-1-phosphate uridyl transferase (GALT) gene. Of some 170 causative mutations reported, fewer than 10% are observed in more than one geographic region or ethnic group. To better understand the population history of the common GALT mutations, we have established a haplotyping system for the GALT locus incorporating eight single nucleotide polymorphisms and three short tandem repeat markers. We analysed haplotypes associated with the three most frequent GALT gene mutations, Q188R, K285N and Duarte-2 (D2), and estimated their age. Haplotype diversity, in conjunction with measures of genetic diversity and of linkage disequilibrium, indicated that Q188R and K285N are European mutations. The Q188R mutation arose in central Europe within the last 20 000 years, with its observed east-west cline of increasing relative allele frequency possibly being due to population expansion during the re-colonization of Europe by Homo sapiens in the Mesolithic age. K285N was found to be a younger mutation that originated in Eastern Europe and is probably more geographically restricted as it arose after all major European population expansions. The D2 variant was found to be an ancient mutation that originated before the expansion of Homo sapiens out of Africa.

  6. Glutathione S-transferase M1 and T1 null genotype frequency ...

    Indian Academy of Sciences (India)

    PREM CHANDRA SUTHAR

    2018-03-24

    Mar 24, 2018 ... A comparative analysis with different tribal as well as world population has also been ...... (GSTM1, T1 and P1) gene polymorphisms with type 2 diabetes mellitus .... from the Spanish Bladder Cancer Study and meta-analyses.

  7. Skin score correlates with global DNA methylation and GSTO1 A140D polymorphism in arsenic-affected population of Eastern India.

    Science.gov (United States)

    Majumder, Moumita; Dasgupta, Uma B; Guha Mazumder, D N; Das, Nilansu

    2017-07-01

    Arsenic is a potent environmental toxicant causing serious public health concerns in India, Bangladesh and other parts of the world. Gene- and promoter-specific hypermethylation has been reported in different arsenic-exposed cell lines, whereas whole genome DNA methylation study suggested genomic hypo- and hypermethylation after arsenic exposure in in vitro and in vivo studies. Along with other characteristic biomarkers, arsenic toxicity leads to typical skin lesions. The present study demonstrates significant correlation between severities of skin manifestations with their whole genome DNA methylation status as well as with a particular polymorphism (Ala 140 Asp) status in arsenic metabolizing enzyme Glutathione S-transferase Omega-1 (GSTO1) in arsenic-exposed population of the district of Nadia, West Bengal, India.

  8. Polymorphisms in GSTT1, GSTM1, NAT1 and NAT2 genes and bladder cancer risk in men and women

    International Nuclear Information System (INIS)

    McGrath, Monica; Michaud, Dominique; De Vivo, Immaculata

    2006-01-01

    Cigarette smoking is an established risk factor for bladder cancer. Epidemiological and biological data suggest that genetic polymorphisms in activating and detoxifying enzymes may play a role in determining an individual's susceptibility to bladder cancer in particular when in combination with specific environmental exposures such as cigarette smoking. N-acetyltransferase (NAT) enzymes, NAT1 and NAT2, are involved in the activation and detoxification of tobacco smoke constituents. Polymorphisms in these genes alter the ability of these enzymes to metabolize carcinogens, as certain allelic combinations result in a slow or rapid acetylation phenotype. Glutathione S-transferases (GSTs) also detoxify tobacco smoke constituents, and polymorphisms within the GSTM1 and GSTT1 genes can result in a complete lack of enzyme activity. We assessed the association between common polymorphisms identified in the GSTM1, GSTT1, NAT1, and NAT2 genes and the risk of bladder cancer in two nested case-control studies within the Nurses' Health Study (n = 78 female cases, 234 female controls) and the Health Professionals' Follow-up Study (n = 139 male cases, 293 male controls). We also evaluated whether cigarette smoking modified the associations of the genotypes and bladder cancer risk in men and women. Overall, we observed no statistically significant associations between the polymorphisms and bladder cancer risk among men and women, although given our sample size, we had limited power to detect small to moderate effects. There was however the suggestion of an increased risk among female ever smokers with the NAT2 slow genotype and an increased risk in male never smokers with the GSTM1 null genotype. In summary, these prospective results are consistent with previous literature supporting associations between bladder cancer and the NAT2 slow acetylation and the GSTM1 null genotypes

  9. UV-induced modifications in the peptidyl transferase loop of 23S rRNA dependent on binding of the streptogramin B antibiotic, pristinamycin IA

    DEFF Research Database (Denmark)

    Porse, B T; Kirillov, S V; Awayez, M J

    1999-01-01

    The naturally occurring streptogramin B antibiotic, pristinamycin IA, which inhibits peptide elongation, can produce two modifications in 23S rRNA when bound to the Escherichia coli 70S ribosome and irradiated at 365 nm. Both drug-induced effects map to highly conserved nucleotides within...... in the latter modification to A2062/C2063. Pristinamycin IA can also produce a modification on binding to deproteinized, mature 23S rRNA, at position U2500/C2501. The same modification occurs on an approximately 37-nt fragment, encompassing positions approximately 2496-2532 of the peptidyl transferase loop...... the sequence Cm-C-U-C-G-m2A-psi-G2505 are important for pristinamycin IA binding and/or the antibiotic-dependent modification of 23S rRNA....

  10. Clinical Expression of Calcium Sensing Receptor Polymorphism (A986S) in Normocalcemic and Asymptomatic Hyperparathyroidism.

    Science.gov (United States)

    Díaz-Soto, G; Romero, E; Castrillón, J L P; Jauregui, O I; de Luis Román, D

    2016-03-01

    Normocalcemic and asymptomatic hyperparathyroidism diagnosis are becoming more common. However, their pathophysiology is incompletely known. The aim of the present study was to evaluate the clinical effect of calcium-sensing receptor polymorphism (A986S) in normocalcemic and asymtomatic HPT. Prospective study conducted with 61 consecutive normocalcemic and asymptomatic HPT patients was followed up during a minimum period of 1 year. Secondary causes of hyperparathyroidism were ruled out. Calcium and phosphorus metabolism parameters were evaluated in at least 2 determinations during follow-up to classify as normocalcemic or asymptomatic hyperparathyroidism. Bone mineral density and A986S polymorphism genotype were also analyzed. Thiry-eight patients (62.3%) had the genotype A986A, and 23 (36.7%) patients had A986S (20 patients, 32.8%) or S986S (3 patients, 4.9%). Age, sex, and genotype distributions were comparable in both normocalcemic and asymptomatic hyperparathyroidism. In normocalcemic patients, S allele genotype was associated to statistically significant higher level of intact PTH: 92.0 (SD 18.5) vs. 110.6 (SD 24.4) pg/ml, phyperparathyroidism, A986A genotype resulted in a statistically significant higher level of intact PTH, alkaline phosphatase and procollagen amino-terminal propeptide; but only serum calcium remained as an independent predictor of serum intact PTH levels after a multiple linear regression. Bone mineral densitometry between genotypes did not show statistically significant differences. A986S polymorphism of CaSR is an independent predictor of PTH level in normocalcemic hyperparathyroidism patients, but not in asymptomatic hyperparathyroidism. More studies are needed to evaluate the effect of other polymorphisms in normocalcemic and asymptomatic hyperparathyroidism. © Georg Thieme Verlag KG Stuttgart · New York.

  11. GSTT2 promoter polymorphisms and colorectal cancer risk

    Directory of Open Access Journals (Sweden)

    Ahn Sun-A

    2007-01-01

    Full Text Available Abstract Background Glutathione S-transferases are a group of enzymes that participate in detoxification and defense mechanisms against toxic carcinogens and other compounds. These enzymes play an important role in human carcinogenesis. In the present study, we sought to determine whether GSTT2 promoter single nucleotide polymorphisms (SNPs are associated with colorectal cancer risk. Methods A total of 436 colorectal cancer patients and 568 healthy controls were genotyped for three GSTT2 promoter SNPs (-537G>A, -277T>C and -158G>A, using real-time TaqMan assay and direct sequencing. An electrophoretic mobility shift assay (EMSA was performed to determine the effects of polymorphisms on protein binding to the GSTT2 promoter. Results The -537A allele (-537G/A or A/A was significantly associated with colorectal cancer risk (OR = 1.373, p = 0.025, while the -158A allele (-158G/A or A/A was involved in protection against colorectal cancer (OR = 0.539, p = 0.032. Haplotype 2 (-537A, -277T, -158G was significantly associated with colorectal cancer risk (OR = 1.386, p = 0.021, while haplotype 4 (-537G, -277C, -158A protected against colorectal cancer (OR = 0.539, p = 0.032. EMSA data revealed lower promoter binding activity in the -537A allele than its -537G counterpart. Conclusion Our results collectively suggest that SNPs and haplotypes of the GSTT2 promoter region are associated with colorectal cancer risk in the Korean population.

  12. Role of potential fluctuations in phase-change GST memory devices

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Satish C. [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)

    2012-10-15

    The long range potential fluctuations (LRPFs) arising from the defects and heterogeneities in disordered semiconductors are important for understanding their atomic and electronic properties. Here, they are measured in Ge{sub X}Sb{sub Y}Te{sub 1-X-Y} (GST) chalcogenide glasses used in rewritable phase change memory (PCM) devices. It is found that the most commonly used composition Ge{sub 2}Sb{sub 2}Te{sub 5} has the smallest LRPF amongst its nearby compositions. This finding may be useful in the search for better PCM materials. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Glutathione S-transferase (GSTM1, GSTT1) gene polymorphisms, maternal gestational weight gain, bioimpedance factors and their relationship with birth weight: a cross-sectional study in Romanian mothers and their newborns.

