WorldWideScience

Sample records for runaway stellar collision

  1. Runaways and weathervanes: The shape of stellar bow shocks

    Science.gov (United States)

    Henney, W. J.; Tarango-Yong, J. A.

    2017-11-01

    Stellar bow shocks are the result of the supersonic interaction between a stellar wind and its environment. Some of these are "runaways": high-velocity stars that have been ejected from a star cluster. Others are "weather vanes", where it is the local interstellar medium itself that is moving, perhaps as the result of a champagne flow of ionized gas from a nearby HII region. We propose a new two-dimensional classification scheme for bow shapes, which is based on dimensionless geometric ratios that can be estimated from observational images. The two ratios are related to the flatness of the bow’s apex, which we term "planitude" and the openness of its wings, which we term "alatude". We calculate the inclination-dependent tracks on the planitude-alatude plane that are predicted by simple models for the bow shock shape. We also measure the shapes of bow shocks from three different observational datasets: mid-infrared arcs around hot main-sequence stars, far-infrared arcs around luminous cool stars, and emission-line arcs around proplyds and other young stars in the Orion Nebula. Clear differences are found between the different datasets in their distributions on the planitude-alatude plane, which can be used to constrain the physics of the bow shock interaction and emission mechanisms in the different classes of object.

  2. The Influence of Stellar Spin on Ignition of Thermonuclear Runaways

    Science.gov (United States)

    Galloway, Duncan K.; in ’t Zand, Jean J. M.; Chenevez, Jérôme; Keek, Laurens; Sanchez-Fernandez, Celia; Worpel, Hauke; Lampe, Nathanael; Kuulkers, Erik; Watts, Anna; Ootes, Laura; The MINBAR collaboration

    2018-04-01

    Runaway thermonuclear burning of a layer of accumulated fuel on the surface of a compact star provides a brief but intense display of stellar nuclear processes. For neutron stars accreting from a binary companion, these events manifest as thermonuclear (type-I) X-ray bursts, and recur on typical timescales of hours to days. We measured the burst rate as a function of accretion rate, from seven neutron stars with known spin rates, using a burst sample accumulated over several decades. At the highest accretion rates, the burst rate is lower for faster spinning stars. The observations imply that fast (>400 Hz) rotation encourages stabilization of nuclear burning, suggesting a dynamical dependence of nuclear ignition on the spin rate. This dependence is unexpected, because faster rotation entails less shear between the surrounding accretion disk and the star. Large-scale circulation in the fuel layer, leading to enhanced mixing of the burst ashes into the fuel layer, may explain this behavior; further numerical simulations are required to confirm this.

  3. Baryogenesis and Gravitational Waves from Runaway Bubble Collisions

    CERN Document Server

    Katz, Andrey

    2016-11-07

    We propose a novel mechanism for production of baryonic asymmetry in the early Universe. The mechanism takes advantage of the strong first order phase transition that produces runaway bubbles in the hidden sector that propagate almost without friction with ultra-relativistic velocities. Collisions of such bubbles can non-thermally produce heavy particles that further decay out-of-equilibrium into the SM and produce the observed baryonic asymmetry. This process can proceed at the very low temperatures, providing a new mechanism of post-sphaleron baryogenesis. In this paper we present a fully calculable model which produces the baryonic asymmetry along these lines as well as evades all the existing cosmological constraints. We emphasize that the Gravitational Waves signal from the first order phase transition is completely generic and can potentially be detected by the future eLISA interferometer. We also discuss other potential signals, which are more model dependent, and point out the unresolved theoretical q...

  4. On the relativistic large-angle electron collision operator for runaway avalanches in plasmas

    Science.gov (United States)

    Embréus, O.; Stahl, A.; Fülöp, T.

    2018-02-01

    Large-angle Coulomb collisions lead to an avalanching generation of runaway electrons in a plasma. We present the first fully conservative large-angle collision operator, derived from the relativistic Boltzmann operator. The relation to previous models for large-angle collisions is investigated, and their validity assessed. We present a form of the generalized collision operator which is suitable for implementation in a numerical kinetic equation solver, and demonstrate the effect on the runaway-electron growth rate. Finally we consider the reverse avalanche effect, where runaways are slowed down by large-angle collisions, and show that the choice of operator is important if the electric field is close to the avalanche threshold.

  5. Baryogenesis and gravitational waves from runaway bubble collisions

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Andrey [Theory Division, CERN,CH-1211 Geneva 23 (Switzerland); Département de Physique Théorique and Center for Astroparticle Physics (CAP),Université de Genève, 24 quai Ansermet, CH-1211 Genève 4 (Switzerland); Riotto, Antonio [Département de Physique Théorique and Center for Astroparticle Physics (CAP),Université de Genève, 24 quai Ansermet, CH-1211 Genève 4 (Switzerland)

    2016-11-07

    We propose a novel mechanism for production of baryonic asymmetry in the early Universe. The mechanism takes advantage of the strong first order phase transition that produces runaway bubbles in the hidden sector that propagate almost without friction with ultra-relativistic velocities. Collisions of such bubbles can non-thermally produce heavy particles that further decay out-of-equilibrium into the SM and produce the observed baryonic asymmetry. This process can proceed at the very low temperatures, providing a new mechanism of post-sphaleron baryogenesis. In this paper we present a fully calculable model which produces the baryonic asymmetry along these lines as well as evades all the existing cosmological constraints. We emphasize that the Gravitational Waves signal from the first order phase transition is completely generic and can potentially be detected by the future eLISA interferometer. We also discuss other potential signals, which are more model dependent, and point out the unresolved theoretical questions related to our proposal.

  6. Collisions Between Single Stars in Dense Clusters: Runaway Formation of a Massive Object

    NARCIS (Netherlands)

    Freitag, M.; Gürkan, M.A.; Rasio, F.A.

    2007-01-01

    Using Monte Carlo codes, we follow the collisional evolution of clusters in a variety of scenarios. We consider the conditions under which a cluster of main-sequence stars may undergo rapid core collapse due to mass segregation, thus entering a phase of runaway collisions, forming a very massive

  7. Constraining the Stellar Mass Function in the Galactic Center via Mass Loss from Stellar Collisions

    Directory of Open Access Journals (Sweden)

    Douglas Rubin

    2011-01-01

    Full Text Available The dense concentration of stars and high-velocity dispersions in the Galactic center imply that stellar collisions frequently occur. Stellar collisions could therefore result in significant mass loss rates. We calculate the amount of stellar mass lost due to indirect and direct stellar collisions and find its dependence on the present-day mass function of stars. We find that the total mass loss rate in the Galactic center due to stellar collisions is sensitive to the present-day mass function adopted. We use the observed diffuse X-ray luminosity in the Galactic center to preclude any present-day mass functions that result in mass loss rates >10-5M⨀yr−1 in the vicinity of ~1″. For present-day mass functions of the form, dN/dM∝M-α, we constrain the present-day mass function to have a minimum stellar mass ≲7M⨀ and a power-law slope ≳1.25. We also use this result to constrain the initial mass function in the Galactic center by considering different star formation scenarios.

  8. Including collisions in gyrokinetic tokamak and stellarator simulations

    International Nuclear Information System (INIS)

    Kauffmann, Karla

    2012-01-01

    Particle and heat transport in fusion devices often exceed the neoclassical prediction. This anomalous transport is thought to be produced by turbulence caused by microinstabilities such as ion and electron-temperature-gradient (ITG/ETG) and trapped-electron-mode (TEM) instabilities, the latter ones known for being strongly influenced by collisions. Additionally, in stellarators, the neoclassical transport can be important in the core, and therefore investigation of the effects of collisions is an important field of study. Prior to this thesis, however, no gyrokinetic simulations retaining collisions had been performed in stellarator geometry. In this work, collisional effects were added to EUTERPE, a previously collisionless gyrokinetic code which utilizes the δf method. To simulate the collisions, a pitch-angle scattering operator was employed, and its implementation was carried out following the methods proposed in [Takizuka and Abe 1977, Vernay Master's thesis 2008]. To test this implementation, the evolution of the distribution function in a homogeneous plasma was first simulated, where Legendre polynomials constitute eigenfunctions of the collision operator. Also, the solution of the Spitzer problem was reproduced for a cylinder and a tokamak. Both these tests showed that collisions were correctly implemented and that the code is suited for more complex simulations. As a next step, the code was used to calculate the neoclassical radial particle flux by neglecting any turbulent fluctuations in the distribution function and the electric field. Particle fluxes in the neoclassical analytical regimes were simulated for tokamak and stellarator (LHD) configurations. In addition to the comparison with analytical fluxes, a successful benchmark with the DKES code was presented for the tokamak case, which further validates the code for neoclassical simulations. In the final part of the work, the effects of collisions were investigated for slab and toroidal ITGs and

  9. Including collisions in gyrokinetic tokamak and stellarator simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kauffmann, Karla

    2012-04-10

    Particle and heat transport in fusion devices often exceed the neoclassical prediction. This anomalous transport is thought to be produced by turbulence caused by microinstabilities such as ion and electron-temperature-gradient (ITG/ETG) and trapped-electron-mode (TEM) instabilities, the latter ones known for being strongly influenced by collisions. Additionally, in stellarators, the neoclassical transport can be important in the core, and therefore investigation of the effects of collisions is an important field of study. Prior to this thesis, however, no gyrokinetic simulations retaining collisions had been performed in stellarator geometry. In this work, collisional effects were added to EUTERPE, a previously collisionless gyrokinetic code which utilizes the {delta}f method. To simulate the collisions, a pitch-angle scattering operator was employed, and its implementation was carried out following the methods proposed in [Takizuka and Abe 1977, Vernay Master's thesis 2008]. To test this implementation, the evolution of the distribution function in a homogeneous plasma was first simulated, where Legendre polynomials constitute eigenfunctions of the collision operator. Also, the solution of the Spitzer problem was reproduced for a cylinder and a tokamak. Both these tests showed that collisions were correctly implemented and that the code is suited for more complex simulations. As a next step, the code was used to calculate the neoclassical radial particle flux by neglecting any turbulent fluctuations in the distribution function and the electric field. Particle fluxes in the neoclassical analytical regimes were simulated for tokamak and stellarator (LHD) configurations. In addition to the comparison with analytical fluxes, a successful benchmark with the DKES code was presented for the tokamak case, which further validates the code for neoclassical simulations. In the final part of the work, the effects of collisions were investigated for slab and toroidal

  10. Helical ripple transport in stellarators at low collision frequency

    International Nuclear Information System (INIS)

    Beidler, C.D.

    1987-12-01

    Numerical and analytical techniques have been developed to investigate the plasma transport which is due to particles trapping/detrapping in the local helical ripple wells of a stellarator's magnetic field. This process is of considerable importance as it provides the dominant transport mechanism in a stellarator plasma at ''low'' collision frequency: that is, when the frequency with which a particle is collisionally detrapped from a local ripple well is less than the bounce frequency of the particle in that well. A form of the longitudinal adiabatic invariant, J, is constructed and shown to describe accurately the orbits of ripple trapped particles. Unlike previous expressions for J, the form derived here correctly accounts for the local toroidal variation of the magnetic field. The expression for J is incorporated into a rapid ''hybrid'' Monte Carlo simulation of ripple transport in stellarators. The simulation is a hybrid in the sense that particle orbits in the narrow region of phase space on either side of the ripple trapping/detrapping boundary are followed using guiding center equations of motion while orbits in the remainder of phase space are described using adiabatic invariants. An analytical expression for the distribution function of ripple trapped particles in a stellarator - valid at all low collision frequencies - has been obtained by series solution of the bounce - averaged kinetic equation. This solution has been applied to both 'standard' and a class of 'transport optimized' stellarator magnetic fields. Analytical estimates of the diffusion coefficient obtained from the series solution show excellent agreement with the numerical results of the hybrid Monte Carlo code in all cases studied. 55 refs., 30 figs

  11. Evolution of rotating stellar clusters at the stage of inelastic collisions

    International Nuclear Information System (INIS)

    Romanova, M.M.

    1985-01-01

    The dynamics of a gas-stellar disk in a dense stellar cluster of small ellipticity (epsilon or approximately 0.2-0.3. Possible existence of a thin stellar disk in a dense stellar cluster is analysed. With epsilon in the above range, collisions between cluster and disk stars are shown to have no effect on the evolution of the disk up to the instability time, provided that the ratio of disk stellar mass to the cluster stellar mass > or approximately 0.04

  12. Can physical stellar collisions explain the blue stragglers in the dwarf spheroidal galaxies?

    International Nuclear Information System (INIS)

    Leonard, P.J.T.

    1993-01-01

    The hypothesis that the blue stragglers in the dwarf spheroidal galaxie have a collisional origin is considered. If all of the dark matter in these galaxies is in the form of low-mass stars and the binary frequency is ≅ 50%, then it is quite possible that ≅ 10% to 20% of their blue stragglers have been produced by physical stellar collisions

  13. The influence of electron collisions on non-LTE Li line formation in stellar atmospheres

    International Nuclear Information System (INIS)

    Osorio, Yeisson; Barklem, Paul; Lind, Karin; Asplund, Martin

    2012-01-01

    The influence of the uncertainties in the rate coefficient data for electron-impact excitation and ionization on non-LTE Li line formation in cool stellar atmospheres is investigated. We examine the electron collision data used in previous non-LTE calculations and compare them to our own calculations using the R-matrix with pseudostates (RMPS) method and to other calculations found in the literature.

  14. The Origin of Runaway Stars

    Science.gov (United States)

    Hoogerwerf, R.; de Bruijne, J. H. J.; de Zeeuw, P. T.

    2000-12-01

    Milliarcsecond astrometry provided by Hipparcos and by radio observations makes it possible to retrace the orbits of some of the nearest runaway stars and pulsars to determine their site of origin. The orbits of the runaways AE Aurigae and μ Columbae and of the eccentric binary ι Orionis intersected each other ~2.5 Myr ago in the nascent Trapezium cluster, confirming that these runaways were formed in a binary-binary encounter. The path of the runaway star ζ Ophiuchi intersected that of the nearby pulsar PSR J1932+1059, ~1 Myr ago, in the young stellar group Upper Scorpius. We propose that this neutron star is the remnant of a supernova that occurred in a binary system that also contained ζ Oph and deduce that the pulsar received a kick velocity of ~350 km s-1 in the explosion. These two cases provide the first specific kinematic evidence that both mechanisms proposed for the production of runaway stars, the dynamical ejection scenario and the binary-supernova scenario, operate in nature.

  15. Runaway acceleration during magnetic reconnection in tokamaks

    International Nuclear Information System (INIS)

    Helander, P; Eriksson, L-G; Andersson, F

    2002-01-01

    In this paper, the basic theory of runaway electron production is reviewed and recent progress is discussed. The mechanisms of primary and secondary generation of runaway electrons are described and their dynamics during a tokamak disruption is analysed, both in a simple analytical model and through numerical Monte Carlo simulation. A simple criterion for when these mechanisms generate a significant runaway current is derived, and the first self-consistent simulations of the electron kinetics in a tokamak disruption are presented. Radial cross-field diffusion is shown to inhibit runaway avalanches, as indicated in recent experiments on JET and JT-60U. Finally, the physics of relativistic post-disruption runaway electrons is discussed, in particular their slowing down due to emission of synchrotron radiation, and their ability to produce electron-positron pairs in collisions with bulk plasma ions and electrons

  16. Three-dimensional hydrodynamical simulations of stellar collisions. II. White dwarfs

    International Nuclear Information System (INIS)

    Benz, W.; Thielemann, F.K.; Hills, J.G.

    1989-01-01

    Three-dimensional numerical simulations are presented for collisions between white dwarfs, using a smooth-particle hydrodynamics code with 5000 particles. The code allows for radiation and degenerate pressure and uses a reduced nuclear network which models the large release of nuclear energy. Two different collision models are considered over a range of impact parameters: between two 0.06 solar-mass C-O white dwarfs and between 0.9 solar-mass and 0.7 solar-mass C-O white dwarfs. In nearly head-on collisions, a very substantial fraction of the mass is lost as a result of a large release of nuclear energy. In grazing collisions, the fraction of mass lost is close to that produced in collisions between main-sequence stars. The quantity of processed elements ejected into the ISM by these collisions does not significantly affect the chemical evolution of the Galaxy. 24 refs

  17. Hydrogen Atom Collision Processes in Cool Stellar Atmospheres: Effects on Spectral Line Strengths and Measured Chemical Abundances in Old Stars

    International Nuclear Information System (INIS)

    Barklem, Paul S

    2012-01-01

    The precise measurement of the chemical composition of stars is a fundamental problem relevant to many areas of astrophysics. State-of-the-art approaches attempt to unite accurate descriptions of microphysics, non-local thermodynamic equilibrium (non-LTE) line formation and 3D hydrodynamical model atmospheres. In this paper I review progress in understanding inelastic collisions of hydrogen atoms with other species and their influence on spectral line formation and derived abundances in stellar atmospheres. These collisions are a major source of uncertainty in non-LTE modelling of spectral lines and abundance determinations, especially for old, metal-poor stars, which are unique tracers of the early evolution of our galaxy. Full quantum scattering calculations of direct excitation processes X(nl) + H ↔ X(n'l') + H and charge transfer processes X(nl) + H ↔ X + + H − have been done for Li, Na and Mg [1,2,3] based on detailed quantum chemical data, e.g. [4]. Rate coefficients have been calculated and applied to non-LTE modelling of spectral lines in stellar atmospheres [5,6,7,8,9]. In all cases we find that charge transfer processes from the first excited S-state are very important, and the processes affect measured abundances for Li, Na and Mg in some stars by as much as 60%. Effects vary with stellar parameters (e.g. temperature, luminosity, metal content) and so these processes are important not only for accurate absolute abundances, but also for relative abundances among dissimilar stars.

  18. EVIDENCE FOR CLOUD-CLOUD COLLISION AND PARSEC-SCALE STELLAR FEEDBACK WITHIN THE L1641-N REGION

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Miura, Tomoya; Nishi, Ryoichi [Department of Physics, Niigata University, 8050 Ikarashi-2, Niigata 950-2181 (Japan); Kitamura, Yoshimi; Akashi, Toshiya; Ikeda, Norio [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Shimajiri, Yoshito; Kawabe, Ryohei [Nobeyama Radio Observatory, Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Tsukagoshi, Takashi [Department of Astronomy, School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Momose, Munetake [Institute of Astrophysics and Planetary Sciences, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Li Zhiyun, E-mail: fumitaka.nakamura@nao.ac.jp [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States)

    2012-02-10

    We present high spatial resolution {sup 12}CO (J = 1-0) images taken by the Nobeyama 45 m telescope toward a 48' Multiplication-Sign 48' area, including the L1641-N cluster. The effective spatial resolution of the maps is 21'', corresponding to 0.04 pc at a distance of 400 pc. A recent 1.1 mm dust continuum map reveals that the dense gas is concentrated in several thin filaments. We find that a few dust filaments are located at the parts where {sup 12}CO (J = 1-0) emission drops sharply. Furthermore, the filaments have two components with different velocities. The velocity difference between the two components is about 3 km s{sup -1}, corresponding to a Mach number of 10, significantly larger than the local turbulent velocity in the cloud. These facts imply that the collision of the two components (hereafter, the cloud-cloud collision) possibly contributed to the formation of these filaments. Since the two components appear to overlap toward the filaments on the plane of the sky, the collision may have occurred almost along the line of sight. Star formation in the L1641-N cluster was probably triggered by such a collision. We also find several parsec-scale CO shells whose centers are close to either the L1641-N cluster or the V 380 Ori cluster. We propose that these shells were created by multiple winds and/or outflows from cluster young stellar objects, i.e., 'protocluster winds'. One exceptional dust filament located at the western cloud edge lies along a shell; it is presumably part of the expanding shell. Both the cloud-cloud collision and protocluster winds are likely to influence the cloud structure and kinematics in this region.

  19. Collisional avalanche exponentiation of runaway electrons in electrified plasmas

    International Nuclear Information System (INIS)

    Jayakumar, R.; Fleischmann, H.H.; Zweben, S.J.

    1993-01-01

    In contrast to earlier expectations, it is estimated that generation of runaway electrons from close collisions of existing runaways with cold plasma electrons can be significant even for small electric fields, whenever runaways can gain energies of about 20 MeV or more. In that case, the runaway population will grow exponentially with the energy spectrum showing an exponential decrease towards higher energies. Energy gains of the required magnitude may occur in large tokamak devices as well as in cosmic-ray generation. (orig.)

  20. Control of runaway electron energy using externally injected whistler waves

    Science.gov (United States)

    Guo, Zehua; McDevitt, Christopher J.; Tang, Xian-Zhu

    2018-03-01

    One way of mitigating runaway damage of the plasma-facing components in a tokamak fusion reactor is by limiting the runaway electron energy under a few MeV, while not necessarily reducing the runaway current appreciably. Here, we describe a physics mechanism by which such momentum space engineering of the runaway distribution can be facilitated by externally injected high-frequency electromagnetic waves such as whistler waves. The drastic impact that wave-induced scattering can have on the runaway energy distribution is fundamentally the result of its ability to control the runaway vortex in the momentum space. The runaway vortex, which is a local circulation of runaways in momentum space, is the outcome of the competition between Coulomb collisions, synchrotron radiation damping, and runaway acceleration by the parallel electric field. By introducing a wave that resonantly interacts with runaways in a particular range of energies which is mildly relativistic, the enhanced scattering would reshape the vortex by cutting off the part that is highly relativistic. The efficiency of resonant scattering accentuates the requirement that the wave amplitude can be small so the power requirement from external wave injection is practical for the mitigation scheme.

  1. Kinetic modelling of runaway electron avalanches in tokamak plasmas

    International Nuclear Information System (INIS)

    Nilsson, E; Peysson, Y; Saint-Laurent, F; Decker, J; Granetz, R S; Vlainic, M

    2015-01-01

    Runaway electrons can be generated in tokamak plasmas if the accelerating force from the toroidal electric field exceeds the collisional drag force owing to Coulomb collisions with the background plasma. In ITER, disruptions are expected to generate runaway electrons mainly through knock-on collisions (Hender et al 2007 Nucl. Fusion 47 S128–202), where enough momentum can be transferred from existing runaways to slow electrons to transport the latter beyond a critical momentum, setting off an avalanche of runaway electrons. Since knock-on runaways are usually scattered off with a significant perpendicular component of the momentum with respect to the local magnetic field direction, these particles are highly magnetized. Consequently, the momentum dynamics require a full 3D kinetic description, since these electrons are highly sensitive to the magnetic non-uniformity of a toroidal configuration. For this purpose, a bounce-averaged knock-on source term is derived. The generation of runaway electrons from the combined effect of Dreicer mechanism and knock-on collision process is studied with the code LUKE, a solver of the 3D linearized bounce-averaged relativistic electron Fokker–Planck equation (Decker and Peysson 2004 DKE: a fast numerical solver for the 3D drift kinetic equation Report EUR-CEA-FC-1736, Euratom-CEA), through the calculation of the response of the electron distribution function to a constant parallel electric field. The model, which has been successfully benchmarked against the standard Dreicer runaway theory now describes the runaway generation by knock-on collisions as proposed by Rosenbluth (Rosenbluth and Putvinski 1997 Nucl. Fusion 37 1355–62). This paper shows that the avalanche effect can be important even in non-disruptive scenarios. Runaway formation through knock-on collisions is found to be strongly reduced when taking place off the magnetic axis, since trapped electrons can not contribute to the runaway electron population. Finally

  2. Runaway electrons beams in ITER disruptions

    International Nuclear Information System (INIS)

    Fleischmann, H.H.

    1993-01-01

    In agreement with the initial projections, the potential generation of runaway beams in disruptions of ITER discharges was performed. This analysis was based on the best-available present projections of plasma parameters existing in large-tokamak disruptions. Using these parameters, the potential contributions from various basic mechanisms for the generation of runway electrons were estimated. The envisioned mechanisms included (i) the well-known Dreicer process (assuming an evaporation of the runways from the thermal distribution), (ii) the seeding of runaway beams resulting from the potential presence of trapped high-temperature electrons from the original discharge still remaining in the disruption plasma at time of reclosure of the magnetic surfaces, and (iii) the generation of runaway beams through avalanche exponentiation of low-level seed runaways resulting via close collisions of existing runaways with cold plasma electrons. Finally, the prospective behavior of the any generated runaway beams -- in particular during their decay -- as well as their potential avoidance and/or damage controlled extraction through the use of magnetic perturbation fields also was considered in some detail

  3. Electron run-away

    International Nuclear Information System (INIS)

    Levinson, I.B.

    1975-01-01

    The run-away effect of electrons for the Coulomb scattering has been studied by Dricer, but the question for other scattering mechanisms is not yet studied. Meanwhile, if the scattering is quasielastic, a general criterion for the run-away may be formulated; in this case the run-away influence on the distribution function may also be studied in somewhat general and qualitative manner. (Auth.)

  4. Theory of runaway electrons

    Energy Technology Data Exchange (ETDEWEB)

    Dreicer, H [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1958-07-01

    This paper treats the problem of electrons moving through an infinite gas of positive ions under the influence of a static uniform electric field of arbitrary strength. In evaluating the electrical conductivity of such a gas the conventional treatment involves a perturbation solution of the time-independent Boltzmann equation, and results in the well-known (temperature){sup 3/2} law. Two assumptions are basic to these treatments: 1) that a steady state electron velocity distribution is attained several mean-free collision times after the electric field is applied, and 2) that the terminal electron drift velocity is small compared to the average random electron speed. Both assumptions are avoided in this paper. In the next section the problem is formulated starting with the Boltzmann equation and a review of approximate analytic solutions appropriate to the weak and strong electric field cases is presented. We then describe a time-dependent numerical solution to the Boltzmann equation and compare these results with the approximate solutions. All of these treatments lead to the conclusion that this problem does not admit a time-independent solution. Because of the strong energy dependence of the Rutherford scattering law, the electron drift velocity is not bounded by a terminal value, rather it grows monotonically with time. This is the so-called runaway effect predicted by Giovanelli. Collective effects, or plasma oscillations, are ignored in this work, although these undoubtedly play an important role in the conduction of electricity through the plasma.

  5. On the kinematics of a runaway Be star population

    Science.gov (United States)

    Boubert, D.; Evans, N. W.

    2018-04-01

    We explore the hypothesis that B type emission-line stars (Be stars) have their origin in mass-transfer binaries by measuring the fraction of runaway Be stars. We assemble the largest-to-date catalogue of 632 Be stars with 6D kinematics, exploiting the precise astrometry of the Tycho-Gaia Astrometric Solution (TGAS) from the first Gaia Data Release. Using binary stellar evolution simulations, we make predictions for the runaway and equatorial rotation velocities of a runaway Be star population. Accounting for observational biases, we calculate that if all classical Be stars originated through mass transfer in binaries, then 17.5% of the Be stars in our catalogue should be runaways. The remaining 82.5% should be in binaries with subdwarfs, white dwarfs or neutron stars, because those systems either remained bound post-supernova or avoided the supernova entirely. Using a Bayesian methodology, we compare the hypothesis that each Be star in our catalogue is a runaway to the null hypothesis that it is a member of the Milky Way disc. We find that 13.1^{+2.6}_{-2.4}% of the Be stars in our catalogue are runaways, and identify a subset of 40 high-probability runaways. We argue that deficiencies in our understanding of binary stellar evolution, as well as the degeneracy between velocity dispersion and number of runaway stars, can explain the slightly lower runaway fraction. We thus conclude that all Be stars could be explained by an origin in mass-transfer binaries. This conclusion is testable with the second Gaia data release (DR2).

  6. Runaway electrons dynamics and confinement in Tore-Supra

    International Nuclear Information System (INIS)

    Chatelier, M.; Geraud, A.; Joyer, P.; Martin, G.; Rax, J.M.

    1989-01-01

    The lack of energy of runaway electrons, confined in Tore Supra tokamak, is studied. Ohmic discharges, obtained with helium gas, exhibit a small amount of runaway electrons on both hard X-ray monitors and neutron sensors. The observations show an important lack of energy for runaway electrons confined in Tore Supra. It is assumed to be dued to a small pitch-angle scattering (a few degrees), and many candidates for this are compared: the strongest known one collisions seems not to be enough by an order of magnitude. Density and magnetic scans on Tore Supra are needed to discriminate between enhanced collisional scattering processes and purely magnetic phenomena

  7. Kinetic modelling of runaway electron avalanches in tokamak plasmas.

    Czech Academy of Sciences Publication Activity Database

    Nilsson, E.; Decker, J.; Peysson, Y.; Granetz, R.S.; Saint-Laurent, F.; Vlainic, Milos

    2015-01-01

    Roč. 57, č. 9 (2015), č. článku 095006. ISSN 0741-3335 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : plasma physics * runaway electrons * knock-on collisions * tokamak * Fokker-Planck * runaway avalanches Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.404, year: 2015

  8. Fokker-Planck simulations of knock-on electron runaway avalanche and bursts in tokamaks

    International Nuclear Information System (INIS)

    Chiu, S.C.; Rosenbluth, M.N.; Harvey, R.W.; Chan, V.S.

    1998-01-01

    The avalanche of runaway electrons in an ohmic tokamak plasma triggered by knock-on collisions of traces of energetic electrons with the bulk electrons is simulated by the bounce averaged Fokker-Planck code, CQL3D. It is shown that even when the electric field is small for the production of Dreicer runaways, the knock-on collisions can produce significant runaway electrons in a fraction of a second at typical reactor parameters. The energy spectrum of these knock-on runaways has a characteristic temperature. The growth rate and temperature of the runaway distribution are determined and compared with theory. In simulations of pellet injection into high temperature plasmas, it is shown that a burst of Dreicer runaways may also occur depending on the cooling rate due to the pellet injection. Implications of these phenomena on disruption control in reactor plasmas are discussed. (author)

  9. Problems of Maltreated Runaway Youth.

    Science.gov (United States)

    Kurtz, P. David; And Others

    1991-01-01

    Shelter staff from 8 states completed Client Information Records on 2,019 runaways. Found significant differences in problems reported by physically abused and sexually abused runaways when compared to nonabused runaway peers. Runaways who were both physically and sexually maltreated were significantly more vulnerable and much worse off than those…

  10. Control of runaway electron secondary generation by changing Z(eff)

    NARCIS (Netherlands)

    Pankratov, I. M.; R. Jaspers,; Finken, K.H.; Entrop, I.; Mank, G.

    1998-01-01

    The effect of Z(eff) on the runaway generation process by close collisions has been studied experimentally in the TEXTOR-94 tokamak in ohmic low density discharges. It is shown that the effective avalanching time increases with increasing Z(eff). This opens the possibility of controlling the runaway

  11. Runaway electrons in toroidal discharges

    International Nuclear Information System (INIS)

    Knoepfel, H.

    1979-01-01

    Experimental and theoretical studies of runaway electrons in toroidal devices are reviewed here, with particular reference to tokamaks. The complex phenomenology of runaway effects, which have been the subject of research for the past twenty years, is organized within the framework of a number of physical models. The mechanisms and rates for runaway production are discussed first, followed by sections on runaway-driven kinetic relaxation processes and runaway orbit confinement. Next, the equilibrium and stability of runaway-dominated discharges are reviewed. Models for runaway production at early times in the discharge and the scaling of runaway phenomena to larger devices are also discussed. Finally, detection techniques and possible applications of runaways are mentioned. (author)

  12. Collisional avalanche exponentiation of run-away electrons in electrified plasmas

    International Nuclear Information System (INIS)

    Jayakumar, R.; Fleischmann, H.H.; Zweben, S.J.; Cornell Univ., Ithaca, NY

    1992-07-01

    In contrast to earlier expectations, it is estimated that generation of runaway electrons from close collisions of existing runaways with cold plasma electrons can be significant even for small electric fields, whenever runaways can gain energies of about 20 MeV or more. In that case, the runaway population will grow exponentially with the energy spectrum showing an exponential decrease towards higher energies.Energy gains of the required magnitude may occur in large Tokamak devices as well as in cosmic-ray generation

  13. Runaway electrons during tokamak startup

    International Nuclear Information System (INIS)

    Sharma, A.S.; Jayakumar, R.

    1988-01-01

    Runaway electrons significantly affect the plasma and impurity evolution during tokamak startup. During its rise, a runaway pulse stores magnetic flux inductively; this is then released during the decay phase of the runaway pulse. This process affects plasma formation, current initiation and current buildup. Because of their relativistic velocities the runaway electrons have higher ionization and excitation rates than the plasma electrons. This leads to a significant modification of the impurity behaviour and consequently the plasma evolution. (author). 20 refs, 8 figs

  14. Application of Statistical Potential Techniques to Runaway Transport Studies

    International Nuclear Information System (INIS)

    Eguilior, S.; Castejon, F.; Parrondo, J. M.

    2001-01-01

    A method is presented for computing runaway production rate based on techniques of noise-activated escape in a potential is presented in this work. A generalised potential in 2D momentum space is obtained from the deterministic or drift terms of Langevin equations. The diffusive or stochastic terms that arise directly from the stochastic nature of collisions, play the role of the noise that activates barrier crossings. The runaway electron source is given by the escape rate in such a potential which is obtained from an Arrenius-like relation. Runaway electrons are those skip the potential barrier due to the effect of stochastic collisions. In terms of computation time, this method allows one to quickly obtain the source term for a runway electron transport code.(Author) 11 refs

  15. Runaway snakes in TEXTOR-94

    NARCIS (Netherlands)

    Entrop, I.; R. Jaspers,; Cardozo, N. J. L.; Finken, K.H.

    1999-01-01

    Observations of a runaway beam confined in an island-like structure, a so-called runaway snake, are reported. The observations are made in TEXTOR-94 by measurement of synchrotron radiation emitted by these runaways. A full poloidal View allows for the study of the synchrotron pattern of the snake to

  16. Controlling runaway vortex via externally injected high-frequency electromagnetic waves

    Science.gov (United States)

    Guo, Zehua; McDevitt, Chris; Tang, Xianzhu

    2017-10-01

    One way of mitigating runaway damage of the plasma-facing components in a tokamak fusion reactor is by limiting the runaway electron energy under a few MeV, while not necessarily reducing the runaway current appreciably. Here we describe a physics mechanism by which such momentum space engineering of the runaway distribution can be facilitated by externally injected high-frequency electromagnetic waves such as the whistler waves. The drastic impact that wave-induced scattering can have on the runaway energy distribution is fundamentally the result of its ability to control the runaway vortex in the momentum space. The runaway vortex, which is a local circulation of runaways in momentum space, is the outcome of the competition between Coulomb collisions, synchrotron radiation damping, and runaway acceleration by parallel electric field. By introducing a wave that resonantly interacts with runaways at a particular range of energy that is mildly relativistic, the enhanced scattering would reshape the vortex by cutting off the part that is highly relativistic. The efficiency of resonant scattering accentuates the requirement that the wave amplitude can be small so the power requirement from external wave injection is practical for the mitigation scheme.

  17. Runaway snakes in TEXTOR-94

    International Nuclear Information System (INIS)

    Entrop, I.; Jaspers, R.; Lopes Cardozo, N.J.; Finken, K.H.

    1999-01-01

    Observations of a runaway beam confined in an island-like structure, a so-called runaway snake, are reported. The observations are made in TEXTOR-94 by measurement of synchrotron radiation emitted by these runaways. A full poloidal view allows for the study of the synchrotron pattern of the snake to estimate runaway energy, pitch angle and the radius, shift and safety factor of the drift surface q D at which the runaway beam has developed. The runaway snake parameters are investigated under different current and magnetic field strength conditions. Examples are found of a runaway snake at the q D =1 and the q D =2 drift surface. The radial diffusion coefficient of runaways inside a snake is D r approx. 0.01m 2 s -1 . The rapid runaway losses in regions of (macroscopic) magnetic perturbations outside a snake and the good confinement inside an island assumed to consist of perfect nested surfaces are consistent with magnetic turbulence as the main cause for runaway transport. (author)

  18. Prevent thermal runaway of lithium-ion batteries with minichannel cooling

    International Nuclear Information System (INIS)

    Xu, Jian; Lan, Chuanjin; Qiao, Yu; Ma, Yanbao

    2017-01-01

    Highlights: • A 3D model was developed to study nail penetration induced thermal runaway. • Effects of flow rate, thermal abuse reactions, and nail dimensions were examined. • Minichannel cooling at cell level cannot cease thermal runaway in a single cell. • Minichannel cooling can prevent thermal runaway propagation between cells. - Abstract: Thermal management on lithium-ion batteries is a crucial problem for the performance, lifetime, and safety of electric vehicles (EVs) and hybrid electric vehicles (HEVs). Fire and explosions can be triggered by thermal runaway if the temperature of the lithium-ion batteries is not maintained properly. This work describes a minichannel cooling system designed at the battery module level and the investigation on its efficacy on the mitigation of thermal runaway. Nail penetration was employed to simulate the internal short circuits, which in reality may be caused by vehicle collisions and/or manufacturing defects. Two integrated models were utilized to study thermal runaway: the conjugate heat transfer model and the reaction kinetics model. Numerical simulations were conducted to understand the thermal runaway process and the effects of flow rate, thermal abuse reactions, nail penetration depth, and nail diameter. It is concluded that minichannel cooling at cell level cannot cease thermal runaway in a single cell, but it can prevent battery fratricide due to thermal runaway propagation between cells.

  19. Runaway in the landscape

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Walcher, Johannes

    2007-01-01

    We consider flux compactifications of type IIB string theory on the mirror of a rigid Calabi-Yau. In special cases, these models are dual to the type IIA flux vacua with runaway direction in flux space. We show that new weak coupling AdS solutions can be found for large complex structure, while Minkowski solutions with all moduli stabilized are confined to be at strong coupling. The existence of these solutions, as found in a previous work, is nevertheless guaranteed by a nonrenormalization theorem of the type IIB flux superpotential. Based on our results, we are led to the conjecture that supersymmetric runaway directions in flux space are always accompanied by a spectrum of moduli masses reaching down to the AdS scale. This could be violated in a nonsupersymmetric situation

  20. Temporal and spatial evolution of runaway electrons at the instability moments in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pourshahab, B. [Department of Nuclear Engineering, Faculty of Advance Sciences and Technologies, University of Isfahan, P.O. Box 81747-73441, Isfahan (Iran, Islamic Republic of); Abdi, M. R. [Department of Physics, Faculty of Science, University of Isfahan, P.O. Box 81747-73441, Isfahan (Iran, Islamic Republic of); Sadighzadeh, A.; Rasouli, C. [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2016-07-15

    The time and position behavior of runaway electrons at the Parail–Pogutse instability moments has been investigated using experimental observations in plasma current, loop voltage, the Hard X-ray (HXR) radiations, and 18 poloidal pickup coils signals received by data acquisition system simultaneously. The conditional average sampling (CAS) method was used to analyze the output data. Moreover, a filament current code was modified to study the runaway electrons beam movement in the event of instabilities. The results display a rapid drift of runaway beam toward the inner wall of the vacuum vessel and the collision with the wall components at the instability moments. The existence of the collisions in these experiments is evident in the HXR bursts which are considered as the main trigger for CAS Analysis. Also, the variation of HXR bursts with the toroidal magnetic field shows that the hard X-ray bursts drop with increase in the toroidal magnetic field and runaway electrons confinement quality.

  1. Dynamics of runaways in JET

    International Nuclear Information System (INIS)

    Gill, R.D.; Alper, B.; Edwards, A.W.; Ingesson, L.C.; Johnson, M.F.; Ward, D.

    2001-01-01

    Measurements are presented of the properties of the runaway beams generated in JET following disruptions. Radiation is emitted by the runaways, both when they are in flight and when they hit the vessel walls. Because radiation protected soft x-ray cameras were developed for the JET DT campaign, it has been possible to make the first direct observations of the runaway beam in flight from the x-ray line radiation produced by the beam excitation of K-shell vacancies in the metallic impurities of the residual plasma. These observations give clear images of the runaway beam and provide detailed information on its time development, size, position and stability. The current density and q-profile have also been determined. It has been found that there is a delay between the disruption and the start of runaway generation and this offers a possibility of instigating runaway control methods. Detailed determination of the runaway-wall interaction suggests that the runaways have a braided structure. (author)

  2. Inflation expels runaways

    Energy Technology Data Exchange (ETDEWEB)

    Bachlechner, Thomas C. [Department of Physics, Columbia University,New York, NY 10027 (United States)

    2016-12-30

    We argue that moduli stabilization generically restricts the evolution following transitions between weakly coupled de Sitter vacua and can induce a strong selection bias towards inflationary cosmologies. The energy density of domain walls between vacua typically destabilizes Kähler moduli and triggers a runaway towards large volume. This decompactification phase can collapse the new de Sitter region unless a minimum amount of inflation occurs after the transition. A stable vacuum transition is guaranteed only if the inflationary expansion generates overlapping past light cones for all observable modes originating from the reheating surface, which leads to an approximately flat and isotropic universe. High scale inflation is vastly favored. Our results point towards a framework for studying parameter fine-tuning and inflationary initial conditions in flux compactifications.

  3. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    NARCIS (Netherlands)

    Meyer, D.M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V.V.; Mignone, A.; Izzard, R.G.; Kaper, L.

    2014-01-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional

  4. Conditions for electron runaway under leader breakdown of long gaps

    International Nuclear Information System (INIS)

    Ul'yanov, K. N.

    2008-01-01

    An original hydrodynamic model in which inelastic collisions in the equations of motion and energy balance play a decisive role is developed and applied to simulate electron avalanches in strong electric fields. The mean energy and drift velocity of electrons, as well as the ionization coefficient and electric field in a wide range of mean electron energies, are determined for helium and xenon. A criterion is derived for the runaway of the average electron in discharges with ionization multiplication. It is shown that runaway can take place at any value of E/p, provided that the momentum mean free path exceeds the gap length. The voltage corresponding to electron runaway is found for helium, xenon, and air as a function of the electric field, the electron mean energy, and the parameter pd. Conditions for the formation of a precursor in electronegative gases are analyzed. It is shown that the presence of a precursor with a high electric conductance is necessary for the formation of a new leader step. The voltage and time ranges corresponding to efficient electron runaway and X-ray generation during leader breakdown in air are determined

  5. Run-away electrons and plasma pinching in a high-current diode

    International Nuclear Information System (INIS)

    Ivanenkov, G.V.

    1984-01-01

    The electrons run-away process in space-confined plasma with current is considered. It has been found that the effect of the proper magnetic field of a current leads to appearance, in add tion to the Dreicer mechanism, of other run-away mechanism in the process of radial oscillations of electrons accelerating near the axis. The appearance of run-away electrons from a thermal velocities region occurs in the course of collisions as well as radial drift. The thresholds of Dreicer run-away and drift are determined. The conditions of formation of Z-pinch current envelope and its collisionless compression by the ''snow plough'' type for the 10-100 ns of high-current accelerator pulse duration are elucidated

  6. X-ray study of bow shocks in runaway stars

    Science.gov (United States)

    De Becker, M.; del Valle, M. V.; Romero, G. E.; Peri, C. S.; Benaglia, P.

    2017-11-01

    Massive runaway stars produce bow shocks through the interaction of their winds with the interstellar medium, with the prospect for particle acceleration by the shocks. These objects are consequently candidates for non-thermal emission. Our aim is to investigate the X-ray emission from these sources. We observed with XMM-Newton a sample of five bow shock runaways, which constitutes a significant improvement of the sample of bow shock runaways studied in X-rays so far. A careful analysis of the data did not reveal any X-ray emission related to the bow shocks. However, X-ray emission from the stars is detected, in agreement with the expected thermal emission from stellar winds. On the basis of background measurements we derive conservative upper limits between 0.3 and 10 keV on the bow shocks emission. Using a simple radiation model, these limits together with radio upper limits allow us to constrain some of the main physical quantities involved in the non-thermal emission processes, such as the magnetic field strength and the amount of incident infrared photons. The reasons likely responsible for the non-detection of non-thermal radiation are discussed. Finally, using energy budget arguments, we investigate the detectability of inverse Compton X-rays in a more extended sample of catalogued runaway star bow shocks. From our analysis we conclude that a clear identification of non-thermal X-rays from massive runaway bow shocks requires one order of magnitude (or higher) sensitivity improvement with respect to present observatories.

  7. Electron runaway in rf discharges

    International Nuclear Information System (INIS)

    Chen, F.F.

    1992-10-01

    The critical electric field is computed as a function of pressure and starting energy for electrons to run away to high energies in moderate pressure discharges. The runaway conditions depend critically on the shape of the elastic cross section vs. energy curve. Computations are made for H, H 2 , and He gases, and it is shown that runaway occurs much more readily in atomic hydrogen than in the other gases. The values of the runaway fields are larger than would normally occur in dc discharges, where large voltages would lead to arc formation. However, in rf discharges such electric fields can be sustained over times long compared to electron transit times but short compared to ion transit times. (author)

  8. Thermonuclear Runaway model

    International Nuclear Information System (INIS)

    Sparks, W.M.; Kutter, G.S.; Starrfield, S.; Truran, J.W.

    1989-01-01

    The nova outburst requires an energy source that is energetic enough to eject material and is able to recur. The Thermonuclear Runaway (TNR) model, coupled with the binary nature of nova systems satisfies these conditions. The white dwarf/red dwarf binary nature of novae was first recognized as a necessary conditions by Kraft. The small separation characteristic of novae systems allows the cool, red secondary to overflow is Roche lobe. In the absence of strong, funneling magnetic fields, the angular momentum of this material prevents it from falling directly onto the primary, and it first forms a disk around the white dwarf. This material is eventually accreted from the disk onto the white dwarf. As the thickness of this hydrogen-rich layer increases, the degenerate matter at the base reaches a temperature that is high enough to initiate thermonuclear fusion of hydrogen. Thermonuclear energy release increases the temperature which in turn increases the energy generation rate. Because the material is degenerate, the pressure does not increase with temperature, which normally allows a star to adjust itself to a steady nuclear burning rate. Thus the temperature and nuclear energy generation increase and a TNR results. When the temperature reaches the Fermi temperature, degeneracy is lifted and the rapid pressure increase causes material expansion. The hydrogen-rich material either is ejected or consumed by nuclear burning, and the white dwarf returns to its pre-outburst state. The external source of hydrogen fuel from the secondary allows the while process to repeat. 43 refs., 8 figs

  9. Runaway Youths: Families in Conflict.

    Science.gov (United States)

    Beyer, Margaret; And Others

    The Hamden Mental Health Service staff collaborated with the police on a joint research project concerning runaway youth. The data suggest that adolescents who run away come from broken homes where disruption during preadolescence has been associated with parental separation and remarriage. These adolescents often exhibit symptoms of depression…

  10. Remote Shutoff Stops Runaway Lawnmower

    Science.gov (United States)

    Grambo, Alan A.

    2007-01-01

    In this article, the author describes how electronics students at Central Nine Career Center designed a kill switch circuit to stop a runaway lawnmower. This project is ideal for a career center since the electronics/robotics, small engines and horticulture classes can all work together on their respective parts of the modification, installation…

  11. Runaway Reaction: Solving for X.

    Science.gov (United States)

    Bartz, Solveig A.

    2003-01-01

    This article examines the runaway reaction as it was displayed by Barry, a 14-year-old eighth-grade boy with learning disabilities. It identifies some of the common characteristics of this response and proposes school intervention methods. Functional behavioral assessments and strength-based assessments are encouraged, along with using strategy…

  12. Field O stars: formed in situ or as runaways?

    Science.gov (United States)

    Gvaramadze, V. V.; Weidner, C.; Kroupa, P.; Pflamm-Altenburg, J.

    2012-08-01

    A significant fraction of massive stars in the Milky Way and other galaxies are located far from star clusters and star-forming regions. It is known that some of these stars are runaways, i.e. possess high space velocities (determined through the proper motion and/or radial velocity measurements), and therefore most likely were formed in embedded clusters and then ejected into the field because of dynamical few-body interactions or binary-supernova explosions. However, there exists a group of field O stars whose runaway status is difficult to prove via direct proper motion measurements (e.g. in the Magellanic Clouds) or whose (measured) low space velocities and/or young ages appear to be incompatible with their large separation from known star clusters. The existence of this group led some authors to believe that field O stars can form in situ. Since the question of whether or not O stars can form in isolation is of crucial importance for star formation theory, it is important to thoroughly test candidates of such stars in order to improve the theory. In this paper, we examine the runaway status of the best candidates for isolated formation of massive stars in the Milky Way and the Magellanic Clouds by searching for bow shocks around them, by using the new reduction of the Hipparcos data, and by searching for stellar systems from which they could originate within their lifetimes. We show that most of the known O stars thought to have formed in isolation are instead very likely runaways. We show also that the field must contain a population of O stars whose low space velocities and/or young ages are in apparent contradiction to the large separation of these stars from their parent clusters and/or the ages of these clusters. These stars (the descendants of runaway massive binaries) cannot be traced back to their parent clusters and therefore can be mistakenly considered as having formed in situ. We argue also that some field O stars could be detected in optical

  13. Influence of the angular scattering of electrons on the runaway threshold in air

    Science.gov (United States)

    Chanrion, O.; Bonaventura, Z.; Bourdon, A.; Neubert, T.

    2016-04-01

    The runaway electron mechanism is of great importance for the understanding of the generation of x- and gamma rays in atmospheric discharges. In 1991, terrestrial gamma-ray flashes (TGFs) were discovered by the Compton Gamma-Ray Observatory. Those emissions are bremsstrahlung from high energy electrons that run away in electric fields associated with thunderstorms. In this paper, we discuss the runaway threshold definition with a particular interest in the influence of the angular scattering for electron energy close to the threshold. In order to understand the mechanism of runaway, we compare the outcome of different Fokker-Planck and Monte Carlo models with increasing complexity in the description of the scattering. The results show that the inclusion of the stochastic nature of collisions smooths the probability to run away around the threshold. Furthermore, we observe that a significant number of electrons diffuse out of the runaway regime when we take into account the diffusion in angle due to the scattering. Those results suggest using a runaway threshold energy based on the Fokker-Planck model assuming the angular equilibrium that is 1.6 to 1.8 times higher than the one proposed by [1, 2], depending on the magnitude of the ambient electric field. The threshold also is found to be 5 to 26 times higher than the one assuming forward scattering. We give a fitted formula for the threshold field valid over a large range of electric fields. Furthermore, we have shown that the assumption of forward scattering is not valid below 1 MeV where the runaway threshold usually is defined. These results are important for the thermal runaway and the runaway electron avalanche discharge mechanisms suggested to participate in the TGF generation.

  14. Massive runaway stars in the Small Magellanic Cloud

    Science.gov (United States)

    Gvaramadze, V. V.; Pflamm-Altenburg, J.; Kroupa, P.

    2011-01-01

    Using archival Spitzer Space Telescope data, we identified for the first time a dozen runaway OB stars in the Small Magellanic Cloud (SMC) through the detection of their bow shocks. The geometry of detected bow shocks allows us to infer the direction of motion of the associated stars and to determine their possible parent clusters and associations. One of the identified runaway stars, AzV 471, was already known as a high-velocity star on the basis of its high peculiar radial velocity, which is offset by ≃ 40 km s-1 from the local systemic velocity. We discuss implications of our findings for the problem of the origin of field OB stars. Several of the bow shock-producing stars are found in the confines of associations, suggesting that these may be “alien” stars contributing to the age spread observed for some young stellar systems. We also report the discovery of a kidney-shaped nebula attached to the early WN-type star SMC-WR3 (AzV 60a). We interpreted this nebula as an interstellar structure created owing to the interaction between the stellar wind and the ambient interstellar medium.

  15. The Influence of Stellar Spin on Ignition of Thermonuclear Runaways

    DEFF Research Database (Denmark)

    Galloway, Duncan K.; In't Zand, Jean J. M.; Chenevez, Jérôme

    2018-01-01

    timescales of hours to days. We measured the burst rate as a function of accretion rate, from seven neutron stars with known spin rates, using a burst sample accumulated over several decades. At the highest accretion rates, the burst rate is lower for faster spinning stars. The observations imply that fast...

  16. On the physics of runaway particles in JET and MAST

    International Nuclear Information System (INIS)

    Helander, P.; Akers, R.J.; Gimblett, C.G.; Tournianski, M.R.; Byrom, C.; Eriksson, L.-G.; Andersson, F.

    2003-01-01

    This paper explores the physics of runaway particles observed in MAST and JET. During internal reconnection events in MAST, it is observed that the ion distribution function, as measured by a neutral-particle analyser, develops a high-energy tail, which subsequently decays on the time scale of collisional slowing down. These observations are explained in terms of runaway ion acceleration in the electric field induced by the reconnection - a phenomenon predicted theoretically by Furth and Rutherford in 1972 but not commonly noted in tokamaks. In JET, long-lived post-disruption currents carried by runaway electrons have been observed to decay on a time scale of 1-2 s. A relativistic kinetic theory is developed to explain this decay as a consequence of the combined action of Coulomb collisions and synchrotron radiation emission. It is also pointed out that substantial electron-positron pair production should occur in such discharges, which have also been made more recently on JT-60U. In fact, tokamaks may be the largest positron repositories made by man. (author)

  17. A model for disruption generated runaway electrons

    International Nuclear Information System (INIS)

    Russo, A.J.; Campbell, R.B.

