WorldWideScience

Sample records for routine dosimetry systems

  1. Alanine/ESR dosimetry system for routine use in radiation processing

    International Nuclear Information System (INIS)

    Kojima, T.; Haruyama, Y.; Tachibana, H.; Tanaka, R.; Okamoto, J.; Hara, H.; Kashiwazaki, S.

    1993-01-01

    A new alanine-polystyrene(PS) dosimeter prepared with simplified molding procedure and an automatic desk-top dose-reader of alanine dosimeter were developed for the purpose of routine use. Combination of these two allows us to apply a reliable alanine/ESR dosimetry system to routine dosimetric process control in industrial gamma radiation processing. (Author)

  2. Guidelines for the Calibration of Routine Dosimetry Systems for use in Radiation Processing

    DEFF Research Database (Denmark)

    Sharpe, Peter; Miller, Arne

    A set of guidelines has been developed to assist in the calibration of routine dosimetry systems for use in industrial radiation processing plants. Topics covered include the calibration of equipment, the performance of calibration irradiations and the derivation of mathematical functions...

  3. Development and calibration of a routine dosimetry system for radiation processing

    International Nuclear Information System (INIS)

    Ferreira, Danilo Cardenuto

    2013-01-01

    The development and calibration of a routine dosimetry system based on commercial, low cost photodiode (SFH 206) are presented in this work. The dosimeter probe was designed to operate unbiased in the direct current mode. The radiations were performed with Cobalt-60 Panoramic Irradiator facility in the dose-rate range of 8.1 Gy/h - 125 Gy/h. The photocurrents generated in the device, in each dose-rate, were registered with a digital electrometer and stored during the exposure time. The current response of the diode was measured as a function of the time in steps from 1 Gy up to 200 Gy with accumulated dose up to 15 kGy. In this range, the dose-response of the diode, given by the charge as function of dose, was linear with correlation coefficient better than 0.998. These results were compared with those obtained using Gafchromic film dosimetry often used in routine. To monitor possible gamma radiation effects produced on the diode, the current and charge sensitivities were measured as a function of the absorbed dose. For doses up to 15 kGy, it was not observed any radiation damage what confirms the reproducibility of the diode response better than 3 %. Finally, due to the small experimental errors ( 5% ) and good spatial resolution of the diode it was possible to measure the transit dose due to the movement of the Cobalt-60 radioactive source as well the dose rate mapping in the Panoramic Irradiator. (author)

  4. Test of an albedo neutron dosimetry system: TLD calibration and readout procedure, neutron calibration, dosimetry properties, routine application

    International Nuclear Information System (INIS)

    Piesch, E.; Burgkhardt, B.

    1988-03-01

    The two-component albedo dosemeter in use consists of an universal boron-loaded plastic encapsulation, the beta and albedo neutron windows of which are adopted to the corresponding TLD system of the manufacturers Alnor, Harshaw, Panasonic and Vinten. Beside the TLD detectors the capsule may contain also track etch detectors. Within a BMU project the system was investigated by four governmental measurement services in the FRG with respect to its qualification for personnel monitoring with emphasis in the readout and calibration procedures for the TLD system, the evaluation technique for the estimation of the photon and neutron dose equivalent in routine monitoring and the calibration of the personnel dosemeter in stray neutron fields. The test has shown the readiness of the system to act in the application areas of nuclear power reactors and linacs behind heavy shieldings, in the fuel element cycle, use of fissile materials, criticality, use of radionuclide sources, high energy particle accelerators. The uncertainty due to energy dependence was found to be within a factor of 2 for a single application area. In the case of irradiations from the front half space the dose equivalent H'(10) is indicated sufficiently independent of the direction of the radiation incidence. After completion of the test the albedo dosemeter became the official neutron personnel dosemeter in the FRG. It allows the separate estimation of the dose equivalent of hard beta radiation, photon radiation and neutrons. (orig./HP) [de

  5. Routine dosimetry in a nuclear medicine department

    International Nuclear Information System (INIS)

    Dreuille, O. de; Carbonieres, H. de; Briand-Champlong, J.; Foehrenbach, H.; Guevel, E.; Maserlin, P.; Gaillard, J.F.; Treguier, J.Y.

    2002-01-01

    The nuclear medicine department of the Val de Grace Hospital, in cooperation with the Radiological Protection Army Service, has performed an evaluation of the staff's radio-exposure based on routine dosimetry for six months. The most exposed people are the technicians (2.6 mSv/yr) and the nurse (1.7 mS/yr). The nuclear medicine physicians (0.6 mSv/yr) and the secretaries (0.07 mSv/yr) are far less exposed. The most irradiant occupations are the preparation and the injection of the radiopharmaceuticals (18 mSv/dy) and the realization of the Positron Emission Tomography examinations (19 mSv/dy). The increasing number of PET exams and the development of new tomographs, requiring higher activities, will still increase the exposition level of this working post. This study demonstrates that the exposition doses in nuclear medicine are low compared to the regular limits. Based on these results, only the technicians and the nurse are relevant to the A class. However, these dose levels cannot be neglected for particular positions such as the injection and the PET management. (author)

  6. SU-E-T-407: Evaluation of Four Commercial Dosimetry Systems for Routine Patient-Specific Tomotherapy Delivery Quality Assurance

    International Nuclear Information System (INIS)

    Xing, A; Arumugam, S; Deshpande, S; George, A; Holloway, L; Vial, P; Goozee, G

    2014-01-01

    Purpose: The purpose of this project was to evaluate the performance of four commercially available dosimetry systems for Tomotherapy delivery quality assurance (DQA). Methods: Eight clinical patient plans were chosen to represent a range of treatment sites and typical clinical plans. Four DQA plans for each patient plan were created using the TomoTherapy DQA Station (Hi-Art version 4.2.1) on CT images of the ScandiDose Delta4, IBA MatriXX Evolution, PTW Octavius 4D and Sun Nuclear ArcCHECK phantoms. Each detector was calibrated following the manufacture-provided procedure. No angular response correction was applied. All DQA plans for each detector were delivered on the Tomotherapy Hi-Art unit in a single measurement session but on different days. The measured results were loaded into the vendor supplied software for each QA system for comparison with the TPS-calculated dose. The Gamma index was calculated using 3%/3mm, 2%/2mm with 10% dose threshold of maximum TPS calculated dose. Results: Four detector systems showed comparable gamma pass rates for 3%/3m, which is recommended by AAPM TG119 and commonly used within the radiotherapy community. The averaged pass rates ± standard deviation for all DQA plans were (98.35±1.97)% for ArcCHECK, (99.9%±0.87)% for Matrix, (98.5%±5.09)% for Octavius 4D, (98.7%±1.27)% for Delata4. The rank of the gamma pass rate for individual plans was consistent between detectors. Using 2%/2mm Gamma criteria for analysis, the Gamma pass rate decreased on average by 9%, 8%, 6.6% and 5% respectively. Profile and Gamma failure map analysis using the software tools from each dosimetry system indicated that decreased passing rate is mainly due to the threading effect of Tomo plan. Conclusion: Despite the variation in detector type and resolution, phantom geometry and software implementation, the four systems demonstrated similar dosimetric performance, with the rank of the gamma pass rate consistent for the plans considered

  7. Dosimetry systems for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Desrosiers, M.F.

    1995-01-01

    Dosimetry serves important functions in radiation processing, where large absorbed doses and dose rates from photon and electron sources have to be measured with reasonable accuracy. Proven dosimetry systems are widely used to perform radiation measurements in development of new processes, validation, qualification and verification (quality control) of established processes and archival documentation of day-to-day and plant-to-plant processing uniformity. Proper calibration and traceability of routine dosimetry systems to standards are crucial to the success of many large-volume radiation processes. Recent innovations and advances in performance of systems that enhance radiation measurement assurance and process diagnostics include dose-mapping media (new radiochromic film and solutions), optical waveguide systems for food irradiation, solid-state devices for real-time and passive dosimetry over wide dose-rate and dose ranges, and improved analytical instruments and data acquisition. (author)

  8. Dosimetry system 1986

    International Nuclear Information System (INIS)

    Woolson, William A.; Egbert, Stephen D.; Gritzner, Michael L.

    1987-01-01

    In May 1983, the authors proposed a dosimetry system for use by the Radiation Effects Research Foundation (RERF) that would incorporate the new findings and calculations of the joint United States - Japan working groups on the reassessment of A-bomb dosimetry. The proposed dosimetry system evolved from extensive discussions with RERF personnel, numerous meetings of the scientists from Japan and the United States involved in the dosimetry reassessment research, and requirements expressed by epidemiologists and radiobiologists on the various review panels. The dosimetry system proposed was based on considerations of the dosimetry requirements for the normal work of RERF and for future research in radiobiology, the computerized input data on A-bomb survivors available in the RERF data base, the level of detail, precision, and accuracy of various components of the dosimetric estimates, and the computer resources available at RERF in Hiroshima. These discussions and our own experience indicated that, in light of the expansion of computer and radiation technologies and the desire for more detail in the dosimetry, an entirely new approach to the dosimetry system was appropriate. This resulted in a complete replacement of the T65D system as distinguished from a simpler approach involving a renormalization of T65D parameters to reflect the new dosimetry. The proposed dosimetry system for RERF and the plan for implementation was accepted by the Department of Energy (DOE) Working Group on A-bomb Dosimetry chaired by Dr. R.F. Christy. The dosimetry system plan was also presented to the binational A-bomb dosimetry review groups for critical comment and was discussed at joint US-Japan workshop. A prototype dosimetry system incorporating preliminary dosimetry estimates and applicable to only a limited set of A-bomb survivors was installed on the RERF computer system in the fall of 1984. This system was successfully operated at RERF and provided an initial look at the impact of

  9. Investigations of CR39 dosimeters for neutron routine dosimetry

    International Nuclear Information System (INIS)

    Weinstein, M.; Abraham, A.; Tshuva, A.; German, U.

    2004-01-01

    CR-39 is a polymeric nuclear track detector which is widely used for neutron dosimetry. CR-39 detector development was conducted at a number of laboratories throughout the world(1,2) , and was accepted also for routine dosimetry. However, there are shortcomings which must be taken into consideration the lack of a dosimetry grade material which causes batch variations, significant angular dependence and a moderate sensitivity. CR-39 also under-responds for certain classes of neutron spectra (lower energy neutrons from reactors or high energy accelerator-produced neutrons).In order to introduce CR-39 as a routine dosimeter at NRCN, a series of checks were performed. The present work describes the results of some of our checks, to characterize the main properties of CR-39 dosimeters

  10. A microcomputer controlled thermoluminescence dosimetry system

    International Nuclear Information System (INIS)

    Huyskens, C.J.; Kicken, P.J.H.

    1980-01-01

    Using a microcomputer, an automatic thermoluminescence dosimetry system for personal dosimetry and thermoluminescence detector (TLD) research was developed. Process automation, statistical computation and dose calculation are provided by this microcomputer. Recording of measurement data, as well as dose record keeping for radiological workers is carried out with floppy disk. The microcomputer also provides a human/system interface by means of a video display and a printer. The main features of this dosimetry system are its low cost, high degree of flexibility, high degree of automation and the feasibility for use in routine dosimetry as well as in TLD research. The system is in use for personal dosimetry, environmental dosimetry and for TL-research work. Because of its modular set-up several components of the system are in use for other applications, too. The system seems suited for medium sized health physics groups. (author)

  11. Clinical experience with routine diode dosimetry for electron beam radiotherapy

    International Nuclear Information System (INIS)

    Yaparpalvi, Ravindra; Fontenla, Doracy P.; Vikram, Bhadrasain

    2000-01-01

    Purpose: Electron beam radiotherapy is frequently administered based on clinical setups without formal treatment planning. We felt, therefore, that it was important to monitor electron beam treatments by in vivo dosimetry to prevent errors in treatment delivery. In this study, we present our clinical experience with patient dose verification using electron diodes and quantitatively assess the dose perturbations caused by the diodes during electron beam radiotherapy. Methods and Materials: A commercial diode dosimeter was used for the in vivo dose measurements. During patient dosimetry, the patients were set up as usual by the therapists. Before treatment, a diode was placed on the patient's skin surface and secured with hypoallergenic tape. The patient was then treated and the diode response registered and stored in the patient radiotherapy system database via our in-house software. A customized patient in vivo dosimetry report showing patient details, expected and measured dose, and percent difference was then generated and printed for analysis and record keeping. We studied the perturbation of electron beams by diodes using film dosimetry. Beam profiles at the 90% prescription isodose depths were obtained with and without the diode on the beam central axis, for 6-20 MeV electron beams and applicator/insert sizes ranging from a 3-cm diameter circular field to a 25 x 25 cm open field. Results: In vivo dose measurements on 360 patients resulted in the following ranges of deviations from the expected dose at the various anatomic sites: Breast (222 patients) -20.3 to +23.5% (median deviation 0%); Head and Neck (63 patients) -21.5 to +14.8% (median -0.7%); Other sites (75 patients) -17.6 to +18.8% (median +0.5%). Routine diode dosimetry during the first treatment on 360 patients (460 treatment sites) resulted in 11.5% of the measurements outside our acceptable ±6% dose deviation window. Only 3.7% of the total measurements were outside ±10% dose deviation. Detailed

  12. Skin dose assessment in routine personnel beta/gamma dosimetry

    International Nuclear Information System (INIS)

    Christensen, P.

    1980-01-01

    The International Commission on Radiological Protection (Publication 26) has recommended a tissue depth of 5 to 10 mg.cm -2 for skin dose assessments. This requirement is generally not fulfilled by routine monitoring procedures because of practical difficulties in using very thin dosemeters with low sensitivity and therefore a high minimum detectable dose. Especially for low-energy beta-ray exposures underestimations of the skin dose by a factor of more than ten may occur. Low-transparent graphite-mixed sintered LiF and Li 2 B 4 0 7 : Mn dosemeters were produced which show a skin-equivalent response to beta and gamma exposures over a wide range of energies. These have found wide-spread application for extremity dosimetry but have not yet been generally introduced in routine personnel beta/gamma monitoring. The following adaptations of existing routine monitoring systems for improved skin dose assessments have been investigated: 1) Placement of a supplementary, thin, skin-dose equivalent dosemeter in the TLD badge to give additional information on low-energy exposures. 2) Introduction of a second photomultiplier in the read-out chamber which enables a simultaneous determination of emitted TL from both sides of the dosemeter separately. This method makes use of the selfshielding of the dosemeter to give information on the low-energy dose contribution. 3) By diffusion of Li 2 B 4 0 7 into solid LiF-dosemeters it was possible to produce a surface layer with a new distinct glow-peak at about 340 deg C which is not present in the undiffused part of the LiF chip, and which can be utilized for the assessment of the skin-dose. Data on energy response and accuracy of dose measurement for beta/gamma exposures are given for the three methods and advantages and disadvantages are discussed (H.K.)

  13. Choice of measuring site in external personnel routine dosimetry

    International Nuclear Information System (INIS)

    Rothe, W.

    1975-01-01

    In personnel routine dosimetry the choice of a suitable measuring site is of great importance because there may be great differences between the measured doses and the equivalent doses of the whole body and of single organs, respectively. In the literature there are different points of view with regard to the measuring site particularly if diagnostic X-radiation is used and the body is partly covered with protective clothing. Likewise in most cases the conclusions regarding the most suitable measuring site drawn from measurements of dose distributions on the body surface are not in agreement. (author)

  14. Dosimetry systems for radiation processing in Japan

    International Nuclear Information System (INIS)

    Tamura, Naoyuki

    1995-01-01

    The present situation of dosimetry systems for radiation processing industry in Japan is reviewed. For gamma-rays irradiation the parallel-plate ionization chamber in TRCRE, JAERI has been placed as a reference standard dosimeter for processing-level dose. Various solid and liquid chemical dosimeters are used as routine dosimeters for gamma processing industries. Alanine dosimeters is used for the irradiation purpose which needs precise dosimetry. For electron-beam irradiation the electron current density meter and the total absorption calorimeter of TRCRE are used for the calibration of routine dosimeters. Plastic film dosimeters, such as cellulose triacetate and radiochromic dye are used as routine dosimeters for electron processing industries. When the official traceability systems for processing-level dosimetry now under investigation is completed, the ionization chamber of TRCRE is expected to have a role of the primary standard dosimeter and the specified alanine dosimeter will be nominated for the secondary or reference standard dosimeter. (author)

  15. In vivo semiconductor dosimetry as part of routine quality assurance.

    Science.gov (United States)

    Millwater, C J; MacLeod, A S; Thwaites, D I

    1998-06-01

    This paper describes the initial physics testing necessary before diodes can be used for in vivo dosimetry as well as the development of a protocol for clinical use in head and neck treatment and the preliminary results acquired. 50 patients were entered into the pilot study. A total of 300 treatment set-ups were measured (184 entrance doses and 116 exit doses). Wedged and unwedged components of each field were measured separately, making the total number of entrance doses 284 and total number of exit doses 207. There was no significant systematic deviation in the measured entrance dose compared with the expected (mean +0.4%, SD 2.7%). Discrepancies between the observed and expected entrance doses of greater than 5% were recorded in 6% (16/284) of measurements. The mean of the measured exit doses was 2.4% lower than expected (SD 4.8%). Discrepancies between the observed and expected exist doses of greater than 5% were recorded in 32% (67/207) of measurements. Possible causes for these discrepancies are discussed. Overall analysis of the data for individual patients suggest that in one patient out of the 50 there may have been a delivered target volume dose discrepancy of greater than 5% (+6.5%). The significance of the results and the implications for routine use are discussed.

  16. Direct internal dosimetry. A new way for routine incorporation monitoring of γ-emitting radionuclides

    International Nuclear Information System (INIS)

    Doerfel, H.

    1996-01-01

    The INDOS detector system offers the following advantages with respect to routine incorporation monitoring: The measurement is performed automatically and there is no need for trained staff. The measuring time is short and thus a relative large number of persons may be monitored with a relative high measuring frequency. First estimates of the individual effective dose equivalent rate are available immediately after the measurement. 1) The direct determination of the dose equivalent in principle is more precise than the conventional procedures for internal dosimetry, because (i) the retention of radionuclides in the body may be measured explicitly and (ii) the dependence of the dose equivalent on the body proportions is corrected implicitly. 2) The measuring procedure is comparable to the external dosimetry with respect to accuracy and lower limit of detection. Thus, the results of internal and external dosimetry can be summed up in an easy and reasonable manner. 3) The detector system can be installed in any building; it also can be installed as a mobile unit in a car or a container for long distance transportation by aircraft or train. 4) Last but not least, the cost for monitoring with INDOS is much lower than for the conventional monitoring procedures using whole body counters. (author)

  17. Skin dose assessment in routine personnel beta/gamma dosimetry

    International Nuclear Information System (INIS)

    Christensen, P.

    1980-01-01

    Three alternative methods are outlined by which substantial improvements of the capabilities of existing routine monitoring systems for skin dose assessment can be obtained. The introduction of a supplementary skin dosemeter may be an attractive method for systems with badges that have a capability for an additional dosemeter already built-in. The two-side reading method has limited possibilities because of reduced accuracy for mixed radiation and technical difficulties in using it for TLD systems with planchet heating. The use of a boron diffused LiF layer for skin dose assessment seems to be most attractive method since the only modification needed here is replacement of a dosemeter. However the study of this method is so far only in a preliminary stage and further investigations are needed. (U.K.)

  18. An automated thermoluminescence dosimetry (TLD) system

    International Nuclear Information System (INIS)

    Kicken, P.J.H.; Huyskens, C.J.

    1979-01-01

    In the Health Physics Division of the Eindhoven University of Technology work is going on in developing an automated TLD-system. Process automization, statistical computation, dose calculation as well as dose recording are carried out, using a microcomputer and floppy disk unit. The main features of this TLD-system are its low costs, flexibility, easy to operate, and the feasibility for use in routine dosimetry as well as in complex TLD research. Because of its modular set-up several components of the system are multifunctional in other operations. The system seems suited for medium sized Health Physics groups. (Auth.)

  19. Characterising an aluminium oxide dosimetry system.

    Science.gov (United States)

    Conheady, Clement F; Gagliardi, Frank M; Ackerly, Trevor

    2015-09-01

    In vivo dosimetry is recommended as a defence-in-depth strategy in radiotherapy treatments and is currently employed by clinics around the world. The characteristics of a new optically stimulated luminescence dosimetry system were investigated for the purpose of replacing an aging thermoluminescence dosimetry system for in vivo dosimetry. The stability of the system was not sufficient to satisfy commissioning requirements and therefore it has not been released into clinical service at this time.

  20. Thermoluminescence dosimetry environmental monitoring system

    International Nuclear Information System (INIS)

    Bortoluzzi, S.

    1989-01-01

    In this report, characteristics and performances of an environmental monitoring system with thermoluminescence dosimetry are presented. Most of the work deals with the main physical parameters necessary for measurements of ambiental dose. At the end of this report some of level doses in the environment around the site of the ENEA Center of Energy Research Salluggia (Italy) are illustrated

  1. Quality assurance package for routine thermoluminescence dosimetry program

    International Nuclear Information System (INIS)

    Tawil, R.A.; Bencke, G.; Moscovitch, M.

    1988-01-01

    The Quality Assurance Package presented here specifies a set of reader-related hardware diagnostics and calibration procedures and automatically maintains audit trails of generated and derived thermoluminescence data. It specifies acceptable performance criteria for the reader and dosimeter assemblies; tracks and controls Readout Cycle Temperature Profiles; and ensures that the acquired data is verified. The quality of the generated glow curves is tracked by the real-time application of Computerized Glow Curve Deconvolution to reference dosimeters that may be mixed with field dosimeters during readout sessions. This package is supported by a menu-driven software system using vertical auto-selection menus, lotus-style horizontal menus, data entry menus with automatic error checking, and pop-up windows. The menu system is supported by an extensive HELP file; data EDITING is password-protected, and a journal is maintained for each editing session as part of the audit trail. Files for the Raw Data and Derived Dose results are maintained and managed in seven databases. The paper provides an in-depth analysis of each of the procedures, specifies data validation criteria, and presents samples of the reports generated

  2. Sizewell B Power Station control dosimetry system

    International Nuclear Information System (INIS)

    Renn, G.

    1995-01-01

    Sizewell B Power Station is the first Pressurized Water Reactor (PWR) built in the UK for commercial electricity production. An effective control dosimetry system is a crucial tool, in allowing the station to assess its radiological performance against targets. This paper gives an overview of the control dosimetry system at Sizewell B and describes early operating experience with the system. (UK)

  3. A set of dosimetry systems for electron beam irradiation

    International Nuclear Information System (INIS)

    Lin Min; Lin Jingwen; Chen Yundong; Li Huazhi; Xiao Zhenhong; Gao Juncheng

    1999-01-01

    To follow the rapid development of radiation processing with electron beams, it is urgent to set up a set of dosimetric standards to provide Quality Assurance (QA) of electron beam irradiation and unify the values of the quality of the absorbed dose measurements for electron beams. This report introduces a set of dosimetry systems established in Radiometrology Center of China Institute of Atomic Energy (RCCIAE), which have been or will be used as dosimetric standards in the Nuclear Industry System (NIS) in China. For instance, the potassium (silver) dichromate and ceric-cerous sulfate dosimetry systems will be used as standard dosimeters, while alanine-ESR dosimetry system as a transfer dosimeter, and FJL-01 CTA as a routine dosimeter. (author)

  4. Application of an alanine dosimetry system for industrial irradiation and radiation protection

    International Nuclear Information System (INIS)

    Gohs, U.

    1996-01-01

    This paper reports the application of alanine dosimetry in radiation processing. Continuous checks of the EPR measuring conditions as well as using high-quality alanine dosimeters and consistent technique for dose determination guarantee an accuracy of about ± 3% intermediate dose levels. The alanine dosimetry system was applied for dose mapping measurements during irradiator qualification and performance qualification of different products, routine dosimetry, and special radiation protection applications within the gamma irradiator. (author)

  5. Dosimetry system of the RB reactor

    International Nuclear Information System (INIS)

    Lolic, B.; Vukadin, D.

    1962-01-01

    Although RB reactor is operated at very low power levels, safety and dosimetry systems have high importance. This paper shows detailed dosimetry system with fundamental typical components. Estimated radiation doses dependent on reactor power are given at some characteristic points in the rooms nearby reactor

  6. Guide for selection and calibration of dosimetry systems for radiation processing

    International Nuclear Information System (INIS)

    2002-01-01

    This guide covers the basis for selecting and calibrating dosimetry systems used to measure absorbed dose in gamma ray or X-ray fields and in electron beams used for radiation processing. It discusses the types of dosimetry systems that may be employed during calibration or on a routine basis as part of quality assurance in commercial radiation processing of products. This guide also discusses interpretation of absorbed dose and briefly outlines measurements of the uncertainties associated with the dosimetry. The details of the calibration of the analytical instrumentation are addressed in individual dosimetry system standard practices. The absorbed-dose range covered is up to 1 MGy (100 Mrad). Source energies covered are from 0.1 to 50 MeV photons and electrons. This guide should be used along with standard practices and guides for specific dosimetry systems and applications covered in other standards. Dosimetry for radiation processing with neutrons or heavy charged particles is not covered in this guide

  7. Computerized dosimetry management systems within EDF

    International Nuclear Information System (INIS)

    Daubert, G.

    1996-01-01

    EDF, using the ALARA approach, has embarked an ambitious project of optimising the doses received in its power plants. In directing its choice of actions and the effectiveness of such actions, the French operator is using a computerized personal and collective dosimetry management system. This system provides for ongoing monitoring of dosimetry at personal, site and unit level or indeed for the entire population of EDF nuclear power plants. (author)

  8. Rational system of radiation dosimetry

    International Nuclear Information System (INIS)

    Katoh, K.; Tada, J.

    1996-01-01

    Radiation doses are the most important subject to the sciences relating to the effects of ionizing radiation on matter. Since any science at all must stand on the quantitative description of causality, uses of physical quantities as the measures are indispensable. The current system of radiation dosimetry is built on the fundamental dose of the absorbed dose, which is defined as the 'energy imparted' density, and for practical convenience various weighted absorbed doses are introduced as subsidiary. However, it has been pointed out that these quantities lack adequacy inherently as a measure of causes, in addition to the insufficiency of the specification of the concept. Firstly, separation of the quantities of radiation field and of the dose is not possible, since both quantities are deeply related to the same microscopic constituents, i.e., electrons. Secondly, the value of the absorbed dose cannot be fixed at the moment of irradiation. Since the absorbed dose is a quantity of interaction product of radiation and matter, the values of the dose cannot be fixed instantaneously. Thirdly, it is not easy to envision the physical entity of the quantity from the definition. The form of existence of the 'imparted' energy is not clear in the current definition. These defects can not be removed as long as an interaction product is adopted as the dose quantity. In this paper, the authors present a prescription to solve these problems. (author)

  9. Characterization of a thermoluminiscence personnel dosimetry system

    International Nuclear Information System (INIS)

    Vazquez Lopez, C.; Saez, J.C.; Labarta, T.

    1989-01-01

    Various tests carried out to characterize a Thermoluminiscence Personnel Dosimetry Automatic System, based on the optical heating of a multielement dosemeter are presented. The dosemeter consists of Lithium Borate (Copper) and Calcium Sulphate (Thallium) phosphors. The Dosimetric System shows some outstanding features, such as its simplicity (no aditional annealing procedures are required), its short reading cycle (160 TLD per hour and its data handling capabilities (RS-232C and Parallel Printer digital ports and four analigic outputs for Glow Curve Adquisition). The tests performed have been designed to conform with the different existing international Standards and Recommendations (ANSI: N13.11-1983; IEC:Draft 45B-1987, ISO:DP 8034-1984) The new radiological quantities (I.C.R.U.-19855) have been used for calibration. The results obtained (linearity, repeatibility, detection threshold, residue, stability of stored information, etc) show the optimum performance of this dosimetric system in its aplication to routine personnel dose monitoring. Based on the dosemeter energy discriminating response, an algorithm for dose assesment has been developed. The method allows personal dose calculations within 10% and gives valuable information on the quality and energy of incident radiation, for photons from 30 to 2000 keV and for Beta penetrating radiation (Sr/Y, U). (Author)

  10. Chemical dosimetry system for criticality accidents.

    Science.gov (United States)

    Miljanić, Saveta; Ilijas, Boris

    2004-01-01

    Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values.

  11. Dosimetry systems in nuclear power stations

    International Nuclear Information System (INIS)

    Weidmann, U.

    1992-01-01

    In the following paper the necessity of the use of electronic dosimetry systems in nuclear power stations is presented, also encompassing the tasks which this type of systems has to fulfill. Based on examples the construction principles and the application possibilities of a PC supported system are described. 5 figs

  12. US Department of Energy Laboratory Accredition Program (DOELAP) for personnel dosimetry systems

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, F.M.; Carlson, R.D.; Loesch, R.M.

    1993-12-31

    Accreditation of personnel dosimetry systems is required for laboratories that conduct personnel dosimetry for the U.S. Department of Energy (DOE). Accreditation is a two-step process which requires the participant to pass a proficiency test and an onsite assessment. The DOE Laboratory Accreditation Program (DOELAP) is a measurement quality assurance program for DOE laboratories. Currently, the DOELAP addresses only dosimetry systems used to assess the whole body dose to personnel. A pilot extremity DOELAP has been completed and routine testing is expected to begin in January 1994. It is expected that participation in the extremity program will be a regulatory requirement by January 1996.

  13. Dosimetry quality assurance in Martin Marietta Energy Systems' centralized external dosimetry system

    International Nuclear Information System (INIS)

    Souleyrette, M.L.

    1992-01-01

    External dosimetry needs at the four Martin Marietta Energy Systems facilities are served by Energy Systems Centralized External Dosimetry System (CEDS). The CEDS is a four plant program with four dosimeter distribution centers and two dosimeter processing centers. Each plant has its own distribution center, while processing centers are located at ORNL and the Y-12 Plant. The program has been granted accreditation by the Department of Energy Laboratory Accreditation Program (DOELAP). The CEDS is a TLD based system which is responsible for whole-body beta-gamma, neutron, and extremity monitoring. Beta-gamma monitoring is performed using the Harshaw/Solon Technologies model 8805 dosimeter. Effective October 1, 1992 the standard silver mylar has been replaced with an Avery mylar foil blackened on the underside with ink. This was done in an effort to reduce the number of light induced suspect readings. At this time we have little operational experience with the new blackened mylars-The CEDS neutron dosimeter is the Harshaw model 8806B. This card/holder configuration contains two TLD-600/TLD-700 chip pairs; one pair is located beneath a cadmium filter and one pair is located beneath a plastic filter. In routine personnel monitoring the CEDS neutron dosimeter is always paired with a CEDS beta-gamma dosimeter.The CEDS extremity dosimeter is composed of a Harshaw thin TLD-700 dosiclip placed inside a Teledyne RB-4 finger sachet. The finger sachet provides approximately 7 mg/cm 2 filtration over the chip. A teflon ring surrounds the dosiclip to help prevent tearing of the vinyl sachet

  14. Quality management system in the CIEMAT Radiation Dosimetry Service.

    Science.gov (United States)

    Martín, R; Navarro, T; Romero, A M; López, M A

    2011-03-01

    This paper describes the activities realised by the CIEMAT Radiation Dosimetry Service (SDR) for the implementation of a quality management system (QMS) in order to achieve compliance with the requirements of ISO/IEC 17025 and to apply for the accreditation for testing measurements of radiation dose. SDR has decided the accreditation of the service as a whole and not for each of its component laboratories. This makes it necessary to design a QMS common to all, thus ensuring alignment and compliance with standard requirements, and simplifying routine works as possible.

  15. A practical three-dimensional dosimetry system for radiation therapy

    International Nuclear Information System (INIS)

    Guo Pengyi; Adamovics, John; Oldham, Mark

    2006-01-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE trade mark sign ) and a commercial optical computed tomography (CT) scanning system (OCTOPUS trade mark sign ). PRESAGE trade mark sign is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE trade mark sign /OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of ≤1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R 2 value of 0.9979 and a standard error of estimation of ∼1%) relative to independent measurement. The overall performance of the PRESAGE trade mark sign /OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC[reg] EBT film and the calculated dose from a commissioned planning system. The 'measured' dose distribution in a cylindrical PRESAGE trade mark sign dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE trade mark sign , EBT and calculated dose distributions, showed full agreement in

  16. INTEGRATED OPERATIONAL DOSIMETRY SYSTEM AT CERN.

    Science.gov (United States)

    Dumont, Gérald; Pedrosa, Fernando Baltasar Dos Santos; Carbonez, Pierre; Forkel-Wirth, Doris; Ninin, Pierre; Fuentes, Eloy Reguero; Roesler, Stefan; Vollaire, Joachim

    2017-04-01

    CERN, the European Organization for Nuclear Research, upgraded its operational dosimetry system in March 2013 to be prepared for the first Long Shutdown of CERN's facilities. The new system allows the immediate and automatic checking and recording of the dosimetry data before and after interventions in radiation areas. To facilitate the analysis of the data in context of CERN's approach to As Low As Reasonably Achievable (ALARA), this new system is interfaced to the Intervention Management Planning and Coordination Tool (IMPACT). IMPACT is a web-based application widely used in all CERN's accelerators and their associated technical infrastructures for the planning, the coordination and the approval of interventions (work permit principle). The coupling of the operational dosimetry database with the IMPACT repository allows a direct and almost immediate comparison of the actual dose with the estimations, in addition to enabling the configuration of alarm levels in the dosemeter in function of the intervention to be performed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. New advanced TLD system for space dosimetry

    International Nuclear Information System (INIS)

    Feher, I.; Szabo, B.; Vagvoelgyi, J.; Deme, S.; Szabo, P.P.; Csoeke, A.

    1983-10-01

    A new version of the TLD reader type PILLE has been developed for space applications. The earlier compact and portable device could also be used for measurements during space flights but its range was limited. A new bulb detector with easier handling has also been developed with an upper limit of linear dose response of 10 Gy. The range of this new and more versatile reader, NA206S, (1μGy-10 Gy) is 3 orders of magnitude higher than that of the earlier system; it also has increased sensitivity and decreased mass. It can be used not only in space applications but also for environmental monitoring or even in accident dosimetry. The measured dose value is displayed on a four-digit display with automatic range switch. Another new version, the NA206E, has been developed for environmental dosimetry; it can be operated from a battery or from the mains. (author)

  18. Quantitative evaluation of patient-specific quality assurance using online dosimetry system

    Science.gov (United States)

    Jung, Jae-Yong; Shin, Young-Ju; Sohn, Seung-Chang; Min, Jung-Whan; Kim, Yon-Lae; Kim, Dong-Su; Choe, Bo-Young; Suh, Tae-Suk

    2018-01-01

    In this study, we investigated the clinical performance of an online dosimetry system (Mobius FX system, MFX) by 1) dosimetric plan verification using gamma passing rates and dose volume metrics and 2) error-detection capability evaluation by deliberately introduced machine error. Eighteen volumetric modulated arc therapy (VMAT) plans were studied. To evaluate the clinical performance of the MFX, we used gamma analysis and dose volume histogram (DVH) analysis. In addition, to evaluate the error-detection capability, we used gamma analysis and DVH analysis utilizing three types of deliberately introduced errors (Type 1: gantry angle-independent multi-leaf collimator (MLC) error, Type 2: gantry angle-dependent MLC error, and Type 3: gantry angle error). A dosimetric verification comparison of physical dosimetry system (Delt4PT) and online dosimetry system (MFX), gamma passing rates of the two dosimetry systems showed very good agreement with treatment planning system (TPS) calculation. For the average dose difference between the TPS calculation and the MFX measurement, most of the dose metrics showed good agreement within a tolerance of 3%. For the error-detection comparison of Delta4PT and MFX, the gamma passing rates of the two dosimetry systems did not meet the 90% acceptance criterion with the magnitude of error exceeding 2 mm and 1.5 ◦, respectively, for error plans of Types 1, 2, and 3. For delivery with all error types, the average dose difference of PTV due to error magnitude showed good agreement between calculated TPS and measured MFX within 1%. Overall, the results of the online dosimetry system showed very good agreement with those of the physical dosimetry system. Our results suggest that a log file-based online dosimetry system is a very suitable verification tool for accurate and efficient clinical routines for patient-specific quality assurance (QA).

  19. Dosimetry

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The purpose of ionizing radiation dosimetry is the measurement of the physical and biological consequences of exposure to radiation. As these consequences are proportional to the local absorption of energy, the dosimetry of ionizing radiation is based on the measurement of this quantity. Owing to the size of the effects of ionizing radiation on materials in all of these area, dosimetry plays an essential role in the prevention and the control of radiation exposure. Its use is of great importance in two areas in particular where the employment of ionizing radiation relates to human health: radiation protection, and medical applications. Dosimetry is different for various reasons: owing to the diversity of the physical characteristics produced by different kinds of radiation according to their nature (X- and γ-photons, electrons, neutrons,...), their energy (from several keV to several MeV), the orders of magnitude of the doses being estimated (a factor of about 10 5 between diagnostic and therapeutic applications); and the temporal and spatial variation of the biological parameters entering into the calculations. On the practical level, dosimetry poses two distinct yet closely related problems: the determination of the absorbed dose received by a subject exposed to radiation from a source external to his body (external dosimetry); and the determination of the absorbed dose received by a subject owing to the presence within his body of some radioactive substance (internal dosimetry)

  20. Performance of dichromate dosimetry systems in calibration and dose intercomparison

    International Nuclear Information System (INIS)

    Bof, E.S.; Smolko, E.

    1999-01-01

    This report presents the results of the High Dose Dosimetry Laboratory of Argentina during ten years of international intercomparisons for high dose with the International Dose Assurance Service (IDAS) of the IAEA, using the standard high dose dichromate dosimetry system, and the results of a high dose intercomparison regional exercise in which our Laboratory acted as a reference laboratory, using the standard high dose and low dose dichromate dosimetry system. (author)

  1. Dosimetry

    International Nuclear Information System (INIS)

    Rezende, D.A.O. de

    1976-01-01

    The fundamental units of dosimetry are defined, such as exposure rate, absorbed dose and equivalent dose. A table is given of relative biological effectiveness values for the different types of radiation. The relation between the roentgen and rad units is calculated and the concepts of physical half-life, biological half-life and effective half-life are discussed. Referring to internal dosimetry, a mathematical treatment is given to β particle-and γ radiation dosimetry. The absorbed dose is calculated and a practical example is given of the calculation of the exposure and of the dose rate for a gama source [pt

  2. Adaptive intrusion data system (AIDS) software routines

    International Nuclear Information System (INIS)

    Corlis, N.E.

    1980-07-01

    An Adaptive Intrusion Data System (AIDS) was developed to collect information from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique digital data-compression, storage, and formatting system; it also incorporates a capability for video selection and recording for assessment of the sensors monitored by the system. The system is software reprogrammable to numerous configurations that may be used for the collection of environmental, bilevel, analog, and video data. This report describes the software routines that control the different AIDS data-collection modes, the diagnostic programs to test the operating hardware, and the data format. Sample data printouts are also included

  3. Evaluation of uncertainty in dosimetry of irradiator system

    International Nuclear Information System (INIS)

    Santos, Gelson P.; Potiens, Maria P.A.; Vivolo, Vitor

    2005-01-01

    This paper describes the study of uncertainties in the estimates of dosimetry irradiator system STS 0B85 of LCI IPEN/CNEN-SP. This study is relevant for determination of best measurement capability when the laboratory performs routine calibrations of measuring radiation next the optimal measures designed to radioprotection. It is also a requirement for obtaining the accreditation of the laboratory by the INMETRO. For this dosimetry was used a reference system of the laboratory composed of a electrometer and a spherical ionization chamber of 1 liter. Measurements were made at five distances selected so to include the whole range of the optical bench tests and using three attenuators filters so as to extend the measurement capability. The magnitude used for evaluation was the rate of air kerma for 1 37C s and 6 0C o beams. Were carried out four series of measurements. It was verified the inverse square law to these series and their sets of uncertainty. Unfiltered, with one and two filters series showed good agreement with the inverse square low and the maximum uncertainty obtained was approximately 1.7%. In series with all the filters was a major deviation of the inverse square law and wide increase in uncertainty to measurements at the end of the optical bench

  4. Automated personal dosimetry monitoring system for NPP

    International Nuclear Information System (INIS)

    Chanyshev, E.; Chechyotkin, N.; Kondratev, A.; Plyshevskaya, D.

    2006-01-01

    Full text: Radiation safety of personnel at nuclear power plants (NPP) is a priority aim. Degree of radiation exposure of personnel is defined by many factors: NPP design, operation of equipment, organizational management of radiation hazardous works and, certainly, safety culture of every employee. Automated Personal Dosimetry Monitoring System (A.P.D.M.S.) is applied at all nuclear power plants nowadays in Russia to eliminate the possibility of occupational radiation exposure beyond regulated level under different modes of NPP operation. A.P.D.M.S. provides individual radiation dose registration. In the paper the efforts of Design Bureau 'Promengineering' in construction of software and hardware complex of A.P.D.M.S. (S.H.W. A.P.D.M.S.) for NPP with PWR are presented. The developed complex is intended to automatize activities of radiation safety department when caring out individual dosimetry control. The complex covers all main processes concerning individual monitoring of external and internal radiation exposure as well as dose recording, management, and planning. S.H.W. A.P.D.M.S. is a multi-purpose system which software was designed on the modular approach. This approach presumes modification and extension of software using new components (modules) without changes in other components. Such structure makes the system flexible and allows modifying it in case of implementation a new radiation safety requirements and extending the scope of dosimetry monitoring. That gives the possibility to include with time new kinds of dosimetry control for Russian NPP in compliance with IAEA recommendations, for instance, control of the equivalent dose rate to the skin and the equivalent dose rate to the lens of the eye S.H.W. A.P.D.M.S. provides dosimetry control as follows: Current monitoring of external radiation exposure: - Gamma radiation dose measurement using radio-photoluminescent personal dosimeters. - Neutron radiation dose measurement using thermoluminescent

  5. Dosimetry system of the RB reactor; Dozimetarski sistem reaktora RB

    Energy Technology Data Exchange (ETDEWEB)

    Lolic, B; Vukadin, D [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1962-07-01

    Although RB reactor is operated at very low power levels, safety and dosimetry systems have high importance. This paper shows detailed dosimetry system with fundamental typical components. Estimated radiation doses dependent on reactor power are given at some characteristic points in the rooms nearby reactor.

  6. Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, G S; Ritchie, R H; Sanders, F W; Reinhardt, P W; Auxier, J A; Wagner, E B; Callihan, A D; Morgan, K Z [Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1962-03-15

    The methods of dosimetry used for investigation of the doses received by the individuals exposed in the Yugoslav accident were essentially those used in connection with the Oak Ridge Y-12 accident. An outline of the general scheme is as follows: When fast neutrons enter the human body, most of these are moderated to thermal energy and a small fraction of these are captured by a (n, gamma) process in Na sup 2 sup 3 , giving rise to Na sup 2 sup 4 , which by virtue of its emission of high-energy gamma rays with a half life of 14.8 h, is easily detected. It has been shown that the probability of capture, making Na sup 2 sup 4 , is not a strong function of the energy of the fast neutrons and that the probability of capture for neutrons is higher in the fast region than in the thermal region. Thus, the uniform distribution of Na sup 2 sup 3 in the human body provides an excellent means of normalizing the neutron exposure of an individual. in particular, for a given neutron energy spectrum the fast neutron dose is proportional to the ratio Na sup 2 sup 4 /Na sup 2 sup 3 in the body or in the blood system. This method of normalization is quite important in the dosimetry of radiation accidents since no assumptions need be made about the exact location of an individual at the time of the energy release. The importance of this fact can be made clear by reference to the Y-12 accident where it was shown by calculation of the neutron dose based on the known number of fissions and the stated location of the individual that one of the surviving individuals would have received a dose several times the lethal value. To accomplish the measurements described, the zero power R sub B reactor was operated in two ranges of power level, 'low' power and 'high 'power. Neutron leakage spectrum was obtained by multigroup approximation of the Boltzmann transport equation. Prompt gamma rays from fission products, from capture in the moderator and fuel cladding as well as in tank walls are given

  7. Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, G S; Ritchie, R H; Sanders, F W; Reinhardt, P W; Auxier, J A; Wagner, E B; Callihan, A D; Morgan, K Z [Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1962-03-01

    The methods of dosimetry used for investigation of the doses received by the individuals exposed in the Yugoslav accident were essentially those used in connection with the Oak Ridge Y-12 accident. An outline of the general scheme is as follows: When fast neutrons enter the human body, most of these are moderated to thermal energy and a small fraction of these are captured by a (n, {gamma}) process in Na{sup 23}, giving rise to Na{sup 24}, which by virtue of its emission of high-energy gamma rays with a half life of 14.8 h, is easily detected. It has been shown that the probability of capture, making Na{sup 24}, is not a strong function of the energy of the fast neutrons and that the probability of capture for neutrons is higher in the fast region than in the thermal region. Thus, the uniform distribution of Na{sup 23} in the human body provides an excellent means of normalizing the neutron exposure of an individual. in particular, for a given neutron energy spectrum the fast neutron dose is proportional to the ratio Na{sup 24}/Na{sup 23} in the body or in the blood system. This method of normalization is quite important in the dosimetry of radiation accidents since no assumptions need be made about the exact location of an individual at the time of the energy release. The importance of this fact can be made clear by reference to the Y-12 accident where it was shown by calculation of the neutron dose based on the known number of fissions and the stated location of the individual that one of the surviving individuals would have received a dose several times the lethal value. To accomplish the measurements described, the zero power R{sub B} reactor was operated in two ranges of power level, 'low' power and 'high 'power. Neutron leakage spectrum was obtained by multigroup approximation of the Boltzman transport equation. Prompt gamma rays from fission products, from capture in the moderator and fuel cladding as well as in tank walls are given. A summary of the 4{pi

  8. Semiconductor dosimetry system for gamma and neutron radiation

    International Nuclear Information System (INIS)

    Savic, Z.; Pavlovic, Z.

    1995-01-01

    The semiconductor dosimetry system for gamma and neutron radiation based on pMOS transistor and PIN diode is described. It is intended for tactical or accidental personal dosimetry. The production steps are given. The temperature, dose and time (fading) response are reported. Hardware and software requirements which are needed for obtaining the desired measurement error are pointed. (author)

  9. Reassessment of the RERF dosimetry system - overview of the new dosimetry system DS02

    International Nuclear Information System (INIS)

    Young, R.W.

    2003-01-01

    This paper describes a major reassessment of the system used at the Radiation Effects Research Foundation (RERF) to determine radiation doses for atomic-bomb survivors. This effort has resolved the neutron discrepancy in RERF dosimetry, and has defined the parameters for a replacement system for survivor dose calculation. A Joint US-Japan Working Group undertook a comprehensive evaluation of the calculations that comprise the RERF dosimetry system and the measurements used to verify those calculations. During the course of this reassessment, the working groups, with members from American, German and Japanese universities and national laboratories, have recomputed all of the Hiroshima and Nagasaki radiation calculations, made fast-neutron and low-background thermal-neutron measurements, upgraded the calculation of the radiation shielding provided by terrain and large buildings, and conducted a comprehensive reassessment of all radiation measurements. The new calculations produced during this reassessment agree with both gamma and neutron measurements out to distances from the detonations at which in-situ measurements become indistinguishable from background, effectively resolving the long-standing neutron dose discrepancy. The calculations that produce this agreement are the basis for the new DS02 dosimetry system. New calculations and measurements confirmed the yield and epicenter for the Nagasaki detonation while refining both these values for Hiroshima. Current measurements and calculations confirm a 21-kiloton-yield for the Nagasaki bomb and a burst point to within two meters of previous assessments. In Hiroshima, the estimated yield has been increased from 15 kt to 16 kt and the epicenter has been repositioned 20 meters higher and 15 meters to the west. While these refined parameters make the dosimetry system more accurate and users of the system more confident in the results, the calculated dose to survivors will change only about ten percent

  10. The Bristol University neutron dosimetry system

    International Nuclear Information System (INIS)

    Worley, A.; Fews, A.P.; Henshaw, D.L.

    1987-01-01

    The neutron dosimetry system developed at Bristol is based on recording recoil proton tracks in conventionally etched PADC plastic using a fully automated image analysis system. Two features contribute to the achievement of a low dose threshold: high quality plastic is manufactured and undergoes extensive quality control tests prior to acceptance for use in dosimetry, and a readout system with high efficiency for rejecting background events is used. The principal dosemeter that has been developed consists of three orthogonal elements, each containing two 3 cm x 1 cm plastics on either side of a polyethylene radiator. On each plastic an area of 0.15 cm 2 is scanned giving a total active area of 0.90 cm 2 . Each plastic is coded for manual identification and for computer recognition. The track counts from the six plastics are added with different weightings to achieve a measure of dose which is independent of irradiation direction when worn on the body. The device has been calibrated using monoenergetic neutrons in the range 100 keV to 14.7 MeV at NPL, and using the recent CENDOS exposure. If the track counts are added without weighting, the device has a nominal response of 120 tracks cm -2 .mSv -1 and an energy threshold at 200 keV. Taken together with a background of 20 track cm -2 , a dose threshold of around 80μSv is implied. A simpler dosemeter, using a single plastic/radiator combination, may also be considered. If a 1 cm 2 device is used for normal incidence exposure, the dose threshold is calculated to be 25 μSv. (author)

  11. Use of data libraries in dosimetry control systems

    International Nuclear Information System (INIS)

    Babenko, V.V.; Babenko, M.I.; Kazimirov, A.S.

    2002-01-01

    Analysis, prediction and planning of dose loads, adequacy in dose management of personnel, evaluation of expediency and sufficiency of existing radiation protection system can be realized with the help of database system of dosimetry control in 'Ukrytie'-shelter

  12. ITMETH, Iterative Routines for Linear System

    International Nuclear Information System (INIS)

    Greenbaum, A.

    1989-01-01

    1 - Description of program or function: ITMETH is a collection of iterative routines for solving large, sparse linear systems. 2 - Method of solution: ITMETH solves general linear systems of the form AX=B using a variety of methods: Jacobi iteration; Gauss-Seidel iteration; incomplete LU decomposition or matrix splitting with iterative refinement; diagonal scaling, matrix splitting, or incomplete LU decomposition with the conjugate gradient method for the problem AA'Y=B, X=A'Y; bi-conjugate gradient method with diagonal scaling, matrix splitting, or incomplete LU decomposition; and ortho-min method with diagonal scaling, matrix splitting, or incomplete LU decomposition. ITMETH also solves symmetric positive definite linear systems AX=B using the conjugate gradient method with diagonal scaling or matrix splitting, or the incomplete Cholesky conjugate gradient method

  13. Properties of electret ionization chambers for routine dosimetry in photon radiation fields

    International Nuclear Information System (INIS)

    Doerschel, B.; Pretzsch, G.

    1985-01-01

    The main properties of photon routine dosemeters are their energy and angular dependence as well as their measuring range and accuracy. The determination of radiation exposure from dosemeter response is based on the choice of an appropriate conversion factor taking into account the influence of body backscattering on the dosemeter response. Measuring range and accuracy of an electret ionization chamber first of all depend on electret stability, methods of charge measurement, and geometry of the chamber. The dosemeter performance is described for an electret ionization chamber which was designed for application to routine monitoring of radiation workers. (author)

  14. Characterization and evaluation studies on some JAERI dosimetry systems

    International Nuclear Information System (INIS)

    Kojima, T.; Sunaga, H.; Tachibana, H.; Takizawa, H.; Tanaka, R.

    2000-01-01

    Characterization and evaluation studies were carried out on some JAERI dosimetry systems, mainly alanine-ESR, in terms of the influence on the dose response of parameters such as orientation at ESR analysis, and the temperature during irradiation and analysis. Feasibility study for application of these dosimetry systems to electrons with energies lower than 4 MeV and bremsstrahlung (X rays) was also performed parallel to their reliability check through international dose intercomparison. (author)

  15. The personnel dosimetry record keeping system at AEE Winfrith

    International Nuclear Information System (INIS)

    Gill, D.W.

    1979-09-01

    Since May 1978 the exposure of personnel to external radiation has been assessed by Thermoluminescent Dosimetry, (TLD). The dosemeter consists of a TLD card similar to that used by the National Radiological Protection Board, held in a plastic badge designed at AEE Winfrith, and used in conjunction with a D A Pitman Ltd Type 605 Automatic Reader. The report describes the dosemeter, the operation of the dosimetry service and the system for maintaining a computerised record keeping system. (author)

  16. BED-Volume histograms calculation for routine clinical dosimetry in brachytherapy

    International Nuclear Information System (INIS)

    Galelli, M.; Feroldi, P.

    1995-01-01

    The consideration of volumes is essential in Brachytherapy clinical dosimetry (I.C.R.U). Indeed, several indices, all based on dose-volume histograms (DVHs), have been designed in order to evaluate: before the therapy the volumetric quality of different possible implant geometries; during the therapy the consistency of the real and the previsional implants. Radiobiological evaluations, considering the dose deposition temporal pattern of treatment, can be usefully added to dosimetric calculations, to compare different treatment schedules. The Linear-Quadratic model is the most used: radiobiological modelisation and Biologically Effective Dose (BED) is principal related dosimetric quantity. Therefore, the consideration of BED-volume histogram (BED-VHs) is a straightforward extension of DVHs. In practice, BED-VHs can help relative comparisons and optimisations in treatment planning when combined to dose-volume histograms. Since 1994 the dosimetric calculations for all the gynecological brachytherapy treatments are performed considering also DVHs and BED-VHs. In this presentation we show the methods of BEDVHs calculation, together with some typical results

  17. Glass badge dosimetry system for large scale personal monitoring

    International Nuclear Information System (INIS)

    Norimichi Juto

    2002-01-01

    Glass Badge using silver activated phosphate glass dosemeter was specially developed for large scale personal monitoring. And dosimetry systems such as an automatic leader and a dose equipment calculation algorithm were developed at once to achieve reasonable personal monitoring. In large scale personal monitoring, both of precision for dosimetry and confidence for lot of personal data handling become very important. The silver activated phosphate glass dosemeter has basically excellent characteristics for dosimetry such as homogeneous and stable sensitivity, negligible fading and so on. Glass Badge was designed to measure 10 keV - 10 MeV range of photon. 300 keV - 3 MeV range of beta, and 0.025 eV - 15 MeV range of neutron by included SSNTD. And developed Glass Badge dosimetry system has not only these basic characteristics but also lot of features to keep good precision for dosimetry and data handling. In this presentation, features of Glass Badge dosimetry systems and examples for practical personal monitoring systems will be presented. (Author)

  18. Determining the lower limit of detection for personnel dosimetry systems

    International Nuclear Information System (INIS)

    Roberson, P.L.; Carlson, R.D.

    1992-01-01

    A simple method for determining the lower limit of detection (LLD) for personnel dosimetry systems is described. The method relies on the definition of a critical level and a detection level. The critical level is the signal level above which a result has a small probability of being due to a fluctuation of the background. All results below the critical level should not be reported as an indication of a positive result. The detection level is the net signal level (i.e., dose received) above which there is a high confidence that a true reading will be detected and reported as a qualitatively positive result. The detection level may be identified as the LLD. A simple formula is derived to allow the calculation of the LLD under various conditions. This type of formula is being used by the Department of Energy Laboratory Accreditation Program (DOELAP) for personnel dosimetry. Participants in either the National Voluntary Laboratory Accreditation Program (NVLAP) for personnel dosimetry or DOELAP can use performance test results along with a measurement of background levels to estimate the LLDs for their dosimetry system. As long as they maintain their dosimetry system such that the LLDs are less than half the lower limit of the NVLAP or DOELAP test exposure ranges, dosimetry laboratories can avoid testing failures due to poor performance at very low exposures

  19. Biological dosimetry intercomparison exercise: an evaluation of Triage and routine mode results by robust methods

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Vallerga, M.B.; Radl, A.; Taja, M.R.; Barquinero, J.F.; Seoane, A.; De Luca, J.; Guerrero Carvajal, Y.C.; Stuck Oliveira, M.S.; Valdivia, P.; García Lima, O.; Lamadrid, A.; González Mesa, J.; Romero Aguilera, I.; Mandina Cardoso, T.; Arceo Maldonado, C.; Espinoza, M.E.; Martínez López, W.; Lloyd, D.C.; Méndez Acuña, L.; Di Tomaso, M.V.; Roy, L.; Lindholm, C.; Romm, H.; Güçlü, I.