    Science.gov (United States)

    Mărginean, Claudiu; Bănescu, Claudia Violeta; Mărginean, Cristina Oana; Tripon, Florin; Meliţ, Lorena Elena; Iancu, Mihaela

    2017-01-01

    The aim of this study was to assess the relationship between mother-child GSTM1, GSTT1 gene polymorphisms, maternal weight gain, maternal bioimpedance parameters and newborn's weight, in order to identify the factors that influence birth weight. We performed a cross-sectional study on 405 mothers and their newborns, evaluated in an Obstetrics and Gynecology Tertiary Hospital from Romania. Newborns whose mothers had the null genotype of GSTT1 gene polymorphism were more likely to gain a birth weight of >3 kg, compared to newborns whose mothers had the T1 genotype (odds ratio - OR: 2.14, 95% confidence interval - CI: [1.03; 4.44]). Also, the null genotype of GSTM1 gene polymorphism in both mothers and newborns was associated with a higher birth weight. Gestational weight gain was positively associated with newborn's birth weight (pmother's fat mass (%) and basal metabolism rate were also independent factors for a birth weight of more than 3 kg (p=0.006 and p=0.037). The null genotype of GSTT1 gene polymorphism in mothers and the null genotype of GSTM1 in mothers and newborns had a positive effect on birth weight. Also, increased maternal fat mass and basal metabolism rate were associated with increased birth weight. We conclude that maternal GSTM1÷GSTT1 gene polymorphisms present an impact on birth weight, being involved in the neonatal nutritional status. The clinical relevance of our study is sustained by the importance of identifying the factors that influence birth weight, which can be triggers for childhood obesity.

  14. Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: Enzyme and arsenic species concentrations in tissues after arsenate administration

    International Nuclear Information System (INIS)

    Chowdhury, Uttam K.; Zakharyan, Robert A.; Hernandez, Alba; Avram, Mihaela D.; Kopplin, Michael J.; Aposhian, H. Vasken

    2006-01-01

    Inorganic arsenic is a human carcinogen to which millions of people are exposed via their naturally contaminated drinking water. Its molecular mechanisms of carcinogenicity have remained an enigma, perhaps because arsenate is biochemically transformed to at least five other arsenic-containing metabolites. In the biotransformation of inorganic arsenic, GSTO1 catalyzes the reduction of arsenate, MMA(V), and DMA(V) to the more toxic + 3 arsenic species. MMA(V) reductase and human (hGSTO1-1) are identical proteins. The hypothesis that GST-Omega knockout mice biotransformed inorganic arsenic differently than wild-type mice has been tested. The livers of male knockout (KO) mice, in which 222 bp of Exon 3 of the GSTO1 gene were eliminated, were analyzed by PCR for mRNA. The level of transcripts of the GSTO1 gene in KO mice was 3.3-fold less than in DBA/1lacJ wild-type (WT) mice. The GSTO2 transcripts were about two-fold less in the KO mouse. When KO and WT mice were injected intramuscularly with Na arsenate (4.16 mg As/kg body weight); tissues removed at 0.5, 1, 2, 4, 8, and 12 h after arsenate injection; and the arsenic species measured by HPLC-ICP-MS, the results indicated that the highest concentration of the recently discovered and very toxic MMA(III), a key biotransformant, was in the kidneys of both KO and WT mice. The highest concentration of DMA(III) was in the urinary bladder tissue for both the KO and WT mice. The MMA(V) reducing activity of the liver cytosol of KO mice was only 20% of that found in wild-type mice. There appears to be another enzyme(s) other than GST-O able to reduce arsenic(V) species but to a lesser extent. This and other studies suggest that each step of the biotransformation of inorganic arsenic has an alternative enzyme to biotransform the arsenic substrate

  15. Polymorphism and second harmonic generation in a novel diamond-like semiconductor: Li{sub 2}MnSnS{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, Kasey P. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Glaid, Andrew J. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Center for Computational Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Brant, Jacilynn A.; Zhang, Jian-Han [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Srnec, Matthew N. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Center for Computational Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Clark, Daniel J. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY 13902 (United States); Soo Kim, Yong [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY 13902 (United States); Department of Physics and Energy Harvest-Storage Research Center, University of Ulsan, 680-749 (Korea, Republic of); Jang, Joon I. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY 13902 (United States); Daley, Kimberly R.; Moreau, Meghann A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Madura, Jeffry D. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Center for Computational Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Aitken, Jennifer A., E-mail: aitkenj@duq.edu [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States)

    2015-11-15

    High-temperature, solid-state synthesis in the Li{sub 2}MnSnS{sub 4} system led to the discovery of two new polymorphic compounds that were analyzed using single crystal X-ray diffraction. The α-polymorph crystallizes in Pna2{sub 1} with the lithium cobalt (II) silicate, Li{sub 2}CoSiO{sub 4}, structure type, where Z=4, R1=0.0349 and wR2=0.0514 for all data. The β-polymorph possesses the wurtz-kesterite structure type, crystallizing in Pn with Z=2, R1=0.0423, and wR2=0.0901 for all data. Rietveld refinement of synchrotron X-ray powder diffraction was utilized to quantify the phase fractions of the polymorphs in the reaction products. The α/β-Li{sub 2}MnSnS{sub 4} mixture exhibits an absorption edge of ∼2.6–3.0 eV, a wide region of optical transparency in the mid- to far-IR, and moderate SHG activity over the fundamental range of 1.1–2.1 μm. Calculations using density functional theory indicate that the ground state energies and electronic structures for α- and β-Li{sub 2}MnSnS{sub 4}, as well as the hypothetical polymorph, γ-Li{sub 2}MnSnS{sub 4} with the wurtz-stannite structure type, are highly similar. - Graphical abstract: Two polymorphs, α- and β-Li{sub 2}MnSnS{sub 4}, have been discovered using single crystal X-ray diffraction. Rietveld refinement of synchrotron X-ray powder diffraction data indicates the presence of both polymorphs in the samples that were analyzed. - Highlights: • Li{sub 2}MnSnS{sub 4} exists as two polymorphs crystallizing in the Pna2{sub 1} and Pn space groups. • The α- and β-Li{sub 2}MnSnS{sub 4} mixture exhibits a moderate SHG response over a broad range. • The α- and β-Li{sub 2}MnSnS{sub 4} mixture exhibits an optical absorption edge of ∼2.6–3.0 eV. • Synchrotron powder diffraction data are necessary to distinguish α- and β-Li{sub 2}MnSnS{sub 4.} • Electronic structure calculations show similar total energies for α- and β-Li{sub 2}MnSnS{sub 4}.

  16. Discs Large Homolog 5 (DLG5 Gene Polymorphism and Crohn’s Disease: A Meta-Analysis of the Published Studies

    Directory of Open Access Journals (Sweden)

    Arezoo Shafieyoun

    2016-05-01

    Full Text Available The real pathophysiology of Crohn’s disease is unknown. The higher prevalence of Crohn’s disease in Caucasian and Jewish ethnicities, as well as its familial aggregation and higher concordance among monozygotic twins, suggest some roles for genes in its development, clinical progression, and outcome. Recent original studies have indicated DLG5113G/A gene polymorphism as a risk factor for Crohn’s disease. Meanwhile, the results of these studies are not consistent. We performed the current meta-analysis to understand whether there is any association between DLG5 gene polymorphism and the risk of Crohn’s disease. PubMed was searched to find the case-control studies on DLG5 gene polymorphisms and Crohn’s disease. This search compiled 65 articles and based on our criteria. 11 articles were included in this meta-analysis. The association between the DLG5 113G/A polymorphism and the risk of disease was assessed using odds ratio (OR and 95% confidence interval (95% CI. Heterogeneity was evaluated based on I2 values.  Random and fixed-effect models were used when I2>50% and I2≤50%, respectively. Eleven studies with a total of 4648 cases and 5677 controls were pooled. Based on our meta-analysis, DLG5113G/A gene polymorphism both at genotypic and allelic levels were not associated with the risk of Crohn’s disease. Pooled data indicated no significant association between DLG5113G/A gene polymorphism and the development of Crohn’s disease. In order to achieve a superior conclusion, multicenter studies on larger number of patients are recommended.

  17. Increased sensitivity of Hep G2 cells toward the cytotoxicity of cisplatin by the treatment of piper betel leaf extract.

    Science.gov (United States)

    Young, Shun-Chieh; Wang, Chau-Jong; Hsu, Jeng-Dong; Hsu, Jui-Ling; Chou, Fen-Pi

    2006-06-01

    Piper betel leaves (PBL) are used in Chinese folk medicine for the treatment of various disorders. PBL has the biological capabilities of de-toxication, anti-oxidation and anti-mutation. In this study we first examined the effect of PBL extract on the activity of Glutathione S-transferase (GST) isoforms, and found that it inhibited total GST and the alpha class of GST (GSTA), but not the pi class of GST (GSTP), and the mu class of GST (GSTM), activity in Hep G2 cells. RT-PCR results verified a reduction in the expression of GSTA1. Next, we examined whether PBL extract could increase the sensitivity of Hep G2 cells to anti-cancer drugs. The data showed that the cytotoxicity of cisplatin was significantly enhanced by the presence of PBL extract, accompanied by a reduction in the expression of multidrug resistance protein 2 (MRP2). These effects of PBL extract were compared to its major constitute, eugenol. Although eugenol decreased MRP2 level more effectively than PBL extract, it exhibited less sensitizing effect. In conclusion, we demonstrated that PBL extract was able to increase the sensitivity of Hep G2 cells to cisplatin via at least two mechanisms, reducing the expression of MRP2 and inhibiting the activity of total GST and the expression of GSTA. The data of this study support an application of PBL as an additive to reduce drug resistance.