    1993-01-01

    One of the possible consequences of disruptions in tokamaks is the generation of runaway electrons which can impact plasma facing components and cause damage, owing to high local energy deposition. This problem becomes more serious as the machine size and plasma current increase. Since large size and high currents are characteristics of proposed future machines, control of runaway generation is an important design consideration. A lumped circuit model for disruption runaway electron generation indicates that impurity concentration and type, as well as plasma motion, can strongly influence runaway behaviour. A comparison of disruption data from several runs on JET and DIII-D with model results demonstrate the effects of impurities, and plasma motion, on runaway number density and energy. The model is also applied to the calculation of runaway currents for ITER. (author). 16 refs, 13 figs

  18. Runaway electron generation in tokamak disruptions

    International Nuclear Information System (INIS)

    Helander, P.; Andersson, F.; Fueloep, T.; Smith, H.; Anderson, D.; Lisak, M.; Eriksson, L.-G.

    2005-01-01

    The time evolution of the plasma current during a tokamak disruption is calculated by solving the equations for runaway electron production simultaneously with the induction equation for the toroidal electric field. The resistive diffusion time in a post-disruption plasma is typically comparable to the runaway avalanche growth time. Accordingly, the toroidal electric field induced after the thermal quench of a disruption diffuses radially through the plasma at the same time as it accelerates runaway electrons, which in turn back-react on the electric field. When these processes are accounted for in a self-consistent way, it is found that (1) the efficiency and time scale of runaway generation agrees with JET experiments; (2) the runaway current profile typically becomes more peaked than the pre-disruption current profile; and (3) can easily become radially filamented. It is also shown that higher runaway electron generation is expected if the thermal quench is sufficiently fast. (author)

  19. Runaway Children in America: A Review of the Literature.

    Science.gov (United States)

    Burke, William H.; Burkhead, E. Jane

    1989-01-01

    The paper reviews the literature regarding runaway children, defines runaway youth, and discusses predisposing factors. Suggestions are offered for further research on the etiology and treatment of runaway behavior. (JDD)

  20. Safe venting of ''red oil'' runaway reactions

    International Nuclear Information System (INIS)

    Paddleford, D.F.; Fauske, H.K.

    1994-01-01

    Calorimetry testing of Tri-n-butyl phosphate (TBP) saturated with strong nitric acid was performed to determine the relationship between vent size and pressure buildup in the event of a runaway reaction. These experiments show that runaway can occur in an open system, but that even when runaway is induced in the TBP/HN0 3 system, dangerous pressure buildup will be prevented with practical vent size

  1. Stochastic runaway of dynamical systems

    International Nuclear Information System (INIS)

    Pfirsch, D.; Graeff, P.

    1984-10-01

    One-dimensional, stochastic, dynamical systems are well studied with respect to their stability properties. Less is known for the higher dimensional case. This paper derives sufficient and necessary criteria for the asymptotic divergence of the entropy (runaway) and sufficient ones for the moments of n-dimensional, stochastic, dynamical systems. The crucial implication is the incompressibility of their flow defined by the equations of motion in configuration space. Two possible extensions to compressible flow systems are outlined. (orig.)

  2. A kinetic model for runaway electrons in the ionosphere

    Directory of Open Access Journals (Sweden)

    G. Garcia

    2006-09-01

    Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m2. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.

  3. A kinetic model for runaway electrons in the ionosphere

    Directory of Open Access Journals (Sweden)

    G. Garcia

    2006-09-01

    Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m2. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.

  4. Measurement of runaway electron energy distribution function during high-Z gas injection into runaway electron plateaus in DIII-Da)

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, E. M. [University of California—San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA; Parks, P. B. [General Atomics, PO Box 85608, San Diego, California 92186, USA; Commaux, N. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37831, USA; Eidietis, N. W. [General Atomics, PO Box 85608, San Diego, California 92186, USA; Moyer, R. A. [University of California—San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA; Shiraki, D. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37831, USA; Austin, M. E. [Institute for Fusion Studies, University of Texas—Austin, 2100 San Jacinto Blvd, Austin, Texas 78712, USA; Lasnier, C. J. [Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA; Paz-Soldan, C. [General Atomics, PO Box 85608, San Diego, California 92186, USA; Rudakov, D. L. [University of California—San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA

    2015-05-01

    The evolution of the runaway electron (RE) energy distribution function fεfε during massive gas injection into centered post-disruption runaway electron plateaus has been reconstructed. Overall, fεfε is found to be much more skewed toward low energy than predicted by avalanche theory. The reconstructions also indicate that the RE pitch angle θ is not uniform, but tends to be large at low energies and small θ ~0.1–0.2 at high energies. Overall power loss from the RE plateau appears to be dominated by collisions with background free and bound electrons, leading to line radiation. However, the drag on the plasma current appears to be dominated by collisions with impurity ions in most cases. Synchrotron emission appears not to be significant for overall RE energy dissipation but may be important for limiting the peak RE energy.

  5. Measurement of runaway electron energy distribution function during high-Z gas injection into runaway electron plateaus in DIII-D

    International Nuclear Information System (INIS)

    Hollmann, E. M.; Moyer, R. A.; Rudakov, D. L.; Parks, P. B.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Austin, M. E.; Lasnier, C. J.

    2015-01-01

    The evolution of the runaway electron (RE) energy distribution function f ε during massive gas injection into centered post-disruption runaway electron plateaus has been reconstructed. Overall, f ε is found to be much more skewed toward low energy than predicted by avalanche theory. The reconstructions also indicate that the RE pitch angle θ is not uniform, but tends to be large at low energies and small θ ∼ 0.1–0.2 at high energies. Overall power loss from the RE plateau appears to be dominated by collisions with background free and bound electrons, leading to line radiation. However, the drag on the plasma current appears to be dominated by collisions with impurity ions in most cases. Synchrotron emission appears not to be significant for overall RE energy dissipation but may be important for limiting the peak RE energy

  6. Relativistic runaway electrons in tokamak plasmas

    International Nuclear Information System (INIS)

    Jaspers, R.E.

    1995-01-01

    Runaway electrons are inherently present in a tokamak, in which an electric field is applied to drive a toroidal current. The experimental work is performed in the tokamak TEXTOR. Here runaway electrons can acquire energies of up to 30 MeV. The runaway electrons are studied by measuring their synchrotron radiation, which is emitted in the infrared wavelength range. The studies presented are unique in the sense that they are the first ones in tokamak research to employ this radiation. Hitherto, studies of runaway electrons revealed information about their loss in the edge of the discharge. The behaviour of confined runaways was still a terra incognita. The measurement of the synchrotron radiation allows a direct observation of the behaviour of runaway electrons in the hot core of the plasma. Information on the energy, the number and the momentum distribution of the runaway electrons is obtained. The production rate of the runaway electrons, their transport and the runaway interaction with plasma waves are studied. (orig./HP)

  7. Runaway companions of supernova remnants with Gaia

    Science.gov (United States)

    Boubert, Douglas; Fraser, Morgan; Evans, N. Wyn

    2018-04-01

    It is expected that most massive stars have companions and thus that some core-collapse supernovae should have a runaway companion. The precise astrometry and photometry provided by Gaia allows for the systematic discovery of these runaway companions. We combine a prior on the properties of runaway stars from binary evolution with data from TGAS and APASS to search for runaway stars within ten nearby supernova remnants. We strongly confirm the existing candidate HD 37424 in S147, propose the Be star BD+50 3188 to be associated with HB 21, and suggest tentative candidates for the Cygnus and Monoceros Loops.

  8. Runaway modeling in ORMAK and TNS

    International Nuclear Information System (INIS)

    Cooper, A.; Swain, D.W.; Marcus, F.B.; Kammash, T.

    1977-07-01

    A zero-dimensional tokamak start-up code is used to investigate the generation of runaway electrons in the Oak Ridge Tokamak (ORMAK) and The Next Step (TNS) and the effect of the runaways on the plasma breakdown, current, and energy balance, The runaways, which are considered collisionless, are treated self-consistently in the circuit equation by including a runaway current component (determined from a runaway rate equation). During the earliest stages of a discharge, the total current in the plasma is so low that closed flux surfaces do not exist. Runaways produced are lost almost instantly because they follow magnetic field lines that intersect the limiter. Once the current in the tokamak builds up sufficiently, closed flux surfaces start forming which improves runaway containment. The time tau when this occurs is uncertain. Results on ORMAK and TNS are displayed for different values of tau (before which any runaway created is assumed to be lost instantaneously). The assumption of flux surface closure after some arbitrary time tau is then justified by modeling an ORMAK discharge which includes the effects on runaway confinement of error fields generated by currents flowing in the leads to the toroidal field coils. Also shown are ORMAK simulations in different density regimes and TNS results for different loop voltage pulses

  9. Hydrodynamic simulations of a combined hydrogen, helium thermonuclear runaway on a 10-km neutron star

    International Nuclear Information System (INIS)

    Starrfield, S.; Kenyon, S.; Truran, J.W.; Sparks, W.M.

    1983-01-01

    We have used a Lagrangian, hydrodynamic stellar-evolution computer code to evolve a thermonuclear runaway in the accreted hydrogen rich envelope of a 1.0M, 10-km neutron star. Our simulation produced an outburst which lasted about 2000 sec and peak effective temperature was 3 keV. The peak luminosity exceeded 2 x 10 5 L. A shock wave caused a precursor in the light curve which lasted 10 -5 sec

  10. Runaways: A Review of the Literature.

    Science.gov (United States)

    Taylor, Jennifer; Mosteller, Frederick

    More than half of runaway adolescents cite poor family communication and conflict as the primary reasons for running. Runaways (.5-1.5 million annually) generally arrive on the streets with few survival skills and little money. They are often subject to abuse of various sorts, and many eventually resort to criminal activity or use drugs in efforts…

  11. Runaway Slave Advertisements: Teaching from Primary Documents

    Science.gov (United States)

    Costa, Tom; Doyle, Brooke

    2004-01-01

    In this article, the authors discuss how children can learn from runaway slave advertisements. The advertisements for runaway slaves that masters placed in eighteenth- and nineteenth-century newspapers are among the documentary sources available to teachers for studying the lives of African-American slaves. Such advertisements often describe a…

  12. The Meaning of Home for Runaway Girls

    Science.gov (United States)

    Peled, Einat; Muzicant, Amit

    2008-01-01

    This naturalistic qualitative study examines the concept of "home" for runaway girls. Through the "home story" of girls who run away from home, the authors hoped to understand the many facets of home, as well as broaden the existing knowledge-base about the phenomenon of adolescent runaway girls. Data consisted of in-depth interviews with 15 girls…

  13. Runaway pacemaker: a forgotten phenomenon?

    Science.gov (United States)

    Ortega, Daniel F; Sammartino, M Victoria; Pellegrino, Graciela M M; Barja, Luis D; Albina, Gaston; Segura, Eliseo V; Balado, Roberto; Laiño, Ruben; Giniger, Alberto G

    2005-11-01

    Runaway is an uncommon pacemaker dysfunction, characterized by fast and erratic spikes at non-physiological rates. This infrequent but potentially lethal failure mode may be related to low battery voltage. Four single chamber pacemaker patients were analyzed (Medtronic Minix ST 8330, Minneapolis, MN, had been implanted in two patients and two CPI Triumph VR 1124, St Paul, MN, in the other two). They had been admitted because of presyncopal episodes. Typical high rate stimuli at 2000 ppm alternating with pacing at 60-65 ppm were recorded in all ECGs. Lead system tests were normal. The pulse generators had to be replaced.

  14. Disk tides and accretion runaway

    Science.gov (United States)

    Ward, William R.; Hahn, Joseph M.

    1995-01-01

    It is suggested that tidal interaction of an accreting planetary embryo with the gaseous preplanetary disk may provide a mechanism to breach the so-called runaway limit during the formation of the giant planet cores. The disk tidal torque converts a would-be shepherding object into a 'predator,' which can continue to cannibalize the planetesimal disk. This is more likely to occur in the giant planet region than in the terrestrial zone, providing a natural cause for Jupiter to predate the inner planets and form within the O(10(exp 7) yr) lifetime of the nebula.

  15. Needs and Self-Concept of Runaway Adolescents.

    Science.gov (United States)

    Post, Phyllis; McCoard, Douglas

    1994-01-01

    Developed Needs of Adolescent Runaways to assess needs of runaway adolescents housed in runaway shelter. Findings from 76 adolescent runaways revealed that greatest needs were concerned with living arrangements, family relationships, and communication with parents. Respondents perceived information about sex, drugs, and alcohol as least important.…

  16. Runaway Children Twelve Years Later: A Follow-Up.

    Science.gov (United States)

    Olson, Lucy; And Others

    1980-01-01

    This study was based on intensive interviews with former runaways, nonrunaway siblings, parents, and other relatives. Differences in outcome were found between: (1) runaways and siblings; (2) runaway repeaters and nonrepeaters; and (3) runaways from working-class and middle-class backgrounds. (Author)

  17. The Prevalence of Disabilities and Maltreatment among Runaway Children.

    Science.gov (United States)

    Sullivan, Patricia M.; Knutson, John F.

    2000-01-01

    Descriptive information was analyzed for maltreated and nonmaltreated runaways from hospital (N=39,352, 255 runaways) and school (N=40,211, 562 runaways) populations. Children and youth with disabilities (especially those with behavior disorders, mental retardation, and communication disorders) were at increased risk to become runaways in both…

  18. The energy spectrum of the 'runaway' electrons from a high voltage pulsed discharge

    International Nuclear Information System (INIS)

    Ruset, C.

    1985-01-01

    Some experimental results are presented on the influence of the pressure upon the energy spectrum of the runaway electrons generated into a pulsed high voltage argon discharge. These electrons enter a state of continuous acceleration between two collisions with rapidly increasing free path. The applied discharge current varies from 10 to 300 A, the pulse time is about 800 ns. Relativistic effects are taken into consideration. Theoretical explanation is based on the pnenomenon of electron spreading on plasma oscillations. (D.Gy.)

  19. Massive runaway stars in the Large Magellanic Cloud

    Science.gov (United States)

    Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    2010-09-01

    The origin of massive field stars in the Large Magellanic Cloud (LMC) has long been an enigma. The recent measurements of large offsets (˜ 100 km s-1) between the heliocentric radial velocities of some very massive (O2-type) field stars and the systemic LMC velocity provides a possible explanation of this enigma and suggests that the field stars are runaway stars ejected from their birthplaces at the very beginning of their parent cluster's dynamical evolution. A straightforward way to prove this explanation is to measure the proper motions of the field stars and to show that they are moving away from one of the nearby star clusters or OB associations. This approach is, however, complicated by the long distance to the LMC, which makes accurate proper motion measurements difficult. We used an alternative approach for solving the problem (first applied for Galactic field stars), based on the search for bow shocks produced by runaway stars. The geometry of detected bow shocks would allow us to infer the direction of stellar motion, thereby determining their possible parent clusters. In this paper we present the results of a search for bow shocks around six massive field stars that have been proposed as candidate runaway stars. Using archival Spitzer Space Telescope data, we found a bow shock associated with one of our programme stars, the O2 V((f*)) star BI 237, which is the first-ever detection of bow shocks in the LMC. Orientation of the bow shock suggests that BI 237 was ejected from the OB association LH 82 (located at ≃ 120 pc in projection from the star). A by-product of our search is the detection of bow shocks generated by four OB stars in the field of the LMC and an arc-like structure attached to the candidate luminous blue variable R81 (HD 269128). The geometry of two of these bow shocks is consistent with the possibility that their associated stars were ejected from the 30 Doradus star-forming complex. We discuss implications of our findings for the

  20. On the inward drift of runaway electrons during the plateau phase of runaway current

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Di, E-mail: hudi-2@pku.edu.cn [School of Physics, Peking University, Beijing 100871 (China); Qin, Hong [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08540 (United States); School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2016-03-15

    The well observed inward drift of current carrying runaway electrons during runaway plateau phase after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such a system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by integrating the modified Euler-Lagrange equation over one bounce time. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in the ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with the observed displacement time scale. This indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau phase.

  1. Runaway tails in magnetized plasmas

    Science.gov (United States)

    Moghaddam-Taaheri, E.; Vlahos, L.; Rowland, H. L.; Papadopoulos, K.

    1985-01-01

    The evolution of a runaway tail driven by a dc electric field in a magnetized plasma is analyzed. Depending on the strength of the electric field and the ratio of plasma to gyrofrequency, there are three different regimes in the evolution of the tail. The tail can be (1) stable with electrons accelerated to large parallel velocities, (2) unstable to Cerenkov resonance because of the depletion of the bulk and the formation of a positive slope, (3) unstable to the anomalous Doppler resonance instability driven by the large velocity anisotropy in the tail. Once an instability is triggered (Cerenkov or anomalous Doppler resonance) the tail relaxes into an isotropic distribution. The role of a convection type loss term is also discussed.

  2. Runaway electrons in TEXT-U

    International Nuclear Information System (INIS)

    Freeman, M.R.

    1994-01-01

    Runaway electrons have long been studied in tokamak plasmas. The previous results regarding runaway electrons and the detection of hard x-rays are reviewed. The hard x-ray energy on TEXT-U is measured and the scaling of energy with electron density, n e , is noted. This scaling suggests a runaway source term that scales roughly as n e / 1 . The results indicate that runaways are created throughout the discharges. An upper bound for X e due to magnetic fluctuations was found to be .0343 m 2 /s. This is an order of magnitude too low to explain the thermal transport in TEXT, implying that electrostatic fluctuations are important in thermal transport in TEXT

  3. Measurements of Silicon Detector Thermal Runaway

    CERN Document Server

    Heusch, C A; Moser, H G

    1999-01-01

    We measured thermal runaway properties of previously irradiated silicon detectors cooled by TPG bars. We simulated their expected behaviour to measure the energy gap in the detector material and to test the validity of various underlying assumptions.

  4. Runaway electrons in the SINP tokamak

    Indian Academy of Sciences (India)

    The runaway electrons have been studied in the start-up phase [12–14], as well as in the steady phase [15–17]. We have confined ourselves here to the initial rise phase of the discharge mainly because the runaway electrons find the initial low density (Т ) and large applied toroidal electric field ( М = Оloop 2 К), where К is ...

  5. Diffusion with Varying Drag; the Runaway Problem.

    Science.gov (United States)

    Rollins, David Kenneth

    We study the motion of electrons in an ionized plasma of electrons and ions in an external electric field. A probability distribution function describes the electron motion and is a solution of a Fokker-Planck equation. In zero field, the solution approaches an equilibrium Maxwellian. For arbitrarily small field, electrons overcome the diffusive effects and are freely accelerated by the field. This is the electron runaway phenomenon. We treat the electric field as a small perturbation. We consider various diffusion coefficients for the one dimensional problem and determine the runaway current as a function of the field strength. Diffusion coefficients, non-zero on a finite interval are examined. Some non-trivial cases of these can be solved exactly in terms of known special functions. The more realistic case where the diffusion coefficient decays with velocity are then considered. To determine the runaway current, the equivalent Schrodinger eigenvalue problem is analysed. The smallest eigenvalue is shown to be equal to the runaway current. Using asymptotic matching a solution can be constructed which is then used to evaluate the runaway current. The runaway current is exponentially small as a function of field strength. This method is used to extract results from the three dimensional problem.

  6. Diffusion with varying drag; the runaway problem

    International Nuclear Information System (INIS)

    Rollins, D.K.

    1986-01-01

    The motion of electrons in an ionized plasma of electrons and ions in an external electric field is studied. A probability distribution function describes the electron motion and is a solution of a Fokker-Planck equation. In zero field, the solution approaches an equilibrium Maxwellian. For arbitrarily small field, electrons overcome the diffusive effects and are freely accelerated by the field. This is the electron-runaway phenomenon. The electric field is treated as a small perturbation. Various diffusion coefficients are considered for the one dimensional problem, and the runaway current is determined as a function of the field strength. Diffusion coefficients, non-zero on a finite interval are examined. Some non-trivial cases of these can be solved exactly in terms of known special functions. The more realistic case where the diffusion coeffient decays with velocity are then considered. To determine the runaway current, the equivalent Schroedinger eigenvalue problem is analyzed. The smallest eigenvalue is shown to be equal to the runaway current. Using asymptotic matching, a solution can be constructed which is then used to evaluate the runaway current. The runaway current is exponentially small as a function of field strength. This method is used to extract results from the three dimensional problem

  7. Stellar formation

    CERN Document Server

    Reddish, V C

    1978-01-01

    Stellar Formation brings together knowledge about the formation of stars. In seeking to determine the conditions necessary for star formation, this book examines questions such as how, where, and why stars form, and at what rate and with what properties. This text also considers whether the formation of a star is an accident or an integral part of the physical properties of matter. This book consists of 13 chapters divided into two sections and begins with an overview of theories that explain star formation as well as the state of knowledge of star formation in comparison to stellar structure

  8. Runaway electron transport studies in the HL-1M tokamak

    International Nuclear Information System (INIS)

    Zheng Yongzhen; Qi Changwei; Ding Xuantong; Li Wenzhong

    2002-01-01

    The transport of runaway electrons in a hot plasma has been studied in four experiments, which provide the runaway diffusivity D r The first experiment obtained runaway electrons using a steady state approach for values of the runaway confinement time τ r , deduced from hard X-ray bremsstrahlung spectra. In the second experiment, diffusion has been interpreted in terms of the magnetic fluctuation, from which a electron thermal diffusivity can be deduced. Runaway electro diffusion coefficient is determined by intrinsic magnetic fluctuations, rather than electrostatic fluctuations because of the high energy involved. The results presented here demonstrate the efficiency of using runaway transport techniques for determining intrinsic magnetic fluctuations

  9. Stellar remnants

    CERN Document Server

    Kawaler, S D; Srinivasan, G

    1997-01-01

    This volume examines the internal structure, origin and evolution of white dwarfs, neutron stars and black holes, all objects at the final stage of stellar evolution. It covers topics such as: pulsation of white dwarfs; millisecond pulsars; and the dynamics around black holes.

  10. Limits on runaway growth of intermediate mass black holes from advanced LIGO

    Science.gov (United States)

    Kovetz, Ely D.; Cholis, Ilias; Kamionkowski, Marc; Silk, Joseph

    2018-06-01

    There is growing evidence that intermediate-mass black holes (IMBHs), defined here as having a mass in the range M =500 -105 M⊙ , are present in the dense centers of certain globular clusters (GCs). Gravitational waves from their mergers with other IMBHs or with stellar BHs in the cluster are mostly emitted in frequencies ≲10 Hz , which unfortunately is out of reach for current ground-based observatories such as advanced LIGO (aLIGO). Nevertheless, we show that aLIGO measurements can be used to efficiently probe one of the possible formation mechanisms of IMBHs in GCs, namely a runaway merger process of stellar seed BHs. In this case, aLIGO will be sensitive to the lower-mass rungs of the merger ladder, ranging from the seed BH mass to masses ≳50 - 300 M⊙ , where the background from standard mergers is expected to be very low. Assuming this generic IMBH formation scenario, we calculate the mass functions that correspond to the limiting cases of possible merger trees. Based on estimates for the number density of GCs and taking into account the instrumental sensitivity, we show that current observations do not effectively limit the occupation fraction focc of IMBHs formed by runaway mergers of stellar BHs in GCs. However, we find that if runaway mergers occur steadily throughout the lifetimes of GCs (as opposed to happening mainly early in their lifetimes), then a six-year run of aLIGO at design sensitivity will be able to probe down to focc≲3 % at a 99.9% confidence level, either finding evidence for this formation mechanism, or necessitating others if the fraction of GCs that harbor IMBHs is higher.

  11. Close stellar encounters in globular clusters

    International Nuclear Information System (INIS)

    Bailyn, C.D.

    1989-01-01

    Stellar encounters are expected to produce a variety of interesting objects in the cores of globular clusters, either through the formation of binaries by tidal capture, or direct collisions. Here, I describe several attempts to observe the products of stellar encounters. In particular, the use of color maps has demonstrated the existence of a color gradient in the core of M15, which seems to be caused by a population of faint blue objects concentrated towards the cluster center. (author)

  12. Simulation of tokamak runaway-electron events

    International Nuclear Information System (INIS)

    Bolt, H.; Miyahara, A.; Miyake, M.; Yamamoto, T.

    1987-08-01

    High energy runaway-electron events which can occur in tokamaks when the plasma hits the first wall are a critical issue for the materials selection of future devices. Runaway-electron events are simulated with an electron linear accelerator to better understand the observed runaway-electron damage to tokamak first wall materials and to consider the runaway-electron issue in further materials development and selection. The electron linear accelerator produces beam energies of 20 to 30 MeV at an integrated power input of up to 1.3 kW. Graphite, SiC + 2 % AlN, stainless steel, molybdenum and tungsten have been tested as bulk materials. To test the reliability of actively cooled systems under runaway-electron impact layer systems of graphite fixed to metal substrates have been tested. The irradiation resulted in damage to the metal compounds but left graphite and SiC + 2 % AlN without damage. Metal substrates of graphite - metal systems for actively cooled structures suffer severe damage unless thick graphite shielding is provided. (author)

  13. Acceleration of runaway electrons in solar flares

    Science.gov (United States)

    Moghaddam-Taaheri, E.; Goertz, C. K.

    1990-01-01

    The dc electric field acceleration of electrons out of a thermal plasma and the evolution of the runaway tail are studied numerically, using a relativistic quasi-linear code based on the Ritz-Galerkin method and finite elements. A small field-aligned electric field is turned on at a certain time. The resulting distribution function from the runaway process is used to calculate the synchrotron emission during the evolution of the runaway tail. It is found that, during the runaway tail formation, which lasts a few tens of seconds for typical solar flare conditions, the synchrotron emission level is low, almost ot the same order as the emission from the thermal plasma, at the high-frequency end of the spectrum. However, the emission is enhanced explosively in a few microseconds by several orders of magnitude at the time the runaway tail stops growing along the magnetic field and tends toward isotropy due to the pitch-angle scattering of the fast particles. Results indicate that, in order to account for the observed synchrotron emission spectrum of a typical solar flare, the electric field acceleration phase must be accompanied or preceded by a heating phase which yields an enhanced electron temperature of about 2-15 keV in the flare region if the electric field is 0.1-0.2 times the Dreicer field and cyclotron-to-plasma frequency ratios are of order 1-2.

  14. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  15. Stellarator physics

    International Nuclear Information System (INIS)

    1990-07-01

    This document consists of the proceedings of the Seventh International Workshop on Stellarators, held in Oak Ridge, Tennessee, USA, 10-14 April, 1989. The document consists of a summary of presentations, an overview of experimental results, and papers presented at the workshop on transport, impurities and divertors, diagnostics, ECH confinement experiments, equilibrium and stability studies, RF heating, confinement, magnetic configurations, and new experiments. Refs, figs and tabs

  16. Simulation study on dynamics of runaways in tokamaks

    International Nuclear Information System (INIS)

    Liu Jian; Qin Hong; Fisch, Nathaniel J.

    2014-01-01

    Electrons with high velocities can be accelerated to very high energies by a strong electric field to form runaway electrons. In tokamak, runaway electrons are produced in many different processes, including the acceleration from the high-energy tail of thermal distribution, through the runaway avalanche, during the rf wave heating and other non-Ohmic current drive, and even in the magnetic reconnection. This proceeding focus on different dynamical problems of runaway electrons in tokamaks. (author)

  17. Predictors of Social Network Composition among Homeless and Runaway Adolescents

    Science.gov (United States)

    Johnson, K.D.; Whitbeck, L.B.; Hoyt, D.R.

    2005-01-01

    Recent research on the social support networks of homeless and runaway youth suggest the social networks of runaway youth are made up largely of transient deviant peer relationships. This paper examined social network characteristics of 428 homeless and runaway adolescents from small-to moderate-sized cities in four Midwestern states. We…

  18. Disruption generated runaway electrons in TEXTOR and ITER

    NARCIS (Netherlands)

    R. Jaspers,; Cardozo, N. J. L.; Schüller, F. C.; Finken, K.H.; Grewe, T.; Mank, G.

    1996-01-01

    Runaway generation during a major disruption has been observed in TEXTOR. Measurements of the synchrotron radiation yielded number, energy and pitch angle of the runaways. A simple model, which assumes that the runaways take over the current density in the centre of the discharge, successfully

  19. Runaway electrons and magnetic island confinement

    International Nuclear Information System (INIS)

    Boozer, Allen H.

    2016-01-01

    The breakup of magnetic surfaces is a central feature of ITER planning for the avoidance of damage due to runaway electrons. Rapid thermal quenches, which lead to large accelerating voltages, are thought to be due to magnetic surface breakup. Impurity injection to avoid and to mitigate both halo and runaway electron currents utilizes massive gas injection or shattered pellets. The actual deposition is away from the plasma center, and the breakup of magnetic surfaces is thought to spread the effects of the impurities across the plasma cross section. The breakup of magnetic surfaces would prevent runaway electrons from reaching relativistic energies were it not for the persistence of non-intercepting flux tubes. These are tubes of magnetic field lines that do not intercept the walls. In simulations and in magnetic field models, non-intercepting flux tubes are found to persist near the magnetic axis and in the cores of magnetic islands even when a large scale magnetic surface breakup occurs. As long as a few magnetic surfaces reform before all of the non-intercepting flux tubes dissipate, energetic electrons confined and accelerated in these flux tubes can serve as the seed electrons for a transfer of the overall plasma current from thermal to relativistic carriers. The acceleration of electrons is particularly strong because of the sudden changes in the poloidal flux that naturally occur in a rapid magnetic relaxation. The physics of magnetic islands as non-intercepting flux tubes is studied. Expressions are derived for (1) the size of islands required to confine energetic runaway electrons, (2) the accelerating electric field in an island, (3) the increase or reduction in the size of an island by the runaway electron current, (4) the approximate magnitude of the runaway current in an island, and (5) the time scale for the evolution of an island.

  20. Runaway electrons and magnetic island confinement

    Energy Technology Data Exchange (ETDEWEB)

    Boozer, Allen H., E-mail: ahb17@columbia.edu [Columbia University, New York, New York 10027 (United States)

    2016-08-15

    The breakup of magnetic surfaces is a central feature of ITER planning for the avoidance of damage due to runaway electrons. Rapid thermal quenches, which lead to large accelerating voltages, are thought to be due to magnetic surface breakup. Impurity injection to avoid and to mitigate both halo and runaway electron currents utilizes massive gas injection or shattered pellets. The actual deposition is away from the plasma center, and the breakup of magnetic surfaces is thought to spread the effects of the impurities across the plasma cross section. The breakup of magnetic surfaces would prevent runaway electrons from reaching relativistic energies were it not for the persistence of non-intercepting flux tubes. These are tubes of magnetic field lines that do not intercept the walls. In simulations and in magnetic field models, non-intercepting flux tubes are found to persist near the magnetic axis and in the cores of magnetic islands even when a large scale magnetic surface breakup occurs. As long as a few magnetic surfaces reform before all of the non-intercepting flux tubes dissipate, energetic electrons confined and accelerated in these flux tubes can serve as the seed electrons for a transfer of the overall plasma current from thermal to relativistic carriers. The acceleration of electrons is particularly strong because of the sudden changes in the poloidal flux that naturally occur in a rapid magnetic relaxation. The physics of magnetic islands as non-intercepting flux tubes is studied. Expressions are derived for (1) the size of islands required to confine energetic runaway electrons, (2) the accelerating electric field in an island, (3) the increase or reduction in the size of an island by the runaway electron current, (4) the approximate magnitude of the runaway current in an island, and (5) the time scale for the evolution of an island.

  1. Astrospheres and Solar-like Stellar Winds

    Directory of Open Access Journals (Sweden)

    Wood Brian E.

    2004-07-01

    Full Text Available Stellar analogs for the solar wind have proven to be frustratingly difficult to detect directly. However, these stellar winds can be studied indirectly by observing the interaction regions carved out by the collisions between these winds and the interstellar medium (ISM. These interaction regions are called "astrospheres", analogous to the "heliosphere" surrounding the Sun. The heliosphere and astrospheres contain a population of hydrogen heated by charge exchange processes that can produce enough H I Ly alpha absorption to be detectable in UV spectra of nearby stars from the Hubble Space Telescope (HST. The amount of astrospheric absorption is a diagnostic for the strength of the stellar wind, so these observations have provided the first measurements of solar-like stellar winds. Results from these stellar wind studies and their implications for our understanding of the solar wind are reviewed here. Of particular interest are results concerning the past history of the solar wind and its impact on planetary atmospheres.

  2. Stellar evolution

    CERN Document Server

    Meadows, A J

    2013-01-01

    Stellar Evolution, Second Edition covers the significant advances in the understanding of birth, life, and death of stars.This book is divided into nine chapters and begins with a description of the characteristics of stars according to their brightness, distance, size, mass, age, and chemical composition. The next chapters deal with the families, structure, and birth of stars. These topics are followed by discussions of the chemical composition and the evolution of main-sequence stars. A chapter focuses on the unique features of the sun as a star, including its evolution, magnetic fields, act

  3. Localized thermonuclear runaways and volcanoes on degenerate dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Shara, M.M.

    1982-10-15

    Practically all studies to date of thermonuclear runaways on degenerate dwarf stars in binary systems have considered only spherically symmetric eruptions. We emphasize that even slightly non-spherically symmetric accretion leads to transverse temperature gradients in the dwarfs' accreted envelopes. Over a rather broad range of parameter space, thermalization time scales in accreted envelopes are much longer than thermonuclear runaway time scales. Thus localized thermonuclear runaways (i.e., runaways much smaller than the host degenerate star) rather than spherically symmetric global eruptions are likely to occur on many degenerate dwarfs. Localized runaways are more likely to occur on more massive and/or hotter dwarfs.

  4. The influence of plasma motion on disruption generated runaway electrons

    International Nuclear Information System (INIS)

    Russo, A.J.

    1991-01-01

    One of the possible consequences of disruptions is the generation of runaway electrons which can impact plasma facing components and cause damage due to high local energy deposition. This problem becomes more serious as the machine size and plasma current increases. Since large size and high currents are characteristics of proposed future machines, control of runaway generation is an important design consideration. A lumped circuit model for disruption runaway electron generation indicates that control circuitry on strongly influence runaway behavior. A comparison of disruption data from several shots on JET and D3-D with model results, demonstrate the effects of plasma motion on runaway number density and energy. 6 refs., 12 figs

  5. Transport of runaway and thermal electrons due to magnetic microturbulence

    International Nuclear Information System (INIS)

    Mynick, H.E.; Strachan, J.D.

    1981-01-01

    The ratio of the runaway electron confinement to thermal electron energy confinement is derived for tokamaks where both processes are determined by free streaming along stochastic magnetic field lines. The runaway electron confinement is enhanced at high runaway electron energies due to phase averaging over the magnetic perturbations when the runaway electron drift surfaces are displaced from the magnetic surfaces. Comparison with experimental data from LT-3, Ormak, PLT, ST, and TM-3 indicates that magnetic stochasticity may explain the relative transport rates of runaways and thermal electron energy

  6. On the avalanche generation of runaway electrons during tokamak disruptions

    International Nuclear Information System (INIS)

    Martín-Solís, J. R.; Loarte, A.; Lehnen, M.

    2015-01-01

    A simple zero dimensional model for a tokamak disruption is developed to evaluate the avalanche multiplication of a runaway primary seed during the current quench phase of a fast disruptive event. Analytical expressions for the plateau runaway current, the energy of the runaway beam, and the runaway energy distribution function are obtained allowing the identification of the parameters dominating the formation of the runaway current during disruptions. The effect of the electromagnetic coupling to the vessel and the penetration of the external magnetic energy during the disruption current quench as well as of the collisional dissipation of the runaway current at high densities are investigated. Current profile shape effects during the formation of the runaway beam are also addressed by means of an upgraded one-dimensional model

  7. An IRAS/ISSA Survey of Bow Shocks Around Runaway Stars

    Science.gov (United States)

    Buren, David Van

    1995-01-01

    We searched for bow shock-like objects like those known around Oph and a Cam near the positions of 183 runaway stars. Based primarily on the presence and morphology of excess 60 micron emission we identify 56 new candidate bow shocks, for which we determine photometric and morphological parameters. Previously only a dozen or so were known. Well resolved structures are present around 25 stars. A comparison of the distribution of symmetry axes of the infrared nebulae with that of their proper motion vectors indicates that these two directions are very significantly aligned. The observed alignment strongly suggests that the structures we see arise from the interaction of stellar winds with the interstellar medium, justifying the identification of these far-infrared objects as stellar wind bow shocks.

  8. Runaway electron beam in atmospheric pressure discharges

    International Nuclear Information System (INIS)

    Oreshkin, E V; Barengolts, S A; Chaikovsky, S A; Oreshkin, V I

    2015-01-01

    A numerical simulation was performed to study the formation of a runaway electron (RAE) beam from an individual emission zone in atmospheric pressure air discharges with a highly overvolted interelectrode gap. It is shown that the formation of a RAE beam in discharges at high overvoltages is much contributed by avalanche processes. (paper)

  9. Runaway breakdown and electrical discharges in thunderstorms

    Science.gov (United States)

    Milikh, Gennady; Roussel-Dupré, Robert

    2010-12-01

    This review considers the precise role played by runaway breakdown (RB) in the initiation and development of lightning discharges. RB remains a fundamental research topic under intense investigation. The question of how lightning is initiated and subsequently evolves in the thunderstorm environment rests in part on a fundamental understanding of RB and cosmic rays and the potential coupling to thermal runaway (as a seed to RB) and conventional breakdown (as a source of thermal runaways). In this paper, we describe the basic mechanism of RB and the conditions required to initiate an observable avalanche. Feedback processes that fundamentally enhance RB are discussed, as are both conventional breakdown and thermal runaway. Observations that provide clear evidence for the presence of energetic particles in thunderstorms/lightning include γ-ray and X-ray flux intensifications over thunderstorms, γ-ray and X-ray bursts in conjunction with stepped leaders, terrestrial γ-ray flashes, and neutron production by lightning. Intense radio impulses termed narrow bipolar pulses (or NBPs) provide indirect evidence for RB particularly when measured in association with cosmic ray showers. Our present understanding of these phenomena and their enduring enigmatic character are touched upon briefly.

  10. Runaway electrons in the TRIAM-1 tokamak

    International Nuclear Information System (INIS)

    Satoh, Takemichi; Nakamura, Kazuo; Toi, Kazuo; Nakamura, Yukio; Hiraki, Naoji

    1981-01-01

    Pulse height analysis of soft X-rays is carried out in the TRIAM-1 tokamak. The electron temperatures determined from the soft X-ray spectrum agree well with those from Thomson scattering. It is observed that low-energy runaway (slideaway) electrons appear in the high-current-density discharges. (author)

  11. Runaway electrons in the TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, T; Nakamura, K; Toi, K; Nakamura, Y; Hiraki, N [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-09-01

    Pulse height analysis of soft X-rays is carried out in the TRIAM-1 tokamak. The electron temperatures determined from the soft X-ray spectrum agree well with those from Thomson scattering. It is observed that low-energy runaway (slideaway) electrons appear in the high-current-density discharges.

  12. TYC 3159-6-1: a runaway blue supergiant

    Science.gov (United States)

    Gvaramadze, V. V.; Miroshnichenko, A. S.; Castro, N.; Langer, N.; Zharikov, S. V.

    2014-01-01

    We report the results of optical spectroscopy of a candidate evolved massive star in the Cygnus-X region, TYC 3159-6-1, revealed via detection of its curious circumstellar nebula in archival data of the Spitzer Space Telescope. We classify TYC 3159-6-1 as an O9.5-O9.7 Ib star and derive its fundamental parameters by using the stellar atmosphere code FASTWIND. The He and CNO abundances in the photosphere of TYC 3159-6-1 are consistent with the solar abundances, suggesting that the star only recently evolved off the main sequence. Proper motion and radial velocity measurements for TYC 3159-6-1 show that it is a runaway star. We propose that Dolidze 7 is its parent cluster. We discuss the origin of the nebula around TYC 3159-6-1 and suggest that it might be produced in several successive episodes of enhanced mass-loss rate (outbursts) caused by rotation of the star near the critical Ω limit.

  13. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Rasouli, C.; Pourshahab, B.; Rasouli, H. [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of); Hosseini Pooya, S. M.; Orouji, T. [Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2014-05-15

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points – three TLDs per point – to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  14. Stellar astrophysics

    International Nuclear Information System (INIS)

    1988-01-01

    Enhanced mass loss occurs at critical stages in the evolution of stars over a wide range of stellar mass. Observationally, these stages are difficult to identify because of their short duration and because the star is often obscured by dust which condenses in the ejecta. A study of a G-type star, of which only the outer envelope was directly visible, was undertaken by the South African Astronomical Observatory (SAAO). The star itself was obscured by dust clouds and its light was only feebly seen by reflection from some of these clouds. Other studies of the galaxy undertaken by the SAAO include observations of the following: the extreme carbon star IRAS 15194-5115; RV Tauri and T Tauri stars; pre-main sequence stars; the properties of circumstellar dust; rotational modulation and flares on RS CVn and BY Dra stars; heavy-element stars; hydrogen-deficient stars; the open cluster NGC6192; stars in Omega Centauri, and lunar occulations of stars. Simultaneous x-ray, radio and optical data of the flare star YZ CMi were also obtained. 1 fig

  15. Radial transport of high-energy runaway electrons in ORMAK

    International Nuclear Information System (INIS)

    Zweben, S.J.; Swain, D.W.; Fleischmann, H.H.

    1978-01-01

    The transport of high-energy runaway electrons near the outside of a low-density ORMAK discharge is investigated by measuring the flux of runaways to the outer limiter during and after an inward shift of the plasma column. The experimental results are interpreted through a runaway confinement model which includes both the classical outward displacement of the runaway orbit with increasing energy and an additional runaway spatial diffusion coefficient which simulates an unspecified source of anomalous transport. Diffusion coefficients in the range D approximately equal to 10 2 -10 4 cms -1 are found under various discharge conditions indicating a significant non-collisional runaway transport near the outside of the discharge, particularly in the presence of MHD instability. (author)

  16. Theoretical and experimental studies of runaway electrons in the TEXTOR tokamak

    International Nuclear Information System (INIS)

    Abdullaev, S.S.; Finken, K.H.; Wongrach, K.; Willi, O.

    2016-01-01

    Theoretical and experimental studies of runaway electrons in tokamaks and their mitigations, particularly the recent studies performed by a group of the Heinrich-Heine University Duesseldorf in collaboration with the Institute of Energy and Climate Research of the Research Centre (Forschungszentrum) of Juelich are reviewed. The main topics focus on (i) runaway generation mechanisms, (ii) runaway orbits in equilibrium plasma, (iii) transport in stochastic magnetic fields, (iv) diagnostics and investigations of transport of runaway electron and their losses in low density discharges (v) runaway electrons during plasma disruptions, and (vi) runaway mitigation methods. The development of runaway diagnostics enables the measurement of runaway electrons in both the centre and edge of the plasma. The diagnostics provide an absolute runaway energy resolved measurement, the radial decay length of runaway electrons and, the structure and dynamics of runaway electron beams. The new mechanism of runaway electron formation during plasma disruptions is discussed.

  17. Theoretical and experimental studies of runaway electrons in the TEXTOR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Abdullaev, S.S.; Finken, K.H.; Wongrach, K.; Willi, O.

    2016-07-01

    Theoretical and experimental studies of runaway electrons in tokamaks and their mitigations, particularly the recent studies performed by a group of the Heinrich-Heine University Duesseldorf in collaboration with the Institute of Energy and Climate Research of the Research Centre (Forschungszentrum) of Juelich are reviewed. The main topics focus on (i) runaway generation mechanisms, (ii) runaway orbits in equilibrium plasma, (iii) transport in stochastic magnetic fields, (iv) diagnostics and investigations of transport of runaway electron and their losses in low density discharges (v) runaway electrons during plasma disruptions, and (vi) runaway mitigation methods. The development of runaway diagnostics enables the measurement of runaway electrons in both the centre and edge of the plasma. The diagnostics provide an absolute runaway energy resolved measurement, the radial decay length of runaway electrons and, the structure and dynamics of runaway electron beams. The new mechanism of runaway electron formation during plasma disruptions is discussed.

  18. Runaway-ripple interaction in Tokamaks

    International Nuclear Information System (INIS)

    Laurent, L.; Rax, J.M.

    1989-08-01

    Two approaches of the interaction between runaway electrons and the ripple field, in tokamaks, are discussed. The first approach considers the resonance effect as an intense cyclotron heating of the electrons, by the ripple field, in the guiding center frame of the fast particles. In the second approach, an Hamiltonian formalism is used. A criterion for the onset of chaotic behavior and the results are given. A new universal instability of the runaway population in tokamak configuration is found. When combined with cyclotron losses one of its major consequence is to act as an effective slowing down mechanism preventing the free fall acceleration toward the synchrotron limit. This configuration allows the explanation of some experimental results of Tore Supra and Textor

  19. Disruption generated secondary runaway electrons in present day tokamaks

    International Nuclear Information System (INIS)

    Pankratov, I.M.; Jaspers, R.

    2000-01-01

    An analysis of the runaway electron secondary generation during disruptions in present day tokamaks (JET, JT-60U, TEXTOR) was made. It was shown that even for tokamaks with the plasma current I approx 100 kA the secondary generation may dominate the runaway production during disruptions. In the same time in tokamaks with I approx 1 MA the runaway electron secondary generation during disruptions may be suppressed

  20. Runaway-electron-materials interaction studies

    International Nuclear Information System (INIS)

    Bolt, H.; Miyahara, A.

    1990-03-01

    During the operation of magnetic fusion devices it has been frequently observed that runaway electrons can cause severe damage to plasma facing components. The energy of the runaway electrons could possibly reach several 100 MeV in a next generation device with an energy content in the plasma in the order of 100 MJ. In this study effects of high energy electron - materials interaction were determined by laboratory experiments using particle beam facilities, i.e. the Electron Linear Accelerator of the Institute of Scientific and Industrial Research of Osaka University and the 10 MW Neutral Beam Injection Test Stand of the National Institute for Fusion Science. The experiments and further analyses lead to a first assessment of the damage thresholds of plasma facing materials and components under runaway electron impact. It was found that metals (stainless steel, molybdenum, tungsten) showed grain growth, crack formation and/or melting already below the threshold for crack initiation on graphite (14-33 MJ/m 2 ). Strong erosion of carbon materials would occur above 100 MJ/m 2 . Damage to metal coolant channels can occur already below an energy deposition of 100 MJ/m 2 . The energy deposited in the metal coolant channels depends on the thickness of the plasma facing carbon material D, with the shielding efficiency S of carbon approximately as S∼D 1.15 . (author) 304 refs. 12 tabs. 59 figs

  1. Numerical analysis on pump turbine runaway points

    International Nuclear Information System (INIS)

    Guo, L; Liu, J T; Wang, L Q; Jiao, L; Li, Z F

    2012-01-01

    To research the character of pump turbine runaway points with different guide vane opening, a hydraulic model was established based on a pumped storage power station. The RNG k-ε model and SMPLEC algorithms was used to simulate the internal flow fields. The result of the simulation was compared with the test data and good correspondence was got between experimental data and CFD result. Based on this model, internal flow analysis was carried out. The result show that when the pump turbine ran at the runway speed, lots of vortexes appeared in the flow passage of the runner. These vortexes could always be observed even if the guide vane opening changes. That is an important way of energy loss in the runaway condition. Pressure on two sides of the runner blades were almost the same. So the runner power is very low. High speed induced large centrifugal force and the small guide vane opening gave the water velocity a large tangential component, then an obvious water ring could be observed between the runner blades and guide vanes in small guide vane opening condition. That ring disappeared when the opening bigger than 20°. These conclusions can provide a theory basis for the analysis and simulation of the pump turbine runaway points.

  2. MHD stability of runaway electron discharge in tokamaks

    International Nuclear Information System (INIS)

    Wakatani, M.

    1978-04-01

    A runaway current concentrating in the central region has stabilizing effects on kink and tearing instabilities on the basis of a model in which the runaway current is assumed rigid. The Kruskal-Shafranov limit (iota(a) = iota sub(σ(a) + iota sub( b)(a) <= 1) disappears for iota sub(σ(a) <= 0.2 in the case of parabolic profiles of both the runaway current and the conduction current. Here iota sub(σ)(a) is a rotational transform due to the conduction current and iota sub( b)(a) is a rotational transform due to the runaway current. (auth.)

  3. Equilibrium, confinement and stability of runaway electrons in tokamaks

    International Nuclear Information System (INIS)

    Spong, D.A.

    1976-03-01

    Some of the ramifications of the runaway population in tokamak experiments are investigated. Consideration is given both to the normal operating regime of tokamaks where only a small fraction of high energy runaways are present and to the strong runaway regime where runaways are thought to carry a significant portion of the toroidal current. In particular, the areas to be examined are the modeling of strong runaway discharges, single particle orbit characteristics of runaways, macroscopic beam-plasma equilibria, and stability against kink modes. A simple one-dimensional, time-dependent model has been constructed in relation to strong runaway discharges. Single particle orbits are analyzed in relation to both the strong runaway regime and the weak regime. The effects of vector E x vector B drifts are first considered in strong runaway discharges and are found to lead to a slow inward shrinkage of the beam. Macroscopic beam-plasma equilibria are treated assuming a pressureless relativistic beam with inertia and using an ideal MHD approximation for the plasma. The stability of a toroidal relativistic beam against kink perturbations is examined using several models

  4. Cyclotron radiation from thermal and non-thermal electrons in the WEGA-stellarator

    International Nuclear Information System (INIS)

    Piekaar, H.W.; Rutgers, W.R.

    1980-11-01

    Electron cyclotron radiation measurements on the WEGA-stellarator are reported. Emission spectra around 2ωsub(ce) and 3ωsub(ce) were measured with a far-infra-red spectrometer and InSb detectors. When the plasma loop voltage is high, runaway electrons give rise to intense broad-band emission. Runaway particles can be removed by increasing the plasma density. For low loop voltage discharges the electron temperature profile was deduced from thermal emission around 2ωsub(ce). In spite of the low E-field, runaway particles are still created and pitch-angle scattered because ωsub(pe)/ωsub(ce) approximately 1. From non-thermal emission below 2ωsub(ce) and 3ωsub(ce) the energy and number of particles could be calculated, and was found to be in agreement with existing theories

  5. The Contribution of Stellar Winds to Cosmic Ray Production

    Science.gov (United States)

    Seo, Jeongbhin; Kang, Hyesung; Ryu, Dongsu

    2018-04-01

    Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The wind mechanical energy of a massive star deposited to the interstellar medium can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity by all massive stars in the Galaxy is about Lw ≈ 1.1×1041 ergs, which is about 1/4 of the power of supernova explosions, LSN ≈ 4.8×1041 ergs. If we assume that ˜1-1% of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds are expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

  6. Stellar Metamorphosis:

    Science.gov (United States)

    2002-01-01

    [TOP LEFT AND RIGHT] The Hubble Space Telescope's Wide Field and Planetary Camera 2 has captured images of the birth of two planetary nebulae as they emerge from wrappings of gas and dust, like butterflies breaking out of their cocoons. These images highlight a fleeting phase in the stellar burnout process, occurring just before dying stars are transformed into planetary nebulae. The left-hand image is the Cotton Candy nebula, IRAS 17150-3224; the right-hand image, the Silkworm nebula, IRAS 17441-2411. Called proto-planetary nebulae, these dying stars have been caught in a transition phase between a red giant and a planetary nebula. This phase is only about 1,000 years long, very short in comparison to the 1 billion-year lifetime of a star. These images provide the earliest snapshots of the transition process. Studying images of proto-planetary nebulae is important to understanding the process of star death. A star begins to die when it has exhausted its thermonuclear fuel - hydrogen and helium. The star then becomes bright and cool (red giant phase) and swells to several tens of times its normal size. It begins puffing thin shells of gas off into space. These shells become the star's cocoon. In the Hubble images, the shells are the concentric rings seen around each nebula. But the images also reveal the nebulae breaking out from those shells. The butterfly-like wings of gas and dust are a common shape of planetary nebulae. Such butterfly shapes are created by the 'interacting winds' process, in which a more recent 'fast wind' - material propelled by radiation from the hot central star - punches a hole in the cocoon, allowing the nebula to emerge. (This 'interacting wind' theory was first proposed by Dr. Sun Kwok to explain the origin of planetary nebulae, and has been subsequently proven successful in explaining their shapes.) The nebulae are being illuminated by light from the invisible central star, which is then reflected toward us. We are viewing the nebulae

  7. A backward Monte Carlo method for efficient computation of runaway probabilities in runaway electron simulation

    Science.gov (United States)

    Zhang, Guannan; Del-Castillo-Negrete, Diego

    2017-10-01

    Kinetic descriptions of RE are usually based on the bounced-averaged Fokker-Planck model that determines the PDFs of RE. Despite of the simplification involved, the Fokker-Planck equation can rarely be solved analytically and direct numerical approaches (e.g., continuum and particle-based Monte Carlo (MC)) can be time consuming specially in the computation of asymptotic-type observable including the runaway probability, the slowing-down and runaway mean times, and the energy limit probability. Here we present a novel backward MC approach to these problems based on backward stochastic differential equations (BSDEs). The BSDE model can simultaneously describe the PDF of RE and the runaway probabilities by means of the well-known Feynman-Kac theory. The key ingredient of the backward MC algorithm is to place all the particles in a runaway state and simulate them backward from the terminal time to the initial time. As such, our approach can provide much faster convergence than the brute-force MC methods, which can significantly reduce the number of particles required to achieve a prescribed accuracy. Moreover, our algorithm can be parallelized as easy as the direct MC code, which paves the way for conducting large-scale RE simulation. This work is supported by DOE FES and ASCR under the Contract Numbers ERKJ320 and ERAT377.