    2011-01-01

    Well-defined protocols and quality management standards are indispensable for biological dosimetry laboratories. Participation in periodic proficiency testing by interlaboratory comparisons is also required. This harmonization is essential if a cooperative network is used to respond to a mass casualty event. Here we present an international intercomparison based on dicentric chromosome analysis for dose assessment performed in the framework of the IAEA Regional Latin American RLA/9/054 Project. The exercise involved 14 laboratories, 8 from Latin America and 6 from Europe. The performance of each laboratory and the reproducibility of the exercise were evaluated using robust methods described in ISO standards. The study was based on the analysis of slides from samples irradiated with 0.75 (DI) and 2.5 Gy (DII). Laboratories were required to score the frequency of dicentrics and convert them to estimated doses, using their own dose-effect curves, after the analysis of 50 or 100 cells (triage mode) and after conventional scoring of 500 cells or 100 dicentrics. In the conventional scoring, at both doses, all reported frequencies were considered as satisfactory, and two reported doses were considered as questionable. The analysis of the data dispersion among the dicentric frequencies and among doses indicated a better reproducibility for estimated doses (15.6% for DI and 8.8% for DII) than for frequencies (24.4% for DI and 11.4% for DII), expressed by the coefficient of variation. In the two triage modes, although robust analysis classified some reported frequencies or doses as unsatisfactory or questionable, all estimated doses were in agreement with the accepted error of ±0.5 Gy. However, at the DI dose and for 50 scored cells, 5 out of the 14 reported confidence intervals that included zero dose and could be interpreted as false negatives. This improved with 100 cells, where only one confidence interval included zero dose. At the DII dose, all estimations fell within

  20. An experimental system for thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Perry, K.E.G.; George, E.

    1965-08-01

    A thermoluminescent dosimeter (T.L.D.) reader has been developed for experimental investigations on the use of lithium fluoride for 'finger tip' dosimetry. The design of the reader is based on the maximum use of standard electronic units in the A.E.R.E. Type 2000 series but some new unit development has been necessary. The reader gives improved experimental facilities over present commercially-available designs. The technique for 'finger-tip' dosimetry is described and the initial experimental results are given. (author)

  1. Guide for selection of dosimetry system for electron processing

    International Nuclear Information System (INIS)

    Mehta, K.

    1988-01-01

    Correct applications of radiation processing depend on accurate measurements of absorbed radiation dose. Radiation dosimetry plays several important roles in radiation processing. In particular, there are three stages for any radiation process during which dosimetry is a key to success: basic laboratory research, commissioning of the process and quality control. Radiation dosimeters may be divided into various classes depending upon their areas of applications and their relative quality: primary standard dosimeter, reference standard dosimeter, transfer standard dosimeter and routine in-house dosimeter. Several commercially available dosimeters are described under each class, and their advantages and limitations are discussed. Finally, recommendations are made as to which dosimeter is most suitable for each of the three stages of electron-beam processing. 124 refs

  2. System of data management in 'Dosis' personal dosimetry

    International Nuclear Information System (INIS)

    Manzano de Armas, Jose; Diaz Bernal, Efren; Capote Ferrera, Eduardo; Molina Perez, Daniel; Lopez Bejerano, Gladys

    2001-01-01

    The storage and control of the data of a service of personal dosimetry is a task that requires specify care in data handling and manipulation. This activity becomes more annoying of making manually when the volume of users of the service is significant. The External Dosimetric Laboratory of the Center for Radiation Protection and Hygiene has developed a system of administration of data that allows the storage, control and analysis of the data generated by the Service of Personal Dosimetry in an efficient and reliable way. This paper describes the characteristics of the System for Administration of Data in Personal Dosimetry 'Dosis', as well as their design and programming. The importance of this System for the laboratory and the advantages of their application are described. The characteristics of the different modules are also described. (author)

  3. In-house quality audit and benefits of some quality control procedures in the quality assurance of TL dosimetry system at NRPB

    International Nuclear Information System (INIS)

    Dutt, J.C.

    1993-01-01

    A number of Quality Control (QC) procedures have been introduced into the running and operation of the NRPB personal monitoring services. Those described here apply to the whole-body TL dosimetry system. These QC procedures comprise Quality Assurance (QA) of incoming raw materials and equipment, reader stabilisation, daily, routine and periodic QA checks on all phases of the service. In-house quality audit, periodic internal and external 'blind QA checks' on the dosimetry system as a whole have assured the continuing high quality and reliability of the NRPB TL dosimetry service for assessing body and skin doses of radiation workers from external photon and beta radiations. (author)

  4. Aspartame tablets-gamma dose response and usability for routine radiation processing dosimetry using spectrophotometry

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, S.H. [Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: shs_barc@yahoo.com; Mukherjee, T. [Radiation Safety Systems Division, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2007-02-15

    Aspartame tablets were studied for gamma dose response, using spectrophotometric read-out method. The optimum concentration for ferrous ions was 2x10{sup -4}moldm{sup -3} and xylenol orange with 2.5x10{sup -1}moldm{sup -3} of sulphuric acid for the optimum acidity in FX solution. Wavelength of maximum absorbance is 548nm. Post-irradiation stability is appreciable i.e. for not less than one month. Dose response is non-linear with third order polynomial fit, in the dose range of 1000-10000Gy. This system of aspartame was further used for carrying out relative percentage dose profile measurement in Gamma Cell-220. Results obtained were inter-compared with that of a glutamine dosimeter, which showed that maximum difference between the values of aspartame and glutamine systems is within +/-10%.

  5. Aspartame tablets-gamma dose response and usability for routine radiation processing dosimetry using spectrophotometry

    International Nuclear Information System (INIS)

    Shinde, S.H.; Mukherjee, T.

    2007-01-01

    Aspartame tablets were studied for gamma dose response, using spectrophotometric read-out method. The optimum concentration for ferrous ions was 2x10 -4 moldm -3 and xylenol orange with 2.5x10 -1 moldm -3 of sulphuric acid for the optimum acidity in FX solution. Wavelength of maximum absorbance is 548nm. Post-irradiation stability is appreciable i.e. for not less than one month. Dose response is non-linear with third order polynomial fit, in the dose range of 1000-10000Gy. This system of aspartame was further used for carrying out relative percentage dose profile measurement in Gamma Cell-220. Results obtained were inter-compared with that of a glutamine dosimeter, which showed that maximum difference between the values of aspartame and glutamine systems is within +/-10%

  6. Precision dosimetry system suited for low temperature radiation damage experiments

    DEFF Research Database (Denmark)

    Andersen, H.H.; Hanke, C.C.; Sørensen, H.

    1967-01-01

    A calorimetric system for dosimetry on a beam of charged particles is described. The calorimeter works at liquid helium temperature. The total dose may be measured with an accuracy of 0.3%, and the dose per area with 0.4%. No theoretical corrections are needed. © 1967 The American Institute...

  7. The reliability of the systems of personal dosimetry

    International Nuclear Information System (INIS)

    Gullberg, O.; Lindborg, L.

    1982-01-01

    The dosimeters of companies and institutions have been irradiated at various energy and dose equivalent levels. Systematic and coincident errors in measurement are presented. The results show that relatively large systematic errors can be made by both the thermoluminescent and film systems. Various techniques to judging the quality of the dosimetry are discussed. (G.B.)

  8. Pre-clinical evaluation of a diode-based In vivo dosimetry system

    International Nuclear Information System (INIS)

    Trujillo, G.

    1998-01-01

    Diode detector systems are routinely used in a number of departments for the quality assurance of the delivered dose in radiation oncology (1,2,3,4,5). The main advantage of diode detectors for in vivo dosimetry (over TLDs, film dosimetry, ionization chambers) is that results are immediately available in real time, do not need external bias voltage and are more sensitive for the same detection volume than ionization chambers thereby allowing a direct and immediate check of the treatment accuracy. Also, is important to mention that is possible to obtain different accuracy levels. For example, in the case of the measurements designed for evaluating the dosimetric accuracy of a new treatment technique for dose escalation studies the action level should be tighter (the order of 2 % to 4 %, 2 standard deviations) than for routine measurements aiming to discover and correct for errors in the treatment of individual patients (± 5 % - 10 % or to avoid mis administrations (10 % - 15 %). This work describes the calibration method adopted and the evaluation of the accuracy and precision of in vivo dosimetry at Co 60 and 23 MV photon energies. Extensive phantoms measurements were made to determine the influence of physical conditions on the diode response. Parameters investigated included diode linearity, leakage, and measurement reproducibility, as well as the field size, SSD, and angular dependence. the practical consequences of these measurements are reported. There is still some controversy as to whether in vivo (diode) dosemeters are required for routine quality assurance purposes. Our work has shown that while care must be taken in choosing and handling diode detector systems they are able to provide an efficient and effective method of ensuring the dose delivered to the patient during treatment is within acceptable limits. (Author)

  9. Recent progress in application of JAERI alanine/ESR dosimetry system

    International Nuclear Information System (INIS)

    Kojima, T.

    1995-01-01

    Feasibility studies of application of JAERI alanine/ESR dosimetry system were performed on radiotherapy level dosimetry, low dose-rate dosimetry for residual life estimation of cable insulators used in nuclear power facilities, and dose monitoring for electron processing. (author)

  10. EURADOS intercomparison 2006 to harmonise European early warning dosimetry systems

    International Nuclear Information System (INIS)

    Dombrowski, H.; Neumaier, S.; Thompson, I. M. G.; Wissmann, F.

    2009-01-01

    In 2006, the European Radiation Dosimetry (EURADOS) Working Group on Environmental Radiation Monitoring (WG3) organised a third European intercomparison of dosimetry systems operated in national early warning networks. Similar to the intercomparisons in 1999 and 2002, the main aim of this exercise was to support the process of harmonisation of area monitoring in Europe by providing the network operators with basic information on the calibration and performance of their dosimetry systems. In order to characterise these systems, their following basic parameters were investigated: the response to terrestrial and cosmic radiation, the detectors' inherent background, the response at low dose rates, the energy dependence of the response as well as the sensitivity of the detector systems to small changes of the dose rate in a natural environmental radiation field. In the 2006 EURADOS intercomparison, scientists from seven countries participated to study the characteristics of 11 detector systems. All results are presented in terms of the operational quantity ambient dose equivalent, H * (10). The advent of this quantity has caused the development of new detector systems for area monitoring. Some of these new systems participated in a EURADOS intercomparison for the first time. The results are consistently presented together with uncertainties so that statistical effects can be distinguished from real detector features, which improves the interpretation of the results. By using the results of this intercomparison, some detectors were re-calibrated. The achievable improvements concerning harmonisation in dose-rate measurements in the natural environment are discussed. (authors)

  11. Study of a 3D dosimetry system response: ARCCHECK®

    Energy Technology Data Exchange (ETDEWEB)

    Mazer, Amanda C.; Yoriyaz, Hélio, E-mail: amandamazer18@gmail.com, E-mail: hyoriyaz@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Nakandakari, Marcos V.N., E-mail: marcos.sake@gmail.com [Beneficência Portuguesa de São Paulo, SP (Brazil)

    2017-07-01

    Ionizing radiation therapies have improved over the years, becoming more specific for each patient. Thereby as the treatment planning system (TPS) complexities increases, the quality assurance (QA) methods have to be in a constant evolution. One of the techniques that demand great complexity is the Volumetric Modulated Arc Therapy (VMAT). One possible way to VMAT commissioning is using 3D dosimetry systems and recently a new 3D dosimetry system called ArcCheck had been developed and commercialized mainly for VMAT quality assurance. It is water-equivalent and composed by an array of 1386 diodes arranged in a spiral pattern. Since simulation methods, like Monte Carlo method, ensure highly accurate results, MCNP (A General Monte Carlo N-Particle Transport Code System) is totally reliable for problems that involve radiation transport. This work presents a preliminary study of the 3D dosimetry system ArcCheck by developing two computational models in MCNP6. In addition, experimental measures were acquired using the ArcCheck in a Linear Accelerator and then these values were compared with the results obtained by simulations of both models. The comparisons showed good reproducibility. (author)

  12. The Martin Marietta Energy Systems personnel neutron dosimetry program

    International Nuclear Information System (INIS)

    McMahan, K.L.

    1991-01-01

    Martin Marietta Energy Systems, Inc. (Energy Systems), manages five sites for the US Department of Energy. Personnel dosimetry for four of the five sites is coordinated through a Centralized External Dosimetry System (CEDS). These four sites are the Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant (Y-12), the Oak Ridge K-25 Site (K-25), and the Paducah Gaseous Diffusion Plant (PGDP). The fifth Energy Systems site, Portsmouth Gaseous Diffusion Plant, has an independent personnel dosimetry program. The current CEDS personnel neutron dosimeter was first issued in January 1989, after an evaluation and characterization of the dosimeters' response in the workplaces was performed. For the workplace characterization, Energy Systems contracted with Pacific Northwest Laboratory (PNL) to perform neutron measurements at selected locations at ORNL and Y-12. K-25 and PGDP were not included because their neutron radiation fields were similar to others already planned for characterization at ORNL and Y-12. Since the initial characterization, PNL has returned to Oak Ridge twice to perform follow up measurements, and another visit is planned in the near future

  13. Secondary standard dosimetry system with automatic dose/rate calculation

    International Nuclear Information System (INIS)

    Duftschmid, K.E.; Bernhart, J.; Stehno, G.; Klosch, W.

    1980-01-01

    A versatile and automated secondary standard instrument has been designed for quick and accurate dose/rate measurement in a wide range of radiation intensity and quality (between 1 μR and 100 kR; 0.2 nC/kg - 20C/kg) for protection and therapy level dosimetry. The system is based on a series of secondary standard ionization chambers connected to a precision digital current integrator with microprocessor circuitry for data evaluation and control. Input of measurement parameters and calibration factors stored in an exchangeable memory chip provide computation of dose/rate values in the desired units. The ionization chambers provide excellent long-term stability and energy response and can be used with internal check sources to test validity of calibration. The system is a useful tool particularly for daily measurements in a secondary standard dosimetry laboratory or radiation therapy center. (H.K.)

  14. Operational comparison of bubble (super heated drop) dosimetry with routine albedo thermoluminescent dosimetry for a selected group of Pu-238 workers at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Romero, L.L.; Hoffman, J.M.; Foltyn, E.M.; Buhl, T.E.

    1999-01-01

    This paper is an operational study that compares the use of albedo thermoluminescent dosimeters with bubble dosimeters to determine whether bubble dosimeters do provide a useful daily ALARA tool that can yield measurements close to the dose-of-record. A group of workers at the Los Alamos National Laboratory (LANL) working on the Radioactive Thermoelectric Generators (RTG) for the NASA Cassini space mission wore both bubble dosimeters and albedo dosimeters over a period from 1993 through 1996. The bubble dosimeters were issued and read on a daily basis and the data were used as an ALARA tool. The personnel albedo dosimeter was processed on monthly basis and used as the dose-of-record. The results of this study indicated that cumulative bubble dosimetry results agreed with whole-body albedo dosimetry results within about 37% on average. However it was observed that there is a significant variability of the results on an individual basis both month-to-month and from one individual to another

  15. The application of an automated thermoluminescence dosimetry system to environmental γ-dosimetry

    International Nuclear Information System (INIS)

    Jones, A.R.

    1977-07-01

    A personnel monitoring system comprising thermoluminescent dosimeters (TLDs) and an automatic TLD reader has been applied to environmental gamma dosimetry. For this purpose the accuracy of measurement at low exposures (10 to 100 mR) acquired over long periods (3 or 12 months) is important. To improve the accuracy and reliability of the system for this application the following steps were taken: the dosimeters were sensitized by irradiation with γ-rays and annealed while being irradiated with UV light; the sensitivity of each, identified dosimeter was measured and used to correct exposure measurements; the gasketted holders were modified to contain TLDs mounted on two identified plaques. Measurements of linearity, variability (with and without individual calibration) fading and energy dependence are presented. (author)

  16. In Vitro Exposure Systems and Dosimetry Assessment Tools ...

    Science.gov (United States)

    In 2009, the passing of The Family Smoking Prevention and Tobacco Control Act facilitated the establishment of the FDA Center for Tobacco Products (CTP) and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed “modified risk”. On 4-6 April 2016, the Institute for In Vitro Sciences, Inc. (IIVS) convened a workshop conference titled “In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products” to bring together stakeholders representing regulatory agencies, academia, and industry to address the research priorities articulated by the FDA CTP. Specific topics were covered to assess the status of current in vitro smoke and aerosol/vapor exposure systems, as well as the various approaches and challenges to quantifying the complex exposures, in in vitro pulmonary models developed for evaluating adverse pulmonary events resulting from tobacco product exposures. The four core topics covered were, 1) Tobacco Smoke And E-Cigarette Aerosols, 2) Air-Liquid Interface-In Vitro Exposure Systems, 3) Dosimetry Approaches For Particles And Vapors; In Vitro Dosimetry Determinations and 4) Exposure Microenvironment/Physiology Of Cells. The two and a half day workshop included presentations from 20 expert speakers, poster sessions, networking discussions, and breakout sessions which identified key findings and provided recommendations to advance these technologies. Here, we will re

  17. Practice for use of a ceric-cerous sulfate dosimetry system

    International Nuclear Information System (INIS)

    2002-01-01

    This practice covers the preparation, testing, and procedure for using the ceric-cerous sulfate dosimetry system to measure absorbed dose in water when exposed to ionizing radiation. The system consists of a dosimeter and appropriate analytical instrumentation. For simplicity, the system will be referred to as the ceric-cerous system. It is classified as a reference standard dosimetry system (see ISO/ASTM Guide 51261). Ceric-cerous dosimeters are also used as transfer-standard dosimeters or routine dosimeters. This practice describes both the spectrophotometric and the potentiometric readout procedures for the ceric-cerous systems. This practice applies only to g rays, X rays, and high energy electrons. This practice applies provided the following are satisfied: The absorbed-dose range shall be between 5x10 2 and 5x10 4 Gy. The absorbed-dose rate shall be less than 10 6 Gy/s. For radionuclide gamma-ray sources, the initial photon energy shall be greater than 0.6 MeV. For bremsstrahlung photons, the initial energy of the electrons used to produce the bremsstrahlung photons shall be equal to or greater than 2 MeV. For electron beams, the initial electron energy shall be greater than 8 MeV. The irradiation temperature of the dosimeter shall be between 0 and 62 deg C

  18. Reassessment of the atomic bomb radiation dosimetry for Hiroshima and Nagasaki. Dosimetry system 2002. DS02. Volume 1

    International Nuclear Information System (INIS)

    Young, Robert W.; Kerr, George D.

    2005-01-01

    The extensive efforts to review the dosimetry of the atomic-bomb survivors and formulate the new dosimetry system DS02 have been greatly welcomed by the Radiation Effects Research Foundation (RERF). This accomplishment is a fine tribute to the importance of the epidemiological studies being conducted at RERF. No other study is so informative of the effects of radiation on human health. The gracious participation in the RERF program by the atomic-bomb survivors allows us to contribute to the well being of these individuals, and the high quality of the data obtained allows the RERF results to feature so prominently in the formulation of international guidelines for radiation protection. Such a great effort to improve and substantiate the dosimetry would not otherwise have been justified. RERF greatly appreciates the independent work of the U.S. and Japanese Working Groups on the atomic-bomb dosimetry and the review by the Joint Senior Review Group of this overall effort. We are assured that unbiased development of the new dosimetry system will reflect well in its application in the RERF epidemiology study. The documentation included in this report will serve as reference for the many deliberations concluded. The title publications are divided into 2 volumes. This is the first volume. The 8 of the reports in each chapter are indexed individually. (J.P.N.)

  19. Reassessment of the atomic bomb radiation dosimetry for Hiroshima and Nagasaki. Dosimetry system 2002. DS02. Volume 2

    International Nuclear Information System (INIS)

    Young, Robert W.; Kerr, George D.

    2005-01-01

    The extensive efforts to review the dosimetry of the atomic-bomb survivors and formulate the new dosimetry system DS02 have been greatly welcomed by the Radiation Effects Research Foundation (RERF). This accomplishment is a fine tribute to the importance of the epidemiological studies being conducted at RERF. No other study is so informative of the effects of radiation on human health. The gracious participation in the RERF program by the atomic-bomb survivors allows us to contribute to the well being of these individuals, and the high quality of the data obtained allows the RERF results to feature so prominently in the formulation of international guidelines for radiation protection. Such a great effort to improve and substantiate the dosimetry would not otherwise have been justified. RERF greatly appreciates the independent work of the U.S. and Japanese Working Groups on the atomic-bomb dosimetry and the review by the Joint Senior Review Group of this overall effort. We are assured that unbiased development of the new dosimetry system will reflect well in its application in the RERF epidemiology study. The documentation included in this report will serve as reference for the many deliberations concluded. The title publications are divided into 2 volumes. This is the second volume. The 29 of the reports in each chapter are indexed individually. (J.P.N.)

  20. The PADE dosimetry system at the Brokdorf nuclear power station

    International Nuclear Information System (INIS)

    Poetter, Karl-Friedrich; Eckelmann, Joerg; Kuegow, Mario; Spahn, Werner; Franz, Manfred

    2002-01-01

    The PADE program system is used in nuclear power plants for personnel and workplace dosimetry and for managing access to the controlled area. On-line interfaces with existing dose determination systems allow collection, surveillance and evaluation functions to be achieved for person-related and workplace-related dose data. This is managed by means of open, non-proprietary communication of PADE with the computer system coupled via interfaces. In systems communication, PADE is limited to main interventions into outside systems, thus ensuring flexible adaptation to existing systems. As a client-server solution, PADE has been developed on the basis of an ORACLE-8 database; the version presented here runs on a Windows NT server. The system described has been used at the Brokdorf Nuclear Power Station since early 2000 and has so far reliably managed more than one million individual access movements of more than 6 000 persons. It is currently being integrated into a comprehensive plant operations management system. Among other things, PADE offers a considerable development potential for a tentatively planned future standardization of parts of the dosimetry systems in German nuclear power plants and for the joint management of in-plant and official dose data. (orig.) [de

  1. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    Otto, T.

    1999-01-01

    The Dosimetry and Calibration Section fulfils two tasks within CERN's Radiation Protection Group: the Individual Dosimetry Service monitors more than 5000 persons potentially exposed to ionizing radiation on the CERN sites, and the Calibration Laboratory verifies throughout the year, at regular intervals, over 1000 instruments, monitors, and electronic dosimeters used by RP Group. The establishment of a Quality Assurance System for the Individual Dosimetry Service, a requirement of the new Swiss Ordinance for personal dosimetry, put a considerable workload on the section. Together with an external consultant it was decided to identify and then describe the different 'processes' of the routine work performed in the dosimetry service. The resulting Quality Manual was submitted to the Federal Office for Public Health in Bern in autumn. The CERN Individual Dosimetry Service will eventually be officially endorsed after a successful technical test in March 1999. On the technical side, the introduction of an automatic development machine for gamma films was very successful. It processes the dosimetric films without an operator being present, and its built-in regeneration mechanism keeps the concentration of the processing chemicals at a constant level

  2. Fully 3D refraction correction dosimetry system

    International Nuclear Information System (INIS)

    Manjappa, Rakesh; Makki, S Sharath; Kanhirodan, Rajan; Kumar, Rajesh; Vasu, Ram Mohan

    2016-01-01

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  3. Fully 3D refraction correction dosimetry system.

    Science.gov (United States)

    Manjappa, Rakesh; Makki, S Sharath; Kumar, Rajesh; Vasu, Ram Mohan; Kanhirodan, Rajan

    2016-02-21

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  4. Design of a system for neutrons dosimetry

    International Nuclear Information System (INIS)

    Ceron, P.; Rivera, T.; Paredes G, L.; Azorin, J.; Sanchez, A.; Vega C, H. R.

    2014-08-01

    At the present time diverse systems of detection of neutrons exist, as proportional counters based on BF 3 , He 3 and spectrometers of Bonner spheres. However, the cost and the complexity of the implementation of these systems put them far from the reach for dosimetric purposes. For these reasons a system of neutrons detection composed by a medium paraffin moderator that forms a 4π (spheres) arrangement and of several couples of thermoluminescent dosimeters TLD 600/TLD 700. The response of the system presents a minor repeatability to 5% in several assays when being irradiated with a 239 PuBe source and a deviation of 13.8% in the Tl readings of four different spheres. The calibration factor of the system with regard to the neutrons source which was of 56.2 p Sv/nc also was calculated. These detectors will be used as passive monitors of photoneutrons in a radiotherapy room with lineal accelerator of high energy. (Author)

  5. The SIEVERT system for aircrew Dosimetry

    International Nuclear Information System (INIS)

    Clairand, I.; Fuller, N.; Bottollier-Depois, J. F.; Trompier, F.

    2009-01-01

    Flight personnel are likely to receive an effective dose of several mSv in 1 y of professional activity. In France, the order of 8 December 2003 requires airline companies to monitor the exposure of their flight personnel. This is why public authorities have made the SIEVERT system (a system for evaluating exposure to cosmic radiation in air transport), available to French airlines, to evaluate doses. The SIEVERT system has been operational for use by airlines since the start of summer 2001. So far, more than 2.5 million flights have been processed at the request of more than 30 French airlines. Furthermore, this system was opened to the public in March 2002 (http://www.sievert-system.org), so that every passenger can calculate the dose received during a flight. (authors)

  6. Practice for use of a dichromate dosimetry system

    International Nuclear Information System (INIS)

    2003-01-01

    This practice covers the preparation, testing, and procedure for using the acidic aqueous silver dichromate dosimetry system to measure absorbed dose in water when exposed to ionizing radiation. The system consists of a dosimeter and appropriate analytical instrumentation. For simplicity, the system will be referred to as the dichromate system. It is classified as a reference standard dosimetry system (see ISO/ASTM Guide 51261). This practice describes the spectrophotometric analysis procedures for the dichromate system. This practice applies only to γ-rays, x-rays/ bremsstrahlung, and high energy electrons. This practice applies provided the following conditions are satisfied: the absorbed dose range is from 2x10 3 to 5x10 4 Gy; the absorbed dose rate does not exceed 600 Gy/pulse (12.5 pulses per second), or does not exceed an equivalent dose rate of 7.5 kGy/s from continuous sources; for radionuclide gamma-ray sources, the initial photon energy shall be greater than 0.6 MeV. For bremsstrahlung photons, the initial energy of the electrons used to produce the bremsstrahlung photons shall be equal to or greater than 2 MeV. For electron beams, the initial electron energy shall be greater than 8 MeV; the irradiation temperature of the dosimeter shall be above 0 deg C and should be below 80 deg C

  7. GENII (Generation II): The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-09-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs.

  8. GENII [Generation II]: The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project

    International Nuclear Information System (INIS)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-09-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs

  9. GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 2, Users' manual: Hanford Environmental Dosimetry Upgrade Project

    International Nuclear Information System (INIS)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-11-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. This second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The first volume describes the theoretical considerations of the system. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 27 refs., 17 figs., 23 tabs

  10. Quality control through dosimetry at a contract radiation processing facility

    International Nuclear Information System (INIS)

    Du Plessis, T.A.; Roediger, A.H.A.

    1985-01-01

    Reliable dosimetry procedures constitute a very important part of process control and quality assurance at a contract gamma radiation processing facility that caters for a large variety of different radiation applications. The choice, calibration and routine intercalibration of the dosimetry systems employed form the basis of a sound dosimetry policy in radiation processing. With the dosimetric procedures established, detailed dosimetric mapping of the irradiator upon commissioning (and whenever source modifications take place) is carried out to determine the radiation processing characteristics and peformance of the plant. Having established the irradiator parameters, routine dosimetry procedures, being part of the overall quality control measures, are employed. In addition to routine dosimetry, independent monitoring of routine dosimetry is performed on a bi-monthly basis and the results indicate a variation of better than 3%. On an annaul basis the dosimetry systems are intercalibrated through at least one primary standard dosimetry laboratory and to date a variation of better than 5% has been experienced. The company also participates in the Pilot Dose Assurance Service of the International Atomic Energy Agency, using the alanine/ESR dosimetry system. Routine calibration of the instrumentation employed is carried out on a regular basis. Detailed permanent records are compiled on all dosimetric and instrumentation calibrations, and the routine dosimetry employed at the plant. Certificates indicating the measured absorbed radiation doses are issued on request and in many cases are used for the dosimetric release of sterilized medical and pharmaceutical products. These procedures, used by Iso-Ster at its industrial gamma radiation facility, as well as the experience built up over a number of years using radiation dosimetry for process control and quality assurance are discussed. (author)

  11. Dosimetry of an animal irradiation system

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Nelson M.; Funari, Ana P.; Miranda, Jurandir T.; Napolitano, Celia M.; Goncalves, Josemary A.C.; Bueno, Carmen C.; Mathor, Monica B., E-mail: nelsonnininho@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Radiation therapy uses ionizing radiation for cancer treatment, but its effectiveness may be limited by the consequent appearance of radiodermatitis. This problem may present several degrees: the highest among them is radionecrosis. Therefore, a model of study for the animal irradiation system (AIS) was built, generating radionecrosis on rat backs. The AIS is comprised by: a) a shield between the {sup 60}Co irradiator metallic guide and the animal immobilizer (AI), with holes exposing the rat skin; b) a shield on the AI posterior part and (c) the AIS angle. The doses were measured with alanine pellets in seven positions (two external and five internal) and different heights, in axial planes along the AI, and irradiated with 85 Gy. The similarity in the geometry of the AIs made it possible to relate the doses of positions 1-7 with the same height among the AISs. The AISs equidistance to the source allowed simultaneous animal exposure. Minimizing the shielding and maximizing the angles among the AISs provided average doses almost identical in position 1. A small variation among the mean doses for each of the AISs enabled to replace them by the average doses of the three AISs at position 1. Shields allowed the attenuation of the uncertainties in the alanine pellet in the AI, reduction of the exposure time without compromising rat security and the rise of the dose in measurement positions 1 and 2. The maximization of the angles among the AISs reduced the shielding secondary radiation contribution. (author)

  12. Dosimetry of an animal irradiation system

    International Nuclear Information System (INIS)

    Alves, Nelson M.; Funari, Ana P.; Miranda, Jurandir T.; Napolitano, Celia M.; Goncalves, Josemary A.C.; Bueno, Carmen C.; Mathor, Monica B.

    2015-01-01

    Radiation therapy uses ionizing radiation for cancer treatment, but its effectiveness may be limited by the consequent appearance of radiodermatitis. This problem may present several degrees: the highest among them is radionecrosis. Therefore, a model of study for the animal irradiation system (AIS) was built, generating radionecrosis on rat backs. The AIS is comprised by: a) a shield between the 60 Co irradiator metallic guide and the animal immobilizer (AI), with holes exposing the rat skin; b) a shield on the AI posterior part and (c) the AIS angle. The doses were measured with alanine pellets in seven positions (two external and five internal) and different heights, in axial planes along the AI, and irradiated with 85 Gy. The similarity in the geometry of the AIs made it possible to relate the doses of positions 1-7 with the same height among the AISs. The AISs equidistance to the source allowed simultaneous animal exposure. Minimizing the shielding and maximizing the angles among the AISs provided average doses almost identical in position 1. A small variation among the mean doses for each of the AISs enabled to replace them by the average doses of the three AISs at position 1. Shields allowed the attenuation of the uncertainties in the alanine pellet in the AI, reduction of the exposure time without compromising rat security and the rise of the dose in measurement positions 1 and 2. The maximization of the angles among the AISs reduced the shielding secondary radiation contribution. (author)

  13. Dosimetry audit of radiotherapy treatment planning systems

    International Nuclear Information System (INIS)

    Bulski, Wojciech; Chelminski, Krzysztof; Rostkowska, Joanna

    2015-01-01

    In radiotherapy Treatment Planning Systems (TPS) various calculation algorithms are used. The accuracy of dose calculations has to be verified. Numerous phantom types, detectors and measurement methodologies are proposed to verify the TPS calculations with dosimetric measurements. A heterogeneous slab phantom has been designed within a Coordinated Research Project (CRP) of the IAEA. The heterogeneous phantom was developed in the frame of the IAEA CRP. The phantom consists of frame slabs made with polystyrene and exchangeable inhomogeneity slabs equivalent to bone or lung tissue. Special inserts allow to position thermoluminescent dosimeters (TLD) capsules within the polystyrene slabs below the bone or lung equivalent slabs and also within the lung equivalent material. Additionally, there are inserts that allow to position films or ionisation chamber in the phantom. Ten Polish radiotherapy centres (of 30 in total) were audited during on-site visits. Six different TPSs and five calculation algorithms were examined in the presence of inhomogeneities. Generally, most of the results from TLD were within 5 % tolerance. Differences between doses calculated by TPSs and measured with TLD did not exceed 4 % for bone and polystyrene equivalent materials. Under the lung equivalent material, on the beam axis the differences were lower than 5 %, whereas inside the lung equivalent material, off the beam axis, in some cases they were of around 7 %. The TLD results were confirmed with the ionisation chamber measurements. The comparison results of the calculations and the measurements allow to detect limitations of TPS calculation algorithms. The audits performed with the use of heterogeneous phantom and TLD seem to be an effective tool for detecting the limitations in the TPS performance or beam configuration errors at audited radiotherapy departments. (authors)

  14. Dosimetry audit of radiotherapy treatment planning systems.

    Science.gov (United States)

    Bulski, Wojciech; Chełmiński, Krzysztof; Rostkowska, Joanna

    2015-07-01

    In radiotherapy Treatment Planning Systems (TPS) various calculation algorithms are used. The accuracy of dose calculations has to be verified. Numerous phantom types, detectors and measurement methodologies are proposed to verify the TPS calculations with dosimetric measurements. A heterogeneous slab phantom has been designed within a Coordinated Research Project (CRP) of the IAEA. The heterogeneous phantom was developed in the frame of the IAEA CRP. The phantom consists of frame slabs made with polystyrene and exchangeable inhomogeneity slabs equivalent to bone or lung tissue. Special inserts allow to position thermoluminescent dosimeters (TLD) capsules within the polystyrene slabs below the bone or lung equivalent slabs and also within the lung equivalent material. Additionally, there are inserts that allow to position films or ionisation chamber in the phantom. Ten Polish radiotherapy centres (of 30 in total) were audited during on-site visits. Six different TPSs and five calculation algorithms were examined in the presence of inhomogeneities. Generally, most of the results from TLD were within 5 % tolerance. Differences between doses calculated by TPSs and measured with TLD did not exceed 4 % for bone and polystyrene equivalent materials. Under the lung equivalent material, on the beam axis the differences were lower than 5 %, whereas inside the lung equivalent material, off the beam axis, in some cases they were of around 7 %. The TLD results were confirmed with the ionisation chamber measurements. The comparison results of the calculations and the measurements allow to detect limitations of TPS calculation algorithms. The audits performed with the use of heterogeneous phantom and TLD seem to be an effective tool for detecting the limitations in the TPS performance or beam configuration errors at audited radiotherapy departments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. The Radiotherapy Dosimetry Audit System In the UK

    International Nuclear Information System (INIS)

    Thwaites, D.I.

    1999-01-01

    Two national radiotherapy dosimetry intercomparisons have been earned out in the UK, involving all radiotherapy institutes. The first was concerned with megavoltage photon beams and looked at beam calibration and simple three-field planned distributions in a geometric phantom. The intercomparisons were carried out by an independent intercomparison physicist visiting each department in turn and making measurements with ion chambers, following a fixed protocol. The beam calibration intercomparison was earned out on every 60 C o beam and every MV x-ray beam, whilst the planned comparisons were carried out on one beam only. The plans included effects of wedges, oblique incidence and inhomogeneities. The study was unfunded and took a significant time (1988-1991) to cover the 65 or so centres. It was followed up by a national electron dosimetry intercomparison which was fended (Department of Health) and which ran from 1994-1996. This audited three electron beam energies in each centre (depth dose, beam energy, dose calibration) and also included a follow-up of the original photon beam intercomparison. In general these studies showed good consistency of dosimetry across the UK centres, with mean (measured/locally stated) doses being close to unity and standard deviations of the distributions of values being approx. 1.5 and 1% for photons, 1.8% for electrons for beam calibration and 2.5-3.5% for the planned multi-beam situations. 97-100% of measurements were within the pre-set 3% tolerance for beam calibration and around 90% of the measurements within a pre-set 5% tolerance for planned situations. The studies did highlight some areas where increased on Q A could provide benefits. In particular the photon intercomparison discovered one 60 C o unit mis calibration which led to national recommendations for the implementation of Quality Systems in radiotherapy departments

  16. Neutron dosimetry in containment of a pressurized water reactor utilizing the Panasonic UD-802 dosimetry system

    International Nuclear Information System (INIS)

    Kralick, S.C.

    1984-01-01

    The Panasonic UD-802 dosimeter was evaluated as a potential neutron dosimeter for use in containment of a PWR. The Panasonic UD-802 dosimeter, although designed as a beta and gamma dosimeter, is also sensitive to neutrons. UD-802 dosimeters were mounted on polyethylene phantoms and irradiated to known doses at selected locations in containment. The known neutron dose equivalents were determined based on remmeter dose rate measurements and stay times. The thermoluminescent response of the dosimeters and the known neutron dose equivalents were used to obtain a calibration factor at each location. The average calibration factor was 3.7 (unit of dosimeter response per mrem) and all calibration factors were within +-30% of this mean value. The dosimeter distance from the phantom was found to have minimal effect on the response but the system was directionally dependent, necessitating a correction in the calibration factor. The minimum significant dosimeter response was determined independent of any calibration factor. The minimum significant response of the UD-802 to neutrons is a function of the corresponding gamma exposure rate. It is concluded that the Panasonic UD-802 dosimeter can be used for neutron dosimetry in PWR containment

  17. Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; Manger, Ryan P [ORNL

    2013-08-01

    This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.

  18. Present status and expected progress in radiation processing dosimetry

    DEFF Research Database (Denmark)

    Kovács, A.; Miller, A.

    2004-01-01

    The paper describes the present status of radiation processing dosimetry including the methods used most widely in gamma- and electron processing as well as the new methods under development or introduction. The recent trends with respect to calibrationof routine dosimetry systems as well...

  19. Multisphere system neutron spectrometry applied to dosimetry for the personnel

    International Nuclear Information System (INIS)

    Allinei, P.G.

    1992-01-01

    Neutron dosimetry is a necessity that must be dealt with in order to ensure efficient monitoring of all personnel regarding radiology safety. Dosimetric variables are difficult to measure for they are dependent on complex functions evolving with the energy of neutrons, which forces us to determine their energetic distribution. We have chosen to use the multisphere system associated to an unfolding code in order to perform neutron spectrometry, our purpose being to determine these dosimetric variables. The initial stage consists in modifying a research code, the code SOHO, in order to adapt it to our needs. The resulting new version was subsequently tested and proven successful by means of computerized simulations. Afterwards, we used reference dosimetric and spectral beams to confirm the position results previously obtained. At the time of this test, the code SOHO yielded results coherent with the theoretical values, and even allowed the quantity of radiation diffused by the laboratory structures to be estimated. The final part of this study consists in applying the previously perfected technique to authentic situations. The results thus obtained are compared to those obtained by conventional methods in order to reveal the interest of neutron spectrometry used for dosimetry of the personnel

  20. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS)

    Energy Technology Data Exchange (ETDEWEB)

    Bland, Geoffrey [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)

    2016-06-30

    The use of small unmanned aircraft systems (sUAS) with miniature sensor systems for atmospheric research is an important capability to develop. The Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) project, lead by Dr. Gijs de Boer of the Cooperative Institute for Research in Environmental Sciences (CIRES- a partnership of NOAA and CU-Boulder), is a significant milestone in realizing this new potential. This project has clearly demonstrated that the concept of sUAS utilization is valid, and miniature instrumentation can be used to further our understanding of the atmospheric boundary layer in the arctic.

  1. Analysis of quality control tests done by the Canadian power utilities on their external dosimetry systems (June 1988 to May 1993)

    International Nuclear Information System (INIS)

    Butt, K.A.; Poirier, G.S.

    1995-09-01

    The Canadian nuclear power utilities, Hydro-Quebec, New Brunswick Electric Power Commission and Ontario Hydro, use thermoluminescent dosimetry systems to perform their own external beta/gamma dosimetry. In order to help ensure that these systems perform satisfactorily, they are subjected to routine quality control testing by their parent organizations. The test results for the period of June 1988 to May 1993 have been analyzed, at the Atomic Energy Control Board (AECB), using the pass criterion which was originally agreed upon the organizations involved and which is described in section 2.3 of this document. The present analysis offers an indication of the performance of the different sites which operate such a service. Comparisons are made each site's performance during the period June 1985 to May 1988 which has been summarized previously (INFO--0301). Finally, recommendations are made in the hope that they will help the organizations in refining their dosimetry. (author) 1 ref., 7 tabs

  2. Analysis of quality control tests done by the Canadian power utilities on their external dosimetry systems (June 1985 to May 1988)

    International Nuclear Information System (INIS)

    Poirier, G.S.

    1989-04-01

    The Canadian nuclear power utilities, Hydro Quebec, New Brunswick Electric Power Commission and Ontario Hydro, use thermoluminescent dosimetry systems to perform their own external beta/gamma dosimetry. In order to help ensure that these systems perform satisfactorily, they are subjected to routine quality control testing by their parent organizations. The test results for the period of June 1985 to May 1988 have been analyzed, at the AECB, using the pass criterion which was originally agreed upon by the organizations involved. The present analysis offers a comparison of the performance of the different sites which operate such a service. Finally, recommendations are made in the hope that they will help the organizations in refining their dosimetry

  3. Evaluation of a novel 4D in vivo dosimetry system

    International Nuclear Information System (INIS)

    Cherpak, A.; Ding, W.; Hallil, A.; Cygler, J. E.

    2009-01-01

    A prototype of a new 4D in vivo dosimetry system capable of simultaneous real-time position monitoring and dose measurement has been developed. The radiation positioning system (RADPOS) is controlled by a computer and combines two technologies: MOSFET radiation detector coupled with an electromagnetic positioning device. Special software has been developed that allows sampling position and dose either manually or automatically in user-defined time intervals. Preliminary tests of the new device include a dosimetric evaluation of the detector in 60 Co, 6 MV, and 18 MV beams and measurements of spatial position stability and accuracy. In addition, the effect of metals and other materials on the performance of the positioning system has been investigated. Results show that the RADPOS system can measure in-air dose profiles that agree, on average, within 3%-5% of diode measurements for the energies tested. The response of the detector is isotropic within 1.6% (1 SD) with a maximum deviation of ±4.0% over 360 deg. The maximum variation in the calibration coefficient over field sizes from 6x6 to 25x25 cm 2 was 2.3% for RADPOS probe with the high sensitivity MOSFET and 4.6% for the probe with the standard sensitivity MOSFET. Of the materials tested, only aluminum, lead, and brass caused shifts in the RADPOS read position. The magnitude of the shift varied between materials and size of the material sample. Nonmagnetic stainless steel (Grade 304) caused a distortion of less than 2 mm when placed within 10 mm of the detector; therefore, it can provide a reasonable alternative to other metals if required. The results of the preliminary tests indicate that the device can be used for in vivo dosimetry in 60 Co and high-energy beams from linear accelerators.

  4. Innovative Telemonitoring System for Cardiology: From Science to Routine Operation

    Science.gov (United States)

    Kastner, P.; Morak, J.; Modre, R.; Kollmann, A.; Ebner, C.; Fruhwald, FM.; Schreier, G.

    2010-01-01

    Objective Results of the Austrian MOBITEL (MOBIle phone based TELemonitoring for heart failure patients) trial indicate that home-based telemonitoring improves outcome of chronic heart failure (CHF) patients and reduces both frequency and duration of hospitalizations. Based on lessons learned, we assessed the weak points to clear the way for routine operations. Methods We analyzed the system with respect to recommendations of the ESC Guidelines and experiences gained throughout the trial to identify potential improvements. The following components have been identified: a patient terminal with highest usability, integrated way to document drug-intake and well-being, and automated event detection for worsening of CHF. As a consequence the system was extended by Near Field Communication (NFC) technology and by an event management tool. Results Usability evaluation with 30 adults (14f, median 51y. IQR[45-65]) showed that 21 (8f) were able to immediately operate the system after reading a step-by-step manual. Eight (6f) needed one time demonstration and one man (80y) failed to operate the blood pressure meter. Routine operation of the revised system started in March 2009. Within 9 months, 15 patients (4f, median 74y. IQR[71-83], all NYHA-III) transmitted 17,149 items. 43 events were detected because of body weight gain of more then 2kg within 2 days. 49 therapy adjustments were documented. Three patients stopped using the system, two (1f) because of non-compliance and one (m, 82y) because of death. Overall, the rate of adherence to daily data transfer was 78%. Conclusion First results confirm the applicability of the revised telemonitoring system in routine operation. PMID:23616835

  5. Implementation of high-dose chemical dosimetry for industrial facilities

    International Nuclear Information System (INIS)

    Conceicao, Cirilo Cezar Sant'Anna da

    2006-01-01

    The purpose of this work is the implementation of methodology for high dose measurements using chemical dosimeters in liquid phase, traceable to the international metrology system, and make available in the country, the standard of high-dose to industrial irradiation facilities and research irradiators, trough the quality program with comparative measurements and direct use of the standard dosimeters in routine. The use of these low cost dosimetry systems in industrial irradiation facilities, assists to the certification requirements and it can reduce the costs with dosimetry for approximately 20% of the total dosimetry costs, using these systems in routine measurements and validation process, largely substituting the imported PMMA dosimeters, among others. (author)

  6. An application of artificial neural intelligence for personal dose assessment using a multi-area OSL dosimetry system

    International Nuclear Information System (INIS)

    Lee, S.-Y.Sang-Yoon.; Kim, B.-H.Bong-Hwan; Lee, K.J.Kun Jai

    2001-01-01

    Significant advances have been made in recent years to improve measurement technology and performance of phosphor materials in the fields of optically stimulated luminescence (OSL) dosimetry. Pulsed and continuous wave OSL studies recently carried out on α-Al 2 O 3 : C have shown that the material seems to be the most promising for routine application of OSL for dosimetric purposes. The main objective of the study is to propose a new personal dosimetry system using α-Al 2 O 3 : C by taking advantage of its optical properties and energy dependencies. In the process of the study, a new dose assessment algorithm was developed using artificial neural networks in hopes of achieving a higher degree of accuracy and precision in personal OSL dosimetry system. The original hypothesis of this work is that the spectral information of an X- and γ-ray fields may be obtained by the analysis of the response of a multi-element system. In this study, a feedforward neural network using the error back-propagation method with Bayesian optimization was applied for the response unfolding procedure. The validation of the proposed algorithm was investigated by unfolding the 10 measured responses of α-Al 2 O 3 : C for arbitrarily mixed photon fields which range from 20 to 662 keV

  7. Simple optical readout for ethanol-chlorobenzene dosimetry system

    International Nuclear Information System (INIS)

    Ilijas, B.; Razem, D.

    1999-01-01

    Optical readout of the ethanol-chlorobenzene (ECB) or Dvornik dosimetry system is based on the development of the coloured secondary complex of ferric thiocyanate which has a maximum absorption at 485 nm. The applicability of a rugged, hand-held, battery powered filter colorimeter operating at 480 nm has been investigated as a reader for this purpose. This simple reader performs very well within absorbance one displaying an excellent linearity of absorbance with the concentration of Cl - ions. It is shown that by choosing the appropriate dilution factor when preparing the secondary complex solution the entire useful dose range of the dosimeter up to 2 MGy can be covered. The applicability of this reader to some other liquid chemical dosimeters is also discussed. (author)

  8. Simple optical readout for ethanol - chlorobenzene dosimetry system

    International Nuclear Information System (INIS)

    Ilijas, B.; Razem, D.

    1999-01-01

    Optical readout of the ethanol-chlorobenzene (ECB or Dvornik dosimetry system) is based on the development of coloured secondary complex of ferric thiocyanate which has a maximum absorption at 485 nm. The applicability of a rugged, hand-held, battery powered filter colorimeter operating at 480 nm has been investigated as a reader for this purpose. This simple reader performs very well within absorbance displaying an excellent linearity of absorbance with the concentration of Cl - ions. It was shown, by choosing the appropriate dilution factor when preparing the secondary complex solution, the entire useful dose range of the dosimeter up to 2 MGy can be covered. The applicability of the same reader to some other liquid chemical dosimeters is also discussed. (author)

  9. ALGORITHM VERIFICATION FOR A TLD PERSONAL DOSIMETRY SYSTEM

    International Nuclear Information System (INIS)

    SHAHEIN, A.; SOLIMAN, H.A.; MAGHRABY, A.

    2008-01-01

    Dose algorithms are used in thermoluminescence personnel dosimetry for the interpretation of the dosimeter response in terms of equivalent dose. In the present study, an automated Harshaw 6600 reader was vigorously tested prior to the use for dose calculation algorithm according to the standard established by the US Department of Energy Laboratory Accreditation Program (DOELAP). Also, manual Harshaw 4500 reader was used along with the ICRU slab phantom and the RANDO phantom in experimentally determining the photon personal doses in terms of deep dose; Hp(10), shallow dose; Hp(0.07), and eye lens dose; Hp(3). Also, a Monte Carlo simulation program (VMC-dc) free code was used to simulate RANDO phantom irradiation process. The accuracy of the automated system lies well within DOELAP tolerance limits in all test categories

  10. Iron-based radiochromic systems for UV dosimetry applications

    Science.gov (United States)

    Lee, Hannah J.; Alqathami, Mamdooh; Blencowe, Anton; Ibbott, Geoffrey

    2018-01-01

    Phototherapy treatment using ultraviolet (UV) A and B light sources has long existed as a treatment option for various skin conditions. Quality control for phototherapy treatment recommended by the British Association of Dermatologists and British Photodermatology Group generally focused on instrumentation-based dosimetry measurements. The purpose of this study was to present an alternative, easily prepared dosimeter system for the measurement of UV dose and as a simple quality assurance technique for phototherapy treatments. Five different UVA-sensitive radiochromic dosimeter formulations were investigated and responded with a measurable and visible optical change both in solution and in gel form. Iron(III) reduction reaction formulations were found to be more sensitive to UVA compared to iron(II) oxidation formulations. One iron(III) reduction formulation was found to be especially promising due to its sensitivity to UVA dose, ease of production, and linear response up to a saturation point.

  11. Alanine-EPR dosimetry system. Why we like it?

    International Nuclear Information System (INIS)

    Stuglik, Z.

    2007-01-01

    To develop a new high-dose dosimeter we should: (1) to find material with radiation effect monotonically (if possible linearly) dependent on an absorbed dose; (2) to investigate its dosimetric characteristics (sensitivity, dose range, repeatability, accuracy, post-effects); (3) to evaluate economical parameters of new method (cost and availability of dosimetric material, cost of analytical instrument and its services); (4) to evaluate operational features of new dosimeter (sensitivity for environmental conditions, time from irradiation to the read-out); (5) to perform a calibration curve, i.e. functional dependence between radiation effect (dosimetric signal) and absorbed dose. On the base of this very stable stable ammonium radical (SAR) generated in crystalline α-alanine was established in the INCT as an alanine-EPR dosimetry system. Presented lecture describes the main features of this dosimeter

  12. Interactive and automated systems for nuclear track measurements with applications to fast neutron dosimetry

    International Nuclear Information System (INIS)

    Roberts, J.H.; Gold, R.; McNeece, J.P.; Preston, C.C.; Ruddy, F.H.

    1983-12-01

    Interactive and automatic track measuring systems have been developed primarily for fast neutron dosimetry in and around reactors. The interactive system is used for proton recoil measurements in nuclear research emulsions and the automatic systems for counting fission fragment tracks in Muscovite mica. The status of these systems, along with illustrative applications, are presented, particularly with regard to their relationship to neutron personnel dosimetry. 16 references, 12 figures

  13. Thermoluminescence dosimetry in quality imaging in CR mammography systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaona, E.; Franco E, J.G. [UAM-Xochimilco, 04960 Mexico D.F. (Mexico); Azorin N, J. [UAM-Iztapalapa, 09340 Mexico D.F. (Mexico); Diaz G, J.A.I. [CICATA, Unidad Legaria, Av. Legaria 694, 11599 mexico D.F. (Mexico); Arreola, M. [Department of Radiology, Shands Hospital at UF, PO Box 100374, Gainesville, FL 32610-0374 (United States)

    2006-07-01

    The aim of this work is to estimate the average glandular dose with Thermoluminescence Dosimetry (TLD) and comparison with quality imaging in CR mammography. For measuring dose, FDA and ACR use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, Full Field Digital Mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one CR mammography system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium fluoro halide. We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated x-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose that overcomes 3.0 mGy and it doesn't improve the image quality and dose to the breast will be excessive. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement. (Author)

  14. Thermoluminescence dosimetry in quality imaging in CR mammography systems

    International Nuclear Information System (INIS)

    Gaona, E.; Franco E, J.G.; Azorin N, J.; Diaz G, J.A.I.; Arreola, M.

    2006-01-01

    The aim of this work is to estimate the average glandular dose with Thermoluminescence Dosimetry (TLD) and comparison with quality imaging in CR mammography. For measuring dose, FDA and ACR use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, Full Field Digital Mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one CR mammography system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium fluoro halide. We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated x-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose that overcomes 3.0 mGy and it doesn't improve the image quality and dose to the breast will be excessive. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement. (Author)

  15. A multichannel pulse acquisition system for reactor dosimetry data

    International Nuclear Information System (INIS)

    Talpalariu, C.; Talpalariu, J.; Matei, C.

    1999-01-01

    Simultaneous measurements of many dosimetry parameters require a complex instrumentation equipment, computers and interfaces. For a very large frequency range (10 -3 to 10 6 Hz) scale and mode selection (period or frequency), a big problem in multichannel pulse measurement is that of dead time, precision and response time. The dead time for normal scale selection and for data reading or writing for every channel can be as long as the active measuring time and response time for very large frequency variation can be very long, too. To solve this problem we have designed for a simultaneous 40 channel measurement, a pulse counter sampling system and an expert operating system. Based on a 486 PC and a 10 channel Timer/Counter Card, the hardware performance of the system was improved by an expert program for early rate change detection and rate prediction. The rate value was determined from optimizing between current value, medium and long time values and shorter response time for transient signals. Significant features and advantages of the system are the following: a marked reduction in panel complexity, as many of the indicators and controls can be replaced by an interactive CRT keyboard, a reduction in the instrumentation complexity, failure detection and diagnosis, system performance monitoring, intelligent alarm handling. The system was designed from high accuracy measurements on 40 simultaneous channels fed from field radiation detectors like ionizing chambers, fission chambers and photomultipliers.. The operating system is using an auto-organizing data memory for both computing the current value and for long-term management of data, so that only the status and significant values of the input are recorded. Consequently, the algorithms of decision, search and data processing are simplified and limited to the necessary memory, although enough memory is preserved for accurate representation of the dosimetry curves. The utilization of an inferential algorithm for the

  16. Alanine-EPR dosimetry system for high industrial as well radiotherapeutic dose measurement

    International Nuclear Information System (INIS)

    Dobrovodsky, J.; Bukovjan, J.