  18. The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1, Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo

    Directory of Open Access Journals (Sweden)

    Tatiana P. Sankova

    2017-11-01

    Full Text Available There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST and the N-terminal domain (ectodomain of human high affinity copper transporter CTR1 (hNdCTR1, which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell’s copper metabolism and its chelating properties are discussed.

  19. The amino-terminal domain of human signal transducers and ...

    Indian Academy of Sciences (India)

    Unknown

    transferase (GST) moiety was cloned into the expression vector pGEX-2T ... containing 100 µg/ml of ampicillin to mid log phase as indicated by the .... equipped with pulsed field gradients. ... ferent algorithms like hidden Markov model (HMM).

  20. Optimization of Soluble Expression and Purification of Recombinant Human Rhinovirus Type-14 3C Protease Using Statistically Designed Experiments: Isolation and Characterization of the Enzyme.

    Science.gov (United States)

    Antoniou, Georgia; Papakyriacou, Irineos; Papaneophytou, Christos

    2017-10-01

    Human rhinovirus (HRV) 3C protease is widely used in recombinant protein production for various applications such as biochemical characterization and structural biology projects to separate recombinant fusion proteins from their affinity tags in order to prevent interference between these tags and the target proteins. Herein, we report the optimization of expression and purification conditions of glutathione S-transferase (GST)-tagged HRV 3C protease by statistically designed experiments. Soluble expression of GST-HRV 3C protease was initially optimized by response surface methodology (RSM), and a 5.5-fold increase in enzyme yield was achieved. Subsequently, we developed a new incomplete factorial (IF) design that examines four variables (bacterial strain, expression temperature, induction time, and inducer concentration) in a single experiment. The new design called Incomplete Factorial-Strain/Temperature/Time/Inducer (IF-STTI) was validated using three GST-tagged proteins. In all cases, IF-STTI resulted in only 10% lower expression yields than those obtained by RSM. Purification of GST-HRV 3C was optimized by an IF design that examines simultaneously the effect of the amount of resin, incubation time of cell lysate with resin, and glycerol and DTT concentration in buffers, and a further 15% increase in protease recovery was achieved. Purified GST-HRV 3C protease was active at both 4 and 25 °C in a variety of buffers.

  1. Sparus aurata L. liver EROD and GST activities, plasma cortisol, lactate, glucose and erythrocytic nuclear anomalies following short-term exposure either to 17{beta}-estradiol (E{sub 2}) or E{sub 2} combined with 4-nonylphenol

    Energy Technology Data Exchange (ETDEWEB)

    Teles, M.; Pacheco, M.; Santos, M.A

    2005-01-05

    Immature Sparus aurata L. (gilthead seabream) were exposed to 17{beta}-estradiol (E{sub 2}) 4000 ng/l and to the same E{sub 2} concentration mixed with 50,000 ng/l 4-nonylphenol (E{sub 2}+NP) during 4, 8, 12 and 16 h. E{sub 2} availability and E{sub 2} plasma level variations were assessed. Liver biotransformation capacity was measured as ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST) activities. Plasma cortisol, lactate and glucose were also determined. Genotoxicity was assessed through erythrocytic nuclear anomalies (ENA) frequency. Liver EROD activity significantly decreased during the whole experiment for both treatments, with the exception of 16 h exposure to E{sub 2}. Liver GST activity was significantly increased after 8 and 12 h of exposure either to E{sub 2} or E{sub 2}+NP. An endocrine disruption expressed as plasma cortisol decrease was observed after 16 h exposure under both tested conditions, concomitantly with a plasma lactate increase. No genotoxic responses, measured as ENA frequency, were detected. Analyzing the E{sub 2} water concentration in aquaria without fish it was demonstrated an intense and fast E{sub 2} loss, considerably reducing its availability to fish. In the presence of fish, E{sub 2} water levels were drastically reduced after 4 h exposure, being this reduction more pronounced in E{sub 2} aquarium when compared to E{sub 2}+NP aquarium. In addition, it was demonstrated a rapid E{sub 2} uptake from the water since the highest E{sub 2} plasma concentrations were observed after 4 h exposure, followed by a continuous decrease, which became more pronounced between 8 and 12 h of exposure. Furthermore, during the first 8 h exposure to E{sub 2} and E{sub 2}+NP, seabream plasma E{sub 2} concentrations were higher than the initial water exposure concentration. Comparing the E{sub 2} plasma levels in both seabream-exposed groups, it was clear that its concentration is always higher in E{sub 2}+NP-treated fish. Despite

  2. The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1), Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo.

    Science.gov (United States)

    Sankova, Tatiana P; Orlov, Iurii A; Saveliev, Andrey N; Kirilenko, Demid A; Babich, Polina S; Brunkov, Pavel N; Puchkova, Ludmila V

    2017-11-03

    There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST) and the N-terminal domain (ectodomain) of human high affinity copper transporter CTR1 (hNdCTR1), which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell's copper metabolism and its chelating properties are discussed.

  3. Acute toxicity and cholinesterase inhibition of the nematicide ethoprophos in larvae of gar Atractosteus tropicus (Semionotiformes: Lepisosteidae

    Directory of Open Access Journals (Sweden)

    Freylan Mena Torres

    2012-03-01

    Full Text Available Biomarkers are a widely applied approach in environmental studies. Analyses of cholinesterase (ChE, glutathione S-transferase (GST and lipid peroxidation (LPO are biomarkers that can provide information regarding early effects of pollutants at different biochemical levels on an organism. The aim of this study was to evaluate the biomarker approach on a Costa Rican native and relevant species. For this, larvae of gar (Atractosteus tropicus were exposed to the organophosphorus nematicide, ethoprophos. Acute (96hr exposure was conducted with pesticide concentrations ranging from 0.1μg/L to 1 500μg/L. The 96hr LC50 calculated was 859.7μg/L. After exposure, three biomarkers (ChE, GST and LPO were analyzed in fish that survived the acute test. The lowest observed effect concentration (LOEC regarding ChE activity inhibition was 50μg/L. This concentration produced a significant inhibition (p0.05 in GST activity and LPO were observed in A. tropicus larvae after exposure to ethoprophos.

  4. Toxicity Assessment of Buprofezin, Lufenuron, and Triflumuron to the Earthworm Aporrectodea caliginosa

    Directory of Open Access Journals (Sweden)

    Mohamed E. I. Badawy

    2013-01-01

    Full Text Available Earthworms are particularly important soil macroinvertebrates and are often used in assessing the general impact of pesticide pollution in soil. The present study was conducted in order to investigate the toxicity of three insect growth regulators (IGRs buprofezin, lufenuron, and triflumuron, at different application rates and exposure times toward mature earthworms Aporrectodea caliginosa. The effects of these pesticides on the growth rate in relation to the activities of acetylcholinesterase (AChE and glutathione S-transferase (GST as biochemical indicators were evaluated to elucidate the mechanisms of action. Toxicity studies indicated that lufenuron was the most harmful pesticide to mature earthworms, followed in descending order by buprofezin and triflumuron. A reduction in growth rate in all pesticide-treated worms was dose-dependent over the 28-day exposure period, which was accompanied by a decrease in AChE and GST activities. Relationships between growth rate, AChE, and GST provided strong evidence for the involvement of pesticidal contamination in the biochemical changes in earthworms, which can be used as a bioindicator of soil contamination by pesticides.

  5. Development of Two FhSAP2 Recombinant–Based Assays for Immunodiagnosis of Human Chronic Fascioliasis

    Science.gov (United States)

    Shin, Sun Hee; Hsu, Angel; Chastain, Holly M.; Cruz, Lorna A.; Elder, Eric S.; Sapp, Sarah G. H.; McAuliffe, Isabel; Espino, Ana M.; Handali, Sukwan

    2016-01-01

    In the United States, infection with Fasciola hepatica has been identified as an emerging disease, primarily in immigrants, refugees, and travelers. The laboratory test of choice for diagnosis of fascioliasis is detection of disease specific antibodies, most commonly uses excretory-secretory antigens for detection of IgG antibodies. Recently, recombinant proteins such as F. hepatica antigen (FhSAP2) have been used to detect IgG antibodies. The glutathione S-transferase (GST)–FhSAP2 recombinant antigen was used to develop Western blot (WB) and fluorescent bead-based (Luminex) assays to detect F. hepatica total IgG and IgG4 antibodies. The sensitivity and specificity of GST-FhSAP2 total IgG and IgG4 WB were similar at 94% and 98%, respectively. For the IgG Luminex assay, the sensitivity and specificity were 94% and 97%, and for the IgG4, the values were 100% and 99%, respectively. In conclusion, the GST-FhSAP2 antigen performs well in several assay formats and can be used for clinical diagnosis. PMID:27549636

  6. Development of Two FhSAP2 Recombinant-Based Assays for Immunodiagnosis of Human Chronic Fascioliasis.

    Science.gov (United States)

    Shin, Sun Hee; Hsu, Angel; Chastain, Holly M; Cruz, Lorna A; Elder, Eric S; Sapp, Sarah G H; McAuliffe, Isabel; Espino, Ana M; Handali, Sukwan

    2016-10-05

    In the United States, infection with Fasciola hepatica has been identified as an emerging disease, primarily in immigrants, refugees, and travelers. The laboratory test of choice for diagnosis of fascioliasis is detection of disease specific antibodies, most commonly uses excretory-secretory antigens for detection of IgG antibodies. Recently, recombinant proteins such as F. hepatica antigen (FhSAP2) have been used to detect IgG antibodies. The glutathione S-transferase (GST)-FhSAP2 recombinant antigen was used to develop Western blot (WB) and fluorescent bead-based (Luminex) assays to detect F. hepatica total IgG and IgG 4 antibodies. The sensitivity and specificity of GST-FhSAP2 total IgG and IgG 4 WB were similar at 94% and 98%, respectively. For the IgG Luminex assay, the sensitivity and specificity were 94% and 97%, and for the IgG 4 , the values were 100% and 99%, respectively. In conclusion, the GST-FhSAP2 antigen performs well in several assay formats and can be used for clinical diagnosis. © The American Society of Tropical Medicine and Hygiene.