  8. Predictors of Trauma-Related Symptoms among Runaway Adolescents

    Science.gov (United States)

    McCarthy, Michael D.; Thompson, Sanna J.

    2010-01-01

    Little is known about trauma-related symptoms among runaway adolescents. Precocious departure from familial homes often exposes youth to traumatic victimization. This study examined the extent to which runaway adolescents present trauma symptomotology and assessed factors that predict trauma symptoms. Participants (N = 350) were 12-18 years of age…

  9. Understanding and Preventing Runaway Behavior: Indicators and Strategies for Teachers

    Science.gov (United States)

    Rafferty, Lisa A.; Raimondi, Sharon

    2009-01-01

    Runaway behavior is a national epidemic that affects many school-aged youths. Although there are no definitive numbers, it has been estimated that between 1.3 and 2.8 million youths run away each year, and youths with disabilities are more at risk for engaging in runaway behavior than their nondisabled peers. Considering the high number of youths…

  10. Study of runaway current generation following disruptions in KSTAR

    International Nuclear Information System (INIS)

    Chen, Z Y; Kim, W C; Yu, Y W; England, A C; Yoo, J W; Hahn, S H; Yoon, S W; Lee, K D; Oh, Y K; Kwak, J G; Kwon, M

    2013-01-01

    The high fraction of runaway current conversion following disruptions has an important effect on the first wall for next-generation tokamaks. Because of the potentially severe consequences of a large full current runaway beam on the first wall in an unmitigated disruption, runaway suppression is given a high priority. The behavior of runaway currents both in spontaneous disruptions and in D 2 massive gas injection (MGI) shutdown experiments is investigated in the KSTAR tokamak. The experiments in KSTAR show that the toroidal magnetic field threshold, B T >2 T, for runaway generation is not absolute. A high fraction of runaway current conversion following spontaneous disruptions is observed at a much lower toroidal magnetic field of B T = 1.3 T. A dedicated fast valve for high-pressure gas injection with 39.7 bar is developed for the study of disruptions. A study of runaway current parameters shows that the conversion efficiency of pre-disruptive plasma currents into runaway current can reach over 80% both in spontaneous disruptions and in D 2 MGI shutdown experiments in KSTAR. (paper)

  11. Experimental Investigation of Runaway Electron Generation in Textor

    NARCIS (Netherlands)

    R. Jaspers,; Finken, K.H.; Mank, G.; Hoenen, F.; Boedo, J. A.; Cardozo, N. J. L.; Schüller, F. C.

    1993-01-01

    An experimental study of the generation of runaway electrons in TEXTOR has been performed. From the infrared synchrotron radiation emitted by relativistic electrons, the number of runaway electrons can be obtained as a function of time. In low density discharges (n(e)BAR < 1 X 10(19) m-3)

  12. Ecologically Based Family Therapy Outcome with Substance Abusing Runaway Adolescents

    Science.gov (United States)

    Slesnick, N.; Prestopnik, J.L.

    2005-01-01

    Runaway youth report a broader range and higher severity of substance-related, mental health and family problems relative to non-runaway youth. Most studies to date have collected self-report data on the family and social history; virtually no research has examined treatment effectiveness with this population. This study is a treatment development…

  13. Runaway greenhouse atmospheres: Applications to Earth and Venus

    Science.gov (United States)

    Kasting, James F.

    1991-01-01

    Runaway greenhouse atmospheres are discussed from a theoretical standpoint and with respect to various practical situation in which they might occur. The following subject areas are covered: (1) runaway greenhouse atmospheres; (2) moist greenhouse atmospheres; (3) loss of water from Venus; (4) steam atmosphere during accretion; and (5) the continuously habitable zone.

  14. Runaway greenhouse atmospheres: Applications to Earth and Venus

    International Nuclear Information System (INIS)

    Kasting, J.F.

    1991-01-01

    Runaway greenhouse atmospheres are discussed from a theoretical standpoint and with respect to various practical situation in which they might occur. The following subject areas are covered: (1) runaway greenhouse atmospheres; (2) moist greenhouse atmospheres; (3) loss of water from Venus; (4) steam atmosphere during accretion; and (5) the continuously habitable zone

  15. Thermal effects of runaway electrons in an armoured divertor

    International Nuclear Information System (INIS)

    Stad, R.C.L. van der.

    1993-12-01

    This report describes the results of a numerical thermal analysis of the heat deposition of runaway electrons accompanying plasma disruptions in a armoured divertor. The divertor concepts studied are carbon on molybdenum and beryllium on copper. The conclusion is that the runaway electrons can cause melting of the armour as well as melting of the structure and can damage the divertor severely. (orig.)

  16. On the origin of high-velocity runaway stars

    NARCIS (Netherlands)

    Gvaramadze, V.V.; Gualandris, A.; Portegies Zwart, S.

    2009-01-01

    We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary 50-100 M-circle dot star or a more massive one, formed through runaway mergers of ordinary

  17. Simulation of long-term dynamic behavior of runaway electrons

    International Nuclear Information System (INIS)

    Wang Yulei; Liu Jian; Zhang Ruili; He Yang

    2015-01-01

    The secular dynamics of runaway electrons in Tokamak electromagnetic field is studied. The radiation effect is added into a relativistic volume-preserving algorithm to gain long-term stability of calculation. The results shows that the method we used is able to reveal the behavior of a runaway electron in configuration space. (author)

  18. An Impact Triggered Runaway Greenhouse on Mars

    Science.gov (United States)

    Segura, T. L.; McKay, C. P.; Toon, O. B.

    2004-01-01

    When a planet is in radiative equilibrium, the incoming solar flux balances the outgoing longwave flux. If something were to perturb the system slightly, say the incoming solar flux increased, the planet would respond by radiating at a higher surface temperature. Since any radiation that comes in must go out, if the incoming is increased, the outgoing must also increase, and this increase manifests itself as a warmer equilibrium temperature. The increase in solar flux would correspond to an increase in temperature, which would increase the amount of water vapor in the atmosphere due to increased evaporation. Since water vapor is a greenhouse gas, it would absorb more radiation in the atmosphere leading to a yet warmer equilibrium temperature. The planet would reach radiative equilibrium at this new temperature. There exists a point, however, past which this positive feedback leads to a "runaway" situation. In this case, the planet does not simply evaporate a little more water and eventually come to a slightly higher equilibrium temperature. Instead, the planet keeps evaporating more and more water until all of the planet's available liquid and solid water is in the atmosphere. The reason for this is generally understood. If the planet's temperature increases, evaporation of water increases, and the absorption of radiation increases. This increases the temperature and the feedback continues until all water is in the atmosphere. The resulting equilibrium temperature is very high, much higher than the equilibrium temperature of a point with slightly lower solar flux. One can picture that as solar flux increases, planetary temperature also increases until the runaway point where temperature suddenly "jumps" to a higher value, in response to all the available water now residing in the atmosphere. This new equilibrium is called a "runaway greenhouse" and it has been theorized that this is what happened to the planet Venus, where the surface temperature is more than 700 K

  19. Numerical simulation of runaway electrons: 3-D effects on synchrotron radiation and impurity-based runaway current dissipation

    Science.gov (United States)

    del-Castillo-Negrete, D.; Carbajal, L.; Spong, D.; Izzo, V.

    2018-05-01

    Numerical simulations of runaway electrons (REs) with a particular emphasis on orbit dependent effects in 3-D magnetic fields are presented. The simulations were performed using the recently developed Kinetic Orbit Runaway electron Code (KORC) that computes the full-orbit relativistic dynamics in prescribed electric and magnetic fields including radiation damping and collisions. The two main problems of interest are synchrotron radiation and impurity-based RE dissipation. Synchrotron radiation is studied in axisymmetric fields and in 3-D magnetic configurations exhibiting magnetic islands and stochasticity. For passing particles in axisymmetric fields, neglecting orbit effects might underestimate or overestimate the total radiation power depending on the direction of the radial shift of the drift orbits. For trapped particles, the spatial distribution of synchrotron radiation exhibits localized "hot" spots at the tips of the banana orbits. In general, the radiation power per particle for trapped particles is higher than the power emitted by passing particles. The spatial distribution of synchrotron radiation in stochastic magnetic fields, obtained using the MHD code NIMROD, is strongly influenced by the presence of magnetic islands. 3-D magnetic fields also introduce a toroidal dependence on the synchrotron spectra, and neglecting orbit effects underestimates the total radiation power. In the presence of magnetic islands, the radiation damping of trapped particles is larger than the radiation damping of passing particles. Results modeling synchrotron emission by RE in DIII-D quiescent plasmas are also presented. The computation uses EFIT reconstructed magnetic fields and RE energy distributions fitted to the experimental measurements. Qualitative agreement is observed between the numerical simulations and the experiments for simplified RE pitch angle distributions. However, it is noted that to achieve quantitative agreement, it is necessary to use pitch angle

  20. Runaway dilaton and equivalence principle violations

    CERN Document Server

    Damour, Thibault Marie Alban Guillaume; Veneziano, Gabriele; Damour, Thibault; Piazza, Federico; Veneziano, Gabriele

    2002-01-01

    In a recently proposed scenario, where the dilaton decouples while cosmologically attracted towards infinite bare string coupling, its residual interactions can be related to the amplitude of density fluctuations generated during inflation, and are large enough to be detectable through a modest improvement on present tests of free-fall universality. Provided it has significant couplings to either dark matter or dark energy, a runaway dilaton can also induce time-variations of the natural "constants" within the reach of near-future experiments.

  1. Advanced stellarator power plants

    International Nuclear Information System (INIS)

    Miller, R.L.

    1994-01-01

    The stellarator is a class of helical/toroidal magnetic fusion devices. Recent international progress in stellarator power plant conceptual design is reviewed and comparisons in the areas of physics, engineering, and economics are made with recent tokamak design studies

  2. Alfvénic instabilities driven by runaways in fusion plasmas

    International Nuclear Information System (INIS)

    Fülöp, T.; Newton, S.

    2014-01-01

    Runaway particles can be produced in plasmas with large electric fields. Here, we address the possibility that such runaway ions and electrons excite Alfvénic instabilities. The magnetic perturbation induced by these modes can enhance the loss of runaways. This may have important implications for the runaway electron beam formation in tokamak disruptions

  3. Thermal Runaways in LHC Interconnections: Experiments

    CERN Document Server

    Willering, G P; Bottura, L; Scheuerlein, C; Verweij, A P

    2011-01-01

    The incident in the LHC in September 2008 occurred in an interconnection between two magnets of the 13 kA dipole circuit. This event was traced to a defect in one of the soldered joints between two superconducting cables stabilized by a copper busbar. Further investigation revealed defective joints of other types. A combination of (1) a poor contact between the superconducting cable and the copper stabilizer and (2) an electrical discontinuity in the stabilizer at the level of the connection can lead to an unprotected quench of the busbar. Once the heating power in the unprotected superconducting cable exceeds the heat removal capacity a thermal run-away occurs, resulting in a fast melt-down of the non-stabilized cable. We have performed a thorough investigation of the conditions upon which a thermal run-away in the defect can occur. To this aim, we have prepared heavily instrumented samples with well-defined and controlled defects. In this paper we describe the experiment, and the analysis of the data, and w...

  4. Measurements of the runaway electron energy during disruptions in the tokamak TEXTOR

    International Nuclear Information System (INIS)

    Forster, M.; Finken, K. H.; Willi, O.; Lehnen, M.; Xu, Y.

    2012-01-01

    Calorimetric measurements of the total runaway electron energy are carried out using a reciprocating probe during induced TEXTOR disruptions. A comparison with the energy inferred from runaway energy spectra, which are measured with a scintillator probe, is used as an independent check of the results. A typical runaway current of 100 kA at TEXTOR contains 30 to 35 kJ of runaway energy. The dependencies of the runaway energy on the runaway current, the radial probe position, the toroidal magnetic field and the predisruptive plasma current are studied. The conversion efficiency of the magnetic plasma energy into runaway energy is calculated to be up to 26%.

  5. One-Dimensional Modelling of Marine Current Turbine Runaway Behaviour

    Directory of Open Access Journals (Sweden)

    Staffan Lundin

    2016-04-01

    Full Text Available If a turbine loses its electrical load, it will rotate freely and increase speed, eventually achieving that rotational speed which produces zero net torque. This is known as a runaway situation. Unlike many other types of turbine, a marine current turbine will typically overshoot the final runaway speed before slowing down and settling at the runaway speed. Since the hydrodynamic forces acting on the turbine are dependent on rotational speed and acceleration, turbine behaviour during runaway becomes important for load analyses during turbine design. In this article, we consider analytical and numerical models of marine current turbine runaway behaviour in one dimension. The analytical model is found not to capture the overshoot phenomenon, while still providing useful estimates of acceleration at the onset of runaway. The numerical model incorporates turbine wake build-up and predicts a rotational speed overshoot. The predictions of the models are compared against measurements of runaway of a marine current turbine. The models are also used to recreate previously-published results for a tidal turbine and applied to a wind turbine. It is found that both models provide reasonable estimates of maximum accelerations. The numerical model is found to capture the speed overshoot well.

  6. Study of runaway electron generation during major disruptions in JET

    International Nuclear Information System (INIS)

    Plyusnin, V.V.; Riccardo, V.; Jaspers, R.; Alper, B.; Kiptily, V.G.; Mlynar, J.; Popovichev, S.; Luna, E. de La; Andersson, F.

    2006-01-01

    Extensive analysis of disruptions in JET has helped advance the understanding of trends of disruption-generated runaway electrons. Tomographic reconstruction of the soft x-ray emission has made possible a detailed observation of the magnetic flux geometry evolution during disruptions. With the aid of soft and hard x-ray diagnostics runaway electrons have been detected at the very beginning of disruptions. A study of runaway electron parameters has shown that an approximate upper bound for the conversion efficiency of pre-disruptive plasma currents into runaways is about 60% over a wide range of plasma currents in JET. Runaway generation has been simulated with a test particle model in order to verify the results of experimental data analysis and to obtain the background for extrapolation of the existing results onto larger devices such as ITER. It was found that close agreement between the modelling results and experimental data could be achieved if in the calculations the post-disruption plasma electron temperature was assumed equal to 10 eV and if the plasma column geometry evolution is taken into account in calculations. The experimental trends and numerical simulations show that runaway electrons are a critical issue for ITER and, therefore, the development of mitigation methods, which suppress runaway generation, is an essential task

  7. Final phases of stellar evolution and the supernova phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Gallino, R [Torino, Universita, Turin, Italy; Masani, A [CNR, Laboratorio di Cosmo-geofisica, Turin, Italy

    1977-12-01

    Various theoretical aspects of the final stages of stellar evolution are reviewed in the framework of gravitational collapse and thermonuclear reactions (C-12 and O-16) in degenerate electron conditions. Attention is given to the evolution of supermassive stars, massive stars, and low-mass stars and to such topics as neutrino emission in intermediate-mass stars, white-dwarf supernovae, rotational instability, and stellar collisions and eclipsing binary systems.

  8. Simulation study on avoiding runaway electron generation by magnetic perturbations

    International Nuclear Information System (INIS)

    Tokuda, S.; Yoshino, R.; Matsumoto, T.; Hudson, S.R.; Kawano, Y.; Takizuka, T.

    2001-01-01

    Simulations have demonstrated that magnetic islands having the widths expected on the major disruption cause the collisionless loss of the relativistic electrons, and that the resultant loss rate is high enough to avoid or to suppress the runaway generation. It is because, for the magnetic fluctuations in the disruption, the loss of the electron confinement due to the breakdown of the toroidal momentum conservation overwhelms the runaway electron confinement due to the phase-averaging effect of relativistic electrons. Simulation results agree closely with recent experiments on fast plasma shutdown, showing that it is possible to prevent the generation of runaway electrons. (author)

  9. Runaway electron generation as possible trigger for enhancement of magnetohydrodynamic plasma activity and fast changes in runaway beam behavior

    International Nuclear Information System (INIS)

    Pankratov, I. M.; Zhou, R. J.; Hu, L. Q.

    2015-01-01

    Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior

  10. Runaway electron generation as possible trigger for enhancement of magnetohydrodynamic plasma activity and fast changes in runaway beam behavior

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, I. M., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn [Institute of Plasma Physics, NSC Kharkov Institute of Physics and Technology, Academicheskaya Str. 1, 61108 Kharkov (Ukraine); Zhou, R. J., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Hu, L. Q. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-07-15

    Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.

  11. Runaway electron generation as possible trigger for enhancement of magnetohydrodynamic plasma activity and fast changes in runaway beam behavior

    Science.gov (United States)

    Pankratov, I. M.; Zhou, R. J.; Hu, L. Q.

    2015-07-01

    Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.

  12. Runaway breakdown and hydrometeors in lightning initiation.

    Science.gov (United States)

    Gurevich, A V; Karashtin, A N

    2013-05-03

    The particular electric pulse discharges are observed in thunderclouds during the initiation stage of negative cloud-to-ground lightning. The discharges are quite different from conventional streamers or leaders. A detailed analysis reveals that the shape of the pulses is determined by the runaway breakdown of air in the thundercloud electric field initiated by extensive atmospheric showers (RB-EAS). The high amplitude of the pulse electric current is due to the multiple microdischarges at hydrometeors stimulated and synchronized by the low-energy electrons generated in the RB-EAS process. The series of specific pulse discharges leads to charge reset from hydrometeors to the free ions and creates numerous stretched ion clusters, both positive and negative. As a result, a wide region in the thundercloud with a sufficiently high fractal ion conductivity is formed. The charge transport by ions plays a decisive role in the lightning leader preconditioning.

  13. Naturalness from Runaways in Direct Mediation

    Energy Technology Data Exchange (ETDEWEB)

    Schafer-Nameki, Sakura; /UC, Santa Barbara /King' s Coll. London; Tamarit, Carlos; /UC, Santa Barbara; Torroba, Gonzalo; /SLAC

    2011-02-07

    Postulating that the NMSSM singlet is a meson of a microscopic confining theory opens up new model-building possibilities. Based on this, we construct calculable models of direct mediation that solve the {mu}/B{mu} problem and simultaneously lead to realistic phenomenology. The singlet that couples to the Higgs fields develops a runaway produced by soft interactions, then stabilized by a small superpotential perturbation. The mechanism is first realized in an O'Raifeartaigh model of direct gauge mediation with metastable supersymmetry breaking. Focusing then on the microscopic theory, we argue that super QCD with massless and massive flavors in the free magnetic phase gives rise to this dynamics in the infrared. A deformation of the SQCD superpotential leads to large spontaneous R-symmetry breaking, gaugino masses naturally at the scale of the Higgs mass parameters, and absence of CP violating phases.

  14. Analytical treatment of the runaway-effect

    International Nuclear Information System (INIS)

    Kaeppeler, H.J.

    1980-09-01

    In the analytical treatment of the runaway-effect there appear the integrals Isub(m)(α). For m = 1, 2 and 3, series expansions for these integrals can be found in the literature. Furthermore, asymptotic solutions for Isub(m)(α) are known. It is shown here that the solutions for Isub(m)(α) can be approximated by the modified Bessel Function Ksub(n)(αsup(ν)) in such a way that for α → 0 the exact limiting value for Isub(m)(α) follows and that for α → infinite essentially the known asymptotic solutions for Isub(m)(α) follow. The maximum error for this approximation in the order of percent is considered justifiable for the application considered. (orig.)

  15. Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D

    Science.gov (United States)

    Shiraki, D.; Commaux, N.; Baylor, L. R.; Cooper, C. M.; Eidietis, N. W.; Hollmann, E. M.; Paz-Soldan, C.; Combs, S. K.; Meitner, S. J.

    2018-05-01

    We report on the first demonstration of dissipation of fully avalanched post-disruption runaway electron (RE) beams by shattered pellet injection in the DIII-D tokamak. Variation of the injected species shows that dissipation depends strongly on the species mixture, while comparisons with massive gas injection do not show a significant difference between dissipation by pellets or by gas, suggesting that the shattered pellet is rapidly ablated by the relativistic electrons before significant radial penetration into the runaway beam can occur. Pure or dominantly neon injection increases the RE current dissipation through pitch-angle scattering due to collisions with impurity ions. Deuterium injection is observed to have the opposite effect from neon, reducing the high-Z impurity content and thus decreasing the dissipation, and causing the background thermal plasma to completely recombine. When injecting mixtures of the two species, deuterium levels as low as  ∼10% of the total injected atoms are observed to adversely affect the resulting dissipation, suggesting that complete elimination of deuterium from the injection may be important for optimizing RE mitigation schemes.

  16. Study of runaway electrons using the conditional average sampling method in the Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pourshahab, B., E-mail: bpourshahab@gmail.com [University of Isfahan, Department of Nuclear Engineering, Faculty of Advance Sciences and Technologies (Iran, Islamic Republic of); Sadighzadeh, A. [Nuclear Science and Technology Research Institute, Plasma Physics and Nuclear Fusion Research School (Iran, Islamic Republic of); Abdi, M. R., E-mail: r.abdi@phys.ui.ac.ir [University of Isfahan, Department of Physics, Faculty of Science (Iran, Islamic Republic of); Rasouli, C. [Nuclear Science and Technology Research Institute, Plasma Physics and Nuclear Fusion Research School (Iran, Islamic Republic of)

    2017-03-15

    Some experiments for studying the runaway electron (RE) effects have been performed using the poloidal magnetic probes system installed around the plasma column in the Damavand tokamak. In these experiments, the so-called runaway-dominated discharges were considered in which the main part of the plasma current is carried by REs. The induced magnetic effects on the poloidal pickup coils signals are observed simultaneously with the Parail–Pogutse instability moments for REs and hard X-ray bursts. The output signals of all diagnostic systems enter the data acquisition system with 2 Msample/(s channel) sampling rate. The temporal evolution of the diagnostic signals is analyzed by the conditional average sampling (CAS) technique. The CASed profiles indicate RE collisions with the high-field-side plasma facing components at the instability moments. The investigation has been carried out for two discharge modes—low-toroidal-field (LTF) and high-toroidal-field (HTF) ones—related to both up and down limits of the toroidal magnetic field in the Damavand tokamak and their comparison has shown that the RE confinement is better in HTF discharges.

  17. Radio-frequency wave enhanced runaway production rate

    International Nuclear Information System (INIS)

    Chan, V.S.; McClain, F.W.

    1983-01-01

    Enhancement of runaway electron production (over that of an Ohmic discharge) can be achieved by the addition of radio-frequency waves. This effect is studied analytically and numerically using a two-dimensional Fokker--Planck quasilinear equation

  18. Runaway electrons and rational q-surfaces in a tokamak

    International Nuclear Information System (INIS)

    Cheetham, A.D.; Hogg, G.R.; Kuwahara, H.; Morton, A.H.

    1983-01-01

    Results of measurements with LT-4 of runaway electron behaviour during the current rise stage of discharges when q = rBsub(T)/RBsub(p) (where r and R are minor and major radii, Bsub(T) and Bsub(p) are toroidal and poloidal magnetic fields) is changing continuously are reported. The results establish a role for outward moving rational q regions in removing runaway electrons from a tokamak plasma. The model indicates that as well as carrying a proportion of low energy runaways with them the rational q regions also scatter high energy electrons from the discharge. This leads to an upper limit for the energy of fully confined electrons. The size of the runaway population might be minimised by controlling the rate of movement of rational surfaces. This would be achieved by programming the rate of rise of the plasma current

  19. Mitigating Thermal Runaway Risk in Lithium Ion Batteries

    Science.gov (United States)

    Darcy, Eric; Jeevarajan, Judy; Russell, Samuel

    2014-01-01

    The JSC/NESC team has successfully demonstrated Thermal Runaway (TR) risk reduction in a lithium ion battery for human space flight by developing and implementing verifiable design features which interrupt energy transfer between adjacent electrochemical cells. Conventional lithium ion (li-Ion) batteries can fail catastrophically as a result of a single cell going into thermal runaway. Thermal runaway results when an internal component fails to separate electrode materials leading to localized heating and complete combustion of the lithium ion cell. Previously, the greatest control to minimize the probability of cell failure was individual cell screening. Combining thermal runaway propagation mitigation design features with a comprehensive screening program reduces both the probability, and the severity, of a single cell failure.

  20. Comments on thermal runaway experiments in sub-ignition tokamaks

    International Nuclear Information System (INIS)

    Yamazaki, K.

    1982-09-01

    Justification of deuterium-tritium operations is discussed from the physics viewpoint and optimal thermal runaway experiments in high-field, high-density compact tokamaks are suggested within the minimization of the induced radioactivation. (author)

  1. Runaway pacemaker: a still existing complication and therapeutic guidelines

    DEFF Research Database (Denmark)

    Mickley, H; Andersen, C; Nielsen, L H

    1989-01-01

    Runaway pacemaker is a rare, but still existing potential lethal complication in permanent pacemakers. Within 4 1/2 years, we saw two cases of runaway pacemaker in patients with multiprogrammable, VVI pacemakers (Siemens-Elema, Model 668). In both cases a pacemaker-induced ventricular tachycardia...... pacemaker may be connected to the permanent pacing lead. Thereafter, the lead can be safely cut. As an alternative, a temporary transvenous pacing lead may be established prior to disconnecting the permanent pacing lead....

  2. Sawtooth-induced loss of runaway electrons in tokamaks

    International Nuclear Information System (INIS)

    Yan Longwen; Shi Bingren; Jiao Yiming

    2001-01-01

    A model based on banana orbit loss has been proposed to explain the sawtooth effect on the loss of the runaway electrons in tokamaks. Circulating runaway electrons can be transferred into the trapped ones due to magnetic perturbation during sawtooth crashes, then they are repelled to the limiter via toroidal precession drift with a time delay. This model may also clarify the hard X-ray oscillations correlated with the m = 2 mode and the hard X-ray bursts during outer disruptions

  3. Destabilization of the electron Bernstein modes by runaway electrons

    International Nuclear Information System (INIS)

    Hitchcock, D.A.; Mahajan, S.M.

    1982-01-01

    It is shown that the electromagnetic finite k/sub parallel/ electron Bernstein mode can be destabilized by the runaway electron distribution which results from the quasilinear action of the magnetized plasma oscillation. This mechanism is shown to yield growth rates of the order of 10 8 sec -1 and is suggested as a mechanism for the enchanced cyclotron harmonic emission in the presence of runaway electrons

  4. Numerical simulation of runaway electron effect on Plasma Facing Components

    International Nuclear Information System (INIS)

    Ezato, Koichiro; Suzuki, Satoshi; Akiba, Masato; Kunugi, Tomoaki

    1998-07-01

    The runaway electron effects on Plasma Facing Components (PFCs) are studied by the numerical analyses. The present study is the first investigation of time-dependent thermal response of PFCs caused by runaway electron impact. For this purpose, we developed a new integrated numerical code, which consists of the Monte Carlo code for the coupled electrons and photons transport analysis and the finite element code for the thermo-mechanical analysis. In this code, we apply the practical incident parameters and distribution of runaway electrons recently proposed by S. Putvinski, which can express the time-dependent behavior of runaway electrons impact. The incident parameters of electrons in this study are the energy density ranging from 10 to 75 MJ/m 2 , the average electrons' energy of 12.5 MeV, the incident angle of 0.01deg and the characteristic time constant for decay of runaway electrons event of 0.15sec. The numerical results showed that the divertor with CFC (Carbon-Fiber-Composite) armor did not suffer serious damage. On the other hand, maximum temperatures at the surface of the divertor with tungsten armor and the first wall with beryllium armor exceed the melting point in case of the incident energy density of 20 and 50 MJ/m 2 . Within the range of the incident condition of runaway electrons, the cooling pipe of each PFCs can be prevented from the melting or burn-out caused by runaway electrons impact, which is one of the possible consequences of runaway electrons event so far. (author)

  5. Stellar structure and evolution

    International Nuclear Information System (INIS)

    Kippernhahn, R.; Weigert, A.

    1990-01-01

    This book introduces the theory of the internal structure of stars and their evolution in time. It presents the basic physics of stellar interiors, methods for solving the underlying equations, and the most important results necessary for understanding the wide variety of stellar types and phenomena. The evolution of stars is discussed from their birth through normal evolution to possibly spectacular final stages. Chapters on stellar oscillations and rotation are included

  6. Models for stellar flares

    International Nuclear Information System (INIS)

    Cram, L.E.; Woods, D.T.

    1982-01-01

    We study the response of certain spectral signatures of stellar flares (such as Balmer line profiles and the broad-band continuum) to changes in atmospheric structure which might result from physical processes akin to those thought to occur in solar flares. While each physical process does not have a unique signature, we can show that some of the observed properties of stellar flares can be explained by a model which involves increased pressures and temperatures in the flaring stellar chromosphere. We suggest that changes in stellar flare area, both with time and with depth in the atmosphere, may play an important role in producing the observed flare spectrum

  7. Stellar Physics 2: Stellar Evolution and Stability

    CERN Document Server

    Bisnovatyi-Kogan, Gennady S

    2011-01-01

    "Stellar Physics" is a an outstanding book in the growing body of literature on star formation and evolution. Not only does the author, a leading expert in the field, very thoroughly present the current state of knowledge on stellar physics, but he handles with equal care the many problems that this field of research still faces. A bibliography with well over 1000 entries makes this book an unparalleled reference source. "Stellar Evolution and Stability" is the second of two volumes and can be read, as can the first volume "Fundamental Concepts and Stellar Equilibrium," as a largely independent work. It traces in great detail the evolution of protostars towards the main sequence and beyond this to the last stage of stellar evolution, with the corresponding vast range from white dwarfs to supernovae explosions, gamma-ray bursts and black hole formation. The book concludes with special chapters on the dynamical, thermal and pulsing stability of stars. This second edition is carefully updated in the areas of pre...

  8. Conversion of magnetic energy to runaway kinetic energy during the termination of runaway current on the J-TEXT tokamak

    Science.gov (United States)

    Dai, A. J.; Chen, Z. Y.; Huang, D. W.; Tong, R. H.; Zhang, J.; Wei, Y. N.; Ma, T. K.; Wang, X. L.; Yang, H. Y.; Gao, H. L.; Pan, Y.; the J-TEXT Team

    2018-05-01

    A large number of runaway electrons (REs) with energies as high as several tens of mega-electron volt (MeV) may be generated during disruptions on a large-scale tokamak. The kinetic energy carried by REs is eventually deposited on the plasma-facing components, causing damage and posing a threat on the operation of the tokamak. The remaining magnetic energy following a thermal quench is significant on a large-scale tokamak. The conversion of magnetic energy to runaway kinetic energy will increase the threat of runaway electrons on the first wall. The magnetic energy dissipated inside the vacuum vessel (VV) equals the decrease of initial magnetic energy inside the VV plus the magnetic energy flowing into the VV during a disruption. Based on the estimated magnetic energy, the evolution of magnetic-kinetic energy conversion are analyzed through three periods in disruptions with a runaway current plateau.

  9. Scaling law of runaway electrons in the HL-1M tokamak

    International Nuclear Information System (INIS)

    Zheng Yongzhen

    2005-01-01

    Runaway confinement time in ohmic and additionally heated tokamak plasmas presents an anomalous behavior in comparison with theoretical predictions based on neoclassical models. A one-dimensional numerical including generation and loss effects for runaway electrons is used to deduce the dependence of runaway energy ε τ on runaway confinement time. The simulation results are presented in the form of a scaling law for ε τ on plasma parameters. The scaling of ε τ and therefore the runaway confinement time and runaway electron diffusivity has been studied in the HL-1M tokamak, by measuring hard X-ray spectra under different experimental conditions. (authors)

  10. Stellar photometry and polarimetry

    International Nuclear Information System (INIS)

    Golay, M.; Serkowski, K.

    1976-01-01

    A critical review of progress made in stellar photometry and polarimetry over the period 1973-1975 is presented. Reports of photometric measurements from various observatories throughout the world are summarized. The summary of work on stellar polarimetry lists the review papers, the catalogues and lists of standard stars, and descriptions of new observing techniques. (B.R.H.)

  11. Compact stellarators as reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Valanju, P.; Zarnstorff, M.C.; Hirshman, S.; Spong, D.A.; Strickler, D.; Williamson, D.E.; Ware, A.

    2001-01-01

    Two types of compact stellarators are examined as reactors: two- and three-field-period (M=2 and 3) quasi-axisymmetric devices with volume-average =4-5% and M=2 and 3 quasi-poloidal devices with =10-15%. These low-aspect-ratio stellarator-tokamak hybrids differ from conventional stellarators in their use of the plasma-generated bootstrap current to supplement the poloidal field from external coils. Using the ARIES-AT model with B max =12T on the coils gives Compact Stellarator reactors with R=7.3-8.2m, a factor of 2-3 smaller R than other stellarator reactors for the same assumptions, and neutron wall loadings up to 3.7MWm -2 . (author)

  12. The resonance between runaway electrons and magnetic ripple in HT-7 Tokamak

    International Nuclear Information System (INIS)

    Zhou Ruijie; Hu Liqun; Lu Hongwei; Lin Shiyao; Zhong Guoqiang; Xu Ping; Zhang Jizong

    2011-01-01

    For suppressing the energy of runaway electrons in tokamak plasma, we analyzed the X-ray energy spectra by runaway electrons in different discharges of the HT-7 tokamak experiment performed in the autumn of 2009. The resonant phenomenon between runaway electrons and magnetic ripple was found. Although, the energy of runaway electrons in the plasma core can be as high as several tens of MeV, but when they are transported to the edge, the electron energy are limited to a certain range by resonance with the magnetic ripple of different harmonic numbers. The runaway electrons under high loop voltage resonate with low step magnetic perturbations, with high energy gain; whereas the runaway electrons under low loop voltage resonate with high level magnetic perturbations, with low energy gain. Using this mechanism, the energy of runaway electrons can be restricted to a low level, and this will significantly mitigate the damage effect on the equipment caused by runaway electrons. (authors)

  13. Characteristics of post-disruption runaway electrons with impurity pellet injection

    International Nuclear Information System (INIS)

    Kawano, Yasunori; Nakano, Tomohide; Isayama, Akihiko; Asakura, Nobuyuki; Tamai, Hiroshi; Kubo, Hirotaka; Takenaga, Hidenobu; Bakhtiari, Mohammad; Ide, Shunsuke; Kondoh, Takashi; Hatae, Takaki

    2005-01-01

    Characteristics of post-disruption runaway electrons with impurity pellet injection were investigated for the first time using the JT-60U tokamak device. A clear deposition of impurity neon ice pellets was observed in a post-disruption runaway plasma. The pellet ablation was attributed to the energy deposition of relativistic runaway electrons in the pellet. A high normalized electron density was stably obtained with n e bar /n GW ∼2.2. Effects of prompt exhaust of runaway electrons and reduction of runaway plasma current without large amplitude MHD activities were found. One possible explanation for the basic behavior of runaway plasma current is that it follows the balance of avalanche generation of runaway electrons and slowing down predicted by the Andersson-Helander model, including the combined effect of collisional pitch angle scattering and synchrotron radiation. Our results suggested that the impurity pellet injection reduced the energy of runaway electrons in a stepwise manner. (author)

  14. 78 FR 64153 - Direct Certification and Certification of Homeless, Migrant and Runaway Children for Free School...

    Science.gov (United States)

    2013-10-28

    ...-0001] RIN 0584-AD60 Direct Certification and Certification of Homeless, Migrant and Runaway Children... interim rule entitled Direct Certification and Certification of Homeless, Migrant and Runaway Children for...

  15. Thermal Runaway Severity Reduction Assessment and Implementation: On Li-Ion Batteries

    Science.gov (United States)

    Darcy, Eric

    2015-01-01

    Preventing cell-cell thermal runaway propagation and flames/sparks from exiting battery enclosure is possible with proper thermal & electrical design and cell thermal runaway ejecta/effluent management and can be had with minimal mass/volume penalty.

  16. Models of primary runaway electron distribution in the runaway vortex regime

    International Nuclear Information System (INIS)

    Guo, Zehua; Tang, Xian-Zhu; McDevitt, Christopher J.

    2017-01-01

    Generation of runaway electrons (RE) beams can possibly induce the most deleterious effect of tokamak disruptions. A number of recent numerical calculations have confirmed the formation of a RE bump in their energy distribution by taking into account Synchrontron radiational damping force due to RE’s gyromotions. Here, we present a detailed examination on how the bump location changes at different pitch-angle and the characteristics of the RE pitch-angle distribution. Although REs moving along the magnetic field are preferably accelerated and then populate the phase-space of larger pitch-angle mainly through diffusions, an off-axis peak can still form due to the presence of the vortex structure which causes accumulation of REs at low pitch-angle. A simplified Fokker- Planck model and its semi-analytical solutions based on local expansions around the O point is used to illustrate the characteristics of RE distribution around the O point of the runaway vortex in phase-space. The calculated energy location of the O point together with the local energy and pitch-angle distributions agree with the full numerical solution.

  17. Runaway electron generation during plasma shutdown by killer pellet injection

    International Nuclear Information System (INIS)

    Gal, K; Feher, T; Smith, H; Fueloep, T; Helander, P

    2008-01-01

    Tokamak discharges are sometimes terminated by disruptions that may cause large mechanical and thermal loads on the vessel. To mitigate disruption-induced problems it has been proposed that 'killer' pellets could be injected into the plasma in order to safely terminate the discharge. Killer pellets enhance radiative energy loss and thereby lead to rapid cooling and shutdown of the discharge. But pellets may also cause runaway electron generation, as has been observed in experiments in several tokamaks. In this work, runaway dynamics in connection with deuterium or carbon pellet-induced fast plasma shutdown is considered. A pellet code, which calculates the material deposition and initial cooling caused by the pellet is coupled to a runaway code, which determines the subsequent temperature evolution and runaway generation. In this way, a tool has been created to test the suitability of different pellet injection scenarios for disruption mitigation. If runaway generation is avoided, the resulting current quench times are too long to safely avoid large forces on the vessel due to halo currents

  18. Stellarator-Spheromak

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-03-01

    A novel concept for magnetic plasma confinement, Stellarator-Spheromak (SSP), is proposed. Numerical analysis with the classical-stellarator-type outboard stellarator windings demonstrates a number of potential advantages of SSP for controlled nuclear fusion. Among the main ones are: simple and compact magnet coil configuration, absence of material structures (e.g. magnet coils or conducting walls) in the center of the torus, high rotational transform, and a possibility of MHD equilibria with very high β (pressure/magnetic pressure) of the confined plasma

  19. Double-helix stellarator

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-09-01

    A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A ∼ 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-β MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantages for fusion applications

  20. Ripple transport in helical-axis advanced stellarators - a comparison with classical stellarator/torsatrons

    International Nuclear Information System (INIS)

    Beidler, C.D.; Hitchon, W.N.G.

    1993-08-01

    Calculations of the neoclassical transport rates due to particles trapped in the helical ripples of a stellarator's magnetic field are carried out, based on solutions of the bounce-averaged kinetic equation. These calculations employ a model for the magnetic field strength, B, which is an accurate approximation to the actual B for a wide variety of stellarator-type devices, among which are Helical-Axis Advanced Stellarators (Helias) as well as conventional stellarators and torsatrons. Comparisons are carried out in which it is shown that the Helias concept leads to significant reductions in neoclassical transport rates throughout the entire long-mean-free-path regime, with the reduction being particularly dramatic in the ν -1 regime. These findings are confirmed by numerical simulations. Further, it is shown that the behavior of deeply trapped particles in Helias can be fundamentally different from that in classical stellarator/torsatrons; as a consequence, the beneficial effects of a radial electric field on the transport make themselves felt at lower collision frequency than is usual. (orig.)

  1. Rural Runaways: Rurality and Its Implications for Services to Children and Young People Who Run Away

    Science.gov (United States)

    Franks, Myfanwy; Goswami, Haridhan

    2010-01-01

    This article debates options for service provision to young rural runaways in the UK. Using data drawn from two national surveys and follow-on qualitative studies, the authors trace urban myths of rurality and their effects on runaway provision. The authors review models of rural refuge, systemic advocacy and mobile services for rural runaways.…

  2. 76 FR 22785 - Direct Certification and Certification of Homeless, Migrant and Runaway Children for Free School...

    Science.gov (United States)

    2011-04-25

    ... [FNS-2008-0001] RIN 0584-AD60 Direct Certification and Certification of Homeless, Migrant and Runaway... concerning the certification of certain children who are homeless, runaway, or migratory. This rule affects... children who are homeless, runaway, or migratory, as determined by the homeless coordinator for homeless or...

  3. 30 CFR 56.9302 - Protection against moving or runaway railroad equipment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection against moving or runaway railroad..., and Loading and Dumping Sites § 56.9302 Protection against moving or runaway railroad equipment. Stopblocks, derail devices, or other devices that protect against moving or runaway rail equipment shall be...

  4. 30 CFR 57.9302 - Protection against moving or runaway railroad equipment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection against moving or runaway railroad..., Railroads, and Loading and Dumping Sites § 57.9302 Protection against moving or runaway railroad equipment. Stopblocks, derail devices, or other devices that protect against moving or runaway rail equipment shall be...

  5. 77 FR 33223 - Announcement of the Publication of Funding Opportunity Announcements Under the Runaway and...

    Science.gov (United States)

    2012-06-05

    ... the Publication of Funding Opportunity Announcements Under the Runaway and Homeless Youth Act AGENCY... Statutory Authority: Runaway and Homeless Youth Act, 42 U.S.C. sections 5701-5752, as amended by the.... Porter, Director, Runaway and Homeless Youth Program, Family and Youth Services Bureau, 1250 Maryland Ave...

  6. Space Weather: Linking Stellar Explosions to the Human Endeavor

    Science.gov (United States)

    Knipp, Delores

    2017-06-01

    Arguably humans have flourished as a result of stellar explosions; we are, after all, stardust. Nonetheless, rapid technology advances of the last 200 years sometimes put society and individuals on a collision course with the natural variability of stellar and solar atmospheres. Human space exploration, routine satellite navigation system applications, aviation safety, and electric power grids are examples of such vulnerable endeavors. In this presentation I will outline how global society relies on ‘normal’ solar and stellar emissions, yet becomes susceptible to extremes of these emissions. The imprints of these astronomical-terrestrial interactions abound. In particular, I will highlight ways in which stellar/solar bursts link with our space-atmosphere-interaction region, producing multi-year patterns in cosmic ray detection, gorgeous aurora, and deep concern for good order and function of global community.

  7. Effects of Spatial Gradients on Electron Runaway Acceleration

    Science.gov (United States)

    MacNeice, Peter; Ljepojevic, N. N.

    1996-01-01

    The runaway process is known to accelerate electrons in many laboratory plasmas and has been suggested as an acceleration mechanism in some astrophysical plasmas, including solar flares. Current calculations of the electron velocity distributions resulting from the runaway process are greatly restricted because they impose spatial homogeneity on the distribution. We have computed runaway distributions which include consistent development of spatial gradients in the energetic tail. Our solution for the electron velocity distribution is presented as a function of distance along a finite length acceleration region, and is compared with the equivalent distribution for the infinitely long homogenous system (i.e., no spatial gradients), as considered in the existing literature. All these results are for the weak field regime. We also discuss the severe restrictiveness of this weak field assumption.

  8. Relation of the runaway avalanche threshold to momentum space topology

    Science.gov (United States)

    McDevitt, Christopher J.; Guo, Zehua; Tang, Xian-Zhu

    2018-02-01

    The underlying physics responsible for the formation of an avalanche instability due to the generation of secondary electrons is studied. A careful examination of the momentum space topology of the runaway electron population is carried out with an eye toward identifying how qualitative changes in the momentum space of the runaway electrons is correlated with the avalanche threshold. It is found that the avalanche threshold is tied to the merger of an O and X point in the momentum space of the primary runaway electron population. Such a change of the momentum space topology is shown to be accurately described by a simple analytic model, thus providing a powerful means of determining the avalanche threshold for a range of model assumptions.

  9. Generation of runaway electron beams in high-pressure nitrogen

    Science.gov (United States)

    Tarasenko, V. F.; Burachenko, A. G.; Baksht, E. Kh

    2017-07-01

    In this paper the results of experimental studies of the amplitude-temporal characteristics of a runaway electron beam, as well as breakdown voltage in nitrogen are presented. The voltage pulses with the amplitude in incident wave ≈120 kV and the rise time of ≈0.3 ns was used. The supershort avalanche electron beam (SAEB) was detected by a collector behind the flat anode. The amplitude-time characteristics of the voltage and SAEB current were studied with subnanosecond time resolution. The maximum pressure at which a SAEB is detectable by collector was ∼1 MPa. This pressure increases with decreasing the voltage rise time. The waveforms of the discharge and runaway electron beam currents was synchronized with the voltage pulses. The mechanism of the runaway electron generation in atmospheric-pressure gases is analyzed on the basis of the obtained experimental data.

  10. Wimps and stellar structure

    International Nuclear Information System (INIS)

    Bouquet, A.; Salati, P.

    1988-01-01

    We present the results of an analytic approximation to compute the effects of WIMPs on stellar structures in a self-consistent way. We examine in particular the case of the Sun and of horizontal branch stars

  11. Principles of Stellar Interferometry

    CERN Document Server

    Glindemann, Andreas

    2011-01-01

    Over the last decade, stellar interferometry has developed from a specialist tool to a mainstream observing technique, attracting scientists whose research benefits from milliarcsecond angular resolution. Stellar interferometry has become part of the astronomer’s toolbox, complementing single-telescope observations by providing unique capabilities that will advance astronomical research. This carefully written book is intended to provide a solid understanding of the principles of stellar interferometry to students starting an astronomical research project in this field or to develop instruments and to astronomers using interferometry but who are not interferometrists per se. Illustrated by excellent drawings and calculated graphs the imaging process in stellar interferometers is explained starting from first principles on light propagation and diffraction wave propagation through turbulence is described in detail using Kolmogorov statistics the impact of turbulence on the imaging process is discussed both f...

  12. Convection and stellar oscillations

    DEFF Research Database (Denmark)

    Aarslev, Magnus Johan

    2017-01-01

    for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...... atmospheres to replace the outer layers of stellar models. The additional turbulent pressure and asymmetrical opacity effects in the atmosphere model, compared to convection in stellar evolution models, serve to expand the atmosphere. The enlarged acoustic cavity lowers the pulsation frequencies bringing them...

  13. Effects of stellar evolution and ionizing radiation on the environments of massive stars

    Science.gov (United States)

    Mackey, J.; Langer, N.; Mohamed, S.; Gvaramadze, V. V.; Neilson, H. R.; Meyer, D. M.-A.

    2014-09-01

    We discuss two important effects for the astrospheres of runaway stars: the propagation of ionizing photons far beyond the astropause, and the rapid evolution of massive stars (and their winds) near the end of their lives. Hot stars emit ionizing photons with associated photoheating that has a significant dynamical effect on their surroundings. 3-D simulations show that H ii regions around runaway O stars drive expanding conical shells and leave underdense wakes in the medium they pass through. For late O stars this feedback to the interstellar medium is more important than that from stellar winds. Late in life, O stars evolve to cool red supergiants more rapidly than their environment can react, producing transient circumstellar structures such as double bow shocks. This provides an explanation for the bow shock and linear bar-shaped structure observed around Betelgeuse.

  14. Oscillations in stellar atmospheres

    International Nuclear Information System (INIS)

    Costa, A.; Ringuelet, A.E.; Fontenla, J.M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized. 7 refs

  15. Stellar Interlopers Caught Speeding Through Space

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1 Figure 2 Figure 3 Figure 4 Click on individual image for larger view Resembling comets streaking across the sky, these four speedy stars are plowing through regions of dense interstellar gas and creating brilliant arrowhead structures and trailing tails of glowing gas. These bright arrowheads, or bow shocks, can be seen in these four images taken with NASA's Hubble Space Telescope. The bow shocks form when the stars' powerful stellar winds, streams of matter flowing from the stars, slam into surrounding dense gas. The phenomenon is similar to that seen when a speeding boat pushes through water on a lake. The stars in these images are among 13 runaway stars spotted by Hubble's Advanced Camera for Surveys. The stars appear to be young, just millions of years old. Their ages are based on their colors and the presence of strong stellar winds, a signature of youthful stars. Depending on their distance from Earth, the bullet-nosed bow shocks could be 100 billion to a trillion miles wide (the equivalent of 17 to 170 solar system diameters, measured out to Neptune's orbit). The bow shocks indicate that the stars are moving fast, more than 180,000 kilometers an hour (more than 112,000 miles an hour) with respect to the dense gas they are plowing through. They are traveling roughly five times faster than typical young stars, relative to their surroundings. The high-speed stars have traveled far from their birth places. Assuming their youthful phase lasts only a million years and they are moving at roughly 180,000 kilometers an hour, the stars have journeyed 160 light-years. The Hubble observations were taken between October 2005 and July 2006.

  16. Investigating the effects of counseling programs on runaway youth

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Iravani

    2014-04-01

    Full Text Available This paper presents an empirical investigation to study the effects of counseling programs on reducing the runaway youth in Iran. The study selects a sample of 30 students and divides them into two groups of control and experiment. The first group is kept under eight sessions of social skills training and a questionnaire consists of various questions including confidence items is distributed among both groups after the training ends. The implementation of Kolmogorov-Smirnov has revealed that both pre and post-test data are normally distributed. In addition, the result of ANOVA test has revealed that training program could significantly improve runaway youth’s confidence.

  17. Power-law and runaway growth in conserved aggregation systems

    International Nuclear Information System (INIS)

    Yamamoto, Hiroshi; Ohtsuki, Toshiya; Fujihara, Akihiro; Tanimoto, Satoshi

    2006-01-01

    The z-transform technique is used to analyze the Smoluchowski coagulation equation for conserved aggregation systems. A universal power law with the exponent -5/2 appears when a total 'mass' has a certain critical value. Below the threshold, ordinary scaling relations hold and the system exhibits a behavior like usual critical phenomena. Above the threshold, in contrast, the excess amount of mass coagulates into a runaway member, and remaining members follow the power law. Here the runaway growth coexists with the power law. It is argued that these behaviors are observed universally in conserved aggregation processes

  18. On the origin of the hypervelocity runaway star HD271791

    OpenAIRE

    Gvaramadze, V. V.

    2009-01-01

    We discuss the origin of the runaway early B-type star HD271791 and show that its extremely high velocity (\\simeq 530-920 km/s) cannot be explained within the framework of the binary-supernova ejection scenario. Instead, we suggest that HD271791 attained its peculiar velocity in the course of a strong dynamical encounter between two hard massive binaries or via an exchange encounter between a hard massive binary and a very massive star, formed through runaway mergers of ordinary massive stars...

  19. On the origin of the hypervelocity runaway star HD 271791

    Science.gov (United States)

    Gvaramadze, V. V.

    2010-01-01

    We discuss the origin of the early-B-type runaway star HD 271791 and show that its extremely high velocity (≃530 - 920km s-1) cannot be explained within the framework of the binary-supernova ejection scenario. Instead, we suggest that HD 271791 attained its peculiar velocity in the course of a strong dynamical encounter between two hard, massive binaries or through an exchange encounter between a hard, massive binary and a very massive star, formed through runaway mergers of ordinary massive stars in the dense core of a young massive star cluster.

  20. 45 CFR 1351.10 - What is the purpose of the Runaway and Homeless Youth Program grant?

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false What is the purpose of the Runaway and Homeless... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.10 What is the purpose of the Runaway and Homeless Youth...

  1. 45 CFR 1351.20 - What are the additional requirements under a Runaway and Homeless Youth Program grant?

    Science.gov (United States)

    2010-10-01

    ... Runaway and Homeless Youth Program grant? 1351.20 Section 1351.20 Public Welfare Regulations Relating to... THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND... Runaway and Homeless Youth Program grant? (a) To improve the administration of the Runaway and Homeless...

  2. 45 CFR 1351.12 - Who gets priority for the award of a Runaway and Homeless Youth Program grant?

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Who gets priority for the award of a Runaway and... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.12 Who gets priority for the award of a Runaway and...

  3. 45 CFR 1351.17 - How is application made for a Runaway and Homeless Youth Program grant?

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false How is application made for a Runaway and Homeless... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.17 How is application made for a Runaway and Homeless...

  4. 45 CFR 1351.15 - What costs are supportable under a Runaway and Homeless Youth Program grant?

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false What costs are supportable under a Runaway and... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.15 What costs are supportable under a Runaway and Homeless...

  5. 45 CFR 1351.11 - Who is eligible to apply for a Runaway and Homeless Youth Program grant?

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Who is eligible to apply for a Runaway and... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.11 Who is eligible to apply for a Runaway and Homeless...

  6. 45 CFR 1351.18 - What criteria has HHS established for deciding which Runaway and Homeless Youth Program grant...

    Science.gov (United States)

    2010-10-01

    ... which Runaway and Homeless Youth Program grant applications to fund? 1351.18 Section 1351.18 Public... SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.18 What criteria has HHS established for deciding which Runaway and Homeless Youth Program grant applications to...

  7. 45 CFR 1351.16 - What costs are not allowable under a Runaway and Homeless Youth Program grant?

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false What costs are not allowable under a Runaway and... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.16 What costs are not allowable under a Runaway and...

  8. Mitigation of current quench by runaway electrons in LHCD discharges in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Lu, H.W.; Hu, L.Q.; Lin, S.Y.; Zhong, G.Q.