    2005-01-01

    Slovak Institute of Metrology is developing new metrology standard for high doses, based on the alanine-EPR as a reference dosimetry system. A Bruker e-scan EPR analyser developed specifically for alanine dosimetry has improved stability of EPR measurement, especially at lower dose range. The standard e-scan system provides sensitivity below 1 Gray. After further improvement of the system and lowering of dose determination expanded uncertainty down below 1 %, its utilisation for radiotherapy field is expected (authors)

  17. SSDL personel dosimetry system: migration from a client - server system into a web-based system

    International Nuclear Information System (INIS)

    Maizura Ibrahim; Rosnah Shariff; Ahmad Bazlie Abdul Kadir; John Konsoh Sangau; Mohd Amin Sharifuldin Salleh; Taiman Kadni; Noriah Mod Ali

    2007-01-01

    Personnel Dosimetry System has been used by the Secondary Standard Dosimetry Laboratory (SSDL), Nuclear Malaysia since ten years ago. The system is a computerized database system with a client-server concept. This system has been used by Film Badge Laboratory, SSDL to record details of clients, calculation of Film Badge dosage, management of radiation workers data's, generating of dosage report, retrieval of statistical reports regarding film badge usage for the purpose of reporting to monitoring bodies such as Atomic Energy Licensing Board (AELB), Ministry of Health and others. But, due to technical problems that frequently occurs, the system is going to be replaced by a newly developed web- based system called e-SSDL. This paper describe the problems that regularly occurs in the previous system, explains how the process of replacing the client-server system with a web-based system is done and the differences between the previous and current system. This paper will also present details architecture of the new system and the new process introduced in processing film badges. (Author)

  18. Applications of gel dosimetry

    International Nuclear Information System (INIS)

    Ibbott, Geoffrey S

    2004-01-01

    Gel dosimetry has been examined as a clinical dosimeter since the 1950s. During the last two decades, however, a rapid increase in the number of investigators has been seen, and the body of knowledge regarding gel dosimetry has expanded considerably. Gel dosimetry is still considered a research project, and the introduction of this tool into clinical use is proceeding slowly. This paper will review the characteristics of gel dosimetry that make it desirable for clinical use, the postulated and demonstrated applications of gel dosimetry, and some complications, set-backs, and failures that have contributed to the slow introduction into routine clinical use

  19. Dosimetry. Standard practice for dosimetry in gamma irradiation facilities for food and non-food processing

    International Nuclear Information System (INIS)

    2008-01-01

    This Ghana Standard outlines the installation qualification program for an irradiator and the dosimetry procedures to be followed during operational qualification, performance qualification and routine processing in facilities that process food and non-food with gamma rays. This is to ensure that the product has been treated with predetermined range of absorbed dose. It is not intended for use in X-ray and electron beam facilities and therefore dosimetry systems in such facilities are not covered

  20. TL dosimetry for quality control of CR mammography imaging systems

    Science.gov (United States)

    Gaona, E.; Nieto, J. A.; Góngora, J. A. I. D.; Arreola, M.; Enríquez, J. G. F.

    The aim of this work is to estimate the average glandular dose with thermoluminescent (TL) dosimetry and comparison with quality imaging in computed radiography (CR) mammography. For a measuring dose, the Food and Drug Administration (FDA) and the American College of Radiology (ACR) use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, full field digital mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium flourohalideE We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated X-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose greater than 3.0 mGy without demonstrating improved image quality. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement for X-rays with a HVL (0.35-0.38 mmAl) and kVp (24-26) used in quality control procedures with ACR Mammography Accreditation Phantom.

  1. Irradiation process validation in the new conveyor system installed at PISI: special dosimetry

    International Nuclear Information System (INIS)

    Pantano, Barbara P.; Docters, Andrea S.

    2009-01-01

    Semi Industrial Irradiation Plant (PISI) is a multipurpose facility which uses 60 Co sources to treat different products with numerous purposes, such as sterilization of medical devices, pharmaceutical and veterinarian products; control of pathogenic microorganisms, shelf-life extension and insect disinfestation of food, among others. In order to achieve the desired effect, the product is carried inside the irradiation chamber by means of a conveyor system, and it is exposed to radiation following a pre-established path. The recent installation of a new conveyor system at PISI demands the execution of a thorough validation programme. The scope of this presentation is to describe the dose mapping tasks that will be performed in order to characterize the irradiator and its new conveyor system with respect to distribution and variability of dose, complying with international standards on good irradiation practices. Information about the distribution and variability of dose in a product irradiated under defined conditions will allow the obtaining of process parameters which will conform the process specifications in future routine irradiations. The initial stages of the Validation Programme are the Installation Qualification, the Operational Qualification (OQ) and the Performance Qualification (PQ). To accomplish the IQ diverse tests are being carried out at PISI in order to verify that the system has been installed and is operating according to its technical specifications. Both OQ and PQ require dose mapping on simulated and real product, respectively. Dose mapping consists on placing dosimeters on a process load of homogeneous material -under certain irradiator and process parameters- according to a three-dimensional pre-established placement pattern. Since the replacement of the conveyor system introduces a significant modification in the source-to-product geometry, therefore in dose distribution, there is no reference dosimetry data available, so a more exhaustive

  2. Dosimetry audit simulation of treatment planning system in multicenters radiotherapy

    Science.gov (United States)

    Kasmuri, S.; Pawiro, S. A.

    2017-07-01

    Treatment Planning System (TPS) is an important modality that determines radiotherapy outcome. TPS requires input data obtained through commissioning and the potentially error occurred. Error in this stage may result in the systematic error. The aim of this study to verify the TPS dosimetry to know deviation range between calculated and measurement dose. This study used CIRS phantom 002LFC representing the human thorax and simulated all external beam radiotherapy stages. The phantom was scanned using CT Scanner and planned 8 test cases that were similar to those in clinical practice situation were made, tested in four radiotherapy centers. Dose measurement using 0.6 cc ionization chamber. The results of this study showed that generally, deviation of all test cases in four centers was within agreement criteria with average deviation about -0.17±1.59 %, -1.64±1.92 %, 0.34±1.34 % and 0.13±1.81 %. The conclusion of this study was all TPS involved in this study showed good performance. The superposition algorithm showed rather poor performance than either analytic anisotropic algorithm (AAA) and convolution algorithm with average deviation about -1.64±1.92 %, -0.17±1.59 % and -0.27±1.51 % respectively.

  3. The calibration procedures in the Studsvik standardized personnel dosimetry system

    International Nuclear Information System (INIS)

    Widell, C.O.

    1978-01-01

    Every large nuclear installation in Sweden reads its own personnel TLDs. In order to supervise this decentralized reading of dose meters, the TLD readers are connected by telephone lines to a central computer for dose registration. This computer is used both for registering the personnel doses and for checking the TLD readers. This checking is performed by the use of pre-irradiated calibration dose meters which are always used when a batch of personnel dose meters are read. The pre-irradiated dose meters are either irradiated using 137 Cs to various doses up to 100mSv(10000mrem) or using a 90 Sr source in a reference dose irradiator to a dose equal to 3mSv(300mrem) from a 137 Cs source. The results from the reading of the pre-irradiated dose meters are processed by the computer and a calibration factor is calculated. The calibration factor is automatically used to calculate the doses to the personnel TLD's. However, if the calibration factor deviates by more than 10% from the previously used factor, this fact is shown to the operator - who then has to decide what calibration factor is going to be used. This calibration and supervisory procedure together with the safety interlocks in the TLD readers has resulted in a very reliable and accurate dosimetry system. (author)

  4. The calibration method for personal dosimetry system in photon and neutron radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Trousil, J; Plichta, J [CSOD, Prague (Czech Republic); Nikodemova, D [SOD, Bratislava (Slovakia)

    1996-12-31

    The type testing of dosimetry system was performed with standard photon radiation fields within the energy range 15 keV to 1.25 MeV and electron radiation fields within the range 0.2 MeV to 3 MeV. For type testing of neutron dosimeters {sup 252}Cf and {sup 241}Am-Be radionuclide neutron sources was used, as well as a 14 MeV neutron generator. The neutron sources moderated by various moderating and absorbing materials was also used. The routine calibration of individual photon dosemeters was carried out using a {sup 137}Cs calibration source in the air kerma quality in the dose range 0.2 mGy to 6 Gy. The type testing of neutron dosemeters was performed in collaboration with Nueherberg laboratory on neutron generator with neutron energies -.57; 1.0;; 5.3 and 15.1 MeV. The fading and angular dependence testing was also included in the tests of both dosemeter systems. (J.K.).

  5. Dosimetry and operation of irradiation facilities

    International Nuclear Information System (INIS)

    Vidal, P.E.

    1985-01-01

    The industrial use of ionizing radiation has required, from the very first, the measurement of delivered and absorbed doses; hence the necessity of providing dosimetric systems. Laboratories, scientists, industries and potential equipment manufacturers have all collaborated in this new field of activity. Dosimetric intercomparisons have been made by each industry at their own facilities and in collaboration with specialists, national organizations and the IAEA. Dosimetry has become a way of ensuring that treatment by irradiation has been carried out in accordance with the rules. It has become in effect assurance of quality. Routine dosimetry should determine a maximum and minimum dose. Numerous factors play a part in dosimetry. Industry is currently in possession of routine dosimetric systems that are sufficiently accurate, fairly easy to handle and reasonable in cost, thereby satisfying all the requirements of industry and the need for control. Dosimetry is important in the process of marketing irradiated products. The operator of an industrial irradiation facility bases his dosimetry on comparison with reference systems. Research aimed at simplifying the practice of routine dosimetry should be continued. New physical and chemical techniques will be incorporated into systems already in use. The introduction of microcomputers into the operation of radiation facilities has increased the value of dosimetry and made the conditions of treatment more widespread. Stress should be placed on research in several areas apart from reference systems, for example: dosimetric systems at temperatures from +8 deg. C to -45 deg. C, over the dose range 100 krad to a little more than 1 Mrad, liquids and fluidized solids carried at high speed through ducts, thin-film liquids circulating at a high flow rate, and various other problems. (author)

  6. Czech results at criticality dosimetry intercomparison 2002.

    Science.gov (United States)

    Frantisek, Spurný; Jaroslav, Trousil

    2004-01-01

    Two criticality dosimetry systems were tested by Czech participants during the intercomparison held in Valduc, France, June 2002. The first consisted of the thermoluminescent detectors (TLDs) (Al-P glasses) and Si-diodes as passive neutron dosemeters. Second, it was studied to what extent the individual dosemeters used in the Czech routine personal dosimetry service can give a reliable estimation of criticality accident exposure. It was found that the first system furnishes quite reliable estimation of accidental doses. For routine individual dosimetry system, no important problems were encountered in the case of photon dosemeters (TLDs, film badge). For etched track detectors in contact with the 232Th or 235U-Al alloy, the track density saturation for the spark counting method limits the upper dose at approximately 1 Gy for neutrons with the energy >1 MeV.

  7. External audit in radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Thwaites, D.I.; Western General Hospital, Edinburgh

    1996-01-01

    Quality audit forms an essential part of any comprehensive quality assurance programme. This is true in radiotherapy generally and in specific areas such as radiotherapy dosimetry. Quality audit can independently test the effectiveness of the quality system and in so doing can identify problem areas and minimize their possible consequences. Some general points concerning quality audit applied to radiotherapy are followed by specific discussion of its practical role in radiotherapy dosimetry, following its evolution from dosimetric intercomparison exercises to routine measurement-based on-going audit in the various developing audit networks both in the UK and internationally. Specific examples of methods and results are given from some of these, including the Scottish+ audit group. Quality audit in radiotherapy dosimetry is now well proven and participation by individual centres is strongly recommended. Similar audit approaches are to be encouraged in other areas of the radiotherapy process. (author)

  8. Various dedicated imaging systems for routine nuclear medical applications

    International Nuclear Information System (INIS)

    Bela Kari; Tamas Gyorke; Erno Mako; Laszlo Nagy; Jozsef Turak; Oszkar Partos

    2004-01-01

    The most essential problems of nuclear medical imaging are resolution, signal/noise ratio (S/N) and sensitivity. Nowadays, the vast majority of the Anger system gamma cameras in clinical application are using parallel projection. The main problem of this projection method is the highly dependence of the image quality on the distance from the collimator surface as well as any improvement in the resolution with the distance -i.e. reduction of image blur- significantly reduces sensitivity. The aim of our research and development work was to create imaging geometry, collimator and detector constructions optimized to particular organs (brain, heart, thyroid), where it is simultaneously possible to increase the resolution and sensitivity. Main concept of the imaging geometry construction is based on the size, location and shape of a particular organ. In case of brain SPECT imaging a multiple head (4 heads in cylinder symmetric approximation) arrangement with extra high intrinsic resolution (<2.5 mm) dedicated detector design provide feasible solution for routine clinical application. The imaging system was essentially designed for Tc-99m and I-123 isotopes. The application field can be easily extended for functional small animal research and new born baby studies. Very positive feedbacks were received from both technical (stability and reproducibility of the technical parameters) and clinical sides in the past 2 years routine applications. A unique, novel conception ultra compact dedicated dual head SPECT system has been created only for 2D, 3D nuclear cardiac applications for Tc-99m and T1-201 labeled radio-pharmaceuticals. The two rectangular detectors (with <2.6 mm intrinsic resolution) are mounted fix in 90 degree geometry and move inside the special formed gantry arrangement. The unique and unusual gantry is designed to keep the detector heads as close as possible to the patient, while the patient is not exposed by any moving part. This special construction also

  9. Use of novel fibre-coupled radioluminescence and RADPOS dosimetry systems for total scatter factor measurements in small fields

    DEFF Research Database (Denmark)

    Ploquin, N.; Kertzscher, Gustavo; Vandervoort, E.

    2015-01-01

    A dosimetry system based on Al2O3:C radioluminescence (RL), and RADPOS, a novel 4D dosimetry system using microMOSFETs, were used to measure total scatter factors, (Sc,p)fclindet, for the CyberKnife robotic radiosugery system. New Monte Carlo calculated correction factors are presented and applied...

  10. Topics in radiation dosimetry radiation dosimetry

    CERN Document Server

    1972-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  11. Dosimetry for electron beam sterilization

    International Nuclear Information System (INIS)

    Miller, A.

    2007-01-01

    According to ISO 11137-1 (sect 4.3.4) dosimetry used in the development, validation and routine control of the sterilization process shall have measurement traceability to national or international standards and shall have a known level of uncertainty. It can only be obtained through calibration of the dosimeters. In presented lecture different types of dosimeter systems for electron beams (calorimeters, radiochromic film dosimeters, alanine / EPR) and their calibration are described

  12. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    Hoefert, M.; Nielsen, M.

    1996-01-01

    In 1995 both the Individual Dosimetry and Calibration Sections worked under the condition of a status quo and concentrated fully on the routine part of their work. Nevertheless, the machine for printing the bar code which will be glued onto the film holder and hence identify the people when entering into high radiation areas was put into operation and most of the holders were equipped with the new identification. As far as the Calibration Section is concerned the project of the new source control system that is realized by the Technical Support Section was somewhat accelerated

  13. The NIM alanine-EPR dosimetry system: its application in NDAS programme and others

    International Nuclear Information System (INIS)

    Gao Jun-Cheng

    1999-01-01

    In 1983, National Institute of Metrology (NIM) began to study alanine-EPR dosimetry system. From 1988 on, the system has been used as a transfer standard to launch into the National Dose Assurance Service (NDAS) programme for cobalt-60 facilities in China. In this paper, the eleven years implementation of NDAS programme are presented by statistics. In 1991, under an IAEA coordinated research programme, NIM had studied to extend the range of the system to therapy level. In recent years, the NIM in cooperation with other institutes has been developing film-alanine dosimeter for electron beam dosimetry. (author)

  14. Calibration of a MOSFET detection system for 6-MV in vivo dosimetry

    International Nuclear Information System (INIS)

    Scalchi, Paolo; Francescon, P.

    1998-01-01

    irradiation is in agreement with TLD dosimetry within 5%. Ionization chamber and MOSFET midplane dosimetry in inhomogeneous phantoms are in agreement within 2%. Conclusion: MOSFET characteristics are suitable for the in vivo dosimetry relevant to 6-MV treatments, both in normal and TBI setup. The TBI midplane dosimetry using MOSFETs is valid also in the presence of the lung, which is the most critical organ, and allows verifying that calculation of the lung attenuator thicknesses based only on the density is not correct. Our MOSFET dosimetry system can be used also to determine the surface dose by using the water-equivalent depth and extrapolation methods. This procedure depends on the field size used

  15. Patient dosimetry quality assurance program with a commerical diode system

    International Nuclear Information System (INIS)

    Lee, P.C.; Sawicka, J.M.; Glasgow, G.P.

    1994-01-01

    The purpose was to evaluate a commercial silicone diode dosimeter for a patient dosimetry quality assurance program. The diode dosimeter was calibrated against an ion chamber, and percentage depth dose, linearity, anisotrophy, virtual source position, and field size factor studies were performed. Correction factors for lack of full scatter medium in the diode entrance and exit dose measurements were acquired. Dosimetry equations were proposed for calculation of dose delivered at isocenter. Diode dose accuracy and reproducibility were tested on phantom and on four patients. A patient dosimetry quality assurance program based on diode-measured dose was instituted and patient dose data were collected. Diode measured percentage depth dose and field factors agreed to within 3% with those measured with an ion chamber. The diode exhibited less than 1.7% angular dose anisotrophy and less than 0.5% nonlinearity up to 4 Gy. Diode dose measurements in phantom showed that the calculated doses differed from the prescribed dose by less than 1.%; the diode exhibited a daily dose reproducibility of better than 0.2%. On four selected patients, the measured dose reproducibility was 1.5%; the average calculated doses were all within ± 7% of the prescribed doses. For 33 of 40 patients treated with a 6 MW beam, measured doses were within ± 7% of the prescribed doses. For 11 out of 12 patients, a second repeat measurements yielded doses within ± 7% of the prescribed doses. The proposed diode-based patient dosimetry quality assurance program with dose tolerance at ± 7% is simple and feasible. It is capable of detecting certain serious treatment errors such as incorrect daily dose greater than 7%, incorrect wedge use, incorrect photon energy and patient setup errors involving some incorrect source-to-surface-distance vs. source-to-axis-distance treatments. 13 refs., 5 figs., 5 tabs

  16. Dosimetry; La dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Le Couteulx, I.; Apretna, D.; Beaugerie, M.F. [Electricite de France (EDF), 75 - Paris (France)] [and others

    2003-07-01

    Eight articles treat the dosimetry. Two articles evaluate the radiation doses in specific cases, dosimetry of patients in radiodiagnosis, three articles are devoted to detectors (neutrons and x and gamma radiations) and a computer code to build up the dosimetry of an accident due to an external exposure. (N.C.)

  17. Development a high-resolution radiation dosimetry system based on Fricke solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vedelago, J. [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina); Mattea, F. [Universidad Nacional de Cordoba, Facultad de Ciencias Quimicas, Departamento de Quimica Organica, Ciudad Universitaria, 5000 Cordoba (Argentina); Valente, M., E-mail: josevedelago@gmail.com [Instituto de Fisica E. Gaviola, Oficina 102 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2014-08-15

    Due to the growing complexity of modern medical procedures involving the use of ionizing radiation, dosimetry by non-conventional techniques is one of the research areas in the field of greatest interest nowadays. Tissue-equivalent high-resolution dosimetry systems capable of attaining continuous dose mapping are required. In this scenario, Fricke gel dosimetry is a very promising option for in-phantom dose measurements in complex radiation techniques. Implementation of this technique requires dedicated instruments capable of measuring and performing the immediate in situ analysis of the acquired data at the radiation facility. The versatility of Fricke gel dosimetry in different applications depending on the chemical and isotopic composition of the dosimeter extends its application to different high performance conventional and non-conventional radiation procedures involving diverse types of radiation treatments and also radiation diagnosis procedures. This work presents an integral dosimetry system, based on Fricke gel solutions and their analysis by optical techniques, aiming for an increase in the precision on dose determinations. The chemical synthesis and dosimeter preparation were accomplished at LIIFAMIRx facilities, following the procedures and protocols described in previous works. Additionally, specific instrumentation for optical sample analysis was completely designed and constructed at LIIFAMIRx facilities. The main outcome of this work was the development of a methodology that improves the integral dose determination performance by the pre-irradiation of Fricke gel dosimeters. (author)

  18. Improvement of JCDS, a computational dosimetry system in JAEA for neutron capture therapy

    International Nuclear Information System (INIS)

    Kumada, Hiroaki; Yamamoto, Kazuyoshi; Matsumura, Akira; Yamamoto, Tetsuya; Nakagawa, Yoshinobu; Kageji, Teruyoshi

    2006-01-01

    JCDS, a computational dosimetry system for neutron capture therapy, was developed by Japan Atomic Energy Agency. The system has been sophisticated to facilitate dose planning so far. In dosimetry with JCDS for BNCT clinical trials at JRR-4, several absorbed doses and the dose distributions are determined by a voxel model consisted of 2x2x2mm 3 voxel cells. By using the detailed voxel model, accuracy of the dosimetry can be improved. Clinical trials for melanoma and head-and-neck cancer as well as brain tumor were started using hot version of JCDS in 2005. JCDS is also being of improved so as to enable a JCDS application to dosimetry by PHITS as well as dosimetry by MCNP. By using PHITS, total doses of a patient by a combined modality therapy, for example a combination of BNCT and proton therapy, can be estimated consistently. Moreover, PET images can be adopted in combination with CT and MRI images as a farsighted approach. JCDS became able to identify target regions by using the PET values. (author)

  19. Development a high-resolution radiation dosimetry system based on Fricke solutions

    International Nuclear Information System (INIS)

    Vedelago, J.; Mattea, F.; Valente, M.

    2014-08-01

    Due to the growing complexity of modern medical procedures involving the use of ionizing radiation, dosimetry by non-conventional techniques is one of the research areas in the field of greatest interest nowadays. Tissue-equivalent high-resolution dosimetry systems capable of attaining continuous dose mapping are required. In this scenario, Fricke gel dosimetry is a very promising option for in-phantom dose measurements in complex radiation techniques. Implementation of this technique requires dedicated instruments capable of measuring and performing the immediate in situ analysis of the acquired data at the radiation facility. The versatility of Fricke gel dosimetry in different applications depending on the chemical and isotopic composition of the dosimeter extends its application to different high performance conventional and non-conventional radiation procedures involving diverse types of radiation treatments and also radiation diagnosis procedures. This work presents an integral dosimetry system, based on Fricke gel solutions and their analysis by optical techniques, aiming for an increase in the precision on dose determinations. The chemical synthesis and dosimeter preparation were accomplished at LIIFAMIRx facilities, following the procedures and protocols described in previous works. Additionally, specific instrumentation for optical sample analysis was completely designed and constructed at LIIFAMIRx facilities. The main outcome of this work was the development of a methodology that improves the integral dose determination performance by the pre-irradiation of Fricke gel dosimeters. (author)

  20. The SISERI system: an information system for occupational dosimetry registration

    International Nuclear Information System (INIS)

    Scanff, P.; Crescini, D.; Vial, E.

    2013-01-01

    The SISERI information system was developed and brought into use in order to meet a workplace health objective aimed at reducing and controlling exposure of workers to ionising radiation in France. Dosimetric monitoring of workers in France annually concerns 280.000 people who are exposed to ionising radiation as part of their work. This system centralizes, verifies and preserves all dosimetric data relating to each worker in accordance with the confidentiality required by the personal nature of this information. The SISERI data are made available to occupational doctors and experts in radiation protection to assist them in monitoring exposure of workers. The data are also intended for statistical processing with the aim of optimizing radiation protection for workers. They may also be used for epidemiological studies. The system has been gradually developed since it came into service in February 2005 and is now operating normally so that it is possible to guarantee that all doses received by each worker, anywhere on French territory, are recorded. If this system can be extended outside French borders it will be easier to monitor workers who have to travel to different European countries. The slides of the presentation have been added at the end of the paper. (authors)

  1. Management system of personnel dosimetry based on ISO 9001:2008 for medical diagnostic

    International Nuclear Information System (INIS)

    Queiroz, Carlos E.B.; Gerber Junior, Walmoli; Jahn, Tiago R.; Hahn, Tiago T.; Fontana, Thiago S.; Bolzan, Vagner

    2013-01-01

    MDose is a computer management system of personal dosimetry in diagnostic radiology services physician based on ISO 9001:9008 management system. According to Brazilian law all service radiology should implement a control of personal dosimetry in addition to radiation doses greater than 1.5 mSv/year service should do research of high dose, which is to identify the causes the resulting dose increase professional. This work is based on the use of the PDCA cycle in a JAVA software developed as a management method in the analysis of high doses in order to promote systematic and continuous improvement within the organization of radiological protection of workers

  2. Integrating the DLD dosimetry system into the Almaraz NPP Corporative Database

    International Nuclear Information System (INIS)

    Gonzalez Crego, E.; Martin Lopez-Suevos, C.

    1996-01-01

    The article discusses the experience acquired during the integration of a new MGP Instruments DLD Dosimetry System into the Almaraz NPP corporative database and general communications network, following a client-server philosophy and taking into account the computer standards of the Plant. The most important results obtained are: Integration of DLD dosimetry information into corporative databases, permitting the use of new applications Sharing of existing personnel information with the DLD dosimetry application, thereby avoiding the redundant work of introducing data and improving the quality of the information. Facilitation of maintenance, both software and hardware, of the DLD system. Maximum explotation, from the computer point of view, of the initial investment. Adaptation of the application to the applicable legislation. (Author)

  3. Year 2000 compliance concerns with the ISA Thermoluminescent Dosimetry Data Processing (TL-DP) software system

    Energy Technology Data Exchange (ETDEWEB)

    Saviz, K.

    1998-05-26

    The year 2000 is rapidly approaching, and there is a good chance that computer systems that utilize two digit year dates will experience problems in retrieval of date information. The ISA Thermoluminescent Dosimetry Data Processing (TL-DP) software and computer system has been reviewed for Year 2000 compliance issues.

  4. Year 2000 compliance concerns with the ISA Thermoluminescent Dosimetry Data Processing (TL-DP) software system

    International Nuclear Information System (INIS)

    Saviz, K.

    1998-01-01

    The year 2000 is rapidly approaching, and there is a good chance that computer systems that utilize two digit year dates will experience problems in retrieval of date information. The ISA Thermoluminescent Dosimetry Data Processing (TL-DP) software and computer system has been reviewed for Year 2000 compliance issues

  5. Experiences and performance of the Harshaw dosimetry system at two major processing centres

    International Nuclear Information System (INIS)

    Tawil, R.A.; Olhalber, T.; Rathbone, B.

    1996-01-01

    The installations, operating practice, dose algorithms and results and maintenance experience at two major dosimetry processing centres are described. System selection considerations and a comprehensive quality programme are described in the light of the publication of testing requirements by various dosimetry regulatory organisations. Reported information from Siemens Dosimetry Services comprises their selection of dosemeters and processing equipment including service history, a description of their dose computation algorithm, and detailed results of their testing against DOELAP standards. Battelle Pacific Northwest Laboratories (PNL) provides a description of their dosemeters and equipment with service history; in addition, a discussion of their new neural network approach to a dose computation algorithm and test results from that algorithm are presented. (Author)

  6. ASSESSMENT OF UNCERTAINTY IN THE RADIATION DOSES FOR THE TECHA RIVER DOSIMETRY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Degteva, M. O.; Anspaugh, L. R.; Shagina, N. B.

    2009-10-23

    In order to provide more accurate and precise estimates of individual dose (and thus more precise estimates of radiation risk) for the members of the ETRC, a new dosimetric calculation system, the Techa River Dosimetry System-2009 (TRDS-2009) has been prepared. The deterministic version of the improved dosimetry system TRDS-2009D was basically completed in April 2009. Recent developments in evaluation of dose-response models in light of uncertain dose have highlighted the importance of different types of uncertainties in the development of individual dose estimates. These include uncertain parameters that may be either shared or unshared within the dosimetric cohort, and also the nature of the type of uncertainty as aleatory or epistemic and either classical or Berkson. This report identifies the nature of the various input parameters and calculational methods incorporated in the Techa River Dosimetry System (based on the TRDS-2009D implementation), with the intention of preparing a stochastic version to estimate the uncertainties in the dose estimates. This report reviews the equations, databases, and input parameters, and then identifies the author’s interpretations of their general nature. It presents the approach selected so that the stochastic, Monte-Carlo, implementation of the dosimetry System - TRDS-2009MC - will provide useful information regarding the uncertainties of the doses.

  7. GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 1, Conceptual representation

    International Nuclear Information System (INIS)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-12-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes code logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 72 refs., 15 figs., 34 tabs

  8. GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 1, Conceptual representation

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-12-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes code logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 72 refs., 15 figs., 34 tabs.

  9. The U.S. Department of Energy Laboratory Accreditation Program for testing the performance of extremity dosimetry systems: a summary of the program status

    International Nuclear Information System (INIS)

    Cummings, F.M.; Carlson, R.D.; Gesell, T.F.; Loesch, R.M.

    1992-01-01

    In 1986, The U.S. Department of Energy (DOE) implemented a program to test the performance of its personnel whole-body dosimetry systems. This program was the DOE Laboratory Accreditation Program (DOELAP). The program parallels the performance testing program specified in the American National Standard for Dosimetry - Personnel Dosimetry Performance -Criteria for Testing (ANSI N13.11-1983), but also addresses the additional dosimetry needs of DOE facilities. As an extension of the whole-body performance testing program, the DOE is now developing a program to test the performance of personnel extremity dosimetry systems. The draft DOE standard for testing extremity dosimetry systems is much less complex than the whole-body dosimetry standard and reflects the limitations imposed on extremity dosimetry by dosimeter design and irradiation geometry. A pilot performance test session has been conducted to evaluate the proposed performance-testing standard. (author)

  10. Type tests to the automatic thermoluminescent dosimetry system acquired by the CPHR for personal dosimetry

    International Nuclear Information System (INIS)

    Molina P, D.; Pernas S, R.; Martinez G, A.

    2006-01-01

    The CPHR individual monitoring service acquired an automatic RADOS TLD system to improve its capacities to satisfy the increasing needs of their national customers. The TLD system consists of: two automatic TLD reader, model DOSACUS, a TLD irradiator and personal dosimeters card including slide and holders. The dosimeters were composed by this personal dosimeters card and LiF:Mg,Cu,P (model GR-200) detectors. These readers provide to detectors a constant temperature readout cycle using hot nitrogen gas. In order to evaluate the performance characteristics of the system, different performance tests recommended by the IEC 1066 standard were carried out. Important dosimetric characteristics evaluated were batch homogeneity, reproducibility, detection threshold, energy dependence, residual signal and fading. The results of the tests showed good performance characteristics of the system. (Author)

  11. Type tests to the automatic system of thermoluminescent dosimetry acquired by the CPHR for personnel dosimetry

    International Nuclear Information System (INIS)

    Molina P, D.; Pernas S, R.

    2005-01-01

    The CPHR individual monitoring service acquired an automatic RADOS TLD system to improve its capacities to satisfy the increasing needs of their national customers. The TLD system consists of: two automatic TLD reader, model DOSACUS, a TLD irradiator and personal dosimeters card including slide and holders. The dosimeters were composed by this personal dosimeters card and LiF: Mg,Cu,P (model GR-200) detectors. These readers provide to detectors a constant temperature readout cycle using hot nitrogen gas. In order to evaluate the performance characteristics of the system, different performance tests recommended by the IEC 1066 standard were carried out. Important dosimetric characteristics evaluated were batch homogeneity, reproducibility, detection threshold, energy dependence, residual signal and fading. The results of the tests showed good performance characteristics of the system. (Author)

  12. Introduction of a deformable x-ray CT polymer gel dosimetry system

    Science.gov (United States)

    Maynard, E.; Heath, E.; Hilts, M.; Jirasek, A.

    2018-04-01

    This study introduces the first 3D deformable dosimetry system based on x-ray computed tomography (CT) polymer gel dosimetry and establishes the setup reproducibility, deformation characteristics and dose response of the system. A N-isopropylacrylamide (NIPAM)-based gel formulation optimized for x-ray CT gel dosimetry was used, with a latex balloon serving as the deformable container and low-density polyethylene and polyvinyl alcohol providing additional oxygen barrier. Deformable gels were irradiated with a 6 MV calibration pattern to determine dosimetric response and a dosimetrically uniform plan to determine the spatial uniformity of the response. Wax beads were added to each gel as fiducial markers to track the deformation and setup of the gel dosimeters. From positions of the beads on CT images the setup reproducibility and the limits and reproducibility of gel deformation were determined. Comparison of gel measurements with Monte Carlo dose calculations found excellent dosimetric accuracy, comparable to that of an established non-deformable dosimetry system, with a mean dose discrepancy of 1.5% in the low-dose gradient region and a gamma pass rate of 97.9% using a 3%/3 mm criterion. The deformable dosimeter also showed good overall spatial dose uniformity throughout the dosimeter with some discrepancies within 20 mm of the edge of the container. Tracking of the beads within the dosimeter found that sub-millimetre setup accuracy is achievable with this system. The dosimeter was able to deform and relax when externally compressed by up to 30 mm without sustaining any permanent damage. Internal deformations in 3D produced average marker movements of up to 12 mm along the direction of compression. These deformations were also shown to be reproducible over 100 consecutive deformations. This work has established several important characteristics of a new deformable dosimetry system which shows promise for future clinical applications, including the

  13. Development of a three-dimensional radiation dosimetry system

    International Nuclear Information System (INIS)

    Bero, M.A.

    2001-12-01

    The direct non-destructive measurement of the radiation absorbed dose in three dimensions is considered to be technically difficult. Accurate determination of the spatial distribution of absorbed dose plays an important role in many applications particularly in medicine. In radiotherapy computer calculations are frequently used to estimate three-dimensional dose distributions in complex geometry, hence a practical dosimetry system able to provide three-dimensional (3-D) integrated measurements is highly desirable for verifying such dose predictions. Magnetic Resonance Imaging (MRI) has been used to visualise 3-D dose distributions, inside two different detector materials, namely the ferrous sulphate gel (Fricke gel) and the polymer gel system. Each of these procedures has its own drawbacks and limitations, and this research project sought to find improvements and alternatives to overcome these problems. Work on the Fricke gel led to an improved preparation procedure employing gelatin gel whose lower melting point reduces the possibility of dissolved oxygen loss. The role of each component was clarified which led to the omission of all unnecessary chemicals such as the sodium chloride and benzoic acid. Initially MRI was the only 3-D readout technique available, however simple relaxometry was used to characterise the detector quantitatively with each modification before employing an MRI scanner to obtain images. Optimisation of the active constituents saves time and effort, and minimises the cost of equipment as well as materials. A serious drawback of the Fricke gel is ion diffusion, which causes blurring of the recorded spatial distribution and much effort was given to attempts to reduce this. However it was concluded that it is possible to slow down ion diffusion but at the cost of detector sensitivity. Therefore the best way of dealing with this problem is by introducing a fast readout technique so that the dose distribution can be recorded before serious

  14. Small Field Dosimetry Using Optical-Fiber Radioluminescence and Radpos Dosimetry Systems

    DEFF Research Database (Denmark)

    Ploquin, N.; Kertzscher Schwencke, Gustavo Adolfo Vladimir; Vandervoort, E.

    2012-01-01

    as an electromagnetic positioning sensor and a μMOSFET for dose measurement. Materials and Methods: Relative output factors (ROF) for Cyberknife cones ranging from 5 to 60 mm were measured using RL and RADPOS systems. For comparison, measurements were also carried out using a mobileMOSFET system (BEST Medical Canada......) and GafChromic films EBT1 and EBT2 (ISP, USA). The MOSFET detectors in both mobileMOSFET and RADPOS systems were standard sensitivity μMOSFETs (TN502RDM), with a standard bias applied during irradiation. The measurements were performed in a solid water phantom at the depth of 1.5 cm and SSD = 78.5 cm....... Detector readings for each cone were normalized to those for 60 mm cone. For MOSFET detectors in both mobileMOSFET and RADPOS systems, the corrections proposed by Francescon et al. (J Appl Clin Med Phys, 10 (1), 14752, 2009) were applied. Since FWHM of our Cyberknife source is 2.4mm, the μMOSFET...

  15. Space dosimetry measurements in the stratosphere using different active and passive dosimetry systems

    International Nuclear Information System (INIS)

    Zabori, Balazs; Hirn, Attila; Deme, Sandor; Apathy, Istvan; Csoke, Antal; Pazmandi, Tamas; Szanto, Peter

    2016-01-01

    Several measurements have been performed on the cosmic radiation field from the surface of the Earth up to the maximum altitudes of research aeroplanes. However, there is only limited information about that between 15 and 30 km altitudes. In order to study the radiation environment in the stratosphere, an experiment was built by students from Hungarian universities that flew on board the BEXUS (Balloon Experiments for University Students) stratospheric balloon in Northern Sweden, from the ESRANGE Space Center. The main technical goals of the experiment were to test at the first time the TRITEL 3D silicon detector telescope system in close to space conditions and to develop a balloon technology platform for advanced cosmic radiation and dosimetric measurements. The main scientific goals were to give an assessment of the cosmic radiation field at the altitude of the BEXUS balloons, to use the TRITEL system to determine dosimetric and radiation quantities during the balloon flight and to intercompare the TRITEL and Pille results to provide a correction factor for the Pille measurements. To fulfil the scientific and technological objectives, several different dosimeter systems were included in the experiment: an advanced version of the TRITEL silicon detector telescope, Geiger-Mueller (GM) counters and Pille thermoluminescent dosimeters. The float altitude of the BEXUS balloon was ∼28.6 km; the total flight time was ∼4 h. Measurement data from the active instruments were received in real time by the ground team during the mission. There were no failures in the operation of the system; everything worked as expected. This article presents the scientific goals and results in detail. From the TRITEL measurements, the linear energy transfer spectra, the average quality factor of the cosmic radiation as well as the absorbed dose and the dose equivalent were determined. Estimations for the uncertainty in the TRITEL measurements were given. The deposited energy spectra

  16. Design and realization of a dosimetry and radiology system for nuclear power plants

    International Nuclear Information System (INIS)

    Capelle, M.

    Computer-assisted acquisition of radiation exposure data and related tasks was established at an early stage at Biblis nuclear power plant of RWE. Due to the positive experience with this system a similar, more sophisticated system has been developed for the nuclear power plants at Grundremmingen, Muelheim-Kaerlich and Kalkar. This system, DORA (Dosimetry and radiological monitoring) is described in the article. (RW) [de

  17. Demonstration of the renal venous system at routine nephroangiography

    International Nuclear Information System (INIS)

    Nilsson, P.E.; Aspelin, P.; Holtas, S.

    1985-01-01

    The demonstration of renal veins during routine nephroangiography was retrospectively investigated and blindly scored in 60 patients. Three different types of contrast media were used: one high-osmolar ionic monomeric (metrozoate) and two low-osmolar, the non-ionic monomeric (metrizamide) and the ionic monoacidic dimeric (ioxalate). The renal veins and the inferior vena cava were significantly better and more often demonstrated when ioxaglate was used compared with metrizoate and metrizmide. There was no significant difference between metrizoate and metrizamide. Following semiselective renal artery injection, the main renal veins were demonstrated with a diagnostically acceptable quality with ioxaglate in 76 per cent, with metrizamide in 40 per cent and with metrizoate in 29 per cent. On selective renal artery injection the demonstration of renal veins increased to 85 per cent with ioxaglate and remained unchanged with metrizmide (38%) and metrizoate(26%). Semiselective or selective nephroangiography with ioxaglate at an ordinary dose was in most patients sufficient to allow evaluation of renal vein involvement in disease, rendering high dose selective nephroangiography or selective nephrophlebography unnecessary. A slower diffusion rate of ioxaglate compared with metrizoate and metrizamide is considered to be the major explanation for the better demonstration of the renal veins. (orig.)

  18. Recommendations for secure initialization routines in operating systems

    OpenAIRE

    Dodge, Catherine A.

    2004-01-01

    Approved for public release; distribution in unlimited. While a necessity of all operating systems, the code that initializes a system can be notoriously difficult to understand. This thesis explores the most common architectures used for bringing an operating system to its initial state, once the operating system gains control from the boot loader. Specifically, the ways in which the OpenBSD and Linux operating systems handle initialization are dissected. With this understanding, a set ...

  19. Characterizing a pulse-resolved dosimetry system for complex radiotherapy beams using organic scintillators

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Ottosson, Rickard; Lindvold, Lars René

    2011-01-01

    A fast-readout dosimetry system based on fibre-coupled organic scintillators has been developed for the purpose of conducting point measurements of absorbed dose in radiotherapy beams involving high spatial and temporal dose gradients. The system measures the dose for each linac radiation pulse w...... and quality assurance of complex radiotherapy treatments.......A fast-readout dosimetry system based on fibre-coupled organic scintillators has been developed for the purpose of conducting point measurements of absorbed dose in radiotherapy beams involving high spatial and temporal dose gradients. The system measures the dose for each linac radiation pulse....... No significant differences between measurements and simulations were observed. The temporal resolution of the system was demonstrated by measuring dose per pulse, beam start-up transients and the quality factor for 6 MV. The precision of dose per pulse measurements was within 2.7% (1 SD) for a 10 cm × 10 cm...

  20. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Boyd, A.W.; Chadwick, K.H.; McDonald, J.C.; Miller, A.

    1989-01-01

    Radiation processing is a relatively young industry with broad applications and considerable commercial success. Dosimetry provides an independent and effective way of developing and controlling many industrial processes. In the sterilization of medical devices and in food irradiation, where the radiation treatment impacts directly on public health, the measurements of dose provide the official means of regulating and approving its use. In this respect, dosimetry provides the operator with a means of characterizing the facility, of proving that products are treated within acceptable dose limits and of controlling the routine operation. This book presents an up-to-date review of the theory, data and measurement techniques for radiation processing dosimetry in a practical and useful way. It is hoped that this book will lead to improved measurement procedures, more accurate and precise dosimetry and a greater appreciation of the necessity of dosimetry for radiation processing. (author)

  1. Criticality accident dosimetry systems: an international intercomparison at the SILENE reactor in 2002.

    Science.gov (United States)

    Médioni, R; Asselineau, B; Verrey, B; Trompier, F; Itié, C; Texier, C; Muller, H; Pelcot, G; Clairand, I; Jacquet, X; Pochat, J L

    2004-01-01

    In criticality accident dosimetry and more generally for high dose measurements, special techniques are used to measure separately the gamma ray and neutron components of the dose. To improve these techniques and to check their dosimetry systems (physical and/or biological), a total of 60 laboratories from 29 countries (America, Europe, Asia) participated in an international intercomparaison, which took place in France from 9 to 21 June 2002, at the SILENE reactor in Valduc and at a pure gamma source in Fontenay-aux-Roses. This intercomparison was jointly organised by the IRSN and the CEA with the help of the NEA/OCDE and was partly supported by the European Communities. This paper describes the aim of this intercomparison, the techniques used by the participants and the two radiation sources and their characteristics. The experimental arrangements of the dosemeters for the irradiations in free air or on phantoms are given. Then the dosimetric quantities measured and reported by the participants are summarised, analysed and compared with the reference values. The present paper concerns only the physical dosimetry and essentially experiments performed on the SILENE facility. The results obtained with the biological dosimetry are published in two other papers of this issue.

  2. Individual neutron dosimetry

    International Nuclear Information System (INIS)

    Mauricio, C.L.P.

    1987-01-01

    The most important concepts and development in individual neutron dosimetry are presented, especially the dosimetric properties of the albedo technique. The main problem in albedo dosimetry is to calibrate the dosemeter in the environs of each neutron source. Some of the most used calibration techniques are discussed. The IRD albedo dosemeter used in the routine neutron individual monitoring is described in detail. Its dosimetric properties and calibration methods are discussed. (Author) [pt

  3. Design, comparison, and testing of a new user-friendly extremity dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Stadtmann, H.; Schmitzer, C.; Michler, E. [Austrian Research Centre, Seibersdorf (Austria); Fellinger, J.; Velbeck, K.J.; Rotunda, J.E. [BICRON RMP, Solon (United States)

    2000-05-01

    A new extremity TLD system has been developed and tested that provides for user convenience and automated processing while meeting various accreditation requirements. The design is a result of successful collaboration among organisational entities in different countries and included research centres, users, and the manufacturer. The primary consideration was to meet the needs of the medical market, without losing sight of the needs of research laboratories and power plants. This dosimetry system design provides various detector designs based on the need to measure photons or betas. Beyond the fundamental need for accurate dosimetry, the system meets the customers need for a versatile and comfortable ring and provides for both hot and cold sterilisation. The system represents a unique integration of components comprising the finger ring, dosimeter and dosimeter identification system, and TLD Instruments. The dosimeter identification system in the TLD Reader incorporates a CCD Camera and Machine Vision Technology to interpret the circular bar codes used to quickly and accurately identifies each individual dosimeter. Portability of this dosimetry system has been realised with the adaptation into multiple TLD Instruments. (author)

  4. Design, comparison, and testing of a new user-friendly extremity dosimetry system

    International Nuclear Information System (INIS)

    Stadtmann, H.; Schmitzer, C.; Michler, E.; Fellinger, J.; Velbeck, K.J.; Rotunda, J.E.

    2000-01-01

    A new extremity TLD system has been developed and tested that provides for user convenience and automated processing while meeting various accreditation requirements. The design is a result of successful collaboration among organisational entities in different countries and included research centres, users, and the manufacturer. The primary consideration was to meet the needs of the medical market, without losing sight of the needs of research laboratories and power plants. This dosimetry system design provides various detector designs based on the need to measure photons or betas. Beyond the fundamental need for accurate dosimetry, the system meets the customers need for a versatile and comfortable ring and provides for both hot and cold sterilisation. The system represents a unique integration of components comprising the finger ring, dosimeter and dosimeter identification system, and TLD Instruments. The dosimeter identification system in the TLD Reader incorporates a CCD Camera and Machine Vision Technology to interpret the circular bar codes used to quickly and accurately identifies each individual dosimeter. Portability of this dosimetry system has been realised with the adaptation into multiple TLD Instruments. (author)

  5. Routine testing on protective and safety systems and components

    International Nuclear Information System (INIS)

    Rysy, W.

    1977-01-01

    1) In-process inspection, tests during commissioning. 2) Tests during reactor operation. 2.1) Reactor protection system, for example: continuous auto-testing by a dynamic system, check of the output signals; 2.2) safety features: selected examples: functional tests on the ECCS, trial operation of the emergency diesels. 3) Tests during refuelling phase. 3.1) Containment: Leakage rate tests, leak testing; 3.2) coolant system: selected examples: inservice inspections of the pressure vessel, eddy current testing of the steam generator, functional tests of safety valves. (orig./HP) [de

  6. Implementing a routine health management information system in ...

    African Journals Online (AJOL)

    combination of appropriate tools, training and support resulted in health facilities, counties ... database for the South Sudan information system was developed in the District Health .... if operating at State level they send reports to the SMOH.

  7. Implementing a routine health management information system in ...

    African Journals Online (AJOL)

    South Sudan has recently acquired statehood. Planning and management of the health care system, based on evidence, requires a constant flow of information from health services. The Division of Monitoring and Evaluation (M&E) of the Ministry of Health developed the framework for the health sector of the country in 2008.

  8. Chemical dosimetry principles in high dose dosimetry

    International Nuclear Information System (INIS)

    Mhatre, Sachin G.V.

    2016-01-01

    In radiation processing, activities of principal concern are process validation and process control. The objective of such formalized procedures is to establish documentary evidence that the irradiation process has achieved the desired results. The key element of such activities is inevitably a well characterized reliable dosimetry system that is traceable to recognized national and international dosimetry standards. Only such dosimetry systems can help establish the required documentary evidence. In addition, industrial radiation processing such as irradiation of foodstuffs and sterilization of health careproducts are both highly regulated, in particular with regard to dose. Besides, dosimetry is necessary for scaling up processes from the research level to the industrial level. Thus, accurate dosimetry is indispensable

  9. Alanine-EPR as a transfer standard dosimetry system for low energy X radiation

    International Nuclear Information System (INIS)

    Khoury, H.J.; Silva, E.J. da; Mehta, K.; Barros, V.S. de; Asfora, V.K.; Guzzo, P.L.; Parker, A.G.

    2015-01-01

    The purpose of this paper is to evaluate the use of alanine-EPR as a transfer standard dosimetry system for low energy X radiation, such as that in RS-2400, which operates in the range from 25 to 150 kV and 2 to 45 mA. Two types of alanine dosimeters were investigated. One is a commercial alanine pellets from Aérial-Centre de Ressources Technologiques, France and one was prepared in our laboratory (LMRI-DEN/UFPE). The EPR spectra of the irradiated dosimeters were recorded in the Nuclear Energy Department of UFPE, using a Bruker EMX10 EPR spectrometer operating in the X-band. The alanine-EPR dosimetry system was calibrated in the range of 20–220 Gy in this X-ray field, against an ionization chamber calibrated at the relevant X-ray energy with traceability to PTB. The results showed that both alanine dosimeters presented a linear dose response the same sensitivity, when the EPR signal was normalized to alanine mass. The total uncertainty in the measured dose was estimated to be about 3%. The results indicate that it is possible to use the alanine-EPR dosimetry system for validation of a low-energy X ray irradiator, such as RS-2400.

  10. Automatic neutron dosimetry system based on fluorescent nuclear track detector technology

    International Nuclear Information System (INIS)

    Akselrod, M.S.; Fomenko, V.V.; Bartz, J.A.; Haslett, T.L.

    2014-01-01

    For the first time, the authors are describing an automatic fluorescent nuclear track detector (FNTD) reader for neutron dosimetry. FNTD is a luminescent integrating type of detector made of aluminium oxide crystals that does not require electronics or batteries during irradiation. Non-destructive optical readout of the detector is performed using a confocal laser scanning fluorescence imaging with near-diffraction limited resolution. The fully automatic table-top reader allows one to load up to 216 detectors on a tray, read their engraved IDs using a CCD camera and optical character recognition, scan and process simultaneously two types of images in fluorescent and reflected laser light contrast to eliminate false-positive tracks related to surface and volume crystal imperfections. The FNTD dosimetry system allows one to measure neutron doses from 0.1 mSv to 20 Sv and covers neutron energies from thermal to 20 MeV. The reader is characterised by a robust, compact optical design, fast data processing electronics and user-friendly software. The first table-top automatic FNTD neutron dosimetry system was successfully tested for LLD, linearity and ability to measure neutrons in mixed neutron-photon fields satisfying US and ISO standards. This new neutron dosimetry system provides advantages over other technologies including environmental stability of the detector material, wide range of detectable neutron energies and doses, detector re-readability and re-usability and all-optical readout. A new adaptive image processing algorithm reliably removes false-positive tracks associated with surface and bulk crystal imperfections. (authors)

  11. Quality assurance manual for the Department of Energy laboratory accreditation program for personnel dosimetry systems

    International Nuclear Information System (INIS)

    1987-02-01

    The overall purpose of this document is to establish a uniform approach to quality assurance. This will ensure that uniform, high-quality personnel dosimetry practices are followed by the participating testing laboratories. The document presents guidelines for calibrating and maintaining measurement and test equipment (M and TE), calibrating radiation fields, and subsequently irradiating and handling personnel dosimeters in laboratories involved in the DOE dosimetry systems testing program. Radiation energies for which the test procedures apply are photons with approximately 15 keV to 2 MeV, beta particles above 0.3 MeV, neutrons with approximately 1 keV to 2 MeV. 12 refs., 4 tabs

  12. US Department of Energy Laboratory Accreditation Program for personnel dosimetry systems (DOELAP)

    International Nuclear Information System (INIS)

    Carlson, R.D.; Gesell, T.F.; Kalbeitzer, F.L.; Roberson, P.L.; Jones, K.L.; MacDonald, J.C.; Vallario, E.J.; Pacific Northwest Lab., Richland, WA; USDOE Assistant Secretary for Nuclear Energy, Washington, DC

    1988-01-01

    The US Department of Energy (DOE) Office of Nuclear Safety has developed and initiated the DOE Laboratory Accreditation Program (DOELAP) for personnel dosimetry systems to assure and improve the quality of personnel dosimetry at DOE and DOE contractor facilities. It consists of a performance evaluation program that measures current performance and an applied research program that evaluates and recommends additional or improved test and performance criteria. It also provides guidance to DOE, identifying areas where technological improvements are needed. The two performance evaluation elements in the accreditation process are performance testing and onsite assessment by technical experts. Performance testing evaluates the participant's ability to accurately and reproducibly measure dose equivalent. Tests are conducted in accident level categories for low- and high-energy photons as well as protection level categories for low- and high-energy photons, beta particles, neutrons and mixtures of these

  13. An investigation of the photon energy dependence of the EPR alanine dosimetry system

    International Nuclear Information System (INIS)

    Bergstrand, Eva Stabell; Shortt, Ken R; Ross, Carl K; Hole, Eli Olaug

    2003-01-01

    The electron paramagnetic resonance (EPR) alanine dosimetry system is based on EPR measurements of radicals formed in alanine by ionizing radiation. The system has been studied to determine its energy dependence for photons in the 10-30 MV region relative to those of 60 Co and to find out if the system would be suitable for dosimetry comparisons. The irradiations were carried out at the National Research Council, Ottawa, Canada and the doses ranged from 8 to 54 Gy. The EPR measurements were performed at the University of Oslo, Norway. The ratio of the slope of the alanine reading versus dose-to-water curve for a certain linac photon beam quality and the corresponding slope for a reference 60 Co γ-radiation gives an experimental measure of the relative dose-to-water response of the EPR alanine dosimetry system. For calculating the linear regression coefficients of these alanine reading versus dose curves, the method of weighted least squares was used. This method is assumed to produce more accurate regression coefficients when applied to EPR dosimetry than the common method of standard least squares. The overall uncertainty on the ratio of slopes was between 0.5 and 0.6% for all three linac energies. The relative response for all the linac beams compared to cobalt was less than unity: by about 0.5% for the 20 and 30 MV points but by more than 1% for the 10 MV point. The given standard uncertainties negate concluding that there is any significant internal variation in the measured response as a function of beam quality between the three linac energies. Thus, we calculated the average dose response for all three energies and found that the alanine response is 0.8% (±0.5%) lower for high energy x-rays than for 60 Co γ-rays. This result indicates a small energy dependence in the alanine response for the high-energy photons relative to 60 Co which may be significant. This result is specific to our dosimetry system (alanine with 20% polyethylene binder pressed into a

  14. In vivo dosimetry: trends and prospects for brachytherapy

    DEFF Research Database (Denmark)

    Kertzscher, Gustavo; Rosenfeld, A.; Beddar, S.

    2014-01-01

    The error types during brachytherapy (BT) treatments and their occurrence rates are not well known. The limited knowledge is partly attributed to the lack of independent verification systems of the treatment progression in the clinical workflow routine. Within the field of in vivo dosimetry (IVD)...

  15. Dosimetry practices at the Radiation Technology Centre (Ghana)

    International Nuclear Information System (INIS)

    Emi-Reynolds, G.; Banini, G.K.; Ennison, I.

    1997-01-01

    Dosimetry practices undertaken to support research and pilot scale gamma irradiation activities at the Radiation Technology Centre of the Ghana Atomic Energy Commission are presented. The Fricke dosemeter was used for calibrating the gamma field of the gammacell-220. The Fricke system and the gammacell-220 were then used to calibrate the ethanol chlorobenzene (ECB) dosemeter. The Fricke and ECB dosemeter systems have become routine dosemeters at the centre. Dosimetry work has covered a wide range of research specimens and pilot scale products to establish the relevant irradiation protocol and parameters for routine treatment. These include yams, pineapple explants, blood for feeding tsetseflies, cocoa bud wood and cassava sticks. Pilot scale dosimetry studies on maize, medical devices like intravenous infusion sets and surgical gauze have also been completed. The results and observations made on some of these products are reported. (author). 4 refs., 5 figs

  16. Variations of influence quantities in industrial irradiators and their effect on dosimetry performance

    International Nuclear Information System (INIS)

    Chu, R.D.H.

    1999-01-01

    Many environmental factors, including irradiation temperature, post-irradiation storage temperature, dose rate, relative humidity, oxygen content and the energy spectrum may affect the response of dosimetry systems used in industrial radiation processing. Although the effects of individual influence quantities have been extensively studied, the variations of these influence quantities in production irradiators and the complex relationships between the effects of different influence quantities make it difficult to assess the overall effect on the measurement uncertainty. In the development of new dosimetry systems it is important to know the effect of each influence quantity and developers of new dosimetry systems should perform studies over a wide range of irradiation conditions. Analysis parameters and manufacturing specifications should be chosen to minimize the effect of influence quantities in the environments where the dosimeters will be used. Because of possible relationships between different influence quantities, care must be taken to ensure that the response function determined in the calibration of the dosimetry system is applicable for the conditions in which the dosimeters will be used. Reference standard dosimetry systems which have been thoroughly studied and have known relationships between dose response and influence quantities should be used to verify the calibration of routine dosimetry systems under the actual conditions of use. Better understanding of the variations in influence quantities in industrial irradiators may be obtained by modeling or direct measurements and may provide improvements in the calibration of routine dosimetry system and reduction of the overall measurement uncertainty. (author)

  17. Radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Xu Zhiyong

    2002-01-01

    Radiochromic film dosimetry was developed to measure ionization irradiation dose for industry and medicine. At this time, there are no comprehensive guideline on the medical application, calibration method and densitometer system for medicine. The review gives update on Radiochromic film dosimetry used for medicine, including principles, film model and material, characteristics, calibration method, scanning densitometer system and medical application

  18. Gamma dosimetry of high doses

    International Nuclear Information System (INIS)

    Martinez C, T.; Galvan G, A.; Canizal, G.