  7. Psychophysiological traits of men with several genotypes in polymorphic locus Val158Met COMT and different levels of aggressiveness

    Directory of Open Access Journals (Sweden)

    Pavel N. Ermakov

    2018-03-01

    Full Text Available Background. The catechol-O-methyl transferase gene influences the reuptake of monoamines (dopamine, serotonin, noradrenaline from the synaptic space. The structural peculiarities of this gene are linked with the duration of stay of neurotransmitters in the synaptic gap and the emergence and duration of emotional reactions, which may considerably affect a person’s level of aggressiveness; these peculiarities may manifest as psychophysiological characteristics. Objective and design. This study investigated the amplitude, spatio-temporal traits and sources of evoked brain activity in men with several genotypes in the polymorphic locus Val158Met in the COMT (Catechol-O-methyl transferase gene, levels of aggressiveness using the Buss-Darkee inventory, proneness to various types of deviant and addictive behaviors in accordance with the methods of A.N. Oryol and the preferred strategies of behavior during conflict in accordance with the methods of Kenneth Thomas. Statistical processing of psychodiagnostic data included dispersive (ANOVA and discriminative analyses. Results. This study found significant differences in the parameters of evoked brain activity components in responses to emotionally charged stimuli (“aggression”, “positive”, “tolerance”, “extremism, terrorism” compared with neutral images. Student’s t-test (Holms- corrected for multiple comparisons was used to analyze the EEG-VEP data. Conclusion. This study confirmed the hypothesis of differences in spatio-temporal and amplitude parameters of evoked brain potentials in young men exhibiting differing levels of aggressiveness. The sources of evoked brain activity determined using sLORETA (Standardized Low-resolution Brain Electromagnetic Tomography were different between carriers of different genotypes.

  8. Complement Factor H Y402H and LOC387715 A69S Polymorphisms in Association with Age-Related Macular Degeneration in Iran.

    Science.gov (United States)

    Nazari Khanamiri, Hossein; Ghasemi Falavarjani, Khalil; Sanati, Mohammad Hossein; Aryan, Hajar; Irani, Alireza; Hashemi, Masih; Modarres, Mehdi; Parvaresh, Mohammad Mehdi; Nikeghbali, Aminollah

    2014-04-01

    To determine the frequency of complement factor H (Y402H) and age related macular degeneration susceptibility gene 2 (A69S) single nucleotide polymorphisms in patients with age-related macular degeneration (AMD) and in matched non-AMD controls in an Iranian population. Seventy patients with AMD and 86 age- and sex-matched controls were recruited and examined. Peripheral blood sample was obtained from all subjects for DNA extraction and direct sequencing of Y402H and A69S genes. Odds ratios (ORs) with 95% confidence intervals (CIs) for the association of Y402H and A69S polymorphisms with AMD were determined. The frequencies of both homozygous and heterozygous genotypes were significantly higher in cases than controls for both Y402H and A69S polymorphisms. In comparison to the wild genotypes, OR for AMD associated with Y402H and A69S polymorphisms were 1.9 (95% CI, 1.1-3.2) and 2.2 (95%CI, 1.6-3.1), respectively. Joint risk analysis considering both genes revealed a higher risk of AMD when polymorphisms were present for both genes. Y402H and A69S polymorphisms were strongly associated with AMD in this Iranian population.

  9. Complement Factor H Y402H and LOC387715 A69S Polymorphisms in Association with Age-Related Macular Degeneration in Iran

    Directory of Open Access Journals (Sweden)

    Hossein Nazari Khanamiri

    2014-01-01

    Full Text Available Purpose: To determine the frequency of complement factor H (Y402H and age related macular degeneration susceptibility gene 2 (A69S single nucleotide polymorphisms in patients with age-related macular degeneration (AMD and in matched non-AMD controls in an Iranian population. Methods: Seventy patients with AMD and 86 age- and sex-matched controls were recruited and examined. Peripheral blood sample was obtained from all subjects for DNA extraction and direct sequencing of Y402H and A69S genes. Odds ratios (ORs with 95% confidence intervals (CIs for the association of Y402H and A69S polymorphisms with AMD were determined. Results: The frequencies of both homozygous and heterozygous genotypes were significantly higher in cases than controls for both Y402H and A69S polymorphisms. In comparison to the wild genotypes, OR for AMD associated with Y402H and A69S polymorphisms were 1.9 (95% CI, 1.1-3.2 and 2.2 (95%CI, 1.6-3.1, respectively. Joint risk analysis considering both genes revealed a higher risk of AMD when polymorphisms were present for both genes. Conclusion: Y402H and A69S polymorphisms were strongly associated with AMD in this Iranian population.

  10. No association between GSTM1 and GSTT1 genetic polymorphisms and susceptibility to opium sap dependence.

    Science.gov (United States)

    Saify, Khyber; Khalighinasab, Mohammad Rashid; Saadat, Mostafa

    2016-03-01

    Glutathione S-transferases (GSTs; EC: 2.5.1.18) are a ubiquitous family of eukaryotic and prokaryotic phase II metabolic isozymes. Genes encoding GSTM1 (OMIM: 138350), and GSTT1 (OMIM: 600436) are members of class mu and theta, respectively. The most common polymorphism in the GSTM1 is a deletion of the whole GSTM1 gene with a lack of enzyme activity. A homozygous deletion in the GSTT1 has also been reported (null genotypes of GSTT1). The aim of the present study was to investigate the association between GSTM1 and GSTT1 polymorphisms and risk of dependency to opium sap. The present study was performed in Shiraz (southern Iran). In total, 71 males dependent to opium sap and 590 healthy males (as a control group) were included in this study. The genotypes of GSTM1 and GSTT1 polymorphisms were determined by PCR. Our data indicate that neither GSTM1 (OR=0.78, 95% CI: 0.47-1.27, P=0.325) nor GSTT1 (OR=1.25, 95% CI: 0.70-2.21, P=0.442) null genotypes significantly associated with the risk of opium sap dependence. There is no additive effect of the null genotypes of GSTT1 and GSTM1 in relation to the risk of dependency to opium sap. The present study indicated that the null genotypes of GSTT1 and GSTM1 are not risk factor for opium sap dependence.

  11. Anticancer activity of Cynodon dactylon L. root extract against diethyl nitrosamine induced hepatic carcinoma.

    Science.gov (United States)

    Kowsalya, R; Kaliaperumal, Jagatheesh; Vaishnavi, M; Namasivayam, Elangovan

    2015-01-01

    Hepatocellular carcinoma is one of the most common cancers and a lethal disease. In view of the limited treatment and a grave prognosis of liver cancer, preventive control has been emphasized. The methanolic extract of roots of Cynodon dactylon was screened for its hepato-protective activity in diethyl nitrosamine (DEN) induced liver cancer in Swiss albino mice. The plant extract at a dose of 50 mg/kg was administered orally once a week, up to 30 days after DEN administration. The animals were sacrificed; blood sample and liver tissue were collected and used for enzyme assay such as, asparatate amino transferase (AST), alanine aminotransferase (ALT), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST). The liver marker enzymes AST and ALT produced significant results in the protective action. The antioxidant enzyme assay results concerning the improved activity of GPx, GST and CAT. These results concluded that enhanced levels of antioxidant enzyme and reduced amount of serum amino transaminase, which are suggested to be the major mechanisms of C. dactylon root extract in protecting the mice from hepatocarcinoma induced by DEN. These biochemical observations were supplemented by histopathological examination of liver sections. The methanolic extract of C. dactylon possesses significant anticancer properties.

  12. Anticancer activity of Cynodon dactylon L. root extract against diethyl nitrosamine induced hepatic carcinoma

    Directory of Open Access Journals (Sweden)

    R Kowsalya

    2015-01-01

    Full Text Available Background: Hepatocellular carcinoma is one of the most common cancers and a lethal disease. In view of the limited treatment and a grave prognosis of liver cancer, preventive control has been emphasized. Materials and Methods: The methanolic extract of roots of Cynodon dactylon was screened for its hepato-protective activity in diethyl nitrosamine (DEN induced liver cancer in Swiss albino mice. The plant extract at a dose of 50 mg/kg was administered orally once a week, up to 30 days after DEN administration. The animals were sacrificed; blood sample and liver tissue were collected and used for enzyme assay such as, asparatate amino transferase (AST, alanine aminotransferase (ALT, catalase (CAT, glutathione peroxidase (GPx and glutathione-S-transferase (GST. The liver marker enzymes AST and ALT produced signifi cant results in the protective action. Results: The antioxidant enzyme assay results concerning the improved activity of GPx, GST and CAT. These results concluded that enhanced levels of antioxidant enzyme and reduced amount of serum amino transaminase, which are suggested to be the major mechanisms of C. dactylon root extract in protecting the mice from hepatocarcinoma induced by DEN. These biochemical observations were supplemented by histopathological examination of liver sections. Conclusion: The methanolic extract of C. dactylon possesses signifi cant anticancer properties

  13. ANTIBODIES TO BENZO[A]PYRENE AND POLYMORPHISMS OF CYP1A1*2A, CYP1A2*1F, GSTT1, AND GSTM1 GENES IN HEALTHY MEN AND LUNG CANCER PATIENTS

    Directory of Open Access Journals (Sweden)