    2009-01-01

    Production of runaway electrons during a major disruption has been observed in HT-7 Tokamak. The runaway current plateaus, which can carry part of the pre-disruptive current, are observed in lower-hybrid current drive (LHCD) limiter discharges. It is found that the runaway current can mitigate the disruptions effectively. Detailed observations are presented on the runaway electrons generated following disruptions in the HT-7 tokamak with carbon limited discharges. The results indicate that the magnetic oscillations play an important role in the activity of runaway electrons in disruption. (author)

  9. Suppression of Runaway Electrons by Resonant Magnetic Perturbations in TEXTOR Disruptions

    International Nuclear Information System (INIS)

    Lehnen, M.; Bozhenkov, S. A.; Abdullaev, S. S.; TEXTOR Team,; Jakubowski, M. W.

    2008-01-01

    The generation of runaway electrons in the international fusion experiment ITER disruptions can lead to severe damage at plasma facing components. Massive gas injection might inhibit the generation process, but the amount of gas needed can affect, e.g., vacuum systems. Alternatively, magnetic perturbations can suppress runaway generation by increasing the loss rate. In TEXTOR disruptions runaway losses were enhanced by the application of resonant magnetic perturbations with toroidal mode number n=1 and n=2. The disruptions are initiated by fast injection of about 3x10 21 argon atoms, which leads to a reliable generation of runaway electrons. At sufficiently high perturbation levels a reduction of the runaway current, a shortening of the current plateau, and the suppression of high energetic runaways are observed. These findings indicate the suppression of the runaway avalanche during disruptions

  10. PREFACE: A Stellar Journey A Stellar Journey

    Science.gov (United States)

    Asplund, M.

    2008-10-01

    The conference A Stellar Journey was held in Uppsala, Sweden, 23 27June 2008, in honour of Professor Bengt Gustafsson's 65th birthday. The choice of Uppsala as the location for this event was obvious given Bengt's long-standing association with the city stemming back to his school days. With the exception of a two-year postdoc stint in Copenhagen, five years as professor at Stockholm University and two years as director of the Sigtuna foundation, Bengt has forged his illustrious professional career at Uppsala University. The symposium venue was Museum Gustavianum, once the main building of the oldest university in Scandinavia. The title of the symposium is a paraphrasing of Bengt's popular astronomy book Kosmisk Resa (in English: Cosmic Journey) written in the early eighties. I think this aptly symbolizes his career that has been an astronomical voyage from near to far, from the distant past to the present. The original book title was modified slightly to reflect that most of his work to date has dealt with stars in one way or another. In addition it also gives credit to Bengt's important role as a guiding light for a very large number of students, colleagues and collaborators, indeed for several generations of astronomers. For me personally, the book Kosmisk Resa bears particular significance as it has shaped my life rather profoundly. Although I had already decided to become an astronomer, when I first read the book as a 14-year-old I made up my mind then and there that I would study under Bengt Gustafsson and work on stars. Indeed I have remained true to this somewhat audacious resolution. I suspect that a great number of us have similar stories how Bengt has had a major influence on our lives, whether on the professional or personal level. Perhaps Bengt's most outstanding characteristic is his enthralling enthusiasm. This is equally true whether he is pondering some scientific conundrum, supervising students or performing in front of an audience, be it an

  11. Stellar magnetic activity

    International Nuclear Information System (INIS)

    Schrijver, C.J.

    1986-01-01

    The stellar emission in the chromospheric Ca II H+K lines is compared with the coronal soft X-ray emission, measuring the effects of non-radiative heating in the outer atmosphere at temperatures differing two orders of magnitude. The comparison of stellar flux densities in Ca II H+K and X-rays is extended to fluxes from the transition-region and the high-temperature chromosphere. The stellar magnetic field is probably generated in the differentially rotating convective envelope. The relation between rotation rate and the stellar level of activity measured in chromospheric, transition-region, and coronal radiative diagnostics is discovered. X-ray observations of the binary λ Andromedae are discussed. The departure of M-type dwarfs from the main relations, and the implications for the structure of the chromospheres of these stars are discussed. Variations of the average surface flux densities of the Sun during the 11-year activity cycle agree with flux-flux relations derived for other cool stars, suggesting that the interpretation of the stellar relations may be furthered by studying the solar analogue in more detail. (Auth.)

  12. Runaway beam studies during disruptions at JET-ILW

    International Nuclear Information System (INIS)

    Reux, C.; Plyusnin, V.; Alper, B.; Alves, D.; Bazylev, B.; Belonohy, E.; Brezinsek, S.; Decker, J.; Devaux, S.; Vries, P. de; Fil, A.

    2015-01-01

    Highlights: • Runaway electrons (RE) have been obtained at JET-ILW using massive argon injection. • The runaway electron domain entry points are similar between JET-C and JET-ILW. • Inside the runaway electron domain, higher RE currents are observed with JET-ILW. • RE impact has been observed without material melting up to 100 kA RE current. • Heat deposition of 2 ± 1 mm is confirmed by measurements and simulations. - Abstract: Runaway electrons (RE) during disruptions are a concern for future tokamaks including ITER with its metallic wall. Although RE are rare in spontaneous disruptions with the JET ITER-like Wall (JET-ILW), RE beams up to 380 kA were obtained using massive injection (MGI) of argon in JET-ILW divertor discharges. Entry points into the RE domain defined by operational parameters (toroidal field, argon fraction in MGI) are unchanged but higher RE currents have been obtained inside the JET-ILW MGI-generated RE domain when compared to JET-C. This might be due to the influence of the metallic wall on the current quench plasma. Temperatures of 900 °C have been observed following RE impacts on beryllium tiles. Heat deposition depth of ∼2 mm has to be assumed to match the tile cooling time. 3D simulations of the RE energy deposition using the ENDEP/MEMOS codes show that material melting is unlikely with 100 kA RE beams

  13. Runaway beam studies during disruptions at JET-ILW

    Energy Technology Data Exchange (ETDEWEB)

    Reux, C., E-mail: cedric.reux@cea.fr [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Plyusnin, V. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Instituto de Plasmas e Fuso Nuclear, Instituto Superior Tcnico, Universidade de Lisboa, Lisboa (Portugal); Alper, B. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Alves, D. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Instituto de Plasmas e Fuso Nuclear, Instituto Superior Tcnico, Universidade de Lisboa, Lisboa (Portugal); Bazylev, B. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Institut für Hochleistungsimpuls und Mikrowellentechnik, Karlsruhe Institute of Technology, Campus Nord, 76021 Karlsruhe (Germany); Belonohy, E. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EFDA-CSU, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Brezinsek, S. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Forschungszentrum Jülich GmbH, Institut für Energie-und Klimaforschung-Plasmaphysik, 52425 Jülich (Germany); Decker, J. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Devaux, S. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Vries, P. de [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France); Fil, A. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); and others

    2015-08-15

    Highlights: • Runaway electrons (RE) have been obtained at JET-ILW using massive argon injection. • The runaway electron domain entry points are similar between JET-C and JET-ILW. • Inside the runaway electron domain, higher RE currents are observed with JET-ILW. • RE impact has been observed without material melting up to 100 kA RE current. • Heat deposition of 2 ± 1 mm is confirmed by measurements and simulations. - Abstract: Runaway electrons (RE) during disruptions are a concern for future tokamaks including ITER with its metallic wall. Although RE are rare in spontaneous disruptions with the JET ITER-like Wall (JET-ILW), RE beams up to 380 kA were obtained using massive injection (MGI) of argon in JET-ILW divertor discharges. Entry points into the RE domain defined by operational parameters (toroidal field, argon fraction in MGI) are unchanged but higher RE currents have been obtained inside the JET-ILW MGI-generated RE domain when compared to JET-C. This might be due to the influence of the metallic wall on the current quench plasma. Temperatures of 900 °C have been observed following RE impacts on beryllium tiles. Heat deposition depth of ∼2 mm has to be assumed to match the tile cooling time. 3D simulations of the RE energy deposition using the ENDEP/MEMOS codes show that material melting is unlikely with 100 kA RE beams.

  14. Study of runaway electron generation during major disruptions in JET

    Czech Academy of Sciences Publication Activity Database

    Plyusnin, V.V.; Riccardo, V.; Jaspers, R.; Alper, B.; Kiptily, V.G.; Mlynář, Jan; Popovichev, S.; de La Luna, E.; Andersson, F.

    2006-01-01

    Roč. 46, č. 2 (2006), s. 277-284 ISSN 0029-5515 Institutional research plan: CEZ:AV0Z2043910 Keywords : JET * tokamak * fusion * dicsruption * runaway electrons * tomography Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.839, year: 2006

  15. Gang Involvement and Membership among Homeless and Runaway Youth.

    Science.gov (United States)

    Yoder, Kevin A.; Whitbeck, Les B.; Hoyt, Dan R.

    2003-01-01

    Assessed the extent of gang involvement among homeless and runaway youth, comparing gang members, gang-involved youth (not members), and non-gang youth on several dimensions. Interview data indicated that 15.4 percent of the youth were gang members and 32.2 percent were involved in gangs. These youth reported more family problems and school…

  16. Low Simulated Radiation Limit for Runaway Greenhouse Climates

    Science.gov (United States)

    Goldblatt, Colin; Robinson, Tyler D.; Zahnle, Kevin J.; Crisp, David

    2013-01-01

    Terrestrial planet atmospheres must be in long-term radiation balance, with solar radiation absorbed matched by thermal radiation emitted. For hot moist atmospheres, however, there is an upper limit on the thermal emission which is decoupled from the surface temperature. If net absorbed solar radiation exceeds this limit the planet will heat uncontrollably, the so-called \\runaway greenhouse". Here we show that a runaway greenhouse induced steam atmosphere may be a stable state for a planet with the same amount of incident solar radiation as Earth has today, contrary to previous results. We have calculated the clear-sky radiation limits at line-by-line spectral resolution for the first time. The thermal radiation limit is lower than previously reported (282 W/sq m rather than 310W/sq m) and much more solar radiation would be absorbed (294W/sq m rather than 222W/sq m). Avoiding a runaway greenhouse under the present solar constant requires that the atmosphere is subsaturated with water, and that cloud albedo forcing exceeds cloud greenhouse forcing. Greenhouse warming could in theory trigger a runaway greenhouse but palaeoclimate comparisons suggest that foreseeable increases in greenhouse gases will be insufficient to do this.

  17. Velocity Distributions of Runaway Stars Produced by Supernovae in ...

    Indian Academy of Sciences (India)

    J. Astrophys. Astr. (2016) 37: 22. DOI: 10.1007/s12036-016-9400-2. Velocity Distributions of Runaway Stars Produced by Supernovae in the Galaxy. Abudusaimaitijiang Yisikandeer. ∗. , Chunhua Zhu, Zhaojun Wang. & Guoliang Lü. School of Physical Science and Technology, Xinjiang University, Urumqi, 830046, China. ∗.

  18. Introduction to stellar structure

    CERN Document Server

    Maciel, Walter J

    2016-01-01

    In the first part of this book, the author presents the basic properties of the stellar interior and describes them thoroughly, along with deriving the main stellar structure equations of temperature, density, pressure and luminosity, among others. The process and application of solving these equations is explained, as well as linking these results with actual observations.  The second part of the text describes what happens to a star over time, and how to determine this by solving the same equations at different points during a star’s lifetime. The fate of various stars is quite different depending on their masses, and this is described in the final parts of the book. This text can be used for an upper level undergraduate course or an introductory graduate course on stellar physics.

  19. Runaway transient simulation of a model Kaplan turbine

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S; Liu, D; Wu, Y [State Key Laboratory of Hydroscience and Engineering, Department of Thermal Eng., Tsinghua University, Beijing, 100084 (China); Zhou, D [Water Conservancy and Hydropower Eng., Hohai University, Nanjing. 210098 (China); Nishi, M, E-mail: liushuhong@tsinghua.edu.c [Kyushu Inst. Tech. Senior Academy, Kitakyushu, 804-8550 (Japan)

    2010-08-15

    The runaway transient is a typical transient process of a hydro power unit, where the rotational speed of a turbine runner rapidly increases up to the runaway speed under a working head as the guide vanes cannot be closed due to some reason at the load rejection. In the present paper, the characteristics of the runaway transient of a model Kaplan turbine having ns = 479(m-kW) is simulated by using a time-dependent CFD technique where equation of rotational motion of runner, continuity equation and unsteady RANS equations with RNG k-{epsilon} turbulence model are solved iteratively. In the calculation, unstructured mesh is used to the whole flow passage, which consists of several sub-domains: entrance, casing, stay vanes + guide vanes, guide section, runner and draft tube. And variable speed sliding mesh technique is used to exchange interface flow information between moving part and stationary part, and three-dimensional unstructured dynamic mesh technique is also adopted to ensure mesh quality. Two cases were treated in the simulation of runaway transient characteristics after load rejection: one is the rated operating condition as the initial condition, and the other is the condition at the maximum head. Regarding the runaway speed, the experimental speed is 1.45 times the initial speed and the calculation is 1.47 times the initial for the former case. In the latter case, the experiment and the calculation are 1.67 times and 1.69 times respectively. From these results, it is recognized that satisfactorily prediction will be possible by using the present numerical method. Further, numerical results show that the swirl in the draft-tube flow becomes stronger in the latter part of the transient process so that a vortex rope will occur in the draft tube and its precession will cause the pressure fluctuations which sometimes affect the stability of hydro power system considerably.

  20. Runaway transient simulation of a model Kaplan turbine

    Science.gov (United States)

    Liu, S.; Zhou, D.; Liu, D.; Wu, Y.; Nishi, M.

    2010-08-01

    The runaway transient is a typical transient process of a hydro power unit, where the rotational speed of a turbine runner rapidly increases up to the runaway speed under a working head as the guide vanes cannot be closed due to some reason at the load rejection. In the present paper, the characteristics of the runaway transient of a model Kaplan turbine having ns = 479(m-kW) is simulated by using a time-dependent CFD technique where equation of rotational motion of runner, continuity equation and unsteady RANS equations with RNG k-epsilon turbulence model are solved iteratively. In the calculation, unstructured mesh is used to the whole flow passage, which consists of several sub-domains: entrance, casing, stay vanes + guide vanes, guide section, runner and draft tube. And variable speed sliding mesh technique is used to exchange interface flow information between moving part and stationary part, and three-dimensional unstructured dynamic mesh technique is also adopted to ensure mesh quality. Two cases were treated in the simulation of runaway transient characteristics after load rejection: one is the rated operating condition as the initial condition, and the other is the condition at the maximum head. Regarding the runaway speed, the experimental speed is 1.45 times the initial speed and the calculation is 1.47 times the initial for the former case. In the latter case, the experiment and the calculation are 1.67 times and 1.69 times respectively. From these results, it is recognized that satisfactorily prediction will be possible by using the present numerical method. Further, numerical results show that the swirl in the draft-tube flow becomes stronger in the latter part of the transient process so that a vortex rope will occur in the draft tube and its precession will cause the pressure fluctuations which sometimes affect the stability of hydro power system considerably.

  1. Runaway transient simulation of a model Kaplan turbine

    International Nuclear Information System (INIS)

    Liu, S; Liu, D; Wu, Y; Zhou, D; Nishi, M

    2010-01-01

    The runaway transient is a typical transient process of a hydro power unit, where the rotational speed of a turbine runner rapidly increases up to the runaway speed under a working head as the guide vanes cannot be closed due to some reason at the load rejection. In the present paper, the characteristics of the runaway transient of a model Kaplan turbine having ns = 479(m-kW) is simulated by using a time-dependent CFD technique where equation of rotational motion of runner, continuity equation and unsteady RANS equations with RNG k-ε turbulence model are solved iteratively. In the calculation, unstructured mesh is used to the whole flow passage, which consists of several sub-domains: entrance, casing, stay vanes + guide vanes, guide section, runner and draft tube. And variable speed sliding mesh technique is used to exchange interface flow information between moving part and stationary part, and three-dimensional unstructured dynamic mesh technique is also adopted to ensure mesh quality. Two cases were treated in the simulation of runaway transient characteristics after load rejection: one is the rated operating condition as the initial condition, and the other is the condition at the maximum head. Regarding the runaway speed, the experimental speed is 1.45 times the initial speed and the calculation is 1.47 times the initial for the former case. In the latter case, the experiment and the calculation are 1.67 times and 1.69 times respectively. From these results, it is recognized that satisfactorily prediction will be possible by using the present numerical method. Further, numerical results show that the swirl in the draft-tube flow becomes stronger in the latter part of the transient process so that a vortex rope will occur in the draft tube and its precession will cause the pressure fluctuations which sometimes affect the stability of hydro power system considerably.

  2. A Runaway Yellow Supergiant Star in the Small Magellanic Cloud

    Science.gov (United States)

    Neugent, Kathryn F.; Massey, Philip; Morrell, Nidia I.; Skiff, Brian; Georgy, Cyril

    2018-05-01

    We recently discovered a yellow supergiant (YSG) in the Small Magellanic Cloud (SMC) with a heliocentric radial velocity of ∼300 km s‑1, which is much larger than expected for a star at its location in the SMC. This is the first runaway YSG ever discovered and only the second evolved runaway star discovered in a galaxy other than the Milky Way. We classify the star as G5-8 I and use de-reddened broad-band colors with model atmospheres to determine an effective temperature of 4700 ± 250 K, consistent with what is expected from its spectral type. The star’s luminosity is then log L/L ⊙ ∼ 4.2 ± 0.1, consistent with it being a ∼30 Myr 9 M ⊙ star according to the Geneva evolution models. The star is currently located in the outer portion of the SMC’s body, but if the star’s transverse peculiar velocity is similar to its peculiar radial velocity, in 10 Myr the star would have moved 1.°6 across the disk of the SMC and could easily have been born in one of the SMC’s star-forming regions. Based on its large radial velocity, we suggest it originated in a binary system where the primary exploded as a supernovae, thus flinging the runaway star out into space. Such stars may provide an important mechanism for the dispersal of heavier elements in galaxies given the large percentage of massive stars that are runaways. In the future, we hope to look into additional evolved runaway stars that were discovered as part of our other past surveys. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  3. The Galactic stellar disc

    International Nuclear Information System (INIS)

    Feltzing, S; Bensby, T

    2008-01-01

    The study of the Milky Way stellar discs in the context of galaxy formation is discussed. In particular, we explore the properties of the Milky Way disc using a new sample of about 550 dwarf stars for which we have recently obtained elemental abundances and ages based on high-resolution spectroscopy. For all the stars we also have full kinematic information as well as information about their stellar orbits. We confirm results from previous studies that the thin and the thick discs have distinct abundance patterns. But we also explore a larger range of orbital parameters than what has been possible in our previous studies. Several new results are presented. We find that stars that reach high above the Galactic plane and have eccentric orbits show remarkably tight abundance trends. This implies that these stars formed out of well-mixed gas that had been homogenized over large volumes. We find some evidence that suggest that the event that most likely caused the heating of this stellar population happened a few billion years ago. Through a simple, kinematic exploration of stars with super-solar [Fe/H], we show that the solar neighbourhood contains metal-rich, high velocity stars that are very likely associated with the thick disc. Additionally, the HR1614 moving group and the Hercules and Arcturus stellar streams are discussed and it is concluded that, probably, a large fraction of the groups and streams so far identified in the disc are the result of evolution and interactions within the stellar disc rather than being dissolved stellar clusters or engulfed dwarf galaxies.

  4. Transport in stellarators

    International Nuclear Information System (INIS)

    Maassberg, H.; Brakel, R.; Burhenn, R.; Gasparino, U.; Grigull, P.; Kick, M.; Kuehner, G.; Ringler, H.; Sardei, F.; Stroth, U.; Weller, A.

    1993-01-01

    The local electron and ion heat transport as well as the particle and impurity transport properties in stellarators are reviewed. In this context, neoclassical theory is used as a guideline for the comparison of the experimental results of the quite different confinement concepts. At sufficiently high temperatures depending on the specific magnetic configuration, neoclassical predictions are confirmed by experimental findings. The confinement properties in the LMFP collisionality regime are discussed with respect to the next stellarator generation, for which at higher temperatures the neoclassical transport is expected to become more important. (orig.)

  5. Solar and stellar oscillations

    International Nuclear Information System (INIS)

    Fossat, E.

    1981-01-01

    We try to explain in simple words what a stellar oscillation is, what kind of restoring forces and excitation mechanisms can be responsible for its occurence, what kind of questions the theoretician asks to the observer and what kind of tools the latter is using to look for the answers. A selected review of the most striking results obtained in the last few years in solar seismology and the present status of their consequences on solar models is presented. A brief discussion on the expected extension towards stellar seismology will end the paper. A selected bibliography on theory as well as observations and recent papers is also included. (orig.)

  6. The fundamentals of stellar astrophysics

    International Nuclear Information System (INIS)

    Collins, G.W. II.

    1989-01-01

    A broad overview of theoretical stellar astrophysics is presented in a textbook intended for graduate students. Chapters are devoted to fundamental principles, assumptions, theorems, and polytropes; energy sources and sinks; the flow of energy through the star and the construction of stellar models; the theory of stellar evolution; relativistic stellar structure; the structure of distorted stars; stellar pulsation and oscillation. Also discussed are the flow of radiation through the stellar atmosphere, the solution of the radiative-transfer equation, the environment of the radiation field, the construction of a stellar model atmosphere, the formation and shape of spectral lines, LTE breakdown, illuminated and extended stellar atmospheres, and the transfer of polarized radiation. Diagrams, graphs, and sample problems are provided. 164 refs

  7. Progress Toward Attractive Stellarators

    International Nuclear Information System (INIS)

    Neilson, G.H.; Bromberg, L.; Brown, T.G.; Gates, D.A.; Ku, L.P.; Zarnstorff, M.C.; Boozer, A.H.; Harris, J.H.; Meneghini, O.; Mynick, H.E.; Pomphrey, N.; Reiman, A.H.; Xanthopoulos, P.

    2011-01-01

    The quasi-axisymmetric stellarator (QAS) concept offers a promising path to a more compact stellarator reactor, closer in linear dimensions to tokamak reactors than previous stellarator designs. Concept improvements are needed, however, to make it more maintainable and more compatible with high plant availability. Using the ARIES-CS design as a starting point, compact stellarator designs with improved maintenance characteristics have been developed. While the ARIES-CS features a through-the-port maintenance scheme, we have investigated configuration changes to enable a sector-maintenance approach, as envisioned for example in ARIES AT. Three approaches are reported. The first is to make tradeoffs within the QAS design space, giving greater emphasis to maintainability criteria. The second approach is to improve the optimization tools to more accurately and efficiently target the physics properties of importance. The third is to employ a hybrid coil topology, so that the plasma shaping functions of the main coils are shared more optimally, either with passive conductors made of high-temperature superconductor or with local compensation coils, allowing the main coils to become simpler. Optimization tools are being improved to test these approaches.

  8. Stellar population synthesis

    International Nuclear Information System (INIS)

    Pickles, A.J.

    1989-01-01

    The techniques used to derive astrophysically useful information from observations of the integrated light of composite stellar systems are briefly reviewed. A synthesis technique, designed to separate and describe on a standard system the competing effects of age and metallicity variations is introduced, and illustrated by its application to the study of the history of star formation in bright elliptical galaxies in clusters. (author)

  9. Relativistic stellar dynamics

    International Nuclear Information System (INIS)

    Contopoulos, G.

    1983-01-01

    In this paper, three main areas of relativistic stellar dynamics are reviewed: (a) The dynamics of clusters, or nuclei of galaxies, of very high density; (b) The dynamics of systems containing a massive black hole; and (c) The dynamics of particles (and photons) in an expanding Universe. The emphasis is on the use of orbit perturbations. (Auth.)

  10. Compact stellarator coils

    International Nuclear Information System (INIS)

    Pomphrey, N.; Berry, L.A.; Boozer, A.H.

    2001-01-01

    Experimental devices to study the physics of high-beta (β>∼4%), low aspect ratio (A<∼4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility, and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, we have made several innovations that may be useful in future stellarator design efforts. These include: the use of Singular Value Decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a Control Matrix Method for identifying which few of the many detailed elements of the stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of Genetic Algorithms for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the tradeoff between physics objective and engineering constraints; the development of a new coil optimization code for designing modular coils, and the identification of a 'natural' basis for describing current sheet distributions. (author)

  11. Stellar Structure and Evolution

    CERN Document Server

    Kippenhahn, Rudolf; Weiss, Achim

    2013-01-01

    This long-awaited second edition of the classical textbook on Stellar Structure and Evolution by Kippenhahn and Weigert is a thoroughly revised version of the original text. Taking into account modern observational constraints as well as additional physical effects such as mass loss and diffusion, Achim Weiss and Rudolf Kippenhahn have succeeded in bringing the book up to the state-of-the-art with respect to both the presentation of stellar physics and the presentation and interpretation of current sophisticated stellar models. The well-received and proven pedagogical approach of the first edition has been retained. The book provides a comprehensive treatment of the physics of the stellar interior and the underlying fundamental processes and parameters. The models developed to explain the stability, dynamics and evolution of the stars are presented and great care is taken to detail the various stages in a star’s life. Just as the first edition, which remained a standard work for more than 20 years after its...

  12. 8. stellarator workshop

    International Nuclear Information System (INIS)

    1991-07-01

    The technical reports in this collection of papers were presented at the 8th International Workshop on Stellarators, and International Atomic Energy Agency Technical Committee Meeting. They include presentations on transport, magnetic configurations, fluctuations, equilibrium, stability, edge plasma and wall aspects, heating, diagnostics, new concepts and reactor studies. Refs, figs and tabs

  13. Stellar wind theory

    International Nuclear Information System (INIS)

    Summers, D.

    1980-01-01

    The theory of stellar winds as given by the equations of classical fluid dynamics is considered. The equations of momentum and energy describing a steady, spherically symmetric, heat-conducting, viscous stellar wind are cast in a dimensionless form which involves a thermal conduction parameter E and a viscosity parameter γ. An asymptotic analysis is carried out, for fixed γ, in the cases E→O and E→infinity (corresponding to small and large thermal conductivity, respectively), and it is found that it is possible to construct critical solutions for the wind velocity and temperature over the entire flow. The E→O solution represents a wind which emanates from the star at low, subsonic speeds, accelerates through a sonic point, and then approaches a constant asymptotic speed, with its temperature varying as r/sup -4/3/ at large distances r from the star; the E→infinity solution represents a wind which, after reaching an approximately constant speed, with temperature varying as r/sup -2/7/, decelerates through a diffuse shock and approaches a finite pressure at infinity. A categorization is made of all critical stellar wind solutions for given values of γ and E, and actual numerical examples are given. Numerical solutions are obtained by integrating upstream 'from infinity' from initial values of the flow parameters given by appropriate asymptotic expansions. The role of viscosity in stellar wind theory is discussed, viscous and inviscid stellar wind solutions are compared, and it is suggested that with certain limitations, the theory presented may be useful in analyzing winds from solar-type stars

  14. Runaway electrons in disruptions and perturbed magnetic topologies of tokamak plasmas

    International Nuclear Information System (INIS)

    Forster, Michael

    2012-01-01

    Nuclear fusion represents a valuable perspective for a safe and reliable energy supply from the middle of the 21st century on. Currently, the tokamak is the most advanced principle of confining a man-made fusion plasma. The operation of future, reactor sized tokamaks like ITER faces a crucial difficulty in the generation of runaway electrons. The runaway of electrons is a free fall acceleration into the relativistic regime which is known in various kinds of plasmas including astrophysical ones, thunderbolts and fusion plasmas. The tokamak disruption instability can include the conversion of a substantial part of the plasma current into a runaway electron current. When the high energetic runaways are lost, they can strike the plasma facing components at localised spots. Due to their high energies up to a few tens of MeV, the runaways carry the potential to reduce the lifetimes of wall components and even to destroy sensitive, i.e. actively cooled parts. The research for effective ways to suppress the generation of runaway electrons is hampered by the lack of a complete understanding of the physics of the runaways in disruptions. As it is practically impossible to use standard electron detectors in the challenging environment of a tokamak, the experimental knowledge about runaways is limited and it relies on rather indirect techniques of measurement. The main diagnostics used for this PhD work are three reciprocating probes which measure the runaway electrons directly at the plasma edge of the tokamak TEXTOR. A calorimetric probe and a material probe which exploits the signature that a runaway beam impact leaves in the probe were developed in the course of the PhD work. Novel observations of the burst-like runaway electron losses in tokamak disruptions are reported. The runaway bursts are temporally resolved and first-time measurements of the corresponding runaway energy spectra are presented. A characteristic shape and typical burst to burst variations of the

  15. Note: Measurement of the runaway electrons in the J-TEXT tokamak

    International Nuclear Information System (INIS)

    Chen, Z. Y.; Zhang, Y.; Zhang, X. Q.; Luo, Y. H.; Jin, W.; Li, J. C.; Chen, Z. P.; Wang, Z. J.; Yang, Z. J.; Zhuang, G.

    2012-01-01

    The runaway electrons have been measured by hard x-ray detectors and soft x-ray array in the J-TEXT tokamak. The hard x-ray radiations in the energy ranges of 0.5-5 MeV are measured by two NaI detectors. The flux of lost runaway electrons can be obtained routinely. The soft x-ray array diagnostics are used to monitor the runaway beam generated in disruptions since the soft x-ray is dominated by the interaction between runaway electrons and metallic impurities inside the plasma. With the aid of soft x-ray array, runaway electron beam has been detected directly during the formation of runaway current plateau following the disruptions.

  16. Observation of runaway electrons by infrared camera in J-TEXT

    Energy Technology Data Exchange (ETDEWEB)

    Tong, R. H.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Zhang, M.; Huang, D. W.; Yan, W.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-11-15

    When the energy of confined runaway electrons approaches several tens of MeV, the runaway electrons can emit synchrotron radiation in the range of infrared wavelength. An infrared camera working in the wavelength of 3-5 μm has been developed to study the runaway electrons in the Joint Texas Experimental Tokamak (J-TEXT). The camera is located in the equatorial plane looking tangentially into the direction of electron approach. The runaway electron beam inside the plasma has been observed at the flattop phase. With a fast acquisition of the camera, the behavior of runaway electron beam has been observed directly during the runaway current plateau following the massive gas injection triggered disruptions.

  17. Influence of the angular scattering of electrons on the runaway threshold in air

    DEFF Research Database (Denmark)

    Chanrion, O.; Bonaventura, Z.; Bourdon, A.

    2016-01-01

    The runaway electron mechanism is of great importance for the understanding of the generation of x- and gamma rays in atmospheric discharges. In 1991, terrestrial gamma-ray flashes (TGFs) were discovered by the Compton Gamma-Ray Observatory. Those emissions are bremsstrahlung from high energy...... electrons that run away in electric fields associated with thunderstorms. In this paper, we discuss the runaway threshold definition with a particular interest in the influence of the angular scattering for electron energy close to the threshold. In order to understand the mechanism of runaway, we compare...... scattering is not valid below 1 MeV where the runaway threshold usually is defined. These results are important for the thermal runaway and the runaway electron avalanche discharge mechanisms suggested to participate in the TGF generation....

  18. Collision Mechanics

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Servis, D.P.; Zhang, Shengming

    1999-01-01

    The first section of the present report describes the procedures that are being programmed at DTU for evaluation of the external collision dynamics. Then follows a detailed description of a comprehensive finite element analysis of one collision scenario for MS Dextra carried out at NTUA. The last...

  19. Relativistic runaway breakdown in low-frequency radio

    DEFF Research Database (Denmark)

    Fullekrug, M.; Roussel-Dupre, R.; Symbalisty, E.M.D.

    2011-01-01

    at a distance of similar to 550 km. The measured broadband pulses occur similar to 4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from similar to 50 to 350 kHz, and they exhibit complex waveforms without the typical...... electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low-frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.......The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which...

  20. Runaway beam studies during disruptions at JET-ILW

    Czech Academy of Sciences Publication Activity Database

    Reux, C.; Plyusnin, V.; Alper, B.; Alves, D.; Bazylev, B.; Belonohy, E.; Brezinsek, S.; Decker, J.; Devaux, S.; de Vries, P.; Fil, A.; Gerasimov, S.; Lupelli, I.; Jachmich, S.; Khilkevitch, E.M.; Kiptily, V.; Koslowski, R.; Kruezi, U.; Lehnen, M.; Manzanares, A.; Mlynář, Jan; Nardon, E.; Nilsson, E.; Riccardo, V.; Saint-Laurent, F.; Shevelev, A.E.; Sozzi, C.

    2015-01-01

    Roč. 463, August (2015), s. 143-149 ISSN 0022-3115. [PLASMA-SURFACE INTERACTIONS 21: International Conference on Plasma-Surface Interactions in Controlled Fusion Devices. Kanazawa, 26.05.2014-30.05.2014] Institutional support: RVO:61389021 Keywords : tokamak * JET * runaway electrons * disruptions * ILW Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 2.199, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022311514006850

  1. Effect of runaway electrons and VDE's on ITER first wall

    International Nuclear Information System (INIS)

    Raffray, A.R.; Cardella, A.; Federici, G.; Ioki, K.; Parker, R.; Akiba, M.; Ezato, K.

    1998-01-01

    Runaway electron and VDE energy deposition transients pose a major Be and W armour lifetime issue depending on their frequencies. The impact is more severe in the case of W because of the high minimum armour thickness required to prevent Cu from melting. Use of W armour should be limited to regions where such 'slow' high energy deposition transients are highly unlikely. Future effort is required to better understand and characterise these events and to develop design measures to address the issue. (author)

  2. Investigation of runaway electrons in the PRETEXT Tokamak

    International Nuclear Information System (INIS)

    Eckstrand, S.A.

    1981-01-01

    High energy (0.2 to 0.4 MeV) runaway electrons have been studied in PRETEXT discharges by detecting the hard x-ray bremsstrahlung radiation produced when they escape from the discharge and strike the limiter. A pulse height analysis system, which included pileup rejection circuitry because of the high count rate, recorded both the amplitude and arrival time of each pulse

  3. Proceedings of US-Japan heliotron-stellarator workshop: Volume 2

    International Nuclear Information System (INIS)

    1987-01-01

    This paper is the second of four volumes on the US-Japan Heliotron-Stellarator workshop. It contains talks on the following: Ripple Transport at Arbitrary Collision Frequency, Transport Scaling in the Collisionless-Detrapping Regime, Transport Analysis for Heliotron E, Transport Analysis for ATF, Simulation Analysis of Heating and Transport, Analysis of W VII-A Data, Numerical Study of Fast Ion Confinement, Benchmarks of NBI Codes for Stellarators, ECH Commissioning and Plans for ATF, and ECH and ICH Startup Analysis

  4. THE NATURE OF THE HYPER-RUNAWAY CANDIDATE HIP 60350

    International Nuclear Information System (INIS)

    Irrgang, Andreas; Przybilla, Norbert; Heber, Ulrich; Fernanda Nieva, M.; Schuh, Sonja

    2010-01-01

    Young, massive stars in the Galactic halo are widely supposed to be the result of an ejection event from the Galactic disk forcing some stars to leave their place of birth as so-called runaway stars. Here, we present a detailed spectroscopic and kinematic analysis of the runaway B star HIP 60350 to determine which runaway scenario-a supernova explosion disrupting a binary system or dynamical interaction in star clusters-may be responsible for HIP 60350's peculiar orbit. Based on a non-local thermodynamic equilibrium approach, a high-resolution optical echelle spectrum was examined to revise spectroscopic quantities and for the first time to perform a differential chemical abundance analysis with respect to the B-type star 18 Peg. The results together with proper motions from the Hipparcos Catalog further allowed the three-dimensional kinematics of the star to be studied numerically. The abundances derived for HIP 60350 are consistent with a slightly supersolar metallicity agreeing with the kinematically predicted place of birth ∼6 kpc away from the Galactic center. However, they do not exclude the possibility of an α-enhanced abundance pattern expected in the case of the supernova scenario. Its outstanding high Galactic rest-frame velocity of 530 ± 35 km s -1 is a consequence of ejection in the direction of Galactic rotation and slightly exceeds the local Galactic escape velocity in a standard Galactic potential. Hence, HIP 60350 may be unbound to the Galaxy.

  5. Runaway transport studies in the TJ-I tokamak

    International Nuclear Information System (INIS)

    Rodriguez, L.; Vega, J.; Rodriguez-Yunta, A.; Castejon, F.; Pardo, C.; Navarro, A. P.

    1994-01-01

    Runaway diffusion coefficient, Dr, for TJ-I tokamak has been deduced using two different methods: In the first one, Dr is obtained using the steady state approach for values of the runaway confinement time Tτ r deduced from hard-X-ray bremsstrahlung spectra; in the second method, D r is deduced from sawteeth oscillations of HXR flux, and of SXR intensity, recorded simultaneously. Data have been taken in a scan with the toroidal magnetic field Bp Values obtained for Dr=[5-10] m 2 s ,decreasing with B Γ , are in both cases consistent. Assuming that magnetic turbulence is responsible for their transport, from D r we can deduce b/B Γ , the magnetic fluctuations level, and then infer the thermal conductivity coefficient χ c . The radial energy resolution of runaway electrons allow us to infer for b B Γ and χ c values at the plasma edge and for an inner position about r=a/2. Results are in good agreement with those ones obtained in TJ-I using probes, spectroscopic methods, power balance analysis and a coupled analysis for temperature and density pulses. (Author) 32 refs

  6. Mechanistic elucidation of thermal runaway in potassium-ion batteries

    Science.gov (United States)

    Adams, Ryan A.; Varma, Arvind; Pol, Vilas G.

    2018-01-01

    For the first time, thermal runaway of charged graphite anodes for K-ion batteries is investigated, using differential scanning calorimetry (DSC) to probe the exothermic degradation reactions. Investigated parameters such as state of charge, cycle number, surface area, and binder demonstrate strong influences on the DSC profiles. Thermal runaway initiates at 100 °C owing to KxC8 - electrolyte reactions, but the K-ion graphite anode evolves significantly less heat as compared to the analogous Li-ion system (395 J g-1 vs. 1048 J g-1). The large volumetric expansion of graphite during potassiation cracks the SEI layer, enabling contact and reaction of KC8 - electrolyte, which diminishes with cycle number due to continuous SEI growth. High surface area graphite decreases the total heat generation, owing to thermal stability of the K-ion SEI layer. These findings illustrate the dynamic nature of K-ion thermal runaway and its many contrasts with the Li-ion graphite system, permitting possible engineering solutions for safer batteries.

  7. Relativistic runaway breakdown in low-frequency radio

    Science.gov (United States)

    Füllekrug, Martin; Roussel-Dupré, Robert; Symbalisty, Eugene M. D.; Chanrion, Olivier; Odzimek, Anna; van der Velde, Oscar; Neubert, Torsten

    2010-01-01

    The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which is characterized by consecutive broadband pulses in the low-frequency radio range from ˜10 to 300 kHz at a distance of ˜800 km. Experimental evidence for the existence of consecutive broadband pulses is provided by low-frequency radio observations of sprite-producing lightning discharges at a distance of ˜550 km. The measured broadband pulses occur ˜4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from ˜50 to 350 kHz, and they exhibit complex waveforms without the typical ionospheric reflection of the first hop sky wave. Two consecutive pulses occur ˜4.5 ms and ˜3 ms after the causative lightning discharge and coincide with the sprite luminosity. It is concluded that relativistic runaway breakdown within the Earth's atmosphere can emit broadband electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low-frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.

  8. High-velocity runaway stars from three-body encounters

    Science.gov (United States)

    Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.

    2010-01-01

    We performed numerical simulations of dynamical encounters between hard, massive binaries and a very massive star (VMS; formed through runaway mergers of ordinary stars in the dense core of a young massive star cluster) to explore the hypothesis that this dynamical process could be responsible for the origin of high-velocity (≥ 200 - 400 km s-1) early or late B-type stars. We estimated the typical velocities produced in encounters between very tight massive binaries and VMSs (of mass of ≥ 200 M⊙) and found that about 3 - 4% of all encounters produce velocities ≥ 400 km s-1, while in about 2% of encounters the escapers attain velocities exceeding the Milky Ways's escape velocity. We therefore argue that the origin of high-velocity (≥ 200 - 400 km s-1) runaway stars and at least some so-called hypervelocity stars could be associated with dynamical encounters between the tightest massive binaries and VMSs formed in the cores of star clusters. We also simulated dynamical encounters between tight massive binaries and single ordinary 50 - 100 M⊙ stars. We found that from 1 to ≃ 4% of these encounters can produce runaway stars with velocities of ≥ 300 - 400 km s-1 (typical of the bound population of high-velocity halo B-type stars) and occasionally (in less than 1% of encounters) produce hypervelocity (≥ 700 km s-1) late B-type escapers.

  9. Ion transport in stellarators

    International Nuclear Information System (INIS)

    Ho, D.D.M.; Kulsrud, R.M.

    1985-09-01

    Stellarator ion transport in the low-collisionality regime with a radial electric field is calculated by a systematic expansion of the drift-Boltzmann equation. The shape of the helical well is taken into account in this calculation. It is found that the barely trapped ions with three to four times the thermal energy give the dominant contribution to the diffusion. Expressions for the ion particle and energy fluxes are derived

  10. Study of the generation and suppression of runaway currents in provoked disruptions in J-TEXT

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.Y., E-mail: zychen@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Chen, Z.P., E-mail: zpchen@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Zhang, Y.; Jin, W.; Fang, D.; Ba, W.G.; Wang, Z.J.; Zhang, M.; Yang, Z.J.; Ding, Y.H.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2012-05-14

    Runaway currents following disruptions have an important effect on the first wall for the next generation tokamak. The behaviors of runaway currents following intentional provoked disruptions have been investigated in the J-TEXT tokamak. It is found that the runaway current generation following provoked disruptions depends on both the toroidal magnetic field and the plasma current. The conversion efficiency of pre-disruptive plasma currents into runaway currents is in the ranges of 30% to 60% in J-TEXT. The runaway currents can be avoided by the intensive gas puffing of H{sub 2} due to the low multiplication factor in J-TEXT. -- Highlights: ► The regime of runaway generation in disruptions in J-TEXT has been established. ► The magnetic field threshold for runaway current generation in disruptions is 2.2 T. ► The conversion efficiency of runaway current is in the ranges of 30% to 60%. ► The runaway currents can be avoided by the intensive gas puffing of H{sub 2}.

  11. Investigation of ring-like runaway electron beams in the EAST tokamak

    International Nuclear Information System (INIS)

    Zhou, R J; Hu, L Q; Li, E Z; Xu, M; Zhong, G Q; Xu, L Q; Lin, S Y; Zhang, J Z

    2013-01-01

    In the EAST tokamak, asymmetrical ring-like runaway electron beams with energy more than 30 MeV and pitch angle about 0.1 were investigated. Those runaway beams carried about 46% of the plasma current and located around the q = 2 rational surface when m/n = 1/1 and m/n = 2/1 MHD modes existed in the plasma. Those runaway beams changed from a hollow to a filled structure during the slow oscillations in the discharge about every 0.2 s, which correlated with a large step-like jump in electron cyclotron emission (ECE) signals, a big spike-like perturbation in Mirnov signals and a large decrease in runaway energy. Between those slow oscillations with large magnitude, fast oscillations with small magnitude also existed about every 0.02 s, which correlated with a small step-like jump in ECE signals, a small spike-like perturbation in Mirnov signals, but no clear decrease in runaway energy and changes in the runaway beam structure. Resonant interactions occurred between runaway electrons and magnetohydrodynamic instabilities, which gave rise to fast pitch angle scattering processes of those resonant runaway electrons, and hence increased the synchrotron radiation. Theoretical calculations of the resonant interaction were given based on a test particle description. Synchrotron radiation of those resonant runaway electrons was increased by about 60% until the end of the resonant interaction. (paper)

  12. Study of the generation and suppression of runaway currents in provoked disruptions in J-TEXT

    International Nuclear Information System (INIS)

    Chen, Z.Y.; Chen, Z.P.; Zhang, Y.; Jin, W.; Fang, D.; Ba, W.G.; Wang, Z.J.; Zhang, M.; Yang, Z.J.; Ding, Y.H.; Zhuang, G.

    2012-01-01

    Runaway currents following disruptions have an important effect on the first wall for the next generation tokamak. The behaviors of runaway currents following intentional provoked disruptions have been investigated in the J-TEXT tokamak. It is found that the runaway current generation following provoked disruptions depends on both the toroidal magnetic field and the plasma current. The conversion efficiency of pre-disruptive plasma currents into runaway currents is in the ranges of 30% to 60% in J-TEXT. The runaway currents can be avoided by the intensive gas puffing of H 2 due to the low multiplication factor in J-TEXT. -- Highlights: ► The regime of runaway generation in disruptions in J-TEXT has been established. ► The magnetic field threshold for runaway current generation in disruptions is 2.2 T. ► The conversion efficiency of runaway current is in the ranges of 30% to 60%. ► The runaway currents can be avoided by the intensive gas puffing of H 2 .

  13. Cas A and the Crab were not stellar binaries at death

    Science.gov (United States)

    Kochanek, C. S.

    2018-01-01

    The majority of massive stars are in binaries, which implies that many core collapse supernovae should be binaries at the time of the explosion. Here we show that the three most recent, local (visual) SNe (the Crab, Cas A and SN 1987A) were not stellar binaries at death, with limits on the initial mass ratios of q = M2/M1 ≲ 0.1. No quantitative limits have previously been set for Cas A and the Crab, while for SN 1987A we merely updated existing limits in view of new estimates of the dust content. The lack of stellar companions to these three ccSNe implies a 90 per cent confidence upper limit on the q ≳ 0.1 binary fraction at death of fb runaway stars.

  14. Status of stellarator research

    International Nuclear Information System (INIS)

    Wobig, H.

    1985-01-01

    In recent years main activities in stellarator research were focussed on production and investigation of currentless plasmas. Several heating methods have been applied: electron cyclotron heating, ion cyclotron heating and neutral beam injection. The parameters achieved in HELIOTRON E and W VII-A are: antin 20 m 3 , Tsub(i) <= 1 keV. The confinement is improved as compared with ohmically heated discharges. By ECRH (P = 200 kW) it is possible to heat electrons up to 1.4 keV, confinement in this regime is dominated already by trapped particle effects. Toroidal currents up to 2 kA - either bootstrap currents or externally driven currents - were observed. High β-values (antiβ = 2%) have been obtained in HELIOTRON E, in this regime already pressure driven MHD-modes were observed. Future experiments (ATF-1 and W VII-AS) will extend the parameter regime to temperatures of several keV. These experiments will give important information about critical problems of the stellarator line (β-limit, neoclassical confinement impurity transport). A few reactor studies of stellarators exist, attention is mainly concentrated on technical problems of the modular coil system

  15. Ballooning Stability of the Compact Quasiaxially Symmetric Stellarator

    International Nuclear Information System (INIS)

    Redi, M.H.; Canik, J.; Dewar, R.L.; Johnson, J.L.; Klasky, S.; Cooper, W.A.; Kerbichler, W.

    2001-01-01

    The magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), expected to achieve good stability and particle confinement is examined with a method that can lead to estimates of global stability. Making use of fully 3D, ideal-MHD stability codes, the QAS beta is predicted to be limited above 4% by ballooning and high-n kink modes. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space [s, alpha, theta(subscript ''k'')]; s is the edge normalized toroidal flux, alpha is the field line variable, and theta(subscript ''k'') is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, with new types of nonsymmetric, eigenvalue isosurfaces in both the stable and unstable spectrum. The isosurfaces around the most unstable points i n parameter space (well above marginal) are topologically spherical. In such cases, attempts to use ray tracing to construct global ballooning modes lead to a k-space runaway. Introduction of a reflecting cutoff in k(perpendicular) to model numerical truncation or finite Larmor radius (FLR) yields chaotic ray paths ergodically filling the allowed phase space, indicating that the global spectrum must be described using the language of quantum chaos theory. However, the isosurface for marginal stability in the cases studied are found to have a more complex topology, making estimation of FLR stabilization more difficult

  16. The Runaway Greenhouse Effect on Earth and other Planets

    Science.gov (United States)

    Rabbette, Maura; Pilewskie, Peter; McKay, Christopher; Young, Robert

    2001-01-01

    Water vapor is an efficient absorber of outgoing longwave infrared radiation on Earth and is the primary greenhouse gas. Since evaporation increases with increasing sea surface temperature, and the increase in water vapor further increases greenhouse warming, there is a positive feedback. The runaway greenhouse effect occurs if this feedback continues unchecked until all the water has left the surface and enters the atmosphere. For Mars and the Earth the runaway greenhouse was halted when water vapor became saturated with respect to ice or liquid water respectively. However, Venus is considered to be an example of a planet where the runaway greenhouse effect did occur, and it has been speculated that if the solar luminosity were to increase above a certain limit, it would also occur on the Earth. Satellite data acquired during the Earth Radiation Budget Experiment (ERBE) under clear sky conditions shows that as the sea surface temperature (SST) increases, the rate of outgoing infrared radiation at the top of the atmosphere also increases, as expected. Over the pacific warm pool where the SST exceeds 300 K the outgoing radiation emitted to space actually decreases with increasing SST, leading to a potentially unstable system. This behavior is a signature of the runaway greenhouse effect on Earth. However, the SST never exceeds 303K, thus the system has a natural cap which stops the runaway. According to Stefan-Boltzmann's law the amount of heat energy radiated by the Earth's surface is proportional to (T(sup 4)). However, if the planet has a substantial atmosphere, it can absorb all infrared radiation from the lower surface before the radiation penetrates into outer space. Thus, an instrument in space looking at the planet does not detect radiation from the surface. The radiation it sees comes from some level higher up. For the earth#s atmosphere the effective temperature (T(sub e)) has a value of 255 K corresponding to the middle troposphere, above most of the

  17. Radio Frequency Electromagnetic Radiation From Streamer Collisions.

    Science.gov (United States)

    Luque, Alejandro

    2017-10-16

    We present a full electromagnetic model of streamer propagation where the Maxwell equations are solved self-consistently together with electron transport and reactions including photoionization. We apply this model to the collision of counter-propagating streamers in gaps tens of centimeters wide and with large potential differences of hundreds of kilovolts. Our results show that streamer collisions emit electromagnetic pulses that, at atmospheric pressure, dominate the radio frequency spectrum of an extended corona in the range from about 100 MHz to a few gigahertz. We also investigate the fast penetration, after a collision, of electromagnetic fields into the streamer heads and show that these fields are capable of accelerating electrons up to about 100 keV. By substantiating the link between X-rays and high-frequency radio emissions and by describing a mechanism for the early acceleration of runaway electrons, our results support the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges.

  18. THE ADVANCED STELLAR COMPASS

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Liebe, Carl Christian

    1997-01-01

    The science objective of the Danish Geomagnetic Research Satellite "Ørsted" is to map the magnetic field of the Earth, with a vector precision of a fraction of a nanotesla. This necessitates an attitude reference instrument with a precision of a few arcseconds onboard the satellite. To meet...... this demand the Advanced Stellar Compass (ASC), a fully autonomous miniature star tracker, was developed. This ASC is capable of both solving the "lost in space" problem and determine the attitude with arcseconds precision. The development, principles of operation and instrument autonomy of the ASC...

  19. Physics of Stellar Convection

    Science.gov (United States)

    Arnett, W. David

    2009-05-01

    We review recent progress using numerical simulations as a testbed for development of a theory of stellar convection, much as envisaged by John von Newmann. Necessary features of the theory, non-locality and fluctuations, are illustrated by computer movies. It is found that the common approximation of convection as a diffusive process presents the wrong physical picture, and improvements are suggested. New observational results discussed at the conference are gratifying in their validation of some of our theoretical ideas, especially the idea that SNIb and SNIc events are related to the explosion of massive star cores which have been stripped by mass loss and binary interactions [1

  20. Systematic search for very-high-energy gamma-ray emission from bow shocks of runaway stars

    Science.gov (United States)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    Context. Runaway stars form bow shocks by ploughing through the interstellar medium at supersonic speeds and are promising sources of non-thermal emission of photons. One of these objects has been found to emit non-thermal radiation in the radio band. This triggered the development of theoretical models predicting non-thermal photons from radio up to very-high-energy (VHE, E ≥ 0.1 TeV) gamma rays. Subsequently, one bow shock was also detected in X-ray observations. However, the data did not allow discrimination between a hot thermal and a non-thermal origin. Further observations of different candidates at X-ray energies showed no evidence for emission at the position of the bow shocks either. A systematic search in the Fermi-LAT energy regime resulted in flux upper limits for 27 candidates listed in the E-BOSS catalogue. Aim. Here we perform the first systematic search for VHE gamma-ray emission from bow shocks of runaway stars. Methods: Using all available archival H.E.S.S. data we search for very-high-energy gamma-ray emission at the positions of bow shock candidates listed in the second E-BOSS catalogue release. Out of the 73 bow shock candidates in this catalogue, 32 have been observed with H.E.S.S. Results: None of the observed 32 bow shock candidates in this population study show significant emission in the H.E.S.S. energy range. Therefore, flux upper limits are calculated in five energy bins and the fraction of the kinetic wind power that is converted into VHE gamma rays is constrained. Conclusions: Emission from stellar bow shocks is not detected in the energy range between 0.14 and 18 TeV.The resulting upper limits constrain the level of VHE gamma-ray emission from these objects down to 0.1-1% of the kinetic wind energy.