    1991-01-01

    The gamma dosimetry of high doses is problematic in almost all the classic dosemeters either based on the thermoluminescence, electric, chemical properties, etc., because they are saturated to very high dose and they are no longer useful. This work carries out an investigation in the interval of high doses. The solid system of heptahydrate ferrous sulfate, can be used as solid dosemeter of routine for high doses of radiation. The proposed method is simple, cheap and it doesn't require sophisticated spectrophotometers or spectrometers but expensive and not common in some laboratories

  19. The task of official personal monitoring in Germany using electronic dosimetry systems

    International Nuclear Information System (INIS)

    Huebner, Stephan; Wahl, Wolfgang; Busch, Frank; Martini, Ekkehard

    2008-01-01

    Full text: Since the establishment of the first German personal monitoring services as competent measuring bodies in the year 1952, official personal dosimetry is carried out using passive dosimeters such as film batches, RPL- and TL-dosimeters solely. On the other hand, electronic dosimeters are in use in some big institutions like Nuclear Power Plants, hospitals or industrial units for operational purposes. In most cases, these dosimeters are regulated by competent authorities. For more than 20 years electronic dosimeters proved their worth of being appropriate personal dosimeters. Since 2001 concepts to implement electronic personal dosimeters into the official individual monitoring of occupational exposed workers were developed in different research projects. The EU market of personal dosimetry changes to an open and competitive one, the number of outside workers, especially during the outages of Nuclear Power Plants increases, the landscape of customers is getting more and more heterogeneous. Being able to face these tasks of a sustainable personal monitoring requires the introduction of modern electronic dosimeters into to the official monitoring. Doing so, the needed prompt exchange of dose-data between different monitoring services as well as between the customers and the related monitoring service can be warranted. In cooperation with the industry, competent authorities and a research centre a method for official dosimetry using electronic dosimetry systems was developed, realised and tested successfully by the three big monitoring services of Germany. These investigations are supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. For this purpose a network between customers and monitoring services was built up in order to monitor people, who work in different places related to different measuring bodies in only one period of surveillance. (author)

  20. Effects of the interruption of the irradiation process on PMMA Harwell Industry Dosimetry Systems

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Paulo S.; Vasquez, Pablo A.S., E-mail: psantos@ipen.br, E-mail: pavsalva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Nowadays, the use of dyed-polymethylmethacrylate dosimetry systems in measurements at industrial irradiations has been broadly, despite the use of alanine dosimeters. Accurate dosimetry measurements are essential for the sterilization applications of medical products as well as the preservation of food by ionizing radiation. Regulations in many countries require in-plant dosimetry to ensure that the specified radiation dose has been delivered to the product. Harwell commercial dosimeters commonly are built to work with measurements between 1 kGy to 50 kGy, this means that a same dosimeter could be used until reach these values. Radiation processing demands partial measurements of the absorbed dose to guarantee the final desired applied absorbed dose depending to the dose rate. In this sense, the total absorbed dose corresponds to the cumulative partial values. In this study, several dosimeters were irradiated at the Multipurpose Gamma Irradiation Facility at IPEN - CNEN/SP to evaluate the response to the interruption of the irradiation process in the total cumulative absorbed dose values considering statistical changes and some processing parameters. When studied the Harwell dyed-polymethylmethacrylate dosimeters Red 4034 and Amber 3042, applying processing interruptions, results shown a coefficient of variation under 7% for industrial irradiation conditions to the total cumulative absorbed dose. (author)

  1. 1983 international intercomparison of nuclear accident dosimetry systems at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Swaja, R.E.; Greene, R.T.; Sims, C.S.

    1985-04-01

    An international intercomparison of nuclear accident dosimetry systems was conducted during September 12-16, 1983, at Oak Ridge National Laboratory (ORNL) using the Health Physics Research Reactor operated in the pulse mode to simulate criticality accidents. This study marked the twentieth in a series of annual accident dosimetry intercomparisons conducted at ORNL. Participants from ten organizations attended this intercomparison and measured neutron and gamma doses at area monitoring stations and on phantoms for three different shield conditions. Results of this study indicate that foil activation techniques are the most popular and accurate method of determining accident-level neutron doses at area monitoring stations. For personnel monitoring, foil activation, blood sodium activation, and thermoluminescent (TL) methods are all capable of providing accurate dose estimates in a variety of radiation fields. All participants in this study used TLD's to determine gamma doses with very good results on the average. Chemical dosemeters were also shown to be capable of yielding accurate estimates of total neutron plus gamma doses in a variety of radiation fields. While 83% of all neutron measurements satisfied regulatory standards relative to reference values, only 39% of all gamma results satisfied corresponding guidelines for gamma measurements. These results indicate that continued improvement in accident dosimetry evaluation and measurement techniques is needed

  2. Dosicard: on-site evaluation of a new individual dosimetry system

    International Nuclear Information System (INIS)

    Delacroix, D.; Guelin, M.; Lyron, C.; Feraud, J.P.

    1995-01-01

    Dosicard is a new individual dosimetry system developed to monitor personnel working in the following fields: civil and military nuclear applications, medical environments and research centres: it can also be used to monitor mobile personnel. The system is based on the use of a credit-card sized format electronic badge. The associated computer environment enables management of the dosimetric data acquired. The characteristics of the system are presented in this paper together with an evaluation of the results of six month's use in a nuclear research centre. (author)

  3. Internal sources dosimetry

    International Nuclear Information System (INIS)

    Savio, Eduardo

    1994-01-01

    The absorbed dose, need of estimation in risk evaluation in the application of radiopharmaceuticals in Nuclear Medicine practice,internal dosimetry,internal and external sources. Calculation methodology,Marinelli model,MIRD system for absorbed dose calculation based on biological parameters of radiopharmaceutical in human body or individual,energy of emitted radiations by administered radionuclide, fraction of emitted energy that is absorbed by target body.Limitation of the MIRD calculation model. A explanation of Marinelli method of dosimetry calculation,β dosimetry. Y dosimetry, effective dose, calculation in organs and tissues, examples. Bibliography .

  4. System for remote routine monitoring of power equipment at TPP and NPP

    International Nuclear Information System (INIS)

    Kantsedalov, V.G.; Samojlenko, V.P.; Doroshenko, V.A.

    1988-01-01

    A system for remote routine monitoring of TPP and NPP pipeline metals is described. The principal functional unit of the system is the unit of remote routine methods and techniques for studying and monitoring the metal and properties. The system is equipped with 5 types of routine monitoring equipment: robots, remote aggregated complexes, periodical diagnostic monitors, other means of metal diagnostics (endoscopes, introscopes). All current information enters the unit for estimating and forecasting the service life of power unit, where it is compared with the standard indices of reliability, duravility and efficiency. The system considered permits to reduce significantly or minimize the scope of works on metal monitoring during overhauls, increase intermonitoring and interrepairing compaigns to 8 years

  5. Radiation protection in medicine (542) comparison of different dosimetry systems for dose measurements in diagnostic radiology

    International Nuclear Information System (INIS)

    Milkovic, D.; Ranogajec-Komor, M.; Miljanic, S.; Knezevic, Z.; Krpan, K.

    2006-01-01

    The dose measurement on patients in X-ray diagnostic is not simple, because low doses with low and various energies have to be measured. The aim of this preliminary study was to compare high sensitivity thermoluminescent dosimeter (T.L.D.) (LiF:Mg,Cu,P) and radio-photoluminescent (R.P.L.) glass dosimeters for dose measurements in routine X-ray diagnostic of chest of children. The energy dependence of the dosimeters was investigated in Secondary Standard Dosimetry Laboratory (SSDL). The energy range was 33- 65 keV mean energy, the dosimeters were placed free in air and on the water phantom. The results were compared to calculated values of Hp(10). The next step was the irradiation in a routine X-ray diagnostic unit. Irradiations were performed by the Shimadzu X-ray unit. The selected irradiation conditions were the same as that most commonly used for baby examinations. Doses were measured with dosimeters placed free-in-air and also with the dosimeters placed on the water phantom and baby phantom. The results show that the R.P.L. glass dosimeters and LiF:Mg,Cu,P based T.L.D. are suitable for low dose measurements in X-ray diagnostic. The uncertainty of dose determination is mainly caused by the energy dependence of dosimeters. (authors)

  6. Type tests performed on a personnel dosimetry system according to IEC 61066

    International Nuclear Information System (INIS)

    Castillo, Romel; Huamanlazo, Paula; Rojas, Enrique

    2015-01-01

    In this study, the verification of the Harshaw 6600 Plus TLD personal dosimetry system was made using the method of the IEC-61066 type tests and the recommendations of the ISO 4037 standards. For this purpose, five dosimeters were irradiated over a water phantom using an irradiator with a 137 Cs source; five dosimeters as control were also used. The evaluated parameters were homogeneity, detection limit, residual reading, linearity, reproducibility, droppings and temperature and humidity variations. The obtained results show that the Harshaw 6600 TLD dosimetric system fulfills the IEC 61066 criteria. (author)

  7. Cyberknife Relative Output Factor measurements using fiber-coupled luminescence, MOSFETS and RADPOS dosimetry system

    DEFF Research Database (Denmark)

    Ploquin, N.; Kertzscher Schwencke, Gustavo Adolfo Vladimir; Vandervoort, E.

    2012-01-01

    from 5 to 60 mm. ROFs were also measured using a mobileMOSFET system (Best Medical Canada) and EBT1 and EBT2 GAFCHROMIC® (ISP, Ashland) radiochromic films. For cone sizes 12.5–60 mm all detector results were in agreement within the measurement uncertainty. The microMOSFET/RADPOS measurements (published.......3% and 0.865 ± 0.3% for 5, 7.5 and 10 mm cones. Our study shows that the microMOSFET/RADPOS and optical fiber‐coupled RL dosimetry system are well suited for Cyberknife cone output factors measurements over the entire range of field sizes, provided that appropriate correction factors are applied...

  8. Performance comparisons of selected personnel-dosimetry systems in use at Department of Energy facilities

    International Nuclear Information System (INIS)

    Roberson, P.L; Holbrook, K.L.; Yoder, R.C.; Fox, R.A.; Hadley, R.T.; Hogan, B.T.; Hooker, C.D.

    1983-10-01

    Dosimeter performance data were collected to help develop a uniform approach to the calibration and use of personnel dosimetry systems for Department of Energy (DOE) laboratories. Eleven DOE laboratories participated in six months of testing using the American National Draft Standard, Criteria for Testing Personnel Dosimetry Performance, ANSI N13.11, and additional testing categories. The tests described in ANSI N13.11 used a pass/fail system to determine compliance with the draft standard. Recalculation to PNL irradiations showed that the 137 Cs, 90 Sr/ 90 Y, and 252 Cf categories can be recalibrated to have acceptable performance for nearly all participant systems. Deficient dosimeter design or handling techniques caused poor performance in the x-ray category for nearly half of the participants. Too little filtration for the deep-dose element caused poor performance in the beta/photon mixture category for one participant. Two participants had excessively high standard deviations in the neutron category due to dosimeter design or handling deficiencies. The participating dosimetry systems were separated into three categories on their dose evaluation procedure for low-energy photons. These were film dosimeters, fixed-calibration thermoluminescent (TL) dosimeters, and variable-calibration TL dosimeters. The performance of the variable-calibration design was best while the film dosimeters performed considerably worse than either TL dosimeter design. Beta energy dependence studies confirmed a strong correlation between sensitive element thickness, shallow element filtration and low-energy beta response. Studies of neutron calibration conditions for each participant suggested a relationship between response and calibration facility design

  9. Introduction to ISOCAD (Integrated System of Computer Aided Dosimetry)

    International Nuclear Information System (INIS)

    Shrivastava, Amit

    2014-01-01

    A novel, bar code based computerized application package from BRIT for the Ceric cerous Potentiometric Dose Measurement System for Gamma Irradiators. The present generation of gamma irradiators operating worldwide and catering to the radiation processing requirements of medium and high dose products from the healthcare and food processing industry invariably resort to Ceric cerous Potentiometric Dose Measurement Systems (CCPDMs). BRIT, being of the major supplier of this dose measurement system in the country has expanded its clientele to the Asian continent as well in the recent past, had been endeavoring to provide its valued clients this internationally acclaimed dose measurement system at competitive pricing. The perpetually changing quality conscious business environment with demanding cGMP requirements particularly from the healthcare and the food sector propelled the development of the ISOCAD

  10. The stepping source dosimetry system as an extension of the manchester system

    International Nuclear Information System (INIS)

    Rembowska, A.M.E.; Cook, M.; Hoskin, P.J.; Mahdevan, A.

    1996-01-01

    Brachytherapy based on absolute application of Manchester distribution rules has been used at Mount Vernon Hospital for single and two plane breast implants. Here dwell times are extracted from the required ratio of source activity in the periphery to that at the centre of the implant. Required dwell times can then be calculated directly from the original Manchester tables using a simple formula. Traditionally High Dose Rate Brachytherapy Dosimetry has used equal exposure times at each source dwell position as a starting point, an approach comparable to a Paris type implant. An optimisation system based on introducing constraints into the system can then be applied, however the number and type of constraints are limited, and there is little clinical evidence to justify this approach. The advantages of using Manchester distribution rules in planar implants, where the sources are contained in the target area or volume and also circumscribe it, but do not extend beyond it, together with the homogenous dose distribution achievable, are illustrated, with clinical examples. A proposed distribution, based on this approach for treating a spherical volume typical of planned prostate treatments at this centre is also described

  11. WE-AB-BRB-12: Nanoscintillator Fiber-Optic Detector System for Microbeam Radiation Therapy Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, J [University of North Carolina and North Carolina State University, Chapel Hill, NC (United States); Dooley, J; Chang, S [University of North Carolina School of Medicine, Chapel Hill, NC (United States); Belley, M; Yoshizumi, T [Duke University Medical Center, Durham, NC (United States); Stanton, I; Langloss, B; Therien, M [Duke University, Durham, NC (United States)

    2015-06-15

    Purpose: Microbeam Radiation Therapy (MRT) is an experimental radiation therapy that has demonstrated a higher therapeutic ratio than conventional radiation therapy in animal studies. There are several roadblocks in translating the promising treatment technology to clinical application, one of which is the lack of a real-time, high-resolution dosimeter. Current clinical radiation detectors have poor spatial resolution and, as such, are unsuitable for measuring microbeams with submillimeter-scale widths. Although GafChromic film has high spatial resolution, it lacks the real-time dosimetry capability necessary for MRT preclinical research and potential clinical use. In this work we have demonstrated the feasibility of using a nanoscintillator fiber-optic detector (nanoFOD) system for real-time MRT dosimetry. Methods: A microplanar beam array is generated using a x-ray research irradiator and a custom-made, microbeam-forming collimator. The newest generation nanoFOD has an effective size of 70 µm in the measurement direction and was calibrated against a kV ion chamber (RadCal Accu-Pro) in open field geometry. We have written a computer script that performs automatic data collection with immediate background subtraction. A computer-controlled detector positioning stage is used to precisely measure the microbeam peak dose and beam profile by translating the stage during data collection. We test the new generation nanoFOD system, with increased active scintillation volume, against the previous generation system. Both raw and processed data are time-stamped and recorded to enable future post-processing. Results: The real-time microbeam dosimetry system worked as expected. The new generation dosimeter has approximately double the active volume compared to the previous generation resulting in over 900% increase in signal. The active volume of the dosimeter still provided the spatial resolution that meets the Nyquist criterion for our microbeam widths. Conclusion: We have

  12. BeOSL system for personal dosimetry : dosimetric characteristics and practical application

    International Nuclear Information System (INIS)

    Mende, E.

    2015-10-01

    Full text: BeOSL system of Dosimetric s is very easy to use, assimilate and maintain. Our dosimeter defines a milestone in the supervision of personal equivalent dose of Hp (10) and Hp (0.07) it covers the range of total energy of 16 KeV to 10 MeV. For this energy range is exceptional in its energy dependence for official personal dosimetry. The BeOSL system consists of two modules, one of them is the BeOSL reader that measures the radiation exposure using the latest technology, optically stimulated luminescence (OSL). The reading is extremely fast; it does not require consumables such as nitrogen or other. The detector material is beryllium oxide (Be O); this is an OSL material tissue equivalent and therefore is ideal for personal dosimetry. The BeOSL technology allows multiple readings of the dosimeter (re-read) to verify the dose or archive the dosimeter. One of the biggest advantages of BeOSL system is its modular concept allows the system to run as a manual solution or as a complete automated robotic system, which can be filled with up to 5,000 dosimeters as bulk cargo. (Author)

  13. A microcontroller based lyoluminescence recording system for high dose dosimetry

    International Nuclear Information System (INIS)

    Thakur, Vaishali M.; Raman, Anand; Oommen, I.K.; Choithramani, S.J.; Sharma, D.N.

    2001-01-01

    This paper describes the features of a microcontroller based lyoluminescence (LL) measurement system which provides the peak yield versus time plot and the integrated light yield of the LL process. The peak yield is found to be a better measure of the LL process as compared to the integrated yield. (author)

  14. A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Sakhalkar, H. S.; Adamovics, J.; Ibbott, G.; Oldham, M. [Department of Radiation Oncology Physics, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Chemistry and Biology, Rider University, Lawrenceville, New Jersey 08648 (United States); Department of Radiation Physics, M. D. Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Radiation Oncology Physics, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2009-01-15

    This work presents extensive investigations to evaluate the robustness (intradosimeter consistency and temporal stability of response), reproducibility, precision, and accuracy of a relatively new 3D dosimetry system comprising a leuco-dye doped plastic 3D dosimeter (PRESAGE) and a commercial optical-CT scanner (OCTOPUS 5x scanner from MGS Research, Inc). Four identical PRESAGE 3D dosimeters were created such that they were compatible with the Radiologic Physics Center (RPC) head-and-neck (H and N) IMRT credentialing phantom. Each dosimeter was irradiated with a rotationally symmetric arrangement of nine identical small fields (1x3 cm{sup 2}) impinging on the flat circular face of the dosimeter. A repetitious sequence of three dose levels (4, 2.88, and 1.28 Gy) was delivered. The rotationally symmetric treatment resulted in a dose distribution with high spatial variation in axial planes but only gradual variation with depth along the long axis of the dosimeter. The significance of this treatment was that it facilitated accurate film dosimetry in the axial plane, for independent verification. Also, it enabled rigorous evaluation of robustness, reproducibility and accuracy of response, at the three dose levels. The OCTOPUS 5x commercial scanner was used for dose readout from the dosimeters at daily time intervals. The use of improved optics and acquisition technique yielded substantially improved noise characteristics (reduced to {approx}2%) than has been achieved previously. Intradosimeter uniformity of radiochromic response was evaluated by calculating a 3D gamma comparison between each dosimeter and axially rotated copies of the same dosimeter. This convenient technique exploits the rotational symmetry of the distribution. All points in the gamma comparison passed a 2% difference, 1 mm distance-to-agreement criteria indicating excellent intradosimeter uniformity even at low dose levels. Postirradiation, the dosimeters were all found to exhibit a slight increase in

  15. A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system

    International Nuclear Information System (INIS)

    Sakhalkar, H. S.; Adamovics, J.; Ibbott, G.; Oldham, M.

    2009-01-01

    This work presents extensive investigations to evaluate the robustness (intradosimeter consistency and temporal stability of response), reproducibility, precision, and accuracy of a relatively new 3D dosimetry system comprising a leuco-dye doped plastic 3D dosimeter (PRESAGE) and a commercial optical-CT scanner (OCTOPUS 5x scanner from MGS Research, Inc). Four identical PRESAGE 3D dosimeters were created such that they were compatible with the Radiologic Physics Center (RPC) head-and-neck (H and N) IMRT credentialing phantom. Each dosimeter was irradiated with a rotationally symmetric arrangement of nine identical small fields (1x3 cm 2 ) impinging on the flat circular face of the dosimeter. A repetitious sequence of three dose levels (4, 2.88, and 1.28 Gy) was delivered. The rotationally symmetric treatment resulted in a dose distribution with high spatial variation in axial planes but only gradual variation with depth along the long axis of the dosimeter. The significance of this treatment was that it facilitated accurate film dosimetry in the axial plane, for independent verification. Also, it enabled rigorous evaluation of robustness, reproducibility and accuracy of response, at the three dose levels. The OCTOPUS 5x commercial scanner was used for dose readout from the dosimeters at daily time intervals. The use of improved optics and acquisition technique yielded substantially improved noise characteristics (reduced to ∼2%) than has been achieved previously. Intradosimeter uniformity of radiochromic response was evaluated by calculating a 3D gamma comparison between each dosimeter and axially rotated copies of the same dosimeter. This convenient technique exploits the rotational symmetry of the distribution. All points in the gamma comparison passed a 2% difference, 1 mm distance-to-agreement criteria indicating excellent intradosimeter uniformity even at low dose levels. Postirradiation, the dosimeters were all found to exhibit a slight increase in

  16. Development of Instrumental ORAM System for Radiation Dosimetry

    International Nuclear Information System (INIS)

    Bogard, J.S.; Cullum, B.M.; Mobley, J.; Moscovitch, M.; Vo-Dinh, T.

    1999-01-01

    The development of an optical-based dosimeter for neutrons and heavy charged particles is described. It is based on the use of three dimensional (3-D) optical memory materials, used in optical computing applications, and multiphoton fluorescence of photochromic dyes. Development and characterization of various types of dosimeter materials are described as well as the optical readout system. In addition, various excitation geometries for ''reading'' and ''writing'' to the optical memories are also discussed

  17. Recommendations to harmonize European early warning dosimetry network systems

    Science.gov (United States)

    Dombrowski, H.; Bleher, M.; De Cort, M.; Dabrowski, R.; Neumaier, S.; Stöhlker, U.

    2017-12-01

    After the Chernobyl nuclear power plant accident in 1986, followed by the Fukushima Nuclear power plant accident 25 years later, it became obvious that real-time information is required to quickly gain radiological information. As a consequence, the European countries established early warning network systems with the aim to provide an immediate warning in case of a major radiological emergency, to supply reliable information on area dose rates, contamination levels, radioactivity concentrations in air and finally to assess public exposure. This is relevant for governmental decisions on intervention measures in an emergency situation. Since different methods are used by national environmental monitoring systems to measure area dose rate values and activity concentrations, there are significant differences in the results provided by different countries. Because European and neighboring countries report area dose rate data to a central data base operated on behalf of the European Commission, the comparability of the data is crucial for its meaningful interpretation, especially in the case of a nuclear accident with transboundary implications. Only by harmonizing measuring methods and data evaluation, is the comparability of the dose rate data ensured. This publication concentrates on technical requirements and methods with the goal to effectively harmonize area dose rate monitoring data provided by automatic early warning network systems. The requirements and procedures laid down in this publication are based on studies within the MetroERM project, taking into account realistic technical approaches and tested procedures.

  18. Radiation dosimetry and standards at the austrian dosimetry laboratory

    International Nuclear Information System (INIS)

    Leitner, A.

    1984-10-01

    The Austrian Dosimetry Laboratory, established and operated in cooperation between the Austrian Research Center Seibersdorf and the Federal Office of Metrology and Surveying (Bundesamt and Eich- und Vermessungswesen) maintains the national primary standards for radiation dosimetry. Furthermore its tasks include routine calibration of dosemeters and dosimetric research. The irradiation facilities of the laboratory comprise three X-ray machines covering the voltage range from 5 kV to 420 kV constant potential, a 60 Co teletherapy unit, a circular exposure system for routine batch calibration of personnel dosemeters with four gamma ray sources ( 60 Co and 137 Cs) and a reference source system with six gamma ray sources ( 60 Co and 137 Cs). In addition a set of calibrated beta ray sources are provided ( 147 Pm, 204 Tl and 90 Sr). The dosimetric equipment consists of three free-air parallelplate ionization chambers serving as primary standards of exposure for the X-ray energy region, graphite cavity chambers with measured volume as primary standards for the gamma radiation of 137 Cs and 60 Co as well as different secondary standard ionization chambers covering the dose rate range from the natural background level up to the level of modern therapy accelerators. In addition for high energy photon and electron radiation a graphite calorimeter is provided as primary standard of absorbed dose. The principle experimental set-ups for the practical use of the standards are presented and the procedures for the calibration of the different types of dosemeters are described. (Author)

  19. UK guidance on the management of personal dosimetry systems for healthcare staff working at multiple organizations.

    Science.gov (United States)

    Rogers, Andy; Chapple, Claire-Louise; Murray, Maria; Platton, David; Saunderson, John

    2017-11-01

    There has been concern expressed by the UK regulator, the Health & Safety Executive, regarding the management of occupation dose for healthcare radiation workers who work across multiple organizations. In response to this concern, the British Institute of Radiology led a working group of relevant professional bodies to develop guidance in this area. The guidance addresses issues of general system management that would apply to all personal dosimetry systems, regardless of whether or not the workers within that system work across organizational boundaries, along with exploring efficient strategies to comply with legislation where those workers do indeed work across organizational boundaries. For those specific instances, the guidance discusses both system requirements to enable organizations to co-operate (Ionising Radiation Regulations 1999 Regulation 15), as well as specific instances of staff exposure. This is broken down into three categories-low, medium and high risk. A suggested approach to each is given to guide employers and their radiation advisers in adopting sensible strategies for the monitoring of their staff and the subsequent sharing of dosimetry data to ensure overall compliance with both dose limits and optimization requirements.

  20. Intercomparison of Environmental Dosemeters Using Various TL Materials and Dosimetry Systems

    International Nuclear Information System (INIS)

    Crnic, B.; Gobec, S.; Zorko, B.; Knezevic, Z.; Majer, M.; Ranogajec-Komor, M.

    2013-01-01

    The aim of the present work was to compare the ambient dose equivalent (H*(10)) values determined at 20 sites around NPP Krško, using different thermoluminescence (TL) materials and various dosimetry systems. The H*(10) was measured by the CaF 2 :Mn (TLD-400) provided by the Jozef Stefan Institute (JSI) Ljubljana, Slovenia. These dosemeters were deployed in the environment in plastic bags and suspended inside the plastic bottles. On the other hand the Ruder Boskovic Institute (RBI), Zagreb, Croatia applied LiF:Mg,Cu,P (TLD-100H), CaF 2 :Mn, Al 2 O 3 :C TL detectors and radiophotoluminescence (RPL) glass dosemeters type SG1. They were placed at the same locations in as much as possible same conditions as JSI detectors. According to the protocol established for this intercomparison, the control and transport detectors (not deployed in the environment) were held in dark storage containers and used to determine the background radiation. The TL responses were corrected for individual sensitivity of the TL detectors which is an important factor after the calibration irradiations. The calibration irradiations were performed by 137Cs sources provided in Secondary Standard Dosimetry Laboratory facilities at the JSI and RBI. The results obtained by different TL materials and different dosimetry systems show interesting features especially concerning local environmental peculiarities. The H*(10) obtained by the dosemeters of various types deployed in the countryside fluctuate less than 10 %. The outcome should emphasize also in the manner that the results obtained and reported in the intercomparison are traceable to the primary standards.(author)

  1. Comparison of dose response functions for EBT3 model GafChromic™ film dosimetry system.

    Science.gov (United States)

    Aldelaijan, Saad; Devic, Slobodan

    2018-05-01

    Different dose response functions of EBT3 model GafChromic™ film dosimetry system have been compared in terms of sensitivity as well as uncertainty vs. error analysis. We also made an assessment of the necessity of scanning film pieces before and after irradiation. Pieces of EBT3 film model were irradiated to different dose values in Solid Water (SW) phantom. Based on images scanned in both reflection and transmission mode before and after irradiation, twelve different response functions were calculated. For every response function, a reference radiochromic film dosimetry system was established by generating calibration curve and by performing the error vs. uncertainty analysis. Response functions using pixel values from the green channel demonstrated the highest sensitivity in both transmission and reflection mode. All functions were successfully fitted with rational functional form, and provided an overall one-sigma uncertainty of better than 2% for doses above 2 Gy. Use of pre-scanned images to calculate response functions resulted in negligible improvement in dose measurement accuracy. Although reflection scanning mode provides higher sensitivity and could lead to a more widespread use of radiochromic film dosimetry, it has fairly limited dose range and slightly increased uncertainty when compared to transmission scan based response functions. Double-scanning technique, either in transmission or reflection mode, shows negligible improvement in dose accuracy as well as a negligible increase in dose uncertainty. Normalized pixel value of the images scanned in transmission mode shows linear response in a dose range of up to 11 Gy. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Lactose and ''tris'' lyoluminescence dosimetry systems and ESR correlation studies

    International Nuclear Information System (INIS)

    Oommen, I.K.; Nambi, K.S.V.; Sengupta, S.; Rao, T.K.G.; Ravikumar, M.

    1989-01-01

    Lyoluminescence (LL) dosimeters have been developed using lactose monohydrate (disaccharide) and tris(hydroxymethyl)aminomethane (''Tris'') systems and attempts have been made to understand the LL mechanism through ESR correlation studies. Tris LL dosimeter has a γ-ray sensitivity with a linear response in the absorbed-dose range 0.05-200 Gy (5-2 x 10 4 rad), while the lactose response extends to a higher range from 1 to 10 4 Gy (10 2 -10 6 rad). The LL output of lactose and Tris did not show any appreciable decay for a period of 6 months after irradiation. ESR measurements show that free-radical concentration in both the systems increases with γ-ray dose in the range 10 2 -10 5 Gy. The minimum dose required to measure the radiation-induced ESR signal for Tris is ∼ 500 Gy, the dose at which the LL output saturates, while lactose shows a radiation-induced ESR signal right at the minimum dose where LL could be detected. The estimated spin density on the radical carbon atom is 0.7. ESR signal stabilities of lactose and Tris were also studied. Lactose did not show any appreciable ESR decay for a period of 3 months after irradiation, while, for Tris, one of the radicals showed a decay of 45% for the same period. (author)

  3. Quality Control in the Dosimetric System of the Personnel Dosimetry Service of the Spanish National Health Service

    Energy Technology Data Exchange (ETDEWEB)

    Casal, E.; Gil, J.A.; Roig, F.; Soriano, A. [Valencia (Spain)

    1999-07-01

    The main operating and quality control procedures implemented at the Centro Nacional de Dosimetria (CND) of the Spanish National Health Service to ensure the acceptance of the dosimetry service are described. The operating procedures are routinely performed at every step, since the dosemeters are received from the manufacturer until the doses are assigned to the dosimetric history and their main aim is to ensure the traceability of the doses. They make use of control and background dosemeters and frequent cross reference (automatic and manual) of different sources of data. The control procedures are performed at the end of each monthly process to detect possible errors or systematic bias in the dosimetry service and include analysis of the measurements of quality control dosemeters irradiated at the CND's laboratory and randomly read. The results of this analysis since 1996 are presented. (author)

  4. Quality Control in the Dosimetric System of the Personnel Dosimetry Service of the Spanish National Health Service

    International Nuclear Information System (INIS)

    Casal, E.; Gil, J.A.; Roig, F.; Soriano, A.

    1999-01-01

    The main operating and quality control procedures implemented at the Centro Nacional de Dosimetria (CND) of the Spanish National Health Service to ensure the acceptance of the dosimetry service are described. The operating procedures are routinely performed at every step, since the dosemeters are received from the manufacturer until the doses are assigned to the dosimetric history and their main aim is to ensure the traceability of the doses. They make use of control and background dosemeters and frequent cross reference (automatic and manual) of different sources of data. The control procedures are performed at the end of each monthly process to detect possible errors or systematic bias in the dosimetry service and include analysis of the measurements of quality control dosemeters irradiated at the CND's laboratory and randomly read. The results of this analysis since 1996 are presented. (author)

  5. Dosimetry and image quality assessment in a direct radiography system

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Bruno Beraldo; Paixao, Lucas; Nogueira, Maria do Socorro, E-mail: boliveira.mg@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Oliveira, Marcio Alves de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Medicina. Dept. de Anatomia e Imagem; Teixeira, Maria Helena Araujo [Clinica Dra. Maria Helena Araujo Teixeira, Belo Horizonte, MG (Brazil)

    2014-11-15

    Objective: to evaluate the mean glandular dose with a solid state detector and the image quality in a direct radiography system, utilizing phantoms. Materials and methods: Irradiations were performed with automatic exposure control and polymethyl methacrylate slabs with different thicknesses to calculate glandular dose values. The image quality was evaluated by means of the structures visualized on the images of the phantoms. Results: considering the uncertainty of the measurements, the mean glandular dose results are in agreement with the values provided by the equipment and with internationally adopted reference levels. Results obtained from images of the phantoms were in agreement with the reference values. Conclusion: the present study contributes to verify the equipment conformity as regards dose values and image quality. (author)

  6. A first step towards miniaturized HPLC systems in analytical routine laboratories

    NARCIS (Netherlands)

    Straten, van M.A.; Vermeer, E.A.; Claessens, H.A.

    1996-01-01

    This article shows that the first step towards the miniaturization of HPLC systems can be made without any, or only slight, modification to conventional equipment. Minor (less expensive) equipment modifications, particularly the use of micro-detector cells, allow the routine use of 3.2- and 2.1-mm

  7. Use of Graphic Systems in the Routine of a Regular Classroom with a Disabled Student

    Science.gov (United States)

    Deliberato, Débora; Nunes, Leila Regina d'Oliveira Paula

    2015-01-01

    The school environment adapted to the diversity of students is an important goal, but it is a challenge when it comes to the diversity of students with disabilities. The aim of this study was to describe the use of graphic systems in the routine of a preschool classroom through a collaborative program. The study included a teacher, 22 children of…

  8. Personal dosimetry service of TECNATOM: measurement system and methodology of calibration

    International Nuclear Information System (INIS)

    Marchena, Paloma; Bravo, Borja

    2008-01-01

    Full text: The implementation of a new integrated and practical working tool called ALEDIN within the Personal Dosimetry Service (PDS) of TECNATOM, have harmonized the methodology for the counting acquisition, detector calibration and data analysis using a friendly Windows (registered mark) environment. The knowledge of this methodology, due to the fact that is the final product of a R and D project, will help the users and the Regulatory Body for a better understanding of the internal activity measurement in individuals, allowing a more precise error identification and correction, and improving the whole process of the internal dosimetry. The development and implementation of a new calibration system of the whole body counters using NaI (Tl) detectors and the utilization of a new humanoid anthropometric phantom, BOMAB type, with a uniform radioactive source distributions, allow a better energy and activity calibration for different counting geometries covering a wide range of gamma spectra from low energies, less than 100 keV to about 2000 keV for the high energies spectra. This new calibration methodology implied the development of an improved system for the determination of the isotopic activity. This new system has been integrated in a Windows (registered mark) environment, applicable for counting acquisition and data analysis in the whole body counters WBC in cross connection with the INDAC software, which allow the interpretation of the measured activity as committed effective dose following all the new ICRP recommendations and dosimetric models for internal dose and bioassay measurements. (author)

  9. The Mayak Worker Dosimetry System (MWDS-2013): implementation of the dose calculations

    International Nuclear Information System (INIS)

    Zhdanov, A.; Vostrotin, V.; Efimov, A.; Birchall, A.; Puncher, M.

    2017-01-01

    The calculation of internal doses for the Mayak Worker Dosimetry System (MWDS-2013) involved extensive computational resources due to the complexity and sheer number of calculations required. The required output consisted of a set of 1000 hyper-realizations: each hyper-realization consists of a set (1 for each worker) of probability distributions of organ doses. This report describes the hardware components and computational approaches required to make the calculation tractable. Together with the software, this system is referred to here as the 'PANDORA system'. It is based on a commercial SQL server database in a series of six work stations. A complete run of the entire Mayak worker cohort entailed a huge amount of calculations in PANDORA and due to the relatively slow speed of writing the data into the SQL server, each run took about 47 days. Quality control was monitored by comparing doses calculated in PANDORA with those in a specially modified version of the commercial software 'IMBA Professional Plus'. Suggestions are also made for increasing calculation and storage efficiency for future dosimetry calculations using PANDORA. (authors)

  10. Online patient dosimetry and an image quality audit system in digital radiology

    International Nuclear Information System (INIS)

    Fernandez, J. M.; Vano, E.; Ten, J. I.; Prieto, C.; Martinez, D.

    2006-01-01

    The present work describes an online patient dosimetry and an image quality audit system in digital radiology. the system allows auditing of different parameters depending on contents of DICOM (Digital Imaging and Communication in Medicine) header. For the patient dosimetry audit, current mean values of entrance surface dose (ESD) were compared with local and national reference values (RVs) for the specific examination type evaluated. Mean values exceeding the RV trigger an alarm signal and then an evaluation of the technical parameters, operational practice and image quality starts, using data available in the DICOM header to derive any abnormal settings or performance to obtain the image. the X-ray tube output for different kVp values is measured periodically, allowing for the automatic calculation of the ESD. The system also allows for image quality audit linking it with the dose imparted and other technical parameters if the alarm condition if produced. Results and advantages derived from this online quality control are discussed. (Author) 5 refs

  11. Treatment planning systems dosimetry auditing project in Portugal.

    Science.gov (United States)

    Lopes, M C; Cavaco, A; Jacob, K; Madureira, L; Germano, S; Faustino, S; Lencart, J; Trindade, M; Vale, J; Batel, V; Sousa, M; Bernardo, A; Brás, S; Macedo, S; Pimparel, D; Ponte, F; Diaz, E; Martins, A; Pinheiro, A; Marques, F; Batista, C; Silva, L; Rodrigues, M; Carita, L; Gershkevitsh, E; Izewska, J

    2014-02-01

    The Medical Physics Division of the Portuguese Physics Society (DFM_SPF) in collaboration with the IAEA, carried out a national auditing project in radiotherapy, between September 2011 and April 2012. The objective of this audit was to ensure the optimal usage of treatment planning systems. The national results are presented in this paper. The audit methodology simulated all steps of external beam radiotherapy workflow, from image acquisition to treatment planning and dose delivery. A thorax CIRS phantom lend by IAEA was used in 8 planning test-cases for photon beams corresponding to 15 measuring points (33 point dose results, including individual fields in multi-field test cases and 5 sum results) in different phantom materials covering a set of typical clinical delivery techniques in 3D Conformal Radiotherapy. All 24 radiotherapy centers in Portugal have participated. 50 photon beams with energies 4-18 MV have been audited using 25 linear accelerators and 32 calculation algorithms. In general a very good consistency was observed for the same type of algorithm in all centres and for each beam quality. The overall results confirmed that the national status of TPS calculations and dose delivery for 3D conformal radiotherapy is generally acceptable with no major causes for concern. This project contributed to the strengthening of the cooperation between the centres and professionals, paving the way to further national collaborations. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Gamma-Ray Dosimetry System Using Radiation-Resistant Optical Fibers and a Luminescent Material

    International Nuclear Information System (INIS)

    Toh, K.; Nakamura, T.; Yamagishi, H.; Sakasai, K.; Soyama, K.; Shikama, T.; Nagata, S.

    2013-06-01

    Gamma-ray dosimetry system using radiation-resistant optical fibers and a luminescent material was developed for use in a damaged Fukushima Dai-ichi nuclear power plant. The system was designed to be compact and unnecessary of an external supply of electricity to a radiation sensor head with a contaminated working environment and restricted through-holes to a measurement point in the damaged reactor. The system can detect a gamma-ray dose rate at a measurement point using a couple of optical fibers and a luminescent material with a coincidence method. This system demonstrated a linear response with respect to the gamma-ray dose rate from 0.5 mGy/h to 0.1 Gy/h and the system had a capability to measure the dose rate of more than 10 2 Gy/h. (authors)

  13. Development of real-time radiation exposure dosimetry system using synthetic ruby for interventional radiology

    International Nuclear Information System (INIS)

    Hosokai, Yoshiyuki; Win, Thet Pe; Muroi, Kenzo; Matsumoto, Kenki; Takahashi, Kaito; Usui, Akihito; Saito, Haruo; Kozakai, Masataka

    2017-01-01

    Interventional radiology (IVR) tends to involve long procedures, consequently delivering high radiation doses to the patient. Radiation-induced injuries that occur because of the effect of the high radiation doses are a considerable problem for those performing IVR. For example, skin injuries can include skin erythema if the skin is exposed to radiation doses beyond the threshold level of 2 Gy. One of the reasons for this type of injury is that the local skin dose cannot be monitored in real time. Although there are systems employed to measure the exposure dose, some do not work in real time (such as thermoluminescence dosimeters and fluorescent glass dosimeters), while certain real-time measurement systems that enter the field of view (such as patient skin dosimeters and dosimeters using a nontoxic phosphor) interfere with IVR. However, synthetic ruby has been shown to emit light in response to radiation. The luminous wavelength is 693 nm. It is possible to monitor the radiation dose by detecting the emitted light. However, small synthetic rubies emit a tiny amount of light that is difficult to detect using common systems such as photodiodes. A large enough synthetic ruby to increase the quantity of emitted light would however enter the field of view and interfere with the IVR procedure. Additionally, although a photodiode system could reduce the system size, the data is susceptible to effects from the X-rays and outside temperature. Therefore, use of a sensitive photon counting system as used in nuclear medicine could potentially have a beneficial effect in detecting the weak light signal. A real-time radiation exposure dosimetry system for use in IVR should be sufficiently sensitive, not interfere with the IVR procedure, and ideally have the possibility of development into a system that can provide simultaneous multipoint measurements. This article discusses the development of a realtime radiation exposure dosimetry system for use in IVR that employs a small

  14. Introduction of a new dosimetry system based on optically stimulated luminescence (OSL) in our personal monitoring service

    International Nuclear Information System (INIS)

    Hubner, S.

    2014-08-01

    The personal monitoring service named Auswertungsstelle is part of the Helmholtz Zentrum Munchen, a non-profit-making research center in Germany. As one of the four monitoring services in Germany, we have been a reliable partner in radiation protection for more than 60 years. With about 1.9 million dose assessments per year, we are the largest monitoring service in Europe. For dozens of years, our main dosimeter used in whole-body dosimetry has been a film dosimeter. Although its dosimetric properties are still up to date, film dosimetry won.t be a sustainable technique for the use in monitoring services. Therefore, a project with the objective of investigating alternative dosimetric materials and methods was launched in the late 1990 at the Helmholtz Zentrum Munchen. Based on this research work, the use of Be O as an OSL dosimeter was studied by the radiation physics group of the Tu Dresden, by order and on account of the Auswertungsstelle at the Helmholtz Zentrum Munchen. It was shown, that ceramic Be O features promising dosimetric properties, making Be O detectors particularly suitable for being used in all applications in whole-body dosimetry measuring photons. Ceramic Be O material has an excellent resistance to environmental influences. The Be O chips are almost tissue equivalent. Therefore, these detectors show low photon energy dependence. A new personal dosimetry system based on the OSL dosimetry of Be O was developed. Applying this system, the Auswertungsstelle offers OSL-dosimeters for official monitoring of the Personal Dose Equivalent Hp(10) since 2011. This OSL-System is accredited according to DIN IEC 62387 and we obtained the corresponding type approval by the Ptb, the national metrology institute in Germany. Sophisticated logistics was developed and installed. High degree of automation was achieved by robots for dosimeter assembly and machines for packing, labelling and unpacking of the dosimeters. To become a sustainable dosimetry system not only

  15. Introduction of a new dosimetry system based on optically stimulated luminescence (OSL) in our personal monitoring service

    Energy Technology Data Exchange (ETDEWEB)

    Hubner, S., E-mail: stephan.huebner@helmholtz-muenchen.de [Helmholtz Zentrum Munchen, German Research Center for Environmental Health, D-80219, Munich (Georgia)

    2014-08-15

    The personal monitoring service named Auswertungsstelle is part of the Helmholtz Zentrum Munchen, a non-profit-making research center in Germany. As one of the four monitoring services in Germany, we have been a reliable partner in radiation protection for more than 60 years. With about 1.9 million dose assessments per year, we are the largest monitoring service in Europe. For dozens of years, our main dosimeter used in whole-body dosimetry has been a film dosimeter. Although its dosimetric properties are still up to date, film dosimetry won.t be a sustainable technique for the use in monitoring services. Therefore, a project with the objective of investigating alternative dosimetric materials and methods was launched in the late 1990 at the Helmholtz Zentrum Munchen. Based on this research work, the use of Be O as an OSL dosimeter was studied by the radiation physics group of the Tu Dresden, by order and on account of the Auswertungsstelle at the Helmholtz Zentrum Munchen. It was shown, that ceramic Be O features promising dosimetric properties, making Be O detectors particularly suitable for being used in all applications in whole-body dosimetry measuring photons. Ceramic Be O material has an excellent resistance to environmental influences. The Be O chips are almost tissue equivalent. Therefore, these detectors show low photon energy dependence. A new personal dosimetry system based on the OSL dosimetry of Be O was developed. Applying this system, the Auswertungsstelle offers OSL-dosimeters for official monitoring of the Personal Dose Equivalent Hp(10) since 2011. This OSL-System is accredited according to DIN IEC 62387 and we obtained the corresponding type approval by the Ptb, the national metrology institute in Germany. Sophisticated logistics was developed and installed. High degree of automation was achieved by robots for dosimeter assembly and machines for packing, labelling and unpacking of the dosimeters. To become a sustainable dosimetry system not only

  16. User's manual of a supporting system for treatment planning in boron neutron capture therapy. JAERI computational dosimetry system

    International Nuclear Information System (INIS)

    Kumada, Hiroaki; Torii, Yoshiya

    2002-09-01

    A boron neutron capture therapy (BNCT) with epithermal neutron beam is expected to treat effectively for malignant tumor that is located deeply in the brain. It is indispensable to estimate preliminarily the irradiation dose in the brain of a patient in order to perform the epithermal neutron beam BNCT. Thus, the JAERI Computational Dosimetry System (JCDS), which can calculate the dose distributions in the brain, has been developed. JCDS is a software that creates a 3-dimensional head model of a patient by using CT and MRI images and that generates a input data file automatically for calculation neutron flux and gamma-ray dose distribution in the brain by the Monte Carlo code: MCNP, and that displays the dose distribution on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By treating CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is able to be made easily. The three-dimensional head image is editable to simulate the state of a head after its surgical processes such as skin flap opening and bone removal for the BNCT with craniotomy that are being performed in Japan. JCDS can provide information for the Patient Setting System to set the patient in an actual irradiation position swiftly and accurately. This report describes basic design and procedure of dosimetry, operation manual, data and library structure for JCDS (ver.1.0). (author)

  17. Study on the establishment of retrospective dosimetry system for nuclear radiation accident(II)

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Jae Shik; Chai, Ha Seok; Lee, Jong Ok [Chungnam National Univ., Taejon (Korea, Republic of)

    1999-03-15

    This study was driven forward centering around physical techniques in retrospective dosimetry system for encountering nuclear radiation accident. The results obtained through this study are summarized as follow : the minimal facilities based on physical techniques should be assured at KINS for appropriate operation and establishment of retrospective accident dosimetry system, the necessary apparatus and man power for retrospective dose assessment by physical techniques might be operated flexibly, however, CL and TL/OSL readers should be equipped with the highest priority, a series of comparative examination of several physical techniques for retrospective dose assessment revealed that most of the irradiated materials around accident sites are usable for the dose assessment, if a priori study on the dosimetrical characteristics of those materials is preceded in accordance with the species of the collectable samples, the results of the study on the CL-dose response and radiation energy dependence of sugar and sorbitol, showed the nonlinearity in CL-dose relationship at the range of low dose(less than 5 Gy), and it led us to perform a study on the correction of the nonlinearity, and in the later study, CL output showed heavy dependence on radiation energy in the energy below around 100 keV and accordingly, a study on the correction for the energy dependence was also carried out, ve were able to obtain good results as a first attempt to carry out such corrections.

  18. Internal dosimetry hazard and risk assessments: methods and applications

    International Nuclear Information System (INIS)

    Roberts, G.A.

    2006-01-01

    Routine internal dose exposures are typically (in the UK nuclear industry) less than external dose exposures: however, the costs of internal dosimetry monitoring programmes can be significantly greater than those for external dosimetry. For this reason decisions on when to apply routine monitoring programmes, and the nature of these programmes, can be more critical than for external dosimetry programmes. This paper describes various methods for performing hazard and risk assessments which are being developed by RWE NUKEM Limited Approved Dosimetry Services to provide an indication when routine internal dosimetry monitoring should be considered. (author)

  19. A Liquid Scintillator System for Dosimetry of Photon and Proton Beams

    International Nuclear Information System (INIS)

    Beddar S

    2010-01-01

    We have developed a 3D system based on liquid scintillator (LS) for the dosimetry of photon and proton therapy. We have validated the LS detector system for fast and accurate quality assurance of IMRT and proton therapy fields. Further improvements are required to optimize the quantitative analysis of the light output provided by the system in photon beams. We have also demonstrated its usefulness for protons as it can determine the position and the range of proton beams. This system has also been shown to be capable of fast, sub-millimeter spatial localization of proton spots delivered in a 3D volume and could be used for quality assurance of IMPT. Further developments are on-going to measure beam intensities in 3D.

  20. Characterization of the materials used in the construction of a physical phantom for calibration of {sup 18}F-FDG internal dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Vital, Katia D.; Mendes, Bruno M.; Fonseca, Telma C.F.; Silva, Teógenes A. da, E-mail: katiadvitall@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte - MG (Brazil)

    2017-07-01

    The Internal Dosimetry Laboratory (LDI) of the Nuclear Technology Development Center (CDTN) in Minas Gerais, Brazil, is responsible for the routine monitoring of Occupationally Exposed Individuals (OEIs) to {sup 18}F-FDG and other radiopharmaceuticals produced at CDTN. The monitoring system is usually calibrated using a physical head simulator, since {sup 18}F is usually incorporated into the brain at the time of contamination. However, the geometry of the brain is not adequately represented by the latex pocket, which does not fill the entire volume of the volume skull. In this study, the characterization of the materials regarding the composition, density and attenuation coefficient of the materials used in the production of the new physical head simulator was carried out. An equivalent tissue material containing 97% water, 2.5% agar, 0.5% urea and 8 MBq of {sup 18}F-FDG was produced, the interior of the skull was filled with the material. After solidification, experimental measurements were performed on the NaI(Tl) 3 {sup x}3{sup s}cintillation detector, the density of the simulant material was determined by the flotation method and the attenuation coefficient of the XCOM database software provided by NIST. It was concluded that the PVC skull has acceptable characteristics to simulate a human skull in {sup 18}F-FDG internal dosimetry. The agar gel was shown to be a stable material capable of modeling different geometries and simulating the incorporation of {sup 18}F-FDG into the brain. (author)

  1. Characterization of the materials used in the construction of a physical phantom for calibration of 18F-FDG internal dosimetry system

    International Nuclear Information System (INIS)

    Vital, Katia D.; Mendes, Bruno M.; Fonseca, Telma C.F.; Silva, Teógenes A. da

    2017-01-01

    The Internal Dosimetry Laboratory (LDI) of the Nuclear Technology Development Center (CDTN) in Minas Gerais, Brazil, is responsible for the routine monitoring of Occupationally Exposed Individuals (OEIs) to 18 F-FDG and other radiopharmaceuticals produced at CDTN. The monitoring system is usually calibrated using a physical head simulator, since 18 F is usually incorporated into the brain at the time of contamination. However, the geometry of the brain is not adequately represented by the latex pocket, which does not fill the entire volume of the volume skull. In this study, the characterization of the materials regarding the composition, density and attenuation coefficient of the materials used in the production of the new physical head simulator was carried out. An equivalent tissue material containing 97% water, 2.5% agar, 0.5% urea and 8 MBq of 18 F-FDG was produced, the interior of the skull was filled with the material. After solidification, experimental measurements were performed on the NaI(Tl) 3 x 3 s cintillation detector, the density of the simulant material was determined by the flotation method and the attenuation coefficient of the XCOM database software provided by NIST. It was concluded that the PVC skull has acceptable characteristics to simulate a human skull in 18 F-FDG internal dosimetry. The agar gel was shown to be a stable material capable of modeling different geometries and simulating the incorporation of 18 F-FDG into the brain. (author)

  2. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    de Boer, G [University of Colorado, Boulder/CIRES; Argrow, B [University of Colorado; Bland, G [NASA - Goddard Space Flight Center - Wallops Flight Facility; Elston, J [University of Colorado, Boulder; Lawrence, D [University of Colorado; Maslanik, J [University of Colorado; Palo, S [University of Colorado; Tschudi, M [NCAR

    2015-12-01

    The use of unmanned aerial systems (UAS) is becoming increasingly popular for a variety of applications. One way in which these systems can provide revolutionary scientific information is through routine measurement of atmospheric conditions, particularly properties related to clouds, aerosols, and radiation. Improved understanding of these topics at high latitudes, in particular, has become very relevant because of observed decreases in ice and snow in polar regions.

  3. Dosimetry Service

    CERN Multimedia

    2006-01-01

    Cern Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry Dosimetry Service is open every morning from 8.30 - 12.00. Closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after the use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel. 7 2155 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  4. 75 FR 40014 - Privacy Act of 1974, as Amended; Proposed System of Records and Routine Use Disclosures

    Science.gov (United States)

    2010-07-13

    ...: Economic Recovery List (ERL) Database, Social Security Administration. SYSTEM CLASSIFICATION: None. SYSTEM... SOCIAL SECURITY ADMINISTRATION Privacy Act of 1974, as Amended; Proposed System of Records and Routine Use Disclosures AGENCY: Social Security Administration (SSA). ACTION: Proposed System of Records...

  5. Department of Energy standard for the performance testing of personnel dosimetry systems

    International Nuclear Information System (INIS)

    1986-12-01

    This standard is intended to be used in the Department of Energy Laboratory Accreditation Program (DOELAP) for personnel dosimetry systems. It is based on the American National Standards Institute's (ANSI) ''Criteria for Testing Personnel Dosimetry Performance,'' ANSI N13.11-1983, recommendations made to DOE in ''Guidelines for the Calibration of Personnel Dosimeters,'' Pacific Northwest Laboratory (PNL)-4515 and comments received during peer review by DOE and DOE contractor personnel. The recommendations contained in PNL-4515 were based on an evaluation of ANSI N13.11 conducted for the Office of Nuclear Safety, DOE, by PNL. Parts of ANSI N13.11 that did not require modification were used essentially intact in this standard to maintain consistency with nationally recognized standards. Modifications to this standard have resulted from several DOE/DOE contractor reviews and a pilot testing session. An initial peer review by selected DOE and DOE contractor representatives on technical content was conducted in 1983. A review by DOE field offices, program offices, and contractors was conducted in mid-1984. A pilot performance testing session sponsored by the Office of Nuclear Safety was conducted in early 1985 by the Radiological and Environmental Sciences Laboratory, Idaho Falls. Results of the pilot test were reviewed in late 1985 by a DOE and DOE contractor committee. 11 refs., 4 tabs

  6. Development of the JAERI computational dosimetry system (JCDS) for boron neutron capture therapy. Cooperative research

    CERN Document Server

    Kumada, H; Matsumura, A; Nakagawa, Y; Nose, T; Torii, Y; Uchiyama, J; Yamamoto, K; Yamamoto, T

    2003-01-01

    The Neutron Beam Facility at JRR-4 enables us to carry out boron neutron capture therapy with epithermal neutron beam. In order to make treatment plans for performing the epithermal neutron beam BNCT, it is necessary to estimate radiation doses in a patient's head in advance. The JAERI Computational Dosimetry System (JCDS), which can estimate distributions of radiation doses in a patient's head by simulating in order to support the treatment planning for epithermal neutron beam BNCT, was developed. JCDS is a software that creates a 3-dimentional head model of a patient by using CT and MRI images, and that generates a input data file automatically for calculation of neutron flux and gamma-ray dose distributions in the brain with the Monte Carlo code MCNP, and that displays these dose distributions on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By using CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is...