    A. N. Glushkov

    2016-01-01

    Full Text Available Some genetic polymorphisms of CYP and GST enzymes metabolizing low-molecular weight xenobiotics may represent endogenous risk factors for carcinogenesis. However, possible relationships between the enzyme activities, amounts of carcinogen adducts and synthesis of anticarcinogen antibodies in humans (including cancer patients are still poorly studied. The purpose of this study was to identify possible associations between occurrence of antibodies against benzo[a]pyrene, and frequency of genetic polymorphisms of CYP1A1*2A, CYP1A2*1F, GSTT1, GSTM1 in healthy men and in lung cancer patients. Materials and methods. We have examined 203 men with non-small cell lung cancer and 267 apparently healthy donors without respiratory diseases. A non-competitive solid phase immunoassay of antibodies to benzo[a]pyrene was performed. Analysis of polymorphic loci within CYP1A1 (rs4646903, CYP1A2 (rs762551, GSTP1 (rs1695, rs1138272 was performed by means of real-time PCR using TaqMan technology. Null-alleles of GSTM1 (del, GSTT1 (del genes were detected by multiplex PCR with real-time fluorescent assay. Results. Among the lung cancer patients, the proportion of cases with a high level of IgG antibodies to benzo[a]pyrene in carriers of GSTT1+ and GSTM1+ in conjunction with the CYP1A2*1F C allele was significantly greater than in AA homozygotes CYP1A2*1F. The risk of lung cancer was increased to 5.5 in carriers of CYP1A2*1F C allele combined with GSTT1+ and GSTM1+ at high levels of IgG antibodies to benzo [a] pyrene. In healthy male donors, we have not found differences between the incidence of low and high levels of IgG anti-benzo[a]pyrene antibodies in the carriers of certain CYP1A1*2A, CYP1A2*1F, GSTT1 and GSTM1 genotypes. Conclusions. We have first reported a relationship between CYP1 and GST gene polymorphisms and specific immune response to chemical carcinogens in lung cancer patients. Immunoassays of IgG antibodies to benzo[a]pyrene combined with molecular

  14. Analysis of CYP1A1 and COMT polymorphisms in women with cervical cancer.

    Science.gov (United States)

    Kleine, J P; Camargo-Kosugi, C M; Carvalho, C V; Silva, F C; Silva, I D C G

    2015-12-29

    The aim of this case-control study was to obtain a comprehensive panel of genetic polymorphisms present only in genes (cytochrome P-450 1A1--CYP1A1 and catechol-O-methyl transferase--COMT) within the metabolic pathway of sex steroids and determine their possible associations with the presence or absence of cervical cancer. Genotypes of 222 women were analyzed: a) 81 with cancer of the cervix treated at the Cancer Hospital Alfredo Abram, between June 2012 and May 2013, with diagnosis confirmed surgically and/or through histomorphological examination; and b) 141 healthy women who assisted at the Endocrine Gynecology and Climacteric Ambulatory, Department of Gynecology, UNIFESP-EPM. These polymorphisms were detected by polymerase chain reaction amplification-restriction fragment length polymorphism analysis and visualized on 3% agarose gels stained with ethidium bromide. We found a significant association between the frequency of the CYP1A1 polymorphism and the development of cervical cancer. A statistical difference was observed between patient and control groups for CYP1A1 polymorphism genotype distributions (P 0.05) or between other risk variables analyzed. The CYP1A1 gene involved in the metabolic pathway of sex steroids might influence the emergence of pathological conditions such as cervical cancer in women who carry a mutated allele, and result in 1.80 and 13.46 times increased risk for women with heterozygous or homozygous mutated genotypes, respectively.

  15. Efficient protein production method for NMR using soluble protein tags with cold shock expression vector

    International Nuclear Information System (INIS)

    Hayashi, Kokoro; Kojima, Chojiro

    2010-01-01

    The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins that otherwise could not be expressed using a conventional E. coli expression system. Here, we applied the pCold-GST system to 84 proteins and 78 proteins were successfully expressed in the soluble fraction. Three other cold-shock expression systems containing a maltose binding protein tag (pCold-MBP), protein G B1 domain tag (pCold-GB1) or thioredoxin tag (pCold-Trx) were also developed to improve the yield. Additionally, we show that a C-terminal proline tag, which is invisible in 1 H- 15 N HSQC spectra, inhibits protein degradation and increases the final yield of unstable proteins. The purified proteins were amenable to NMR analyses. These data suggest that pCold expression systems combined with soluble protein tags can be utilized to improve the expression and purification of various proteins for NMR analysis.

  16. Biomonitoring in a clean and a multi-contaminated estuary based on biomarkers and chemical analyses in the endobenthic worm Nereis diversicolor

    Energy Technology Data Exchange (ETDEWEB)

    Durou, Cyril [CNRS, Universite de Nantes, Pole Mer et Littoral, SMAB, 2 rue de la Houssiniere, BP 92208, F-44322 Nantes Cedex 3 (France) and Institut de Biologie et Ecologie Appliquees, CEREA, Universite Catholique de l' Ouest, 44 rue Rabelais, 49008 Angers Cedex 01 (France)]. E-mail: cyril.durou@uco.fr; Poirier, Laurence [CNRS, Universite de Nantes, Pole Mer et Littoral, SMAB, 2 rue de la Houssiniere, BP 92208, F-44322 Nantes Cedex 3 (France); Amiard, Jean-Claude [CNRS, Universite de Nantes, Pole Mer et Littoral, SMAB, 2 rue de la Houssiniere, BP 92208, F-44322 Nantes Cedex 3 (France); Budzinski, Helene [CNRS UMR 5472, LPTC, Universite de Bordeaux I, 33405 Talence (France); Gnassia-Barelli, Mauricette [UMR INRA UNSA 1112 ROSE, Faculte des Sciences, BP 71, 06108 Nice Cedex 2 (France); Lemenach, Karyn [CNRS UMR 5472, LPTC, Universite de Bordeaux I, 33405 Talence (France); Peluhet, Laurent [CNRS UMR 5472, LPTC, Universite de Bordeaux I, 33405 Talence (France); Mouneyrac, Catherine [CNRS, Universite de Nantes, Pole Mer et Littoral, SMAB, 2 rue de la Houssiniere, BP 92208, F-44322 Nantes Cedex 3 (France); Institut de Biologie et Ecologie Appliquees, CEREA, Universite Catholique de l' Ouest, 44 rue Rabelais, 49008 Angers Cedex 01 (France); Romeo, Michele [UMR INRA UNSA 1112 ROSE, Faculte des Sciences, BP 71, 06108 Nice Cedex 2 (France); Amiard-Triquet, Claude [CNRS, Universite de Nantes, Pole Mer et Littoral, SMAB, 2 rue de la Houssiniere, BP 92208, F-44322 Nantes Cedex 3 (France)

    2007-07-15

    Relationships between biochemical and physiological biomarkers (acetylcholinesterase [AChE], catalase, and glutathione S-transferase [GST] activities, thiobarbituric acid reactive substances, glycogen, lipids and proteins) and accumulated concentrations of contaminants (polychlorinated biphenyls [PCBs], polycyclic aromatic hydrocarbons and metals) were examined in the keystone species Nereis diversicolor. The chemical analyses of worms and sediments allowed the designation of the Seine estuary and the Authie estuary as a polluted and relatively clean site respectively. Worms from the Seine estuary exhibited higher GST and lower AChE activities. Generally, larger worms had higher concentrations of energy reserves. Principal component analyses clearly highlighted intersite differences: in the first plan, GST activities and chemical concentrations were inversely related to concentrations of energy reserves; in the second one, PCB concentrations and AChE activity were inversely related. Depleted levels of energy reserves could be a consequence of combating toxicants and might predict effects at higher levels of biological organization. The use of GST and AChE activities and energy reserve concentrations as biomarkers is validated in the field in this keystone species. - The use of N. diversicolor as a biomonitor of environmental quality via the measurement of biomarkers and accumulated concentrations of contaminants is validated in the field.

  17. Genetic Analysis of Aedes aegypti using Random Amplified Polymorphic DNA (RAPD Markers from Dengue Outbreaks in Pakistan

    Directory of Open Access Journals (Sweden)

    Hafiz Muhammad Ashraf

    2016-10-01

    Full Text Available Background: Keeping in view the havoc situation of dengue fever in Pakistan, the current study was designed to demon­strate the genetic variations, gene flow and rate of migration from Lahore and Faisalabad.Methods: The larvae were collected from both natural and artificial breeding places from each collection site. The adult mosquitoes were collected by means of sweep net and battery-operated aspirator. DNA extraction was per­formed using TNE buffer method. Ten GeneLink-A series RAPD primers were used for PCR amplification and the data was analyzed through POPGENE.Results: The number of amplification products produced per primer varied from 8-12, ranging from 200 to 2000 bp with an average of 10.0 bands per primer. The percentage of polymorphic loci amplified by each primer varied from 22.5 to 51%. The UPGMA dendrogram demonstrates two distinct groups from Faisalabad and Lahore populations. The genetic diversity ranged from 0.260 in Faisalabad to 0.294 in Lahore with a total heterozygosity of 0.379. The GST value for nine populations within Lahore was 0.131 (Nm= 3.317, whereas for nine populations in Faisalabad GST value was 0.117 (Nm= 3.773. The overall genetic variation among eighteen populations showed GST= 0.341 and Nm= 1.966.Conclusion: The genetic relatedness and Nm value show that Ae. aegypti populations exhibit intra-population gene flow both in Faisalabad and Lahore. Although, both cities show a distinct pattern of genetic structure; however, few areas from both the cities show genetic similarity. The gene flow and the genetic relatedness in few populations of Lahore and Faisalabad cities need further investigation.