  1. Runaway electron beam generation and mitigation during disruptions at JET-ILW

    Czech Academy of Sciences Publication Activity Database

    Reux, C.; Plyusnin, V.; Alper, B.; Alves, D.; Bazylev, B.; Belonohy, E.; Boboc, A.; Brezinsek, S.; Coffey, I.; Decker, J.; Drewelow, P.; Devaux, S.; de Vries, P.C.; Fil, A.; Gerasimov, S.; Giacomelli, L.; Jachmich, S.; Khilkevitch, E.M.; Kiptily, V.; Koslowski, R.; Kruezi, U.; Lehnen, M.; Lupelli, I.; Lomas, P. J.; Manzanares, A.; Martin De Aguilera, A.; Matthews, G.F.; Mlynář, Jan; Nardon, E.; Nilsson, E.; Perez von Thun, C.; Riccardo, V.; Saint-Laurent, F.; Shevelev, A.E.; Sips, G.; Sozzi, C.

    2015-01-01

    Roč. 55, č. 9 (2015), 093013-093013 ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : runaway electrons * disruptions * tokamak * JET * massive gas injection * disruption mitigation * runaway background plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.040, year: 2015 http://iopscience.iop.org/article/10.1088/0029-5515/55/9/093013

  2. Comparative study of runaway electron diffusion in the rise phase of ...

    Indian Academy of Sciences (India)

    The behaviour of runaway electrons in the SINP tokamak, which can be operated in a normal edge safety factor () (NQ) discharge configuration as well as in a low (LQ) configuration, was experimentally investigated, during the initial plasma generation phase. An energy analysis of the runaway electron dynamics in ...

  3. Comparative study of runaway electron diffusion in the rise phase of ...

    Indian Academy of Sciences (India)

    Abstract. The behaviour of runaway electrons in the SINP tokamak, which can be operated in a normal edge safety factor (qa) (NQ) discharge configuration as well as in a low qa (LQ) configuration, was experimentally investigated, during the initial plasma generation phase. An energy analysis of the runaway electron ...

  4. 76 FR 30368 - Announcement of the Publication of Funding Opportunity Announcements under the Runaway and...

    Science.gov (United States)

    2011-05-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families Announcement of the Publication of Funding Opportunity Announcements under the Runaway and Homeless Youth Act AGENCY... (SOP) are now available for application. CFDA Number: 93.623, 93.557. Statutory Authority: Runaway and...

  5. Parents, Teachers, and Peers and Early Adolescent Runaway in Hong Kong

    Science.gov (United States)

    Cheung, Chan-Kiu; Liu, Suk-Ching; Lee, Tak-Yan

    2005-01-01

    Parental monitoring, teacher support, classmate support, and friend relationship presumably affect adolescents' runaway from home. According to social control theory, social control based on conventional social norms would prevent adolescent runaway, but association with friends may erode such control. This expectation appears to hold true in a…

  6. RUNAWAY STARS AND THE ESCAPE OF IONIZING RADIATION FROM HIGH-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    Conroy, Charlie; Kratter, Kaitlin M.

    2012-01-01

    Approximately 30% of all massive stars in the Galaxy are runaways with velocities exceeding 30 km s –1 . Their high speeds allow them to travel ∼0.1-1 kpc away from their birthplace before they explode at the end of their several Myr lifetimes. At high redshift, when galaxies were much smaller than in the local universe, runaways could venture far from the dense inner regions of their host galaxies. From these large radii, and therefore low column densities, much of their ionizing radiation is able to escape into the intergalactic medium. Runaways may therefore significantly enhance the overall escape fraction of ionizing radiation, f esc , from small galaxies at high redshift. We present simple models of the high-redshift runaway population and its impact on f esc as a function of halo mass, size, and redshift. We find that the inclusion of runaways enhances f esc by factors of ≈1.1-8, depending on halo mass, galaxy geometry, and the mechanism of runaway production, implying that runaways may contribute 50%-90% of the total ionizing radiation escaping from high-redshift galaxies. Runaways may therefore play an important role in reionizing the universe.

  7. Model Experiment of Thermal Runaway Reactions Using the Aluminum-Hydrochloric Acid Reaction

    Science.gov (United States)

    Kitabayashi, Suguru; Nakano, Masayoshi; Nishikawa, Kazuyuki; Koga, Nobuyoshi

    2016-01-01

    A laboratory exercise for the education of students about thermal runaway reactions based on the reaction between aluminum and hydrochloric acid as a model reaction is proposed. In the introductory part of the exercise, the induction period and subsequent thermal runaway behavior are evaluated via a simple observation of hydrogen gas evolution and…

  8. Comparison of Family Therapy Outcome with Alcohol-Abusing, Runaway Adolescents

    Science.gov (United States)

    Slesnick, Natasha; Prestopnik, Jillian L

    2009-01-01

    Treatment evaluation for alcohol problem, runaway adolescents and their families is rare. This study recruited primary alcohol problem adolescents (N = 119) and their primary caretakers from two runaway shelters and assigned them to (a) home-based ecologically based family therapy (EBFT), (b) office-based functional family therapy (FFT), or (c)…

  9. Propensity for Violence among Homeless and Runaway Adolescents: An Event History Analysis

    Science.gov (United States)

    Crawford, Devan M.; Whitbeck, Les B.; Hoyt, Dan R.

    2011-01-01

    Little is known about the prevalence of violent behaviors among homeless and runaway adolescents or the specific behavioral factors that influence violent behaviors across time. In this longitudinal study of 300 homeless and runaway adolescents aged 16 to 19 at baseline, the authors use event history analysis to assess the factors associated with…

  10. Stellar axion models

    Energy Technology Data Exchange (ETDEWEB)

    Nowakowski, Daniel; Kuster, Markus; Meister, Claudia V.; Fuelbert, Florian; Hoffmann, Dieter H.H. [TU Darmstadt (Germany). Institut fuer Kernphysik; Weiss, Achim [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    2010-07-01

    An axion helioscope is typically operated to observe the sun as an axion source. Additional pointings at celestial sources, e.g. stars in other galaxies, result in possible detections of axions from distant galactic objects. For the observation of supplementary axion sources we therefore calculate the thereotical axion flux from distant stars by extending axionic flux models for the axion Primakoff effect in the sun to other main sequence stars. The main sequence star models used for our calculations are based on full stellar structure calculations. To deduce the effective axion flux of stellar objects incident on the Earth the All-Sky catalogue was used to obtain the spectral class and distance of the stars treated. Our calculations of the axion flux in the galactic plane show that for a zero age main sequence star an maximum axion flux of {phi}{sub a}=303.43 cm{sup -2}s{sup -1} could be expected. Furthermore we present estimates of axion fluxes from time-evolved stars.

  11. The DEMO Quasisymmetric Stellarator

    Directory of Open Access Journals (Sweden)

    Geoffrey B. McFadden

    2010-02-01

    Full Text Available The NSTAB nonlinear stability code solves differential equations in conservation form, and the TRAN Monte Carlo test particle code tracks guiding center orbits in a fixed background, to provide simulations of equilibrium, stability, and transport in tokamaks and stellarators. These codes are well correlated with experimental observations and have been validated by convergence studies. Bifurcated 3D solutions of the 2D tokamak problem have been calculated that model persistent disruptions, neoclassical tearing modes (NTMs and edge localized modes (ELMs occurring in the International Thermonuclear Experimental Reactor (ITER, which does not pass the NSTAB simulation test for nonlinear stability. So we have designed a quasiaxially symmetric (QAS stellarator with similar proportions as a candidate for the demonstration (DEMO fusion reactor that does pass the test [1]. The configuration has two field periods and an exceptionally accurate 2D symmetry that furnishes excellent thermal confinement and good control of the prompt loss of alpha particles. Robust coils are found from a filtered form of the Biot-Savart law based on a distribution of current over a control surface for the coils and the current in the plasma defined by the equilibrium calculation. Computational science has addressed the issues of equilibrium, stability, and transport, so it remains to develop an effective plan to construct the coils and build a diverter.

  12. CFD research on runaway transient of pumped storage power station caused by pumping power failure

    International Nuclear Information System (INIS)

    Zhang, L G; Zhou, D Q

    2013-01-01

    To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed

  13. First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks

    Science.gov (United States)

    Spong, D. A.; Heidbrink, W. W.; Paz-Soldan, C.; Du, X. D.; Thome, K. E.; Van Zeeland, M. A.; Collins, C.; Lvovskiy, A.; Moyer, R. A.; Austin, M. E.; Brennan, D. P.; Liu, C.; Jaeger, E. F.; Lau, C.

    2018-04-01

    DIII-D experiments at low density (ne˜1019 m-3 ) have directly measured whistler waves in the 100-200 MHz range excited by multi-MeV runaway electrons. Whistler activity is correlated with runaway intensity (hard x-ray emission level), occurs in novel discrete frequency bands, and exhibits nonlinear limit-cycle-like behavior. The measured frequencies scale with the magnetic field strength and electron density as expected from the whistler dispersion relation. The modes are stabilized with increasing magnetic field, which is consistent with wave-particle resonance mechanisms. The mode amplitudes show intermittent time variations correlated with changes in the electron cyclotron emission that follow predator-prey cycles. These can be interpreted as wave-induced pitch angle scattering of moderate energy runaways. The tokamak runaway-whistler mechanisms have parallels to whistler phenomena in ionospheric plasmas. The observations also open new directions for the modeling and active control of runaway electrons in tokamaks.

  14. Are some of the luminous high-latitude stars accretion-powered runaways?

    International Nuclear Information System (INIS)

    Leonard, P.J.T.; Hills, J.G.; Dewey, R.J.

    1992-01-01

    It is well known that (1) runaway stars can be produced via supernova explosions in close binary systems, (2) most of such runaways should possess neutron star companions, and (3) neutron stars receive randomly oriented kicks of ≅ 100 to 200 km s -1 at birth. We find that this kick sometimes has the right amplitude and direction to make the neutron star fall into the runaway. Accretion onto a neutron star is a source of energy that is roughly an order of magnitude more mass efficient than nuclear burning. Thus, runaways containing neutron stars may live much longer than would normally be expected, which would allow them to travel great distances from their birthplaces during their lifetimes. Some of the early B-type stars far from the Galactic plane and the high-latitude F and G-type supergiants may be accretion-powered runaway stars

  15. The production and confinement of runaway electrons with impurity ''killer'' pellets in DIII-D

    International Nuclear Information System (INIS)

    Evans, T.E.; Taylor, P.L.; Whyte, D.G.

    1998-12-01

    Prompt runaway electron bursts, generated by rapidly cooling DIII-D plasmas with argon killer pellets, are used to test a recent knock-on avalanche theory describing the growth of multi-MeV runaway electron currents during disruptions in tokamaks. Runaway current amplitudes, observed during some but not all DIII-D current quenches, are consistent with growth rates predicted by the theory assuming a pre-current quench runaway electron density of approximately 10 15 m -3 . Argon killer pellet modeling yields runaway densities of between 10 15 --10 16 m -3 in these discharges. Although knock-on avalanching appears to agree rather well with the measurements, relatively small avalanche amplification factors combined with uncertainties in the spatial distribution of pellet mass and cooling rates make it difficult to unambiguously confirm the proposed theory with existing data

  16. Observation of thermal quench induced by runaway electrons in magnetic perturbation

    Science.gov (United States)

    Cheon, MunSeong; Seo, Dongcheol; Kim, Junghee

    2018-04-01

    Experimental observations in Korea Superconducting Tokamak Advanced Research (KSTAR) plasmas show that a loss of pre-disruptive runaway electrons can induce a rapid radiative cooling of the plasma, by generating impurity clouds from the first wall. The synchrotron radiation image shows that the loss of runaway electrons occurs from the edge region when the resonant magnetic perturbation is applied on the plasma. When the impact of the runaway electrons on the wall is strong enough, a sudden drop of the electron cyclotron emission (ECE) signal occurs with the characteristic plasma behaviors such as the positive spike and following decay of the plasma current, Dα spike, big magnetic fluctuation, etc. The visible images at this runaway loss show an evidence of the generation of impurity cloud and the following radiative cooling. When the runaway beam is located on the plasma edge, thermal quenches are expected to occur without global destruction of the magnetic structure up to the core.

  17. Quasi-linear analysis of the extraordinary electron wave destabilized by runaway electrons

    Energy Technology Data Exchange (ETDEWEB)

    Pokol, G. I.; Kómár, A.; Budai, A. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Budapest (Hungary); Stahl, A.; Fülöp, T. [Department of Applied Physics, Chalmers University of Technology, Göteborg (Sweden)

    2014-10-15

    Runaway electrons with strongly anisotropic distributions present in post-disruption tokamak plasmas can destabilize the extraordinary electron (EXEL) wave. The present work investigates the dynamics of the quasi-linear evolution of the EXEL instability for a range of different plasma parameters using a model runaway distribution function valid for highly relativistic runaway electron beams produced primarily by the avalanche process. Simulations show a rapid pitch-angle scattering of the runaway electrons in the high energy tail on the 100–1000 μs time scale. Due to the wave-particle interaction, a modification to the synchrotron radiation spectrum emitted by the runaway electron population is foreseen, exposing a possible experimental detection method for such an interaction.

  18. Electromagnetic waves destabilized by runaway electrons in near-critical electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Komar, A.; Pokol, G. I. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Association EURATOM, H-1111 Budapest (Hungary); Fueloep, T. [Department of Applied Physics, Nuclear Engineering, Chalmers University of Technology and Euratom-VR Association, Goeteborg (Sweden)

    2013-01-15

    Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work, we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case, we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.

  19. Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field

    Science.gov (United States)

    Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.

    2012-08-01

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  20. Sexual Health Information Seeking Online Among Runaway and Homeless Youth.

    Science.gov (United States)

    Barman-Adhikari, Anamika; Rice, Eric

    2011-06-01

    Research shows runaway and homeless youth are reluctant to seek help from traditional health providers. The Internet can be useful in engaging this population and meeting their needs for sexual health information, including information about HIV and other sexually transmitted infections (STIs). Using a sample of homeless youth living in Los Angeles, California in June 2009, this study assesses the frequency with which runaway and homeless youth seek sexual health information via the Internet, and assesses which youth are more likely to engage in seeking health information from online sources. Drawing from Andersen's (1968) health behavior model and Pescosolido's (1992) network episode model, we develop and refine a model for seeking online sexual health information among homeless youth. Rather than testing the predicative strength of a given model, our aim is to identify and explore conceptually driven correlates that may shed light on the characteristics associated with these help seeking behaviors among homeless youth. Analyses using multivariate logistic regression models reveal that among the sample of youth, females and gay males most frequently seek sexual health information online. We demonstrate the structure of social network ties (e.g., connection with parents) and the content of interactions (e.g., e-mail forwards of health information) across ties are critical correlates of online sexual health information seeking. Results show a continued connection with parents via the Internet is significantly associated with youth seeking HIV or STI information. Similarly for content of interactions, more youth who were sent health information online also reported seeking HIV information and HIV-testing information. We discuss implications for intervention and practice, focusing on how the Internet may be used for dissemination of sexual health information and as a resource for social workers to link transient, runaway, and homeless youth to care.

  1. Thermonuclear runaways in thick hydrogen rich envelopes of neutron stars

    Science.gov (United States)

    Starrfield, S. G.; Kenyon, S.; Truran, J. W.; Sparks, W. M.

    1981-01-01

    A Lagrangian, fully implicit, one dimensional hydrodynamic computer code was used to evolve thermonuclear runaways in the accreted hydrogen rich envelopes of 1.0 Msub solar neutron stars with radii of 10 km and 20 km. Simulations produce outbursts which last from about 750 seconds to about one week. Peak effective temeratures and luninosities were 26 million K and 80 thousand Lsub solar for the 10 km study and 5.3 millison and 600 Lsub solar for the 20 km study. Hydrodynamic expansion on the 10 km neutron star produced a precursor lasting about one ten thousandth seconds.

  2. Production of runaway electrons by negative streamer discharges

    DEFF Research Database (Denmark)

    Chanrion, Olivier Arnaud; Neubert, Torsten

    2010-01-01

    thunderstorms, the so-called Terrestrial Gamma-Ray Flashes. The radiation is thought to be bremsstrahlung from energetic (MeV) electrons accelerated in a thunderstorm discharge. The observation goes against conventional wisdom that discharges in air are carried by electrons with energies below a few tens of e...... and the conditions on the electric field for the acceleration of electrons into the runaway regime. We use particle codes to describe the process of stochastic acceleration and introduce a novel technique that improves the statistics of the relatively few electrons that reach high energies. The calculation...

  3. Runaway electron beam control for longitudinally pumped metal vapor lasers

    Science.gov (United States)

    Kolbychev, G. V.; Kolbycheva, P. D.

    1995-08-01

    Physics and techniques for producing of the pulsed runaway electron beams are considered. The main obstacle for increasing electron energies in the beams is revealed to be a self- breakdown of the e-gun's gas-filled diode. Two methods to suppress the self-breakdown and enhance the volumetric discharge producing the e-beam are offered and examined. Each of them provides 1.5 fold increase of the ceiling potential on the gun. The methods also give the ways to control several guns simultaneously. Resulting in the possibility of realizing the powerful longitudinal pumping of metal-vapor lasers on self-terminated transitions of atoms or ions.

  4. A Search for Pulsar Companions to OB Runaway Stars

    Science.gov (United States)

    Kaspi, V. M.

    1995-01-01

    We have searched for radio pulsar companions to 40 nearby OB runaway stars. Observations were made at 474 and 770 MHz with the NRAO 140 ft telescope. The survey was sensitive to long- period pulsars with flux densities of 1 mJy or more. One previously unknown pulsar was discovered, PSRJ2044+4614, while observing towards target O star BD+45,3260. Follow-up timing observations of the pulsar measured its position to high precision, revealing a 9' separation between the pulsar and the target star, unequivocally indicating they are not associated.

  5. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    Science.gov (United States)

    Meyer, D. M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V. V.; Mignone, A.; Izzard, R. G.; Kaper, L.

    2014-11-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [O III]. The Hα emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.

  6. Second harmonic electron cyclotron breakdown in stellarators

    International Nuclear Information System (INIS)

    Carter, M.D.; Batchelor, D.B.; England, A.C.

    1987-01-01

    In linear wave-particle interaction models, the coupling between cold electrons and microwaves with frequency equal to twice the electron gyrofrequency is so weak that the ionization of a significant number of neutral hydrogen atoms would seem impossible in practical applications. However, the non-linear interaction of a cold electron with the wave is very large if the electron becomes trapped near resonance in a shallow, static magnetic well. A model has been developed to describe the breakdown of a neutral gas when these non-linear interactions are considered, and it is in reasonable agreement with the limited amount of available experimental data. For gas pressures that are too large, electron-neutral collisions inhibit the non-linear interaction and prevent breakdown. For gas pressures that are too low, the growth rate of the free electron population is limited because electrons capable of causing ionization are lost before suffering a collision with a neutral. Quantitative growth rate predictions are presented for stellarators, and formulae for rough estimates are given. (author)

  7. A catalog of stellar spectrophotometry

    Science.gov (United States)

    Adelman, S. J.; Pyper, D. M.; Shore, S. N.; White, R. E.; Warren, W. H., Jr.

    1989-01-01

    A machine-readable catalog of stellar spectrophotometric measurements made with rotating grating scanner is introduced. Consideration is given to the processes by which the stellar data were collected and calibrated with the fluxes of Vega (Hayes and Latham, 1975). A sample page from the spectrophotometric catalog is presented.

  8. Quasisymmetry equations for conventional stellarators

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    1994-11-01

    General quasisymmetry condition, which demands the independence of B 2 on one of the angular Boozer coordinates, is reduced to two equations containing only geometrical characteristics and helical field of a stellarator. The analysis is performed for conventional stellarators with a planar circular axis using standard stellarator expansion. As a basis, the invariant quasisymmetry condition is used. The quasisymmetry equations for stellarators are obtained from this condition also in an invariant form. Simplified analogs of these equations are given for the case when averaged magnetic surfaces are circular shifted torii. It is shown that quasisymmetry condition can be satisfied, in principle, in a conventional stellarator by a proper choice of two satellite harmonics of the helical field in addition to the main harmonic. Besides, there appears a restriction on the shift of magnetic surfaces. Thus, in general, the problem is closely related with that of self-consistent description of a configuration. (author)

  9. Nucleosynthesis in stellar explosions

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, S.E.; Axelrod, T.S.; Weaver, T.A.

    1983-01-01

    The final evolution and explosion of stars from 10 M/sub solar/ to 10/sup 6/ M/sub solar/ are reviewed with emphasis on factors affecting the expected nucleosynthesis. We order our paper in a sequence of decreasing mass. If, as many suspect, the stellar birth function was peaked towards larger masses at earlier times (see e.g., Silk 1977; but also see Palla, Salpeter, and Stahler 1983), this sequence of masses might also be regarded as a temporal sequence. At each stage of Galactic chemical evolution stars form from the ashes of preceding generations which typically had greater mass. A wide variety of Type I supernova models, most based upon accreting white dwarf stars, are also explored using the expected light curves, spectra, and nucleosynthesis as diagnostics. No clearly favored Type I model emerges that is capable of simultaneously satisfying all three constraints.

  10. Nucleosynthesis in stellar explosions

    International Nuclear Information System (INIS)

    Woosley, S.E.; Axelrod, T.S.; Weaver, T.A.

    1983-01-01

    The final evolution and explosion of stars from 10 M/sub solar/ to 10 6 M/sub solar/ are reviewed with emphasis on factors affecting the expected nucleosynthesis. We order our paper in a sequence of decreasing mass. If, as many suspect, the stellar birth function was peaked towards larger masses at earlier times (see e.g., Silk 1977; but also see Palla, Salpeter, and Stahler 1983), this sequence of masses might also be regarded as a temporal sequence. At each stage of Galactic chemical evolution stars form from the ashes of preceding generations which typically had greater mass. A wide variety of Type I supernova models, most based upon accreting white dwarf stars, are also explored using the expected light curves, spectra, and nucleosynthesis as diagnostics. No clearly favored Type I model emerges that is capable of simultaneously satisfying all three constraints

  11. Remarks on stellar clusters

    International Nuclear Information System (INIS)

    Teller, E.

    1985-01-01

    In the following, a few simple remarks on the evolution and properties of stellar clusters will be collected. In particular, globular clusters will be considered. Though details of such clusters are often not known, a few questions can be clarified with the help of primitive arguments. These are:- why are spherical clusters spherical, why do they have high densities, why do they consist of approximately a million stars, how may a black hole of great mass form within them, may they be the origin of gamma-ray bursts, may their invisible remnants account for the missing mass of our galaxy. The available data do not warrant a detailed evaluation. However, it is remarkable that exceedingly simple models can shed some light on the questions enumerated above. (author)

  12. L = ± 1 stellarator

    International Nuclear Information System (INIS)

    Kikuchi, T.; Shiina, S.; Saito, K.; Gesso, H.; Aizawa, M.; Kawakami, I.

    1985-01-01

    We report the magnetic field configuration of helical magnetic axis stellarator. The magnetic field configuration is composed of large l=1 field and small l=-1 and l=0(bumpy) fields. The large l=1 field (combined with the small l=-1 field) is used to form helical magnetic axis with the helical curvature much larger than the toroidal curvature, which provides the high limiting values of β. The small l=-1 field, furthermore, as well as the large l=1 field reduces the Pfirsch-Schlueter currents by combining with l=0 field. Therefore, the large l=1 field and the combination of three field components may be favourable for the increase of limiting β value

  13. A plausible energy source and structure for quasi-stellar objects

    Science.gov (United States)

    Daltabuit, E.; Cox, D.

    1972-01-01

    If a collision of two large, massive, fast gas clouds occurs, their kinetic energy is converted to radiation in a pair of shock fronts at their interface. The resulting structure is described, and the relevance of this as a radiation source for quasi-stellar objects is considered.

  14. Alice Munro's "Runaway" in the Mirror of Sigmund Freud

    Directory of Open Access Journals (Sweden)

    Raheleh Bahador

    2015-03-01

    Full Text Available Mirroring the complexities of the human psyche, literature has received new comprehension through a psychoanalytic lens.  Alice Munro's "Runaway" (2003 is character-based and has the psychological analysis potential but it had never received such kind of study. The objective of the present paper is to read Munro's "Runaway" in the mirror of Sigmund Freud to detect the psychological aspects of its fictional characters. The characters are driven by the Freudian mental agencies and undergo phases of psychic disorder.  In the present paper, Munro's short fiction has been discussed based on Sigmund Freud's theory of the Unconscious and its connection with the interpretation of dreams as well as the symbolization of three main characters based on tripartite agencies of the id, ego and superego. Clarifying the latent and manifest levels of characters and the world of dreams indicates the artistic creation of Alice Munro in handling complex characterization. The unconscious and its connection with the female character's dreams have been discussed. The unconscious of the female character is reflected in her dreams in result of repression and asocial drives and desires. Unconscious through dreams is the mirror of the repressed psyche of the female character. Scrutinizing the three main characters in terms of Freudian psychic trilogy, they prove to fit their psychological Freudian terms.

  15. Resolving runaway electron distributions in space, time, and energy

    Science.gov (United States)

    Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.; Eidietis, N. W.; Lvovskiy, A.; Pace, D. C.; Brennan, D. P.; Hollmann, E. M.; Liu, C.; Moyer, R. A.; Shiraki, D.

    2018-05-01

    Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.

  16. SOFT: a synthetic synchrotron diagnostic for runaway electrons

    Science.gov (United States)

    Hoppe, M.; Embréus, O.; Tinguely, R. A.; Granetz, R. S.; Stahl, A.; Fülöp, T.

    2018-02-01

    Improved understanding of the dynamics of runaway electrons can be obtained by measurement and interpretation of their synchrotron radiation emission. Models for synchrotron radiation emitted by relativistic electrons are well established, but the question of how various geometric effects—such as magnetic field inhomogeneity and camera placement—influence the synchrotron measurements and their interpretation remains open. In this paper we address this issue by simulating synchrotron images and spectra using the new synthetic synchrotron diagnostic tool SOFT (Synchrotron-detecting Orbit Following Toolkit). We identify the key parameters influencing the synchrotron radiation spot and present scans in those parameters. Using a runaway electron distribution function obtained by Fokker-Planck simulations for parameters from an Alcator C-Mod discharge, we demonstrate that the corresponding synchrotron image is well-reproduced by SOFT simulations, and we explain how it can be understood in terms of the parameter scans. Geometric effects are shown to significantly influence the synchrotron spectrum, and we show that inherent inconsistencies in a simple emission model (i.e. not modeling detection) can lead to incorrect interpretation of the images.

  17. Density dependence triggers runaway selection of reduced senescence.

    Directory of Open Access Journals (Sweden)

    Robert M Seymour

    2007-12-01

    Full Text Available In the presence of exogenous mortality risks, future reproduction by an individual is worth less than present reproduction to its fitness. Senescent aging thus results inevitably from transferring net fertility into younger ages. Some long-lived organisms appear to defy theory, however, presenting negligible senescence (e.g., hydra and extended lifespans (e.g., Bristlecone Pine. Here, we investigate the possibility that the onset of vitality loss can be delayed indefinitely, even accepting the abundant evidence that reproduction is intrinsically costly to survival. For an environment with constant hazard, we establish that natural selection itself contributes to increasing density-dependent recruitment losses. We then develop a generalized model of accelerating vitality loss for analyzing fitness optima as a tradeoff between compression and spread in the age profile of net fertility. Across a realistic spectrum of senescent age profiles, density regulation of recruitment can trigger runaway selection for ever-reducing senescence. This novel prediction applies without requirement for special life-history characteristics such as indeterminate somatic growth or increasing fecundity with age. The evolution of nonsenescence from senescence is robust to the presence of exogenous adult mortality, which tends instead to increase the age-independent component of vitality loss. We simulate examples of runaway selection leading to negligible senescence and even intrinsic immortality.

  18. Very massive runaway stars from three-body encounters

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia

    2011-01-01

    Very massive stars preferentially reside in the cores of their parent clusters and form binary or multiple systems. We study the role of tight very massive binaries in the origin of the field population of very massive stars. We performed numerical simulations of dynamical encounters between single (massive) stars and a very massive binary with parameters similar to those of the most massive known Galactic binaries, WR 20a and NGC 3603-A1. We found that these three-body encounters could be responsible for the origin of high peculiar velocities (≥70 km s-1) observed for some very massive (≥60-70 M⊙) runaway stars in the Milky Way and the Large Magellanic Cloud (e.g. λ Cep, BD+43°3654, Sk -67°22, BI 237, 30 Dor 016), which can hardly be explained within the framework of the binary-supernova scenario. The production of high-velocity massive stars via three-body encounters is accompanied by the recoil of the binary in the opposite direction to the ejected star. We show that the relative position of the very massive binary R145 and the runaway early B-type star Sk-69°206 on the sky is consistent with the possibility that both objects were ejected from the central cluster, R136, of the star-forming region 30 Doradus via the same dynamical event - a three-body encounter.

  19. On the origin of high-velocity runaway stars

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2009-06-01

    We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary 50-100Msolar star or a more massive one, formed through runaway mergers of ordinary stars in the core of a young massive star cluster). In this process, one of the binary components becomes gravitationally bound to the very massive star, while the second one is ejected, sometimes with a high speed. We performed three-body scattering experiments and found that early B-type stars (the progenitors of the majority of neutron stars) can be ejected with velocities of >~200-400kms-1 (typical of pulsars), while 3-4Msolar stars can attain velocities of >~300-400kms-1 (typical of the bound population of halo late B-type stars). We also found that the ejected stars can occasionally attain velocities exceeding the Milky Ways's escape velocity.

  20. Determination of the core temperature of a Li-ion cell during thermal runaway

    Science.gov (United States)

    Parhizi, M.; Ahmed, M. B.; Jain, A.

    2017-12-01

    Safety and performance of Li-ion cells is severely affected by thermal runaway where exothermic processes within the cell cause uncontrolled temperature rise, eventually leading to catastrophic failure. Most past experimental papers on thermal runaway only report surface temperature measurement, while the core temperature of the cell remains largely unknown. This paper presents an experimentally validated method based on thermal conduction analysis to determine the core temperature of a Li-ion cell during thermal runaway using surface temperature and chemical kinetics data. Experiments conducted on a thermal test cell show that core temperature computed using this method is in good agreement with independent thermocouple-based measurements in a wide range of experimental conditions. The validated method is used to predict core temperature as a function of time for several previously reported thermal runaway tests. In each case, the predicted peak core temperature is found to be several hundreds of degrees Celsius higher than the measured surface temperature. This shows that surface temperature alone is not sufficient for thermally characterizing the cell during thermal runaway. Besides providing key insights into the fundamental nature of thermal runaway, the ability to determine the core temperature shown here may lead to practical tools for characterizing and mitigating thermal runaway.

  1. Study of runaway electron generation process during major disruptions in JET

    International Nuclear Information System (INIS)

    Plyusnin, V.V.; Riccardo, V.; Alper, B.; Kiptily, V.G.; Popovichev, S.; Helander, P.; Jaspers, R.; Mlynar, J.; Luna, E. de La; Andersson, F.

    2005-01-01

    The analysis of a large number of JET disruptions has provided further data on the trends of the disruption induced runaway process in large tokamaks. The role of primary runaway electrons generated at the thermal quench has been examined to assess their influence on secondary avalanching, which is recognized as a main source of large runaway currents created during disruptions. The tomographic reconstruction of the soft X-ray emission during the thermal quench has made possible the observation of the magnetic flux geometry evolution and the locating of the most probable zones for generation and confinement of the primary runaway electrons. Runaway currents have been found to increase with toroidal magnetic field and pre-disruption plasma current values. The average conversion efficiency is approximately 40-45% at a wide range of plasma currents. This agrees well with results of numerical simulations, which predict similar conversion rates at an assumed post-disruption plasma electron temperature of 10 eV. The experimental trends and numerical simulations show that runaway electrons might be an issue for ITER and therefore it remains prudent to develop mitigation methods, which suppress runaway generation. (author)

  2. Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Jingjing Liu

    2017-02-01

    Full Text Available This study addresses the effects of the SOC (State of Charge and the charging–discharging process on the thermal runaway of 18650 lithium-ion batteries. A series of experiments were conducted on an electric heating and testing apparatus. The experimental results indicate that 6 W is the critical heating power for 40% SOC. With a 20 W constant heating rate, the thermal runaway initial temperature of the lithium-ion battery decreases with the increasing SOC. The final thermal runaway temperature increases with the SOC when the SOC is lower than 80%. However, a contrary conclusion was obtained when the SOC was higher than 80%. Significant mass loss, accompanied by an intense exothermic reaction, took place under a higher SOC. The critical charging current, beyond which the thermal runaway occurs, was found to be 2.6 A. The thermal runaway initial temperature decreases with the increasing charging current, while the intensity of the exothermic reaction varies inversely. Mass ejection of gas and electrolytes exists during thermal runaway when the charging current is higher than 10.4 A, below which only a large amount of gas is released. The thermal runaway initial temperature of discharging is higher than that of non-discharging.

  3. Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery.

    Science.gov (United States)

    Liu, Jingjing; Wang, Zhirong; Gong, Junhui; Liu, Kai; Wang, Hao; Guo, Linsheng

    2017-02-25

    This study addresses the effects of the SOC (State of Charge) and the charging-discharging process on the thermal runaway of 18650 lithium-ion batteries. A series of experiments were conducted on an electric heating and testing apparatus. The experimental results indicate that 6 W is the critical heating power for 40% SOC. With a 20 W constant heating rate, the thermal runaway initial temperature of the lithium-ion battery decreases with the increasing SOC. The final thermal runaway temperature increases with the SOC when the SOC is lower than 80%. However, a contrary conclusion was obtained when the SOC was higher than 80%. Significant mass loss, accompanied by an intense exothermic reaction, took place under a higher SOC. The critical charging current, beyond which the thermal runaway occurs, was found to be 2.6 A. The thermal runaway initial temperature decreases with the increasing charging current, while the intensity of the exothermic reaction varies inversely. Mass ejection of gas and electrolytes exists during thermal runaway when the charging current is higher than 10.4 A, below which only a large amount of gas is released. The thermal runaway initial temperature of discharging is higher than that of non-discharging.

  4. Effects of the radial electric field in a quasisymmetric stellarator

    International Nuclear Information System (INIS)

    Landreman, Matt; Catto, Peter J

    2011-01-01

    Recent calculations have shown that a radial electric field can significantly alter the neoclassical ion heat flux, ion flow, bootstrap current and residual zonal flow in a tokamak, even when the E x B drift is much smaller than the ion thermal speed. Here we show the novel analytical methods used in these calculations can be adapted to a quasisymmetric stellarator. The methods are based on using the conserved helical momentum ψ * instead of the poloidal or toroidal flux as a radial coordinate in the kinetic equation. The banana-regime calculations also employ a model collision operator that keeps only the velocity-space derivatives normal to the trapped-passing boundary, even as this boundary is shifted and deformed by the E x B drift. We prove the isomorphism between quasisymmetric stellarators and tokamaks extends to the finite-E x B generalizations of both banana-regime and plateau-regime neoclassical theory and the residual zonal flow. The plateau-regime results may be relevant to the HSX stellarator, and both the plateau- and banana-regime results can be used to validate stellarator transport codes.

  5. The runaway greenhouse: implications for future climate change, geoengineering and planetary atmospheres.

    Science.gov (United States)

    Goldblatt, Colin; Watson, Andrew J

    2012-09-13

    The ultimate climate emergency is a 'runaway greenhouse': a hot and water-vapour-rich atmosphere limits the emission of thermal radiation to space, causing runaway warming. Warming ceases only after the surface reaches approximately 1400 K and emits radiation in the near-infrared, where water is not a good greenhouse gas. This would evaporate the entire ocean and exterminate all planetary life. Venus experienced a runaway greenhouse in the past, and we expect that the Earth will in around 2 billion years as solar luminosity increases. But could we bring on such a catastrophe prematurely, by our current climate-altering activities? Here, we review what is known about the runaway greenhouse to answer this question, describing the various limits on outgoing radiation and how climate will evolve between these. The good news is that almost all lines of evidence lead us to believe that is unlikely to be possible, even in principle, to trigger full a runaway greenhouse by addition of non-condensible greenhouse gases such as carbon dioxide to the atmosphere. However, our understanding of the dynamics, thermodynamics, radiative transfer and cloud physics of hot and steamy atmospheres is weak. We cannot therefore completely rule out the possibility that human actions might cause a transition, if not to full runaway, then at least to a much warmer climate state than the present one. High climate sensitivity might provide a warning. If we, or more likely our remote descendants, are threatened with a runaway greenhouse, then geoengineering to reflect sunlight might be life's only hope. Injecting reflective aerosols into the stratosphere would be too short-lived, and even sunshades in space might require excessive maintenance. In the distant future, modifying Earth's orbit might provide a sustainable solution. The runaway greenhouse also remains relevant in planetary sciences and astrobiology: as extrasolar planets smaller and nearer to their stars are detected, some will be in

  6. Generación y dinámica de electrones runaway en plasmas tokamak

    OpenAIRE

    Fernández Gómez, Isabel

    2016-01-01

    La dinámica y generación de electrones runaway en plasmas tokamak constituye el tema central de esta tesis. En un tokamak, el fenómeno runaway es el resultado de la existencia de un campo eléctrico en dirección toroidal. Aquellos electrones cuya velocidad excede un cierto valor crítico se aceleran de forma continua, ya que la e ciencia de las colisiones para disipar la energía ganada en el campo disminuye con la velocidad (∼ ⁻¹) . Se tiene entonces lo que se conoce como un electrón runaway. ...

  7. Instability connected with a beam of run-away electrons in the Tokamak TM-3

    International Nuclear Information System (INIS)

    Alikaev, V.V.; Razumova, K.A.; Sokolov, Yu.A.

    The study of the instability of runaway electrons on the Tokamak TM-3 is continued. The longitudinal energy of runaway electrons that have undergone deceleration during instability is estimated from measurements of superhigh frequency radiation of plasma. A connection was found between the effect of a small fraction of energy protons (observed previously with a low plasma concentration) and the instability being studied. As instability develops, the longitudinal energy of runaway electrons is partially transformed to the transverse degree of freedom of these electrons and is partially transmitted to the basic plasma component

  8. Effects of discharge cleaning on the production of runaway electrons in TORTUS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cross, R C; Liu, J R; Giannone, L. (Sydney Univ. (Australia). School of Physics)

    1983-06-01

    Experimental results are presented on the production of runaway electrons as a function of wall cleanliness in the TORTUS tokamak. When the walls are clean, the production rate decreases as the filling pressure increases. When the walls are contaminated by oxygen, the production rate can increase when the filling pressure is increased, owing to the production of water vapour during tokamak discharges. These results resolve the differences reported in the literature on the production of runaways as a function of filling pressure. It is also observed that the runaway electron instability seen in other devices is suppressed when the walls are discharge-cleaned.

  9. Effects of discharge cleaning on the production of runaway electrons in TORTUS tokamak

    International Nuclear Information System (INIS)

    Cross, R.C.; Liu, J.R.; Giannone, L.

    1983-01-01

    Experimental results are presented on the production of runaway electrons as a function of wall cleanliness in the TORTUS tokamak. When the walls are clean, the production rate decreases as the filling pressure increases. When the walls are contaminated by oxygen, the production rate can increase when the filling pressure is increased, owing to the production of water vapour during tokamak discharges. These results resolve the differences reported in the literature on the production of runaways as a function of filling pressure. It is also observed that the runaway electron instability seen in other devices is suppressed when the walls are discharge-cleaned. (author)

  10. Li-ion battery thermal runaway suppression system using microchannel coolers and refrigerant injections

    Science.gov (United States)

    Bandhauer, Todd M.; Farmer, Joseph C.

    2016-11-08

    A battery management system with thermally integrated fire suppression includes a multiplicity of individual battery cells in a housing; a multiplicity of cooling passages in the housing within or between the multiplicity of individual battery cells; a multiplicity of sensors operably connected to the individual battery cells, the sensors adapted to detect a thermal runaway event related to one or more of the multiplicity of individual battery cells; and a management system adapted to inject coolant into at least one of the multiplicity of cooling passages upon the detection of the thermal runaway event by the any one of the multiplicity of sensors, so that the thermal runaway event is rapidly quenched.

  11. Run-away electrons in relativistic spin (1) /(2) quantum electrodynamics

    International Nuclear Information System (INIS)

    Low, F.E.

    1998-01-01

    The existence of run-away solutions in classical and non-relativistic quantum electrodynamics is reviewed. It is shown that the less singular high energy behavior of relativistic spin (1) /(2) quantum electrodynamics precludes an analogous behavior in that theory. However, a Landau-like anomalous pole in the photon propagation function or in the electron-massive photon forward scattering amplitude would generate a new run-away, characterized by an energy scale ω∼m e thinspexp(1/α). This contrasts with the energy scale ω∼m e /α associated with the classical and non-relativistic quantum run-aways. copyright 1998 Academic Press, Inc

  12. Collision Risk and Damage after Collision

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Hansen, Peter Friis; Nielsen, Lars Peter

    1996-01-01

    The paper presents a new and complete procedure for calculation of ship-ship collision rates on specific routes and the hull damage caused by such collisions.The procedure is applied to analysis of collision risks for Ro-Ro pasenger vessels. Given a collision the spatial probability distribution ...

  13. After runaway: The trans-Hill stage of planetesimal growth

    International Nuclear Information System (INIS)

    Lithwick, Yoram

    2014-01-01

    When planetesimals begin to grow by coagulation, they first enter an epoch of runaway, during which the biggest bodies grow faster than all the others. The questions of how runaway ends and what comes next have not been answered satisfactorily. We show that runaway is followed by a new stage—the 'trans-Hill stage'—that commences when the bodies that dominate viscous stirring ('big bodies') become trans-Hill, i.e., when their Hill velocity matches the random speed of the small bodies they accrete. Subsequently, the small bodies' random speed grows in lockstep with the big bodies' sizes, such that the system remains in the trans-Hill state. Trans-Hill growth is crucial for determining the efficiency of growing big bodies, as well as their growth timescale and size spectrum. Trans-Hill growth has two sub-stages. In the earlier one, which occurs while the stirring bodies remain sufficiently small, the evolution is collisionless, i.e., collisional cooling among all bodies is irrelevant. The efficiency of forming big bodies in this collisionless sub-stage is very low, ∼10α << 1, where α ∼ 0.005(a/AU) –1 is the ratio between the physical size of a body and its Hill radius. Furthermore, the size spectrum is flat (equal mass per size decade, i.e., q = 4). This collisionless trans-Hill solution explains results from previous coagulation simulations for both the Kuiper Belt and the asteroid belt. The second trans-Hill sub-stage commences once the stirring bodies grow big enough (>α –1 × the size of the accreted small bodies). After that time, collisional cooling among small bodies controls the evolution. The efficiency of forming big bodies rises and the size spectrum becomes more top heavy. Trans-Hill growth can terminate in one of two ways, depending on the sizes of the small bodies. First, mutual accretion of big bodies can become significant and conglomeration proceeds until half of the total mass is converted into big bodies

  14. Evolution of stellar systems

    International Nuclear Information System (INIS)

    Vader, P.

    1981-01-01

    The stellar systems of which the evolution will be considered in this thesis, are either galaxies, which contain about 10 11 stars, or binary systems, which consist of only two stars. It is seen that binary systems can give us some insight into the relative age of the nucleus of M31. The positive correlation between the metal content of a galaxy and its mass, first noted for elliptical galaxies, seems to be a general property of galaxies of all types. The observed increase of metallicity with galaxy mass is too large to be accounted for by differences in the evolutionary stage of galaxies. To explain the observed correlation it is proposed that a relatively larger proportion of massive stars is formed in more massive galaxies. The physical basis is that the formation of massive stars seems to be tied to the enhanced gas-dynamical activity in more massive galaxies. A specific aspect of the production of heavy elements by massive stars is investigated in some detail. In 1979 a cluster of 18 point X-ray sources within 400 pc of the centre of M31 was detected with the Einstein satellite. This is a remarkable result since no equivalent of this cluster has been observed in the nucleus of our own Galaxy, which otherwise is very similar to that of M31. An explanation for this phenomenon is proposed, suggesting that X-ray binaries are the products of the long-term evolution of nova systems. (Auth.)

  15. Stellar extreme ultraviolet astronomy

    International Nuclear Information System (INIS)

    Cash, W.C. Jr.

    1978-01-01

    The design, calibration, and launch of a rocket-borne imaging telescope for extreme ultraviolet astronomy are described. The telescope, which employed diamond-turned grazing incidence optics and a ranicon detector, was launched November 19, 1976, from the White Sands Missile Range. The telescope performed well and returned data on several potential stellar sources of extreme ultraviolet radiation. Upper limits ten to twenty times more sensitive than previously available were obtained for the extreme ultraviolet flux from the white dwarf Sirius B. These limits fall a factor of seven below the flux predicted for the star and demonstrate that the temperature of Sirius B is not 32,000 K as previously measured, but is below 30,000 K. The new upper limits also rule out the photosphere of the white dwarf as the source of the recently reported soft x-rays from Sirius. Two other white dwarf stars, Feige 24 and G191-B2B, were observed. Upper limits on the flux at 300 A were interpreted as lower limits on the interstellar hydrogen column densities to these stars. The lower limits indicate interstellar hydrogen densitites of greater than .02 cm -3 . Four nearby stars (Sirius, Procyon, Capella, and Mirzam) were observed in a search for intense low temperature coronae or extended chromospheres. No extreme ultraviolet radiation from these stars was detected, and upper limits to their coronal emisson measures are derived

  16. Mapping stellar surface features

    International Nuclear Information System (INIS)

    Noah, P.V.

    1987-01-01

    New photometric and spectroscopic observations of the RS Canum Venaticorum binaries Sigma Geminorum and UX Arietis are reported along with details of the Doppler-imaging program SPOTPROF. The observations suggest that the starspot activity on Sigma Gem has decreased to 0.05 magnitude in two years. A photometric spot model for September 1984 to January 1985 found that a single spot covering 2% of the surface and 1000 K cooler than the surrounding photosphere could model the light variations. Equivalent-width observations contemporaneous with the photometric observations did not show any significant variations. Line-profile models from SPOTPROF predict that the variation of the equivalent width of the 6393 A Fe I line should be ∼ 1mA. Photometric observations of UX Ari from January 1984 to March 1985 show an 0.3 magnitude variation indicating a large spot group must cover the surface. Contemporaneous spectroscopic observations show asymmetric line profiles. The Doppler imaging and the photometric light-curve models were used in an iterative method to describe the stellar surface-spot distribution and successfully model both the photometric and the spectroscopic variations

  17. SI: The Stellar Imager

    Science.gov (United States)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2006-01-01

    The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe.

  18. Stellar Presentations (Abstract)

    Science.gov (United States)

    Young, D.

    2015-12-01

    (Abstract only) The AAVSO is in the process of expanding its education, outreach and speakers bureau program. powerpoint presentations prepared for specific target audiences such as AAVSO members, educators, students, the general public, and Science Olympiad teams, coaches, event supervisors, and state directors will be available online for members to use. The presentations range from specific and general content relating to stellar evolution and variable stars to specific activities for a workshop environment. A presentation—even with a general topic—that works for high school students will not work for educators, Science Olympiad teams, or the general public. Each audience is unique and requires a different approach. The current environment necessitates presentations that are captivating for a younger generation that is embedded in a highly visual and sound-bite world of social media, twitter and U-Tube, and mobile devices. For educators, presentations and workshops for themselves and their students must support the Next Generation Science Standards (NGSS), the Common Core Content Standards, and the Science Technology, Engineering and Mathematics (STEM) initiative. Current best practices for developing relevant and engaging powerpoint presentations to deliver information to a variety of targeted audiences will be presented along with several examples.

  19. Turbulence optimisation in stellarator experiments

    Energy Technology Data Exchange (ETDEWEB)

    Proll, Josefine H.E. [Max-Planck/Princeton Center for Plasma Physics (Germany); Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstr. 1, 17491 Greifswald (Germany); Faber, Benjamin J. [HSX Plasma Laboratory, University of Wisconsin-Madison, Madison, WI 53706 (United States); Helander, Per; Xanthopoulos, Pavlos [Max-Planck/Princeton Center for Plasma Physics (Germany); Lazerson, Samuel A.; Mynick, Harry E. [Plasma Physics Laboratory, Princeton University, P.O. Box 451 Princeton, New Jersey 08543-0451 (United States)

    2015-05-01

    Stellarators, the twisted siblings of the axisymmetric fusion experiments called tokamaks, have historically suffered from confining the heat of the plasma insufficiently compared with tokamaks and were therefore considered to be less promising candidates for a fusion reactor. This has changed, however, with the advent of stellarators in which the laminar transport is reduced to levels below that of tokamaks by shaping the magnetic field accordingly. As in tokamaks, the turbulent transport remains as the now dominant transport channel. Recent analytical theory suggests that the large configuration space of stellarators allows for an additional optimisation of the magnetic field to also reduce the turbulent transport. In this talk, the idea behind the turbulence optimisation is explained. We also present how an optimised equilibrium is obtained and how it might differ from the equilibrium field of an already existing device, and we compare experimental turbulence measurements in different configurations of the HSX stellarator in order to test the optimisation procedure.

  20. Optimizing Stellarators for Turbulent Transport

    International Nuclear Information System (INIS)

    Mynick, H.E.; Pomphrey, N.; Xanthopoulos, P.

    2010-01-01

    Up to now, the term 'transport-optimized' stellarators has meant optimized to minimize neoclassical transport, while the task of also mitigating turbulent transport, usually the dominant transport channel in such designs, has not been addressed, due to the complexity of plasma turbulence in stellarators. Here, we demonstrate that stellarators can also be designed to mitigate their turbulent transport, by making use of two powerful numerical tools not available until recently, namely gyrokinetic codes valid for 3D nonlinear simulations, and stellarator optimization codes. A first proof-of-principle configuration is obtained, reducing the level of ion temperature gradient turbulent transport from the NCSX baseline design by a factor of about 2.5.

  1. Stellar magnetic activity and exoplanets

    Directory of Open Access Journals (Sweden)

    Vidotto A.A.

    2017-01-01

    Full Text Available It has been proposed that magnetic activity could be enhanced due to interactions between close-in massive planets and their host stars. In this article, I present a brief overview of the connection between stellar magnetic activity and exoplanets. Stellar activity can be probed in chromospheric lines, coronal emission, surface spot coverage, etc. Since these are manifestations of stellar magnetism, these measurements are often used as proxies for the magnetic field of stars. Here, instead of focusing on the magnetic proxies, I overview some recent results of magnetic field measurements using spectropolarimetric observations. Firstly, I discuss the general trends found between large-scale magnetism, stellar rotation, and coronal emission and show that magnetism seems to be correlated to the internal structure of the star. Secondly, I overview some works that show evidence that exoplanets could (or not act as to enhance the activity of their host stars.

  2. Superbanana orbits in stellarator geometries

    International Nuclear Information System (INIS)

    Derr, J.A.; Shohet, J.L.

    1979-04-01

    The presence of superbanana orbit types localized to either the interior or the exterior of stellarators and torsatrons is numerically investigated for 3.5 MeV alpha particles. The absence of the interior superbanana in both geometries is found to be due to non-conservation of the action. Exterior superbananas are found in the stellarator only, as a consequence of the existence of closed helical magnetic wells. No superbananas of either type are found in the torsatron

  3. On origin of stellar clusters

    International Nuclear Information System (INIS)

    Tovmasyan, G.M.

    1977-01-01

    The ratios of the gas component of the mass of young stellar clusters to their stellar mass are considered. They change by more than four orders from one cluster to another. The results are in direct contradiction with the hypothesis of formation of cluster stars from a preliminarily existing gas cloud by its condensation, and they favour the Ambartsumian hypothesis of the joint origin of stars and gas clouds from superdense protostellar matter

  4. Galaxy collisions

    International Nuclear Information System (INIS)

    Combes, F.

    1987-01-01

    Galaxies are not isolated systems of stars and gas, ''independent universes'' as believed by astronomers about ten years ago, but galaxies are formed and evolve by interaction with their environment, and in particular with their nearest neighbors. Gravitational interactions produce enormous tides in the disk of spiral galaxies, generate spiral arms and trigger bursts of star formation. Around elliptical galaxies, the collision with a small companion produces a series of waves, or shells. A galaxy interaction leads, in most cases, to the coalescence of the two coliders; therefore all galaxies are not formed just after the Big-Bang, when matter recombines: second generation galaxies are still forming now by galaxy mergers, essentially elliptical galaxies, but also compact dwarfs. Collisions between galaxies could also trigger activity in nuclei for radiogalaxies and quasars [fr

  5. A first approach to runaway electron control in FTU

    International Nuclear Information System (INIS)

    Boncagni, L.; Carnevale, D.; Cianfarani, C.; Esposito, B.; Granucci, G.; Maddaluno, G.; Marocco, D.; Martin-Solis, J.R.; Pucella, G.; Sozzi, C.; Varano, G.; Vitale, V.; Zaccarian, L.