  7. Standard Practice for Use of a Lif Photo-Fluorescent Film Dosimetry System

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This practice covers the handling, testing, and procedure for using a lithium fluoride (LiF)-based photo-fluorescent film dosimetry system to measure absorbed dose (relative to water) in materials irradiated by photons or electrons. Other alkali halides that may also exhibit photofluorescence (for example, NaCl, NaF, and KCl) are not covered in this practice. Although various alkali halides have been used for dosimetry for years utilizing thermoluminescence, the use of photoluminescence is relatively new. 1.2 This practice applies to photo-fluorescent film dosimeters (referred hereafter as photo-fluorescent dosimeters) that can be used within part or all of the following ranges: 1.2.1 Absorbed dose range of 5 10-2 to 3 102 kGy (1-3). 1.2.2 Absorbed dose rate range of 0.3 to 2 10 4 Gy/s (2-5)). 1.2.3 Radiation energy range for photons of 0.05 to 10 MeV (2). 1.2.4 Radiation energy range for electrons of 0.1 to 10 MeV (2). 1.2.5 Radiation temperature range of -20 to +60°C (6,7). 1.3 This standard doe...

  8. Verification of the computational dosimetry system in JAERI (JCDS) for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Kumada, H; Yamamoto, K; Matsumura, A; Yamamoto, T; Nakagawa, Y; Nakai, K; Kageji, T

    2004-01-01

    Clinical trials for boron neutron capture therapy (BNCT) by using the medical irradiation facility installed in Japan Research Reactor No. 4 (JRR-4) at Japan Atomic Energy Research Institute (JAERI) have been performed since 1999. To carry out the BNCT procedure based on proper treatment planning and its precise implementation, the JAERI computational dosimetry system (JCDS) which is applicable to dose planning has been developed in JAERI. The aim of this study was to verify the performance of JCDS. The experimental data with a cylindrical water phantom were compared with the calculation results using JCDS. Data of measurements obtained from IOBNCT cases at JRR-4 were also compared with retrospective evaluation data with JCDS. In comparison with phantom experiments, the calculations and the measurements for thermal neutron flux and gamma-ray dose were in a good agreement, except at the surface of the phantom. Against the measurements of clinical cases, the discrepancy of JCDS's calculations was approximately 10%. These basic and clinical verifications demonstrated that JCDS has enough performance for the BNCT dosimetry. Further investigations are recommended for precise dose distribution and faster calculation environment

  9. Skin dosimetry - radiological protection aspects of skin dosimetry

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1991-01-01

    Following a Workshop in Skin Dosimetry, a summary of the radiological protection aspects is given. Aspects discussed include routine skin monitoring and dose limits, the need for careful skin dosimetry in high accidental exposures, techniques for assessing skin dose at all relevant depths and the specification of dose quantities to be measured by personal dosemeters and the appropriate methods to be used in their calibration. (UK)

  10. Comparisons between direct ion storage and thermoluminescence dosimetry individual monitoring systems, and internet reporting

    International Nuclear Information System (INIS)

    Kiuru, A.; Kahilainen, J.; Hyvoenen, H.; Vartiainen, E.

    2001-01-01

    A new electronic direct ion storage (DIS) dosemeter allows accumulated personal dose equivalent H p (d) at depths of 10 mm and 0.07 mm to be monitored in a few seconds by inserting the dosemeter into a local reader without deleting the accumulated dose. The DIS system meets general requirements on individual monitoring of hospital personnel using ionising radiation. It differs greatly from off-line thermoluminescence dosimetry systems and offers many additional benefits. The non-volatile reading takes only 5 s, is taken as often as needed, and the data are collected into a dose database, where background radiation is subtracted. Individual personnel doses are reported in Intranet as well as on the Internet at regular intervals to the National Regulatory Authorities. (author)

  11. A study on the development of personal radiation dosimetry system based on the pulsed optically stimulated luminescence of α-Al2O3:C

    International Nuclear Information System (INIS)

    Lee, Sang Yoon

    2000-02-01

    High quality radiation dosimetry is for workers who rely upon personal dosimeters to record the amount of radiation to which they are exposed. Radiation physicists have been exploring thermoluminescence dosimeter (TLD) for personal monitoring since the mid 1960s, although, widespread use has only occurred in the last 20 years as automated analytical systems and high quality TLD crystals became commercially available. nowadays, multiple TLD (thermoluminescence dosimeter) chips with appropriate physical filters are generally used for measurements of the personal dose equivalent quantities, H p (d). Though the TLD offers several advantages not possessed by radiological film, it does not offer the some type of advantages as films: re-analysis of an exposure situation is prohibited because the analysis process clears all of the useful dosimetric traps and a record of the luminescence intensity in the form of a glow curve is all that is available after analysis. In addition, the high heating temperatures restrict packaging methods and prevent competitively priced thin films of TLD crystal powders. Optically stimulated luminescence (OSL) technology avoids many engineering limitations imposed by the high heating temperatures used for TLD technology. OSL crystalline powders can be dispersed in various plastics unable to withstand the TLD heating regimen. With uniform dispersion in the plastic, mass-manufacturing techniques can produce large quantities of identically performing detectors. The first proposal conducted by Markey et al. for applications and potentials of α-AI 2 O 3 :C for OSL dosimetry opened a new era for this phosphor. Pulsed and continuous wave OSL studies carried out on α-AI 2 O 3 :C have shown that the material seems to be the most promising for routine application of OSL for dosimetric purposes. The main objective of this study is to develop a multi-area personal OSL dosimetry system using α-AI 2 O 3 :C by taking advantage of its optical properties and

  12. Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density.

    Science.gov (United States)

    Marroquin, Elsa Y León; Herrera González, José A; Camacho López, Miguel A; Barajas, José E Villarreal; García-Garduño, Olivia A

    2016-09-08

    Radiochromic film has become an important tool to verify dose distributions for intensity-modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newton's rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side-orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by mini-mizing the contribution to the total dose uncertainty

  13. Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density

    Science.gov (United States)

    Marroquin, Elsa Y. León; Herrera González, José A.; Camacho López, Miguel A.; Barajas, José E. Villarreal

    2016-01-01

    Radiochromic film has become an important tool to verify dose distributions for intensity‐modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newton's rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side‐orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by minimizing the contribution to the total dose

  14. Organ dosimetry

    International Nuclear Information System (INIS)

    Kaul, Dean C.; Egbert, Stephen D.; Otis, Mark D.; Kuhn, Thomas; Kerr, George D.; Eckerman, Keith F.; Cristy, Mark; Ryman, Jeffrey C.; Tang, Jabo S.; Maruyama, Takashi

    1987-01-01

    This chapter describes the technical approach, complicating factors, and sensitivities and uncertainties of calculations of doses to the organs of the A-bomb survivors. It is the object of the effort so described to provide data that enables the dosimetry system to determine the fluence, kerma, absorbed dose, and similar quantities in 14 organs and the fetus, specified as being of radiobiological interest. This object was accomplished through the use of adjoint Monte Carlo computations, which use a number of random particle histories to determine the relationship of incident neutrons and gamma rays to those transported to a target organ. The system uses these histories to correlate externally-incident energy- and angle-differential fluences with the fluence spectrum (energy differential only) within the target organ. In order for the system to work in the most efficient manner possible, two levels of data were provided. The first level, represented by approximately 6,000 random adjoint-particle histories, enables the computation of the fluence spectrum with sufficient precision to provide statistically reliable (± 6 %) mean doses within any given organ. With this limited history inventory, the system can be run rapidly for all survivors. Mean organ dose and dose uncertainty are obtainable in this mode. The second mode of operation enables the system to produce a good approximation to fluence spectrum within any organ or to produce the dose in each of an array of organ subvolumes. To be statistically reliable, this level of detail requires far more random histories, approximately 40,000 per organ. Thus, operation of the dosimetry system in this mode (i.e., with this data set) is intended to be on an as-needed, organ-specific basis, since the system run time is eight times that in the mean dose mode. (author)

  15. Reshaping of computational system for dosimetry in neutron and photons radiotherapy based in stochastic methods - SISCODES

    International Nuclear Information System (INIS)

    Trindade, Bruno Machado

    2011-02-01

    This work shows the remodeling of the Computer System for Dosimetry of Neutrons and Photons in Radiotherapy Based on Stochastic Methods . SISCODES. The initial description and status, the alterations and expansions (proposed and concluded), and the latest system development status are shown. The SISCODES is a system that allows the execution of a 3D computational planning in radiation therapy, based on MCNP5 nuclear particle transport code. The SISCODES provides tools to build a patient's voxels model, to define a treatment planning, to simulate this planning, and to view the results of the simulation. The SISCODES implements a database of tissues, sources and nuclear data and an interface to access then. The graphical SISCODES modules were rewritten or were implemented using C++ language and GTKmm library. Studies about dose deviations were performed simulating a homogeneous water phantom as analogue of the human body in radiotherapy planning and a heterogeneous voxel phantom, pointing out possible dose miscalculations. The Soft-RT and PROPLAN computer codes that do interface with SISCODES are described. A set of voxels models created on the SISCODES are presented with its respective sizes and resolutions. To demonstrate the use of SISCODES, examples of radiation therapy and dosimetry simulations for prostate and heart are shown. Three protocols were simulated on the heart voxel model: Sm-153 filled balloon and P-32 stent, to prevent angioplasty restenosis; and Tl-201 myocardial perfusion, to imaging. Teletherapy with 6MV and 15MV beams were simulated to the prostate, and brachytherapy with I-125 seeds. The results of these simulations are shown on isodose curves and on dose-volume histograms. The SISCODES shows to be a useful tool for research of new radiation therapy treatments and, in future, can also be useful in medical practice. At the end, future improvements are proposed. I hope this work can contribute to develop more effective radiation therapy

  16. Evaluation of a synthetic single-crystal diamond detector for relative dosimetry on the Leksell Gamma Knife Perfexion radiosurgery system

    Energy Technology Data Exchange (ETDEWEB)

    Mancosu, Pietro; Reggiori, Giacomo, E-mail: giacomo.reggiori@humanitas.it; Stravato, Antonella; Gaudino, Anna; Lobefalo, Francesca; Palumbo, Valentina; Tomatis, Stefano [Physics Service of Radiation Oncology Department, Clinical and Research Center, Rozzano, Milan 20098 (Italy); Navarria, Piera; Ascolese, Anna; Scorsetti, Marta [Radiation Oncology Department, Humanitas Clinical and Research Center, Rozzano, Milan 20089 (Italy); Picozzi, Piero [Neurosurgery Department, Humanitas Clinical and Research Center, Rozzano, Milan 20089 (Italy); Marinelli, Marco; Verona-Rinati, Gianluca [Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Roma 00133 (Italy)

    2015-09-15

    Purpose: To evaluate the new commercial PTW-60019 synthetic single-crystal microDiamond detector (PTW, Freiburg, Germany) for relative dosimetry measurements on a clinical Leksell Gamma Knife Perfexion radiosurgery system. Methods: Detector output ratios (DORs) for 4 and 8 mm beams were measured using a microDiamond (PTW-60019), a stereotactic unshielded diode [IBA stereotactic field detector (SFD)], a shielded diode (IBA photon field detector), and GafChromic EBT3 films. Both parallel and transversal acquisition directions were considered for PTW-60019 measurements. Measured DORs were compared to the new output factor reference values for Gamma Knife Perfexion (0.814 and 0.900 for 4 and 8 mm, respectively). Profiles in the three directions were also measured for the 4 mm beam to evaluate full width at half maximum (FWHM) and penumbra and to compare them with the corresponding Leksell GammaPlan profiles. Results: FWHM and penumbra for PTW-60019 differed from the calculated values by less than 0.2 and 0.3 mm, for the parallel and transversal acquisitions, respectively. GafChromic films showed FWHM and penumbra within 0.1 mm. The output ratio obtained with the PTW-60019 for the 4 mm field was 1.6% greater in transverse direction compared to the nominal value. Comparable differences up to 0.8% and 1.0% for, respectively, GafChromic films and SFD were found. Conclusions: The microDiamond PTW-60019 is a suitable detector for commissioning and routine use of Gamma Knife with good agreement of both DORs and profiles in the three directions.

  17. Evaluation of a synthetic single-crystal diamond detector for relative dosimetry on the Leksell Gamma Knife Perfexion radiosurgery system

    International Nuclear Information System (INIS)

    Mancosu, Pietro; Reggiori, Giacomo; Stravato, Antonella; Gaudino, Anna; Lobefalo, Francesca; Palumbo, Valentina; Tomatis, Stefano; Navarria, Piera; Ascolese, Anna; Scorsetti, Marta; Picozzi, Piero; Marinelli, Marco; Verona-Rinati, Gianluca

    2015-01-01

    Purpose: To evaluate the new commercial PTW-60019 synthetic single-crystal microDiamond detector (PTW, Freiburg, Germany) for relative dosimetry measurements on a clinical Leksell Gamma Knife Perfexion radiosurgery system. Methods: Detector output ratios (DORs) for 4 and 8 mm beams were measured using a microDiamond (PTW-60019), a stereotactic unshielded diode [IBA stereotactic field detector (SFD)], a shielded diode (IBA photon field detector), and GafChromic EBT3 films. Both parallel and transversal acquisition directions were considered for PTW-60019 measurements. Measured DORs were compared to the new output factor reference values for Gamma Knife Perfexion (0.814 and 0.900 for 4 and 8 mm, respectively). Profiles in the three directions were also measured for the 4 mm beam to evaluate full width at half maximum (FWHM) and penumbra and to compare them with the corresponding Leksell GammaPlan profiles. Results: FWHM and penumbra for PTW-60019 differed from the calculated values by less than 0.2 and 0.3 mm, for the parallel and transversal acquisitions, respectively. GafChromic films showed FWHM and penumbra within 0.1 mm. The output ratio obtained with the PTW-60019 for the 4 mm field was 1.6% greater in transverse direction compared to the nominal value. Comparable differences up to 0.8% and 1.0% for, respectively, GafChromic films and SFD were found. Conclusions: The microDiamond PTW-60019 is a suitable detector for commissioning and routine use of Gamma Knife with good agreement of both DORs and profiles in the three directions

  18. Experimental dosimetry in conformal breast teletherapy compared with the planning system

    International Nuclear Information System (INIS)

    Nogueira, Luciana Batista; Silva, Hugo Leonardo Lemos; Passos Ribeiro de Campos, Tarcísio

    2015-01-01

    The objective of this study was to compare and analyse the absorbed dose profiles from the conformal radiotherapy planning and experimental dosimetry taken in a breast anthropomorphic and anthropometric phantom. Conformal radiotherapy planning was elaborated in the Treatment Planning System (TPS). EBT2 Gafchromic radiochromic films were applied as dosimeters, positioned internally and superficially in the breast phantom. The standard radiation protocol was applied in the breast phantom. The films were digitalised, and their responses were analysed in RGB. The optical densities were processed, reproducing the spatial dose distribution. - Highlights: • Distributions of absorbed doses were generated by the TPS and measured by radiochromic films. • The breast phantom simulated a human breast in position for treatment. • A large portion of the glandular tissue absorbed doses that were equivalent to the radiotherapy planning. • There were regions of hot spots and small areas of under dosage in deeper areas at the lung interface

  19. Real-time dosimetry system in catheterisation laboratory: utility as a learning tool in radiation protection

    International Nuclear Information System (INIS)

    Pinto Monedero, M.; Rodriguez Cobo, C.; Pifarre Martinez, X.; Ruiz Martin, J.; Barros Candelero, J.M.; Goicolea Ruigomez, J.; Diaz Blaires, G.; Garcia Lunar, I.

    2015-01-01

    Document available in abstract form only. Full text of publication follows: Workers at the catheter laboratory are among the most exposed to ionising radiation in hospitals. However, it is difficult to be certain of the radiation doses received by the staff, as personal dosemeters are often misused, and thus, the dose history is not reliable. Moreover, the information provided by personal dosemeters corresponds to the monthly accumulated dose, so corrective actions tends to be delayed. The purpose of this work is, on the one hand, to use a real-time dosimetry system to establish the occupational doses per procedure of workers at the catheter laboratories and, on the other hand, to evaluate its utility as a learning tool for radiation protection purposes with the simultaneous video recording of the interventions. (authors)

  20. Calculation of the uncertainty of HP (10) evaluation for a thermoluminescent dosimetry system

    International Nuclear Information System (INIS)

    Ferreira, M.S.; Silva, E.R.; Mauricio, C.L.P.

    2016-01-01

    Full interpretation of dose assessment only can be performed when the uncertainty of the measurement is known. The aim of this study is to calculate the uncertainty of the TL dosimetry system of the LDF/IRD for evaluation of H P (10) for photons. It has been done by experimental measurements, extraction of information from documents and calculation of uncertainties based on ISO GUM. Energy and angular dependence is the most important source to the combined u c (y) and expanded (U) uncertainty. For 10 mSv, it was obtained u c (y) = 1,99 mSv and U = 3,98 mSv for 95% of coverage interval. (author)

  1. Facilities and procedures used for the performance testing of DOE personnel dosimetry systems

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, P.L.; Fox, R.A.; Hogan, R.T.; Holbrook, K.L.; Hooker, C.D.; Yoder, R.C.

    1983-04-01

    Radiological calibration facilities for personnel dosimeter testing were developed at the Pacific Northwest Laboratory (PNL) for the Department of Energy (DOE) to provide a capability for evaluating the performance of DOE personnel dosimetry systems. This report includes the testing methodology used. The informational presented here meets requirements specified in draft ANSI N13.11 for the testing laboratory. The capabilities of these facilities include sealed source irradiations for /sup 137/Cs, several beta-particle emitters, /sup 252/Cf, and machine-generated x-ray beams. The x-ray beam capabilities include filtered techniques maintained by the National Bureau of Standards (NBS) and K-fluorescent techniques. The calibration techniques, dosimeter irradiation procedures, and dose-equivalent calculation methods follow techniques specified by draft ANSI N13.11 where appropriate.

  2. Facilities and procedures used for the performance testing of DOE personnel-dosimetry systems

    International Nuclear Information System (INIS)

    Roberson, P.L.; Fox, R.A.; Hogan, R.T.; Holbrook, K.L.; Hooker, C.D.; Yoder, R.C.

    1983-04-01

    Radiological calibration facilities for personnel dosimeter testing were developed at the Pacific Northwest Laboratory (PNL) for the Department of Energy (DOE) to provide a capability for evaluating the performance of DOE personnel dosimetry systems. This report includes the testing methodology used. The informational presented here meets requirements specified in draft ANSI N13.11 for the testing laboratory. The capabilities of these facilities include sealed source irradiations for 137 Cs, several beta-particle emitters, 252 Cf, and machine-generated x-ray beams. The x-ray beam capabilities include filtered techniques maintained by the National Bureau of Standards (NBS) and K-fluorescent techniques. The calibration techniques, dosimeter irradiation procedures, and dose-equivalent calculation methods follow techniques specified by draft ANSI N13.11 where appropriate

  3. Comparison measurements of the official individual dosimetry systems in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Boehm, J.

    1988-01-01

    At present, about 220,000 radiation workers are subject to individual monitoring of external radiation in the Federal Republic of Germany in accordance with the X-Ray Ordinance and the Radiation Protection Ordinance and the Radiation Protection Ordinance. Each radiation worker must wear at least one individual dosemeter provided by one of the five officially authorized dosemeter services. Requirements for these dosemeter services with respect to technical equipment and personnel are published in the form of a national directive. The five dosemeter services must participate in the comparison measurements for photon radiation with the official dosemeters issued by them. The comparison measurements are organized at least once a year by the Physicalisch-Technische Bundesanstalt (PTB) in agreement with the Federal Minister of Economics. Film dosemeters evaluated with a filter analysis procedure are most frequently used (96.% of all evaluations in 1984) to monitor the whole body exposure to photon radiation. Glass dosemeters play a minor role (0.5%). They are issued by only two officially authorized dosemeter services and are approved for measurements of photons with energies above 45 keV. According to the national directive, thermoluminescence dosemeters may be used only for partial body dosimetry of photon and beta radiation (2.8%). Nuclear track emulsion films are distributed to measure neutrons of energies above 0.5 MeV. A thermoluminescence albedo dosemeter for the measurement of less energetic neutrons is being introduced. The dosimetry systems involved in the comparison measurements and the operational radiation protection monitoring system of the Federal Republic of Germany are described elsewhere. The objective of this work is to describe the performance of the comparison measurements and to give some results obtained from 1979 to 1984

  4. Development of the JAERI computational dosimetry system (JCDS) for boron neutron capture therapy. Cooperative research

    Energy Technology Data Exchange (ETDEWEB)

    Kumada, Hiroaki; Yamamoto, Kazuyoshi; Torii, Yoshiya; Uchiyama, Junzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Matsumura, Akira; Yamamoto, Tetsuya; Nose, Tadao [Tsukuba Univ., Tsukuba, Ibaraki (Japan); Nakagawa, Yoshinobu [National Sanatorium Kagawa-Children' s Hospital, Kagawa (Japan); Kageji, Teruyoshi [Tokushima Univ., Tokushima (Japan)

    2003-03-01

    The Neutron Beam Facility at JRR-4 enables us to carry out boron neutron capture therapy with epithermal neutron beam. In order to make treatment plans for performing the epithermal neutron beam BNCT, it is necessary to estimate radiation doses in a patient's head in advance. The JAERI Computational Dosimetry System (JCDS), which can estimate distributions of radiation doses in a patient's head by simulating in order to support the treatment planning for epithermal neutron beam BNCT, was developed. JCDS is a software that creates a 3-dimentional head model of a patient by using CT and MRI images, and that generates a input data file automatically for calculation of neutron flux and gamma-ray dose distributions in the brain with the Monte Carlo code MCNP, and that displays these dose distributions on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By using CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is able to be made easily. The three-dimensional head image is editable to simulate the state of a head after its surgical processes such as skin flap opening and bone removal in the BNCT with craniotomy that are being performed in Japan. JCDS can provide information for the Patient Setting System which can support to set the patient to an actual irradiation position swiftly and accurately. This report describes basic design of JCDS and functions in several processing, calculation methods, characteristics and performance of JCDS. (author)

  5. Determination of the components of uncertainty for a dosimetry system in radiation protection

    International Nuclear Information System (INIS)

    Lopez, F.; Cabral, T.S.; Peixoto, J.G.

    2013-01-01

    This work is about the theoretical calculation of uncertainties associated to the dosimetry of photons of a 137 Cs source that will be used in a Dosimetry Laboratory. In this case recognition of the influence quantities that provide most uncertainty and the right choice of resolution of auxiliary equipment to obtain the smallest uncertainties according to the laboratory. (author)

  6. A quantification of the effectiveness of EPID dosimetry and software-based plan verification systems in detecting incidents in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Bojechko, Casey; Phillps, Mark; Kalet, Alan; Ford, Eric C., E-mail: eford@uw.edu [Department of Radiation Oncology, University of Washington, 1959 N. E. Pacific Street, Seattle, Washington 98195 (United States)

    2015-09-15

    Purpose: Complex treatments in radiation therapy require robust verification in order to prevent errors that can adversely affect the patient. For this purpose, the authors estimate the effectiveness of detecting errors with a “defense in depth” system composed of electronic portal imaging device (EPID) based dosimetry and a software-based system composed of rules-based and Bayesian network verifications. Methods: The authors analyzed incidents with a high potential severity score, scored as a 3 or 4 on a 4 point scale, recorded in an in-house voluntary incident reporting system, collected from February 2012 to August 2014. The incidents were categorized into different failure modes. The detectability, defined as the number of incidents that are detectable divided total number of incidents, was calculated for each failure mode. Results: In total, 343 incidents were used in this study. Of the incidents 67% were related to photon external beam therapy (EBRT). The majority of the EBRT incidents were related to patient positioning and only a small number of these could be detected by EPID dosimetry when performed prior to treatment (6%). A large fraction could be detected by in vivo dosimetry performed during the first fraction (74%). Rules-based and Bayesian network verifications were found to be complimentary to EPID dosimetry, able to detect errors related to patient prescriptions and documentation, and errors unrelated to photon EBRT. Combining all of the verification steps together, 91% of all EBRT incidents could be detected. Conclusions: This study shows that the defense in depth system is potentially able to detect a large majority of incidents. The most effective EPID-based dosimetry verification is in vivo measurements during the first fraction and is complemented by rules-based and Bayesian network plan checking.

  7. Effect of Remote Back-Up Protection System Failure on the Optimum Routine Test Time Interval of Power System Protection

    Directory of Open Access Journals (Sweden)

    Y Damchi

    2013-12-01

    Full Text Available Appropriate operation of protection system is one of the effective factors to have a desirable reliability in power systems, which vitally needs routine test of protection system. Precise determination of optimum routine test time interval (ORTTI plays a vital role in predicting the maintenance costs of protection system. In the most previous studies, ORTTI has been determined while remote back-up protection system was considered fully reliable. This assumption is not exactly correct since remote back-up protection system may operate incorrectly or fail to operate, the same as the primary protection system. Therefore, in order to determine the ORTTI, an extended Markov model is proposed in this paper considering failure probability for remote back-up protection system. In the proposed Markov model of the protection systems, monitoring facility is taken into account. Moreover, it is assumed that the primary and back-up protection systems are maintained simultaneously. Results show that the effect of remote back-up protection system failures on the reliability indices and optimum routine test intervals of protection system is considerable.

  8. Computer-based Creativity Enhanced Conceptual Design Model for Non-routine Design of Mechanical Systems

    Institute of Scientific and Technical Information of China (English)

    LI Yutong; WANG Yuxin; DUFFY Alex H B

    2014-01-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  9. Computer-based creativity enhanced conceptual design model for non-routine design of mechanical systems

    Science.gov (United States)

    Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.

    2014-11-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  10. SU-E-T-104: Development of 3 Dimensional Dosimetry System for Gamma Knife

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K; Kwak, J; Cho, B; Lee, D; Ahn, S [Asan Medical Center, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: The aim of this study was to develop a new 3 dimensional dosimetry system to verify the dosimetric accuracy of Leksell Gamma Knife-Perfexion™ (LGK) (Elekta, Norcross, GA). Methods: We designed and manufactured a lightweight dosimetry instrument to be equipped with the head frame to LGK. It consists of a head phantom, a scintillator, a CCD camera and a step motor. The 10×10 cm2 sheet of Gd2O3;Tb phosphor or Gafchromic EBT3 film was located at the center of the 16 cm diameter hemispherical PMMA, the head phantom. The additional backscatter compensating material of 1 cm thick PMMA plate was placed downstream of the phosphor sheet. The backscatter plate was transparent for scintillation lights to reach the CCD camera with 1200×1200 pixels by 5.2 um pitch. With This equipment, 300 images with 0.2 mm of slice gap were acquired under three collimator setups (4mm, 8mm and 16mm), respectively. The 2D projected doses from 3D distributions were compared with the exposured film dose. Results: As all doses normalized by the maximum dose value in 16 mm setup, the relative differences between the equipment dose and film dose were 0.2% for 4mm collimator and 0.5% for 8mm. The acquisition of 300 images by the equipment took less than 3 minutes. Conclusion: The new equipment was verified to be a good substitute to radiochromic film, with which required more time and resources. Especially, the new methods was considered to provide much convenient and faster solution in the 3D dose acquisition for LGK.

  11. Lyoluminescence of saccharides as a tool for large scale dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, Th; Pitt, E; Scharmann, A; Suprihadi, T [Giessen Univ. (Germany, F.R.). 1. Physikalisches Inst.

    1990-01-01

    Lyoluminescence, the radiation induced chemiluminescence of solids like saccharides and salts, has been proposed as a cheap dosemeter for high level dosimetry, i.e. for therapy, accident dosimetry and spice irradiation detection. The tissue-equivalence of materials, as well as the omission of pre- and post-reading handling of these low cost dosemeter materials, may be considered advantageous in comparison with other systems. Up till now one of the factors most inhibiting the introduction of lyoluminescence in routine dosimetry is the insufficiently known role of environmental influences during the solution process, leading to large standard deviations in dose readings. Investigations concerning the behaviour of two typical saccharides and the influence of oxygen on the mechanisms of lyoluminescence are reported. (author).

  12. Dosimetry study for a new in vivo X-ray fluorescence (XRF) bone lead measurement system

    International Nuclear Information System (INIS)

    Nie Huiling; Chettle, David; Luo Liqiang; O'Meara, Joanne

    2007-01-01

    A new 109 Cd γ-ray induced bone lead measurement system has been developed to reduce the minimum detectable limit (MDL) of the system. The system consists of four 16 mm diameter detectors. It requires a stronger source compared to the 'conventional' system. A dosimetry study has been performed to estimate the dose delivered by this system. The study was carried out by using human-equivalent phantoms. Three sets of phantoms were made to estimate the dose delivered to three age groups: 5-year old, 10-year old and adults. Three approaches have been applied to evaluate the dose: calculations, Monte Carlo (MC) simulations, and experiments. Experimental results and analytical calculations were used to validate MC simulation. The experiments were performed by placing Panasonic UD-803AS TLDs at different places in phantoms that representing different organs. Due to the difficulty of obtaining the organ dose and the whole body dose solely by experiments and traditional calculations, the equivalent dose and effective dose were calculated by MC simulations. The result showed that the doses delivered to the organs other than the targeted lower leg are negligibly small. The total effective doses to the three age groups are 8.45/9.37 μSv (female/male), 4.20 μSv, and 0.26 μSv for 5-year old, 10-year old and adult, respectively. An approval to conduct human measurements on this system has been received from the Research Ethics Board based on this research

  13. Activity Of EURADOS In Environmental Solid State Dosimetry

    International Nuclear Information System (INIS)

    Ranogajec-Komor, M.; Duch, M. A.; Haninger, T.

    2015-01-01

    Working Group 3 (WG3) of the European Radiation Dosimetry Group (EURADOS) carries out research projects and coordinated activities to advance the scientific understanding of environmental dosimetry and especially to promote the technical development of new methods in environmental monitoring. In this field of dosimetry, the measurement of small additional doses caused by artificial radiation on top of the natural environmental radiation is a challenge. Further, WG3 stimulates the organisation of intercomparison programmes and the definition of standards and recommendations in the field of environmental radiation monitoring (ERM). WG3 has played a significant role in the harmonisation of early warning dosimetry network stations in Europe and has organised 6 EURADOS intercomparison exercises; in which 42 institutions from 19 countries have participated. Today, about 5000 stations provide real-time dose rate data to a database run by the European Commission. Within WG3 a subgroup (S1) on spectrometry system was formed in 2013. Since then, WG3 has been involved in the field of spectrometry systems used both for dosimetric and spectrometric monitoring in the environment. A remarkable result of the WG3 - S1 is that many members contributed to the new European Joint Research Project 'Metrology for radiological early warning networks in Europe' which started in 2014. A second subgroup WG3 - S2 on passive dosimetry in ERM was inaugurated in 2014. To gain an overview of the passive dosimetry practice in ERM, WG3 - S2 decided to collect information by means of a questionnaire which has been send to European dosimetry services. One of the results was the identification of some open questions, problems in ERM (for example terminology, protocol of routine dosimetry, uncertainty assessment) which require clarification for harmonisation of ERM using passive dosimeters. Another result was that there exists a need for intercomparisons. The first intercomparison for passive

  14. Design project of the dosimetry control system in the independent CO2 loop for cooling the samples irradiated in the RA reactor vertical experimental channels, Vol. V

    International Nuclear Information System (INIS)

    1964-01-01

    Design project of the dosimetry control system in the independent CO 2 loop for cooling the samples irradiated in the RA reactor vertical experimental channels includes the following: calculations of CO 2 gas activity, design of the dosimetry control system, review of the changes that should be done in the RA reactor building for installing the independent CO 2 loop, specification of the materials with cost estimation, engineering drawings of the system [sr

  15. Environmental dosimetry system based on LiF : Mg, Ti (TLD-100)

    International Nuclear Information System (INIS)

    Saez Vergara, J.C.

    1990-01-01

    The report presents the various tests carried out to the characterize a thermoluminescence environmental dosimetry systems, using the phosphor LiF:mg,Ti (TLD-100) in chip form. The holder has been specifically designed in order to obtain simplicity in the operation and to assure correct measurements in terms of the new operational quantities in radiation protection (ICRU-1985). Some topics in TLD Environmental Monitoring are discussed (Dark Current, Reference Light, Zero Reading, Free-in-Air or Phantom Calibration, Fading Correction, Transit Dose, etc.), and the proposed solutions are exposed. The tests performed have been designed to conform with the different existing international Standards and Recommendations (ANSI : N545-1975; IEC: Draft 45B-1987, ISO : DP 8034-19849. The data from an European Interlaboratory Programm (EUR-8932) have been used to evaluate the performance : the TLD System presented is among the best systems using TLD-100. The results obtained in the characterization (linearity, repeatability, detection threshold, residue, angular response, stability of stored information, etc.) show the optimum performance of this dosimetric system in its application to environmental gamma dose monitoring. Based on these results, two operational procedures have been developed for the application of this Dosimetric System, specially in Quality Assurance Monitoring Programs around Nuclear Plants in Spain. (author)

  16. An evaluation of the Panasonic model UD513AC-1 Thermoluminescence Dosimetry system

    International Nuclear Information System (INIS)

    Durrer, R.E. Jr.

    1991-12-01

    An evaluation of the Panasonic UD513AC-1 Thermoluminescence Dosimetry system was performed to determine the system's capabilities as a general purpose thermoluminescence dosimeter measuring device. The tests that were performed included a critique of the user's manual, delimitation of the operating parameters, the quality of construction, and an evaluation of the features that were unique to this system. The UD513AC-1 was found to be an adequate measuring device for most dosimetric applications. It was not well suited for experimental work with thermoluminescence materials due to a low sensitivity displayed by the photomultiplier tube to commonly used materials. The system was well constructed and did not suffer hardware failure during this research. Major attributes of the UD513AC-1 were automatic data storage, highly reproducible heating ramps, an excellent infrared light filter and a unique feature to a single phosphor unit, a dose determination function. Negative aspects of the system included a limited data manipulation capability within the controlling program, a poorly written user's manual, inadequate sensitivity on the part of the photomultiplier tube, and insufficient capability to adjust the hot N 2 gas flow to desired levels

  17. System for routine testing of self-contained and airline breathing equipment

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, H.J.; Hermens, G.A.

    1980-07-01

    A system for routine testing of self-contained and airline breathing equipment, developed by Shell Oil Co., for testing breathing equipment at one of its refineries, consists of an 80 psig air supply for airline respirators; a 500-2100 psig air supply for self-contained units; a regulator test system which uses a mannequin head that simulates human inhalation and which tests the ability of the regulator to keep the mask interior at the correct positive pressure; and an exhalation valve test system which identifies a leaky or sticking valve. The testing system has been in use for about 30 mo and has led to increased acceptance of respiratory protective equipment by workers.

  18. SINDA/SINFLO computer routine, volume 1, revision A. [for fluid flow system analysis

    Science.gov (United States)

    Oren, J. A.; Williams, D. R.

    1975-01-01

    The SINFLO package was developed to modify the SINDA preprocessor to accept and store the input data for fluid flow systems analysis and adding the FLOSOL user subroutine to perform the flow solution. This reduced and simplified the user input required for analysis of flow problems. A temperature calculation method, the flow-hybrid method which was developed in previous VSD thermal simulator routines, was incorporated for calculating fluid temperatures. The calculation method accuracy was improved by using fluid enthalpy rather than specific heat for the convective term of the fluid temperature equation. Subroutines and data input requirements are described along with user subroutines, flow data storage, and usage of the plot program.

  19. ESR Dosimetry

    International Nuclear Information System (INIS)

    Baffa, Oswaldo; Rossi, Bruno; Graeff, Carlos; Kinoshita, Angela; Chen Abrego, Felipe; Santos, Adevailton Bernardo dos

    2004-01-01

    ESR dosimetry is widely used for several applications such as dose assessment in accidents, medical applications and sterilization of food and other materials. In this work the dosimetric properties of natural and synthetic Hydroxyapatite, Alanine, and 2-Methylalanine are presented. Recent results on the use of a K-Band (24 GHz) ESR spectrometer in dosimetry are also presented

  20. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 7 2155 http://cern.ch/rp-dosimetry

  1. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service Tel. 7 2155 http://cern.ch/rp-dosimetry

  2. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 72155 http://cern.ch/rp-dosimetry

  3. Conductivity of alanine solution for high level dosimetry

    International Nuclear Information System (INIS)

    Wieser, A.; Figel, M.; Regulla, D.F.

    1993-01-01

    The amino acid alanine is well known as a dosimetric detector material for high level dosimetry. Its application is based on the formation of radicals by ionising radiation. The free radicals are earlier detected by electron spin resonance (ESR) spectroscopy or chemically after dissolving the irradiated samples. Of all these methods the ESR/alanine system is the most advanced and is suggested for reference dosimetry. At present, however, the high cost of the system is a serious handicap for a large scale routine application in radiation plants. In this study the variation of electrical conductivity of L-alanine solution with applied dose is investigated in the range from 0.5-200 kGy. The conductivity was measured with a 50 MHz RF oscillator. This readout method is uncomplicated and may be suitable for routine application. The experiments were performed with L-alanine solution in glass ampoules. (Author)

  4. Textbook of dosimetry. 4. ed.

    International Nuclear Information System (INIS)

    Ivanov, V.I.

    1999-01-01

    This textbook of dosimetry is devoted to the students in physics and technical physics of high education institutions, confronted with different application of atomic energy as well as with protection of population and environment against ionizing radiations. Atomic energy is highly beneficial for man but unfortunately incorporates potential dangers which manifest in accidents, the source of which is either insufficient training of the personnel, a criminal negligence or insufficient reliability of the nuclear facilities. The majority of the incident and accident events have had as origin the personnel errors. This was the case with both the 'Three Miles Island' (1979) and Chernobyl (1986) NPP accidents. The dosimetry science acquires a vital significance in accident situations since the data obtained by its procedures are essential in choosing the correct immediate actions, behaviour tactics, orientation of liquidation of accident consequences as well as in ensuring the health of population. An important accent is placed in this manual on clarification of the nature of physical processes taken place in dosimetric detectors, in establishing the relation between radiation field characteristics and the detector response as well as in defining different dosimetric quantities. The terminology and the units of physical quantities is based on the international system of units. The book contains the following 15 chapters: 1. Ionizing radiation field; 2. Radiation doses; 3. Physical bases of gamma radiation dosimetry; 4. Ionization dosimetric detectors; 5. Semiconductor dosimetric detectors; 6. Scintillation detection in the gamma radiation dosimetry; 7. Luminescent methods in dosimetry; 8. The photographic and chemical methods of gamma radiation dosimetry; 9. Neutron dosimetry; 10. Dosimetry of high intensity radiation; 11. Dosimetry of high energy Bremsstrahlung; 12. Measurement of the linear energy transfer; 13. Microdosimetry; 14. Dosimetry of incorporated

  5. Towards routine measurements of meteorological and aerosol parameters using small unmanned aerial and tethered balloon systems

    Science.gov (United States)

    Mei, F.; Dexheimer, D.; Hubbe, J. M.; deBoer, G.; Schmid, B.; Ivey, M.; Longbottom, C.; Carroll, P.

    2017-12-01

    The Inaugural Campaigns for ARM Research using Unmanned Systems (ICARUS) had been launched in 2016 and then the effort has been continued in 2017. ICARUS centered on Oliktok Point, Alaska focusses on developing routine operations of Unmanned Aerial Systems (UAS) and Tethered Balloon Systems (TBS). The operation routine practiced during ICARUS 2016 provided valuable guidance for the ICARUS 2017 deployment. During two intensive operation periods in 2017, a small DataHawk II UAS has been deployed to collect data for two weeks each in May and August. Coordinated with DataHawk flights, the TBS has been launched with meteorology sensors such as iMet and Tethersondes, therefore vertical profiles of the basic atmospheric state (temperature, humidity, and horizontal wind) were observed simultaneously by UAS and TBS. In addition, an aerosol payload was attached and launched with 2 TBS flights in April and 7 TBS flights in May, which include a condensation particle counter (CPC, TSI 3007) and two printed optical particle spectrometers (POPS, Handix TBS version). The two POPS were operated at different inlet temperatures. This approach provided potential measurements for aerosol optical closure in future. Measured aerosol properties include total particle number concentrations, particle size distribution, at different ambient temperature and relative humidity. Vertical profiles of atmospheric state and aerosol properties will be discussed based on the coordinated flights. Monthly variation will be assessed with data from the upcoming August flights.

  6. Individual Dose Calculations with Use of the Revised Techa River Dosimetry System TRDS-2009D

    Energy Technology Data Exchange (ETDEWEB)

    Degteva, M. O.; Shagina, N. B.; Tolstykh, E. I.; Vorobiova, M. I.; Anspaugh, L. R.; Napier, Bruce A.

    2009-10-23

    An updated deterministic version of the Techa River Dosimetry System (TRDS-2009D) has been developed to estimate individual doses from external exposure and intake of radionuclides for residents living on the Techa River contaminated as a result of radioactive releases from the Mayak plutonium facility in 1949–1956. The TRDS-2009D is designed as a flexible system that uses, depending on the input data for an individual, various elements of system databases to provide the dosimetric variables requested by the user. Several phases are included in the computation schedule. The first phase includes calculations with use of a common protocol for all cohort members based on village-average-intake functions and external dose rates; individual data on age, gender and history of residence are included in the first phase. This phase results in dose estimates similar to those obtained with system TRDS-2000 used previously to derive risks of health effects in the Techa River Cohort. The second phase includes refinement of individual internal doses for those persons who have had body-burden measurements or exposure parameters specific to the household where he/she lived on the Techa River. The third phase includes summation of individual doses from environmental exposure and from radiological examinations. The results of TRDS-2009D dose calculations have demonstrated for the ETRC members on average a moderate increase in RBM dose estimates (34%) and a minor increase (5%) in estimates of stomach dose. The calculations for the members of the ETROC indicated similar small changes for stomach, but significant increase in RBM doses (400%). Individual-dose assessments performed with use of TRDS-2009D have been provided to epidemiologists for exploratory risk analysis in the ETRC and ETROC. These data provide an opportunity to evaluate the possible impact on radiogenic risk of such factors as confounding exposure (environmental and medical), changes in the Techa River source

  7. Establishment of the Dosicard operational dosimetry system in a nuclear studies center

    International Nuclear Information System (INIS)

    Banchetry, C.

    2001-01-01

    Since the decree of March 1999, each employer of the French nuclear industry must set an operational dosimetry in its company. The method is based on electronic dosimeters equipped with alarms and worn by all the employees. The dosimeters are linked to a computer network. The operational dosimetry is recommended, to optimize the protection of workers and limit the doses received, to respect the principle of equity between the workers, to preserve a ''margin of dose'' in case of any unexpected event. The CEA executives have decided to use the EURISYS MESURES DOSICARD as an operational and complementary dosimetry tool. (author)

  8. Commissioning dosimetry and in situ dose mapping of a semi-industrial Cobalt-60 gamma-irradiation facility using Fricke and Ceric-cerous dosimetry system and comparison with Monte Carlo simulation data

    Science.gov (United States)

    Mortuza, Md Firoz; Lepore, Luigi; Khedkar, Kalpana; Thangam, Saravanan; Nahar, Arifatun; Jamil, Hossen Mohammad; Bandi, Laxminarayan; Alam, Md Khorshed

    2018-03-01

    Characterization of a 90 kCi (3330 TBq), semi-industrial, cobalt-60 gamma irradiator was performed by commissioning dosimetry and in-situ dose mapping experiments with Ceric-cerous and Fricke dosimetry systems. Commissioning dosimetry was carried out to determine dose distribution pattern of absorbed dose in the irradiation cell and products. To determine maximum and minimum absorbed dose, overdose ratio and dwell time of the tote boxes, homogeneous dummy product (rice husk) with a bulk density of 0.13 g/cm3 were used in the box positions of irradiation chamber. The regions of minimum absorbed dose of the tote boxes were observed in the lower zones of middle plane and maximum absorbed doses were found in the middle position of front plane. Moreover, as a part of dose mapping, dose rates in the wall positions and some selective strategic positions were also measured to carry out multiple irradiation program simultaneously, especially for low dose research irradiation program. In most of the cases, Monte Carlo simulation data, using Monte Carlo N-Particle eXtended code version MCNPX 2.7., were found to be in congruence with experimental values obtained from Ceric-cerous and Fricke dosimetry; however, in close proximity positions from the source, the dose rate variation between chemical dosimetry and MCNP was higher than distant positions.

  9. In-vivo (entrance) dose measurements in external beam radiotherapy with aqueous FBX dosimetry system

    International Nuclear Information System (INIS)

    Semwal, M.K.; Thakur, P.K.; Bansal, A.K.; Vidyasagar, P.B.

    2005-01-01

    FBX aqueous chemical dosimetry system has been found useful in radiotherapy owing to its low dose measuring capability. In the present work, entrance dose measurements in external beam radiotherapy on a telecobalt machine were carried out with the system on 100 patients. Treatments involving simple beam arrangement of open parallel-opposed beams in cranial and pelvic irradiations were selected for this study. In place of a spectrophotometer, a simple and inexpensive colorimeter was used for absorbance measurements. The purpose was to assess the efficacy of the FBX system for in-vivo dose measurements. The results obtained show that the average discrepancy between the measured and expected dose for both categories of patients was 0.2% (standard deviation 3.2%) with a maximum of +1 0.3%. There were 5.5% cases showing more than ± 5% discrepancy. Comparison of the results obtained with published work on entrance dose measurements, with diode detectors, shows that the inexpensive FBX system can be used for in-vivo (entrance) dose measurements for simple beam arrangements in radiotherapy and can thus serve as a useful QA tool. (author)

  10. Development of a calorimetric system for electron beam dosimetry in radiation processing

    International Nuclear Information System (INIS)

    Banados P, H.E.

    1994-01-01

    A calorimetric system for electron beam dosimetry in radiation processing was developed. The system is composed of a graphite core calorimeter, the temperature measuring and electrical calibrating instrumentation, a microcomputer and the software for the system automation. The research aimed at the optimization of the project parameters, the development of advanced methodologies for calibrating the temperature sensor, the determination of the thermal capacity as a function of the temperature, the measurement of the absorbed dose, and the development of the software needed for the system operation. The operating range extends from 0.1 kGy to 30 kGy. The uncertainty in the measurement of the absorbed dose was estimated to be ± 1.8% at the 95% confidence level. Comparative tests of the absorbed dose measurements were made using the IPEN electron accelerator. The results obtained showed an excellent agreement between the absorbed dose determined by the calorimeter and the absorbed dose calculated from the nominal power delivered by the accelerator. (author). 67 refs, 63 figs, 2 tabs

  11. Accreditation of a system of extremity dosimetry: validation and uncertainty of method; Acreditacion de un sistema de dosimetria de extremidades: validacion e incertidumbre del metodo

    Energy Technology Data Exchange (ETDEWEB)

    Romero Gutierrez, A. M.; Rodriguez Jimenez, R.; Lopez Moyano, J. L.

    2013-07-01

    The authors' goal is to spread the practical experience gained during the accreditation process paying special attention to the process of method validation and estimation uncertainty of the dosimetry system. (Author)

  12. Twenty new ISO standards on dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Farrar IV, H.

    2000-01-01

    Twenty standards on essentially all aspects of dosimetry for radiation processing were published as new ISO standards in December 1998. The standards are based on 20 standard practices and guides developed over the past 14 years by Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). The transformation to ISO standards using the 'fast track' process under ISO Technical Committee 85 (ISO/TC85) commenced in 1995 and resulted in some overlap of technical information between three of the new standards and the existing ISO Standard 11137 Sterilization of health care products - Requirements for validation and routine control - Radiation sterilization. Although the technical information in these four standards was consistent, compromise wording in the scopes of the three new ISO standards to establish precedence for use were adopted. Two of the new ISO standards are specifically for food irradiation applications, but the majority apply to all forms of gamma, X-ray, and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruit, vegetables, meats, spices, processed foods, plastics, inks, medical wastes, and paper. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties using the new ISO Type A and Type B evaluations. Unfortunately, nine of the 20 standards just adopted by the ISO are not the most recent versions of these standards and are therefore already out of date. To help solve this problem, efforts are being made to develop procedures to coordinate the ASTM and ISO development and revision processes for these and future ASTM-originating dosimetry standards. In the meantime, an additional four dosimetry standards have recently been published by the ASTM but have

  13. Risks of circulatory diseases among Mayak PA workers with radiation doses estimated using the improved Mayak Worker Dosimetry System 2008

    Energy Technology Data Exchange (ETDEWEB)

    Moseeva, Maria B.; Azizova, Tamara V.; Grigoryeva, Evgenia S. [Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region (Russian Federation); Haylock, Richard [Public Health of England, London (United Kingdom)

    2014-05-15

    The new Mayak Worker Dosimetry System 2008 (MWDS-2008) was published in 2013 and supersedes the Doses-2005 dosimetry system for Mayak Production Association (PA) workers. It provides revised external and internal dose estimates based on the updated occupational history data. Using MWDS-2008, a cohort of 18,856 workers first employed at one of the main Mayak PA plants during 1948-1972 and followed up to 2005 was identified. Incidence and mortality risks from ischemic heart disease (IHD) (International Classification of Diseases (ICD)-9 codes 410-414) and from cerebrovascular diseases (CVD) (ICD-9 codes 430-438) were examined in this cohort and compared with previously published risk estimates in the same cohort based on the Doses-2005 dosimetry system. Significant associations were observed between doses from external gamma-rays and IHD and CVD incidence and also between internal doses from alpha-radiation and IHD mortality and CVD incidence. The estimates of excess relative risk (ERR)/Gy were consistent with those estimates from the previous studies based on Doses-2005 system apart from the relationship between CVD incidence and internal liver dose where the ERR/Gy based on MWDS-2008 was just over three times higher than the corresponding estimate based on Doses-2005 system. Adjustment for smoking status did not show any effect on the estimates of risk from internal alpha-particle exposure. (orig.)

  14. User's manual of a supporting system for treatment planning in boron neutron capture therapy. JAERI computational dosimetry system

    CERN Document Server

    Kumada, H

    2002-01-01

    A boron neutron capture therapy (BNCT) with epithermal neutron beam is expected to treat effectively for malignant tumor that is located deeply in the brain. It is indispensable to estimate preliminarily the irradiation dose in the brain of a patient in order to perform the epithermal neutron beam BNCT. Thus, the JAERI Computational Dosimetry System (JCDS), which can calculate the dose distributions in the brain, has been developed. JCDS is a software that creates a 3-dimensional head model of a patient by using CT and MRI images and that generates a input data file automatically for calculation neutron flux and gamma-ray dose distribution in the brain by the Monte Carlo code: MCNP, and that displays the dose distribution on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By treating CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is able to be made easily. The three-dimensional head image is editable to ...

  15. Neutron dosimetry system SAIPS: Manual for users and programmers (Version 87-02)

    International Nuclear Information System (INIS)

    Berzonis, M.A.; Bondars, Kh.Ya.; Niedritis, A.M.

    1988-07-01

    SAIPS is a system used for neutron dosimetry by foil activation, containing a package of programs and a data base of neutron activation cross-sections. A description is given of the SAIPS indexed procedures and users language, which are designed for producing input data for programs unfolding neutron spectra from reaction rate measurements, for carrying out calculations and processing and comparing the results obtained, for utilizing the additional capabilities of the system, and for setting up a working version of the system from the magnetic tapes used for distribution. A description is given of the logical structure of the data sets containing the libraries of neutron cross-section and a priori spectra and also the libraries of calculated spectra. The annexes give examples of SAIPS in use, of the contents of the a priori spectra and neutron cross-section libraries, and of the contents of the SAIPS distribution tapes. SAIPS contains programs in PL/1 (opt), FORTRAN IV(H) and ASSEMBLER. 25 refs

  16. Internal dosimetry technical basis manual

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  17. Internal dosimetry technical basis manual

    International Nuclear Information System (INIS)

    1990-01-01

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs

  18. An assessment of routine primary care health information system data quality in Sofala Province, Mozambique

    Directory of Open Access Journals (Sweden)

    Cuembelo Fatima

    2011-05-01

    Full Text Available Abstract Background Primary health care is recognized as a main driver of equitable health service delivery. For it to function optimally, routine health information systems (HIS are necessary to ensure adequate provision of health care and the development of appropriate health policies. Concerns about the quality of routine administrative data have undermined their use in resource-limited settings. This evaluation was designed to describe the availability, reliability, and validity of a sample of primary health care HIS data from nine health facilities across three districts in Sofala Province, Mozambique. HIS data were also compared with results from large community-based surveys. Methodology We used a methodology similar to the Global Fund to Fight AIDS, Tuberculosis and Malaria data verification bottom-up audit to assess primary health care HIS data availability and reliability. The quality of HIS data was validated by comparing three key indicators (antenatal care, institutional birth, and third diptheria, pertussis, and tetanus [DPT] immunization with population-level surveys over time. Results and discussion The data concordance from facility clinical registries to monthly facility reports on five key indicators--the number of first antenatal care visits, institutional births, third DPT immunization, HIV testing, and outpatient consults--was good (80%. When two sites were excluded from the analysis, the concordance was markedly better (92%. Of monthly facility reports for immunization and maternity services, 98% were available in paper form at district health departments and 98% of immunization and maternity services monthly facility reports matched the Ministry of Health electronic database. Population-level health survey and HIS data were strongly correlated (R = 0.73, for institutional birth, first antenatal care visit, and third DPT immunization. Conclusions Our results suggest that in this setting, HIS data are both reliable and

  19. Nuclear accident dosimetry systems: U.K. measurements at the sixteenth intercomparison at O.R.N.L. August 1979

    International Nuclear Information System (INIS)

    Delafield, H.J.; Gibson, J.A.B.; Holt, P.D.; Harrison, K.G.

    1980-04-01

    The results are presented of the measurements made by the A.E.R.E., Harwell participants at the Intercomparison of Nuclear Accident Dosimetry Systems held at the Dosimetry Applications Research Facility (DOSAR) of the Oak Ridge National Laboratory, USA from 13 - 17 August 1979. The source of pulsed radiation used was the Health Physics Research Reactor which was operated bare for pulse 1, and shielded by concrete (20cm thickness) and steel (5cm thickness) for pulses 2 and 3 respectively. Measurements are reported which were made using personnel dosimeters (both in free-air and on phantoms) and a threshold detector system and compared with the provisional results given by the DOSAR group at the meeting. (U.K.)

  20. Occupational dosimetry in real time hemodynamic rooms. utility of the system Dose-aware as a training tool

    International Nuclear Information System (INIS)

    Pinto Monedero, M.; Rodriguez Cobo, C.; Pifarre Martinez, X.; Ruiz Martin, J.; Barros Candelero, J. M.; Goicolea Ruigomez, J.; Diaz Blaires, G.; Garcia Lunar

    2014-01-01

    This paper presents the results from a study in a real time dosimetry system used in the catheter laboratory room of our center. The objective was to know the occupational doses per procedure, on the one hand, and, on the other hand, to evaluate its utility as a learning tool for radiation protection purposes with the simultaneous video recording of the interventions. 83 diagnostic and therapeutic procedures were analyzed, and an average dose per procedure of 0,37 μSv and 0,10 μSv for the main cardiologist and nurse were obtained, respectively. 36 of these interventions were also recorded and the images were synchronized with the dosimetric information stored and the dosimetry system. The findings were presented to the interventional cardiology team in a learning session. They showed a high level of satisfaction with this new method of optimizing the occupational doses through a customized learning session. (Author)

  1. Revue of some dosimetry and dose assessment European projects

    International Nuclear Information System (INIS)

    Bolognese-Milsztajn, T.; Frank, D.; Lacoste, V.; Pihet, P.