  18. Interaction of pleuromutilin derivatives with the ribosomal peptidyl transferase center

    DEFF Research Database (Denmark)

    Long, K. S.; Hansen, L. K.; Jakobsen, L.

    2006-01-01

    Tiamulin is a pleuromutilin antibiotic that is used in veterinary medicine. The recently published crystal structure of a tiamulin-50S ribosomal subunit complex provides detailed information about how this drug targets the peptidyl transferase center of the ribosome. To promote rational design...... mutant strain is resistant to tiamulin and pleuromutilin, but not valnemulin, implying that valnemulin is better able to withstand an altered rRNA binding surface around the mutilin core. This is likely due to additional interactions made between the valnemulin side chain extension and the rRNA binding...

  19. The thrombospondin-1 N700S polymorphism is associated with early myocardial infarction without altering von Willebrand factor multimer size.

    Science.gov (United States)

    Zwicker, Jeffrey I; Peyvandi, Flora; Palla, Roberta; Lombardi, Rossana; Canciani, Maria Teresa; Cairo, Andrea; Ardissino, Diego; Bernardinelli, Luisa; Bauer, Kenneth A; Lawler, Jack; Mannucci, Pier

    2006-08-15

    The N700S polymorphism of thrombospondin-1 (TSP-1) has been identified as a potential genetic risk factor for myocardial infarction (MI). In a large case-control study of 1425 individuals who survived a myocardial infarction prior to age 45, the N700S polymorphism was a significant risk factor for myocardial infarction in both homozygous (odds ratio [OR] 1.9, 95% confidence interval [CI] 1.1-3.3, P = .01) and heterozygous carriers of the S700 allele (OR 1.4, 95% CI 1.1-3.3, P = .01). TSP-1 has been shown to reduce von Willebrand factor (VWF) multimer size, and the domain responsible for VWF-reducing activity has been localized to the calcium-binding C-terminal sequence. As the N700S polymorphism was previously shown to alter the function of this domain, we investigated whether the altered VWF-reducing activity of TSP-1 underlies the observed prothrombotic phenotype. The TSP1 N700S polymorphism did not influence VWF multimer size in patients homozygous for either allele nor was there a significant reduction of VWF multimer size following incubation with recombinant N700S fragments or platelet-derived TSP-1.

  20. Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates.

    Science.gov (United States)

    Pringle, Märit; Poehlsgaard, Jacob; Vester, Birte; Long, Katherine S

    2004-12-01

    The pleuromutilin antibiotic tiamulin binds to the ribosomal peptidyl transferase centre. Three groups of Brachyspira spp. isolates with reduced tiamulin susceptibility were analysed to define resistance mechanisms to the drug. Mutations were identified in genes encoding ribosomal protein L3 and 23S rRNA at positions proximal to the peptidyl transferase centre. In two groups of laboratory-selected mutants, mutations were found at nucleotide positions 2032, 2055, 2447, 2499, 2504 and 2572 of 23S rRNA (Escherichia coli numbering) and at amino acid positions 148 and 149 of ribosomal protein L3 (Brachyspira pilosicoli numbering). In a third group of clinical B. hyodysenteriae isolates, only a single mutation at amino acid 148 of ribosomal protein L3 was detected. Chemical footprinting experiments show a reduced binding of tiamulin to ribosomal subunits from mutants with decreased susceptibility to the drug. This reduction in drug binding is likely the resistance mechanism for these strains. Hence, the identified mutations located near the tiamulin binding site are predicted to be responsible for the resistance phenotype. The positions of the mutated residues relative to the bound drug advocate a model where the mutations affect tiamulin binding indirectly through perturbation of nucleotide U2504.

  1. Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid.

    Science.gov (United States)

    Csiszár, Jolán; Horváth, Edit; Váry, Zsolt; Gallé, Ágnes; Bela, Krisztina; Brunner, Szilvia; Tari, Irma

    2014-05-01

    A family tree of the multifunctional proteins, glutathione transferases (GSTs, EC 2.5.1.18) was created in Solanum lycopersicum based on homology to known Arabidopsis GSTs. The involvement of selected SlGSTs was studied in salt stress response of tomato primed with salicylic acid (SA) or in un-primed plants by real-time qPCR. Selected tau GSTs (SlGSTU23, SlGSTU26) were up-regulated in the leaves, while GSTs from lambda, theta, dehydroascorbate reductase and zeta classes (SlGSTL3, SlGSTT2, SlDHAR5, SlGSTZ2) in the root tissues under salt stress. Priming with SA exhibited a concentration dependency; SA mitigated the salt stress injury and caused characteristic changes in the expression pattern of SlGSTs only at 10(-4) M concentration. SlGSTF4 displayed a significant up-regulation in the leaves, while the abundance of SlGSTL3, SlGSTT2 and SlGSTZ2 transcripts were enhanced in the roots of plants primed with high SA concentration. Unexpectedly, under high salinity the SlDHAR2 expression decreased in primed roots as compared to the salt-stressed plants, however, the up-regulation of SlDHAR5 isoenzyme contributed to the maintenance of DHAR activity in roots primed with high SA. The members of lambda, theta and zeta class GSTs have a specific role in salt stress acclimation of tomato, while SlGSTU26 and SlGSTF4, the enzymes with high glutathione conjugating activity, characterize a successful priming in both roots and leaves. In contrast to low concentration, high SA concentration induced those GSTs in primed roots, which were up-regulated under salt stress. Our data indicate that induction of GSTs provide a flexible tool in maintaining redox homeostasis during unfavourable conditions. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Expression of Bax in yeast affects not only the mitochondria but also vacuolar integrity and intracellular protein traffic

    DEFF Research Database (Denmark)

    Dimitrova, Irina; Toby, Garabet G; Tili, Esmerina

    2004-01-01

    -transferase (BI-GST) leads to aggregation, but not fusion of the mitochondria. In addition, Bax affects the integrity of yeast vacuoles, resulting in the disintegration and eventual loss of the organelles, and the disruption of intracellular protein traffic. While Bcl-2 coexpression only partially corrects...

  3. Influence of the glutation S-transferases T1 and M1 gene polymorphisms on androgenic status and semen quality after surgical treatment of varicocele

    Directory of Open Access Journals (Sweden)

    P. V. Glybochko

    2013-01-01

    Full Text Available Aim: to examine androgenic status in men after surgical treatment of varicocele; to investigate genotype GSTT1 and GSTM1 in patients with pathozoospermia. Thirty men after surgical treatment of varicocele were recruited to this study. All subjects were evaluated by history, physical examination, semen analysis, serum FSH, LH, E2, PL, inhibin B and total testosterone determination. GSTT1, CSTM1 gene polymorphisms were determined by polymerase chain reaction. Total testosterone and inhibin B levels were significantly lower in patients with pathozoospermia. Patients with the GSTM1(- genotype had lower sperm concentrations than those with the GSTM1(+ genotype.Our results suggest that the GSTM1(- genotype is risk factor for androgen deficiency and pathozoospermia.

  4. β(1,3-glucanosyl-transferase activity is essential for cell wall integrity and viability of Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    María de Medina-Redondo

    Full Text Available BACKGROUND: The formation of the cell wall in Schizosaccharomyces pombe requires the coordinated activity of enzymes involved in the biosynthesis and modification of β-glucans. The β(1,3-glucan synthase complex synthesizes linear β(1,3-glucans, which remain unorganized until they are cross-linked to other β(1,3-glucans and other cell wall components. Transferases of the GH72 family play important roles in cell wall assembly and its rearrangement in Saccharomyces cerevisiae and Aspergillus fumigatus. Four genes encoding β(1,3-glucanosyl-transferases -gas1(+, gas2(+, gas4(+ and gas5(+- are present in S. pombe, although their function has not been analyzed. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the characterization of the catalytic activity of gas1p, gas2p and gas5p together with studies directed to understand their function during vegetative growth. From the functional point of view, gas1p is essential for cell integrity and viability during vegetative growth, since gas1Δ mutants can only grow in osmotically supported media, while gas2p and gas5p play a minor role in cell wall construction. From the biochemical point of view, all of them display β(1,3-glucanosyl-transferase activity, although they differ in their specificity for substrate length, cleavage point and product size. In light of all the above, together with the differences in expression profiles during the life cycle, the S. pombe GH72 proteins may accomplish complementary, non-overlapping functions in fission yeast. CONCLUSIONS/SIGNIFICANCE: We conclude that β(1,3-glucanosyl-transferase activity is essential for viability in fission yeast, being required to maintain cell integrity during vegetative growth.

  5. Benzene exposure assessed by metabolite excretion in Estonian oil shale mineworkers: influence of glutathione s-transferase polymorphisms

    DEFF Research Database (Denmark)

    Sørensen, Mette; Poole, Jason; Autrup, Herman

    2004-01-01

    Measurement of urinary excretion of the benzene metabolites S-phenylmercapturic acid (S-PMA) and trans,trans-muconic acid (t,t-MA) has been proposed for assessing benzene exposure, in workplaces with relatively high benzene concentrations. Excretion of S-PMA and t,t-MA in underground workers...... the last shift of the week. Personal benzene exposure was 114 +/- 35 mug/m(3) in surface workers (n = 15) and 190 +/- 50 mug/m(3) in underground workers (n = 15) in measurements made prior to the study. We found t,t-MA excretion to be significantly higher in underground workers after the end of shifts 1...... of benzene metabolites as biomarkers for assessment of exposure at modest levels and warrant for further investigations of health risks of occupational benzene exposure in shale oil mines....

  6. Genetic polymorphism of CSN1S2 in South African dairy goat ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the polymorphism and genetic variation of CSN1S2 in South African dairy goats, using DNA sequencing technology. Sixty dairy goats (20 Saanes, 20 British Alpine, and 20 Toggenburg) and 20 meat-type goats were sequenced with four primers to distinguish among the seven known ...