    2013-01-01

    The Plasma Control System (PCS) of the Frascati Tokamak Upgrade (FTU) is not equipped with any runaway electron (RE) beam control or suppression tool. In this paper we propose an upgraded PCS including an architecture for the control of disruption-generated REs that, making use of filtering techniques to estimate the onsets of the current quench (CQ) and of the RE beam current plateau, provides a controlled plasma current shut-down and a simultaneous RE position control. The control strategy is based on a nonlinear technique, called Input Allocation, that allows to re-configure the current in the poloidal field (PF) coils and improve the PCS responsiveness needed for RE position control. Preliminary results on the implementation of the Input Allocation and an experimental proposal to test the control scheme architecture are discussed

  6. A first approach to runaway electron control in FTU

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, L. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, CP 65, 00044 Frascati, Roma (Italy); Carnevale, D., E-mail: carnevaledaniele@gmail.com [Dipartimento Ing. Civile ed Ing. Informatica Università di Roma, Tor Vergata, Via del Politecnico 1, 00133 Roma (Italy); Cianfarani, C.; Esposito, B. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, CP 65, 00044 Frascati, Roma (Italy); Granucci, G. [Associazione Euratom-CNR sulla Fusione, IFP-CNR, Via R. Cozzi 53, 20125 Milano (Italy); Maddaluno, G.; Marocco, D. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, CP 65, 00044 Frascati, Roma (Italy); Martin-Solis, J.R. [Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes-Madrid (Spain); Pucella, G. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, CP 65, 00044 Frascati, Roma (Italy); Sozzi, C. [Associazione Euratom-CNR sulla Fusione, IFP-CNR, Via R. Cozzi 53, 20125 Milano (Italy); Varano, G. [Dipartimento Ing. Civile ed Ing. Informatica Università di Roma, Tor Vergata, Via del Politecnico 1, 00133 Roma (Italy); Vitale, V. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, CP 65, 00044 Frascati, Roma (Italy); Zaccarian, L. [CNRS, LAAS, 7 av. du colonel Roche, F-31400 Toulouse (France); Univ. de Toulouse, LAAS, F-31400 Toulouse (France)

    2013-10-15

    The Plasma Control System (PCS) of the Frascati Tokamak Upgrade (FTU) is not equipped with any runaway electron (RE) beam control or suppression tool. In this paper we propose an upgraded PCS including an architecture for the control of disruption-generated REs that, making use of filtering techniques to estimate the onsets of the current quench (CQ) and of the RE beam current plateau, provides a controlled plasma current shut-down and a simultaneous RE position control. The control strategy is based on a nonlinear technique, called Input Allocation, that allows to re-configure the current in the poloidal field (PF) coils and improve the PCS responsiveness needed for RE position control. Preliminary results on the implementation of the Input Allocation and an experimental proposal to test the control scheme architecture are discussed.

  7. Runaway relativistic electron scattering on the plazma oscillations in tokamak

    International Nuclear Information System (INIS)

    Krasovitskij, V.B.; Razdorski, V.G.

    1980-01-01

    The dynamics of fast electrons in a tolamak plasma with the presence of the constant external electric field have been inveatigated. It is shown that the occurrence of the relativistic electrons ''tail'' of the distribution function is followed by an intensive plasma oscillation swinging under conditions of the anomalous Doppler effect and their large angle scattering in the momentum space. A part of scattered electrons is captured by tokamak inhomogeneous magnetic field and causes the occurrence of a new low frequency alfven instability under conditions of magnetic drift resonance followed by quasilinear diffusion of relativistic electrons along the small radius of the torus. The flux of runaway electrons scattered on plasma oscillations has been found. A nonlinear diffusion equation has been derived for the flux of captured electrons. The equation defines the carrying out of fast particles from the plasma filament center to its periphery depending on the external magnetic field and plasma parameters

  8. Emission from Crystals Irradiated with a Beam of Runaway Electrons

    Science.gov (United States)

    Buranchenko, A. G.; Tarasenko, V. F.; Beloplotov, D. V.; Baksht, E. Kh.

    2018-01-01

    An investigation of the spectral and amplitude-temporal characteristics of emission from different crystals, promising in terms of their application as detectors of runaway electrons, is performed. This emission is excited by subnanosecond electron beams generated in a gas diode. It is found out that at the electron energies of tens-hundreds of kiloelectronvolts, the main contribution into the emission from CsI, ZnS, type IIa artificial and natural diamonds, sapphire, CaF2, ZrO2, Ga2O3, CaCO3, CdS, and ZnSe crystals comes from the cathodoluminescence; the radiation pulse duration depends on the crystal used and sufficiently exceeds the Cherenkov radiation pulse duration. It is demonstrated that the latter radiation exhibits low intensity and can be detected in the short-wave region of the spectrum in the cases where a monochromator and a high-sensitivity photomultiplier tube (PMT) are used.

  9. Dynamics of runaway tails with time-dependent sub-Dreicer dc fields in magnetized plasmas

    International Nuclear Information System (INIS)

    Moghaddam-Taaheri, E.; Vlahos, L.

    1987-01-01

    The evolution of runaway tails driven by sub-Dreicer time-dependent dc fields in a magnetized plasma are studied numerically using a quasilinear code based on the Ritz--Galerkin method and finite elements. It is found that the runaway tail maintained a negative slope during the dc field increase. Depending on the values of the dc electric field at t = 0 and the electron gyrofrequency to the plasma frequency ratio the runaway tail became unstable to the anomalous Doppler resonance or remained stable before the saturation of the dc field at some maximum value. The systems that remained stable during this stage became unstable to the anomalous Doppler or the Cerenkov resonances when the dc field was kept at the saturation level or decreased. Once the instability is triggered, the runaway tail is isotropized

  10. Dynamics of runaway tails with time-dependent sub-Dreicer dc fields in magnetized plasmas

    Science.gov (United States)

    Moghaddam-Taaheri, E.; Vlahos, L.

    1987-01-01

    The evolution of runaway tails driven by sub-Dreicer time-dependent dc fields in a magnetized plasma are studied numerically using a quasi-linear code based on the Ritz-Galerkin method and finite elements. It is found that the runaway tail maintained a negative slope during the dc field increase. Depending on the values of the dc electric field at t = 0 and the electron gyrofrequency to the plasma frequency ratio the runaway tail became unstable to the anomalous Doppler resonance or remained stable before the saturation of the dc field at some maximum value. The systems that remained stable during this stage became unstable to the anomalous Doppler or the Cerenkov resonances when the dc field was kept at the saturation level or decreased. Once the instability is triggered, the runaway tail is isotropized.

  11. Runaway electron damage to the Tore Supra Phase III outboard pump limiter

    International Nuclear Information System (INIS)

    Nygren, R.; Lutz, T.; Walsh, D.; Martin, G.; Chatelier, M.; Loarer, T.; Guilhem, D.

    1996-01-01

    Operation of the Phase III outboard pump limiter (OPL) in Tore Supra in 1994 was terminated prematurely when runaway electrons during the current decay following a disruption pierced leading edge tube on the electron side and caused a water leak. The location, about 20 mm outside the last closed flux surface during normal operation, and the infrared (IR) images of the limiter indicate that the runaways moved in large outward steps, i.e. tens of millimeters, in one toroidal revolution. For plasma (runaway) currents in the range of 155 to 250 kA, the drift orbits open to the outside. Basic trajectory computations suggest that such motion is possible under the conditions present for this experiment. Activation measurements made on sections of the tube to indicate the area of local damage are presented here. An understanding of this event may provide important guidance regarding the potential damage from runaways in future tokamaks

  12. Two-year predictors of runaway and homeless episodes following shelter services among substance abusing adolescents.

    Science.gov (United States)

    Slesnick, Natasha; Guo, Xiamei; Brakenhoff, Brittany; Feng, Xin

    2013-10-01

    Given high levels of health and psychological costs associated with the family disruption of homelessness, identifying predictors of runaway and homeless episodes is an important goal. The current study followed 179 substance abusing, shelter-recruited adolescents who participated in a randomized clinical trial. Predictors of runaway and homeless episodes were examined over a two year period. Results from the hierarchical linear modeling analysis showed that family cohesion and substance use, but not family conflict or depressive symptoms, delinquency, or school enrollment predicted future runaway and homeless episodes. Findings suggest that increasing family support, care and connection and reducing substance use are important targets of intervention efforts in preventing future runaway and homeless episodes amongst a high risk sample of adolescents. Copyright © 2013 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  13. On the effect of electron's runaway in partially ionized hydrogen semiclassical nonideal plasma

    International Nuclear Information System (INIS)

    Turekhanova, K.M.

    2011-01-01

    Complete text of publication follows. The effect of runaway electrons occurs frequently in tokamak plasmas. The majority of experiments in tokamak research have been devoted to the study of confinement properties of runaway electrons. Runaway electrons are reason of various destroying untolarance in tokamak plasmas. At high plasma density, when the critical energy is comparable with the rest energy the multiplication of runaway electrons accelerate at the sacrifice of increase of plasma density. The plasma conductivity is determined by electrons with energy several times higher than the thermal one and does not practically depend on slower electrons distribution. It is important to analyze the probability of runaway electrons at investigation of physical properties of nonideal plasmas under external electric field and running numerical simulations of their. The present paper is devoted to the investigation of effect of runaway electrons in partially ionized hydrogen dense plasma using the effective potentials of particle's interaction. At the investigation of composition of plasma we used the Saha equation with corrections to nonideality (lowering of ionization potentials). The Saha equation was solved for obtaining of plasma ionization stages at the different number density and temperature. As well, when take into account quantum-mechanical diffraction and screening effects, whereas free path of electrons increases with increase of plasma coupling parameter. The condition for appearance of runaway electrons in semiclassical partially ionized plasma is more favorable in regime of dense plasma. In summary it means that the probability of runaway electron in dense plasma is more than the same in rarified plasma that is possibly connected with formation of some ordered structures in dense plasma.

  14. Parameters of an avalanche of runaway electrons in air under atmospheric pressure

    Science.gov (United States)

    Oreshkin, E. V.

    2018-01-01

    The features of runaway-electron avalanches developing in air under atmospheric pressures are investigated in the framework of a three-dimensional numerical simulation. The simulation results indicate that an avalanche of this type can be characterized, besides the time and length of its exponential growth, by the propagation velocity and by the average kinetic energy of the runaway electrons. It is shown that these parameters obey the similarity laws applied to gas discharges.

  15. Time and energy resolved runaway measurements in TFR from induced radioactivity

    International Nuclear Information System (INIS)

    1983-09-01

    A time and energy resolved measurement of the radioactivity induced by runaway electrons in proper samples has been developped in TFR. The data give an information on the confinement time of these electrons, which appears to be strongly dependent on the toroidal field, suggesting the onset of a magnetic turbulence at lower fields. Observations showing that the runaway electrons deeply penetrate into the limiter shadow are also reported

  16. Runaway reactions. Part 2 Causes of Accidents in selected CSB case histories Part 2

    OpenAIRE

    GYENES ZSUZSANNA; CARSON PHILLIP

    2017-01-01

    Part 1 briefly discussed the basic thermochemistry of reactive chemicals, the statistics of accidents involving runaway reactions, and general control measures to minimise risk and mitigate the consequences. The present paper highlights the main causes of major accidents from runaway reactions with illustrative case histories to link theory and practice. It also discusses lessons learned from these accidents, which are very similar in the cases studied. The main causes are management deficien...

  17. The Origin of B-type Runaway Stars: Non-LTE Abundances as a Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, Catherine M.; Dufton, Philip L.; Smoker, Jonathan V.; Keenan, Francis P. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Lambert, David L. [The University of Texas at Austin, Department of Astronomy, RLM 16.316, Austin, TX 78712 (United States); Schneider, Fabian R. N. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); De Wit, Willem-Jan [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Vitacura, Santiago 19 (Chile)

    2017-06-10

    There are two accepted mechanisms to explain the origin of runaway OB-type stars: the binary supernova (SN) scenario and the cluster ejection scenario. In the former, an SN explosion within a close binary ejects the secondary star, while in the latter close multibody interactions in a dense cluster cause one or more of the stars to be ejected from the region at high velocity. Both mechanisms have the potential to affect the surface composition of the runaway star. tlusty non-LTE model atmosphere calculations have been used to determine the atmospheric parameters and the C, N, Mg, and Si abundances for a sample of B-type runaways. These same analytical tools were used by Hunter et al. for their analysis of 50 B-type open-cluster Galactic stars (i.e., nonrunaways). Effective temperatures were deduced using the Si-ionization balance technique, surface gravities from Balmer line profiles, and microturbulent velocities derived using the Si spectrum. The runaways show no obvious abundance anomalies when compared with stars in the open clusters. The runaways do show a spread in composition that almost certainly reflects the Galactic abundance gradient and a range in the birthplaces of the runaways in the Galactic disk. Since the observed Galactic abundance gradients of C, N, Mg, and Si are of a similar magnitude, the abundance ratios (e.g., N/Mg) are as obtained essentially uniform across the sample.

  18. Fokker-Planck simulation of runaway electron generation in disruptions with the hot-tail effect

    Energy Technology Data Exchange (ETDEWEB)

    Nuga, H., E-mail: nuga@p-grp.nucleng.kyoto-u.ac.jp; Fukuyama, A. [Department of Engineering, Kyoto University, Kyoto 615-8540 (Japan); Yagi, M. [National Institutes for Quantum and Radiological Science and Technology, Aomori 039-3212 (Japan)

    2016-06-15

    To study runaway electron generation in disruptions, we have extended the three-dimensional (two-dimensional in momentum space; one-dimensional in the radial direction) Fokker-Planck code, which describes the evolution of the relativistic momentum distribution function of electrons and the induced toroidal electric field in a self-consistent manner. A particular focus is placed on the hot-tail effect in two-dimensional momentum space. The effect appears if the drop of the background plasma temperature is sufficiently rapid compared with the electron-electron slowing down time for a few times of the pre-quench thermal velocity. It contributes to not only the enhancement of the primary runaway electron generation but also the broadening of the runaway electron distribution in the pitch angle direction. If the thermal energy loss during the major disruption is assumed to be isotropic, there are hot-tail electrons that have sufficiently large perpendicular momentum, and the runaway electron distribution becomes broader in the pitch angle direction. In addition, the pitch angle scattering also yields the broadening. Since the electric field is reduced due to the burst of runaway electron generation, the time required for accelerating electrons to the runaway region becomes longer. The longer acceleration period makes the pitch-angle scattering more effective.

  19. A Comparison of Religious Orientation and General Health in Runaway Girls and Normal Ones

    Directory of Open Access Journals (Sweden)

    Abolfazl Mohammadbeigi

    2016-12-01

    Full Text Available Background and Objectives: Due to the negative consequence of girls’ escape, this study was conducted to compare personality, demographic, and religious characteristics of runaway girls and normal ones in Qom city. Methods: In a case control study, 66 single runaway girls and 66 normal girls were selected as experimental group and control group, respectively. Data was culled using interview method, demographic information questionnaire, Allport religious orientation, and general health questionnaires (GHQ. Chi square and independent t-test were applied to analyze final data. Results: Average general health scores were calculated to be 13.9±11 and 9±6.2 in runaway and normal girls, respectively. The score of religious orientation is significantly lower in runaway girls than normal girls (p0.05. Conclusion: Religious orientation was found to be lower in runaway girls than in normal ones. Since runaway girls are subject to physical and sexual abuse, their psychological health is highly vulnerable—the fact which might pave the way for other social abnormalities.

  20. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries

    Science.gov (United States)

    Zheng, Siqi; Wang, Li; Feng, Xuning; He, Xiangming

    2018-02-01

    Safety issue is very important for the lithium ion battery used in electric vehicle or other applications. This paper probes the heat sources in the thermal runaway processes of lithium ion batteries composed of different chemistries using accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC). The adiabatic thermal runaway features for the 4 types of commercial lithium ion batteries are tested using ARC, whereas the reaction characteristics of the component materials, including the cathode, the anode and the separator, inside the 4 types of batteries are measured using DSC. The peaks and valleys of the critical component reactions measured by DSC can match the fluctuations in the temperature rise rate measured by ARC, therefore the relevance between the DSC curves and the ARC curves is utilized to probe the heat source in the thermal runaway process and reveal the thermal runaway mechanisms. The results and analysis indicate that internal short circuit is not the only way to thermal runaway, but can lead to extra electrical heat, which is comparable with the heat released by chemical reactions. The analytical approach of the thermal runaway mechanisms in this paper can guide the safety design of commercial lithium ion batteries.

  1. 2d axisymmetric "beam-bulk" modelling of the generation of runaway electrons by streamers.

    Science.gov (United States)

    Chanrion, Olivier; Bonaventura, Zdenek; Bourdon, Anne; Neubert, Torsten

    2017-04-01

    We present results from a 2d axisymmetric numerical model of streamers based on a "beam-bulk" approach which describes cold electrons with a fluid model and high energy electrons with a particle model. The interest is motivated by the generation of runaway electrons by streamers which may participate in the recently observed TGFs and which challenge the modelling. Runaway electrons are known to be generated from streamers when the electric field in its negative tip is of sufficient magnitude. After overtaking the streamer tip, runaways can affect the streamer propagation ahead and may produce high energy photons through the bremsstrahlung process. In conventional model of streamers, the evolution of the streamer discharge is mostly governed by cold electrons. By including runaway electrons, we model their production, their impact on the discharge propagation and can address their role in TGFs. Results of streamer propagation in leader electric field show that the runaway electrons accelerate the streamers, reduce the electric field in its tip and enlarge its radius by pre-ionizing the gas ahead. We observed that if we increase the electric field, the discharge is getting more diffuse, with a pattern driven by the increase in runaway induced ionisation.

  2. Engineering aspects of compact stellarators

    International Nuclear Information System (INIS)

    Nelson, B.E.; Benson, R.D.; Brooks, A.

    2003-01-01

    Compact stellarators could combine the good confinement and high beta of a tokamak with the inherently steady state, disruption-free characteristics of a stellarator. Two U.S. compact stellarator facilities are now in the conceptual design phase: the National Compact Stellarator Experiment (NCSX) and the Quasi- Poloidal Stellarator (QPS). NCSX has a major radius of 1.4 m and a toroidal field up to 2 T. The primary feature of both NCSX and QPS is the set of modular coils that provide the basic magnetic configuration. These coils represent a major engineering challenge due to the complex shape, precise geometric accuracy, and high current density of the windings. The winding geometry is too complex for conventional hollow copper conductor construction. Instead, the modular coils will be wound with flexible, multi strand cable conductor that has been compacted to a 75% copper packing fraction. Inside the NCSX coil set and surrounding the plasma is a highly contoured vacuum vessel. The vessel consists of three identical, 120 deg. segments that are bolted together at double sealed joints. The QPS device has a major radius of 0.9 m, a toroidal field of 1 T, and an aspect ratio of only 2.7. Instead of an internal vacuum vessel, the QPS modular coils will operate in an external vacuum tank. (author)

  3. Stellar Oxygen Abundances

    Science.gov (United States)

    King, Jeremy

    1994-04-01

    This dissertation addresses several issues concerning stellar oxygen abundances. The 7774 {\\AA} O I triplet equivalent widths of Abia & Rebolo [1989, AJ, 347, 186] for metal-poor dwarfs are found to be systematically too high. I also argue that current effective temperatures used in halo star abundance studies may be ~150 K too low. New color-Teff relations are derived for metal-poor stars. Using the revised Teff values and improved equivalent widths for the 7774A O I triplet, the mean [O/Fe] ratio for a handful of halo stars is found to be +0.52 with no dependence on Teff or [Fe/H]. Possible cosmological implications of the hotter Teff scale are discussed along with additional evidence supporting the need for a higher temperature scale for metal-poor stars. Our Teff scale leads to a Spite Li plateau value of N(Li)=2.28 +/- 0.09. A conservative minimal primordial value of N(Li)=2.35 is inferred. If errors in the observations and models are considered, consistency with standard models of Big Bang nucleosynthesis is still achieved with this larger Li abundance. The revised Teff scale raises the observed B/Be ratio of HD 140283 from 10 to 12, making its value more comfortably consistent with the production of the observed B and Be by ordinary spallation. Our Teff values are found to be in good agreement with values predicted from both the Victoria and Yale isochrone color-Teff relations. Thus, it appears likely that no changes in globular cluster ages would result. Next, we examine the location of the break in the [O/Fe] versus [Fe/H] plane in a quantitative fashion. Analysis of a relatively homogeneous data set does not favor any unique break point in the range -1.7 /= -3), in agreement with the new results for halo dwarfs. We find that the gap in the observed [O/H] distribution, noted by Wheeler et al. [1989, ARAA, 27, 279], persists despite the addition of more O data and may betray the occurrence of a hiatus in star formation between the end of halo formation and

  4. Planets, stars and stellar systems

    CERN Document Server

    Bond, Howard; McLean, Ian; Barstow, Martin; Gilmore, Gerard; Keel, William; French, Linda

    2013-01-01

    This is volume 3 of Planets, Stars and Stellar Systems, a six-volume compendium of modern astronomical research covering subjects of key interest to the main fields of contemporary astronomy. This volume on “Solar and Stellar Planetary Systems” edited by Linda French and Paul Kalas presents accessible review chapters From Disks to Planets, Dynamical Evolution of Planetary Systems, The Terrestrial Planets, Gas and Ice Giant Interiors, Atmospheres of Jovian Planets, Planetary Magnetospheres, Planetary Rings, An Overview of the Asteroids and Meteorites, Dusty Planetary Systems and Exoplanet Detection Methods. All chapters of the handbook were written by practicing professionals. They include sufficient background material and references to the current literature to allow readers to learn enough about a specialty within astronomy, astrophysics and cosmology to get started on their own practical research projects. In the spirit of the series Stars and Stellar Systems published by Chicago University Press in...

  5. A Stellar Ripple

    Science.gov (United States)

    2006-01-01

    This false-color composite image shows the Cartwheel galaxy as seen by the Galaxy Evolution Explorer's far ultraviolet detector (blue); the Hubble Space Telescope's wide field and planetary camera 2 in B-band visible light (green); the Spitzer Space Telescope's infrared array camera at 8 microns (red); and the Chandra X-ray Observatory's advanced CCD imaging spectrometer-S array instrument (purple). Approximately 100 million years ago, a smaller galaxy plunged through the heart of Cartwheel galaxy, creating ripples of brief star formation. In this image, the first ripple appears as an ultraviolet-bright blue outer ring. The blue outer ring is so powerful in the Galaxy Evolution Explorer observations that it indicates the Cartwheel is one of the most powerful UV-emitting galaxies in the nearby universe. The blue color reveals to astronomers that associations of stars 5 to 20 times as massive as our sun are forming in this region. The clumps of pink along the outer blue ring are regions where both X-rays and ultraviolet radiation are superimposed in the image. These X-ray point sources are very likely collections of binary star systems containing a blackhole (called massive X-ray binary systems). The X-ray sources seem to cluster around optical/ultraviolet-bright supermassive star clusters. The yellow-orange inner ring and nucleus at the center of the galaxy result from the combination of visible and infrared light, which is stronger towards the center. This region of the galaxy represents the second ripple, or ring wave, created in the collision, but has much less star formation activity than the first (outer) ring wave. The wisps of red spread throughout the interior of the galaxy are organic molecules that have been illuminated by nearby low-level star formation. Meanwhile, the tints of green are less massive, older visible-light stars. Although astronomers have not identified exactly which galaxy collided with the Cartwheel, two of three candidate galaxies can be

  6. MiniCNT - A Tabletop Stellarator

    Science.gov (United States)

    Dugan, Chris; Pedersen, Thomas; Berkery, John

    2006-10-01

    MiniCNT is a scaled down version of the Columbia Non-Neutral Torus, a stellarator built to study confinement of non-neutral plasmas on magnetic surfaces. MiniCNT is a glass vacuum chamber capable of holding pressures six orders of magnitude below atmospheric pressure. Unlike CNT, in which plasmas are invisible, MiniCNT allows some collisions with neutrals, causing it to glow. Using two twelve-volt car batteries to power four magnetic coils, MiniCNT generates a 0.02 Tesla magnetic field. While CNT, being larger, is obviously more accurate, there are multiple benefits in MiniCNT. First, it is more flexible and can be adjusted to fit many scenarios easily. The car batteries can be switched for other power sources, the coils can be realigned, and the chamber can be pumped to various pressures of various gases. Also, it is visually accessible; while CNT has glass viewing ports and its plasma is dark, MiniCNT is made of glass and its plasma glows, allowing visualization of the magnetic surfaces.

  7. Inter-machine comparison of the termination phase and energy conversion in tokamak disruptions with runaway current plateau formation and implications for ITER

    International Nuclear Information System (INIS)

    Martín-Solís, J.R.; Loarte, A.; Hollmann, E.M.; Esposito, B.; Riccardo, V.

    2014-01-01

    The termination of the current and the loss of runaway electrons following runaway current plateau formation during disruptions have been investigated in the JET, DIII-D and FTU tokamaks. Substantial conversion of magnetic energy into runaway kinetic energy, up to ∼10 times the initial plateau runaway kinetic energy, has been inferred for the slowest current terminations. Both modelling and experiment suggest that, in present devices, the efficiency of conversion into runaway kinetic energy is determined to a great extent by the characteristic runaway loss time, τ diff , and the resistive time of the residual ohmic plasma after the disruption, τ res , increasing with the ratio τ diff /τ res . It is predicted that, in large future devices such as ITER, the generation of runaways by the avalanche mechanism will play an important role, particularly for slow runaway discharge terminations, increasing substantially the amount of energy deposited by the runaways onto the plasma-facing components by the conversion of magnetic energy of the runaway plasma into runaway kinetic energy. Estimates of the power fluxes on the beryllium plasma-facing components during runaway termination in ITER indicate that for runaway currents of up to 2 MA no melting of the components is expected. For larger runaway currents, minimization of the effects of runaway impact on the first wall requires a reduction in the kinetic energy of the runaway beam before termination and, in addition, high plasma density n e and low ohmic plasma resistance (long τ res ) to prevent large conversion of magnetic into runaway kinetic energy during slow current terminations. (paper)

  8. Stellar CME candidates: towards a stellar CME-flare relation

    Science.gov (United States)

    Paraskevi Moschou, Sofia; Drake, Jeremy J.; Cohen, Ofer; Alvarado-Gomez, Julian D.; Garraffo, Cecilia

    2018-06-01

    For decades the Sun has been the only star that allowed for direct CME observations. Recently, with the discovery of multiple extrasolar systems, it has become imperative that the role of stellar CMEs be assessed in the context of exoplanetary habitability. Solar CMEs and flares show a higher association with increasing flaring energy, with strong flares corresponding to large and fast CMEs. As argued in earlier studies, extrasolar environments around active stars are potentially dominated by CMEs, as a result of their extreme flaring activity. This has strong implications for the energy budget of the system and the atmospheric erosion of orbiting planets.Nevertheless, with current instrumentation we are unable to directly observe CMEs in even the closest stars, and thus we have to look for indirect techniques and observational evidence and signatures for the eruption of stellar CMEs. There are three major observational techniques for tracing CME signatures in other stellar systems, namely measuring Type II radio bursts, Doppler shifts in UV/optical lines or transient absorption in the X-ray spectrum. We present observations of the most probable stellar CME candidates captured so far and examine the different observational techniques used together with their levels of uncertainty. Assuming that they were CMEs, we try to asses their kinematic and energetic characteristics and place them in an extension of the well-established solar CME-flare energy scaling law. We finish by discussing future observations for direct measurements.

  9. Research in nuclear astrophysics: stellar collapse and supernovae. Progress report

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.; Yahil, A.

    1986-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. The chief emphasis of our program is on stellar collapse, supernovae and neutron star formation. Central to these topics are the parallel development of both an equation of state of hot, dense matter and a novel type of hydrodynamical code. The LLPR compressible liquid drop model is the basis of the former. We are refining it to include both curvature corrections to the surface energy nuclear force parameters which are in better agreement with recently determined experimental quantities. Our study of the equation of state has the added bonus that our results can be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. The hydrodynamical code includes a fast, but accurate, approximation to the complete LLPR equation of state. We model not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling stages of the nascent neutron star. Our detailed studies of the role of neutrinos in stellar collapse and neutron star formation concentrate on their detectability and signatures. Complementary studies include modelling both mass accretion in the nuclei of galaxies and investigating both galaxy clustering and the large scale structure of the universe. These studies are intended to shed light on the early history of the universe, in which both nuclear and elementary particle physics play a crucial role

  10. Research in nuclear astrophysics: stellar collapse and supernovae. Progress report

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.; Yahil, A.

    1984-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. The chief emphasis of our program is on stellar collapse, supernovae and neutron star formation. Central to these topics are the parallel development of the equation of state of hot, dense matter and a novel type of hydrodynamical code. The LLPR compressible liquid drop model forms the basis for the former, and we propose to further refine it by including curvature corrections to the surface energy and by considering other nuclear force parameters which are in better agreement with experimentally determined quantities. The development of the equation of state has another bonus - it can be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. The hydrodynamical code includes detailed neutrino transport and a fast, but accurate, approximation to the complete LLPR equation of state, which is necessary for numerical use. We propose to model not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling stages of the nascent neutron star. Our detailed studies of the role of neutrinos in stellar collapse and neutron star formation concentrate on their detectability and signatures - after all, neutrinos are the only direct method of observationally checking supernova theory. Complementary studies include modelling both mass accretion in the nuclei of galaxies (which is probably responsible for the quasar phenomenon) and investigations of galaxy clustering and the large scale structure of the universe

  11. Runaway chemical reaction exposes community to highly toxic chemicals

    International Nuclear Information System (INIS)

    Kaszniak, Mark; Vorderbrueggen, John

    2008-01-01

    The U.S. Chemical Safety and Hazard Investigation Board (CSB) conducted a comprehensive investigation of a runaway chemical reaction at MFG Chemical (MFG) in Dalton, Georgia on April 12, 2004 that resulted in the uncontrolled release of a large quantity of highly toxic and flammable allyl alcohol and allyl chloride into the community. Five people were hospitalized and 154 people required decontamination and treatment for exposure to the chemicals. This included police officers attempting to evacuate the community and ambulance personnel who responded to 911 calls from residents exposed to the chemicals. This paper presents the findings of the CSB report (U.S. Chemical Safety and Hazard Investigation Board (CSB), Investigation Report: Toxic Chemical Vapor Cloud Release, Report No. 2004-09-I-GA, Washington DC, April 2006) including a discussion on tolling practices; scale-up of batch reaction processes; Process Safety Management (PSM) and Risk Management Plan (RMP) implementation; emergency planning by the company, county and the city; and emergency response and mitigation actions taken during the incident. The reactive chemical testing and atmospheric dispersion modeling conducted by CSB after the incident and recommendations adopted by the Board are also discussed

  12. Master equation and runaway speed of the Francis turbine

    Science.gov (United States)

    Zhang, Zh.

    2018-04-01

    The master equation of the Francis turbine is derived based on the combination of the angular momentum (Euler) and the energy laws. It relates the geometrical design of the impeller and the regulation settings (guide vane angle and rotational speed) to the discharge and the power output. The master equation, thus, enables the complete characteristics of a given Francis turbine to be easily computed. While applying the energy law, both the shock loss at the impeller inlet and the swirling loss at the impeller exit are taken into account. These are main losses which occur at both the partial load and the overloads and, thus, dominantly influence the characteristics of the Francis turbine. They also totally govern the discharge of the water through the impeller when the impeller is found in the standstill. The computations have been performed for the discharge, the hydraulic torque and the hydraulic efficiency. They were also compared with the available measurements on a model turbine. Excellent agreement has been achieved. The computations also enable the runaway speed of the Francis turbine and the related discharge to be determined as a function of the setting angle of the guide vanes.

  13. Studies of runaway electrons via Cherenkov effect in tokamaks

    Science.gov (United States)

    Zebrowski, J.; Jakubowski, L.; Rabinski, M.; Sadowski, M. J.; Jakubowski, M. J.; Kwiatkowski, R.; Malinowski, K.; Mirowski, R.; Mlynar, J.; Ficker, O.; Weinzettl, V.; Causa, F.; COMPASS; FTU Teams

    2018-01-01

    The paper concerns measurements of runaway electrons (REs) which are generated during discharges in tokamaks. The control of REs is an important task in experimental studies within the ITER-physics program. The NCBJ team proposed to study REs by means of Cherenkov-type detectors several years ago. The Cherenkov radiation, induced by REs in appropriate radiators, makes it possible to identify fast electron beams and to determine their spatial- and temporal-characteristics. The results of recent experimental studies of REs, performed in two tokamaks - COMPASS in Prague and FTU in Frascati, are summarized and discussed in this paper. Examples of the electron-induced signals, as recorded at different experimental conditions and scenarios, are presented. Measurements performed with a three-channel Cherenkov-probe in COMPASS showed that the first fast electron peaks can be observed already during the current ramp-up phase. A strong dependence of RE-signals on the radial position of the Cherenkov probe was observed. The most distinct electron peaks were recorded during the plasma disruption. The Cherenkov signals confirmed the appearance of post-disruptive RE beams in circular-plasma discharges with massive Ar-puffing. During experiments at FTU a clear correlation between the Cherenkov detector signals and the rotation of magnetic islands was identified.

  14. Albedo matters: Understanding runaway albedo variations on Pluto

    Science.gov (United States)

    Earle, Alissa M.; Binzel, Richard P.; Young, Leslie A.; Stern, S. A.; Ennico, K.; Grundy, W.; Olkin, C. B.; Weaver, H. A.; New Horizons Surface Composition Theme

    2018-03-01

    The data returned from NASA's New Horizons reconnaissance of the Pluto system show striking albedo variations from polar to equatorial latitudes as well as sharp longitudinal boundaries. Pluto has a high obliquity (currently 119°) that varies by 23° over a period of less than 3 million years. This variation, combined with its regressing longitude of perihelion (360° over 3.7 million years), creates epochs of "Super Seasons" where one pole is pointed at the Sun at perihelion, thereby experiencing a short, relatively warm summer followed by its longest possible period of winter darkness. In contrast, the other pole experiences a much longer, less intense summer and a short winter season. We use a simple volatile sublimation and deposition model to explore the relationship between albedo variations, latitude, and volatile sublimation and deposition for the current epoch as well as historical epochs during which Pluto experienced these "Super Seasons." Our investigation quantitatively shows that Pluto's geometry creates the potential for runaway albedo and volatile variations, particularly in the equatorial region, which can sustain stark longitudinal contrasts like the ones we see between Tombaugh Regio and the informally named Cthulhu Regio.

  15. Joule heating and runaway electron acceleration in a solar flare

    Science.gov (United States)

    Holman, Gordon D.; Kundu, Mukul R.; Kane, Sharad R.

    1989-01-01

    The hard and soft x ray and microwave emissions from a solar flare (May 14, 1980) were analyzed and interpreted in terms of Joule heating and runaway electron acceleration in one or more current sheets. It is found that all three emissions can be generated with sub-Dreicer electric fields. The soft x ray emitting plasma can only be heated by a single current sheet if the resistivity in the sheet is well above the classical, collisional resistivity of 10(exp 7) K, 10(exp 11)/cu cm plasma. If the hard x ray emission is from thermal electrons, anomalous resistivity or densities exceeding 3 x 10(exp 12)/cu cm are required. If the hard x ray emission is from nonthermal electrons, the emissions can be produced with classical resistivity in the current sheets if the heating rate is approximately 4 times greater than that deduced from the soft x ray data (with a density of 10(exp 10)/cu cm in the soft x ray emitting region), if there are at least 10(exp 4) current sheets, and if the plasma properties in the sheets are characteristic of the superhot plasma observed in some flares by Lin et al., and with Hinotori. Most of the released energy goes directly into bulk heating, rather than accelerated particles.

  16. E-ELT constraints on runaway dilaton scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, M. [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120, Heidelberg (Germany); Calabrese, E. [Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Martins, C.J.A.P., E-mail: m.martinelli@thphys.uni-heidelberg.de, E-mail: erminia.calabrese@physics.ox.ac.uk, E-mail: carlos.martins@astro.up.pt [Centro de Astrofìsica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2015-11-01

    We use a combination of simulated cosmological probes and astrophysical tests of the stability of the fine-structure constant α, as expected from the forthcoming European Extremely Large Telescope (E-ELT), to constrain the class of string-inspired runaway dilaton models of Damour, Piazza and Veneziano. We consider three different scenarios for the dark sector couplings in the model and discuss the observational differences between them. We improve previously existing analyses investigating in detail the degeneracies between the parameters ruling the coupling of the dilaton field to the other components of the universe, and studying how the constraints on these parameters change for different fiducial cosmologies. We find that if the couplings are small (e.g., α{sub b} = α{sub V} ∼ 0) these degeneracies strongly affect the constraining power of future data, while if they are sufficiently large (e.g., α{sub b} ∼> 10{sup −5}−α{sub V} ∼> 0.05, as in agreement with current constraints) the degeneracies can be partially broken. We show that E-ELT will be able to probe some of this additional parameter space.

  17. Runaway electrons dynamics and confinement in TORE-SUPRA

    International Nuclear Information System (INIS)

    Chatelier, M.; Geraud, A.; Joyer, P.; Martin, G.; Rax, J.M.

    1989-01-01

    Ohmic discharges in TORE-SUPRA are sufficiently long (∼ 6 s) for runaway electrons (R.E.) to reach a steady energy state: their energy limit is determined by the balance between parallel electric field acceleration (20 MeV/V.s in TORE-SUPRA) and radiation losses due to the curvature of the trajectories. When R.E. energy is supposed to be only parallel, this provides estimate of order of 70 MeV (value usually called 'synchrotron limit') reached in less than 2 seconds. Experimental observations on TORE-SUPRA of photoneutron emission together with residual induced radioactivity in the first wall components tend to prove that the actual value is much lower than 70 MeV (i.e. 15-35 MeV). Earlier observations in ORMAK, PLT and TFR already showed R.E. energy a slightly less than expected from standard loop voltage acceleration calculations. Explanations given for this lack of energy (as skin-effect lowering the electric field during the ramp-up phase or balance between continuous creation and losses) seems not to hold on TORE-SUPRA and therefore another mechanism must be considered to explain the R.E. energy limitation. 4 refs., 2 figs

  18. Science with Synthetic Stellar Surveys

    Science.gov (United States)

    Sanderson, Robyn Ellyn

    2018-04-01

    A new generation of observational projects is poised to revolutionize our understanding of the resolved stellar populations of Milky-Way-like galaxies at an unprecedented level of detail, ushering in an era of precision studies of galaxy formation. In the Milky Way itself, astrometric, spectroscopic and photometric surveys will measure three-dimensional positions and velocities and numerous chemical abundances for stars from the disk to the halo, as well as for many satellite dwarf galaxies. In the Local Group and beyond, HST, JWST and eventually WFIRST will deliver pristine views of resolved stars. The groundbreaking scale and dimensionality of this new view of resolved stellar populations in galaxies challenge us to develop new theoretical tools to robustly compare these surveys to simulated galaxies, in order to take full advantage of our new ability to make detailed predictions for stellar populations within a cosmological context. I will describe a framework for generating realistic synthetic star catalogs and mock surveys from state-of-the-art cosmological-hydrodynamical simulations, and present several early scientific results from, and predictions for, resolved stellar surveys of our Galaxy and its neighbors.

  19. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    An analytical method of estimating the mass of a stellar iron core, just prior to core collapse, is described in this paper. The method employed depends, in part, upon an estimate of the true relativistic mass increase experienced by electrons within a highly compressed iron core, just prior to core collapse, and is significantly ...

  20. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    60, No. 3. — journal of. March 2003 physics pp. 415–422. Maximum stellar iron core mass. F W GIACOBBE. Chicago Research Center/American Air Liquide ... iron core compression due to the weight of non-ferrous matter overlying the iron cores within large .... thermal equilibrium velocities will tend to be non-relativistic.

  1. Integrated Circuit Stellar Magnitude Simulator

    Science.gov (United States)

    Blackburn, James A.

    1978-01-01

    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)

  2. Stellar dynamics and black holes

    Indian Academy of Sciences (India)

    Chandrasekhar's most important contribution to stellar dynamics was the concept of dynamical friction. I briefly review that work, then discuss some implications of Chandrasekhar's theory of gravitational encounters for motion in galactic nuclei. Author Affiliations. David Merritt1. Department of Physics, Rochester Institute ...

  3. TEM turbulence optimisation in stellarators

    Science.gov (United States)

    Proll, J. H. E.; Mynick, H. E.; Xanthopoulos, P.; Lazerson, S. A.; Faber, B. J.

    2016-01-01

    With the advent of neoclassically optimised stellarators, optimising stellarators for turbulent transport is an important next step. The reduction of ion-temperature-gradient-driven turbulence has been achieved via shaping of the magnetic field, and the reduction of trapped-electron mode (TEM) turbulence is addressed in the present paper. Recent analytical and numerical findings suggest TEMs are stabilised when a large fraction of trapped particles experiences favourable bounce-averaged curvature. This is the case for example in Wendelstein 7-X (Beidler et al 1990 Fusion Technol. 17 148) and other Helias-type stellarators. Using this knowledge, a proxy function was designed to estimate the TEM dynamics, allowing optimal configurations for TEM stability to be determined with the STELLOPT (Spong et al 2001 Nucl. Fusion 41 711) code without extensive turbulence simulations. A first proof-of-principle optimised equilibrium stemming from the TEM-dominated stellarator experiment HSX (Anderson et al 1995 Fusion Technol. 27 273) is presented for which a reduction of the linear growth rates is achieved over a broad range of the operational parameter space. As an important consequence of this property, the turbulent heat flux levels are reduced compared with the initial configuration.

  4. Empirical links between the local runaway greenhouse, super-greenhouse, and deep convection in Earth's tropics

    Science.gov (United States)

    Dewey, M. C.; Goldblatt, C.

    2017-12-01

    Energy balance requires that energy absorbed and emitted at the top of the atmosphere equal; this is maintained via the Planck feedback whereby outgoing longwave radiation (OLR) increases as surface temperature increases. There are two cases where this breaks down: the runaway greenhouse (known from planetary sciences theory) characterized by an asymptotic limit on OLR from moist atmospheres, and the super-greenhouse (known from tropical meteorology observations) where OLR decreases with surface temperature when the atmosphere is moist aloft. Here we show that the runaway greenhouse limit can be empirically observed and constrained in Earth's tropics, that the runaway and super-greenhouse occur as part of the same physical phenomenon, and that the transition through the super-greenhouse to a local runaway greenhouse is intimately linked to the onset of deep convection. A runaway greenhouse occurs when water vapour causes the troposphere to become optically thick to thermal radiation from the surface and a limit on OLR emerges as thermal emission is from a constant temperature level aloft. This limit is modelled as 282 W/m/m [Goldblatt et al, 2013]. Using satellite data from Earth's tropics, we find an empirical value of this limit of 280 W/m/m, in excellent agreement with the model.A column transitioning to a runaway greenhouse typically overshoots the runaway limit and then OLR decreases with increasing surface temperature until the runaway limit is reached after which OLR remains constant. The term super-greenhouse effect (SGE) has been used to describe OLR decreasing with surface warming, observed in these satellite measurements. We show the SGE is one and the same as the transition to a local runaway greenhouse, and represents a fundamental shift in the radiation response of the earth system, rather than simply an extension of water vapour feedback. This transition via SGE from an optically thin to optically thick troposphere is facilitated by enhanced

  5. Stellar Parameters for Trappist-1

    Science.gov (United States)

    Van Grootel, Valérie; Fernandes, Catarina S.; Gillon, Michael; Jehin, Emmanuel; Manfroid, Jean; Scuflaire, Richard; Burgasser, Adam J.; Barkaoui, Khalid; Benkhaldoun, Zouhair; Burdanov, Artem; Delrez, Laetitia; Demory, Brice-Olivier; de Wit, Julien; Queloz, Didier; Triaud, Amaury H. M. J.

    2018-01-01

    TRAPPIST-1 is an ultracool dwarf star transited by seven Earth-sized planets, for which thorough characterization of atmospheric properties, surface conditions encompassing habitability, and internal compositions is possible with current and next-generation telescopes. Accurate modeling of the star is essential to achieve this goal. We aim to obtain updated stellar parameters for TRAPPIST-1 based on new measurements and evolutionary models, compared to those used in discovery studies. We present a new measurement for the parallax of TRAPPIST-1, 82.4 ± 0.8 mas, based on 188 epochs of observations with the TRAPPIST and Liverpool Telescopes from 2013 to 2016. This revised parallax yields an updated luminosity of {L}* =(5.22+/- 0.19)× {10}-4 {L}ȯ , which is very close to the previous estimate but almost two times more precise. We next present an updated estimate for TRAPPIST-1 stellar mass, based on two approaches: mass from stellar evolution modeling, and empirical mass derived from dynamical masses of equivalently classified ultracool dwarfs in astrometric binaries. We combine them using a Monte-Carlo approach to derive a semi-empirical estimate for the mass of TRAPPIST-1. We also derive estimate for the radius by combining this mass with stellar density inferred from transits, as well as an estimate for the effective temperature from our revised luminosity and radius. Our final results are {M}* =0.089+/- 0.006 {M}ȯ , {R}* =0.121+/- 0.003 {R}ȯ , and {T}{eff} = 2516 ± 41 K. Considering the degree to which the TRAPPIST-1 system will be scrutinized in coming years, these revised and more precise stellar parameters should be considered when assessing the properties of TRAPPIST-1 planets.

  6. Anti-Runaway Prevention System with Wireless Sensors for Intelligent Track Skates at Railway Stations.

    Science.gov (United States)

    Jiang, Chaozhe; Xu, Yibo; Wen, Chao; Chen, Dilin

    2017-12-19

    Anti-runaway prevention of rolling stocks at a railway station is essential in railway safety management. The traditional track skates for anti-runaway prevention of rolling stocks have some disadvantages since they are operated and monitored completely manually. This paper describes an anti-runaway prevention system (ARPS) based on intelligent track skates equipped with sensors and real-time monitoring and management system. This system, which has been updated from the traditional track skates, comprises four parts: intelligent track skates, a signal reader, a database station, and a monitoring system. This system can monitor the real-time situation of track skates without changing their workflow for anti-runaway prevention, and thus realize the integration of anti-runaway prevention information management. This system was successfully tested and practiced at Sunjia station in Harbin Railway Bureau in 2014, and the results confirmed that the system showed 100% accuracy in reflecting the usage status of the track skates. The system could meet practical demands, as it is highly reliable and supports long-distance communication.

  7. Anti-Runaway Prevention System with Wireless Sensors for Intelligent Track Skates at Railway Stations

    Directory of Open Access Journals (Sweden)

    Chaozhe Jiang

    2017-12-01

    Full Text Available Anti-runaway prevention of rolling stocks at a railway station is essential in railway safety management. The traditional track skates for anti-runaway prevention of rolling stocks have some disadvantages since they are operated and monitored completely manually. This paper describes an anti-runaway prevention system (ARPS based on intelligent track skates equipped with sensors and real-time monitoring and management system. This system, which has been updated from the traditional track skates, comprises four parts: intelligent track skates, a signal reader, a database station, and a monitoring system. This system can monitor the real-time situation of track skates without changing their workflow for anti-runaway prevention, and thus realize the integration of anti-runaway prevention information management. This system was successfully tested and practiced at Sunjia station in Harbin Railway Bureau in 2014, and the results confirmed that the system showed 100% accuracy in reflecting the usage status of the track skates. The system could meet practical demands, as it is highly reliable and supports long-distance communication.

  8. Family Functioning and Predictors of Runaway Behavior Among At-Risk Youth.

    Science.gov (United States)

    Holliday, Stephanie Brooks; Edelen, Maria Orlando; Tucker, Joan S

    2017-06-01

    Adolescent runaway behavior is associated with a host of negative outcomes in young adulthood. Therefore, it is important to understand the factors that predict running away in youth. Longitudinal data from 111 at-risk families were used to identify proximal predictors of runaway behavior over a 12-week period. On average, youth were 14.96 years old, and 45% were female. Ten percent of youth ran away during the 12-week follow-up period. In bivariate analyses, running away was predicted by poorer youth- and parent-rated family functioning, past runaway behavior, and other problem behaviors (e.g., substance use, delinquency), but not poorer perceived academic functioning. Results of a hierarchical logistic regression revealed a relationship between youth-rated family functioning and runaway behavior. However, this effect became non-significant after accounting for past runaway behavior and other problem behaviors, both of which remained significant predictors in the multivariable model. These findings suggest that youth who run away may be engaged in a more pervasive pattern of problematic behavior, and that screening and prevention programs need to address the cycle of adolescent defiant behavior associated with running away. Recommendations for clinical practice with this at-risk population are discussed.

  9. Can Increased CO2 Levels Trigger a Runaway Greenhouse on the Earth?

    Science.gov (United States)

    Ramirez, R.

    2014-04-01

    Recent one-dimensional (globally averaged) climate model calculations suggest that increased atmospheric CO2 could conceivably trigger a runaway greenhouse if CO2 concentrations were approximately 100 times higher than today. The new prediction runs contrary to previous calculations, which indicated that CO2 increases could not trigger a runaway, even at Venus-like CO2 concentrations. Goldblatt et al. argue that this different behavior is a consequence of updated absorption coefficients for H2O that make a runaway more likely. Here, we use a 1-D cloud-free climate model with similar, up-to-date absorption coefficients, but with a self-consistent methodology, to demonstrate that CO2 increases cannot induce a runaway greenhouse on the modern Earth. However, these initial calculations do not include cloud feedback, which may be positive at higher temperatures, destabilizing Earth's climate. We then show new calculations demonstrating that cirrus clouds cannot trigger a runaway, even in the complete absence of low clouds. Thus, the habitability of an Earth-like planet at Earth's distance appears to be ensured, irrespective of the sign of cloud feedback. Our results are of importance to Earth-like planets that receive similar insolation levels as does the Earth and to the ongoing question about cloud response at higher temperatures.

  10. Fast Thermal Runaway Detection for Lithium-Ion Cells in Large Scale Traction Batteries

    Directory of Open Access Journals (Sweden)

    Sascha Koch

    2018-03-01

    Full Text Available Thermal runaway of single cells within a large scale lithium-ion battery is a well-known risk that can lead to critical situations if no counter measures are taken in today’s lithium-ion traction batteries for battery electric vehicles (BEVs, plug-in hybrid electric vehicles (PHEV and hybrid electric vehicles (HEVs. The United Nations have published a draft global technical regulation on electric vehicle safety (GTR EVS describing a safety feature to warn passengers in case of a thermal runaway. Fast and reliable detection of faulty cells undergoing thermal runaway within the lithium-ion battery is therefore a key factor in battery designs for comprehensive passenger safety. A set of various possible sensors has been chosen based on the determined cell thermal runaway impact. These sensors have been tested in different sized battery setups and compared with respect to their ability of fast and reliable thermal runaway detection and their feasibility for traction batteries.

  11. On the generation of runaway electrons and their impact to plasma facing components

    International Nuclear Information System (INIS)

    Kawamura, Takaichi; Obayashi, Haruo; Miyahara, Akira.

    1988-06-01

    Runaway electrons accompanied by inductive or non-inductive plasma currents in a tokamak have severe interactions with plasma facing materials of a first wall, and influence the first wall structure due to activation and damage. In this paper, modelling of runaway electron generation near the wall in a tokamak is carried out. This includes the evaluation of acceleration along magnetic surfaces for relativistic electrons with energies larger than the runaway threshold. Penetration of runaway electrons of energy ranges from a few MeV to several ten MeV leads to gamma ray photon production by bremsstrahlung. One of the specific features of the impact on the first wall technology is that they give rise to activation due to giant resonance of the (γ,n) nuclear reaction and, as a consequence, cause a requirement of remote maintenance. The other is that they bring energy deposition at brazing areas between low Z material and metal, or at a metal itself, and they result in melting, cracking and grain growth. The methods to estimate these effects using nuclear data and material data on the basis of runaway flux modelling are introduced and examples of estimation are given. (author)

  12. Investigation of a High Head Francis Turbine at Runaway Operating Conditions

    Directory of Open Access Journals (Sweden)

    Chirag Trivedi

    2016-03-01

    Full Text Available Hydraulic turbines exhibit total load rejection during operation because of high fluctuations in the grid parameters. The generator reaches no-load instantly. Consequently, the turbine runner accelerates to high speed, runaway speed, in seconds. Under common conditions, stable runaway is only reached if after a load rejection, the control and protection mechanisms both fail and the guide vanes cannot be closed. The runner life is affected by the high amplitude pressure loading at the runaway speed. A model Francis turbine was used to investigate the consequences at the runaway condition. Measurements and simulations were performed at three operating points. The numerical simulations were performed using standard k-ε, k-ω shear stress transport (SST and scale-adaptive simulation (SAS models. A total of 12.8 million hexahedral mesh elements were created in the complete turbine, from the spiral casing inlet to the draft tube outlet. The experimental and numerical analysis showed that the runner was subjected to an unsteady pressure loading up to three-times the pressure loading observed at the best efficiency point. Investigates of unsteady pressure pulsations at the vaneless space, runner and draft tube are discussed in the paper. Further, unsteady swirling flow in the blade passages was observed that was rotating at a frequency of 4.8-times the runaway runner angular speed. Apart from the unsteady pressure loading, the development pattern of the swirling flow in the runner is discussed in the paper.

  13. Targeted Optimization of Quasi-Symmetric Stellarators

    International Nuclear Information System (INIS)

    Hegna, Chris C.; Talmadge, J. N.

    2016-01-01

    The proposed research focuses on targeted areas of plasma physics dedicated to improving the stellarator concept. Research was pursued in the technical areas of edge/divertor physics in 3D configurations, magnetic island physics in stellarators, the role of 3D shaping on microinstabilities and turbulent transport and energetic ion confinement in stellarators.

  14. Targeted Optimization of Quasi-Symmetric Stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Hegna, Chris C. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Anderson, D. T. [Univ. of Wisconsin, Madison, WI (United States); Talmadge, J. N. [Univ. of Wisconsin, Madison, WI (United States)

    2016-10-06

    The proposed research focuses on targeted areas of plasma physics dedicated to improving the stellarator concept. Research was pursued in the technical areas of edge/divertor physics in 3D configurations, magnetic island physics in stellarators, the role of 3D shaping on microinstabilities and turbulent transport and energetic ion confinement in stellarators.