    2006-01-01

    Full text of publication follows: Within the 5. Framework Programme of the European Commission several project dealing with dosimetry and dose assessment for internal and external exposure have been supported. A revue of the results of some of them is presented in this paper. The EURADOS network which involved 50 dosimetry institutes in EUROPE has coordinated the project DOSIMETRY NETWORK: the main results achieved within this action are the following: - The release on the World Wide Web of the EURADOS Database of Dosimetry Research Facilities; - The realisation of the report 'Harmonization of Individual Monitoring (IM) in Europe'; - The continuation of the intercomparisons programme of environmental radiation monitoring systems; - The realisation of the report Cosmic radiation exposure of aircraft crew. The EVIDOS project aimed at evaluating state of the art dosimetry techniques in representative workplaces of the nuclear industry with complex mixed neutron-photon radiation fields. This paper summarises the main findings from a practical point of view. Conclusions and recommendations will be given concerning characterisation of radiation fields, methods to derive radiation protection quantities and dosimeters results. The IDEA project aimed to improve the assessment of incorporated radionuclides through developments of advanced in-vivo and bioassay monitoring techniques and making use of such enhancements for improvements in routine monitoring. The primary goal was to categorize those new developments regarding their potential and eligibility for the routine monitoring community. The costs of monitoring for internal exposures in the workplace are usually significantly greater than the equivalent costs for external exposures. There is therefore a need to ensure that resources are employed with maximum effectiveness. The EC-funded OMINEX (Optimisation of Monitoring for Internal Exposure) project has developed methods for optimising the design and implementation of

  2. Development of system technology for routine 10Be measurement in the JAEA-AMS-TONO

    International Nuclear Information System (INIS)

    Matsubara, Akihiro; Saito-Kokubu, Yoko; Ishimaru, Tsuneari; Nishizawa, A.; Miyake, M.

    2013-01-01

    We have completed the development of system technology for routine 10 Be measurement with the 5 MV Pelletron system in the Tono Geoscience Center of Japan Atomic Energy Agency (JAEA). The function of separating 10 Be and 10 B provided in the gas cell set in the front of an ionization chamber was experimentally confirmed through observation of variation of ΔE 1 -E Res spectrum with the gas pressure of the gas cell. The test measurement with beryllium samples of an ice core shows that measured 10 Be/ 9 Be ratios were consistent with the values obtained by the group of the Micro Analysis Laboratory, Tandem accelerator (MALT) in the University of Tokyo. (author)

  3. Evaluation of Routine Atmospheric Sounding Measurements Using Unmanned Systems (ERASMUS) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    de Boer, Gijs [Univ. of Colorado, Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences (CIRES); Lawrence, Dale [Univ. of Colorado, Boulder, CO (United States); Palo, Scott [Univ. of Colorado, Boulder, CO (United States); Argrow, Brian [Univ. of Colorado, Boulder, CO (United States); LoDolce, Gabriel [Univ. of Colorado, Boulder, CO (United States); Curry, Nathan [Univ. of Colorado, Boulder, CO (United States); Weibel, Douglas [Univ. of Colorado, Boulder, CO (United States); Finnamore, W [Univ. of Colorado, Boulder, CO (United States); D' Amore, P [Univ. of Colorado, Boulder, CO (United States); Borenstein, Steven [Univ. of Colorado, Boulder, CO (United States); Nichols, Tevis [Univ. of Colorado, Boulder, CO (United States); Elston, Jack [Blackswift Technologies, Boulder, CO (United States); Ivey, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bendure, Al [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schmid, Beat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Long, Chuck [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.; Telg, Hagen [Univ. of Colorado, Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences (CIRES); Gao, Rushan [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.; Hock, T [National Center for Atmospheric Research, Boulder, CO (United States); Bland, Geoff [National Aeronautics and Space Administration (NASA), Washington, DC (United States)

    2017-03-01

    The Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) campaign was proposed with two central goals; to obtain scientifically relevant measurements of quantities related to clouds, aerosols, and radiation, including profiles of temperature, humidity, and aerosol particles, the structure of the arctic atmosphere during transitions between clear and cloudy states, measurements that would allow us to evaluate the performance of retrievals from U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility remote sensors in the Arctic atmosphere, and information on the spatial variability of heat and moisture fluxes from the arctic surface; and to demonstrate unmanned aerial system (UAS) capabilities in obtaining measurements relevant to the ARM and ASR programs, particularly for improving our understanding of Arctic clouds and aerosols.

  4. A portable detection system for in vivo monitoring of 131I in routine and emergency situations

    Science.gov (United States)

    Lucena, EA; Dantas, ALA; Dantas, BM

    2018-03-01

    In vivo monitoring of 131I in human thyroid is often used to evaluate occupational exposure in nuclear medicine facilities and in the case of accidental intakes in nuclear power plants for the monitoring of workers and population. The device presented in this work consists on a Pb-collimated NaI(Tl)3”x3” scintillation detector assembled on a tripod and connected to a portable PC. The evaluation of the applicability and limitations of the system is based on the estimation of the committed effective doses associated to the minimum detectable activities in different facilities. It has been demonstrated that the system is suitable for use in routine and accidental situations.

  5. Poster – 13: Evaluation of an in-house CCD camera film dosimetry imaging system for small field deliveries

    International Nuclear Information System (INIS)

    Lalonde, Michel; Alexander, Kevin; Olding, Tim; Schreiner, L. John; Kerr, Andrew T.

    2016-01-01

    Purpose: Radiochromic film dosimetry is a standard technique used in clinics to verify modern conformal radiation therapy delivery, and sometimes in research to validate other dosimeters. We are using film as a standard for comparison as we improve high-resolution three-dimensional gel systems for small field dosimetry; however, precise film dosimetry can be technically challenging. We report here measurements for fractionated stereotactic radiation therapy (FSRT) delivered using volumetric modulated arc therapy (VMAT) to investigate the accuracy and reproducibility of film measurements with a novel in-house readout system. We show that radiochromic film can accurately and reproducibly validate FSRT deliveries and also benchmark our gel dosimetry work. Methods: VMAT FSRT plans for metastases alone (PTV MET ) and whole brain plus metastases (WB+PTV MET ) were delivered onto a multi-configurational phantom with a sheet of EBT3 Gafchromic film inserted mid-plane. A dose of 400 cGy was prescribed to 4 small PTV MET structures in the phantom, while a WB structure was prescribed a dose of 200 cGy in the WB+PTV MET iterations. Doses generated from film readout with our in-house system were compared to treatment planned doses. Each delivery was repeated multiple times to assess reproducibility. Results and Conclusions: The reproducibility of film optical density readout was excellent throughout all experiments. Doses measured from the film agreed well with plans for the WB+PTV MET delivery. But, film doses for PTV MET only deliveries were significantly below planned doses. This discrepancy is due to stray/scattered light perturbations in our system during readout. Corrections schemes will be presented.

  6. Poster – 13: Evaluation of an in-house CCD camera film dosimetry imaging system for small field deliveries

    Energy Technology Data Exchange (ETDEWEB)

    Lalonde, Michel; Alexander, Kevin; Olding, Tim; Schreiner, L. John; Kerr, Andrew T. [Cancer Centre of Southeastern Ontario at KGH, Queen’s University (Canada)

    2016-08-15

    Purpose: Radiochromic film dosimetry is a standard technique used in clinics to verify modern conformal radiation therapy delivery, and sometimes in research to validate other dosimeters. We are using film as a standard for comparison as we improve high-resolution three-dimensional gel systems for small field dosimetry; however, precise film dosimetry can be technically challenging. We report here measurements for fractionated stereotactic radiation therapy (FSRT) delivered using volumetric modulated arc therapy (VMAT) to investigate the accuracy and reproducibility of film measurements with a novel in-house readout system. We show that radiochromic film can accurately and reproducibly validate FSRT deliveries and also benchmark our gel dosimetry work. Methods: VMAT FSRT plans for metastases alone (PTV{sub MET}) and whole brain plus metastases (WB+PTV{sub MET}) were delivered onto a multi-configurational phantom with a sheet of EBT3 Gafchromic film inserted mid-plane. A dose of 400 cGy was prescribed to 4 small PTV{sub MET} structures in the phantom, while a WB structure was prescribed a dose of 200 cGy in the WB+PTV{sub MET} iterations. Doses generated from film readout with our in-house system were compared to treatment planned doses. Each delivery was repeated multiple times to assess reproducibility. Results and Conclusions: The reproducibility of film optical density readout was excellent throughout all experiments. Doses measured from the film agreed well with plans for the WB+PTV{sub MET} delivery. But, film doses for PTV{sub MET} only deliveries were significantly below planned doses. This discrepancy is due to stray/scattered light perturbations in our system during readout. Corrections schemes will be presented.

  7. Effects of dose fractionation on the response of alanine dosimetry

    International Nuclear Information System (INIS)

    Lundahl, Brad; Logar, John; Desrosiers, Marc; Puhl, James

    2014-01-01

    Alanine dosimetry is well established as a transfer standard and is becoming more prevalently used in routine dosimetry systems for radiation processing. Many routine measurement applications in radiation processing involve absorbed dose measurements resulting from fractioned exposures to ionizing radiation. Fractioning of absorbed dose is identified as an influence quantity (ISO/ASTM, 2013). This paper reports on study results of absorbed dose fractioning characteristics of alanine for gamma and high energy electron beam radiation sources. The results of this study indicate a radiation response difference due to absorbed dose fractioning in response can be observed after four fractionations for high-energy electron beams and no difference up to seven fractions for gamma rays using an ANOVA evaluation method. - Highlights: • Fractioning effects signaled in electron beam using an ANOVA at 6 equal increments. • Fractioning effects not signaled in gamma using an ANOVA up to 7 equal increments. • Insensitivity of alanine to dose fractioning indicates nominal impact on calibration

  8. A radiophotoluminescent glass plate system for medium-sized field dosimetry

    International Nuclear Information System (INIS)

    Nakagawa, Keiichi; Koyanagi, Hiroki; Shiraki, Takashi; Saegusa, Shigeki; Sasaki, Katsutake; Oritate, Takashi; Mima, Kazuo; Miyazawa, Masanori; Ishidoya, Tatsuyo; Ohtomo, Kuni; Yoda, Kiyoshi

    2005-01-01

    A two-dimensional radiophotoluminescent system for medium-sized field dosimetry has been developed using a silver-activated phosphate glass plate with a dimension of 120 mmx120 mmx1 mm and a readout unit comprising a UV excitation lamp and a CCD imager. A dose ranging from 0 to 400 cGy, provided by a 6 MV x-ray beam, was delivered to the glass plate oriented perpendicularly to the beam and positioned in a water phantom at a depth of 10 cm, where the center of the glass plate coincided with the linac isocenter. After the dose delivery, the glass plate was placed in the readout system. The CCD output intensity increased linearly with the applied dose. The angular dependence of response on the direction of radiation incidence was measured by rotating the glass plate in the water phantom, indicating that the output remained constant up to 75 deg. from perpendicular incident direction, followed by a steep reduction down to 85% at an angle of 90 deg. A lateral dose distribution resulting from a 60 mmx60 mm irradiation was compared between the glass plate and an x-ray film having had the same exposure, showing that the glass plate and the x-ray film led to identical dose distributions. The dose reproducibility for a glass plate and the sensitivity variation among different glass plates were also evaluated

  9. Distinction of metaphases in the first cell cycle for automated system in radiation dosimetry

    International Nuclear Information System (INIS)

    Hayata, I.; Kajima, J.; Okabe, N.

    1992-01-01

    As part of the biological improvements for developing an automated scoring system of radiation induced chromosome aberrations for radiation dosimetry, we introduce a new method for identifying the metaphases in the first cell cycle. Differing from the conventional method with BrdUrd, it focuses on the difference of chromosome number to be induced by inhibiting the cytokinesis with Cytochalasin B. Majority of the cells with 46 chromosomes were in the first cell cycle, and the ratio of those with 46 chromosomes in the second division was less than one per cent both when Cytochalasin B of 1.5 μg/ml was added to the culture of irradiated lymphocytes and when that of 1.8 μg/ml was added to that of non-irradiated cells for one day, respectively. The ratio of metaphases with over-condensed chromosomes is reduced, the clear-cut image of chromosomes is obtained, culture and staining processes are simpler, and the device of UV irradiation is not necessary. Thus the present Cytochalasin B method offers more qualified input, data based on the numerical difference, than conventional image based recognition, and upgrades the quality of the scoring in the automated analysis system. (Author)

  10. In Vivo Diode Dosimetry for Imrt Treatments Generated by Pinnacle Treatment Planning System

    International Nuclear Information System (INIS)

    Alaei, Parham; Higgins, Patrick D.; Gerbi, Bruce J.

    2009-01-01

    Dose verification using diodes has been proposed and used for intensity modulated radiation therapy (IMRT) treatments. We have previously evaluated diode response for IMRT deliveries planned with the Eclipse/Helios treatment planning system. The Pinnacle treatment planning system generates plans that are delivered in a different fashion than Eclipse. Whereas the Eclipse-generated segments are delivered in organized progression from one side of each field to the other, Pinnacle-generated segments are delivered in a much more randomized fashion to different areas within the field. This makes diode measurements at a point more challenging because the diode may be exposed fully or partially to multiple small segments during one single field's treatment as opposed to being exposed to very few segments scanning across the diode during an Eclipse-generated delivery. We have evaluated in vivo dosimetry for Pinnacle-generated IMRT plans and characterized the response of the diode to various size segments on phantom. We present results of patient measurements on approximately 300 fields, which show that 76% of measurements agree to within 10% of the treatment-plan generated calculated doses. Of the other 24%, about 11% are within 15% of the calculated dose. Comparison of these with phantom measurements indicates that many of the discrepancies are due to diode positioning on patients and increased diode response at short source-to-surface distances (SSDs), with the remainder attributable to other factors such as segment size and partial irradiation of the diode

  11. Routine systemic antibiotic prophylaxis for burn injuries in developing countries: A best evidence topic (BET)

    Science.gov (United States)

    Stewart, Barclay T; Gyedu, Adam; Agbenorku, Pius; Amankwa, Richcane; Kushner, Adam L; Gibran, Nicole

    2015-01-01

    Background Burns are common in low- and middle-income countries (LMICs) and complicated by unhygienic conditions, malnutrition, use of high-risk homemade dressings and delayed presentation. Resultantly, use of routine systemic antibiotic prophylaxis (SAP) to prevent wound infection is common practice despite this intervention being abandoned in high-income countries due to increased antimicrobial resistance and non-bacterial suprainfection, Methods A best evidence topic (BET) was constructed using a structured protocol. The question addressed was: In LMICs, does routine use of SAP reduce burn wound infection, morbidity or mortality? Results From 704 retrieved records, 48 reports met criteria to be examined. Of those, 3 studies represented the best available evidence. Together, two randomized clinical trials (RCTs) and a retrospective cohort study reported no difference in the proportion of wound infection, any infection or length of hospital stay between SAP groups and controls. One RCT described a greater proportion of wounds infected with P. aeruginosa among SAP arms compared to controls. The studies had few participants and significant methodological weaknesses. Conclusion On the basis of limited, currently available evidence, the use of SAP cannot be recommended for patients in LMICs that present soon after burn injury. PMID:26260622

  12. Estimated routine radiation doses to transportation workers in alternative spent-fuel transportation systems

    International Nuclear Information System (INIS)

    Schneider, K.J.; Smith, R.I.; Daling, P.M.; Ross, W.A.; McNair, G.W.

    1988-01-01

    The federal system for the management of spent fuel and high-level radioactive waste includes the acceptance by the US Department of Energy (DOE) of the spent fuel or waste loaded in casks at the reactor or other waste generators, its transportation to a repository, and its handling and final emplacement in the repository. The DOE plans to implement a transportation system that is safe, secure, efficient, and cost-effective and will meet applicable regulatory safety and security requirements. The DOE commissioned the Pacific Northwest Laboratory (PNL) to develop estimates of the routine radiation doses that would result from the operation of a system postulated using current designs and practices. From that evaluation, PNL identified activities/operations that result in the higher fraction of doses, proposed conceptual alternatives that would effectively reduce such exposures, and evaluated the cost-effectiveness of such alternatives. The study is one of a series used in making overall system design and operational decisions in the development of the DOE's spent-fuel/high-level waste transportation system. This paper contains the highlights from the PNL study of the estimated radiation doses to the transportation workers in a postulated reference transportation system and potential alternatives to that system

  13. Scintillator-CCD camera system light output response to dosimetry parameters for proton beam range measurement

    Energy Technology Data Exchange (ETDEWEB)

    Daftari, Inder K., E-mail: idaftari@radonc.ucsf.edu [Department of Radiation Oncology, 1600 Divisadero Street, Suite H1031, University of California-San Francisco, San Francisco, CA 94143 (United States); Castaneda, Carlos M.; Essert, Timothy [Crocker Nuclear Laboratory,1 Shields Avenue, University of California-Davis, Davis, CA 95616 (United States); Phillips, Theodore L.; Mishra, Kavita K. [Department of Radiation Oncology, 1600 Divisadero Street, Suite H1031, University of California-San Francisco, San Francisco, CA 94143 (United States)

    2012-09-11

    The purpose of this study is to investigate the luminescence light output response in a plastic scintillator irradiated by a 67.5 MeV proton beam using various dosimetry parameters. The relationship of the visible scintillator light with the beam current or dose rate, aperture size and the thickness of water in the water-column was studied. The images captured on a CCD camera system were used to determine optimal dosimetry parameters for measuring the range of a clinical proton beam. The method was developed as a simple quality assurance tool to measure the range of the proton beam and compare it to (a) measurements using two segmented ionization chambers and water column between them, and (b) with an ionization chamber (IC-18) measurements in water. We used a block of plastic scintillator that measured 5 Multiplication-Sign 5 Multiplication-Sign 5 cm{sup 3} to record visible light generated by a 67.5 MeV proton beam. A high-definition digital video camera Moticam 2300 connected to a PC via USB 2.0 communication channel was used to record images of scintillation luminescence. The brightness of the visible light was measured while changing beam current and aperture size. The results were analyzed to obtain the range and were compared with the Bragg peak measurements with an ionization chamber. The luminescence light from the scintillator increased linearly with the increase of proton beam current. The light output also increased linearly with aperture size. The relationship between the proton range in the scintillator and the thickness of the water column showed good linearity with a precision of 0.33 mm (SD) in proton range measurement. For the 67.5 MeV proton beam utilized, the optimal parameters for scintillator light output response were found to be 15 nA (16 Gy/min) and an aperture size of 15 mm with image integration time of 100 ms. The Bragg peak depth brightness distribution was compared with the depth dose distribution from ionization chamber measurements

  14. Dosimetry for Electron Beam Applications

    DEFF Research Database (Denmark)

    Miller, Arne

    1983-01-01

    This report describes two aspects of electron bean dosimetry, on one hand developaent of thin fil« dosimeters and measurements of their properties, and on the other hand developaent of calorimeters for calibration of routine dosimeters, e.g. thin films. Two types of radiochromic thin film...

  15. Applicability of thermoluminescent dosimeters in X-ray organ dose determination and in the dosimetry of systemic and boron neutron capture radiotherapy

    International Nuclear Information System (INIS)

    Aschan, C.

    1999-01-01

    The main detectors used for clinical dosimetry are ionisation chambers and semiconductors. Thermoluminescent (TL) dosimeters are also of interest because of their following advantages: (i) wide useful dose range, (ii) small physical size, (iii) no need for high voltage or cables, i.e. stand alone character, and (iv) tissue equivalence (LiF) for most radiation types. TL detectors can particularly be used for the absorbed dose measurements performed with the aim to investigate cases where dose prediction is difficult and not as part of a routine verification procedure. In this thesis, the applicability of TL detectors was studied in different clinical applications. Particularly, the major phenomena (e.g. energy dependence, sensitivity to high LET radiation, reproducibility) affecting on the precision and accuracy of TL detectors in the dose estimations were considered in this work. In organ dose determinations of diagnostic X-ray examinations, the TL detectors were found to be accurate within 5% (1 S.D.). For in viva studies using internal irradiation source, i.e. for systemic radiation therapy, a method for determining the absorbed doses to organs was introduced. The TL method developed was found to be able to estimate the absorbed doses to those critical organs near the body surface within 50%. In the mixed neutron-gamma field of boron neutron capture therapy (BNCT), TL detectors were used for gamma dose and neutron fluence measurements. They were found able to measure the neutron dose component with the accuracy of 16%, and therefore to be a useful addition to the activation foils in BNCT neutron dosimetry. The absorbed gamma doses can be measured with TL detectors within 20% in the mixed neutron-gamma field, which enables in viva measurements at BNCT beams with approximately the same accuracy. In this study, the uncertainties of TL dosimeters were found to be high but not essentially greater than those in other measurement techniques used for clinical dosimetry

  16. A system for remote dosimetry audit of 3D-CRT, IMRT and VMAT based on lithium formate dosimetry

    International Nuclear Information System (INIS)

    Adolfsson, Emelie; Gustafsson, Håkan; Lund, Eva; Alm Carlsson, Gudrun; Olsson, Sara; Carlsson Tedgren, Åsa

    2014-01-01

    Summary: The aim of this work was to develop and test a remote end-to-end audit system using lithium formate EPR dosimeters. Four clinics were included in a pilot study, absorbed doses determined in the PTV agreed with TPS calculated doses within ±5% for 3D-CRT and ±7% (k = 1) for IMRT/VMAT dose plans

  17. Dosimetry methods

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, A.; Kovacs, A.

    2003-01-01

    Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application....

  18. Developing of an automation for therapy dosimetry systems by using labview software

    Science.gov (United States)

    Aydin, Selim; Kam, Erol

    2018-06-01

    Traceability, accuracy and consistency of radiation measurements are essential in radiation dosimetry, particularly in radiotherapy, where the outcome of treatments is highly dependent on the radiation dose delivered to patients. Therefore it is very important to provide reliable, accurate and fast calibration services for therapy dosimeters since the radiation dose delivered to a radiotherapy patient is directly related to accuracy and reliability of these devices. In this study, we report the performance of in-house developed computer controlled data acquisition and monitoring software for the commercially available radiation therapy electrometers. LabVIEW® software suite is used to provide reliable, fast and accurate calibration services. The software also collects environmental data such as temperature, pressure and humidity in order to use to use these them in correction factor calculations. By using this software tool, a better control over the calibration process is achieved and the need for human intervention is reduced. This is the first software that can control frequently used dosimeter systems, in radiation thereapy field at hospitals, such as Unidos Webline, Unidos E, Dose-1 and PC Electrometers.

  19. Setting-Up Of A Film Dosimetry System For High Energy Electron Beams And Development Of Computer Programs For Data Processing

    International Nuclear Information System (INIS)

    Schwob, N.; Schwob, W.; Loewenthal, E.

    1999-01-01

    Film dosimetry has the advantage over other dosimetry methods, of having a high spatial resolution and a fast two dimensional data acquisition. We have set up a system using a film digitizer with its associated software, dedicated to radiosurgery and we have developed data processing programs in Visual Basic for Excel. Data acquisition is not limited to water equivalent media: correction factors can be provided in the data processing procedure

  20. Reduced order modeling and parameter identification of a building energy system model through an optimization routine

    International Nuclear Information System (INIS)

    Harish, V.S.K.V.; Kumar, Arun

    2016-01-01

    Highlights: • A BES model based on 1st principles is developed and solved numerically. • Parameters of lumped capacitance model are fitted using the proposed optimization routine. • Validations are showed for different types of building construction elements. • Step response excitations for outdoor air temperature and relative humidity are analyzed. - Abstract: Different control techniques together with intelligent building technology (Building Automation Systems) are used to improve energy efficiency of buildings. In almost all control projects, it is crucial to have building energy models with high computational efficiency in order to design and tune the controllers and simulate their performance. In this paper, a set of partial differential equations are formulated accounting for energy flow within the building space. These equations are then solved as conventional finite difference equations using Crank–Nicholson scheme. Such a model of a higher order is regarded as a benchmark model. An optimization algorithm has been developed, depicted through a flowchart, which minimizes the sum squared error between the step responses of the numerical and the optimal model. Optimal model of the construction element is nothing but a RC-network model with the values of Rs and Cs estimated using the non-linear time invariant constrained optimization routine. The model is validated with comparing the step responses with other two RC-network models whose parameter values are selected based on a certain criteria. Validations are showed for different types of building construction elements viz., low, medium and heavy thermal capacity elements. Simulation results show that the optimal model closely follow the step responses of the numerical model as compared to the responses of other two models.

  1. Evaluation of the Performance of Routine Information System Management (PRISM framework: evidence from Uganda

    Directory of Open Access Journals (Sweden)

    Aqil Anwer

    2010-07-01

    Full Text Available Abstract Background Sound policy, resource allocation and day-to-day management decisions in the health sector require timely information from routine health information systems (RHIS. In most low- and middle-income countries, the RHIS is viewed as being inadequate in providing quality data and continuous information that can be used to help improve health system performance. In addition, there is limited evidence on the effectiveness of RHIS strengthening interventions in improving data quality and use. The purpose of this study is to evaluate the usefulness of the newly developed Performance of Routine Information System Management (PRISM framework, which consists of a conceptual framework and associated data collection and analysis tools to assess, design, strengthen and evaluate RHIS. The specific objectives of the study are: a to assess the reliability and validity of the PRISM instruments and b to assess the validity of the PRISM conceptual framework. Methods Facility- and worker-level data were collected from 110 health care facilities in twelve districts in Uganda in 2004 and 2007 using records reviews, structured interviews and self-administered questionnaires. The analysis procedures include Cronbach's alpha to assess internal consistency of selected instruments, test-retest analysis to assess the reliability and sensitivity of the instruments, and bivariate and multivariate statistical techniques to assess validity of the PRISM instruments and conceptual framework. Results Cronbach's alpha analysis suggests high reliability (0.7 or greater for the indices measuring a promotion of a culture of information, RHIS tasks self-efficacy and motivation. The study results also suggest that a promotion of a culture of information influences RHIS tasks self-efficacy, RHIS tasks competence and motivation, and that self-efficacy and the presence of RHIS staff have a direct influence on the use of RHIS information, a key aspect of RHIS performance

  2. Legionella Risk Management and Control in Potable Water Systems: Argument for the Abolishment of Routine Testing.

    Science.gov (United States)

    Whiley, Harriet

    2016-12-24

    Legionella is an opportunistic pathogen of public health significance. One of the main sources of Legionella is potable water systems. As a consequence of aging populations there is an increasing demographic considered at high risk for Legionellosis and, as such, a review of the guidelines is required. Worldwide, Legionella has been detected from many potable water sources, suggesting it is ubiquitous in this environment. Previous studies have identified the limitations of the current standard method for Legionella detection and the high possibility of it returning both false negative and false positive results. There is also huge variability in Legionella test results for the same water sample when conducted at different laboratories. However, many guidelines still recommend the testing of water systems. This commentary argues for the removal of routine Legionella monitoring from all water distribution guidelines. This procedure is financially consuming and false negatives may result in managers being over-confident with a system or a control mechanism. Instead, the presence of the pathogen should be assumed and focus spent on managing appropriate control measures and protecting high-risk population groups.

  3. Alanine EPR dosimetry of therapeutic irradiators

    International Nuclear Information System (INIS)

    Bugay, O.; Bartchuk, V.; Kolesnik, S.; Mazin, M.; Gaponenko, H.

    1999-01-01

    The high-dose alanine EPR dosimetry is a very precise method in the dose range 1-100 kGy. The system is used generally as the standard high-dose transfer dosimetry in many laboratories. This is comparatively expensive technique so it is important to use it as a more universal dosimetry system also in the middle and low dose ranges. The problems of the middle-dose alanine dosimetry are discussed and the solution of several problems is proposed. The alanine EPR dosimetry has been applied to the dose measurements of medical irradiators in the Kiev City Oncology Center. (author)

  4. Development of a lyoluminescence dosimetry system for the radiation processing of food

    International Nuclear Information System (INIS)

    Ettinger, K.V.; Mallard, J.R.; Srirath, S.; Takavar, A.

    1978-01-01

    A new system of solid-state dosimetry is being developed aimed at the radiation processing of food. The system is based on the effect of lyoluminescence, i.e. emission of light when previously irradiated solids are dissolved in water or other solvents. The physical mechanism is based on the formation of free radicals in the solid, which are stable over periods ranging from days to years. These radicals are set free on dissolution and as a result of chemical reactions taking place in a solution light is produced. The dose response of lyoluminescent phosphors is monotonic, and often almost linear, over a very broad range of radiation doses. Amongst saccharides mannose can be used up to about 90krad, trehalose dihydrate up to 250krad and glucose to about 300krad. Amino acids exhibit a broader range: glutamine and glutamic acid can be used up to at least 4Mrad and threonine up to about 1Mrad. In addition, most of naturally occurring soluble amino acids are suitable in a range of doses below 200krad. Soluble starch (amylodextrin) has been successfully tried in a range up to 3Mrad. The intrinsic precision of the method is fairly high and the present uncertainty of the determination of dose, which is 2-4%, appears to be caused by the non-homogeneity of available phosphor and by insufficient reproducibility of the process of dissolution. The lower limit of doses is set by the sensitivity of the read-out equipment. For a simple arrangement with an uncooled PM tube and glutamine as a phosphor a reproducibility of 2-3% is reached for doses in excess of 600rads. The fading of irradiated phosphors is reproducible. A typical value for mannose is 10-15% during the first week and 20-30% during the first year for dosimeters stored at room temperature

  5. The experience from operation of electronic personal dosimetry system at Dukovany, Temelin and Mochovce NPPs after repair of Siemens dosemeters eliminating false doses

    International Nuclear Information System (INIS)

    Malysak, J.; Kocvara, S.; Jurochova, B.; Zelenka, Z.; Schacherl, M.; Zrubec, M.; Kaiser, H.

    2003-01-01

    This presentation summarizes the operational experience of the Electronic Personal Dosimetry Systems installed at Dukovany, Temelin and Mochovce NPPs. The system consists of three basic parts: Electronic personal dosemeters (EPD); Physical layer (HW); Logical layer (SW). Number of false doses before and after correction is presented. This presentation has demonstrated the possibilities of SEOD system and the possibility of easy dose comparison between the individual NPPs after introducing this electronic dosimetry system. Basically, the results of film and electronic dosimetry systems are according to our findings nearly identical. Electronic dosemeter sensitivity to interfering electromagnetic fields is a problem which is easily re-movable. In addition, if we know this problem, these false doses in the SEOD system can be easily revealed (e.g. by investigation of histograms) and repaired

  6. NRPB patient dosimetry service

    International Nuclear Information System (INIS)

    Shrimpton, P.; Hillier, M.; Bungay, D.; Wall, B.

    1994-01-01

    For nearly 20 years, thermoluminescent dosemeters (TLDs) have been used by NRPB to investigate the doses received by patients undergoing diagnostic examinations with x-rays, and these measurements have formed the basis for national recommendations on patient protection. Monitoring typical levels of patient dose should represent an essential element of routine quality assurance in x-ray departments. In order to promote more widespread measurements in hospitals, NRPB has drawn on a wealth of experience to establish a high-quality service providing TLDs for medical dosimetry by post. (author)

  7. Clinical dosimetry

    International Nuclear Information System (INIS)

    Rassow, J.

    1973-01-01

    The main point of this paper on clinical dosimetry which is to be understood here as application of physical dosimetry on accelerators in medical practice, is based on dosimetric methodics. Following an explanation of the dose parameters and description of the dose distribution important for clinical practice as well as geometric irradiation parameters, the significance of a series of physical parameters such as accelerator energy, surface energy of average stopping power etc. is dealt with in detail. Following a section on field homogenization with bremsstrahlung and electron radiation, details on dosimetry in clinical practice are given. Finally, a few problems of dosemeter or monitor calibration on accelerators are described. The explanations are supplemented by a series of diagrams and tables. (ORU/LH) [de

  8. Cytogenetic dosimetry in suspected cases of ionizing radiation occupational exposure

    International Nuclear Information System (INIS)

    Ramalho, Adriana T.; Costa, Maria Lucia P.; Oliveira, Monica S.; Silva, Francisco Cesar A. da

    2001-01-01

    Cytogenetic dosimetry is very useful in routine as well as in serious accident situations in which exposed individuals do not wear physical dosimeters. Since 1984, the technique of cytogenetic dosimetry has been used as a routine in our laboratory at IRD/CNEN to complement the data of physical dosimetry. In the period from 1984 to 2000, 138 cases of occupational overexposure of individual dosimeters were investigated by us. In total, only in 36 of the 138 cases investigated the overexposure was confirmed by cytogenetic dosimetry. The data indicates a total confirmation index of just 26% of the suspected cases.(author)

  9. Assessment of effectiveness of geologic isolation systems. CIRMIS data system. Volume 3. Generator routines

    International Nuclear Information System (INIS)

    Friedrichs, D.R.; Argo, R.S.

    1980-01-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for utilization by the hydraulic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System, a storage and retrieval system for model input and output data, including graphical interpretation and display is described. This is the third of four volumes of the description of the CIRMIS Data System

  10. 78 FR 23938 - Privacy Act of 1974; Report of a New Routine Use for Selected CMS Systems of Records

    Science.gov (United States)

    2013-04-23

    ... & Medicaid Services (CMS), Department of Health and Human Services (HHS). ACTION: Altered Systems Notice... the systems of records being modified; the new routine use is compatible with the health care purposes... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Medicare & Medicaid Services Privacy Act of...

  11. Image in nuclear dosimetry using thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Guinsburg, G.; Matsuoka, M.; Watanabe, S.

    1987-01-01

    A low cost methodology to produce images of internal sick organs by radioisotopic intake, is presented. Dosimetries of thermoluminescent material and Teflon (ratio:50%) in bidimensional matrix shape are used with a Pb collimator. This collimator-bidimensional matrix system was tested ''in vivo'' and in thyroid phantoms using 99m Tc. A comparative evaluation between this method and the scintigraphy one is presented. (M.A.C.) [pt

  12. The introduction of the personnel dosimetry information system in Greece designed as a relational database and the improvements achieved

    International Nuclear Information System (INIS)

    Drikos, G.; Psaromiligos, J.; Geotgiou, G.; Kamenopoulou, V.K.

    1997-01-01

    Dose record keeping is the making and keeping of personnel dose records for radiation workers. It is an essential part of the process of monitoring the exposure of individuals to radiation and shares in the same objectives. The dose record keeping is becoming more and more critical because of the importance of statistical analysis and epidemiological studies in radiation protection, and of the increasing cooperation and exchange of personnel between countries.The GAEC's personnel dosimetry laboratory assures the personnel dosimetry all over the country and keeps the official central dose record.The personnel dosimetry information system had been established in an electronic form on 1989 in Cobol language. Since then appeared various arguments that imposed the change of the data base used. Some of them are: 1. There was no distinction between establishments and their laboratories. 2. The workers did not have a unique code number. consequently, the total dose of a person working in more than one place could not't be estimated. The workers were directly related to their workplace, so if somebody changed his working place he was treated as a new entry, resulting an overestimation of the number of monitored workers introducing an source of errors in the collective and average dose calculations. 3. With the increasing applications of the ionising radiations many types of dosemeters became indispensable e.g. for beta and gamma, for neutrons and for the extremities. Also, the new category of outside workers appeared requesting a special treatment. All these distinctions were not achievable with the previous system. 4. Last years appeared an increasing, interesting in statistical analysis of the personal doses. A program written in Cobol does not't offer many possibilities and has no flexibility for such analysis. The new information system has been rebuilt under the design of a relational database with more possibilities and more flexibility. (authors)

  13. Instrumentation in thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Julius, H.W.

    1986-01-01

    In the performance of a thermoluminescence dosimetry (TLD) system the equipment plays an important role. Crucial parameters of instrumentation in TLD are discussed in some detail. A review is given of equipment available on the market today - with some emphasis on automation - which is partly based on information from industry and others involved in research and development. (author)

  14. SU-E-P-05: Is Routine Treatment Planning System Quality Assurance Necessary?

    International Nuclear Information System (INIS)

    Alaei, P

    2014-01-01

    Purpose: To evaluate the variation of dose calculations using a treatment planning system (TPS) over a two year period and assessment of the need for TPS QA on regular intervals. Methods: Two phantoms containing solid water and lung- and bone-equivalent heterogeneities were constructed in two different institutions for the same brand treatment planning system. Multiple plans, consisting of photons and electron beams, including IMRT and VMAT ones, were created and calculated on the phantoms. The accuracy of dose computation in the phantoms was evaluated at the onset by dose measurements within the phantoms. The dose values at up to 24 points of interest (POI) within the solid water, lung, and bone slabs, as well as mean doses to several regions of interest (ROI), were re-calculated over a two-year period which included two software upgrades. The variations in POI and ROI dose values were analyzed and evaluated. Results: The computed doses vary slightly month-over-month. There are noticeable variations at the times of software upgrade, if the upgrade involves remodeling and/or re-commissioning of the beams. The variations are larger in certain points within the phantom, usually in the buildup region or near interfaces, and are almost non-existent for electron beams. Conclusion: Routine TPS QA is recommended by AAPM and other professional societies, and is often required by accreditation organizations. The frequency and type of QA, though, is subject to debate. The results presented here demonstrate that the frequency of these tests could be at longer intervals than monthly. However, it is essential to perform TPS QA at the time of commissioning and after each software upgrade

  15. SU-E-P-05: Is Routine Treatment Planning System Quality Assurance Necessary?

    Energy Technology Data Exchange (ETDEWEB)

    Alaei, P [University of Minnesota, Minneapolis, MN (United States)

    2014-06-01

    Purpose: To evaluate the variation of dose calculations using a treatment planning system (TPS) over a two year period and assessment of the need for TPS QA on regular intervals. Methods: Two phantoms containing solid water and lung- and bone-equivalent heterogeneities were constructed in two different institutions for the same brand treatment planning system. Multiple plans, consisting of photons and electron beams, including IMRT and VMAT ones, were created and calculated on the phantoms. The accuracy of dose computation in the phantoms was evaluated at the onset by dose measurements within the phantoms. The dose values at up to 24 points of interest (POI) within the solid water, lung, and bone slabs, as well as mean doses to several regions of interest (ROI), were re-calculated over a two-year period which included two software upgrades. The variations in POI and ROI dose values were analyzed and evaluated. Results: The computed doses vary slightly month-over-month. There are noticeable variations at the times of software upgrade, if the upgrade involves remodeling and/or re-commissioning of the beams. The variations are larger in certain points within the phantom, usually in the buildup region or near interfaces, and are almost non-existent for electron beams. Conclusion: Routine TPS QA is recommended by AAPM and other professional societies, and is often required by accreditation organizations. The frequency and type of QA, though, is subject to debate. The results presented here demonstrate that the frequency of these tests could be at longer intervals than monthly. However, it is essential to perform TPS QA at the time of commissioning and after each software upgrade.

  16. Environmental dosimetry

    International Nuclear Information System (INIS)

    Gold, R.

    1977-01-01

    For more than 60 years, natural radiation has offered broad opportunities for basic research as evidenced by many fundamental discoveries. Within the last decade, however, dramatic changes have occurred in the motivation and direction of this research. The urgent need for economical energy sources entailing acceptably low levels of environmental impact has compelled the applied aspects of our radiation environment to become overriding considerations. It is within this general framework that state-of-the-art environmental dosimetry techniques are reviewed. Although applied motivation and relevance underscores the current milieu for both reactor and environmental dosimetry, a perhaps even more unifying force is the broad similarity of reactor and environmental radiation fields. In this review, a comparison of these two mixed radiation fields is presented stressing the underlying similarities that exist. On this basis, the evolution of a strong inner bond between dosimetry methods for both reactor and environmental radiation fields is described. The existence of this bond will be illustrated using representative examples of observed spectra. Dosimetry methods of particularly high applicability for both of these fields are described. Special emphasis is placed on techniques of high sensitivity and absolute accuracy which are capable of resolving the components of these mixed radiation fields

  17. The photon energy dependence of the alanine/EPR dosimetry system, an experimental investigation

    International Nuclear Information System (INIS)

    Bergstrand, E.S.; Hole, E.O.; Shortt, K.R.; Ross, C.K.

    2002-01-01

    The energy dependence of a dosimetry system based on electron paramagnetic resonance (EPR) spectroscopy of alanine has been studied to determine its suitability for use in dose verification for radiotherapy. A few experiments with high-energy photon irradiation of alanine have been reported in the literature. However, the reported results disagree whether the ratio of dose in alanine to dose in water is independent of the radiation energy or whether there is a small dependence for photon energies of relevance to radiotherapy. The concentration of free radicals in alanine is proportional to the absorbed dose in alanine over a wide dose range covering three decades. The relative number of radicals may be determined by examining the EPR spectrum, and hence it is possible to determine the dose with a system that has been calibrated using a known dose of 60 Co radiation. In the present work, irradiations of alanine dosimeters were performed at the National Research Council (NRC), in Ottawa, Canada. The radiation qualities investigated were 10, 20 and 30 MV x-rays using the NRC linac. For each radiation quality, 30 dosimeters were irradiated in a water phantom with a level of absorbed dose to water ranging from 10 to 50 Gy. For reference purposes, irradiations using the NRC 60 Co source were performed on more or less the same day as the irradiations at each specific linac quality. In all beams, the dose to water was measured using a graphite-walled NE2571 ionisation chamber that was originally calibrated by comparison with a sealed-water calorimeter. The alanine dosimeters were evaluated at the EPR laboratory at the University of Oslo, Norway, using an X-band Bruker ESP300E spectrometer with a rectangular double resonator. One of the resonators contained a Mn 2+ /MgO sample that was read after each dosimeter reading, in order to provide independence from short-term sensitivity fluctuations in the spectrometer. All dosimeters irradiated at one specific linac quality were

  18. Direct ion storage dosimetry systems for photon, beta and neutron radiation with instant readout capabilities

    International Nuclear Information System (INIS)

    Wernli, C.; Kahilainen, J.

    2001-01-01

    The direct ion storage (DIS) dosemeter is a new type of electronic dosemeter from which the dose information for both H p (10) and H p (0.07) can be obtained instantly at the workplace by using an electronic reader unit. The number of readouts is unlimited and the stored information is not affected by the readout procedure. The accumulated dose can also be electronically reset by authorised personnel. The DIS dosemeter represents a potential alternative for replacing the existing film and thermoluminescence dosemeters (TLDs) used in occupational monitoring due to its ease of use and low operating costs. The standard version for normal photon and beta dosimetry, as well as a developmental version for neutron dosimetry, have been characterised in several field studies. Two new small size variations are also introduced including a contactless readout device and a militarised version optimised for field use. (author)

  19. A fast dual wavelength laser beam fluid-less optical CT scanner for radiotherapy 3D gel dosimetry II: dosimetric performance

    Science.gov (United States)

    Ramm, Daniel

    2018-02-01

    New clinical radiotherapy dosimetry systems need comprehensive demonstration of measurement quality. Practicality and reliability are other important aspects for clinical dosimeters. In this work the performance of an optical CT scanner for true 3D dosimetry is assessed using a radiochromic gel dosimeter. The fluid-less scanner utilised dual lasers to avoid the necessity for pre-irradiation scans and give greater robustness of image quality, enhancing practicality. Calibration methods using both cuvettes and reconstructed volumes were developed. Dosimetric accuracy was similar for dual and single wavelength measurements, except that cuvette calibration reliability was reduced for dual wavelength without pre-irradiation scanning. Detailed performance parameters were specified for the dosimetry system indicating the suitability for clinical use. The most significant limitations of the system were due to the gel dosimeter rather than the optical CT scanner. Quality assurance guidelines were developed to maintain dosimetry system performance in routine use.

  20. A system for routine production of 99mTc by thermal separation technique

    International Nuclear Information System (INIS)

    Sahm, U.; Helus, F.; Krauss, O.; Baier-Borst, W.

    1976-01-01

    Technetium-99m is one of the most widely used radionuclides in diagnostic medicine, and it is a general opinion that 99m Tc and the radiopharmaceuticals obtained from it will be used for a long time. 99m Tc has convenient physical and biological parameters for clinical applications. 99m Tc is formed by the beta decay from its 99 Mo parent. 99 Mo is produced by neutron irradiation of natural Mo or enriched 98 Mo, or as a fission product of 235 U. A third approach is cyclotron production of 99 Mo by proton bombardment of enriched 100 Mo over 100 Mo(p,pn) 99 Mo reaction. The most common method of separating 99m Tc from its 99 Mo parent is the elution of 99m Tc with normal saline from an aluminum oxide column containing adsorbed 99 Mo. The second method is solvent extraction using methylethylketon. The sublimation method is based on different volatility of MoO 3 and Tc 2 O 7 . Previously the development of a practical sublimation generator has been studied and some of them have been used routinely. As a reactor and cyclotron owner we have examined the possibility of producing our own 99m Tc with the aim of being independent from supplier and transportation problems. We have studied the separation of 99m Tc with the aim of being independent from supplier and transportation problems. We have studied the separation of 99m Tc from MoO 3 by complete distillation of gram amounts of natural MoO 3 or enriched 98 MoO 3 irradiated in reactor. The principle of the described method is based on the complete evaporation of MoO 3 and Tc 2 O 7 oxides and its following fractionated condensation. To realize this idea, two different generator systems for repeated multiple separation were developed and studied. The first based on using a two-oven technique. A quartz apparatus is placed in two ovens which are situated side by side and heated to different temperatures. Sweeping gas carries irradiated 99 MoO 3 from a middle part of the first oven heated to a higher temperature (1100 deg. C

  1. Analysis of SCRM experience in the area of quality assurance for retrospective EPR dosimetry technique with teeth

    International Nuclear Information System (INIS)

    Sholom, S. V.; Chumak, V.V.

    2003-01-01

    EPR dosimetry with tooth enamel is commonly accepted as one of most precise and accurate methods for retrospective dosimetry. At the same time, regularly conducted international Intercomparisons and Inter-calibrations of EPR dosimetry techniques demonstrate the significant scatter of results among laboratories operation in this area. This is mainly caused by the lack of commonly adopted unified technique which would be based on clear and efficient scheme of quality assurance. In the present work we will summarize more than ten-year experience of Scientific Center for Radiation Medicine in the area of EPR dosimetry from the point of view of quality assurance. EPR dosimetry technique with teeth, which was developed and being used in SCRM for routine dosimetry of liquidators is characterized by two-level system of quality assurance. In-house level covers all steps of the technique and allows control and minimizing of uncertainties that arise on separate steps. Extramural level provides the control of reliability and accuracy of technique in whole by means of regular participation in bi- and multi-lateral intercomparisons. Cumulative uncertainty of EPR dosimetry technique determined based on the results of 6 different intercomparisons is 21 mGy for dose below 300 and 11% for dose higher that 300 mGy. (authors)

  2. Mammalian spermatogenesis as a new system for biologic dosimetry of ionizing irradiation

    International Nuclear Information System (INIS)

    Hacker, U.; Schumann, J.; Goehde, W.

    1982-01-01

    The radiation induced reduction of the number of DNA synthesizing cells (spermatogonia) is described using the fast-working flow cytophotometer. Since there is no shoulder in the initial part of the dose response curve this model of biologic dosimetry is very sensitive. The D 50 value is 0.25 Gy; a radiation exposure of only 0.1 Gy can be detected. (Auth.)

  3. Mammalian spermatogenesis as a new system for biologic dosimetry of ionizing irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, U; Schumann, J; Goehde, W [Muenster Univ. (Germany, F.R.). Radiologische Klinik

    1982-01-01

    The radiation induced reduction of the number of DNA synthesizing cells (spermatogonia) is described using the fast-working flow cytophotometer. Since there is no shoulder in the initial part of the dose response curve this model of biologic dosimetry is very sensitive. The D/sub 50/ value is 0.25 Gy; a radiation exposure of only 0.1 Gy can be detected.

  4. Nevada test site neutron dosimetry-problems/solutions

    International Nuclear Information System (INIS)

    Sygitowicz, L.S.; Bastian, C.T.; Wells, I.J.; Koch, P.N.

    1991-01-01

    Historically, neutron dosimetry at the NTS was done using NTA film and albedo LiF TLD's. In 1987 the dosimeter type was changed from the albedo TLD based system to a CR-39 track etch based system modeled after the program developed by D. Hankins at LLNL. Routine issue and return is performed quarterly for selected personnel using bar-code readers at permanent locations. The capability exists for work site issue as-needed. Issue data are transmitted by telephone to a central computer where it is stored until the dosimeter is returned, processed and read, and the dose calculation is performed. Dose equivalent calculations are performed using LOTUS 123 and the results are printed as a hard copy record. The issue and dose information are hand-entered into the Dosimetry database. An application is currently being developed to automate this sequence

  5. Rapid learning in practice: A lung cancer survival decision support system in routine patient care data

    International Nuclear Information System (INIS)

    Dekker, Andre; Vinod, Shalini; Holloway, Lois; Oberije, Cary; George, Armia; Goozee, Gary; Delaney, Geoff P.; Lambin, Philippe; Thwaites, David

    2014-01-01

    Background and purpose: A rapid learning approach has been proposed to extract and apply knowledge from routine care data rather than solely relying on clinical trial evidence. To validate this in practice we deployed a previously developed decision support system (DSS) in a typical, busy clinic for non-small cell lung cancer (NSCLC) patients. Material and methods: Gender, age, performance status, lung function, lymph node status, tumor volume and survival were extracted without review from clinical data sources for lung cancer patients. With these data the DSS was tested to predict overall survival. Results: 3919 lung cancer patients were identified with 159 eligible for inclusion, due to ineligible histology or stage, non-radical dose, missing tumor volume or survival. The DSS successfully identified a good prognosis group and a medium/poor prognosis group (2 year OS 69% vs. 27/30%, p < 0.001). Stage was less discriminatory (2 year OS 47% for stage I–II vs. 36% for stage IIIA–IIIB, p = 0.12) with most good prognosis patients having higher stage disease. The DSS predicted a large absolute overall survival benefit (∼40%) for a radical dose compared to a non-radical dose in patients with a good prognosis, while no survival benefit of radical radiotherapy was predicted for patients with a poor prognosis. Conclusions: A rapid learning environment is possible with the quality of clinical data sufficient to validate a DSS. It uses patient and tumor features to identify prognostic groups in whom therapy can be individualized based on predicted outcomes. Especially the survival benefit of a radical versus non-radical dose predicted by the DSS for various prognostic groups has clinical relevance, but needs to be prospectively validated

  6. Toward acquiring comprehensive radiosurgery field commissioning data using the PRESAGE/optical-CT 3D dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Clift, Corey; Thomas, Andrew; Chang Zheng; Oldham, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Adamovics, John [Department of Chemistry, Rider University, Lawrenceville, NJ 08648 (United States); Das, Indra [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States)], E-mail: cclift@montefiore.org

    2010-03-07

    Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (S{sub c,p}), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT film was used for independent verification. Measurements of S{sub c,p} made with PRESAGE and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2-3.6% for PRESAGE, and 1.6-3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE. The advantages of the PRESAGE (registered) system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence.

  7. Toward acquiring comprehensive radiosurgery field commissioning data using the PRESAGE/optical-CT 3D dosimetry system

    International Nuclear Information System (INIS)

    Clift, Corey; Thomas, Andrew; Chang Zheng; Oldham, Mark; Adamovics, John; Das, Indra

    2010-01-01

    Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (S c,p ), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT film was used for independent verification. Measurements of S c,p made with PRESAGE and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2-3.6% for PRESAGE, and 1.6-3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE. The advantages of the PRESAGE (registered) system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence.

  8. Toward acquiring comprehensive radiosurgery field commissioning data using the PRESAGE®/ optical-CT 3D dosimetry system

    Science.gov (United States)

    Clift, Corey; Thomas, Andrew; Adamovics, John; Chang, Zheng; Das, Indra; Oldham, Mark

    2010-03-01

    Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE® read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (Sc, p), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT® film was used for independent verification. Measurements of Sc, p made with PRESAGE® and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2-3.6% for PRESAGE®, and 1.6-3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE®/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE®. The advantages of the PRESAGE® system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence.

  9. Making sense of the shadows: priorities for creating a learning healthcare system based on routinely collected data.

    Science.gov (United States)

    Deeny, Sarah R; Steventon, Adam

    2015-08-01

    Socrates described a group of people chained up inside a cave, who mistook shadows of objects on a wall for reality. This allegory comes to mind when considering 'routinely collected data'-the massive data sets, generated as part of the routine operation of the modern healthcare service. There is keen interest in routine data and the seemingly comprehensive view of healthcare they offer, and we outline a number of examples in which they were used successfully, including the Birmingham OwnHealth study, in which routine data were used with matched control groups to assess the effect of telephone health coaching on hospital utilisation.Routine data differ from data collected primarily for the purposes of research, and this means that analysts cannot assume that they provide the full or accurate clinical picture, let alone a full description of the health of the population. We show that major methodological challenges in using routine data arise from the difficulty of understanding the gap between patient and their 'data shadow'. Strategies to overcome this challenge include more extensive data linkage, developing analytical methods and collecting more data on a routine basis, including from the patient while away from the clinic. In addition, creating a learning health system will require greater alignment between the analysis and the decisions that will be taken; between analysts and people interested in quality improvement; and between the analysis undertaken and public attitudes regarding appropriate use of data. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. 78 FR 32257 - Privacy Act of 1974; Report of a New Routine Use for Selected CMS Systems of Records

    Science.gov (United States)

    2013-05-29

    ... systems of records to assist in preventing and detecting fraud, waste and abuse. The new routine use will... for the purpose of preventing and detecting fraud, waste and abuse, pursuant to section 1128C(a)(2) of the Social Security Act (``the Act''). At section 1128C(c) of the Act, a health plan is defined as a...

  11. Endocavitary in vivo Dosimetry for IMRT Treatments of Gynecologic Tumors

    International Nuclear Information System (INIS)

    Cilla, Savino; Macchia, Gabriella; Digesù, Cinzia; Deodato, Francesco; Sabatino, Domenico; Morganti, Alessio G.; Piermattei, Angelo

    2011-01-01

    The accuracy and reproducibility of endometrial carcinoma treatment with intensity-modulated radiotherapy (IMRT) was assessed by means of in vivo dosimetry. Six patients who had previously undergone radical hysterectomy for endometrial carcinoma were treated with IMRT using a vaginal applicator with radio-opaque fiducial markers. An ion-chamber inserted into the applicator supplied an endocavitary in vivo dosimetry for quality assurance purposes. The ratio R = D/D TPS between the in vivo measured dose D and the predicted dose by the treatment planning system D TPS was determined for every fraction of the treatment. Results showed that 90% and 100% of the ratios resulted equal to 1 within 5% and 10%, respectively. The mean value of the ratios distribution for the 6 patients was R = 0.995 and the SD = 0.034. The ratio R* between the measured and predicted total doses for each patient was near to 1, within 2%. The dosimetric results suggest that the use of a vaginal applicator in an image-guided approach could make the interfractions target position stable and reproducible, allowing a safe use of the IMRT technique in the treatment of postoperative vaginal vault. In vivo dosimetry may supply useful information about the discrimination of random vs. systematic errors. The workload is minimum and this in vivo dosimetry can be applied also in the clinical routine.

  12. Dosimetry tools and techniques for IMRT

    International Nuclear Information System (INIS)

    Low, Daniel A.; Moran, Jean M.; Dempsey, James F.; Dong Lei; Oldham, Mark

    2011-01-01

    Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA) radiation dose distributions. This report provides a comprehensive overview of how dosimeters, phantoms, and dose distribution analysis techniques should be used to support the commissioning and quality assurance requirements of an IMRT program. The proper applications of each dosimeter are described along with the limitations of each system. Point detectors, arrays, film, and electronic portal imagers are discussed with respect to their proper use, along with potential applications of 3D dosimetry. Regardless of the IMRT technique utilized, some situations require the use of multiple detectors for the acquisition of accurate commissioning data. The overall goal of this task group report is to provide a document that aids the physicist in the proper selection and use of the dosimetry tools available for IMRT QA and to provide a resource for physicists that describes dosimetry measurement techniques for purposes of IMRT commissioning and measurement-based characterization or verification of IMRT treatment plans. This report is not intended to provide a comprehensive review of commissioning and QA procedures for IMRT. Instead, this report focuses on the aspects of metrology, particularly the practical aspects of measurements that are unique to IMRT. The metrology of IMRT concerns the application of measurement instruments and their suitability, calibration, and quality control of measurements. Each of the dosimetry measurement tools has limitations that need to be considered when incorporating them into a commissioning process or a comprehensive QA program. For example, routine quality assurance procedures require the use of robust field dosimetry systems. These often exhibit limitations with respect to spatial resolution or energy response and need to themselves be commissioned against more established dosimeters. A chain of

  13. DRDC Ottawa Participation in the SILENE Accident Dosimetry Intercomparison Exercise. June 10-21, 2002

    National Research Council Canada - National Science Library

    Prud'homme-Lalonde, L

    2002-01-01

    .... The SILENE International Accident Dosimetry Intercomparison Exercise at Valduc, France in June 2002 coincided with DRDC Ottawa work designed to refine its proposed criticality dosimetry system...

  14. Implementation aspects of image management, archiving, and communication systems in routine clinical use

    NARCIS (Netherlands)

    Haar Romenij, ter B.M.