  7. [Development of a Fluorescence Probe for Live Cell Imaging].

    Science.gov (United States)

    Shibata, Aya

    2017-01-01

     Probes that detect specific biological materials are indispensable tools for deepening our understanding of various cellular phenomena. In live cell imaging, the probe must emit fluorescence only when a specific substance is detected. In this paper, we introduce a new probe we developed for live cell imaging. Glutathione S-transferase (GST) activity is higher in tumor cells than in normal cells and is involved in the development of resistance to various anticancer drugs. We previously reported the development of a general strategy for the synthesis of probes for detection of GST enzymes, including fluorogenic, bioluminogenic, and 19 F-NMR probes. Arylsulfonyl groups were used as caging groups during probe design. The fluorogenic probes were successfully used to quantitate very low levels of GST activity in cell extracts and were also successfully applied to the imaging of microsomal MGST1 activity in living cells. The bioluminogenic and 19 F-NMR probes were able to detect GST activity in Escherichia coli cells. Oligonucleotide-templated reactions are powerful tools for nucleic acid sensing. This strategy exploits the target strand as a template for two functionalized probes and provides a simple molecular mechanism for multiple turnover reactions. We developed a nucleophilic aromatic substitution reaction-triggered fluorescent probe. The probe completed its reaction within 30 s of initiation and amplified the fluorescence signal from 0.5 pM target oligonucleotide by 1500 fold under isothermal conditions. Additionally, we applied the oligonucleotide-templated reaction for molecular releasing and peptide detection.

  8. Clinical-Anamnestic Features and Evaluation of Control for Exercise-Induced Bronchial Asthma in Schoolchildren with Xenobiotics Biotransformation Genes Polymorphism

    Directory of Open Access Journals (Sweden)

    O.G. Grygola

    2014-03-01

    Full Text Available Complex clinical and spirographic investigation of schoolchildren suffering from exercise-induced bronchial asthma was carried out depending on the presence or the absence of genes polymorphism of the enzymes of glutation-S-transferase — GSTT1M1. The study showed that the course of the disease was more severe in the patients with the deletions of the named genes, the reactions of hypersensitivity were more often, but the desobstructive effect during the attack was reached quicker. The self-assessment of the control of the disease by different scales showed the controversial results, but the objectification by the spirographic investigation allowed to define the risk of achieving the controlled course of the disease in children with genotype GSTT1+M1+ (odds ratio — 3.33, relative risk — 1.8, absolute risk — 29 %.

  9. Molecular precursors for the phase-change material germanium-antimony-telluride, Ge{sub 2}Sb{sub 2}Te{sub 5} (GST)

    Energy Technology Data Exchange (ETDEWEB)

    Harmgarth, Nicole; Zoerner, Florian; Engelhardt, Felix; Edelmann, Frank T. [Chemisches Institut, Otto-von-Guericke-Universitaet Magdeburg (Germany); Liebing, Phil [Laboratorium fuer Anorganische Chemie, ETH Zuerich (Switzerland); Burte, Edmund P.; Silinskas, Mindaugas [Institut fuer Mikro- und Sensorsysteme, Otto-von-Guericke-Universitaet Magdeburg (Germany)

    2017-10-04

    This review provides an overview of the precursor chemistry that has been developed around the phase-change material germanium-antimony-telluride, Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Thin films of GST can be deposited by employing either chemical vapor deposition (CVD) or atomic layer deposition (ALD) techniques. In both cases, the success of the layer deposition crucially depends on the proper choice of suitable molecular precursors. Previously reported processes mainly relied on simple alkoxides, alkyls, amides and halides of germanium, antimony, and tellurium. More sophisticated precursor design provided a number of promising new aziridinides and guanidinates. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Role Of Shark Cartilage In Reducing Changes In Gene Expression Of Some Enzymes Induced By N-Nitroso-N-Methyl Urea In Prostate Of Irradiated Rats

    International Nuclear Information System (INIS)

    ELMAGHRABY, T.; YACOUB, S.; IBRAHIM, N.K.

    2009-01-01

    There is overwhelming evidence to indicate that free radicals cause oxidative damage to lipids, proteins and nucleic acids and are involved in the pathogenesis of several diseases. Therefore, antioxidants, which can neutralize free radicals, may be of central importance in the prevention of these diseases. Recent studies demonstrated the role of shark cartilage in protecting cells against reactive oxygen species induced DNA damage and mutagenesis. Reactive oxygen species and other free radicals are known to be the mediators of phenotypic and genotypic changes that lead from mutation to neoplasia. There are some primary antioxidants such as glutathione peroxidase (GSHPx), glutathione-S-transferase (GST-π) and super oxide dismutase (SOD), which protects against cellular and molecular damage caused by the reactive oxygen metabolites (ROMs).In this study, the effect of shark cartilage against the N-nitroso-N-methyl urea + testosterone and/or gamma radiation-induced mutagens and carcinogens in rat prostate were investigated.The data showed significant decrease in gene expression of manganese superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GSHPx1) , enzyme activities of total superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) and non-significant increase in glutathione-S-transferase (GST-π) in N-nitroso-N-methyl urea + testosterone, N-nitroso-N-methyl urea + testosterone + gamma radiation groups as compared to control group.The results revealed that shark cartilage administration afford a significant protective effect against N-nitroso-N-methyl urea + testosterone and/or gamma radiation- induced oxidative injury.

  11. Cigarette smoking and colorectal cancer: APC mutations, hMLH1 Expression and GSTM1 and GSTT1 Polymorphisms

    NARCIS (Netherlands)

    Luchtenborg, M.; Weijenberg, M.P.; Kampman, E.; Muijen, van G.N.P.; Roemen, G.M.J.M.; Zeegers, M.; Goldbohm, R.A.; Veer, van 't P.; Goeij, de A.F.P.M.; Brandt, van den P.A.

    2005-01-01

    The contribution of cigarette smoking to sporadic colorectal cancer may differ according to molecular aspects of the tumor or according to glutathione S-transferase M1 (GSTM1) or glutathione S-transferase T1 (GSTT1) genotype. In the prospective Netherlands Cohort Study on Diet and Cancer, adjusted

  12. Caribbean yellow band disease compromises the activity of catalase and glutathione S-transferase in the reef-building coral Orbicella faveolata exposed to anthracene.

    Science.gov (United States)

    Montilla, Luis Miguel; Ramos, Ruth; García, Elia; Cróquer, Aldo

    2016-05-03

    Healthy and diseased corals are threatened by different anthropogenic sources, such as pollution, a problem expected to become more severe in the near future. Despite the fact that coastal pollution and coral diseases might represent a serious threat to coral reef health, there is a paucity of controlled experiments showing whether the response of diseased and healthy corals to xenobiotics differs. In this study, we exposed healthy and Caribbean yellow band disease (CYBD)-affected Orbicella faveolata colonies to 3 sublethal concentrations of anthracene to test if enzymatic responses to this hydrocarbon were compromised in CYBD-affected tissues. For this, a 2-factorial fully orthogonal design was used in a controlled laboratory bioassay, using tissue condition (2 levels: apparently healthy and diseased) and pollutant concentration (4 levels: experimental control, 10, 30 and 100 ppb concentration) as fixed factors. A permutation-based ANOVA (PERMANOVA) was used to test the effects of condition and concentration on the specific activity of 3 enzymatic biomarkers: catalase, glutathione S-transferase, and glutathione peroxidase. We found a significant interaction between the concentration of anthracene and the colony condition for catalase (Pseudo-F = 3.84, df = 3, p < 0.05) and glutathione S-transferase (Pseudo-F = 3.29, df = 3, p < 0.05). Moreover, our results indicated that the enzymatic response to anthracene in CYBD-affected tissues was compromised, as the activity of these enzymes decreased 3- to 4-fold compared to healthy tissues. These results suggest that under a potential scenario of increasing hydrocarbon coastal pollution, colonies of O. faveolata affected with CYBD might become more vulnerable to the deleterious effects of chemical pollution.

  13. Estrogen receptor α gene polymorphisms and risk of Alzheimer’s disease: evidence from a meta-analysis

    Directory of Open Access Journals (Sweden)

    Cheng D

    2014-06-01

    Full Text Available Daye Cheng,1 Bin Liang,2 Yiwen Hao,1 Wenling Zhou1 1Department of Transfusion, First Hospital of China Medical University, Shenyang, 2Department of Clinical Laboratory, High Vocational Technological College, China Medical University, Shenyang, People’s Republic of China Objective: Human estrogen receptor α (ESR1, a member of the nuclear receptor superfamily of ligand-activated transcription factors, is one of the key mediators of hormonal response in estrogen-sensitive tissues. Accumulating evidence has demonstrated that two of the most widely studied single-nucleotide polymorphisms in ESR1 – PvuII (T/C, rs223493 and Xbal (A/G, rs9340799 – are possibly associated with Alzheimer’s disease (AD. However, individual study results are still controversial.Materials and methods: We searched PubMed, Embase, Web of Science, Science Direct, SpringerLink, and the Chinese National Knowledge Infrastructure databases for eligible studies assessing the association of ESR1 polymorphisms and AD risk (last search performed in November 2013. Thereafter, a meta-analysis of 13,192 subjects from 18 individual studies was conducted to evaluate the association between ESR1 polymorphisms and susceptibility to AD.Results: The results indicated that a significant association was found between the ESR1 PvuII polymorphism and AD risk in Caucasian populations (CC + CT versus TT, odds ratio [OR] 1.14, 95% confidence interval [CI] 1.02–1.28, P=0.03; CT versus TT, OR 1.16, 95% CI 1.02–1.31, P=0.02, whereas no evidence of association was found in Asian populations. Nevertheless, we did not find any significant association between the ESR1 XbaI polymorphism and AD risk for any model in Caucasian and Asian populations (all P>0.05.Conclusion: Based on this meta-analysis, we conclude that the ESR1 PvuII polymorphism might be a risk factor in AD development in Caucasian populations, not in Asian populations. Further confirmation is needed from better-designed and