  15. Adaptive time-stepping Monte Carlo integration of Coulomb collisions

    Science.gov (United States)

    Särkimäki, K.; Hirvijoki, E.; Terävä, J.

    2018-01-01

    We report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell-Jüttner statistics. The implementation is based on the Beliaev-Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space. Detailed description is provided for both the physics and implementation of the operator. The focus is in adaptive integration of stochastic differential equations, which is an overlooked aspect among existing Monte Carlo implementations of Coulomb collision operators. We verify that our operator converges to known analytical results and demonstrate that careless implementation of the adaptive time step can lead to severely erroneous results. The operator is provided as a self-contained Fortran 95 module and can be included into existing orbit-following tools that trace either the full Larmor motion or the guiding center dynamics. The adaptive time-stepping algorithm is expected to be useful in situations where the collision frequencies vary greatly over the course of a simulation. Examples include the slowing-down of fusion products or other fast ions, and the Dreicer generation of runaway electrons as well as the generation of fast ions or electrons with ion or electron cyclotron resonance heating.

  16. High frequency way of helium ash removal from stellarator-reactor

    International Nuclear Information System (INIS)

    Grekov, D.L.

    2005-01-01

    The paper deals with the problem of helium ash removal from stellarator-reactor. The lower hybrid heating of ash ions is proposed to solve this problem. The theory of ion stochastic heating, developed earlier by Karney, is generalized on the case of heating in stellarators. The features of the lower hybrid waves propagation and the ions motion in the stellarator confining field are taken into account. With proper choice of wave parameters (such as frequency, antenna position and initial spectrum of longitudinal refractive index) the slow mode of LH waves penetrates from the launching system to plasma core (and back) without conversion to kinetic plasma mode or to fast mode. With all these going on, the LH wave is absorbed by alpha particles only. The electron Landau damping is negligibly small, and there is no bulk ions stochastic heating. The motion of high energy (>100 keV) ions in the LHD heliotron with inwardly shifted magnetic axis, as an example of stellarator type device, is calculated numerically using the single particle simulation code which couples modified Karney's ion stochastic heating theory. The effect of collisions was taken into account through the Monte Carlo equivalent of the Lorentz collision operator. It is shown, that due to interaction with lower hybrid wave, initially well-confined alpha particles are expelled from the plasma during the time period less then collision time. At the same time, the low hybrid heating does not remove the ions with energy higher than 500 keV. Therefore, it is possible to use this method of RF heating for helium ash removal in stellarator-reactor. The required LH power is estimated to be of the order of 10 MW. (author)

  17. Comparison of thermal runaway limits under different test conditions based on a 4.5 kV IGBT

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Prindle, D.; Pâques, Gontran

    2016-01-01

    runaway takes place. In this paper guidelines are proposed based on the correlation among short circuit withstand capability and off-state leakage current for guarantying reliable operation and ensuring that they are thermally stable under parameter variations. This study is helpful to facilitate...... application engineers for defining the correct stability criteria and/or margins in respect of thermal runaway....

  18. Effect of magnetic fluctuations on the confinement and dynamics of runaway electrons in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Zhou, R.J.; Hu, L.Q.; Li, E.Z.; Xu, M.; Zhong, G.Q.; Xu, L.Q.; Lin, S.Y.

    2013-01-01

    Experimental results in the HT-7 tokamak indicated significant losses of runaway electrons due to magnetic fluctuations, but the loss processes did not only rely on the fluctuation amplitude. Efficient radial runaway transport required that there were no more than small regions of the plasma volume in which there was very low transport of runaways. A radial runaway diffusion coefficient of D_r ≈ 10 m"2s"-"1 was derived for the loss processes, and diffusion coefficient near the resonant magnetic surfaces and shielding factor ϒ = 0.8 were deduced. Test particle equations were used to analyze the effect of magnetic fluctuations on runaway dynamics. It was found that the maximum energy that runaways can gain is very sensitive to the value of a_s. a_s = (0.28 - 0.33) was found for the loss processes in the experiment, and maximum runaway energy could be controlled in the range of E = (4 MeV - 6 MeV) in this case. Additionally, to control the maximum runaway energy below 5 MeV, the normalized electric field needed to be under a critical value D_a = 6.8, and the amplitude normalized magnetic fluctuations b tilde needed to be at least of the order of b tilde ≈ 3 x 10"-"5. (author)

  19. Onset of Conduct Disorder, Use of Delinquent Subsistence Strategies, and Street Victimization among Homeless and Runaway Adolescents in the Midwest

    Science.gov (United States)

    Chen, Xiaojin; Thrane, Lisa; Whitbeck, Les B.; Johnson, Kurt D.; Hoyt, Dan R.

    2007-01-01

    This study examines the effects of childhood-onset conduct disorder on later antisocial behavior and street victimization among a group of homeless and runaway adolescents. Four hundred twenty-eight homeless and runaway youth were interviewed directly on the streets and in shelters from four Midwestern states. Key findings include the following.…

  20. 45 CFR 1351.13 - What are the Federal and non-Federal match requirements under a Runaway and Homeless Youth grant?

    Science.gov (United States)

    2010-10-01

    ... requirements under a Runaway and Homeless Youth grant? 1351.13 Section 1351.13 Public Welfare Regulations... SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.13 What are the Federal and non...

  1. Studies of Plasma Instabilities Excited by Ground-Based High Power HF (Heating) Facilities and of X and Gamma Ray Emission in Runaway Breakdown Processes

    National Research Council Canada - National Science Library

    Gurevich, Aleksander V

    2006-01-01

    .... The runaway breakdown process in inhomogeneous thunderstorm electric field; 5. X-ray emission in different gases due to runaway breakdown phenomena in a laboratory cyclotron installation; 6. An influence of combined effects of runaway breakdown and cosmic rays on lightning processes in thunderstorm atmosphere.

  2. The Influence of Chemi-Ionization and Recombination Processes on Spectral Line Shapes in Stellar Atmospheres

    Directory of Open Access Journals (Sweden)

    Mihajlov Anatolij A.

    2011-12-01

    Full Text Available The chemi-ionization processes in atom - Rydberg atom collisions, as well as the corresponding chemi-recombination processes, are considered as factors of influence on the atom exited-state populations in weakly ionized layers of stellar atmospheres. The presented results are related to the photospheres of the Sun and some M red dwarfs, as well as weakly ionized layers of DB white dwarf atmospheres. It has been found that the mentioned chemi-ionization and recombination processes dominate over the concurrent electron-atom and electron-ion ionization and recombination processes in all parts of the considered stellar atmospheres. The obtained results demonstrate the fact that the considered processes must have significant influence on the optical properties of stellar atmospheres. It is shown that these processes and their importance for non-local thermodynamic equilibrium (non-LTE modeling of the solar atmospheres should be investigated further.

  3. Modelling Venting and Pressure Build-up in a 18650 LCO Cell during Thermal Runaway (ABSTRACT)

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian; White, Ralph

    Li-ion batteries are a very popular type of electric storage devices that possess high energy density when compared to the other battery chemistries. Due to this property, when operating under abusive conditions such as high ambient temperature, the batteries can experience thermal runaway, which...... may lead to fires and explosions. To prevent this, it is therefore important to model thermal runaway considering different events such as venting and the pressure development inside the battery cell, which makes the main purpose of this paper. A model consisting of the different decomposition....... By fitting the activation energies, and measuring experimentally the mass of the ejecta during thermal runaway, the model is compared and validated against an extensive experiment performed by Golukbov et al. [1] during oven heating. When analysing the results, it is found that by including the venting...

  4. Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jichao Hong

    2017-07-01

    Full Text Available A thermal runaway prognosis scheme for battery systems in electric vehicles is proposed based on the big data platform and entropy method. It realizes the diagnosis and prognosis of thermal runaway simultaneously, which is caused by the temperature fault through monitoring battery temperature during vehicular operations. A vast quantity of real-time voltage monitoring data is derived from the National Service and Management Center for Electric Vehicles (NSMC-EV in Beijing. Furthermore, a thermal security management strategy for thermal runaway is presented under the Z-score approach. The abnormity coefficient is introduced to present real-time precautions of temperature abnormity. The results illustrated that the proposed method can accurately forecast both the time and location of the temperature fault within battery packs. The presented method is flexible in all disorder systems and possesses widespread application potential in not only electric vehicles, but also other areas with complex abnormal fluctuating environments.

  5. A Thermal Runaway Simulation on a Lithium Titanate Battery and the Battery Module

    Directory of Open Access Journals (Sweden)

    Man Chen

    2015-01-01

    Full Text Available Based on the electrochemical and thermal model, a coupled electro-thermal runaway model was developed and implemented using finite element methods. The thermal decomposition reactions when the battery temperature exceeds the material decomposition temperature were embedded into the model. The temperature variations of a lithium titanate battery during a series of charge-discharge cycles under different current rates were simulated. The results of temperature and heat generation rate demonstrate that the greater the current, the faster the battery temperature is rising. Furthermore, the thermal influence of the overheated cell on surrounding batteries in the module was simulated, and the variation of temperature and heat generation during thermal runaway was obtained. It was found that the overheated cell can induce thermal runaway in other adjacent cells within 3 mm distance in the battery module if the accumulated heat is not dissipated rapidly.

  6. Evaluation of runaway-electron effects on plasma-facing components for NET

    Science.gov (United States)

    Bolt, H.; Calén, H.

    1991-03-01

    Runaway electrons which are generated during disruptions can cause serious damage to plasma facing components in a next generation device like NET. A study was performed to quantify the response of NET plasma facing components to runaway-electron impact. For the determination of the energy deposition in the component materials Monte Carlo computations were performed. Since the subsurface metal structures can be strongly heated under runaway-electron impact from the computed results damage threshold values for the thermal excursions were derived. These damage thresholds are strongly dependent on the materials selection and the component design. For a carbonmolybdenum divertor with 10 and 20 mm carbon armour thickness and 1 degree electron incidence the damage thresholds are 100 MJ/m 2 and 220 MJ/m 2. The thresholds for a carbon-copper divertor under the same conditions are about 50% lower. On the first wall damage is anticipated for energy depositions above 180 MJ/m 2.

  7. The OB run-away stars from Sco-Cen and Orion reviewed

    International Nuclear Information System (INIS)

    Blaauw, A.

    1989-01-01

    The author studies the past paths of the run-away star Zeta Oph from the OB association Sco-Cen, and of the run-away stars AE Aur, Mu Col and 53 Ari from the OB association Ori OB1, in connection with the question of the origin of these high velocities. Should the binary-hypothesis be adhered to (supernova explosion of one of the components) or, perhaps, dynamical evolution in young, dense clusters offer a clue to this phenomenon? It is shown that the latter hypothesis is very unlikely to apply to Zeta Oph. For the run-away stars from Orion conclusive evidence may well be obtained in the course of the next decade, from improved accuracy of the proper motions

  8. Numerical study of the generation of runaway electrons in a gas diode with a hot channel

    Energy Technology Data Exchange (ETDEWEB)

    Lisenkov, V. V., E-mail: lisenkov@iep.uran.ru [Institute of Electrophysics UrB RAS, 106 Amundsena St., Ekaterinburg 620012 (Russian Federation); Ural Federal University, 19 Mira St., Ekaterinburg 620002 (Russian Federation); Shklyaev, V. A., E-mail: shklyaev@to.hcei.tsc.ru [Institute of High Current Electronics SD RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk (Russian Federation)

    2015-11-15

    A new method for increasing the efficiency of runaway electron beam generation in atmospheric pressure gas media has been suggested and theoretically proved. The method consists of creating a hot region (e.g., a spark channel or a laser plume) with a decreased numerical density of gas molecules (N) near the cathode. In this method, the ratio E/N (E—electric field strength) is increased by decreasing N instead of increasing E, as has been done in the past. The numerical model that is used allows the simultaneous calculation of the formation of a subnanosecond gas discharge and the generation of runaway electrons in gas media. The calculations have demonstrated the possibility of obtaining current pulses of runaway electrons with amplitudes of hundred of amperes and durations of more than 100 ps. The influence of the hot channel geometry on the parameters of the generated beam has been investigated.

  9. Predicted space motions for hypervelocity and runaway stars: proper motions and radial velocities for the Gaia Era

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, Scott J.; Brown, Warren R.; Geller, Margaret J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: bromley@physics.utah.edu [Department of Physics, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States)

    2014-10-01

    We predict the distinctive three-dimensional space motions of hypervelocity stars (HVSs) and runaway stars moving in a realistic Galactic potential. For nearby stars with distances less than 10 kpc, unbound stars are rare; proper motions alone rarely isolate bound HVSs and runaways from indigenous halo stars. At large distances of 20-100 kpc, unbound HVSs are much more common than runaways; radial velocities easily distinguish both from indigenous halo stars. Comparisons of the predictions with existing observations are encouraging. Although the models fail to match observations of solar-type HVS candidates from SEGUE, they agree well with data for B-type HVS and runaways from other surveys. Complete samples of g ≲ 20 stars with Gaia should provide clear tests of formation models for HVSs and runaways and will enable accurate probes of the shape of the Galactic potential.

  10. HBT measurements in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Zajc, W.A.

    1990-01-01

    The correlations in relative momentum between identical bosons are determined, in part, by the geometrical properties of the boson source. This fact was first exploited in hadron physics by Goldhaber, Goldhaber, Lee and Pais (GGLP) in 1960. In the intervening three decades, this approach has been applied to lepton-lepton, lepton-hadron, hadron-hadron, and heavy-ion collisions. A word about nomenclature: The correlations in relative momentum between identical mesons arise from Bose statistics. Even previous to GGLP, this fact was applied by Hanbury-Brown and Twiss to measure stellar radii via two-photon interferometry. Thus an alternative name for the GGLP effect is the HBT effect. An informal introduction to Hanbury-Brown-Twiss measurements in heavy ion collisions is presented. The systematic effects in interpreting such data are emphasized, rather than the implications of any single experiment

  11. Characterizing stellar and exoplanetary environments

    CERN Document Server

    Khodachenko, Maxim

    2015-01-01

    In this book an international group of specialists discusses studies of exoplanets subjected to extreme stellar radiation and plasma conditions. It is shown that such studies will help us to understand how terrestrial planets and their atmospheres, including the early Venus, Earth and Mars, evolved during the host star’s active early phase. The book presents an analysis of findings from Hubble Space Telescope observations of transiting exoplanets, as well as applications of advanced numerical models for characterizing the upper atmosphere structure and stellar environments of exoplanets. The authors also address detections of atoms and molecules in the atmosphere of “hot Jupiters” by NASA’s Spitzer telescope. The observational and theoretical investigations and discoveries presented are both timely and important in the context of the next generation of space telescopes. 
 The book is divided into four main parts, grouping chapters on exoplanet host star radiation and plasma environments, exoplanet u...

  12. Modular Stellarator Fusion Reactor concept

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1981-08-01

    A preliminary conceptual study is made of the Modular Stellarator Reactor (MSR). A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. The physics basis of the design point is described together with supporting magnetics, coil-force, and stress computations. The approach and results presented herein will be modified in the course of ongoing work to form a firmer basis for a detailed conceptual design of the MSR

  13. Hydromagnetic instability in a stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Kruskal, M D; Gottlieb, M B; Johnson, J L; Goldman, L M [Project Matterhorn, Princeton University, Princeton, NJ (United States)

    1958-07-01

    It was noted that when there is a uniform externally imposed longitudinal field much larger than the field of the discharge current, one should expect instabilities in the form of a lateral displacement of the plasma column into a helix of large pitch. At the wavelength of fastest growth the e-folding time approximates the time it takes a sound wave in the plasma to traverse the radius of the plasma column. This problem has been re-examines under the conditions which might be expected to occur in the stellarator during ohmic heating, including the presence of external conductors. The theory is applied to the stellarator; and it is shown that the external conductors are in fact unimportant. The important effects due to the finite length of the Machine are discussed and the effects of more general current distributions are considered. The results from the experiments are given.

  14. ACCELERATED FITTING OF STELLAR SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Yuan-Sen; Conroy, Charlie [Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Rix, Hans-Walter [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-07-20

    Stellar spectra are often modeled and fitted by interpolating within a rectilinear grid of synthetic spectra to derive the stars’ labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of labels separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach—Convex Hull Adaptive Tessellation (chat)—which includes several new ideas for inexpensively generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock data sets demonstrate that chat can reduce the number of required synthetic model calculations by three orders of magnitude in an eight-dimensional label space. The reduction will be even larger for higher dimensional label spaces. In chat the computational effort increases only linearly with the number of labels that are fit simultaneously. Around each of these grid points in the label space an approximate synthetic spectrum can be generated through linear expansion using a set of “gradient spectra” that represent flux derivatives at every wavelength point with respect to all labels. These techniques provide new opportunities to fit the full stellar spectra from large surveys with 15–30 labels simultaneously.

  15. Grigori Kuzmin and Stellar Dynamics

    Directory of Open Access Journals (Sweden)

    Zeeuw P. Tim de

    2011-06-01

    Full Text Available Grigori Kuzmin was a very gifted dynamicist and one of the towering figures in the distinguished history of the Tartu Observatory. He obtained a number of important results in relative isolation which were later rediscovered in the West. This work laid the foundation for further advances in the theory of stellar systems in dynamical equilibrium, thereby substantially increasing our understanding of galaxy dynamics.

  16. Geometry Dependence of Stellarator Turbulence

    International Nuclear Information System (INIS)

    Mynick, H.E.; Xanthopoulos, P.; Boozer, A.H.

    2009-01-01

    Using the nonlinear gyrokinetic code package GENE/GIST, we study the turbulent transport in a broad family of stellarator designs, to understand the geometry-dependence of the microturbulence. By using a set of flux tubes on a given flux surface, we construct a picture of the 2D structure of the microturbulence over that surface, and relate this to relevant geometric quantities, such as the curvature, local shear, and effective potential in the Schrodinger-like equation governing linear drift modes

  17. Models of hot stellar systems

    International Nuclear Information System (INIS)

    Van Albada, T.S.

    1986-01-01

    Elliptical galaxies consist almost entirely of stars. Sites of recent star formation are rare, and most stars are believed to be several billion years old, perhaps as old as the Universe itself (--10/sup 10/ yrs). Stellar motions in ellipticals show a modest amount of circulation about the center of the system, but most support against the force of gravity is provided by random motions; for this reason ellipticals are called 'hot' stellar systems. Spiral galaxies usually also contain an appreciable amount of gas (--10%, mainly atomic hydrogen) and new stars are continually being formed out of this gas, especially in the spiral arms. In contrast to ellipticals, support against gravity in spiral galaxies comes almost entirely from rotation; random motions of the stars with respect to rotation are small. Consequently, spiral galaxies are called 'cold' stellar systems. Other than in hot systems, in cold systems the collective response of stars to variations in the force field is an essential part of the dynamics. The present overview is limited to mathematical models of hot systems. Computational methods are also discussed

  18. Results of Compact Stellarator Engineering Trade Studies

    International Nuclear Information System (INIS)

    Brown, Tom; Bromberg, L.; Cole, M.

    2009-01-01

    A number of technical requirements and performance criteria can drive stellarator costs, e.g., tight tolerances, accurate coil positioning, low aspect ratio (compactness), choice of assembly strategy, metrology, and complexity of the stellarator coil geometry. With the completion of a seven-year design and construction effort of the National Compact Stellarator Experiment (NCSX) it is useful to interject the NCSX experience along with the collective experiences of the NCSX stellarator community to improving the stellarator configuration. Can improvements in maintenance be achieved by altering the stellarator magnet configuration with changes in the coil shape or with the combination of trim coils? Can a mechanical configuration be identified that incorporates a partial set of shaped fixed stellarator coils along with some removable coil set to enhance the overall machine maintenance? Are there other approaches that will simplify the concepts, improve access for maintenance, reduce overall cost and improve the reliability of a stellarator based power plant? Using ARIES-CS and NCSX as reference cases, alternative approaches have been studied and developed to show how these modifications would favorably impact the stellarator power plant and experimental projects. The current status of the alternate stellarator configurations being developed will be described and a comparison made to the recently designed and partially built NCSX device and the ARIES-CS reactor design study

  19. Results of Compact Stellarator Engineering Trade Studies

    International Nuclear Information System (INIS)

    Brown, T.; Bromberg, L.; Cole, M.

    2009-01-01

    A number of technical requirements and performance criteria can drive stellarator costs, e.g., tight tolerances, accurate coil positioning, low aspect ratio (compactness), choice of assembly strategy, metrology, and complexity of the stellarator coil geometry. With the completion of a seven-year design and construction effort of the National Compact Stellarator Experiment (NCSX) it is useful to interject the NCSX experience along with the collective experiences of the NCSX stellarator community to improving the stellarator configuration. Can improvements in maintenance be achieved by altering the stellarator magnet configuration with changes in the coil shape or with the combination of trim coils? Can a mechanical configuration be identified that incorporates a partial set of shaped fixed stellarator coils along with some removable coil set to enhance the overall machine maintenance? Are there other approaches that will simplify the concepts, improve access for maintenance, reduce overall cost and improve the reliability of a stellarator based power plant? Using ARIES-CS and NCSX as reference cases, alternative approaches have been studied and developed to show how these modifications would favorably impact the stellarator power plant and experimental projects. The current status of the alternate stellarator configurations being developed will be described and a comparison made to the recently designed and partially built NCSX device and the ARIES-CS reactor design study.

  20. Collision Repair Campaign

    Science.gov (United States)

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  1. Neuromorphic UAS Collision Avoidance

    Data.gov (United States)

    National Aeronautics and Space Administration — Collision avoidance for unmanned aerial systems (UAS) traveling at high relative speeds is a challenging task. It requires both the detection of a possible collision...

  2. Ion-ion collisions

    International Nuclear Information System (INIS)

    Salzborn, Erhard; Melchert, Frank

    2000-01-01

    Collisions between ions belong to the elementary processes occurring in all types of plasmas. In this article we give a short overview about collisions involving one-electron systems. For collisions involving multiply-charged ions we limit the discussion to one specific quasi-one-electron system. (author)

  3. How to prevent runaways in trickle-bed reactors for Pygas hydrogenation

    NARCIS (Netherlands)

    Westerterp, K.R.; Kronberg, Alexandre E.

    2002-01-01

    In the past, several runaways have occurred in Trickle-Bed Reactors (TBR) used for the hydrogenation of pyrolysis gasoline as produced in ethylene cracking installations. This phenomenon has been studied in the framework of a special program in the Netherlands, which is administered by the National

  4. Predictors of Substance Use and Family Therapy Outcome among Physically and Sexually Abused Runaway Adolescents

    Science.gov (United States)

    Slesnick, Natasha; Bartle-Haring, Suzanne; Gangamma, Rashmi

    2006-01-01

    There is a dearth of research that examines the impact of family systems therapy on problems among sexually and/or physically abused youth. Given this void, differential outcome and predictors of substance use change were evaluated for abused, as compared with nonabused, runaway adolescents who were randomly assigned to family therapy or treatment…

  5. Constructing the Runaway Youth Problem: Boy Adventurers to Girl Prostitutes, 1960-1978.

    Science.gov (United States)

    Staller, Karen M.

    2003-01-01

    Examines, using a qualitative case study of stories printed in "The New York Times," the social construction of "runaway youth" in print media during 1960-1978. Finds that running away was an unconstructed problem (or simmering social condition) in the early 1960s and featured harmless adventures. Contributes to the…

  6. On the Absence of Non-thermal X-Ray Emission around Runaway O Stars

    Energy Technology Data Exchange (ETDEWEB)

    Toalá, J. A. [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10617, Taiwan (China); Oskinova, L. M. [Institute for Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States)

    2017-04-01

    Theoretical models predict that the compressed interstellar medium around runaway O stars can produce high-energy non-thermal diffuse emission, in particular, non-thermal X-ray and γ -ray emission. So far, detection of non-thermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six well-determined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward ζ Oph and BD+43°3654. We carefully investigated multi-wavelength observations of AE Aur and could not confirm previous findings of non-thermal X-rays. We conclude that so far there is no clear evidence of non-thermal extended emission in bow shocks around runaway O stars.

  7. Mental Disorders, Comorbidity, and Postrunaway Arrests among Homeless and Runaway Adolescents

    Science.gov (United States)

    Chen, Xiaojin; Thrane, Lisa; Whitbeck, Les B.; Johnson, Kurt

    2006-01-01

    This study examined the associations between lifetime mental disorder, comorbidity, and self-reported postrunaway arrests among 428 (187 males, 241 females) homeless and runaway youth. The analysis examined the pattern of arrests across five lifetime mental disorders (alcohol abuse, drug abuse, conduct disorder, major depressive episode, and…

  8. Runaway and thermally safe operation of a nitric acid oxidation in a semi-batch reactor

    NARCIS (Netherlands)

    van Woezik, B.A.A.

    2000-01-01

    A number of serious accidents has occurred due to a runaway reaction of a heterogeneous liquid-liquid reaction whereby a secondary side reaction was triggered. A basic lack of proper knowledge of all the phenomena, occurring in such a system, is one of the prime causes that may lead to overheating

  9. Halting a Runaway Train: Reforming Teacher Pensions for the 21st Century

    Science.gov (United States)

    Lafferty, Michael B.

    2011-01-01

    When it comes to public-sector pensions, writes lead author Michael B. Lafferty in this report, "A major public-policy (and public-finance) problem has been defined and measured, debated and deliberated, but not yet solved. Except where it has been." As recounted in "Halting a Runaway Train: Reforming Teacher Pensions for the 21st…

  10. Analyses of electron runaway in front of the negative streamer channel

    DEFF Research Database (Denmark)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2017-01-01

    X-and γ-ray emissions, observed in correlation with negative leaders of lightning and long sparks of high-voltage laboratory experiments, are conventionally connected with the bremsstrahlung of high-energy runaway electrons (REs). Here we extend a focusing mechanism, analyzed in our previous paper...

  11. Evaluation of a Peer-Led Drug Abuse Risk Reduction Project for Runaway/Homeless Youths.

    Science.gov (United States)

    Fors, Stuart W.; Jarvis, Sara

    1995-01-01

    Evaluates the Drug Prevention in Youth risk reduction program that was implemented in shelters for runaway/homeless youths in the southeastern United States. An evaluation strategy was developed allowing for comparisons between peer-led, adult-led and nonintervention groups. Well-trained and motivated peer/near-peer leaders made particularly…

  12. Using Amines and Alkanes as Thermal-Runaway Retardants for Lithium-Ion Battery

    Science.gov (United States)

    Shi, Yang

    Thermal runaway imposes major challenges to large-scale lithium-ion batteries (LIBs). The working temperature of a LIB is usually around room temperature. However, upon mechanical abuse such as an impact or nail penetration, LIB cell components may fail and internal short circuits could be formed. As a result, a series of exothermic electrochemical reactions and decompositions would take place and the local temperature can rapidly increase. In this thesis, a few novel techniques are investigated to mitigate thermal runaway of LIBs. Mechanically triggered approach has been employed. Thermal-runaway retardant (TRR) is encapsulated in mechanically responsive packages made of materials inert to the battery environment, and upon external mechanical loadings the packages can be broken apart and release the TRR. This mechanism allows for the use of aggressive chemicals to suppress the short circuit discharge and reduce the subsequent exothermic phenomena, immediately after the battery is damaged even before temperature increase begins. The best TRR candidates are identified to be amines and alkanes. Among amines, secondary amines and tertiary amines perform better than primary amines. The reduction in electrolyte ionic conductivity and the displacement of electrolyte are the thermal-runaway-mitigation mechanisms of the secondary and the tertiary amines, respectively. Pentadecane is the best candidate among the alkanes under investigation, with the major working mechanism being electrolyte displacement. Impact tests on large pouch cells and high-energy battery chemistry were also performed; the results were quite encouraging.

  13. On-line runaway detection in batch reactors using chaos theory techniques.

    NARCIS (Netherlands)

    Strozzi, F.; Strozzi, F.; Zaldivar, J.M.; Zaldivar, J.M.; Kronberg, Alexandre E.; Westerterp, K.R.

    1999-01-01

    In this work nonlinear time-series analysis using delay coordinate embedding was applied to simulated temperature data from isoperibolic batch reactors to develop an early-warning detection system of the runaway. In the first part of this study an early-warning detection criterion, that is, when the

  14. Transport scaling in the collisionless-detrapping regime in stellarators

    International Nuclear Information System (INIS)

    Crume, E.C. Jr.; Shaing, K.C.; Hirshman, S.P.; van Rij, W.I.

    1987-09-01

    Stellarator transport scalings with electric field, geometry, and collision frequency in the reactor-relevant collisionless-detrapping regime are determined from numerical solutions of the drift kinetic equation. A new geometrical scaling, proportional to ε/sub t/sup 3/2/ rather than ε/sub t/ε/sub h/sup 1/2/, is found, where ε/sub t/ is the inverse aspect ratio and ε/sub h/ is the helical ripple. With the new scaling, no reduction in energy confinement time is associated with large helical ripple, which provides design flexibility. Integral expressions for the particle and heat fluxes that are useful for transport simulations are given. 11 refs

  15. Stellarator fusion neutronics research in Australia

    International Nuclear Information System (INIS)

    Zimin, S.; Cross, R.C.

    1997-01-01

    The new status of the H-INF Heliac Stellaralor as a National Facility and the signed international Implementing Agreement on 'Collaboration in the Development of the Stellarator Concept' represents a significant encouragement for further fusion research in Australia. In this report the future of fusion research in Australia is discussed with special attention being paid to the importance of Stellarator power plant studies and in particular stellarator fusion neutronics. The main differences between tokamak and stellarator neutronics analyses are identified, namely the neutron wall loading, geometrical modelling and total heating in in-vessel reactor components including toroidal field (TF) coils. Due to the more complicated nature of stellarator neutronics analyses, simplified approaches to fusion neutronics already developed for tokamaks are expected to be even more important and widely used for designing a Conceptual Stellarator Power Plant

  16. On the universal stellar law

    Science.gov (United States)

    Krot, Alexander

    In this work, we consider a statistical theory of gravitating spheroidal bodies to derive and develop the universal stellar law for extrasolar systems. Previously, the statistical theory for a cosmogonic body forming (so-called spheroidal body)has been proposed [1-3]. This theory starts from the conception for forming a spheroidal body inside a gas-dust protoplanetary nebula; it permits us to derive the form of distribution functions, mass density, gravitational potentials and strengths both for immovable and rotating spheroidal bodies as well as to find the distribution function of specific angular momentum[1-3]. If we start from the conception for forming a spheroidal body as a protostar (in particular, proto-Sun) inside a prestellar (presolar) nebula then the derived distribution functions of particle (as well as the mass density of an immovable spheroidal body) characterizes the first stage of evolution: from a prestellar molecular cloud (the presolar nebula) to the forming core of protostar (the proto-Sun) together with its shell as a stellar nebula (the solar nebula). This work derives the equation of state of an ideal stellar substance based on conception of gravitating spheroidal body. Using this equation, we obtain the universal stellar law (USL) for the planetary systems connecting temperature, size and mass of each of stars. This work also considers the Solar corona in the connection with USL. Then it is accounting under calculation of the ratio of temperature of the Solar corona to effective temperature of the Sun’ surfaceand modification of USL. To test justice of the modified USLfor different types of stars, the temperature of stellar corona is estimated. The prediction of parameters of stars is carrying out by means of the modified USL,as well as the Hertzsprung-Russell’s dependence [5-7]is derivedby means of USL directly. This paper also shows that knowledge of some characteristics for multi-planet extrasolar systems refines own parameters of

  17. Can Cell to Cell Thermal Runaway Propagation be Prevented in a Li-ion Battery Module?

    Science.gov (United States)

    Jeevarajan, Judith; Lopez, Carlos; Orieukwu, Josephat

    2014-01-01

    Increasing cell spacing decreased adjacent cell damage center dotElectrically connected adjacent cells drained more than physically adjacent cells center dotRadiant barrier prevents propagation when fully installed between BP cells center dotBP cells vent rapidly and expel contents at 100% SOC -Slower vent with flame/smoke at 50% -Thermal runaway event typically occurs at 160 degC center dotLG cells vent but do not expel contents -Thermal runaway event typically occurs at 200 degC center dotSKC LFP modules did not propagate; fuses on negative terminal of cell may provide a benefit in reducing cell to cell damage propagation. New requirement in NASA-Battery Safety Requirements document: JSC 20793 Rev C 5.1.5.1 Requirements - Thermal Runaway Propagation a. For battery designs greater than a 80-Wh energy employing high specific energy cells (greater than 80 watt-hours/kg, for example, lithium-ion chemistries) with catastrophic failure modes, the battery shall be evaluated to ascertain the severity of a worst-case single-cell thermal runaway event and the propensity of the design to demonstrate cell-to-cell propagation in the intended application and environment. NASA has traditionally addressed the threat of thermal runaway incidents in its battery deployments through comprehensive prevention protocols. This prevention-centered approach has included extensive screening for manufacturing defects, as well as robust battery management controls that prevent abuse-induced runaway even in the face of multiple system failures. This focused strategy has made the likelihood of occurrence of such an event highly improbable. b. The evaluation shall include all necessary analysis and test to quantify the severity (consequence) of the event in the intended application and environment as well as to identify design modifications to the battery or the system that could appreciably reduce that severity. In addition to prevention protocols, programs developing battery designs with

  18. Multiplicity in Early Stellar Evolution

    Science.gov (United States)

    Reipurth, B.; Clarke, C. J.; Boss, A. P.; Goodwin, S. P.; Rodríguez, L. F.; Stassun, K. G.; Tokovinin, A.; Zinnecker, H.

    Observations from optical to centimeter wavelengths have demonstrated that multiple systems of two or more bodies is the norm at all stellar evolutionary stages. Multiple systems are widely agreed to result from the collapse and fragmentation of cloud cores, despite the inhibiting influence of magnetic fields. Surveys of class 0 protostars with millimeter interferometers have revealed a very high multiplicity frequency of about 2/3, even though there are observational difficulties in resolving close protobinaries, thus supporting the possibility that all stars could be born in multiple systems. Near-infrared adaptive optics observations of class I protostars show a lower binary frequency relative to the class 0 phase, a declining trend that continues through the class II/III stages to the field population. This loss of companions is a natural consequence of dynamical interplay in small multiple systems, leading to ejection of members. We discuss observational consequences of this dynamical evolution, and its influence on circumstellar disks, and we review the evolution of circumbinary disks and their role in defining binary mass ratios. Special attention is paid to eclipsing PMS binaries, which allow for observational tests of evolutionary models of early stellar evolution. Many stars are born in clusters and small groups, and we discuss how interactions in dense stellar environments can significantly alter the distribution of binary separations through dissolution of wider binaries. The binaries and multiples we find in the field are the survivors of these internal and external destructive processes, and we provide a detailed overview of the multiplicity statistics of the field, which form a boundary condition for all models of binary evolution. Finally, we discuss various formation mechanisms for massive binaries, and the properties of massive trapezia.

  19. Physics of Compact Advanced Stellarators

    International Nuclear Information System (INIS)

    Zarnstorff, M.C.; Berry, L.A.; Brooks, A.; Fredrickson, E.; Fu, G.-Y.; Hirshman, S.; Hudson, S.; Ku, L.-P.; Lazarus, E.; Mikkelsen, D.; Monticello, D.; Neilson, G.H.; Pomphrey, N.; Reiman, A.; Spong, D.; Strickler, D.; Boozer, A.; Cooper, W.A.; Goldston, R.; Hatcher, R.; Isaev, M.; Kessel, C.; Lewandowski, J.; Lyon, J.; Merkel, P.; Mynick, H.; Nelson, B.E.; Nuehrenberg, C.; Redi, M.; Reiersen, W.; Rutherford, P.; Sanchez, R.; Schmidt, J.; White, R.B.

    2001-01-01

    Compact optimized stellarators offer novel solutions for confining high-beta plasmas and developing magnetic confinement fusion. The 3-D plasma shape can be designed to enhance the MHD stability without feedback or nearby conducting structures and provide drift-orbit confinement similar to tokamaks. These configurations offer the possibility of combining the steady-state low-recirculating power, external control, and disruption resilience of previous stellarators with the low-aspect ratio, high beta-limit, and good confinement of advanced tokamaks. Quasi-axisymmetric equilibria have been developed for the proposed National Compact Stellarator Experiment (NCSX) with average aspect ratio 4-4.4 and average elongation of approximately 1.8. Even with bootstrap-current consistent profiles, they are passively stable to the ballooning, kink, vertical, Mercier, and neoclassical-tearing modes for beta > 4%, without the need for external feedback or conducting walls. The bootstrap current generates only 1/4 of the magnetic rotational transform at beta = 4% (the rest is from the coils), thus the equilibrium is much less nonlinear and is more controllable than similar advanced tokamaks. The enhanced stability is a result of ''reversed'' global shear, the spatial distribution of local shear, and the large fraction of externally generated transform. Transport simulations show adequate fast-ion confinement and thermal neoclassical transport similar to equivalent tokamaks. Modular coils have been designed which reproduce the physics properties, provide good flux surfaces, and allow flexible variation of the plasma shape to control the predicted MHD stability and transport properties

  20. STELLAR MASS DEPENDENT DISK DISPERSAL

    International Nuclear Information System (INIS)

    Kennedy, Grant M.; Kenyon, Scott J.

    2009-01-01

    We use published optical spectral and infrared (IR) excess data from nine young clusters and associations to study the stellar mass dependent dispersal of circumstellar disks. All clusters older than ∼3 Myr show a decrease in disk fraction with increasing stellar mass for solar to higher mass stars. This result is significant at about the 1σ level in each cluster. For the complete set of clusters we reject the null hypothesis-that solar and intermediate-mass stars lose their disks at the same rate-with 95%-99.9% confidence. To interpret this behavior, we investigate the impact of grain growth, binary companions, and photoevaporation on the evolution of disk signatures. Changes in grain growth timescales at fixed disk temperature may explain why early-type stars with IR excesses appear to evolve faster than their later-type counterparts. Little evidence that binary companions affect disk evolution suggests that photoevaporation is the more likely mechanism for disk dispersal. A simple photoevaporation model provides a good fit to the observed disk fractions for solar and intermediate-mass stars. Although the current mass-dependent disk dispersal signal is not strong, larger and more complete samples of clusters with ages of 3-5 Myr can improve the significance and provide better tests of theoretical models. In addition, the orbits of extra-solar planets can constrain models of disk dispersal and migration. We suggest that the signature of stellar mass dependent disk dispersal due to photoevaporation may be present in the orbits of observed extra-solar planets. Planets orbiting hosts more massive than ∼1.6 M sun may have larger orbits because the disks in which they formed were dispersed before they could migrate.

  1. Formation of massive, dense cores by cloud-cloud collisions

    Science.gov (United States)

    Takahira, Ken; Shima, Kazuhiro; Habe, Asao; Tasker, Elizabeth J.

    2018-05-01

    We performed sub-parsec (˜ 0.014 pc) scale simulations of cloud-cloud collisions of two idealized turbulent molecular clouds (MCs) with different masses in the range of (0.76-2.67) × 104 M_{⊙} and with collision speeds of 5-30 km s-1. Those parameters are larger than in Takahira, Tasker, and Habe (2014, ApJ, 792, 63), in which study the colliding system showed a partial gaseous arc morphology that supports the NANTEN observations of objects indicated to be colliding MCs using numerical simulations. Gas clumps with density greater than 10-20 g cm-3 were identified as pre-stellar cores and tracked through the simulation to investigate the effects of the mass of colliding clouds and the collision speeds on the resulting core population. Our results demonstrate that the smaller cloud property is more important for the results of cloud-cloud collisions. The mass function of formed cores can be approximated by a power-law relation with an index γ = -1.6 in slower cloud-cloud collisions (v ˜ 5 km s-1), and is in good agreement with observation of MCs. A faster relative speed increases the number of cores formed in the early stage of collisions and shortens the gas accretion phase of cores in the shocked region, leading to the suppression of core growth. The bending point appears in the high-mass part of the core mass function and the bending point mass decreases with increase in collision speed for the same combination of colliding clouds. The higher-mass part of the core mass function than the bending point mass can be approximated by a power law with γ = -2-3 that is similar to the power index of the massive part of the observed stellar initial mass function. We discuss implications of our results for the massive-star formation in our Galaxy.

  2. Radiation transfer and stellar atmospheres

    Science.gov (United States)

    Swihart, T. L.

    This is a revised and expanded version of the author's Basic Physics of Stellar Atmospheres, published in 1971. The equation of transfer is considered, taking into account the intensity and derived quantities, the absorption coefficient, the emission coefficient, the source function, and special integrals for plane media. The gray atmosphere is discussed along with the nongray atmosphere, and aspects of line formation. Topics related to polarization are explored, giving attention to pure polarized radiation, general polarized radiation, transfer in a magnetic plasma, and Rayleigh scattering and the sunlit sky. Physical and astronomical constants, and a number of problems related to the subjects of the book are presented in an appendix.

  3. Drift waves in a stellarator

    International Nuclear Information System (INIS)

    Bhattacharjee, A.; Sedlak, J.E.; Similon, P.L.; Rosenbluth, M.N.; Ross, D.W.

    1982-11-01

    We investigate the eigenmode structure of drift waves in a straight stellarator using the ballooning mode formalism. The electrons are assumed to be adiabatic and the ions constitute a cold, magnetized fluid. The effective potential has an overall parabolic envelope but is modulated strongly by helical ripples along B. We have found two classes of solutions: those that are strongly localized in local helical wells, and those that are weakly localized and have broad spatial extent. The weakly localized modes decay spatially due to the existence of Mathieu resonances between the periods of the eigenfunction and the effective potential

  4. Helical axis stellarator equilibrium model

    International Nuclear Information System (INIS)

    Koniges, A.E.; Johnson, J.L.

    1985-02-01

    An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift

  5. Neutrino transport in stellar matter

    International Nuclear Information System (INIS)

    Basdevant, J.L.

    1985-09-01

    We reconsider the neutrino transport problem in dense stellar matter which has a variety of applications among which the participation of neutrinos to the dynamics of type II supernova explosions. We describe the position of the problem and make some critiscism of previously used approximation methods. We then propose a method which is capable of handling simultaneously the optically thick, optically thin, and intermediate regimes, which is of crucial importance in such problems. The method consists in a simulation of the transport process and can be considered exact within numerical accuracy. We, finally exhibit some sample calculations which show the efficiency of the method, and present interesting qualitative physical features

  6. Characterizing Convection in Stellar Atmospheres

    International Nuclear Information System (INIS)

    Tanner, Joel; Basu, Sarbani; Demarque, Pierre; Robinson, Frank

    2011-01-01

    We perform 3D radiative hydrodynamic simulations to study the properties of convection in the superadiabatic layer of stars. The simulations show differences in both the stratification and turbulent quantities for different types of stars. We extract turbulent pressure and eddy sizes, as well as the T-τ relation for different stars and find that they are sensitive to the energy flux and gravity. We also show that contrary to what is usually assumed in the field of stellar atmospheres, the structure and gas dynamics of simulations of turbulent atmospheres cannot be parameterized with T eff and log(g) alone.

  7. On modular stellarator reactor coils

    International Nuclear Information System (INIS)

    Rau, F.; Harmeyer, E.; Kisslinger, J.; Wobig, H.

    1985-01-01

    Modular twisted coils are discussed which produce magnetic fields of the Advanced Stellarator WENDELSTEIN VII-AS type. Reducing the number coils/FP offers advantage for maintenance of coils, but increases the magnetic ripple and B m /B o . Computation of force densities within the coils of ASR and ASB yield local maximum values of about 80 and 180 MN/m 3 , respectively. A system of mutual coil support is being developed. Twisted coils in helical arrangement provide a reactor-sized HELIAC system. In order to reduce the magnetic ripple, a large number of 14 coils/FP in special arrangement is used

  8. Stellar orbits around Sgr A*

    International Nuclear Information System (INIS)

    Trippe, S; Gillessen, S; Ott, T; Eisenhauer, F; Paumard, T; Martins, F; Genzel, R; Schoedel, R; Eckart, A; Alexander, T

    2006-01-01

    In this article we present and discuss the latest results from the observations of stars (''S-stars'') orbiting Sgr A* . With improving data quality the number of observed S-stars has increased substantially in the last years. The combination of radial velocity and proper motion information allows an ever more precise determination of orbital parameters and of the mass of and the distance to the supermassive black hole in the centre of the Milky Way. Additionally, the orbital solutions allow us to verify an agreement between the NIR source Sgr A* and the dynamical centre of the stellar orbits to within 2 mas

  9. Recent advances in stellarator optimization

    Science.gov (United States)

    Gates, D. A.; Boozer, A. H.; Brown, T.; Breslau, J.; Curreli, D.; Landreman, M.; Lazerson, S. A.; Lore, J.; Mynick, H.; Neilson, G. H.; Pomphrey, N.; Xanthopoulos, P.; Zolfaghari, A.

    2017-12-01

    Computational optimization has revolutionized the field of stellarator design. To date, optimizations have focused primarily on optimization of neoclassical confinement and ideal MHD stability, although limited optimization of other parameters has also been performed. The purpose of this paper is to outline a select set of new concepts for stellarator optimization that, when taken as a group, present a significant step forward in the stellarator concept. One of the criticisms that has been leveled at existing methods of design is the complexity of the resultant field coils. Recently, a new coil optimization code—COILOPT++, which uses a spline instead of a Fourier representation of the coils,—was written and included in the STELLOPT suite of codes. The advantage of this method is that it allows the addition of real space constraints on the locations of the coils. The code has been tested by generating coil designs for optimized quasi-axisymmetric stellarator plasma configurations of different aspect ratios. As an initial exercise, a constraint that the windings be vertical was placed on large major radius half of the non-planar coils. Further constraints were also imposed that guaranteed that sector blanket modules could be removed from between the coils, enabling a sector maintenance scheme. Results of this exercise will be presented. New ideas on methods for the optimization of turbulent transport have garnered much attention since these methods have led to design concepts that are calculated to have reduced turbulent heat loss. We have explored possibilities for generating an experimental database to test whether the reduction in transport that is predicted is consistent with experimental observations. To this end, a series of equilibria that can be made in the now latent QUASAR experiment have been identified that will test the predicted transport scalings. Fast particle confinement studies aimed at developing a generalized optimization algorithm are also

  10. Particle-production mechanism in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Bush, B.W.; Nix, J.R.

    1994-01-01

    We discuss the production of particles in relativistic heavy-ion collisions through the mechanism of massive bremsstrahlung, in which massive mesons are emitted during rapid nucleon acceleration. This mechanism is described within the framework of classical hadrodynamics for extended nucleons, corresponding to nucleons of finite size interacting with massive meson fields. This new theory provides a natural covariant microscopic approach to relativistic heavy-ion collisions that includes automatically spacetime nonlocality and retardation, nonequilibrium phenomena, interactions among all nucleons, and particle production. Inclusion of the finite nucleon size cures the difficulties with preacceleration and runaway solutions that have plagued the classical theory of self-interacting point particles. For the soft reactions that dominate nucleon-nucleon collisions, a significant fraction of the incident center-of-mass energy is radiated through massive bremsstrahlung. In the present version of the theory, this radiated energy is in the form of neutral scalar (σ) and neutral vector (ω) mesons, which subsequently decay primarily into pions with some photons also. Additional meson fields that are known to be important from nucleon-nucleon scattering experiments should be incorporated in the future, in which case the radiated energy would also contain isovector pseudoscalar (π + , π - , π 0 ), isovector scalar (δ + , δ - , δ 0 ), isovector vector (ρ + , ρ - , ρ 0 ), and neutral pseudoscalar (η) mesons

  11. Introduction to stellar astrophysics. V. 1

    International Nuclear Information System (INIS)

    Boehm-Vitense, E.

    1989-01-01

    This textbook introduces basic elements of fundamental astronomy and astrophysics which serve as a foundation for understanding the structure, evolution, and observed properties of stars. The first half of the book explains how stellar motions, distances, luminosities, colours, radii, masses and temperatures are measured or derived. The author then shows how data of these sorts can be arranged to classify stars through their spectra. Stellar rotation and stellar magnetic fields are introduced. Stars with peculiar spectra and pulsating stars also merit special attention. The endpoints of stellar evolutions are briefly described. There is a separate chapter on the Sun and a final one on interstellar absorption. (author)

  12. On the synchrotron emission in kinetic simulations of runaway electrons in magnetic confinement fusion plasmas

    Science.gov (United States)

    Carbajal, L.; del-Castillo-Negrete, D.

    2017-12-01

    Developing avoidance or mitigation strategies of runaway electrons (REs) in magnetic confinement fusion (MCF) plasmas is of crucial importance for the safe operation of ITER. In order to develop these strategies, an accurate diagnostic capability that allows good estimates of the RE distribution function in these plasmas is needed. Synchrotron radiation (SR) of RE in MCF, besides of being one of the main damping mechanisms for RE in the high energy relativistic regime, is routinely used in current MCF experiments to infer the parameters of RE energy and pitch angle distribution functions. In the present paper we address the long standing question about what are the relationships between different REs distribution functions and their corresponding synchrotron emission simultaneously including: full-orbit effects, information of the spectral and angular distribution of SR of each electron, and basic geometric optics of a camera. We study the spatial distribution of the SR on the poloidal plane, and the statistical properties of the expected value of the synchrotron spectra of REs. We observe a strong dependence of the synchrotron emission measured by the camera on the pitch angle distribution of runaways, namely we find that crescent shapes of the spatial distribution of the SR as measured by the camera relate to RE distributions with small pitch angles, while ellipse shapes relate to distributions of runaways with larger the pitch angles. A weak dependence of the synchrotron emission measured by the camera with the RE energy, value of the q-profile at the edge, and the chosen range of wavelengths is observed. Furthermore, we find that oversimplifying the angular dependence of the SR changes the shape of the synchrotron spectra, and overestimates its amplitude by approximately 20 times for avalanching runaways and by approximately 60 times for mono-energetic distributions of runaways1.

  13. Probability of satellite collision

    Science.gov (United States)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  14. Magnetohydrodynamic instabilities in a stellarator

    International Nuclear Information System (INIS)

    Matsuoka, K.; Miyamoto, K.; Ohasa, K.; Wakatani, M.

    1977-05-01

    Numerical studies of stability on kink and resistive tearing modes in a linear stellarator are presented for various current profiles and helical fields. In the case of an l = 2 helical field, a magnetic shear vanishes and the stability diagram is given by the straight lines with iota sup(σ) + iota sup(delta) = const., where iota sup(σ) is a rotational transform due to the plasma current and iota sup(delta) is due to the helical field. In the l = 2 stellarator with chi sup(delta) > 0.5, the m.h.d. stability against kink and tearing modes is improved compared with that in tokamaks. While an l = 3 helical component exists, the magnetic shear plays an important role in the stability properties. The stability diagrams become fairly complex; however, they can be explained by properties of the Euler equation. It should be noted that the internal kink modes become more unstable than in tokamaks by the l = 3 helical field. (auth.)

  15. Neoclassical transport simulations for stellarators

    International Nuclear Information System (INIS)

    Turkin, Y.; Beidler, C. D.; Maassberg, H.; Murakami, S.; Wakasa, A.; Tribaldos, V.

    2011-01-01

    The benchmarking of the thermal neoclassical transport coefficients is described using examples of the Large Helical Device (LHD) and TJ-II stellarators. The thermal coefficients are evaluated by energy convolution of the monoenergetic coefficients obtained by direct interpolation or neural network techniques from the databases precalculated by different codes. The temperature profiles are calculated by a predictive transport code from the energy balance equations with the ambipolar radial electric field estimated from a diffusion equation to guarantee a unique and smooth solution, although several solutions of the ambipolarity condition may exist when root-finding is invoked; the density profiles are fixed. The thermal transport coefficients as well as the ambipolar radial electric field are compared and very reasonable agreement is found for both configurations. Together with an additional W7-X case, these configurations represent very different degrees of neoclassical confinement at low collisionalities. The impact of the neoclassical optimization on the energy confinement time is evaluated and the confinement times for different devices predicted by transport modeling are compared with the standard scaling for stellarators. Finally, all configurations are scaled to the same volume for a direct comparison of the volume-averaged pressure and the neoclassical degree of optimization.

  16. Conceptual design of the Radial Gamma Ray Spectrometers system for α particle and runaway electron measurements at ITER

    DEFF Research Database (Denmark)

    Nocente, Massimo; Tardocchi, Marco; Barnsley, Robin

    2017-01-01

    We here present the principles and main physics capabilities behind the design of the radial gamma ray spectrometers (RGRS) system for alpha particle and runaway electron measurements at ITER. The diagnostic benefits from recent advances in gamma-ray spectrometry for tokamak plasmas and combines...... the measurements sensitive to α particles at characteristic resonant energies and to possible anisotropies of their slowing down distribution function. An independent assessment of the neutron rate by gamma-ray emission is also feasible. In case of runaway electrons born in disruptions with a typical duration...... of 100ms, a time resolution of at least 10ms for runaway electron studies can be achieved depending on the scenario and down to a current of 40 kA by use of external gas injection. We find that the bremsstrahlung spectrum in the MeV range from confined runaways is sensitive to the electron velocity space...

  17. Stellar Spectral Classification with Locality Preserving Projections ...

    Indian Academy of Sciences (India)

    With the help of computer tools and algorithms, automatic stellar spectral classification has become an area of current interest. The process of stellar spectral classification mainly includes two steps: dimension reduction and classification. As a popular dimensionality reduction technique, Principal Component Analysis (PCA) ...

  18. Enhanced-confinement class of stellarators

    International Nuclear Information System (INIS)

    Mynick, H.E.; Chu, T.K.; Boozer, A.H.