    1991-01-01

    Implementation of a digital imaging network in routine clinical use is a difficult task. Not only the high technical requirements, but especially the complexity of the organization of the diagnostic information flow in a hospital makes commitment essential in PACS implementation. The application of

  15. Neutron personnel dosimetry

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1981-01-01

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments

  16. Characterization of a fiber-taper charge-coupled device system for plastic scintillation dosimetry and comparison with the traditional lens system

    International Nuclear Information System (INIS)

    Gagnon, Louis-Philippe; Beddar, Sam; Beaulieu, Luc

    2015-01-01

    the FTS could measure doses more accurately than the LS and that low-dose measurements were feasible without the complexity of a lens-based system. The FTS would therefore be better adapted for routine clinical usage of fiber arrays. The increased SNR in the FTS suggests that water-equivalent PSDs with smaller radii could be used to obtain measurements with greater spatial resolution, further simplifying the use of PSDs for “in-vivo” monitoring and small-field dosimetry. - Highlights: • We compare a fiber-taper-based photon-counting system to a lens based system. • We quantify the increase of photons collected on the CCD using fiber guiding. • We study the systems SNR and accuracy increase offered by the taper system. • Increased accuracy at low-dose measurements is achieved with the use of the taper

  17. The impact of a preloaded intraocular lens delivery system on operating room efficiency in routine cataract surgery.

    Science.gov (United States)

    Jones, Jason J; Chu, Jeffrey; Graham, Jacob; Zaluski, Serge; Rocha, Guillermo

    2016-01-01

    The aim of this study was to evaluate the operational impact of using preloaded intraocular lens (IOL) delivery systems compared with manually loaded IOL delivery processes during routine cataract surgeries. Time and motion data, staff and surgery schedules, and cost accounting reports were collected across three sites located in the US, France, and Canada. Time and motion data were collected for manually loaded IOL processes and preloaded IOL delivery systems over four surgery days. Staff and surgery schedules and cost accounting reports were collected during the 2 months prior and after introduction of the preloaded IOL delivery system. The study included a total of 154 routine cataract surgeries across all three sites. Of these, 77 surgeries were performed using a preloaded IOL delivery system, and the remaining 77 surgeries were performed using a manual IOL delivery process. Across all three sites, use of the preloaded IOL delivery system significantly decreased mean total case time by 6.2%-12.0% (Psystem also decreased surgeon lens time, surgeon delays, and eliminated lens touches during IOL preparation. Compared to a manual IOL delivery process, use of a preloaded IOL delivery system for cataract surgery reduced total case time, total surgeon lens time, surgeon delays, and eliminated IOL touches. The time savings provided by the preloaded IOL delivery system provide an opportunity for sites to improve routine cataract surgery throughput without impacting surgeon or staff capacity.

  18. Hematological dosimetry

    International Nuclear Information System (INIS)

    Fluery-Herard, A.

    1991-01-01

    The principles of hematological dosimetry after acute or protracted whole-body irradiation are reviewed. In both cases, over-exposure is never homogeneous and the clinical consequences, viz medullary aplasia, are directly associated with the mean absorbed dose and the seriousness and location of the overexposure. The main hematological data required to assess the seriousness of exposure are the following: repeated blood analysis, blood precursor cultures, as indicators of whole-body exposure; bone marrow puncture, medullary precursor cultures and medullary scintigraphy as indicators of the importance of a local over-exposure and capacity for spontaneous repair. These paraclinical investigations, which are essential for diagnosis and dosimetry, are also used for surveillance and for the main therapeutic issues [fr

  19. Foetal dosimetry--is the ICRP dosimetric system for humans now complete?

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Steve [Westlakes Research Institute, Cumbria (United Kingdom)

    2002-03-01

    . Nonetheless, calculation of foetal doses as part of a radiological assessment would have been seen as something quite exceptional and not attempted by the average radiation protection practitioner. The recent release of ICRP Publication 88, concisely summarised in this issue by John Stather et al, will change this situation. The new data permit the publication of doses to the embryo and foetus for intakes of radionuclides by the mother both during pregnancy and prior to conception. Selected radioisotopes of 31 elements are covered. A number of intake scenarios are covered including acute intakes at a number of times prior to conception and during pregnancy, constant chronic intakes for one and five years prior to conception, and constant chronic intakes during pregnancy. This report represents the culmination of a major scientific effort by the individuals and institutions involved in Committee 2's Task Group on Internal Dosimetry, on which those involved should be congratulated. In order to calculate dose coefficients for the foetus, the Task Group has needed to establish models for the transfer of radionuclides from maternal circulation to the developing foetus and for the distribution of radionuclides between its tissues and organs; also, a time-dependent model of foetal geometry to permit the calculation of specific effective energies for the necessary source target combinations. As it stands, the report provides a comprehensive basis from which practitioners can calculate foetal doses as part of any radiological assessment, in both occupational and environmental radiation protection settings. A CD-ROM, expected to be available later this year, will make the data more accessible and permit greater flexibility in the calculations. ICRP-88 certainly fills the remaining major gap in the pre-existing system and, to that extent, coverage for humans is now essentially complete. However, many questions remain about the way in which the results of calculations using the new

  20. User's manual of a supporting system for treatment planning in boron neutron capture therapy. JAERI computational dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Kumada, Hiroaki; Torii, Yoshiya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-09-01

    A boron neutron capture therapy (BNCT) with epithermal neutron beam is expected to treat effectively for malignant tumor that is located deeply in the brain. It is indispensable to estimate preliminarily the irradiation dose in the brain of a patient in order to perform the epithermal neutron beam BNCT. Thus, the JAERI Computational Dosimetry System (JCDS), which can calculate the dose distributions in the brain, has been developed. JCDS is a software that creates a 3-dimensional head model of a patient by using CT and MRI images and that generates a input data file automatically for calculation neutron flux and gamma-ray dose distribution in the brain by the Monte Carlo code: MCNP, and that displays the dose distribution on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By treating CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is able to be made easily. The three-dimensional head image is editable to simulate the state of a head after its surgical processes such as skin flap opening and bone removal for the BNCT with craniotomy that are being performed in Japan. JCDS can provide information for the Patient Setting System to set the patient in an actual irradiation position swiftly and accurately. This report describes basic design and procedure of dosimetry, operation manual, data and library structure for JCDS (ver.1.0). (author)

  1. COMPARISON OF RESPONSE OF PASSIVE DOSIMETRY SYSTEMS IN SCANNING PROTON RADIOTHERAPY-A STUDY USING PAEDIATRIC ANTHROPOMORPHIC PHANTOMS.

    Science.gov (United States)

    Kneževic, Ž; Ambrozova, I; Domingo, C; De Saint-Hubert, M; Majer, M; Martínez-Rovira, I; Miljanic, S; Mojzeszek, N; Porwol, P; Ploc, O; Romero-Expósito, M; Stolarczyk, L; Trinkl, S; Harrison, R M; Olko, P

    2017-11-18

    Proton beam therapy has advantages in comparison to conventional photon radiotherapy due to the physical properties of proton beams (e.g. sharp distal fall off, adjustable range and modulation). In proton therapy, there is the possibility of sparing healthy tissue close to the target volume. This is especially important when tumours are located next to critical organs and while treating cancer in paediatric patients. On the other hand, the interactions of protons with matter result in the production of secondary radiation, mostly neutrons and gamma radiation, which deposit their energy at a distance from the target. The aim of this study was to compare the response of different passive dosimetry systems in mixed radiation field induced by proton pencil beam inside anthropomorphic phantoms representing 5 and 10 years old children. Doses were measured in different organs with thermoluminescent (MTS-7, MTS-6 and MCP-N), radiophotoluminescent (GD-352 M and GD-302M), bubble and poly-allyl-diglycol carbonate (PADC) track detectors. Results show that RPL detectors are the less sensitive for neutrons than LiF TLDs and can be applied for in-phantom dosimetry of gamma component. Neutron doses determined using track detectors, bubble detectors and pairs of MTS-7/MTS-6 are consistent within the uncertainty range. This is the first study dealing with measurements on child anthropomorphic phantoms irradiated by a pencil scanning beam technique. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Answer to request on the ININ internal dosimetry

    International Nuclear Information System (INIS)

    Alfaro L, M.M.

    1999-05-01

    In this report it is presented the reply to CNSNS asking for information about the methodology for the evaluation of the occupational dose due to internal contamination. The characteristics of the installation, type and dimensions of the shield room, construction materials, type of detecting, calibration geometries, type of used phantom, intervals of energy of the calibration, type of routine measurements, detection limit for Cs-137 and Co-60, code to carry out the analysis of the spectra, evaluation of the measurement data, whole body system type armchair with anthropomorphic phantom, whole body system of vertical scanning, distribution and location diagram of the internal dosimetry laboratory there are among the treated aspects. (Author

  3. Characterization of fuel distribution in the Three Mile Island Unit 2 (TMI-2) reactor system by neutron and gamma-ray dosimetry

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Ruddy, F.H.; Preston, C.C.; McNeece, J.P.; Kaiser, B.J.; McElroy, W.N.

    1984-01-01

    Neutron and gamma-ray dosimetry are being used for nondestructive assessment of the fuel distribution throughout the Three Mile Island Unit 2 (TMI-2) reactor core region and primary cooling system. The fuel content of TMI-2 makeup and purification Demineralizer A has been quantified with Si(Li) continuous gamma-ray spectrometry and solid-state track recorder (SSTR) neutron dosimetry. For fuel distribution characterization in the core region, results from SSTR neutron dosimetry exposures in the TMI-2 reactor cavity are presented. These SSTR results are consistent with the presence of a significant amount of fuel debris, equivalent to several fuel assemblies or more, lying at the bottom of the reactor vessel. (Auth.)

  4. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    Otto, T.

    1997-01-01

    In 1996, the Dosimetry and Calibration Section was, as in previous years, mainly engaged in routine tasks: the distribution of over 6000 dosimeters (with a total of more than 10,000 films) every two months and the calibration of about 900 fixed and mobile instruments used in the radiation survey sections of RP group. These tasks were, thanks to an experienced team, well mastered. Special efforts had to be made in a number of areas to modernize the service or to keep it in line with new prescriptions. The Individual Dosimetry Service had to assure that CERN's contracting firms comply with the prescriptions in the Radiation Safety Manual (1996) that had been inspired by the Swiss Ordinance of 1994: Companies must file for authorizations with the Swiss Federal Office for Public Health requiring that in every company an 'Expert in Radiation Protection' be nominated and subsequently trained. CERN's Individual Dosimetry Service is accredited by the Swiss Federal Authorities and works closely together with other, similar services on a rigorous quality assurance programme. Within this framework, CERN was mandated to organize this year the annual Swiss 'Intercomparison of Dosimeters'. All ten accredited dosimetry services - among others those of the Paul Scherrer Institute (PSI) in Villigen and of the four Swiss nuclear power stations - sent dosimeters to CERN, where they were irradiated in CERN's calibration facility with precise photon doses. After return to their origin they were processed and evaluated. The results were communicated to CERN and were compared with the originally given doses. A report on the results was subsequently prepared and submitted to the Swiss 'Group of Experts on Personal Dosimetry'. Reference monitors for photon and neutron radiation were brought to standard laboratories to assure the traceability of CERN's calibration service to the fundamental quantities. For photon radiation, a set of ionization chambers was calibrated in the reference field

  5. Dosimetry control for radiation processing - basic requirements and standards

    International Nuclear Information System (INIS)

    Ivanova, M.; Tsrunchev, Ts.

    2004-01-01

    A brief review of the basic international codes and standards for dosimetry control for radiation processing (high doses dosimetry), setting up a dosimetry control for radiation processing and metrology control of the dosimetry system is made. The present state of dosimetry control for food processing and the Bulgarian long experience in food irradiation (three irradiation facilities are operational at these moment) are presented. The absence of neither national standard for high doses nor accredited laboratory for calibration and audit of radiation processing dosimetry systems is also discussed

  6. Engineering Task Plan for Routine Engineering Support for Core Sampler System

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    Routine engineering support is required during normal operation of the core sampler trucks and associated ancillary equipment. This engineering support consists of, but is not limited to, troubleshooting operation problems, correcting minor design problems, assistance with work package preparation, assistance with procurement, fabrication shop support, planning of engineering tasks and preparation of associated Engineering Task Plans (ETP) and Engineering Service Requests (ESR). This ETP is the management plan document for implementing routine engineering support. Any additional changes to the scope of this ETP shall require a Letter of Instruction from Lockheed Martin Hanford Corp (LMHC). This document will also be the Work Planning Document for Development Control (HNF 1999a). The scope of this task will be to provide routine engineering support for Characterization equipment as required to support Characterization Operations. A task by task decision will be made by management to determine which tasks will be done per this ETP and if additional ETPs and/or ESRs are required. Due to the unique nature of this task, the only identifiable deliverable is to provide support as requested. Deliverables will be recorded in a task logbook as activities are identified. ESRs will be generated for tasks that require more than 40 person hours to complete, per Characterization Engineering Desk Instructions (DI 1999a)

  7. Dosimetry for electron beam application

    International Nuclear Information System (INIS)

    Miller, A.

    1983-12-01

    This report describes two aspects of electron beam dosimetry, on one hand development of film dosimeters and measurements of their properties, and on the other hand development of calorimeters for calibration of routine dosimeters, e.g. thin films. Two types of radiochromic thin film dosimeters have been developed in this department, and the properties of these and commercially available dosimeters have been measured and found to be comparable. Calorimeters which are in use for routine measurements, are being investigated with reference to their application as standardizing instruments, and new calorimeters are being developed. (author)

  8. Technical basis for internal dosimetry at Hanford

    International Nuclear Information System (INIS)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ( 58 Co, 60 Co, 54 Mn, and 59 Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs

  9. Technical basis for internal dosimetry at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs.

  10. Technical basis for internal dosimetry at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs.

  11. Technical basis for internal dosimetry at Hanford

    International Nuclear Information System (INIS)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ( 58 Co, 60 Co, 54 Mn, and 59 Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs

  12. Development and Validation of a National System for Routine Monitoring of Mortality in People Recently Released from Prison.

    Directory of Open Access Journals (Sweden)

    Stuart A Kinner

    Full Text Available People released from prison are at increased risk of death. However, no country has established a system for routine monitoring of mortality in this population. The aims of this study were to (a evaluate a system for routine monitoring of deaths after release from prison in Australia and (b estimate the number of deaths annually within 28 and 365 days of prison release from 2000 to 2013.Persons released from prison and deaths were identified in records held by Centrelink, Australia's national provider of unemployment benefits. Estimates generated in this manner were compared with those from a study that probabilistically linked correctional records with the National Death Index (NDI, for each calendar year 2000 to 2007. Using Centrelink data, national estimates of mortality within 28 and 365 days of release were produced for each calendar year 2000 to 2013.Compared with estimates based on linkage with the NDI, the estimated crude mortality rate based on Centrelink records was on average 52% lower for deaths within 28 days of release and 24% lower for deaths within 365 days of release. Nationally, over the period 2000 to 2013, we identified an average of 32 deaths per year within 28 days of release and 188 deaths per year within 365 days of release. The crude mortality rate for deaths within both 28 and 365 days of release increased over this time.Using routinely collected unemployment benefits data we detected the majority of deaths in people recently released from prison in Australia. These data may be sufficient for routine monitoring purposes and it may be possible to adopt a similar approach in other countries. Routine surveillance of mortality in ex-prisoners serves to highlight their extreme vulnerability and provides a basis for evaluating policy reforms designed to reduce preventable deaths.

  13. Participation of IRD/CNEN-Br in International Intercomparison of Criticality Accident Dosimetry Systems at Silene reactor, France

    International Nuclear Information System (INIS)

    Mauricio, Claudia Lucia P.; Fonseca, Evaldo S. da

    1996-01-01

    IRD has participated in an International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE reactor, France on June 1993. The dosemeters were irradiated on phantoms and free in air, in bare and lead shield reactor pulses, simulating different irradiation fields that can be found in criticality accidents. Comparing with the reference measurements, the calculated mean neutron kerma found by IRD was only 2% greater for lead shield and 14% greater for bare reactor. For gamma absorbed dose, the differences were, respectively + 22% and -9% for the dosemeters free in air and -19% and -9% for dosemeters on phantoms. IRD results are closer to the real values than the mean values measured by the participants. IRD results show a good performance if its simple criticality accident system. (author)

  14. The ENEA criticality accident dosimetry system: a contribution to the 2002 international intercomparison at the SILENE reactor.

    Science.gov (United States)

    Gualdrini, G; Bedogni, R; Fantuzzi, E; Mariotti, F

    2004-01-01

    The present paper summarises the activity carried out at the ENEA Radiation Protection Institute for updating the methodologies employed for the evaluation of the neutron and photon dose to the exposed workers in case of a criticality accident, in the framework of the 'International Intercomparison of Criticality Accident Dosimetry Systems' (Silène reactor, IRSN-CEA-Valduc June 2002). The evaluation of the neutron spectra and the neutron dosimetric quantities relies on activation detectors and on unfolding algorithms. Thermoluminescent detectors are employed for the gamma dose measurement. The work is aimed at accurately characterising the measurement system and, at the same time, testing the algorithms. Useful spectral information were included, based on Monte Carlo simulations, to take into account the potential accident scenarios of practical interest. All along this exercise intercomparison a particular attention was devoted to the 'traceability' of all the experimental and computational parameters and therefore, aimed at an easy treatment by the user.

  15. Some recent multi-frequency electron paramagnetic resonance results on systems relevant for dosimetry and dating.

    Science.gov (United States)

    Callens, F; Vanhaelewyn, G; Matthys, P

    2002-04-01

    Electron Paramagnetic Resonance (EPR) applications like e.g. EPR dosimetry and dating, are usually performed at X-band frequencies because of practical reasons (cost, sample size, etc.). However, it is increasingly recognized that the radiation-induced EPR signals are strongly composite, what might affect dose/age estimates. A few recent examples from both the dosimetry and dating field, illustrating the problems, will be presented. The involved spectra are mainly due to carbonate-derived radicals (CO2-, CO3(3-), etc.). Measurements at higher microwave frequencies are often recommended to improve the insight into the spectra and/or the practical signal quantification. Recent results at Q- and W-band frequencies will show that a multi-frequency approach indeed opens many interesting perspectives in this field but also that each frequency may have specific (dis)advantages depending on the EPR probe and application involved. The discussion will concern carbonate-containing apatite single crystals, shells, modern and fossil tooth enamel.

  16. Performance test of dosimetric services in the EU member states and Switzerland for the routine assessment of individual doses (photon, beta and neutron)

    DEFF Research Database (Denmark)

    Bordy, J.M.; Stadtmann, H.; Ambrosi, P.

    2000-01-01

    of the dosimetry of routine services. It was assumed that each service would have already done a type test before performing routine dosimetry: the radiation fields were chosen to simulate, as far as possible, workplace radiation fields by mixing combining energies and incident angles. The results of photon...... for External Radiation. The other two papers are included in this issue of Radiation Protection Dosimetry....

  17. The dosimetry programme of the IAEA

    International Nuclear Information System (INIS)

    1987-01-01

    Describes the activities of the IAEA's Dosimetry Laboratory which provides calibration and comparison services for secondary standard dosimetry laboratories (SSDLs) of Member States. In addition, a joint IAEA/WHO postal dosimetry service has been established for radiotherapy centers. The International Measurement System and the calibration ''chain'' from measurement standard instruments of the International Bureau of Weights and Measurements (BIPM) through the primary and secondary standards to the dosimeters of the users are presented as well

  18. Comparison of the EntericBio multiplex PCR system with routine culture for detection of bacterial enteric pathogens.

    LENUS (Irish Health Repository)

    O'Leary, James

    2009-11-01

    The EntericBio system uses a multiplex PCR assay for the simultaneous detection of Campylobacter spp., Salmonella enterica, Shigella spp., and Escherichia coli O157 from feces. It combines overnight broth enrichment with PCR amplification and detection by hybridization. An evaluation of this system was conducted by comparing the results obtained with the system with those obtained by routine culture, supplemented with alternative PCR detection methods. In a study of 773 samples, routine culture and the EntericBio system yielded 94.6 and 92.4% negative results, respectively. Forty-two samples had positive results by culture, and all of these were positive with the EntericBio system. This system detected an additional 17 positive samples (Campylobacter spp., n = 12; Shigella spp., n = 1; E. coli O157, n = 4), but the results for 5 samples (Campylobacter spp., n = 2; Shigella spp., n = 1; E. coli O157, n = 2) could not be confirmed. The target for Shigella spp. detected by the EntericBio system is the ipaH gene, and the molecular indication of the presence of Shigella spp. was investigated by sequence analysis, which confirmed that the ipaH gene was present in a Klebsiella pneumoniae isolate from the patient. The sensitivity, specificity, positive predictive value, and negative predictive value were 100%, 99.3%, 91.5%, and 100%, respectively. Turnaround times were significantly reduced with the EntericBio system, and a result was available between 24 and 32 h after receipt of the sample in the laboratory. In addition, the amount of laboratory waste was significantly reduced by use of this system. In summary, the EntericBio system proved convenient to use, more sensitive than the conventional culture used in this study, and highly specific; and it generated results significantly faster than routine culture for the pathogens tested.

  19. Neutron Dosimetry

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2001-01-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding

  20. Neutron Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vanhavere, F

    2001-04-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding.

  1. Biological dosimetry in cases gives occupational high exposition to ionizing radiations

    International Nuclear Information System (INIS)

    Ramalho, Adriana T.; Costa, Maria Lucia P.; Oliveira, Monica S.; Silva, Francisco Cesar A.

    1998-01-01

    From 1983 the cytogenetics dosimetry method it has been used as routine in the IRD laboratory in the period 1983 at 1997 but a high exposition occupational case the physical dosimeters happened in Brazil they were investigated through the cytogenetics dosimetry technique. This technique is employ when the dosimetry personal marks a high dose to 100 mSv (0,1 Gy) that is the cut-off minimum detected in the dosimetry cytogenetics

  2. The impact of a preloaded intraocular lens delivery system on operating room efficiency in routine cataract surgery

    Directory of Open Access Journals (Sweden)

    Jones JJ

    2016-06-01

    Full Text Available Jason J Jones,1 Jeffrey Chu,2 Jacob Graham,2 Serge Zaluski,3 Guillermo Rocha4 1Jones Eye Clinic, Sioux City, IA, 2Quorum Consulting Inc., San Francisco, CA, USA; 3VISIS, Perpignan, France; 4Ocular Microsurgery & Laser Centre, Brandon, MB, Canada Purpose: The aim of this study was to evaluate the operational impact of using preloaded intraocular lens (IOL delivery systems compared with manually loaded IOL delivery processes during routine cataract surgeries. Methods: Time and motion data, staff and surgery schedules, and cost accounting reports were collected across three sites located in the US, France, and Canada. Time and motion data were collected for manually loaded IOL processes and preloaded IOL delivery systems over four surgery days. Staff and surgery schedules and cost accounting reports were collected during the 2 months prior and after introduction of the preloaded IOL delivery system. Results: The study included a total of 154 routine cataract surgeries across all three sites. Of these, 77 surgeries were performed using a preloaded IOL delivery system, and the remaining 77 surgeries were performed using a manual IOL delivery process. Across all three sites, use of the preloaded IOL delivery system significantly decreased mean total case time by 6.2%–12.0% (P<0.001 for data from Canada and the US and P<0.05 for data from France. Use of the preloaded delivery system also decreased surgeon lens time, surgeon delays, and eliminated lens touches during IOL preparation. Conclusion: Compared to a manual IOL delivery process, use of a preloaded IOL delivery system for cataract surgery reduced total case time, total surgeon lens time, surgeon delays, and eliminated IOL touches. The time savings provided by the preloaded IOL delivery system provide an opportunity for sites to improve routine cataract surgery throughput without impacting surgeon or staff capacity. Keywords: time and motion, provider impact, surgical throughput, IOL

  3. Experimental verification of internal dosimetry calculations. Annual progress report

    International Nuclear Information System (INIS)

    1980-05-01

    During the past year a dosimetry research program has been established in the School of Nuclear Engineering at the Georgia Institute of Technology. The major objective of this program has been to provide research results upon which a useful internal dosimetry system could be based. The important application of this dosimetry system will be the experimental verification of internal dosimetry calculations such as those published by the MIRD Committee

  4. Advantages and disadvantages of luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Olko, Pawel, E-mail: Pawel.Olko@ifj.edu.p [Institute of Nuclear Physics Polish Academy of Science (IFJ PAN), Krakow (Poland)

    2010-03-15

    Owing to their excellent dosimetric properties, luminescence detectors of ionizing radiation are now extensively applied in individual dosimetry services. The most frequently used personal dosemeters are based on Optically Stimulated Luminescence (OSL), radiophotoluminescence (RPL) or thermoluminescence (TL). Luminescence detectors have also found several applications in clinical dosimetry, especially around new radiation modalities in radiotherapy, such as Intensity Modulated Radiotherapy (IMRT) or ion beam radiotherapy. Requirements of luminescence detectors applied in individual and clinical dosimetry and some recent developments in luminescence of detectors and techniques leading to significant improvements of the functionality and accuracy of dosimetry systems are reviewed and discussed.

  5. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Kumar, A.; Reddy, A.R.

    1994-01-01

    The last few years have seen a significant increase in the use of ionising radiation in industrial processes and also international trade in irradiated products. With this, the demand for internationally accepted dosimetric techniques, accredited to international standards has also increased which is further stimulated by the emergence of ISO-9000 series of standards in industries. The present paper describes some of the important dosimetric techniques used in radiation processing, the role of IAEA in evolving internationally accepted standards and work carried out at the Defence Laboratories, Jodhpur in the development of a cheap, broad dose range and simple dosimeter for routine dosimetry. For this polyhydroxy alcohols viz., mannitol, sorbitol and inositol were studied using the spectrophotometric read out method. Out of the alcohols studied mannitol was found to be most promising covering a dose range of 0.01 kGy - 100 kGy. (author). 26 refs., 3 figs., 1 tab

  6. Hanford External Dosimetry Program

    International Nuclear Information System (INIS)

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs

  7. Type test of the Rados MTS-N thermoluminescent dosimetry system for individual monitoring of whole body photons in HP (10)

    International Nuclear Information System (INIS)

    Ferreira, M.S.; Silva, E.R. da; Maurício, C.L.P.

    2017-01-01

    The Institute of Radioprotection and Dosimetry (IRD/CNEN-RJ), uses an automatic thermoluminescent dosimetry (TL) system for evaluation of whole body for photons with individual monitors RADOS MTS-N, with TLF detector of LiF: Mg, Ti. The objective of this work was to characterize this system for the evaluation of H P (10) operating magnitude. The measuring range is 0.2 mSv to 2 Sv, for photon energies from 20 keV to 1250 keV. Performance tests were done for the following characteristics: homogeneity of the monitors, system reproducibility, linearity, temperature and humidity effect, energy and angular dependence and fading. The acceptance requirements used to test system performance have been drawn from national and international documents. The results obtained prove that the system can be used to measure the occupational dose of photons in H P (10)

  8. A portable detection system for in vivo monitoring of {sup 131}I in routine and emergency situations

    Energy Technology Data Exchange (ETDEWEB)

    Lucena, Eder A.; Dantas, Ana Letícia A.; Dantas, Bernardo M., E-mail: bmdantas@ird.gov.br [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In vivo monitoring of {sup 131}I in human thyroid is often used to evaluate occupational exposure in nuclear medicine facilities and in the case of accidental intakes in nuclear power plants for the monitoring of workers and population. The device presented in this work consists on a Pb-collimated NaI(Tl)3” x 3” detector assembled on a tripod and connected to a portable PC. The evaluation of the applicability and limitations of the system is based on the estimation of the committed effective doses associated to the minimum detectable activities in different facilities. The system is suitable for use in routine and accidental situations. (author)

  9. A totally automated data acquisition/reduction system for routine treatment of mass spectroscopic data by factor analysis

    International Nuclear Information System (INIS)

    Tway, P.C.; Love, L.J.C.; Woodruff, H.B.

    1980-01-01

    Target transformation factor analysis is applied to typical data from gas chromatography-mass spectrometry and solid-probe mass spectrometry to determine rapidly the number of components in unresolved or partially resolved peaks. This technique allows the detection of hidden impurities which often make interpretation or quantification impossible. The error theory of Malinowski is used to assess the reliability of the results. The totally automated system uses a commercially available g.c.-m.s. data system interfaced to the large computer, and the number of components under a peak can be determined routinely and rapidly. (Auth.)

  10. Comparison of the performance between portal dosimetry and a commercial two-dimensional array system on pretreatment quality assurance for volumetric-modulated arc and intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Kim, Yon-Lae; Chung, Jin-Beom; Kim, Jae-Sung; Lee, Jeong-Woo; Choi, Kyoung-Sik

    2014-01-01

    The aim of this study was to compare the dosimetric performance and to evaluate the pretreatment quality assurance (QA) of a portal dosimetry and a commercial two-dimensional (2-D) array system. In the characteristics comparison study, the measured values for the dose linearity, dose rate response, reproducibility, and field size dependence for 6-MV photon beams were analyzed for both detector systems. To perform the qualitative evaluations of the 10 IMRT and the 10 VMAT plans, we used the Gamma index for quantifying the agreement between calculations and measurements. The performance estimates for both systems show that overall, minimal differences in the dosimetric characteristics exist between the Electron portal imaging device (EPID) and 2-D array system. In the qualitative analysis for pretreatment quality assurance, the EPID and 2-D array system yield similar passing rate results for the majority of clinical Intensity-modulated radiation therapy (IMRT) and Volumetric-modulated arc therapy (VMAT) cases. These results were satisfactory for IMRT and VMAT fields and were within the acceptable criteria of γ % ≤1, γ avg < 0.5. The EPDI and the 2-D array systems showed comparable dosimetric results. In this study, the results revealed both systems to be suitable for patient-specific QA measurements for IMRT and VMAT. We conclude that, depending on the status of clinic, both systems can be used interchangeably for routine pretreatment QA.

  11. Comparison of the performance between portal dosimetry and a commercial two-dimensional array system on pretreatment quality assurance for volumetric-modulated arc and intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yon-Lae [Choonhae College of Health Sciences, Ulsan (Korea, Republic of); The Catholic University of Korea, Seoul (Korea, Republic of); Chung, Jin-Beom; Kim, Jae-Sung [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Lee, Jeong-Woo [Konkuk University Medical Center, Seoul (Korea, Republic of); Choi, Kyoung-Sik [SAM Anyang Hospital, Anyang (Korea, Republic of)

    2014-04-15

    The aim of this study was to compare the dosimetric performance and to evaluate the pretreatment quality assurance (QA) of a portal dosimetry and a commercial two-dimensional (2-D) array system. In the characteristics comparison study, the measured values for the dose linearity, dose rate response, reproducibility, and field size dependence for 6-MV photon beams were analyzed for both detector systems. To perform the qualitative evaluations of the 10 IMRT and the 10 VMAT plans, we used the Gamma index for quantifying the agreement between calculations and measurements. The performance estimates for both systems show that overall, minimal differences in the dosimetric characteristics exist between the Electron portal imaging device (EPID) and 2-D array system. In the qualitative analysis for pretreatment quality assurance, the EPID and 2-D array system yield similar passing rate results for the majority of clinical Intensity-modulated radiation therapy (IMRT) and Volumetric-modulated arc therapy (VMAT) cases. These results were satisfactory for IMRT and VMAT fields and were within the acceptable criteria of γ{sub %}≤1, γ{sub avg} < 0.5. The EPDI and the 2-D array systems showed comparable dosimetric results. In this study, the results revealed both systems to be suitable for patient-specific QA measurements for IMRT and VMAT. We conclude that, depending on the status of clinic, both systems can be used interchangeably for routine pretreatment QA.

  12. Intelligent Routines

    CERN Document Server

    Anastassiou, George A

    “Intelligent Routines II: Solving Linear Algebra and Differential Geometry with Sage” contains numerous of examples and problems as well as many unsolved problems. This book extensively applies the successful software Sage, which can be found free online http://www.sagemath.org/. Sage is a recent and popular software for mathematical computation, available freely and simple to use. This book is useful to all applied scientists in mathematics, statistics and engineering, as well for late undergraduate and graduate students of above subjects. It is the first such book in solving symbolically with Sage problems in Linear Algebra and Differential Geometry. Plenty of SAGE applications are given at each step of the exposition.

  13. Strengthening Routine Data Systems to Track the HIV Epidemic and Guide the Response in Sub-Saharan Africa.

    Science.gov (United States)

    Rice, Brian; Boulle, Andrew; Baral, Stefan; Egger, Matthias; Mee, Paul; Fearon, Elizabeth; Reniers, Georges; Todd, Jim; Schwarcz, Sandra; Weir, Sharon; Rutherford, George; Hargreaves, James

    2018-04-03

    The global HIV response has entered a new phase with the recommendation of treating all persons living with HIV with antiretroviral therapy, and with the goals of reducing new infections and AIDS-related deaths to fewer than 500,000 by 2020. This new phase has intensive data requirements that will need to utilize routine data collected through service delivery platforms to monitor progress toward these goals. With a focus on sub-Saharan African, we present the following priorities to improve the demand, supply, and use of routine HIV data: (1) strengthening patient-level HIV data systems that support continuity of clinical care and document sentinel events; (2) leveraging data from HIV testing programs; (3) using targeting data collection in communities and among clients; and (4) building capacity and promoting a culture of HIV data quality assessment and use. When fully leveraged, routine data can efficiently provide timely information at a local level to inform action, as well as provide information at scale with wide geographic coverage to strengthen estimation efforts. ©Brian Rice, Andrew Boulle, Stefan Baral, Matthias Egger, Paul Mee, Elizabeth Fearon, Georges Reniers, Jim Todd, Sandra Schwarcz, Sharon Weir, George Rutherford, James Hargreaves. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 03.04.2018.

  14. Personnel neutron dosimetry at Department of Energy facilities

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Endres, G.W.R.; Selby, J.M.; Vallario, E.J.

    1980-08-01

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered

  15. Radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Soares, Christopher G.

    2006-01-01

    The object of this paper is to give a new user some practical information on the use of radiochromic films for medical applications. While various aspects of radiochromic film dosimetry for medical applications have been covered in some detail in several other excellent review articles which have appeared in the last few years [Niroomand-Rad, A., Blackwell, C.R., Coursey, B.M., Gall, K.P., McLaughlin, W.L., Meigooni, A.S., Nath, R., Rodgers, J.E., Soares, C.G., 1998. Radiochromic dosimetry: recommendations of the AAPM Radiation Therapy Committee Task Group 55. Med. Phys. 25, 2093-2115; Dempsey, J.F., Low, D.A., Mutic, S., Markman, J., Kirov, A.S., Nussbaum, G.H., Williamson, J.F., 2000. Validation of a precision radiochromic film dosimetry system for quantitative two-dimensional imaging of acute exposure dose distributions. Med. Phys. 27, 2462-2475; Butson, M.J., Yu, P.K.N., Cheung, T., Metcalfe, P., 2003. Radiochromic film for medical radiation dosimetry. Mater. Sci. Eng. R41, 61-120], it is the intent of the present author to present material from a more user-oriented and practical standpoint. That is, how the films work will be stressed much less than how to make the films work well. The strength of radiochromic films is most evident in applications where there is a very high dose gradient and relatively high absorbed dose rates. These conditions are associated with brachytherapy applications, measurement of small fields, and at the edges (penumbra regions) of larger fields

  16. Radiation dosimetry

    International Nuclear Information System (INIS)

    Harper, M.W.; Thomas, B.; Conway, J.

    1977-01-01

    A dosemeter is described that is based on the TSCD principle (thermally stimulated current dosimetry). Basically this involves irradiating a responsive material and then heating it,whereby an electric current is produced. If the material is heated in an electric field the peak value of the thermally stimulated current or alternatively the total charge released by heating, can be related to the radiation dose received. The instrument described utilises a sheet coated with a thermoplastic polymer, such as a poly4-methylpent-l-ene. The polymer should have a softening point not lower than 150 0 C with an electrical resistivity of at least 10 16 chms/cm at 150 0 C. The polymer may also be PTFE. Heating should be in the range 150 0 C to 200 0 C and the electric field in the range 50 to 10,000V/mm. (U.K.)

  17. Radiation protection dosimetry and calibrations

    International Nuclear Information System (INIS)

    Verhavere, Ph.

    2007-01-01

    At the SCK-CEN different specialised services are delivered for a whole range of external and internal customers in the radiation protection area. For the expertise group of radiation protection dosimetry and calibrations, these services are organized in four different laboratories: dosimetry, anthropogammametry, nuclear calibrations and non-nuclear calibrations. The services are given by a dedicated technical staff who has experience in the handling of routine and specialised cases. The scientific research that is performed by the expertise group makes sure that state-of-the-art techniques are being used, and that constant improvements and developments are implemented. Quality Assurance is an important aspect for the different services, and accreditation according national and international standards is achieved for all laboratories

  18. Customisation of a Monte Carlo dosimetry tool for dental cone-beam CT systems

    International Nuclear Information System (INIS)

    Stratis, A.; Lopez-Rendon, X.; Jacobs, R.; Zhang, G.; Bogaerts, R.; Bosmans, H.

    2016-01-01

    A versatile EGSnrc Monte Carlo (MC) framework, initially designed to explicitly simulate X-ray tubes and record the output data into phase space data files, was modified towards dental cone-beam computed tomography (CBCT) dosimetric applications by introducing equivalent sources. Half value layer (HVL) measurements were conducted to specify protocol-specific energy spectra. Air kerma measurements were carried out with an ionisation chamber positioned against the X-ray tube to obtain the total filtration attenuation characteristics. The framework is applicable to bow-tie and non-bow-tie inherent filtrations, and it accounts for the anode heel effect and the total filtration of the tube housing. The code was adjusted to the Promax 3D Max (Planmeca, Helsinki, Finland) dental CBCT scanner. For each clinical protocol, calibration factors were produced to allow absolute MC dose calculations. The framework was validated by comparing MC calculated doses and measured doses in a cylindrical water phantom. Validation results demonstrate the reliability of the framework for dental CBCT dosimetry purposes. (authors)

  19. Advancements in accuracy of the alanine dosimetry system. Part 1. The effects of environmental humidity

    International Nuclear Information System (INIS)

    Sleptchonok, Olga F.; Nagy, Vitaly; Desrosiers, Marc F.

    2000-01-01

    A one-year study of the EPR signal of γ-irradiated ( 60 Co) L-α-alanine with simultaneous monitoring of the cavity Q-factor was undertaken. The widespread opinion that the EPR signal remains absolutely stable under normal laboratory storage conditions is inaccurate. At 0% humidity, the signal can be regarded as stable within ±1% of its initial value for 6 months for 1 and 10 kGy doses, but for only 3 months for 100 kGy. When stored at the same relative humidity values up to 60%, the fading rates for dosimeters irradiated to 1 and 10 kGy are similar, whereas signals of dosimeters irradiated to 100 kGy fade considerably faster for all humidities. The rates of fading increase with the relative humidity, especially above 60% R. H. Environmental humidity also deteriorates the accuracy of alanine dosimetry by changing the resonant cavity Q-factor. This is particularly important when irradiated alanine dosimeters are used as instrument calibration standards. Short-term changes in alanine EPR signal amplitudes were recorded upon removal of the irradiated dosimeters from their storage environments. The importance of an in situ standard to correct for measurement errors due to environmental effects is demonstrated. (author)

  20. FNTD radiation dosimetry system enhanced with dual-color wide-field imaging

    International Nuclear Information System (INIS)

    Akselrod, M.S.; Fomenko, V.V.; Bartz, J.A.; Ding, F.

    2014-01-01

    At high neutron and photon doses Fluorescent Nuclear Track Detectors (FNTDs) require operation in analog mode and the measurement results depend on individual crystal color center concentration (coloration). We describe a new method for radiation dosimetry using FNTDs, which includes non-destructive, automatic sensitivity calibration for each individual FNTD. In the method presented, confocal laser scanning fluorescent imaging of FNTDs is combined with dual-color wide field imaging of the FNTD. The calibration is achieved by measuring the color center concentration in the detector through fluorescence imaging and reducing the effect of diffuse reflection on the lapped surface of the FNTD by imaging with infra-red (IR) light. The dual-color imaging of FNTDs is shown to provide a good estimation of the detector sensitivity at high doses of photons and neutrons, where conventional track counting is impeded by track overlap. - Highlights: • New method and optical imaging head was developed for FNTD used at high doses. • Dual-color wide-field imaging used for color center concentration measurement. • Green fluorescence corrected by diffuse reflection used for sensitivity correction. • FNTD dose measurements performed in analog processing mode

  1. Neutron spectrum adjustment using reaction rate data acquired with a liquid dosimetry system

    International Nuclear Information System (INIS)

    Smith, D.L.; Ikeda, Y.; Uno, Y.; Maekawa, F.

    1997-01-01

    A dosimetry technique based on neutron activation of circulating water with dissolved salts is discussed. The neutron source was the FNS accelerator at JAERI, Tokai, Japan. Yttrium chloride hexahydrate (YCl 3· 6H 2 O) was the salt (264.9 grams dissolved in 16.094 liters of water). Gamma-ray yields were measured with an intrinsic Ge detector. The following reactions were examined: (1) 16 O(n,p) 16 N (E thresh = 10.245 MeV, t 1/2 = 7.13 sec, E γ = 6.129 MeV); (2) 37 Cl(n,p) 37 S (E thresh = 4.194 MeV, t 1/2 = 5.05 min, E γ = 3.104 MeV); (3) 89 Y(n,n') 89m Y (E thresh = 0.919 MeV, t 1/2 = 16.06 sec, E γ = 0.909 MeV). This paper describes use of the generalized least-squares (GLS) method to adjust the neutron spectrum

  2. The database system for dosimetry service at THE Institute of Nuclear Physics Polish Academy of Sciences

    International Nuclear Information System (INIS)

    Kopec, R.; Puchalska, M.; Olko, P.; Budzanowski, M.

    2005-01-01

    Full text: Laboratory of Individual and Environment Dosimetry (LADIS) at Institute of Nuclear Physics (IFJ) Polish Academy of Sciences in Krakow was formally established and accredited in 2001, based on the 30 years of experience of the local dosimetric service. The service is based on self-developed thermoluminescent detectors MTS-N (LiF:Mg,Ti) and MCP-N (LiF:Mg,Cu,P), three automatic: ACARD and DOSACUS readers and two manual RA-94 readers. The rapid increase of the number of customers from 200 in 2001 to 6000 in 2004 stimulated the development of the dedicated DosBaz data base. The database was built using the MS Access platform. The content of the data structure was elaborated according to the EUR 14852 EN recommendations. In particular, customers are identified with unique ID numbers, the establishment (e.g. name, contact, street and number/PO box, town, country, employer code number and telephone number), the site (e.g. name, contact) and the individual (e.g. full name, a unique number) as recommended in mentioned technical recommendations. The DosBaz allows for entire processing the data, including preparation of the final certificate, reporting for authorities, preparation of the statistics etc. The paper will discuss the structure of the database, show the dataflow and demonstrate the results of statistical evaluation of results. (author)

  3. Performance Evaluation of an Automated ELISA System for Alzheimer's Disease Detection in Clinical Routine.

    Science.gov (United States)

    Chiasserini, Davide; Biscetti, Leonardo; Farotti, Lucia; Eusebi, Paolo; Salvadori, Nicola; Lisetti, Viviana; Baschieri, Francesca; Chipi, Elena; Frattini, Giulia; Stoops, Erik; Vanderstichele, Hugo; Calabresi, Paolo; Parnetti, Lucilla

    2016-07-22

    The variability of Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers undermines their full-fledged introduction into routine diagnostics and clinical trials. Automation may help to increase precision and decrease operator errors, eventually improving the diagnostic performance. Here we evaluated three new CSF immunoassays, EUROIMMUNtrademark amyloid-β 1-40 (Aβ1-40), amyloid-β 1-42 (Aβ1-42), and total tau (t-tau), in combination with automated analysis of the samples. The CSF biomarkers were measured in a cohort consisting of AD patients (n = 28), mild cognitive impairment (MCI, n = 77), and neurological controls (OND, n = 35). MCI patients were evaluated yearly and cognitive functions were assessed by Mini-Mental State Examination. The patients clinically diagnosed with AD and MCI were classified according to the CSF biomarkers profile following NIA-AA criteria and the Erlangen score. Technical evaluation of the immunoassays was performed together with the calculation of their diagnostic performance. Furthermore, the results for EUROIMMUN Aβ1-42 and t-tau were compared to standard immunoassay methods (INNOTESTtrademark). EUROIMMUN assays for Aβ1-42 and t-tau correlated with INNOTEST (r = 0.83, p ratio measured with EUROIMMUN was the best parameter for AD detection and improved the diagnostic accuracy of Aβ1-42 (area under the curve = 0.93). In MCI patients, the Aβ1-42/Aβ1-40 ratio was associated with cognitive decline and clinical progression to AD.The diagnostic performance of the EUROIMMUN assays with automation is comparable to other currently used methods. The variability of the method and the value of the Aβ1-42/Aβ1-40 ratio in AD diagnosis need to be validated in large multi-center studies.

  4. The role of information systems in non-routine transit use of university students: Evidence from Brazil and Denmark

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Monteiro, Mayara Moraes; Anderson, Marie Karen

    2017-01-01

    In this study we seek to understand the relation between travel information, transit use intentions and night travel. We hypothesize that transit use is related to the perceived usefulness and the ease-of-use of the system, which are related to information quality and real-time information...... and the latent constructs. The results show that: (i) information search quality and source explain transit use; (ii) information quality underlies level-of-service and familiarity; (iii) the use of real-time information links to information quality and familiarity; (iv) general transit use and non-routine use...

  5. Dosimetry of blood irradiator - 2000

    International Nuclear Information System (INIS)

    Mhatre, Sachin G.V.; Shinde, S.H.; Bhat, R.M.; Rao, Suresh; Sharma, D.N.

    2008-01-01

    Full text: Blood transfusion to an immunodeficient or immunosuppressed patient has a high risk involved due to occurrence of Transfusion Graft Versus Host Disease (T-GVHD). In order to eliminate this problem, blood is routinely exposed to ionizing radiation (gamma) prior to transfusion. Doses ranging from 15 Gy to 50 Gy can prevent T-GVHD. Aim of the present work was to perform dosimetry of 60 Co Blood Irradiator-2000 developed by Board of Radiation and isotope Technology (BRIT), India; using FBX dosimetric system. Dose-rate measured by FBX dosimeter was intercompared with Fricke dosimeter, which is a Reference Standard dosimeter. Experiments included measurement of dose-rate at the centre of irradiation volume, dose mapping in the central vertical plane within the irradiation volume and measurement of average dose received by blood sample using blood bags filled with FBX dosimeter by simulating actual irradiation conditions. During irradiation, the sample chamber is retracted into a cylindrical source cage, so that the sample is irradiated from all sides uniformly. Blood irradiator-2000 has sample rotation facility for increasing the dose uniformity during irradiation. The performance of this was investigated by measuring the central vertical plane dose profile in stationary state as well in rotation using the sample rotation facility (60 rpm). FBX being an aqueous dosimetric system fills container of irregular shape being irradiated hence can be used to integrate the dose over the volume. Dose-rate measured by FBX dosimeter was intercompared with Fricke dosimeter, which was in good agreement. Average dose-rate at the centre of irradiation volume and within the blood bag was measured by FBX and Fricke dosimeters. It was observed that dose profiles measured by FBX and Fricke dosimeters agreed within ± 2%. Dose uniformity within the irradiation volume was found to reduce from 21% to 17% when the sample rotation facility was used. Thus, it is suggested by the

  6. Advances in biomedical dosimetry

    International Nuclear Information System (INIS)

    1981-01-01

    Full text: Radiation dosimetry, the accurate determination of the absorbed dose within an irradiated body or a piece of material, is a prerequisite for all applications of ionizing radiation. This has been known since the very first radiation applications in medicine and biology, and increasing efforts are being made by radiation researchers to develop more reliable, effective and safe instruments, and to further improve dosimetric accuracy for all types of radiation used. Development of new techniques and instrumentation was particularly fast in the field of both medical diagnostic and therapeutic radiology. Thus, in Paris in October the IAEA held the latest symposium in its continuing series on dosimetry in medicine and biology. The last one was held in Vienna in 1975. High-quality dosimetry is obviously of great importance for human health, whether the objectives lie in the prevention and control of risks associated with the nuclear industry, in medical uses of radioactive substances or X-ray beams for diagnostic purposes, or in the application of photon, electron or neutron beams in radiotherapy. The symposium dealt with the following subjects: General aspects of dosimetry; Special physical and biomedical aspects; Determination of absorbed dose; Standardization and calibration of dosimetric systems; and Development of dosimetric systems. The forty or so papers presented and the discussions that followed them brought out a certain number of dominant themes, among which three deserve particular mention. - The recent generalization of the International System of Units having prompted a fundamental reassessment of the dosimetric quantities to be considered in calibrating measuring instruments, various proposals were advanced by the representatives of national metrology laboratories to replace the quantity 'exposure' (SI unit = coulomb/kg) by 'Kerma' or 'absorbed dose' (unit joule/kg, the special name of which is 'gray'), this latter being closer to the practical

  7. Development of a one-stop beam verification system using electronic portal imaging devices for routine quality assurance

    International Nuclear Information System (INIS)

    Lim, Sangwook; Ma, Sun Young; Jeung, Tae Sig; Yi, Byong Yong; Lee, Sang Hoon; Lee, Suk; Cho, Sam Ju; Choi, Jinho

    2012-01-01

    In this study, a computer-based system for routine quality assurance (QA) of a linear accelerator (linac) was developed by using the dosimetric properties of an amorphous silicon electronic portal imaging device (EPID). An acrylic template phantom was designed such that it could be placed on the EPID and be aligned with the light field of the collimator. After irradiation, portal images obtained from the EPID were transferred in DICOM format to a computer and analyzed using a program we developed. The symmetry, flatness, field size, and congruence of the light and radiation fields of the photon beams from the linac were verified simultaneously. To validate the QA system, the ion chamber and film (X-Omat V2; Kodak, New York, NY) measurements were compared with the EPID measurements obtained in this study. The EPID measurements agreed with the film measurements. Parameters for beams with energies of 6 MV and 15 MV were obtained daily for 1 month using this system. It was found that our QA tool using EPID could substitute for the film test, which is a time-consuming method for routine QA assessment.

  8. Development of a one-stop beam verification system using electronic portal imaging devices for routine quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sangwook, E-mail: medicalphysics@hotmail.com [Department of Radiation Oncology, Kosin University College of Medicine, Seo-gu, Busan (Korea, Republic of); Ma, Sun Young; Jeung, Tae Sig [Department of Radiation Oncology, Kosin University College of Medicine, Seo-gu, Busan (Korea, Republic of); Yi, Byong Yong [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Lee, Sang Hoon [Department of Radiation Oncology, Cheil General Hospital and Women' s Healthcare Center, Kwandong University College of Medicine, Jung-gu, Seoul (Korea, Republic of); Lee, Suk [Department of Radiation Oncology, College of Medicine, Korea University, Seongbuk-gu, Seoul (Korea, Republic of); Cho, Sam Ju [Department of Radiation Oncology, Eulji University School of Medicine, Eulji General Hospital, Nowon-gu, Seoul (Korea, Republic of); Choi, Jinho [Department of Radiation Oncology, Gachon University of Medicine and Science, Namdong-gu, Incheon (Korea, Republic of)

    2012-10-01

    In this study, a computer-based system for routine quality assurance (QA) of a linear accelerator (linac) was developed by using the dosimetric properties of an amorphous silicon electronic portal imaging device (EPID). An acrylic template phantom was designed such that it could be placed on the EPID and be aligned with the light field of the collimator. After irradiation, portal images obtained from the EPID were transferred in DICOM format to a computer and analyzed using a program we developed. The symmetry, flatness, field size, and congruence of the light and radiation fields of the photon beams from the linac were verified simultaneously. To validate the QA system, the ion chamber and film (X-Omat V2; Kodak, New York, NY) measurements were compared with the EPID measurements obtained in this study. The EPID measurements agreed with the film measurements. Parameters for beams with energies of 6 MV and 15 MV were obtained daily for 1 month using this system. It was found that our QA tool using EPID could substitute for the film test, which is a time-consuming method for routine QA assessment.

  9. Description, operation, and diagnostic routines for the adaptive intrusion data system

    International Nuclear Information System (INIS)

    Corlis, N.E.; Johnson, C.S.

    1978-03-01

    An Adaptive Intrusion Data System (AIDS) was developed to collect data from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique digital data compression, storage, and formatting system. It also incorporates a capability for video selection and recording for assessment of the sensors monitored by the system. The system is software reprogrammable to numerous configurations that may be utilized for the collection of environmental, bi-metal, analog, and video data. This manual covers the procedures for operating AIDS. Instructions are given to guide the operator in software programming and control option selections required to program AIDS for data collection. Software diagnostic programs are included in this manual as a method of isolating system problems

  10. Dosimetry in radiotherapy using a-Si EPIDs: Systems, methods, and applications focusing on 3D patient dose estimation

    Science.gov (United States)

    McCurdy, B. M. C.

    2013-06-01

    An overview is provided of the use of amorphous silicon electronic portal imaging devices (EPIDs) for dosimetric purposes in radiation therapy, focusing on 3D patient dose estimation. EPIDs were originally developed to provide on-treatment radiological imaging to assist with patient setup, but there has also been a natural interest in using them as dosimeters since they use the megavoltage therapy beam to form images. The current generation of clinically available EPID technology, amorphous-silicon (a-Si) flat panel imagers, possess many characteristics that make them much better suited to dosimetric applications than earlier EPID technologies. Features such as linearity with dose/dose rate, high spatial resolution, realtime capability, minimal optical glare, and digital operation combine with the convenience of a compact, retractable detector system directly mounted on the linear accelerator to provide a system that is well-suited to dosimetric applications. This review will discuss clinically available a-Si EPID systems, highlighting dosimetric characteristics and remaining limitations. Methods for using EPIDs in dosimetry applications will be discussed. Dosimetric applications using a-Si EPIDs to estimate three-dimensional dose in the patient during treatment will be overviewed. Clinics throughout the world are implementing increasingly complex treatments such as dynamic intensity modulated radiation therapy and volumetric modulated arc therapy, as well as specialized treatment techniques using large doses per fraction and short treatment courses (ie. hypofractionation and stereotactic radiosurgery). These factors drive the continued strong interest in using EPIDs as dosimeters for patient treatment verification.