  14. Glutathione transferase-M2-2 secreted from glioblastoma cell protects SH-SY5Y cells from aminochrome neurotoxicity.

    Science.gov (United States)

    Cuevas, Carlos; Huenchuguala, Sandro; Muñoz, Patricia; Villa, Monica; Paris, Irmgard; Mannervik, Bengt; Segura-Aguilar, Juan

    2015-04-01

    U373MG cells are able to take up aminochrome that induces glutathione transferase M2-2 (GSTM2) expression in a concentration-dependent manner where 100 µM aminochrome increases GSTM2 expression by 2.1-fold (P protects SH-SY5Y cells incubated with 10 µM aminochrome. The significant protection provided by U373MG-conditioned medium in SH-SY5Y cells incubated with aminochrome was dependent on GSTM2 internalization into SH-SY5Y cells as evidenced by (i) uptake of (14)C-GSTM2 released from U373MG cells into SH-SY5Y cells, a process inhibited by anti-GSTM2 antiserum; (ii) lack of protection of U373MG-conditioned medium in the presence of anti-GSTM2 antiserum on SH-SY5Y cells treated with aminochrome; and (iii) lack of protection of conditioned medium from U373MGsiGST6 that expresses an siRNA directed against GSTM2 on SH-SY5Y cells treated with aminochrome. In conclusion, our results demonstrated that U373MG cells protect SH-SY5Y cells against aminochrome neurotoxicity by releasing GSTM2 into the conditioned medium and subsequent internalization of GSTM2 into SH-SY5Y cells. These results suggest a new mechanism of protection of dopaminergic neurons mediated by astrocytes by releasing GSTM2 into the intersynaptic space and subsequent internalization into dopaminergic neuron in order to protect these cells against aminochrome neurotoxicity.

  15. Methylated Glutathione S-transferase 1 (mGSTP1) is a potential plasma free DNA epigenetic marker of prognosis and response to chemotherapy in castrate-resistant prostate cancer

    OpenAIRE

    Mahon, K L; Qu, W; Devaney, J; Paul, C; Castillo, L; Wykes, R J; Chatfield, M D; Boyer, M J; Stockler, M R; Marx, G; Gurney, H; Mallesara, G; Molloy, P L; Horvath, L G; Clark, S J

    2014-01-01

    Background: Glutathione S-transferase 1 (GSTP1) inactivation is associated with CpG island promoter hypermethylation in the majority of prostate cancers (PCs). This study assessed whether the level of circulating methylated GSTP1 (mGSTP1) in plasma DNA is associated with chemotherapy response and overall survival (OS). Methods: Plasma samples were collected prospectively from a Phase I exploratory cohort of 75 men with castrate-resistant PC (CRPC) and a Phase II independent validation cohort ...

  16. From glutathione transferase to pore in a CLIC

    CERN Document Server

    Cromer, B A; Morton, C J; Parker, M W; 10.1007/s00249-002-0219-1

    2002-01-01

    Many plasma membrane chloride channels have been cloned and characterized in great detail. In contrast, very little is known about intracellular chloride channels. Members of a novel class of such channels, called the CLICs (chloride intracellular channels), have been identified over the last few years. A striking feature of the CLIC family of ion channels is that they can exist in a water- soluble state as well as a membrane-bound state. A major step forward in understanding the functioning of these channels has been the recent crystal structure determination of one family member, CLIC1. The structure confirms that CLICs are members of the glutathione S- transferase superfamily and provides clues as to how CLICs can insert into membranes to form chloride channels. (69 refs).

  17. Polyunsaturated Fatty Acid and S-Adenosylmethionine Supplementation in Predementia Syndromes and Alzheimer's Disease: A Review

    Directory of Open Access Journals (Sweden)

    Francesco Panza

    2009-01-01

    Full Text Available A growing body of evidence indicates that nutritional supplements can improve cognition; however, which supplements are effective remains controversial. In this review article, we focus on dietary supplementation suggested for predementia syndromes and Alzheimer’s disease (AD, with particular emphasis on S-adenosylmethionine (SAM and polyunsaturated fatty acids (PUFA. Very recent findings confirmed that SAM can exert a direct effect on glutathione S-transferase (GST activity. AD is accompanied by reduced GST activity, diminished SAM, and increased S-adenosylhomocysteine (SAH, the downstream metabolic product resulting from SAM-mediated transmethylation reactions, when deprived of folate. Therefore, these findings underscored the critical role of SAM in maintenance of neuronal health, suggesting a possible role of SAM as a neuroprotective dietary supplement for AD patients. In fact, very recent studies on early-stage AD patients and moderate- to late-stage AD patients were conducted with a nutriceutical supplementation that included SAM, with promising results. Given recent findings from randomized clinical trials (RCTs in which n-3 PUFA supplementation was effective only in very mild AD subgroups or mild cognitive impairment (MCI, we suggest future intervention trials using measures of dietary supplementation (dietary n-3 PUFA and SAM plus B vitamin supplementation to determine if such supplements will reduce the risk for cognitive decline in very mild AD and MCI. Therefore, key supplements are not necessarily working in isolation and the most profound impact, or in some cases the only impact, is noted very early in the course of AD, suggesting that nutriceutical supplements may bolster pharmacological approaches well past the window where supplements can work on their own. Recommendations regarding future research on the effects of SAM or n-3 PUFA supplementation on predementia syndromes and very mild AD include properly designed RCTs that are

  18. Association study in Alzheimer’s disease of single nucleotide polymorphisms implicated with coffee consumption

    Directory of Open Access Journals (Sweden)

    Victor Junji Yamamoto

    2015-06-01

    Full Text Available Background There is evidence from animal and in vitro models of the protective effects of caffeine in Alzheimer’s disease. The suggested mechanisms through which caffeine may protect neurons against Alzheimer’s disease pathology include the facilitation of beta-amyloid clearance, upregulation of cholinergic transmission, and increased neuronal plasticity and survival. Epidemiological studies support that Alzheimer’s disease patients consume smaller amounts of coffee beverages throughout their lives as compared to age-matched cognitively healthy individuals. Objective The aim of the present study was to determine whether the negative association between Alzheimer’s disease and coffee consumption may be influenced by a common genetic predisposition, given the fact that the pattern of coffee consumption is determined by both environmental and genetic factors. Method We conducted an in silico search addressing the association between genetic polymorphisms related to coffee consumption and the diagnosis of Alzheimer’s disease. We further investigated the interactions between genes located in regions bearing these polymorphisms. Results Our analysis revealed no evidence for a genetic association (nor interaction between related proteins involving coffee consumption and Alzheimer’s disease. Discussion The negative association between Alzheimer’s disease and coffee consumption suggested by epidemiological studies is most likely due to environmental factors that are not necessarily regulated by genetic background.

  19. Polymorphisms in rpoS and stress tolerance heterogeneity in natural isolates of Cronobacter sakazakii.

    Science.gov (United States)

    Alvarez-Ordóñez, Avelino; Begley, Máire; Hill, Colin

    2012-06-01

    Significant phenotypic diversity was observed when we examined the abilities of a number of Cronobacter sakazakii natural isolates to cope with various sublethal stress conditions (acid, alkaline, osmotic, oxidative, or heat stress). Levels of catalase activity and use of acetate as a carbon source, phenotypes commonly used as indirect assays to predict RpoS function, revealed a high correlation between predicted RpoS activity and tolerance to acid, alkaline, osmotic, and oxidative treatments. The rpoS genes were sequenced and analyzed for polymorphisms. Loss-of-function mutations were found in two strains; C. sakazakii DPC 6523 and the genome-sequenced strain C. sakazakii ATCC BAA-894. The complementation of these strains with a functional rpoS gene resulted in an increase in bacterial tolerance to acid, osmotic, and oxidative stresses. The pigmentation status of strains was also assessed, and a high variability in carotenoid content was observed, with a functional rpoS gene being essential for the production of the characteristic yellow pigment. In conclusion, the evidence presented in this study demonstrates that rpoS is a highly polymorphic gene in C. sakazakii, and it supports the importance of RpoS for the tolerance under stress conditions that C. sakazakii may encounter in the food chain and in the host during infection.

  20. Mink S38G Gene Polymorphism and Atrial Fibrillation in the Chinese Population: A Meta-Analysis of 1871 Participants

    Directory of Open Access Journals (Sweden)

    Yan-yan Li

    2014-01-01

    Full Text Available Mink gene S38G polymorphism in the β-subunit of slow activating component of the delayed rectifier potassium channel current potassium channel has been associated with increased atrial fibrillation (AF risk. However, the individual studies results were still controversial. To investigate the association of Mink S38G gene polymorphisms with AF, a meta-analysis including 1871 subjects from six individual studies was conducted. Mink S38G gene polymorphism was significantly related to AF under allelic (OR: 1.380, 95% CI: 1.200–1.600, P<0.00001, recessive (OR: 1.193, 95% CI: 1.033–1.377, P=0.017, dominant (OR: 1.057, 95% CI: 1.025–1.089, P<0.00001, additive (OR: 1.105, 95% CI: 1.036–1.178, P=0.002, homozygous (OR: 1.128, 95% CI: 1.068–1.191, P<0.00001, and heterozygous genetic models (OR: 1.078, 95% CI: 1.014–1.146, P=0.016. A significant association between Mink S38G gene polymorphism and AF risk was found. G allele carriers may predispose to AF.