    1981-08-01

    A class of stellarators has been found in which the transport is reduced by an order of magnitude from transport in conventional stellarators, by localizing the helical ripple to the inside of the torus. The reduction is observed in numerical experiments and explained theoretically

  19. Theories for convection in stellar atmospheres

    International Nuclear Information System (INIS)

    Nordlund, Aa.

    1976-02-01

    A discussion of the fundamental differences between laboratory convection in a stellar atmosphere is presented. The shortcomings of laterally homogeneous model atmospheres are analysed, and the extent to which these shortcoming are avoided in the two-component representation is discussed. Finally a qualitative discussion on the scaling properties of stellar granulation is presented. (Auth.)

  20. Structure of stellar hydroxyl masers

    International Nuclear Information System (INIS)

    Reid, M.J.; Muhleman, D.O.; Moran, J.M.; Johnston, K.J.; Schwartz, P.R.

    1977-01-01

    This paper presents the results of two spectral-line very long baseline (VLB) interferometric experiments on stellar OH masers. These masers are usually associated with long-period variable stars, and exhibit a characteristic double-peaked 1612 MHz OH spectrum. The sources IRC +10011, R Aql, and U Ori were carefully studied in order to determine the spatial structure of their masers. Maser components in these sources exhibited a complex structure which can be interpreted in terms of ''core-halo'' models. For these sources, the emission at any velocity appears to originate from a small (approximately-less-than0.''03) region of brightness approximately-greater-than10 9 K, and from a large (approximately-greater-than0.''5) region of brightness approximately-less-than10 8 K. In IRC+10011, ''core'' components in the two OH peaks probably are separated by less than the apparent size of the ''halos.'' A map of the low-velocity emission of U Ori with a resolution of 0.''01 indicates that the ''cores'' are distributed over a region of only 0.''2. This region is smaller than the apparent sizes of the ''halos.'' Other sources surveyed to determine apparent maser sizes include IRC+50137, OH 1821--12, OH 1837--05, OH 26.5+0.6, W43 A, and VX Sgr at 1612 MHz; and W Hya, R Aql, and IRC--10529 at 1667 MHz. The results of all VLB observations of 1612 MHz stellar OH masers are summarized.The apparent sizes of the strongest components (''halos'') of stellar OH masers typically are approximately-greater-than0.''5, corresponding to linear dimensions of approximately-greater-than3 x 10 15 cm. These surprisingly large sizes imply brightness temperatures much lower than those observed in most other types of astronomical masers. The large sizes rule out models of the 1612 MHz OH masers that require contracting or rotating circumstellar envelopes to explain the double-peaked OH spectra, or that try to explain the apparent maser sizes in terms of interstellar or interplanetary scattering

  1. Wisconsin torsatron/stellarator program, FY 1989

    International Nuclear Information System (INIS)

    Shohet, J.L.; Anderson, D.T.; Anderson, F.S.B.; Talmadge, J.N.

    1988-07-01

    This proposal documents recent activities within the University of Wisconsin-Madison Torsatron/Stellarator Laboratory and presents plans for future research activities for a three year period. Research efforts have focused on fundamental stellarator physics issues through experimental investigations on the Interchangeable Module Stellarator (IMS) and the Proto-Cleo Stellarator. Theoretical activities and studies of new configurations are being undertaken to support and broaden the experimental program. Experimental research at the Torsatron Stellarator Laboratory has been primarily concerned with effects induced through electron-cyclotron resonant frequency plasma production and heating in the IMS device. Plasma electric fields have been shown to play a major role in particle transport and confinement in IMS. ECRF heating at 6 kG has produced electron tail populations in agreement with Monte-Carlo models. Electric and magnetic fields have been shown to alter the particle flows to the IMS modular divertors. 48 refs

  2. Anomalous resistivity due to low-frequency turbulence. [of collisionless plasma with limited acceleration of high velocity runaway electrons

    Science.gov (United States)

    Rowland, H. L.; Palmadesso, P. J.

    1983-01-01

    Large amplitude ion cyclotron waves have been observed on auroral field lines. In the presence of an electric field parallel to the ambient magnetic field these waves prevent the acceleration of the bulk of the plasma electrons leading to the formation of a runaway tail. It is shown that low-frequency turbulence can also limit the acceleration of high-velocity runaway electrons via pitch angle scattering at the anomalous Doppler resonance.

  3. Runaway breakdown in strong electric field as a source of terrestrial gamma flashes and gamma bursts in lightning leader steps

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A.V. [P.N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow (Russian Federation)]. E-mail: alex@lpi.ru; Zybin, K.P. [P.N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow (Russian Federation); Medvedev, Yu.V. [Joint Institute for High Temperature, Russian Academy of Sciences, 127412 Moscow (Russian Federation)

    2007-01-22

    The new model of lightning step leader is proposed. It includes three main processes developing simultaneously in a strong electric field: conventional breakdown, effect of runaway electrons and runaway breakdown (RB). The theory of RB in strong electric field is developed. Comparison with the existing observational data shows that the model can serve as a background for the explanation of gamma bursts in step leader and TGF.

  4. Runaway breakdown in strong electric field as a source of terrestrial gamma flashes and gamma bursts in lightning leader steps

    International Nuclear Information System (INIS)

    Gurevich, A.V.; Zybin, K.P.; Medvedev, Yu.V.

    2007-01-01

    The new model of lightning step leader is proposed. It includes three main processes developing simultaneously in a strong electric field: conventional breakdown, effect of runaway electrons and runaway breakdown (RB). The theory of RB in strong electric field is developed. Comparison with the existing observational data shows that the model can serve as a background for the explanation of gamma bursts in step leader and TGF

  5. Stellarmak a hybrid stellarator: Spheromak

    International Nuclear Information System (INIS)

    Hartman, C.W.

    1980-01-01

    This paper discusses hybridization of modified Stellarator-like transform windings (T-windings) with a Spheromak or Field-Reversed-Mirror configuration. This configuration, Stellarmak, retains the important topological advantage of the Spheromak or FRM of having no plasma linking conductors or blankets. The T-windings provide rotational transformation in toroidal angle of the outer poloidal field lines, in effect creating a reversed B/sub Toroidal/ Spheromak or adding average B/sub T/ to the FRM producing higher shear, increased limiting β, and possibly greater stability to kinks and tilt. The presence of field ripple in the toroidal direction may be sufficient to inhibit cancellation of directed ion current by electron drag to allow steady state operation with the toroidal as well as poloidal current maintained by neutral beams

  6. Stellar Equilibrium in Semiclassical Gravity.

    Science.gov (United States)

    Carballo-Rubio, Raúl

    2018-02-09

    The phenomenon of quantum vacuum polarization in the presence of a gravitational field is well understood and is expected to have a physical reality, but studies of its backreaction on the dynamics of spacetime are practically nonexistent outside of the specific context of homogeneous cosmologies. Building on previous results of quantum field theory in curved spacetimes, in this Letter we first derive the semiclassical equations of stellar equilibrium in the s-wave Polyakov approximation. It is highlighted that incorporating the polarization of the quantum vacuum leads to a generalization of the classical Tolman-Oppenheimer-Volkoff equation. Despite the complexity of the resulting field equations, it is possible to find exact solutions. Aside from being the first known exact solutions that describe relativistic stars including the nonperturbative backreaction of semiclassical effects, these are identified as a nontrivial combination of the black star and gravastar proposals.

  7. On rapid rotation in stellarators

    International Nuclear Information System (INIS)

    Helander, Per

    2008-01-01

    The conditions under which rapid plasma rotation may occur in a three-dimensional magnetic field, such as that of a stellarator, are investigated. Rotation velocities comparable to the ion thermal speed are found to be attainable only in magnetic fields which are approximately isometric. In an isometric magnetic field the dependence of the magnetic field strength B on the arc length l along the field is the same for all field lines on each flux surface ψ. Only in fields where the departure from exact isometry, B=B(ψ,l), is of the order of the ion gyroradius divided by the macroscopic length scale are rotation speeds comparable to the ion thermal speed possible. Moreover, it is shown that the rotation must be in the direction of the vector ∇ψx∇B. (author)

  8. Magnetohydodynamics stability of compact stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Cooper, W.A.; Hirshman, S.H.

    2000-01-01

    Recent stability results of external kink modes and vertical modes in compact stellarators are presented. The vertical mode is found to be stabilized by externally generated poloidal flux. A simple stability criterion is derived in the limit of large aspect ratio and constant current density. For a wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by Fi = (k2 minus k)=(k2 + 1), where k is the axisymmetric elongation and Fi is the fraction of the external rotational transform. A systematic parameter study shows that the external kink mode in QAS can be stabilized at high beta (approximately 5%) without a conducting wall by magnetic shear via 3D shaping. It is found that external kinks are driven by both parallel current and pressure gradient. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current

  9. NEMO: A Stellar Dynamics Toolbox

    Science.gov (United States)

    Barnes, Joshua; Hut, Piet; Teuben, Peter

    2010-10-01

    NEMO is an extendible Stellar Dynamics Toolbox, following an Open-Source Software model. It has various programs to create, integrate, analyze and visualize N-body and SPH like systems, following the pipe and filter architecture. In addition there are various tools to operate on images, tables and orbits, including FITS files to export/import to/from other astronomical data reduction packages. A large growing fraction of NEMO has been contributed by a growing list of authors. The source code consist of a little over 4000 files and a little under 1,000,000 lines of code and documentation, mostly C, and some C++ and Fortran. NEMO development started in 1986 in Princeton (USA) by Barnes, Hut and Teuben. See also ZENO (ascl:1102.027) for the version that Barnes maintains.

  10. Microstructural Analysis of the Effects of Thermal Runaway on Li-Ion and Na-Ion Battery Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Finegan, Donal [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Robinson, James B. [University College London; Heenan, Thomas M. M. [University College London; Smith, Katherine [Sharp Laboratories of Europe; Kendrick, Emma [Sharp Laboratories of Europe; University College London; Brett, Daniel J. L. [University College London; Shearing, Paul R. [University College London

    2017-12-06

    Thermal runaway is a phenomenon that occurs due to self-sustaining reactions within batteries at elevated temperatures resulting in catastrophic failure. Here, the thermal runaway process is studied for a Li-ion and Na-ion pouch cells of similar energy density (10.5 Wh, 12 Wh, respectively) using accelerating rate calorimetry (ARC). Both cells were constructed with a z-fold configuration, with a standard shutdown separator in the Li-ion and a low-cost polypropylene (PP) separator in the Na-ion. Even with the shutdown separator, it is shown that the self-heating rate and rate of thermal runaway in Na-ion cells is significantly slower than that observed in Li-ion systems. The thermal runaway event initiates at a higher temperature in Na-ion cells. The effect of thermal runaway on the architecture of the cells is examined using X-ray microcomputed tomography, and scanning electron microscopy (SEM) is used to examine the failed electrodes of both cells. Finally, from examination of the respective electrodes, likely due to the carbonate solvent containing electrolyte, it is suggested that thermal runaway in Na-ion batteries (NIBs) occurs via a similar mechanism to that reported for Li-ion cells.

  11. Hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1981-01-01

    Qualitative picture of high energy hadron-nucleus collision process, emerging from the analysis of experimental data, is presented. Appropriate description procedure giving a possibility of reproducing various characteristics of this process in terms of the data on elementary hadron-nucleon interaction is proposed. Formula reproducing hadron-nucleus collision cross sections is derived. Inelastic collision cross sections for pion-nucleus and proton-nucleus reactions at wide energy interval are calculated for Pb, Ag, and Al targets. A-dependence of cross sections for pion-nucleus and proton-nucleus collisions at nearly 50 GeV/c momentum were calculated and compared with existing experimental data. Energy dependence of cross sections for hadron-nucleus collisions is determined simply by energy dependence of corresponding cross sections for hadron-nucleon collisions; A-dependence is determined simply by nuclear sizes and nucleon density distributions in nuclei

  12. SDP_golofs01_3: Stellar Disk Evolution

    Science.gov (United States)

    Olofsson, G.

    2010-03-01

    n a collaboration between the HSC, P. Harvey (Mission Scientist) and the three instrument consortia we propose to apply the full power of Herschel to investigate the properties of circum-stellar disks. The versatility of Herschel allows us to address several key questions: How do the disks evolve with time? Planets clearly form out of circum-stellar disks and there is growing evidence that the time scale is short, 1 - 10 Myr, for the main accretion phase. During this time period, the stellar radiation and stellar winds clean the disks from most of their dust and gas, eventually making them transparent. However, collisions and evaporation from comet- like bodies will continue to produce dust and gas. This activity declines with time, and we will pursue this scenario by observing a sample of IR excess stars of known age, ranging from a few million years to the age of the sun. Are there analogues to our Kuiper belt around nearby stars? The Kuiper belt is a dust belt surrounding the Sun, located outside the orbit of Neptune, which has a key role in stabilizing orbits of the KE-objects and this dynamical aspect makes it particularly interesting to search for stars that may host KE-belt analogues. Herschel offers a unique sensitivity beyond 100 m and we propose an extensive survey of nearby stars seeking cold dust emission. What will a closer IR look at the "Fabulous Four" (and some other resolved disks) reveal? Several nearby MS stars with IR excesses have circumstellar dust structures that can be resolved by Herschel. Imaging these structures in the six PACS+SPIRE bands will enable us to explore the dust properties, notably the size distribution and albedo.. What is the composition of young disks? We propose a detailed spectroscopic investigation of four bright disks, including a full spectral scan with PACS, an FTS scan at full resolution and HIFI observations of selected frequencies. The aim is to constrain the properties of both the dust and gas components.

  13. Neoclassical transport in stellarators - a comparison of conventional stellarator/torsatrons with the advanced stellarator, Wendelstein 7X

    Energy Technology Data Exchange (ETDEWEB)

    Beidler, C D [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1991-01-01

    A general expression for the magnitude of a stellarator's magnetic field, in terms of a Fourier decomposition, is too complicated to lend itself easily to analytic transport calculations. The great majority of stellarator-type devices, however, may be accurately described if one retains only those harmonics with m=0 and m=1. In the long-mean-free-path regime an analytical approximation to the particle's bounce-averaged kinetic equation can then be found. Using a numerical solution of this equation, it is possible to calculate the particle and heat fluxes due to helical-ripple transport in stellarators throughout the entire long-mean-free-path regime. 3 figs.

  14. Family functioning and mental health in runaway youth: association with posttraumatic stress symptoms.

    Science.gov (United States)

    Thompson, Sanna J; Cochran, Gerald; Barczyk, Amanda N

    2012-10-01

    This study examined the direct effects of physical and sexual abuse, neglect, poor family communication and worries concerning family relationships, depression, anxiety, and dissociation on posttraumatic stress symptoms. Runaway youth were recruited from emergency youth shelters in New York and Texas. Interviews were completed with 350 youth who averaged 15 years of age. Structural equation modeling was used to examine family functioning, maltreatment, depression, dissociation, and anxiety in relation to posttraumatic stress symptoms. Results indicated that direct effects of family relationship worry to dissociation, β = .77, p family communication and youth dissociation, β = .42, p stress symptoms, but depression was not. Findings underscore the critical role of family relationships in mental health symptoms experienced by runaway adolescents. Copyright © 2012 International Society for Traumatic Stress Studies.

  15. Ecton processes in the generation of pulsed runaway electron beams in a gas discharge

    Science.gov (United States)

    Mesyats, G. A.

    2017-09-01

    As was shown earlier for pulsed discharges that occur in electric fields rising with extremely high rates (1018 V/(cm s)) during the pulse rise time, the electron current in a vacuum discharge is lower than the current of runaway electrons in an atmospheric air discharge in a 1-cm-long gap. In this paper, this is explained by that the field emission current from cathode microprotrusions in a gas discharge is enhanced due to gas ionization. This hastens the initiation of explosive electron emission, which occurs within 10-11 s at a current density of up to 1010 A/cm2. Thereafter, a first-type cathode spot starts forming. The temperature of the cathode spot decreases due to heat conduction, and the explosive emission current ceases. Thus, the runaway electron current pulse is similar in nature to the ecton phenomenon in a vacuum discharge.

  16. Measurement of the internal magnetic fluctuation by the transport of runaways on J-TEXT

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z. Y., E-mail: zychen@hust.edu.cn; Huang, D. W.; Tong, R. H.; Yan, W.; Wei, Y. N.; Ma, T. K.; Jiang, Z. H.; Zhang, X. Q.; Chen, Z. P.; Yang, Z. J.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-11-15

    The measurement of internal magnetic fluctuation is important for the study of transport in tokamak plasmas. The runaway electron transport induced by the sawtooth crash can be used to obtain the internal magnetic fluctuation. Inversed sawtooth-like activities on hard x-ray (HXR) fluxes following sawtooth activities were observed after the application of electrode biasing on J-TEXT tokamak. The runaway diffusion coefficient D{sub r} is deduced to be about 30 m{sup 2}/s according to the time delay of HXR flux peaks to the sawtooth crashes. The averaged value of normalized magnetic fluctuation in the discharges with electrode biasing was increased to the order of 1 × 10{sup −4}.

  17. Erosion simulation of first wall beryllium armour after ITER transient heat loads and runaway electrons action

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B., E-mail: boris.bazylev@kit.edu [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Igitkhanov, Yu.; Landman, I.; Pestchanyi, S. [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Loarte, A. [ITER Organisation, Cadarache, 13108 Saint Paul Lez Durance Cedex (France)

    2011-10-01

    Beryllium is foreseen as plasma facing armour for the first wall (FW) in ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) and runaway electrons impact are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting, evaporation, and melt motion, which determine the life-time of the plasma facing components. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the J x B forces are analyzed for bulk Be and different sizes of Be-brushes. The damage of the FW due to heat loads caused by runaway electrons is numerically simulated.

  18. Erosion simulation of first wall beryllium armour after ITER transient heat loads and runaway electrons action

    International Nuclear Information System (INIS)

    Bazylev, B.; Igitkhanov, Yu.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2011-01-01

    Beryllium is foreseen as plasma facing armour for the first wall (FW) in ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) and runaway electrons impact are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting, evaporation, and melt motion, which determine the life-time of the plasma facing components. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the J x B forces are analyzed for bulk Be and different sizes of Be-brushes. The damage of the FW due to heat loads caused by runaway electrons is numerically simulated.

  19. The historical record for Sirius - Evidence for a white-dwarf thermonuclear runaway?

    Science.gov (United States)

    Bruhweiler, Frederick C.; Kondo, Yoji; Sion, Edward M.

    1986-01-01

    Evidence was recently presented that in medieval times Sirius was a bright red star, rather than the present bluish-white star. Here, the results of attempts to detect possible planetary nebula ejecta toward Sirius using data obtained by the IUE are presented. Based on these results and in the light of recent advances in understanding white-dwarf evolution, it is proposed that Sirius B underwent a recent thermonuclear runaway event triggered by a diffusion-induced CN reaction.

  20. Magnetic field effects on runaway electron energy deposition in plasma facing materials and components

    International Nuclear Information System (INIS)

    Niemer, K.A.; Gilligan, J.G.

    1992-01-01

    This paper reports magnetic field effects on runaway electron energy deposition in plasma facing materials and components is investigated using the Integrated TIGER Series. The Integrated TIGER Series is a set of time-independent coupled electron/photon Monte Carlo transport codes which perform photon and electron transport, with or without macroscopic electric and magnetic fields. A three-dimensional computational model of 100 MeV electrons incident on a graphite block was used to simulate runawayelectrons striking a plasma facing component at the edge of a tokamak. Results show that more energy from runaway electrons will be deposited in a material that is in the presence of a magnetic field than in a material that is in the presence of no field. For low angle incident runaway electrons in a strong magnetic field, the majority of the increased energy deposition is near the material surface with a higher energy density. Electrons which would have been reflected with no field, orbit the magnetic field lines and are redeposited in the material surface, resulting in a substantial increase in surface energy deposition. Based on previous studies, the higher energy deposition and energy density will result in higher temperatures which are expected to cause more damage to a plasma facing component

  1. Measurements of fluctuations in the flux of runaway electrons to the PLT limiter

    International Nuclear Information System (INIS)

    Barnes, C.W.; Strachan, J.D.

    1982-07-01

    Fluctuations in the flux of runaway electrons to the limiter have been measured during many PLT discharges. Oscillations at 60, 120, and 720 Hz are driven by variations in the vertical magnetic field which moves the plasma major radius. Fluctuations are seen in the range of 2 → 20 kHz due to MHD magnetic islands which extend to the plasma surface. A continuous spectrum of fluctuations is observed up to 200 kHz which correlates with drift-wave turbulence. The magnitude of the driven fluctuations can be used to measure transport properties of the runaway electrons. The amplitude of electron motion due to the MHD and drift-wave oscillations, and hence a measure of the radial size of the instability, can be determined as a function of frequency. The slope of the frequency power spectrum of the drift-wave-induced fluctuations steepens with increasing runaway electron drift orbit displacement during the current drop at the end of the discharge, and as the power in the MHD oscillations increases. A magnetic probe was used to confirm the presence of oscillating magnetic fields capable of perturbing the electron orbits

  2. High performance gamma-ray spectrometer for runaway electron studies on the FT-2 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Shevelev, A.E., E-mail: Shevelev@cycla.ioffe.ru [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Khilkevitch, E.M.; Lashkul, S.I.; Rozhdestvensky, V.V.; Altukhov, A.B.; Chugunov, I.N.; Doinikov, D.N.; Esipov, L.A.; Gin, D.B.; Iliasova, M.V.; Naidenov, V.O.; Nersesyan, N.S.; Polunovsky, I.A.; Sidorov, A.V. [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Kiptily, V.G. [CCFE, Culham Science Centre, Abingdon, Oxon X14 3DB (United Kingdom)

    2016-09-11

    A gamma-ray spectrometer based on LaBr{sub 3}(Ce) scintillator has been used for measurements of hard X-ray emission generated by runaway electrons in the FT-2 tokamak plasmas. Using of the fast LaBr{sub 3}(Ce) has allowed extending count rate range of the spectrometer by a factor of 10. A developed digital processing algorithm of the detector signal recorded with a digitizer sampling rate of 250 MHz has provided a pulse height analysis at count rates up to 10{sup 7} s{sup −1}. A spectrum deconvolution code DeGaSum has been applied for inferring the energy distribution of runaway electrons escaping from the plasma and interacting with materials of the FT-2 limiter in the vacuum chamber. The developed digital signal processing technique for LaBr{sub 3}(Ce) spectrometer has allowed studying the evolution of runaways energy distribution in the FT-2 plasma discharges with time resolution of 1–5 ms.

  3. Healthcare Barriers and Utilization Among Adolescents and Young Adults Accessing Services for Homeless and Runaway Youth.

    Science.gov (United States)

    Chelvakumar, Gayathri; Ford, Nancy; Kapa, Hillary M; Lange, Hannah L H; McRee, Annie-Laurie; Bonny, Andrea E

    2017-06-01

    Homeless and runaway youth are at disproportionate risk for adverse health outcomes. Many barriers to accessing healthcare have been documented; however, the relative impact of discrete barriers on homeless youth healthcare utilization behavior is not firmly established. We administered a survey examining reported barriers and healthcare utilization among adolescents and young adults accessing services at three community centers for homeless and runaway youth. Of 180 respondents, 57 % were male, 80 % non-White, and 21 % identified as a sexual minority. Stepwise logistic regression models, controlling for age and study site, explored associations between barriers and 3 healthcare utilization outcomes (doctor visit in past 12 months; regular care provider; frequent emergency department (ED) visits). The most commonly reported barriers were "don't have a ride" (27.2 %), "no insurance" (23.3 %), and "costs too much" (22.8 %). All fear-based barriers (e.g., "I don't trust the doctors") were reported by runaway youth as the impact of discrete barriers varies depending on outcome of focus.

  4. Hydrodynamics and stellar winds an introduction

    CERN Document Server

    Maciel, Walter J

    2014-01-01

    Stellar winds are a common phenomenon in the life of stars, from the dwarfs like the Sun to the red giants and hot supergiants, constituting one of the basic aspects of modern astrophysics. Stellar winds are a hydrodynamic phenomenon in which circumstellar gases expand towards the interstellar medium. This book presents an elementary introduction to the fundamentals of hydrodynamics with an application to the study of stellar winds. The principles of hydrodynamics have many other applications, so that the book can be used as an introduction to hydrodynamics for students of physics, astrophysics and other related areas.

  5. Ultraviolet photometry of stellar populations in galaxies

    International Nuclear Information System (INIS)

    Deharveng, J.M.

    1981-01-01

    The UV flux of stellar populations, which is essentially emitted by young stars, conveys information on the process of star formation and its recent history. However, the evaluation of the flux arising from the young stellar component may be difficult. In the case of late type galaxies it is hampered by the extinction and the effect of scattered stellar radiation. In the case of early type galaxies, the star formation, if any, has to be disentangled from the contribution of hot evolved stars and of a possible 'active' phenomenon. A review of observations and results relevant two cases is presented [fr

  6. Helical post stellarator. Part 1: Vacuum configuration

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-08-01

    Results on a novel type of stellarator configuration, the Helical Post Stellarator (HPS), are presented. This configuration is different significantly from all previously known stellarators due to its unique geometrical characteristics and unique physical properties. Among those are: the magnetic field has only one toroidal period (M = 1), the plasma has an extremely low aspect ratio, A ∼ 1, and the variation of the magnetic field, B, along field lines features a helical ripple on the inside of the torus. Among the main advantages of a HPS for a fusion program are extremely compact, modular, and simple design compatible with significant rotational transform, large plasma volume, and improved particle transport characteristics

  7. Hard photons a probe of the heavy ion collision dynamics

    International Nuclear Information System (INIS)

    Schutz, Y.

    1994-01-01

    Heavy-ion collisions have proven to be a unique tool to study the nucleus in extreme states, with values of energy, spin and isospin far away from those encountered in the nucleus in its ground state. Heavy-ion collisions provide also the only mean to form and study in the laboratory nuclear matter under conditions of density and temperature which could otherwise only be found in stellar objects like neutron stars and super-novae. the goal of such studies is to establish the equation of state of nuclear matter and the method consist in searching the collective behaviour in which heavy-ion collisions differ from a superposition of many nucleon-nucleon collisions. Among the various probes of collective effects, like flow, multifragmentation, or subthreshold particles, we have selected hard photons because they provide, together with dileptons, the only unperturbed probe of a phase of the collision well localized in space and time. The origin of hard photons, defined as the photons building up the spectrum beyond the energy of the giant dipole resonance (E γ > 30∼MeV), is attributed predominantly to the bremsstrahlung radiation emitted incoherently in individual neutron-proton collisions. Their energy reflects the combination of the beam momentum and the momenta induced by the Fermi motion of the nucleons within the collision zone. Therefore, at intermediate energies, hard photons probe the dynamical phase space distribution of participant nucleons and they convey information on the densities reached in heavy-ion collisions, the size and life time of the dense photon source and the compressibility of nuclear matter. The techniques we have developed include intensity interferometry and exclusive measurements scanning with high resolution the whole range of impact parameters. The interpretation of our data is guided by dynamical phase space calculations of the BUU type

  8. Electron-molecule collisions

    International Nuclear Information System (INIS)

    Shimamura, I.; Takayanagi, K.

    1984-01-01

    The study of collision processes plays an important research role in modern physics. Many significant discoveries have been made by means of collision experiments. Based on theoretical, experimental, and computational studies, this volume presents an overview detailing the basic processes of electron-molecule collisions. The editors have collected papers-written by a group of international experts-that consider a diverse range of phenomena occurring in electronmolecule collisions. The volume discusses first the basic formulation for scattering problems and then gives an outline of the physics of electron-molecule collisions. The main topics covered are rotational transitions, vibrational transitions, dissociation of molecules in slow collisions, the electron-molecule collision as a spectroscopic tool for studying molecular electronic structures, and experimental and computational techniques for determining the cross sections. These well-referenced chapters are self-contained and can be read independently or consecutively. Authoritative and up-to-date, Electron-Molecule Collisions is a useful addition to the libraries of students and researchers in the fields of atomic, molecular, and chemical physics, and physical chemistry

  9. Stellar X-Ray Polarimetry

    Science.gov (United States)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  10. Stellar recipes for axion hunters

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Physical Sciences, Barry University, 11300 NE 2nd Ave., Miami Shores, FL 33161 (United States); Irastorza, Igor G.; Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza (Spain); Ringwald, Andreas; Saikawa, Ken' ichi, E-mail: mgiannotti@barry.edu, E-mail: igor.irastorza@cern.ch, E-mail: jredondo@unizar.es, E-mail: andreas.ringwald@desy.de, E-mail: kenichi.saikawa@desy.de [Theory Group, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany)

    2017-10-01

    There are a number of observational hints from astrophysics which point to the existence of stellar energy losses beyond the ones accounted for by neutrino emission. These excessive energy losses may be explained by the existence of a new sub-keV mass pseudoscalar Nambu-Goldstone boson with tiny couplings to photons, electrons, and nucleons. An attractive possibility is to identify this particle with the axion—the hypothetical pseudo Nambu-Goldstone boson predicted by the Peccei-Quinn solution to the strong CP problem. We explore this possibility in terms of a DFSZ-type axion and of a KSVZ-type axion/majoron, respectively. Both models allow a good global fit to the data, prefering an axion mass around 10 meV. We show that future axion experiments—the fifth force experiment ARIADNE and the helioscope IAXO—can attack the preferred mass range from the lower and higher end, respectively. An axion in this mass range can also be the main constituent of dark matter.

  11. Stellar recipes for axion hunters

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Barry Univ., Miami Shores, FL (United States). Physical Sciences; Irastorza, Igor G. [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Redondo, Javier [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas; Saikawa, Ken' ichi [DESY, Hamburg (Germany). Theory Group

    2017-08-15

    There are a number of observational hints from astrophysics which point to the existence of stellar energy losses beyond the ones accounted for by neutrino emission. These excessive energy losses may be explained by the existence of a new sub-keV mass pseudoscalar Nambu-Goldstone boson with tiny couplings to photons, electrons, and nucleons. An attractive possibility is to identify this particle with the axion - the hypothetical pseudo Nambu-Goldstone boson predicted by the Peccei-Quinn solution to the strong CP problem. We explore this possibility in terms of a DFSZ-type axion and of a KSVZ-type axion/majoron, respectively. Both models allow a good global fit to the data, prefering an axion mass around 10 meV. We show that future axion experiments - the fifth force experiment ARIADNE and the helioscope IAXO - can attack the preferred mass range from the lower and higher end, respectively. An axion in this mass range can also be the main constituent of dark matter.

  12. Stellar recipes for axion hunters

    International Nuclear Information System (INIS)

    Giannotti, Maurizio; Ringwald, Andreas; Saikawa, Ken'ichi

    2017-08-01

    There are a number of observational hints from astrophysics which point to the existence of stellar energy losses beyond the ones accounted for by neutrino emission. These excessive energy losses may be explained by the existence of a new sub-keV mass pseudoscalar Nambu-Goldstone boson with tiny couplings to photons, electrons, and nucleons. An attractive possibility is to identify this particle with the axion - the hypothetical pseudo Nambu-Goldstone boson predicted by the Peccei-Quinn solution to the strong CP problem. We explore this possibility in terms of a DFSZ-type axion and of a KSVZ-type axion/majoron, respectively. Both models allow a good global fit to the data, prefering an axion mass around 10 meV. We show that future axion experiments - the fifth force experiment ARIADNE and the helioscope IAXO - can attack the preferred mass range from the lower and higher end, respectively. An axion in this mass range can also be the main constituent of dark matter.

  13. Stellar core collapse and supernova

    International Nuclear Information System (INIS)

    Wilson, J.R.; Mayle, R.; Woosley, S.E.; Weaver, T.

    1985-04-01

    Massive stars that end their stable evolution as their iron cores collapse to a neutron star or black hole long been considered good candidates for producing Type II supernovae. For many years the outward propagation of the shock wave produced by the bounce of these iron cores has been studied as a possible mechanism for the explosion. For the most part, the results of these studies have not been particularly encouraging, except, perhaps, in the case of very low mass iron cores or very soft nuclear equations of state. The shock stalls, overwhelmed by photodisintegration and neutrino losses, and the star does not explode. More recently, slow late time heating of the envelope of the incipient neutron star has been found to be capable of rejuvenating the stalled shock and producing an explosion after all. The present paper discusses this late time heating and presents results from numerical calculations of the evolution, core collapse, and subsequent explosion of a number of recent stellar models. For the first time they all, except perhaps the most massive, explode with reasonable choices of input physics. 39 refs., 17 figs., 1 tab

  14. Stellar convection and dynamo theory

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R L

    1989-10-01

    In considering the large scale stellar convection problem the outer layers of a star are modelled as two co-rotating plane layers coupled at a fluid/fluid interface. Heating from below causes only the upper fluid to convect, although this convection can penetrate into the lower fluid. Stability analysis is then used to find the most unstable mode of convection. With parameters appropriate to the Sun the most unstable mode is steady convection in thin cells (aspect ratio {approx equal} 0.2) filling the convection zone. There is negligible vertical motion in the lower fluid, but considerable thermal penetration, and a large jump in helicity at the interface, which has implications for dynamo theory. An {alpha}{omega} dynamo is investigated in isolation from the convection problem. Complexity is included by allowing both latitudinal and time dependence in the magnetic fields. The nonlinear dynamics of the resulting partial differential equations are analysed in considerable detail. On varying the main control parameter D (the dynamo number), many transitions of behaviour are found involving many forms of time dependence, but not chaos. Further, solutions which break equatorial symmetry are common and provide a theoretical explanation of solar observations which have this symmetry. Overall the behaviour was more complicated than expected. In particular, there were multiple stable solutions at fixed D, meaning that similar stars can have very different magnetic patterns, depending upon their history. (author).

  15. Collapsing stellar cores and supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, R J [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Noorgaard, H [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Chicago Univ., IL (USA). Enrico Fermi Inst.); Bond, J R [Niels Bohr Institutet, Copenhagen (Denmark); California Inst. of Tech., Pasadena (USA). W.K. Kellogg Radiation Lab.)

    1979-05-01

    The evolution of a stellar core is studied during its final quasi-hydrostatic contraction. The core structure and the (poorly known) properties of neutron rich matter are parametrized to include most plausible cases. It is found that the density-temperature trajectory of the material in the central part of the core (the core-center) is insensitive to nearly all reasonable parameter variations. The central density at the onset of the dynamic phase of the collapse (when the core-center begins to fall away from the rest of the star) and the fraction of the emitted neutrinos which are trapped in the collapsing core-center depend quite sensitively on the properties of neutron rich matter. We estimate that the amount of energy Ecm which is imparted to the core-mantle by the neutrinos which escape from the imploded core-center can span a large range of values. For plausible choices of nuclear and model parameters Ecm can be large enough to yield a supernova event.

  16. Diagnostics for the National Compact Stellarator Experiment

    International Nuclear Information System (INIS)

    Stratton, B.C.; Johnson, D.; Feder, R.; Fredrickson, E.; Neilson, H.; Takahashi, H.; Zarnstorf, M.; Cole, M.; Goranson, P.; Lazarus, E.; Nelson, B.

    2003-01-01

    The status of planning of the National Compact Stellarator Experiment (NCSX) diagnostics is presented, with the emphasis on resolution of diagnostics access issues and on diagnostics required for the early phases of operation

  17. Stellar Spectral Classification with Locality Preserving Projections ...

    Indian Academy of Sciences (India)

    School of Computer and Control Engineering, North University of China,. Taiyuan 030051 ... (2013) was used to mine the association rules of a stellar ... of the graph, we then compute a transformation matrix which maps the data points to.

  18. The relation between stellar evolution and cosmology

    International Nuclear Information System (INIS)

    Tayler, R.J.

    1984-01-01

    Observations of star clusters combined with the theory of stellar evolution enable us to estimate the ages of stars while cosmological observations and theories give us a value for the age of the Universe. This is the most important interaction between cosmology and stellar evolution because it is clearly necessary that stars are younger than the Universe. Stellar evolution also plays an important role in relating the present chemical composition of the Universe to its original composition. The author restricts the review to a discussion of the relation between stellar evolution and the big bang cosmological theory because there is such a good qualitative agreement between the hot big bang theory and observations. (Auth.)

  19. Evaluating Stellarator Divertor Designs with EMC3

    Science.gov (United States)

    Bader, Aaron; Anderson, D. T.; Feng, Y.; Hegna, C. C.; Talmadge, J. N.

    2013-10-01

    In this paper various improvements of stellarator divertor design are explored. Next step stellarator devices require innovative divertor solutions to handle heat flux loads and impurity control. One avenue is to enhance magnetic flux expansion near strike points, somewhat akin to the X-Divertor concept in Tokamaks. The effect of judiciously placed external coils on flux deposition is calculated for configurations based on the HSX stellarator. In addition, we attempt to optimize divertor plate location to facilitate the external coil placement. Alternate areas of focus involve altering edge island size to elucidate the driving physics in the edge. The 3-D nature of stellarators complicates design and necessitates analysis of new divertor structures with appropriate simulation tools. We evaluate the various configurations with the coupled codes EMC3-EIRENE, allowing us to benchmark configurations based on target heat flux, impurity behavior, radiated power, and transitions to high recycling and detached regimes. Work supported by DOE-SC0006103.

  20. Development of the stellarator/heliotron research

    International Nuclear Information System (INIS)

    Iiyoshi, A.

    1991-05-01

    The author reviewed the history of the development of the stellarator/heliotron system, and pointed out the important role of the radial electric field in plasma transport in helical devices. (J.P.N.)

  1. Radiative otacity tables for 40 stellar mixtures

    International Nuclear Information System (INIS)

    Cox, A.N.; Tabor, J.E.

    1976-01-01

    Using improved methods, radiative opacities for 40 mixtures of elements are given for use in calculations of stellar structure, stellar evolution, and stellar pulsation. The major improvements over previous Los Alamos data are increased iron abundance in the composition, better allowance for the continuum depression for bound electrons, and corrections in some bound-electron energy levels. These opacities have already been widely used, and represent a relatively homogeneous set of data for stellar structures. Further improvements to include more bound-bound (line) transitions by a smearing technique and to include molecular absorptions are becoming available, and in a few years these tables, as well as all previous tables, will be outdated. At high densities the conduction of energy will dominate radiation flow, and this effect must be added separately

  2. STELLAR ATMOSPHERES, ATMOSPHERIC EXTENSION, AND FUNDAMENTAL PARAMETERS: WEIGHING STARS USING THE STELLAR MASS INDEX

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hilding R.; Lester, John B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Baron, Fabien; Norris, Ryan; Kloppenborg, Brian, E-mail: neilson@astro.utoronto.ca [Center for High Angular Resolution Astronomy, Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States)

    2016-10-20

    One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angular diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.

  3. Does the stellar distribution flare? A comparison of stellar scale heights with LAB H I data

    Energy Technology Data Exchange (ETDEWEB)

    Kalberla, P. M. W.; Kerp, J.; Dedes, L. [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn (Germany); Haud, U., E-mail: pkalberla@astro.uni-bonn.de [Tartu Observatory, 61602 Tõravere (Estonia)

    2014-10-10

    The question of whether the stellar populations in the Milky Way take part in the flaring of scale heights as observed for the H I gas is a matter of debate. Standard mass models for the Milky Way assume a constant scale height for each of the different stellar distributions. However, there is mounting evidence that at least some of the stellar distributions reach, at large galactocentric distances, high altitudes, which are incompatible with a constant scale height. We discuss recent observational evidence for stellar flaring and compare it with H I data from the Leiden/Argentine/Bonn survey. Within the systemic and statistical uncertainties we find a good agreement between both.

  4. The WEGA Stellarator: Results and Prospects

    International Nuclear Information System (INIS)

    Otte, M.; Andruczyk, D.; Koenig, R.; Laqua, H. P.; Lischtschenko, O.; Marsen, S.; Schacht, J.; Podoba, Y. Y.; Wagner, F.; Warr, G. B.; Holzhauer, E.; Howard, J.; Krupnik, L.; Zhezhera, A.; Urban, J.; Preinhalter, J.

    2008-01-01

    In this article an overview is given on results from magnetic flux surface measurements, applied ECR heating scenarios for 2.45 GHz and 28 GHz, fluctuation and transport studies and plasma edge biasing experiments performed in the WEGA stellarator. Examples for the development of new diagnostics and the machine control system are given that will be used at Wendelstein 7-X stellarator, which is currently under construction in Greifswald

  5. Cosmic abundances: The impact of stellar duplicity

    OpenAIRE

    Jorissen, A.; Van Eck, S.

    2004-01-01

    The mass-transfer scenario links chemical peculiarities with stellar duplicity for an increasing number of stellar classes (classical and dwarf barium stars, subgiant and giant CH stars, S stars without technetium, yellow symbiotic stars, WIRRING stars, Abell-35-like nuclei of planetary nebulae...). Despite these successes, the mass-transfer scenario still faces several problems: What is the mass-transfer mode? Why orbital elements of dwarf barium stars do not fully match those of the classic...

  6. The Stellar-Dynamical Oeuvre James Binney

    Indian Academy of Sciences (India)

    tribpo

    of the eigenvalues of M. The variation of the stellar density from point to point .... of Σ,(ΔΕ)2 , where ∆ Ε is the change in energy that a star suffers during a binary ... could use these results to calculate the relaxation time in a stellar system if he .... the region of enhanced density that tails behind it like a wake behind a ship. By.

  7. Weakly interacting massive particles and stellar structure

    International Nuclear Information System (INIS)

    Bouquet, A.

    1988-01-01

    The existence of weakly interacting massive particles (WIMPs) may solve both the dark matter problem and the solar neutrino problem. Such particles affect the energy transport in the stellar cores and change the stellar structure. We present the results of an analytic approximation to compute these effects in a self-consistent way. These results can be applied to many different stars, but we focus on the decrease of the 8 B neutrino flux in the case of the Sun

  8. On plasma radiative properties in stellar conditions

    International Nuclear Information System (INIS)

    Turck-Chieze, S.; Delahaye, F.; Gilles, D.; Loisel, G.; Piau, L.; Loisel, G.

    2009-01-01

    The knowledge of stellar evolution is evolving quickly thanks to an increased number of opportunities to scrutinize the stellar internal plasma properties by stellar seismology and by 1D and 3D simulations. These new tools help us to introduce the internal dynamical phenomena in stellar modeling. A proper inclusion of these processes supposes a real confidence in the microscopic physics used, partly checked by solar or stellar acoustic modes. In the present paper we first recall which fundamental physics has been recently verified by helioseismology. Then we recall that opacity is an important ingredient of the secular evolution of stars and we point out why it is necessary to measure absorption coefficients and degrees of ionization in the laboratory for some well identified astrophysical conditions. We examine two specific experimental conditions which are accessible to large laser facilities and are suitable to solve some interesting questions of the stellar community: are the solar internal radiative interactions properly estimated and what is the proper role of the opacity in the excitation of the non-radial modes in the envelop of the β Cepheids and the Be stars? At the end of the paper we point out the difficulties of the experimental approach that we need to overcome. (authors)

  9. Comparative studies of stellarator and tokamak transport

    Energy Technology Data Exchange (ETDEWEB)

    Stroth, U; Burhenn, R; Geiger, J; Giannone, L.; Hartfuss, H J; Kuehner, G; Ledl, L; Simmet, E E; Walter, H [Max-Planck-Inst. fuer Plasmaphysik, IPP-Euratom Association, Garching (Germany); ECRH Team; W7-AS Team

    1997-09-01

    Transport properties in the W7-AS stellarator and in tokamaks are compared. The parameter dependences and the absolute values of the energy confinement time are similar. Indications are found that the density dependence, which is usually observed in stellarator confinement, can vanish above a critical density. The density dependence in stellarators seems to be similar to that in the linear ohmic confinement regime, which, in small tokamaks, extends to high density values, too. Because of the similarity in the gross confinement properties, transport in stellarators and tokamaks should not be dominated by the parameters which are very different in the two concepts, i.e. magnetic shear, major rational values of the rotational transform and plasma current. A difference in confinement is that there exists evidence for pinches in the particle and, possibly, energy transport channels in tokamaks whereas in stellarators no pinches have been observed, so far. In order to study the effect of plasma current and toroidal electric fields, stellarator discharges were carried out with an increasing amount of plasma current. From these experiments, no clear evidence of a connection of pinches with these parameters is found. The transient response in W7-AS plasmas can be described in terms of a non-local model. As in tokamaks, also cold pulse experiments in W7-AS indicate the importance of non-local transport. (author). 8 refs, 5 figs.

  10. Atomic collisions under extreme conditions in space

    International Nuclear Information System (INIS)

    Itikawa, Yukikazu

    1987-01-01

    In space, atoms and molecules are often placed under the extreme conditions which are very difficult to be realized on Earth. For instance, extremely hot and dense plasmas are found in and around various stellar objects (e.g., neutron stars) on one hand and extremely cold and diffuse gases prevail in interstellar space on the other. There is so strong a magnetic field that electron clouds in atoms and molecules are distorted. The study of atomic collisions under the extreme conditions is not only helpful in understanding the astrophysical environment but also reveals new aspects of the physics of atoms and molecules. This paper is an invitation to the study. (References are not exhaustive but only provide a clue with which more details can be found.) (author)

  11. Conceptual design of the radial gamma ray spectrometers system for α particle and runaway electron measurements at ITER

    Science.gov (United States)

    Nocente, M.; Tardocchi, M.; Barnsley, R.; Bertalot, L.; Brichard, B.; Croci, G.; Brolatti, G.; Di Pace, L.; Fernandes, A.; Giacomelli, L.; Lengar, I.; Moszynski, M.; Krasilnikov, V.; Muraro, A.; Pereira, R. C.; Perelli Cippo, E.; Rigamonti, D.; Rebai, M.; Rzadkiewicz, J.; Salewski, M.; Santosh, P.; Sousa, J.; Zychor, I.; Gorini, G.

    2017-07-01

    We here present the principles and main physics capabilities behind the design of the radial gamma ray spectrometers (RGRS) system for alpha particle and runaway electron measurements at ITER. The diagnostic benefits from recent advances in gamma-ray spectrometry for tokamak plasmas and combines space and high energy resolution in a single device. The RGRS system as designed can provide information on α ~ particles on a time scale of 1/10 of the slowing down time for the ITER 500 MW full power DT scenario. Spectral observations of the 3.21 and 4.44 MeV peaks from the 9\\text{Be}≤ft(α,nγ \\right){{}12}\\text{C} reaction make the measurements sensitive to α ~ particles at characteristic resonant energies and to possible anisotropies of their slowing down distribution function. An independent assessment of the neutron rate by gamma-ray emission is also feasible. In case of runaway electrons born in disruptions with a typical duration of 100 ms, a time resolution of at least 10 ms for runaway electron studies can be achieved depending on the scenario and down to a current of 40 kA by use of external gas injection. We find that the bremsstrahlung spectrum in the MeV range from confined runaways is sensitive to the electron velocity space up to E≈ 30 -40 MeV, which allows for measurements of the energy distribution of the runaway electrons at ITER.

  12. Computational Laboratory Astrophysics to Enable Transport Modeling of Protons and Hydrogen in Stellar Winds, the ISM, and other Astrophysical Environments

    Science.gov (United States)

    Schultz, David

    As recognized prominently by the APRA program, interpretation of NASA astrophysical mission observations requires significant products of laboratory astrophysics, for example, spectral lines and transition probabilities, electron-, proton-, or heavy-particle collision data. Availability of these data underpin robust and validated models of astrophysical emissions and absorptions, energy, momentum, and particle transport, dynamics, and reactions. Therefore, measured or computationally derived, analyzed, and readily available laboratory astrophysics data significantly enhances the scientific return on NASA missions such as HST, Spitzer, and JWST. In the present work a comprehensive set of data will be developed for the ubiquitous proton-hydrogen and hydrogen-hydrogen collisions in astrophysical environments including ISM shocks, supernova remnants and bubbles, HI clouds, young stellar objects, and winds within stellar spheres, covering the necessary wide range of energy- and charge-changing channels, collision energies, and most relevant scattering parameters. In addition, building on preliminary work, a transport and reaction simulation will be developed incorporating the elastic and inelastic collision data collected and produced. The work will build upon significant previous efforts of the principal investigators and collaborators, will result in a comprehensive data set required for modeling these environments and interpreting NASA astrophysical mission observations, and will benefit from feedback from collaborators who are active users of the work proposed.

  13. Use of the stellarator expansion to investigate plasma equilibrium in modular stellarators

    International Nuclear Information System (INIS)

    Anania, G.; Johnson, J.L.; Weimer, K.E.

    1982-11-01

    A numerical code utilizing a large-aspect ratio, small-helical-distortion expansion is developed and used to investigate the effect of plasma currents on stellarator equilibrium. Application to modular stellarator configurations shows that a large rotational transform, and hence large coil deformation, is needed to achieve high-beta equilibria

  14. From collisions to clusters

    DEFF Research Database (Denmark)

    Loukonen, Ville; Bork, Nicolai; Vehkamaki, Hanna

    2014-01-01

    -principles molecular dynamics collision simulations of (sulphuric acid)1(water)0, 1 + (dimethylamine) → (sulphuric acid)1(dimethylamine)1(water)0, 1 cluster formation processes. The simulations indicate that the sticking factor in the collisions is unity: the interaction between the molecules is strong enough...... control. As a consequence, the clusters show very dynamic ion pair structure, which differs from both the static structure optimisation calculations and the equilibrium first-principles molecular dynamics simulations. In some of the simulation runs, water mediates the proton transfer by acting as a proton...... to overcome the possible initial non-optimal collision orientations. No post-collisional cluster break up is observed. The reasons for the efficient clustering are (i) the proton transfer reaction which takes place in each of the collision simulations and (ii) the subsequent competition over the proton...

  15. Electron-molecule collisions

    CERN Document Server

    Takayanagi, Kazuo

    1984-01-01

    Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop­ ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiat...

  16. Mechanics of train collision

    Science.gov (United States)

    1976-04-30

    A simple and a more detailed mathematical model for the simulation of train collisions are presented. The study presents considerable insight as to the causes and consequences of train motions on impact. Comparison of model predictions with two full ...

  17. Stellar Firework in a Whirlwind

    Science.gov (United States)

    2007-09-01

    VLT Image of Supernova in Beautiful Spiral Galaxy NGC 1288 Stars do not like to be alone. Indeed, most stars are members of a binary system, in which two stars circle around each other in an apparently never-ending cosmic ballet. But sometimes, things can go wrong. When the dancing stars are too close to each other, one of them can start devouring its partner. If the vampire star is a white dwarf - a burned-out star that was once like our Sun - this greed can lead to a cosmic catastrophe: the white dwarf explodes as a Type Ia supernova. In July 2006, ESO's Very Large Telescope took images of such a stellar firework in the galaxy NGC 1288. The supernova - designated SN 2006dr - was at its peak brightness, shining as bright as the entire galaxy itself, bearing witness to the amount of energy released. ESO PR Photo 39/07 ESO PR Photo 39/07 SN 2006dr in NGC 1288 NGC 1288 is a rather spectacular spiral galaxy, seen almost face-on and showing multiple spiral arms pirouetting around the centre. Bearing a strong resemblance to the beautiful spiral galaxy NGC 1232, it is located 200 million light-years away from our home Galaxy, the Milky Way. Two main arms emerge from the central regions and then progressively split into other arms when moving further away. A small bar of stars and gas runs across the centre of the galaxy. The first images of NGC 1288, obtained during the commissioning period of the FORS instrument on ESO's VLT in 1998, were of such high quality that they have allowed astronomers [1] to carry out a quantitative analysis of the morphology of the galaxy. They found that NGC 1288 is most probably surrounded by a large dark matter halo. The appearance and number of spiral arms are indeed directly related to the amount of dark matter in the galaxy's halo. The supernova was first spotted by amateur astronomer Berto Monard. On the night of 17 July 2006, Monard used his 30-cm telescope in the suburbs of Pretoria in South Africa and discovered the supernova as an

  18. Observation of a periodic runaway in the reactive Ar/O2 high power impulse magnetron sputtering discharge

    Directory of Open Access Journals (Sweden)

    Seyedmohammad Shayestehaminzadeh

    2015-11-01

    Full Text Available This paper reports the observation of a periodic runaway of plasma to a higher density for the reactive discharge of the target material (Ti with moderate sputter yield. Variable emission of secondary electrons, for the alternating transition of the target from metal mode to oxide mode, is understood to be the main reason for the runaway occurring periodically. Increasing the pulsing frequency can bring the target back to a metal (or suboxide mode, and eliminate the periodic transition of the target. Therefore, a pulsing frequency interval is defined for the reactive Ar/O2 discharge in order to sustain the plasma in a runaway-free mode without exceeding the maximum power that the magnetron can tolerate.

  19. Photon-photon collisions

    International Nuclear Information System (INIS)

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e#betta# scattering. Considerable work has now been accumulated on resonance production by #betta##betta# collisions. Preliminary high statistics studies of the photon structure function F 2 /sup #betta#/(x,Q 2 ) are given and comments are made on the problems that remain to be solved

  20. Photon-photon collisions

    International Nuclear Information System (INIS)

    Haissinski, J.

    1986-06-01

    The discussions presented in this paper deal with the following points: distinctive features of gamma-gamma collisions; related processes; photon-photon elastic scattering in the continuum and γγ →gg; total cross section; γγ → V 1 V 2 (V=vector meson); radiative width measurements and light meson spectroscopy; exclusive channels at large /t/; jets and inclusive particle distribution in γγ collisions; and, the photon structure function F γ 2