  11. Development of a TLD mailed system for remote dosimetry audit for 192Ir HDR and PDR sources

    International Nuclear Information System (INIS)

    Roue, Amelie; Venselaar, Jack L.M.; Ferreira, Ivaldo H.; Bridier, Andre; Dam, Jan van

    2007-01-01

    Background and purpose: In the framework of an ESTRO ESQUIRE project, the BRAPHYQS Physics Network and the EQUAL-ESTRO laboratory have developed a procedure for checking the absorbed dose to water in the vicinity of HDR or PDR sources using a mailed TLD system. The methodology and the materials used in the procedure are based on the existing EQUAL-ESTRO external radiotherapy dose checks. Materials and methods: A phantom for TLD postal dose assurance service, adapted to accept catheters from different HDR afterloaders, has been developed. The phantom consists of three PMMA tubes supporting catheters placed at 120 degrees around a central TLD holder. A study on the use of LiF powder type DTL 937 (Philitech) has been performed in order to establish the TLD calibration in dose-to-water at a given distance from 192 Ir source, as well as to determine all correction factors to convert the TLD reading into absorbed dose to water. The dosimetric audit is based on the comparison between the dose to water measured with the TL dosimeter and the dose calculated by the clinical TPS. Results of the audits are classified in four different levels depending on the ratio of the measured dose to the stated dose. The total uncertainty budget in the measurement of the absorbed dose to water using TLD near an 192 Ir HDR source, including TLD reading, correction factors and TLD calibration coefficient, is determined as 3.27% (1 s). Results: To validate the procedures, the external audit was first tested among the members of the BRAPHYQS Network. Since November 2004, the test has been made available for use by all European brachytherapy centres. To date, 11 centres have participated in the checks and the results obtained are very encouraging. Nevertheless, one error detected has shown the usefulness of this audit. Conclusion: A method of absorbed dose to water determination in the vicinity of an 192 Ir brachytherapy source was developed for the purpose of a mailed TL dosimetry system. The

  12. Development of a TLD mailed system for remote dosimetry audit for (192)Ir HDR and PDR sources.

    Science.gov (United States)

    Roué, Amélie; Venselaar, Jack L M; Ferreira, Ivaldo H; Bridier, André; Van Dam, Jan

    2007-04-01

    In the framework of an ESTRO ESQUIRE project, the BRAPHYQS Physics Network and the EQUAL-ESTRO laboratory have developed a procedure for checking the absorbed dose to water in the vicinity of HDR or PDR sources using a mailed TLD system. The methodology and the materials used in the procedure are based on the existing EQUAL-ESTRO external radiotherapy dose checks. A phantom for TLD postal dose assurance service, adapted to accept catheters from different HDR afterloaders, has been developed. The phantom consists of three PMMA tubes supporting catheters placed at 120 degrees around a central TLD holder. A study on the use of LiF powder type DTL 937 (Philitech) has been performed in order to establish the TLD calibration in dose-to-water at a given distance from (192)Ir source, as well as to determine all correction factors to convert the TLD reading into absorbed dose to water. The dosimetric audit is based on the comparison between the dose to water measured with the TL dosimeter and the dose calculated by the clinical TPS. Results of the audits are classified in four different levels depending on the ratio of the measured dose to the stated dose. The total uncertainty budget in the measurement of the absorbed dose to water using TLD near an (192)Ir HDR source, including TLD reading, correction factors and TLD calibration coefficient, is determined as 3.27% (1s). To validate the procedures, the external audit was first tested among the members of the BRAPHYQS Network. Since November 2004, the test has been made available for use by all European brachytherapy centres. To date, 11 centres have participated in the checks and the results obtained are very encouraging. Nevertheless, one error detected has shown the usefulness of this audit. A method of absorbed dose to water determination in the vicinity of an (192)Ir brachytherapy source was developed for the purpose of a mailed TL dosimetry system. The accuracy of the procedure was determined. This method allows a

  13. Characterization of internal dosimetry practices

    International Nuclear Information System (INIS)

    Traub, R.J.; Heid, K.R.; Mann, J.C.

    1983-01-01

    Current practices in internal dosimetry at DOE facilities were evaluated with respect to consistency among DOE Contractors. All aspects of an internal dosimetry program were addressed. Items considered include, but are not necessarily limited to, record systems and ease of information retrieval; ease of integrating internal dose and external dose; modeling systems employed, including ability to modify models depending on excretion data, and verification of computer codes utilized; bioassay procedures, including quality control; and ability to relate air concentration data to individual workers and bioassay data. Feasibility of uranium analysis in solution by laser fluorescence excitation at uranium concentrations of one part per billion was demonstrated

  14. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with the design and measurement of physical parameters used in theory or to support biological experiments. The radiation biophysics program tests and uses the theoretical developments for experimental design, and provides information for further theoretical development through experiments on cellular systems

  15. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with design and measurement of those physical parameters used in the theory or to support biological experiments. The radiation biophysics program tests and makes use of the theoretical developments for experimental design. Also, this program provides information for further theoretical development through experiments on cellular systems

  16. SU-E-P-11: Comparison of Image Quality and Radiation Dose Between Different Scanner System in Routine Abdomen CT

    Energy Technology Data Exchange (ETDEWEB)

    Liao, S; Wang, Y; Weng, H [Chiayi Chang Gung Memorial Hospital of The C.G.M.F, Puzi City, Chiayi County, Taiwan (China)

    2015-06-15

    Purpose To evaluate image quality and radiation dose of routine abdomen computed tomography exam with the automatic current modulation technique (ATCM) performed in two different brand 64-slice CT scanners in our site. Materials and Methods A retrospective review of routine abdomen CT exam performed with two scanners; scanner A and scanner B in our site. To calculate standard deviation of the portal hepatic level with a region of interest of 12.5 mm x 12.5mm represented to the image noise. The radiation dose was obtained from CT DICOM image information. Using Computed tomography dose index volume (CTDIv) to represented CT radiation dose. The patient data in this study were with normal weight (about 65–75 Kg). Results The standard deviation of Scanner A was smaller than scanner B, the scanner A might with better image quality than scanner B. On the other hand, the radiation dose of scanner A was higher than scanner B(about higher 50–60%) with ATCM. Both of them, the radiation dose was under diagnostic reference level. Conclusion The ATCM systems in modern CT scanners can contribute a significant reduction in radiation dose to the patient. But the reduction by ATCM systems from different CT scanner manufacturers has slightly variation. Whatever CT scanner we use, it is necessary to find the acceptable threshold of image quality with the minimum possible radiation exposure to the patient in agreement with the ALARA principle.

  17. SU-E-P-11: Comparison of Image Quality and Radiation Dose Between Different Scanner System in Routine Abdomen CT

    International Nuclear Information System (INIS)

    Liao, S; Wang, Y; Weng, H

    2015-01-01

    Purpose To evaluate image quality and radiation dose of routine abdomen computed tomography exam with the automatic current modulation technique (ATCM) performed in two different brand 64-slice CT scanners in our site. Materials and Methods A retrospective review of routine abdomen CT exam performed with two scanners; scanner A and scanner B in our site. To calculate standard deviation of the portal hepatic level with a region of interest of 12.5 mm x 12.5mm represented to the image noise. The radiation dose was obtained from CT DICOM image information. Using Computed tomography dose index volume (CTDIv) to represented CT radiation dose. The patient data in this study were with normal weight (about 65–75 Kg). Results The standard deviation of Scanner A was smaller than scanner B, the scanner A might with better image quality than scanner B. On the other hand, the radiation dose of scanner A was higher than scanner B(about higher 50–60%) with ATCM. Both of them, the radiation dose was under diagnostic reference level. Conclusion The ATCM systems in modern CT scanners can contribute a significant reduction in radiation dose to the patient. But the reduction by ATCM systems from different CT scanner manufacturers has slightly variation. Whatever CT scanner we use, it is necessary to find the acceptable threshold of image quality with the minimum possible radiation exposure to the patient in agreement with the ALARA principle

  18. Technical note: A 3D-printed phantom for routine accuracy check of Gamma Knife Icon HDMM system.

    Science.gov (United States)

    Wu, Chuan; Radevic, Marlyn B; Glass, Jennifer S; Skubic, Stan E

    2018-05-23

    To report a novel 3D-printed device ("SH phantom") that is designed for routine accuracy check of the Gamma Knife Icon High Definition Motion Management (HDMM) system. SH phantom was designed using tinkerCAD software and printed on a commercial 3D printer. We evaluated the SH phantom on our Gamma Knife Icon unit regarding its usability and accuracy for routine HDMM QA. Single-axis and multiple-axis measurements validated the SH phantom design and implementation. An HDMM QA accuracy of 0.22 mm or better along single axis was found using SH phantom. The SH phantom proved to be a quick and simple tool to use to perform the HDMM system QA. The SH phantom was tested successfully and adopted by us as part of monthly QA for the Gamma Knife Icon. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  19. Dosimetry in nuclear power plants

    International Nuclear Information System (INIS)

    Lastra B, J. A.

    2008-12-01

    To control the occupationally exposed personnel dose working at the Laguna Verde nuclear power plant, two types of dosemeters are used, the thermoluminescent (TLD) which is processed monthly, and the direct reading dosemeter that is electronic and works as daily control of personal dose. In the case of the electronic dosemeters of direct reading conventional, the readings and dose automatic registers and the user identity to which he was assigned to each dosemeter was to carry out the restricted area exit. In activities where the ionizing radiation sources are not fully characterized, it is necessary to relocate the personal dosemeter or assigned auxiliary dosemeters (TLDs and electronics) to determine the dose received by the user to both whole body and in any specific area of it. In jobs more complicated are used a tele dosimetry system where the radiation protection technician can be monitoring the user dose to remote control, the data transmission is by radio. The dosimetry activities are documented in procedures that include dosemeter inventories realization, the equipment and dosemeters calibration, the dosimetry quality control and the discrepancies investigation between the direct reading and TLD systems. TLD dosimetry to have technical expertise in direct and indirect dosimetry and two technicians in TLD dosimetry; electronic dosimetry to have 4 calibration technicians. For the electronic dosemeters are based on a calibrator source of Cesium-137. TLD dosemeters to have an automatic radiator, an automatic reader which can read up to 100 TLD dosemeters per hour and a semiautomatic reader. To keep the equipment under a quality process was development a process of initial entry into service and carried out a periodic verification of the heating cycles. It also has a maintenance contract for the equipment directly with the manufacturer to ensure their proper functioning. The vision in perspective of the dosimetry services of Laguna Verde nuclear power plant

  20. Neutron personal dosimetry: state-of-art

    International Nuclear Information System (INIS)

    Spurný, František

    2005-03-01

    State-of-art of the personal neutron dosimetry is presented, analysed and discussed. Particular attention is devoted to the problems of this type of the dosimetry of external exposure for radiation fields at nuclear power plants. A review of general problems of neutron dosimetry is given and the active individual dosimetry methods available and/or in the stage of development are briefly reviewed. Main attention is devoted to the analysis of the methods available for passive individual neutron dosimetry. The characteristics of these dosemeters were studied and are compared: their energy response functions, detection thresholds and the highest detection limits, the linearity of response, the influence of environmental factors, etc. Particular attention is devoted to their behavior in reactor neutron fields. It is concluded that the choice of the neutron personal dosemeter depends largely on the conditions in which the instrument should be used (neutron spectrum, the level of exposure and the exposure rate, etc.). The results obtained with some of these dosemeters during international intercomparisons are also presented. Particular attention is paid to the personal neutron dosimeter developed and routinely used by National Personal Dosimetry Service Ltd. in the Czech Republic. (author)

  1. Personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Hankins, D.

    1982-04-01

    This edited transcript of a presentation on personnel neutron discusses the accuracy of present dosimetry practices, requirements, calibration, dosemeter types, quality factors, operational problems, and dosimetry for a criticality accident. 32 figs

  2. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading...

  3. Dual germanium detector system for the routine assay of low level transuranics in soil

    International Nuclear Information System (INIS)

    Crowell, J.M.

    1980-01-01

    As an outgrowth of previous on soil radioassay, we have developed an automated assay system for determining the transuranic radionuclide content of soils, with particular interest in Pu. The system utilizes two commercial planar intrinsic germanium detectors in opposition. The large area of the detectors (2100 mm 2 ) and the thinness of the detector crystals (7 mm) permit sensitive analysis of the L x ray emission region of the transuranics (13 to 21 keV). With counting times of 5 hours, we obtain detection limits of 241 Am

  4. A new verification film system for routine quality control of radiation fields: Kodak EC-L.

    Science.gov (United States)

    Hermann, A; Bratengeier, K; Priske, A; Flentje, M

    2000-06-01

    The use of modern irradiation techniques requires better verification films for determining set-up deviations and patient movements during the course of radiation treatment. This is an investigation of the image quality and time requirement of a new verification film system compared to a conventional portal film system. For conventional verifications we used Agfa Curix HT 1000 films which were compared to the new Kodak EC-L film system. 344 Agfa Curix HT 1000 and 381 Kodak EC-L portal films of different tumor sites (prostate, rectum, head and neck) were visually judged on a light box by 2 experienced physicians. Subjective judgement of image quality, masking of films and time requirement were checked. In this investigation 68% of 175 Kodak EC-L ap/pa-films were judged "good", only 18% were classified "moderate" or "poor" 14%, but only 22% of 173 conventional ap/pa verification films (Agfa Curix HT 1000) were judged to be "good". The image quality, detail perception and time required for film inspection of the new Kodak EC-L film system was significantly improved when compared with standard portal films. They could be read more accurately and the detection of set-up deviation was facilitated.

  5. 78 FR 23811 - Privacy Act of 1974; Proposed New Routine Uses and System of Records Alterations

    Science.gov (United States)

    2013-04-22

    ... Commissioner of Social Security, and, (c) Investigating issues of fraud or violations of civil rights by... property interests, risk of identity theft or fraud, or harm to the security or integrity of this system or... SOCIAL SECURITY ADMINISTRATION [Docket No. SSA-2013-0015] Privacy Act of 1974; Proposed New...

  6. A new verification film system for routine quality control of radiation fields: Kodak EC-L

    International Nuclear Information System (INIS)

    Hermann, A.; Bratengeier, K.; Priske, A.; Flentje, M.

    2000-01-01

    Background: The use of modern irradiation techniques requires better verification films for determining set-up deviations and patient movements during the course of radiation treatment. This is an investigation of the image quality and time requirement of a new verification film system compared to a conventional portal film system. Material and Methods: For conventional verifications we used Agfa Curix HT 1000 films which were compared to the new Kodak EC-L film system. 344 Agfa Curix HT 1000 and 381 Kodak EC-L portal films of different tumor sites (prostate, rectum, head and neck) were visually judged on a light box by 2 experienced physicians. Subjective judgement of image quality, masking of films and time requirement were checked. Results: In this investigation 68% of 175 Kodak EC-L ap/pa-films were judged 'good', only 18% were classified 'moderate' or 'poor' 14%, but only 22% of 173 conventional ap/pa verification films (Agfa Curix HT 1000) were judged to be 'good'. Conclusions: The image quality, detail perception and time required for film inspection of the new Kodak EC-L film system was significantly improved when compared with standard portal films. They could be read more accurately and the detection of set-up deviation was facilitated. (orig.) [de

  7. Evaluation of subcutaneous glucose monitoring systems under routine environmental conditions in patients with type 1 diabetes.

    Science.gov (United States)

    Aberer, Felix; Hajnsek, Martin; Rumpler, Markus; Zenz, Sabine; Baumann, Petra M; Elsayed, Hesham; Puffing, Adelheid; Treiber, Gerlies; Pieber, Thomas R; Sourij, Harald; Mader, Julia K

    2017-07-01

    Continuous and flash glucose monitoring (GM) systems have been established in diabetes care. We compared the sensor performance of 3 commercially available GM systems. A total of 12 patients with type 1 diabetes were included in a single-centre, open-label study in which the sensor performance of the Abbott FreeStyle libre (Abbott), Dexcom G4 Platinum (Dexcom) and Medtronic MiniMed 640G (Medtronic) systems over 12 hours was compared during mimicked real-life conditions (meals, exercise, hypo- and hyperglycaemia). Sensor performance was determined by fulfilment of ISO 15197:2013 criteria, calculating mean absolute relative difference (MARD), and was also illustrated using Parkes error grid and Bland-Altman plots. Sensor performance during changes in metabolic variables (lactate, betahydroxybutyrate, glucagon, non-esterified-fatty-acids) was determined by Spearman's rank correlation coefficient testing. The systems fulfilled ISO 15197:2013 criteria by 73.2% (Abbott), 56.1% (Dexcom) and 52.0% (Medtronic). The MARDs ± standard deviation in the entire glycaemic range were 13.2% ± 10.9% (Abbott), 16.8% ± 12.3% (Dexcom) and 21.4% ± 17.6% (Medtronic), respectively. All sensors performed less accurately during hypoglycaemia and best during hyperglycaemia. We did not observe an influence of metabolic variables on sensor performance. © 2017 John Wiley & Sons Ltd.

  8. Aqueous chemical dosimetry

    International Nuclear Information System (INIS)

    Matthews, R.W.

    1982-01-01

    Aqueous chemical dosimetry based on ceric and ferrous sulfate solutions and on a number of fluorescence-induced systems is reviewed. Particular attention is given to the factors affecting the response of these dosimeters to radiation and the corrections necessary for more accurate dosimetry under various irradiation conditions. The effect of cerous and ceric ion, oxygen, and sulfuric acid concentration on the ceric dosimeter is discussed together with the effects of temperature, energy of radiation, degraded energy spectra, and peroxysulfuric acids. Practical aspects of ceric/cerous dosimetry are given. Although ferrous sulfate solution is the most important and widely studied reference dosimeter, general agreement has not been reached on the ''best'' value for the molar extinction coefficient of ferric ions nor on the correction necessary to the G(Fe 3 - ) value for irradiations at temperatures significantly different from 25 0 C. New data are presented which indicate that the larger temperature coefficients given in the literature are more accurate. The ferrous sulfate system has been of great importance in establishing the primary radiolytic yields for 0.4 M sulfuric acid solution; it is shown how the failure to take into account the effect of oxygen and ferrous sulfate concentrations has led to erroneously high estimates of the zero solute concentration values in acid solutions. Some of the methods for extending the dose ranges measurable with ferrous sulfate-based solutions are reviewed. Substances which on irradiation give highly fluorescent products are among the most sensitive aqueous chemical dosimeters. These include benzoate and terephthalate solutions and the more recent coumarin and trimesate solutions. Advantages and disadvantages system are discussed. (author)

  9. Neutron dosimetry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J W

    1955-03-29

    This review summarizes information on the following subjects: (1) physical processes of importance in neutron dosimetry; (2) biological effects of neutrons; (3) neutron sources; and (4) instruments and methods used in neutron dosimetry. Also, possible improvements in dosimetry instrumentation are outlined and discussed. (author)

  10. Tritium dosimetry and standardization

    International Nuclear Information System (INIS)

    Balonov, M.I.

    1983-01-01

    Actual problem of radiation hygiene such as an evaluation of human irradiation hazard due to a contact with tritium compounds both in industrial and public spheres is under discussion. Sources of tritium release to environment are characterized. Methods of tritium radiation monitoring are discussed. Methods of dosimetry of internal human exposure resulted from tritium compounds are developed on the base of modern representations on metbolism and tritium radiobiological effect. A system of standardization of permissible intake of tritium compounds for personnel and persons of population is grounded. Some protection measures are proposed as applied to tritium overdosage

  11. Personal dosimetry and information platforms

    International Nuclear Information System (INIS)

    Sanchez Hidalgo, M.; Galan Montenegro, P.; Bodineau Gil, C.; Hernandez Rodriguez, R.; Jimenez Nartin, A.; Cano Sanchez, J. J.

    2011-01-01

    One question often raised by the hospital personnel dosimetry is the high incidence in the no monthly turnover of dosimeters, which is currently a high number of administrative dose assignments. The high number of workers with personal dosimetry and in many cases, the dispersion of workplaces makes it impossible to personalized management. To make a more direct and personal, and transmit information quickly and with guaranteed reception, has developed and implemented a system of personalized dosimetric information through messaging Short Message Service (SMS) and access to the history of dosimetric dosimetric and management through web space Service Hospital Radio physics.

  12. Routine Responses to Disruption of Routines

    Science.gov (United States)

    Guha, Mahua

    2015-01-01

    "Organisational routines" is a widely studied research area. However, there is a dearth of research on disruption of routines. The few studies on disruption of routines discussed problem-solving activities that are carried out in response to disruption. In contrast, this study develops a theory of "solution routines" that are a…

  13. Lesions found at routine meat inspection on finishing pigs are associated with production system

    DEFF Research Database (Denmark)

    Kongsted, Hanne; Sørensen, Jan Tind

    2017-01-01

    raised in conventional free-range and organic free-range production systems had higher odds for white liver-spots (ORPA, 5–7), tail lesions (ORPA, 3–4), arthritis (ORPA, 3), skin lesions (ORPA, 3), bone fractures (ORPA, 2), septicaemia (ORPA, 1.1–1.5) and abscesses (ORPA, 1.1–1.3) at slaughter. Pairwise...... correlation coefficients 21–35%) on the occurrence of white liver-spots, tail lesions, skin lesions and airway infections. These results suggest possibilities for herd-level management interventions of the problems studied...

  14. Enhancing the routine health information system in rural southern Tanzania: successes, challenges and lessons learned.

    Science.gov (United States)

    Maokola, W; Willey, B A; Shirima, K; Chemba, M; Armstrong Schellenberg, J R M; Mshinda, H; Alonso, P; Tanner, M; Schellenberg, D

    2011-06-01

    To describe and evaluate the use of handheld computers for the management of Health Management Information System data. Electronic data capture took place in 11 sentinel health centres in rural southern Tanzania. Information from children attending the outpatient department (OPD) and the Expanded Program on Immunization vaccination clinic was captured by trained local school-leavers, supported by monthly supervision visits. Clinical data included malaria blood slides and haemoglobin colour scale results. Quality of captured data was assessed using double data entry. Malaria blood slide results from health centre laboratories were compared to those from the study's quality control laboratory. The system took 5 months to implement, and few staffings or logistical problems were encountered. Over the following 12 months (April 2006-March 2007), 7056 attendances were recorded in 9880 infants aged 2-11 months, 50% with clinical malaria. Monthly supervision visits highlighted incomplete recording of information between OPD and laboratory records, where on average 40% of laboratory visits were missing the record of their corresponding OPD visit. Quality of microscopy from health facility laboratories was lower overall than that from the quality assurance laboratory. Electronic capture of HMIS data was rapidly and successfully implemented in this resource-poor setting. Electronic capture alone did not resolve issues of data completeness, accuracy and reliability, which are essential for management, monitoring and evaluation; suggestions to monitor and improve data quality are made. © 2011 Blackwell Publishing Ltd.

  15. Incidence of skin cancer in Nagasaki atomic bomb survivors based on DS86 dosimetry system, 1958-1985

    Energy Technology Data Exchange (ETDEWEB)

    Sadamori, Naoki (Nagasaki Univ. (Japan). School of Medicine); Otake, Masanori; Honda, Takeo

    1992-03-01

    The incidence of skin cancer during the period 1958-1985 was examined in the population registered in the life span study extension (LSSE) and the adult health study (AHS). Among 25,942 A-bomb survivors in whom DS86 was available, skin cancer was confirmed in 47 A-bomb survivors. These A-bomb survivors consisted of 24 males and 23 females. According to DS86 dosimetry system, ten A-bomb survivors had been exposed to 0.50 Gy or more. The most common histology was basal cell epithelioma (n=25), followed by malignant melanoma (n=4) and basosquamous cell carcinoma and sweat gland carcinoma (one each). In the group of 0.50 Gy or more, the incidence of occurrence of skin cancer was 20.8/100,000 population per year (PY) for the LSSE population and 22.8/100,000 PY for the AHS population. In the group of 0.01-0.49 Gy, it was 6.8/100,000 PY for the LSSE population and 12.8/100,000 PY for the AHS population. It was significantly associated with higher exposure doses. The dose-response relationship was linear. (N.K.).

  16. Dosimetry standards for radiation processing

    International Nuclear Information System (INIS)

    Farrar, H. IV

    1999-01-01

    For irradiation treatments to be reproducible in the laboratory and then in the commercial environment, and for products to have certified absorbed doses, standardized dosimetry techniques are needed. This need is being satisfied by standards being developed by experts from around the world under the auspices of Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). In the time period since it was formed in 1984, the subcommittee has grown to 150 members from 43 countries, representing a broad cross-section of industry, government and university interests. With cooperation from other international organizations, it has taken the combined part-time effort of all these people more than 13 years to complete 24 dosimetry standards. Four are specifically for food irradiation or agricultural applications, but the majority apply to all forms of gamma, x-ray, Bremsstrahlung and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruits, vegetables, meats, spices, processed foods, plastics, inks, medical wastes and paper. An additional 6 standards are under development. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties. Together, this set of standards covers essentially all aspects of dosimetry for radiation processing. The first 20 of these standards have been adopted in their present form by the International Organization of Standardization (ISO), and will be published by ISO in 1999. (author)

  17. Routine programs of health care systems as an opportunity toward communication skills training for family physicians: A randomized field trial.

    Science.gov (United States)

    Zamani, Ahmad Reza; Motamedi, Narges; Farajzadegan, Ziba

    2015-01-01

    To have high-quality primary health care services, an adequate doctor-patient communication is necessary. Because of time restrictions and limited budget in health system, an effective, feasible, and continuous training approach is important. The aim of this study is to assess the appropriateness of a communication skills training program simultaneously with routine programs of health care system. It was a randomized field trial in two health network settings during 2013. Twenty-eight family physicians through simple random sampling and 140 patients through convenience sampling participated as intervention and control group. The physicians in the intervention group (n = 14) attended six educational sessions, simultaneous organization meeting, with case discussion and peer education method. In both the groups, physicians completed communication skills knowledge and attitude questionnaires, and patients completed patient satisfaction of medical interview questionnaire at baseline, immediately after intervention, and four months postintervention. Physicians and health network administrators (stakeholders), completed a set of program evaluation forms. Descriptive statistics and Chi-square test, t-test, and repeated measure analysis of variance were used to analyze the data. Use of routine program as a strategy of training was rated by stakeholders highly on "feasibility" (80.5%), "acceptability" (93.5%), "educational content and method appropriateness" (80.75%), and "ability to integrating in the health system programs" (approximate 60%). Significant improvements were found in physicians' knowledge (P Communication skills training program, simultaneous organization meeting was successfully implemented and well received by stakeholders, without considering extra time and manpower. Therefore it can be a valuable opportunity toward communication skills training.

  18. Individual dosimetry of workers and patients: implementation and perspectives

    International Nuclear Information System (INIS)

    Rannou, A.; Aubert, B.; Lahaye, Th.; Scaff, P.; Casanova, Ph.; Van Bladel, L.; Queinnec, F.; Valendru, N.; Jehanno, J.; Grude, E.; Berard, Ph.; Desbree, A.; Kafrouni, H.; Paquet, F.; Vanhavere, F.; Bridier, A.; Ginestet, Ch.; Magne, S.; Donadille, L.; Bordy, J.M.; Bottollier-Depois, J.F.; Barrere, J.L.; Ferragut, A.; Metivier, H.; Gaillard-Lecanu, E.

    2008-01-01

    These days organised by the section of the technical protection of the S.F.R.P. review the different techniques of dosimetry used in France and Europe, and present the future orientations.The different interventions are as follow: Individual exposures of the workers: historic assessment and perspectives; medical exposure: where are the doses; legal obligations in individual dosimetry: which are the objective and the need on the subject; the dosimetry follow-up of workers by the S.I.S.E.R.I. system: assessment and perspectives; impact of the norm ISO 20553 on the follow-up of internal exposure; the implementation of the patient dose measurement in Belgium; techniques of passive dosimetry used in Europe; Supervision radiation protection at EDF: long term and short term approach; Comparison active and passive dosimetry at Melox; methodology for the choice of new neutron dosemeters; the working group M.E.D.O.R.: guide of internal dosimetry for the use of practitioners; O.E.D.I.P.E.: tool of modeling for the personalized internal dosimetry; the use of the Monte-Carlo method for the planning of the cancer treatment by radiotherapy becomes a reality; the works of the committee 2 of the ICRP; passive dosimetry versus operational dosimetry: situation in Europe; Implementation of the in vivo dosimetry in a radiotherapy department: experience of the Gustave Roussy institute; experience feedback on the in vivo measures in radiotherapy, based on the use of O.S.L. pellets; multi points O.S.L. instrumentation for the radiation dose monitoring in radiotherapy; dosimetry for extremities for medical applications: principle results of the European contract C.O.N.R.A.D.; references and perspectives in dosimetry; what perspectives for numerical dosimetry, an example: Sievert; system of dose management: how to answer to needs; the last technical evolutions in terms of electronic dosimetry in nuclear power plant; the fourth generation type reactors: what dosimetry. (N.C.)

  19. 3-D dosimetric evaluation of 2.5 mm HD120 multileaf system for intensity modulated stereotactic radiosurgery using optical CT based polymer gel dosimetry

    International Nuclear Information System (INIS)

    Wuu, C-S; Kessel, Jack; Xu, Y

    2009-01-01

    A Trilogy TX equipped with a 2.5 mm HD120 multileaf collimator system is available for the treatment of radiosurgery and IMRT. In this study, we evaluated the 3-D dosimetric impact of leaf width on an IMRT radiosurgery plan by comparing the target coverage and the dose gradient around the target, produced from both a 2.5 mm HD120 high-definition MLC system and a 5mm-leaf-width millennium 120 MLC system, using an optical CT based polymer gel dosimetry system. The 2.5 mm MLC improves target conformity and surrounding tissue sparing when compared to that of 5 mm MLC.

  20. Manual of food irradiation dosimetry

    International Nuclear Information System (INIS)

    1977-01-01

    Following items are discussed: Fundamentals of dosimetry; description of irradiators; dose distribution in the product and commissioning the process; plant operation and process control; detailed instructions on using various dose-meter systems; references; glossary of some basic terms and concepts

  1. Assessing a computerized routine health information system in Mali using LQAS.

    Science.gov (United States)

    Stewart, J C; Schroeder, D G; Marsh, D R; Allhasane, S; Kone, D

    2001-09-01

    Between 1987 and 1998 Save the Children conducted a child survival programme in Mali with the goal of reducing maternal and child morbidity and mortality. An integral part of this programme was a computerized demographic surveillance and health information system (HIS) that gathered data on individuals on an on-going basis. To assess the overall coverage and quality of the data in the HIS, to identify specific health districts that needed improvements in data collection methods, and to determine particular areas of weakness in data collection. Random samples of 20 mothers with children LQAS) was used to identify districts in which records and interview results did not meet predetermined levels of acceptability. Data collected in the interviews were combined to estimate overall coverage and quality. When all variables were analyzed, all 14 lots were rejected, and it was estimated that 52% of all events occurring in the community were registered in ProMIS. Much of this poor performance was due to immunization and growth monitoring data, which were not updated due to printer problems. Coverage of events increased (92%) when immunizations and growth monitoring were excluded, and no lots were rejected. When all variables were analyzed for quality of data recorded, six lots were rejected and the overall estimation was 83%. With immunizations and growth monitoring excluded, overall quality was 86% and no lots were rejected. The comprehensive computerized HIS did not meet expectations. This may be due, in part, to the ambitious objective of complete and intensive monitoring of a large population without adequate staff and equipment. Future efforts should consider employing a more targeted and streamlined HIS so that data can be more complete and useful.

  2. Reproducibility of patient positioning during routine radiotherapy, as assessed by an integrated megavoltage imaging system

    International Nuclear Information System (INIS)

    Gildersleve, J.; Dearnaley, D.P.; Evans, P.M.; Swindell, W.

    1995-01-01

    A portal imaging system has been used, in conjunction with a movie measurement technique to measure set-up errors for 15 patients treated with radiotherapy of the pelvis and for 12 patients treated with radiotherapy of the brain. The pelvic patients were treated without fixation devices and the brain patients were treated with individually-moulded plastic shells. As would be expected the brain treatments were found to be more accurate than the pelvic treatments. Results are presented in terms of five error types: random error from treatment to treatment, error between mean treatment position and simulation position, random simulation error, systematic simulator-to-treatment errors and total treatment error. For the brain patients the simulation-to-treatment error predominates and random treatment errors were small (95% ≤ 3 mm, 77% ≤ 1.5 mm). Vector components of the systematic simulation-to-treatment errors were 1-2 mm with maximal random simulation error of ± 5 mm (2 S.D.). There is much interest in the number of verification films necessary to evaluate treatment accuracy. These results indicate that one check film performed at the first treatment is likely to be sufficient for set-up evaluation. For the pelvis the random treatment error is larger (95% ≤ 4.5 mm, 87% ≤ 3 mm). The systematic simulation-to-treatment error is up to 3 mm and the maximal random simulation error is ± 6 mm (2 S.D.). Thus corrections made solely on the basis of a first day check film may not be sufficient for adequate set-up evaluation

  3. Present status of fast neutron personnel dosimetry system based on CR-39 solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Pal, Rupali; Sathian, Deepa; Jayalakshmi, V.; Bakshi, A.K.; Chougaonkar, M.P.; Mayya, Y.S.; Kumar, Valli; Babu, Rajesh; Kar, S.; Joshi, V.M.

    2011-08-01

    Neutron sources are of different types depending upon the method of production such as nuclear reactors, particle accelerators and laboratory sources. Neutron sources depending upon their energy, flux, size etc. are used for variety of applications in basic and applied sciences, neutron scattering experiments and in industry such as oil well - digging, coal mining and processing, ore processing etc. Personnel working in nuclear installations such as reactors, accelerators, spent fuel processing plants, nuclear fuel cycle operations and those working in various industries such as oil refining, oil well-digging, coal mining and processing, ore processing, etc. need to be monitored for neutron exposures, if any. Neutron monitoring is especially necessary in view of the fact that the radiation weighting factor for neutron is much higher than gamma rays and also it varies with energy. Radiological Physics and Advisory Division is involved in monitoring of personnel working in neutron fields. Around 2100 workers from 70 institutions (DAE and Non-DAE) are monitored on a quarterly basis. Neutron personnel monitoring, carried out in the country is based on Solid State Nuclear Track Detection (SSNTD) technique. In this technique, neutrons interact with hydrogen in CR-39 polymer to produce recoil protons. These protons create damages in the polymer, which are enlarged and appear as tracks when subjected to electrochemical etching (ECE). These tracks are counted in an optical system to evaluate the neutron dose. The neutron dosimetry system based on SSNTD has undergone a significant development, since it was started in 1990. The development includes upgradation of image analysis system for counting tracks, introduction of chemical etching (CE) at elevated temperatures for evaluation of dose equivalents above 10 mSv and use of carbon laser for cutting of CR-39 detectors. The entire dose evaluation process has been standardized, which includes calibration and performance tests

  4. Neutron personnel dosimetry considerations for fusion reactors

    International Nuclear Information System (INIS)

    Barton, T.P.; Easterly, C.E.

    1979-07-01

    The increasing development of fusion reactor technology warrants an evaluation of personnel neutron dosimetry systems to aid in the concurrent development of a radiation protection program. For this reason, current state of knowledge neutron dosimeters have been reviewed with emphasis placed on practical utilization and the problems inherent in each type of dosimetry system. Evaluations of salient parameters such as energy response, latent image instability, and minimum detectable dose equivalent are presented for nuclear emulsion films, track etch techniques, albedo and other thermoluminescent dosimetry techniques, electrical conductivity damage effects, lyoluminescence, thermocurrent, and thermally stimulated exoelectron emission. Brief summaries of dosimetry regulatory requirements and intercomparison study results help to establish compliance and recent trends, respectively. Spectrum modeling data generated by the Neutron Physics Division of Oak Ridge National Laboratory for the Princeton Tokamak Fusion Test Reactor (TFTR) Facility have been analyzed by both International Commission on Radiological Protection fluence to dose conversion factors and an adjoint technique of radiation dosimetry, in an attempt to determine the applicability of current neutron dosimetry systems to deuterium and tritium fusion reactor leakage spectra. Based on the modeling data, a wide range of neutron energies will probably be present in the leakage spectra of the TFTR facility, and no appreciable risk of somatic injury to occupationally exposed workers is expected. The relative dose contributions due to high energy and thermal neutrons indicate that neutron dosimetry will probably not be a serious limitation in the development of fusion power

  5. Smart dosimetry by pattern recognition using a single photon counting detector system in time over threshold mode

    International Nuclear Information System (INIS)

    Reza, S; Wong, W S; Fröjdh, E; Norlin, B; Fröjdh, C; Thungström, G; Thim, J

    2012-01-01

    The function of a dosimeter is to determine the absorbed dose of radiation, for those cases in which, generally, the particular type of radiation is already known. Lately, a number of applications have emerged in which all kinds of radiation are absorbed and are sorted by pattern recognition, such as the Medipix2 application in [1]. This form of smart dosimetry enables measurements where not only the total dosage is measured, but also the contributions of different types of radiation impacting upon the detector surface. Furthermore, the use of a photon counting system, where the energy deposition can be measured in each individual pixel, ensures measurements with a high degree of accuracy in relation to the pattern recognition. In this article a Timepix [2] detector system has been used in the creation of a smart dosimeter for Alpha, Beta and Gamma radiation. When a radioactive particle hits the detector surface it generates charge clusters and those impacting upon the detector surface are read out and image processing algorithms are then used to classify each charge cluster. The individual clusters are calculated and as a result, the dosage for each type of radiation is given. In some cases, several particles can impact in roughly the same place, forming overlapping clusters. In order to handle this problem, a cluster separation method has been added to the pattern recognition algorithm. When the clusters have been separated, they are classified by shape and sorted into the correct type of radiation. The algorithms and methods used in this dosimeter have been developed so as to be simple and computationally effective, in order to enable implementation on a portable device.

  6. Experiences with an International Digital Slide Based Telepathology System for Routine Sign-out between Sweden and Hungary

    Directory of Open Access Journals (Sweden)

    Tamás Micsik

    2015-05-01

    Full Text Available Digital microscopy combines the benefits of traditional optical microscopy and the advantages of computer sciences. Using digital whole slides in all areas of pathology is increasingly popular. Telepathology or long distance diagnosis is one such area. In our study we have evaluated digital slide based histopathology diagnosis in an international setting, between Sweden and Hungary. Routine cases from the Sundsvall County Hospital (Landstinget Vasternorrland were collected. Glass slides were scanned using Pannoramic 250 Flash II. (3DHISTECH Ltd., Budapest, Hungary. During the first round of evaluation the glass slides were shipped to Hungary for primary diagnosis. Two pathologists from Hungary, reading glass slides and one pathologist from Sweden reading digital slides signed out 500 cases. Pathologists from Hungary reached the hospital information system with a secure connection. During the second round the pathologists in Hungary reevaluated 200 from the 500 cases using digital slides after three months washout period. Diagnostic accuracy was calculated and diagnostic errors was graded according to clinicopathological consequences. In 182/200 (91% cases digital and optical diagnoses were in full agreement. Out of the remaining 18 cases, 1 (0.5% critical error was identified. In this case the error had therapeutic and prognostic consequence and no uncertainty either because of case complexity or poor image quality was recorded by the pathologist. We think language and communication issues as well as differences in minimal data sets of pathological reports and in guidelines used in Sweden and in Hungary are factors potentially limiting the widespread use of digital slides in a teleconsultation service provided to Sweden from Hungary. We found the quality of digital slides in our study setting acceptable to reach correct primary diagnosis in routine, unselected, random cases of a small-to-medium sized pathology department in Sweden.

  7. Can Unmanned Aerial Systems (Drones Be Used for the Routine Transport of Chemistry, Hematology, and Coagulation Laboratory Specimens?

    Directory of Open Access Journals (Sweden)

    Timothy K Amukele

    Full Text Available Unmanned Aerial Systems (UAS or drones could potentially be used for the routine transport of small goods such as diagnostic clinical laboratory specimens. To the best of our knowledge, there is no published study of the impact of UAS transportation on laboratory tests.Three paired samples were obtained from each one of 56 adult volunteers in a single phlebotomy event (336 samples total: two tubes each for chemistry, hematology, and coagulation testing respectively. 168 samples were driven to the flight field and held stationary. The other 168 samples were flown in the UAS for a range of times, from 6 to 38 minutes. After the flight, 33 of the most common chemistry, hematology, and coagulation tests were performed. Statistical methods as well as performance criteria from four distinct clinical, academic, and regulatory bodies were used to evaluate the results.Results from flown and stationary sample pairs were similar for all 33 analytes. Bias and intercepts were <10% and <13% respectively for all analytes. Bland-Altman comparisons showed a mean difference of 3.2% for Glucose and <1% for other analytes. Only bicarbonate did not meet the strictest (Royal College of Pathologists of Australasia Quality Assurance Program performance criteria. This was due to poor precision rather than bias. There were no systematic differences between laboratory-derived (analytic CV's and the CV's of our flown versus terrestrial sample pairs however CV's from the sample pairs tended to be slightly higher than analytic CV's. The overall concordance, based on clinical stratification (normal versus abnormal, was 97%. Length of flight had no impact on the results.Transportation of laboratory specimens via small UASs does not affect the accuracy of routine chemistry, hematology, and coagulation tests results from selfsame samples. However it results in slightly poorer precision for some analytes.

  8. A system for tumor heterogeneity evaluation and diagnosis based on tumor markers measured routinely in the laboratory.

    Science.gov (United States)

    Hui, Liu; Rixv, Liu; Xiuying, Zhou

    2015-12-01

    To develop an efficient and reliable approach to estimate tumor heterogeneity and improve tumor diagnosis using multiple tumor markers measured routinely in the clinical laboratory. A total of 161 patients with different cancers were recruited as the cancer group, and 91 patients with non-oncological conditions were required as the non-oncological disease group. The control group comprised 90 randomly selected healthy subjects. AFP, CEA, CYFRA, CA125, CA153, CA199, CA724, and NSE levels were measured in all these subjects with a chemiluminescent microparticle immunoassay. The tumor marker with the maximum S/CO value (sample test value:cutoff value for discriminating individuals with and without tumors) was considered as a specific tumor marker (STM) for an individual. Tumor heterogeneity index (THI)=N/P (N: number of STMs; P: percentage of individuals with STMs in a certain tumor population) was used to quantify tumor heterogeneity: high THI indicated high tumor heterogeneity. The tumor marker index (TMI), TMI = STM×(number of positive tumor markers+1), was used for diagnosis. The THIs of lung, gastric, and liver cancers were 8.33, 9.63, and 5.2, respectively, while the ROC-areas under the curve for TMI were 0.862, 0.809, and 0.966. In this study, we developed a novel index for tumor heterogeneity based on the expression of various routinely evaluated serum tumor markers. Development of an evaluation system for tumor heterogeneity on the basis of this index could provide an effective diagnostic tool for some cancers. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  9. Can Unmanned Aerial Systems (Drones) Be Used for the Routine Transport of Chemistry, Hematology, and Coagulation Laboratory Specimens?

    Science.gov (United States)

    Amukele, Timothy K; Sokoll, Lori J; Pepper, Daniel; Howard, Dana P; Street, Jeff

    2015-01-01

    Unmanned Aerial Systems (UAS or drones) could potentially be used for the routine transport of small goods such as diagnostic clinical laboratory specimens. To the best of our knowledge, there is no published study of the impact of UAS transportation on laboratory tests. Three paired samples were obtained from each one of 56 adult volunteers in a single phlebotomy event (336 samples total): two tubes each for chemistry, hematology, and coagulation testing respectively. 168 samples were driven to the flight field and held stationary. The other 168 samples were flown in the UAS for a range of times, from 6 to 38 minutes. After the flight, 33 of the most common chemistry, hematology, and coagulation tests were performed. Statistical methods as well as performance criteria from four distinct clinical, academic, and regulatory bodies were used to evaluate the results. Results from flown and stationary sample pairs were similar for all 33 analytes. Bias and intercepts were <10% and <13% respectively for all analytes. Bland-Altman comparisons showed a mean difference of 3.2% for Glucose and <1% for other analytes. Only bicarbonate did not meet the strictest (Royal College of Pathologists of Australasia Quality Assurance Program) performance criteria. This was due to poor precision rather than bias. There were no systematic differences between laboratory-derived (analytic) CV's and the CV's of our flown versus terrestrial sample pairs however CV's from the sample pairs tended to be slightly higher than analytic CV's. The overall concordance, based on clinical stratification (normal versus abnormal), was 97%. Length of flight had no impact on the results. Transportation of laboratory specimens via small UASs does not affect the accuracy of routine chemistry, hematology, and coagulation tests results from selfsame samples. However it results in slightly poorer precision for some analytes.

  10. Patient dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Shrimpton, P.C.

    2000-01-01

    Full text: X-ray examinations remain an essential and widely used diagnostic tool in medicine and hence the most significant source of exposure to man-made radiation for populations. Patterns of practice in diagnostic radiology continue to evolve, with overall growth in the numbers of procedures worldwide and, particularly in developed countries, increasing importance for complex procedures such as computed tomography (CT) and interventional techniques. In order to maximise the benefits from x-rays relative to the associated radiation risks, there is a need to ensure the prior justification of all examinations and the optimisation of patient protection such that doses are as low as reasonably practicable to meet specific clinical requirements. Accordingly, patient dosimetry is a fundamental requirement in diagnostic radiology. Detailed measurements for the assessment of risks or comparison of different types of procedure require the estimation of organ and effective doses. Such comprehensive dosimetry necessarily involves the simulation of clinical practice using anthropomorphic phantoms, with either measurements in a physical phantom or calculations utilising a mathematical phantom. Simpler measurements for the routine monitoring of dose in x-ray departments can be based on practical quantities such as entrance surface dose, dose-area product and, for CT, weighted CT dose index and dose-length product. Widescale surveys reveal significant variations between departments in the typical doses for a given type of procedure and potential scope for dose reductions. In order to promote improvements in practice, the results of periodic dose surveys in departments should be compared with appropriate standards, such as diagnostic reference levels for adult and paediatric patients, that are set nationally or locally for the purposes of promoting critical review of the equipment and techniques in use. Patient dosimetry should form an essential element of routine quality

  11. Health physics routine at the Instituto de Energia Atomica, Sao Paulo (Brazil)

    International Nuclear Information System (INIS)

    Sordi, G.M.A.A.

    1976-01-01

    The routine health physics work at the IEAR-1 reactor and the modifications that are being made, are described. The Personal Dosimetry Laboratory, Waste Disposal and Decontamination Laboratory, Shielding Calculation Section, Dosimetry Laboratory, Radioactive Source and Instrumentation Calibration, are presented. Methods of calibration of radioactive sources and instrumentation are also presented [pt

  12. SU-E-T-435: Development and Commissioning of a Complete System for In-Vivo Dosimetry and Range Verification in Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, D [Universite catholique de Louvain, Louvain-la-neuve, BW (Belgium); Testa, M; Park, Y [Massachusetts General Hospital, Boston, MA (United States); Schneider, R; Moteabbed, M [General Hospital, Boston, MA (United States); Janssens, G; Prieels, D [Ion Beam Applications, Louvain-la-neuve, Brabant Wallon (Belgium); Orban de Xivry, J [Universite catholique de Louvain, Louvain-la-neuve, BW (Belgium); Lu, H [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Bentefour, E

    2014-06-01

    Purpose: In-vivo dose and beam range verification in proton therapy could play significant roles in proton treatment validation and improvements. Invivo beam range verification, in particular, could enable new treatment techniques one of which, for example, could be the use of anterior fields for prostate treatment instead of opposed lateral fields as in current practice. We have developed and commissioned an integrated system with hardware, software and workflow protocols, to provide a complete solution, simultaneously for both in-vivo dosimetry and range verification for proton therapy. Methods: The system uses a matrix of diodes, up to 12 in total, but separable into three groups for flexibility in application. A special amplifier was developed to capture extremely small signals from very low proton beam current. The software was developed within iMagX, a general platform for image processing in radiation therapy applications. The range determination exploits the inherent relationship between the internal range modulation clock of the proton therapy system and the radiological depth at the point of measurement. The commissioning of the system, for in-vivo dosimetry and for range verification was separately conducted using anthropomorphic phantom. EBT films and TLDs were used for dose comparisons and range scan of the beam distal fall-off was used as ground truth for range verification. Results: For in-vivo dose measurement, the results were in agreement with TLD and EBT films and were within 3% from treatment planning calculations. For range verification, a precision of 0.5mm is achieved in homogeneous phantoms, and a precision of 2mm for anthropomorphic pelvic phantom, except at points with significant range mixing. Conclusion: We completed the commissioning of our system for in-vivo dosimetry and range verification in proton therapy. The results suggest that the system is ready for clinical trials on patient.

  13. SU-E-T-435: Development and Commissioning of a Complete System for In-Vivo Dosimetry and Range Verification in Proton Therapy

    International Nuclear Information System (INIS)

    Samuel, D; Testa, M; Park, Y; Schneider, R; Moteabbed, M; Janssens, G; Prieels, D; Orban de Xivry, J; Lu, H; Bentefour, E

    2014-01-01

    Purpose: In-vivo dose and beam range verification in proton therapy could play significant roles in proton treatment validation and improvements. Invivo beam range verification, in particular, could enable new treatment techniques one of which, for example, could be the use of anterior fields for prostate treatment instead of opposed lateral fields as in current practice. We have developed and commissioned an integrated system with hardware, software and workflow protocols, to provide a complete solution, simultaneously for both in-vivo dosimetry and range verification for proton therapy. Methods: The system uses a matrix of diodes, up to 12 in total, but separable into three groups for flexibility in application. A special amplifier was developed to capture extremely small signals from very low proton beam current. The software was developed within iMagX, a general platform for image processing in radiation therapy applications. The range determination exploits the inherent relationship between the internal range modulation clock of the proton therapy system and the radiological depth at the point of measurement. The commissioning of the system, for in-vivo dosimetry and for range verification was separately conducted using anthropomorphic phantom. EBT films and TLDs were used for dose comparisons and range scan of the beam distal fall-off was used as ground truth for range verification. Results: For in-vivo dose measurement, the results were in agreement with TLD and EBT films and were within 3% from treatment planning calculations. For range verification, a precision of 0.5mm is achieved in homogeneous phantoms, and a precision of 2mm for anthropomorphic pelvic phantom, except at points with significant range mixing. Conclusion: We completed the commissioning of our system for in-vivo dosimetry and range verification in proton therapy. The results suggest that the system is ready for clinical trials on patient

  14. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems

    Energy Technology Data Exchange (ETDEWEB)

    Farah, J., E-mail: jad.farah@irsn.fr; Trompier, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Radioprotection de l’Homme, BP17, Fontenay-aux-Roses 92260 (France); Mares, V.; Schinner, K.; Wielunski, M. [Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg 85764 (Germany); Romero-Expósito, M.; Domingo, C. [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra E-08193 (Spain); Trinkl, S. [Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg 85764, Germany and Physik-Department, Technische Universität München, Garching 85748 (Germany); Dufek, V. [Czech Technical University in Prague, FNSPE, Břehová 7, Prague 115 19, Czech Republic and National Radiation Protection Institute, Bartoškova 28, Prague 140 00 (Czech Republic); Klodowska, M.; Liszka, M.; Stolarczyk, L.; Olko, P. [Institute of Nuclear Physics PAN, Radzikowskiego 152, Krakow 31-342 (Poland); Kubancak, J. [Czech Technical University in Prague, FNSPE, Břehová 7, Prague 115 19, Czech Republic and Department of Radiation Dosimetry, Nuclear Physics Institute, Řež CZ-250 68 (Czech Republic); and others

    2015-05-15

    Purpose: To characterize stray radiation around the target volume in scanning proton therapy and study the performance of active neutron monitors. Methods: Working Group 9 of the European Radiation Dosimetry Group (EURADOS WG9—Radiation protection in medicine) carried out a large measurement campaign at the Trento Centro di Protonterapia (Trento, Italy) in order to determine the neutron spectra near the patient using two extended-range Bonner sphere spectrometry (BSS) systems. In addition, the work focused on acknowledging the performance of different commercial active dosimetry systems when measuring neutron ambient dose equivalents, H{sup ∗}(10), at several positions inside (8 positions) and outside (3 positions) the treatment room. Detectors included three TEPCs—tissue equivalent proportional counters (Hawk type from Far West Technology, Inc.) and six rem-counters (WENDI-II, LB 6411, RadEye™ NL, a regular and an extended-range NM2B). Meanwhile, the photon component of stray radiation was deduced from the low-lineal energy transfer part of TEPC spectra or measured using a Thermo Scientific™ FH-40G survey meter. Experiments involved a water tank phantom (60 × 30 × 30 cm{sup 3}) representing the patient that was uniformly irradiated using a 3 mm spot diameter proton pencil beam with 10 cm modulation width, 19.95 cm distal beam range, and 10 × 10 cm{sup 2} field size. Results: Neutron spectrometry around the target volume showed two main components at the thermal and fast energy ranges. The study also revealed the large dependence of the energy distribution of neutrons, and consequently of out-of-field doses, on the primary beam direction (directional emission of intranuclear cascade neutrons) and energy (spectral composition of secondary neutrons). In addition, neutron mapping within the facility was conducted and showed the highest H{sup ∗}(10) value of ∼51 μSv Gy{sup −1}; this was measured at 1.15 m along the beam axis. H{sup ∗}(10) values

  15. Characterization of commercial MOSFETS electron dosimetry

    International Nuclear Information System (INIS)

    Carvajal, M. A.; Simancas, F.; Guirado, D.; Banqueri, J.; Vilches, M.; Lallena, A. M.; Palma, A. J.

    2011-01-01

    In recent years there have been commercial dosimetry devices based on transistors Metal-Oxide-Semiconductor (MOSFET) having a number of advantages over traditional systems for dosimetry in medical applications. These include the portability of the sensor element and a reading process quick and relatively simple dose, linearity, and so on. The use of electron beams is important in modern radiotherapy include its use in intra-operative radiotherapy (RIO). This paper presents an initial characterization of different business models MOSFET, not specific for radiation detection, to demonstrate their potential as sensors for electron beam dosimetry. (Author)

  16. SU-E-T-425: Feasibility of Establishing a National Postal Dosimetry System Using EBT3 Gafchromic Film

    International Nuclear Information System (INIS)

    Abdel-Rahman, W; Mohammed, I; Bamajboor, S

    2015-01-01

    Purpose: To evaluate the performance of a postal dosimeter consisting of EBT3 films and a miniature Lucite phantom to be used for photon beams output audits for mega-voltage photon beams across the Saudi Arabia. Methods: Two batches of EBT3 films were calibrated in 5 mega-voltage photon beams with energies ranging between 6 MV and 18 MV in the dose range between 0 to 4 Gy. A 4×4×20 cm 3 lucite phantom was constructed to be used as an irradiation phantom. The lucite irradiation phantom consists of two parts and allows for embedding a 2.5×2.0 cm 2 EBT3 film at 8.9 cm depth. Factors that convert the dose measured in the lucite irradiation phantom at 8.9 cm depth to the dose at 10 cm depth in water for 10×10 cm 2 field for different photon energies were calculated using the dosxyznrc/EGSnrcMP user code. The performance of the proposed postal dosimeter was tested in 17 different photon beams across 4 radiotherapy centres in Saudi Arabia. The outputs of the 17 beams are monitored by either the International Atomic Energy Agency or by the Radiological Physics Centre. Results: For the 17 photon beams, the average of the ratios of measured to stated outputs was 1.01 ± 0.02 and with a maximum ratio of 1.05. Conclusion: The results of our work indicate that the proposed postal dosimetry system can be used for national auditing of outputs for mega-voltage photon beams. The service can be offered to other national radiotherapy centres or to a be used for credentialing of centres participating in national trials

  17. SU-E-T-425: Feasibility of Establishing a National Postal Dosimetry System Using EBT3 Gafchromic Film

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rahman, W [KING FAHAD SPECIALIST HOSPITAL, Dammam, Eastern Province (Saudi Arabia); Mohammed, I [King Fahd University of Petroleum & Minerals, Dhahran, Eastern Province (Saudi Arabia); Bamajboor, S [Prince Sultan Military Medical City, Riyadh, Riyadh (Saudi Arabia)

    2015-06-15

    Purpose: To evaluate the performance of a postal dosimeter consisting of EBT3 films and a miniature Lucite phantom to be used for photon beams output audits for mega-voltage photon beams across the Saudi Arabia. Methods: Two batches of EBT3 films were calibrated in 5 mega-voltage photon beams with energies ranging between 6 MV and 18 MV in the dose range between 0 to 4 Gy. A 4×4×20 cm{sup 3} lucite phantom was constructed to be used as an irradiation phantom. The lucite irradiation phantom consists of two parts and allows for embedding a 2.5×2.0 cm{sup 2} EBT3 film at 8.9 cm depth. Factors that convert the dose measured in the lucite irradiation phantom at 8.9 cm depth to the dose at 10 cm depth in water for 10×10 cm{sup 2} field for different photon energies were calculated using the dosxyznrc/EGSnrcMP user code. The performance of the proposed postal dosimeter was tested in 17 different photon beams across 4 radiotherapy centres in Saudi Arabia. The outputs of the 17 beams are monitored by either the International Atomic Energy Agency or by the Radiological Physics Centre. Results: For the 17 photon beams, the average of the ratios of measured to stated outputs was 1.01 ± 0.02 and with a maximum ratio of 1.05. Conclusion: The results of our work indicate that the proposed postal dosimetry system can be used for national auditing of outputs for mega-voltage photon beams. The service can be offered to other national radiotherapy centres or to a be used for credentialing of centres participating in national trials.

  18. Thermoluminescence albedo-neutron dosimetry

    International Nuclear Information System (INIS)

    Strand, T.; Storruste, A.

    1986-10-01

    The report discusses neutron detection with respect to dosimetry and compares different thermoluminescent dosimetry materials for neutron dosimetry. Construction and calibration of a thermoluminescence albedo neutron dosemeter, developed by the authors, is described

  19. Thermoluminescence in medical dosimetry

    International Nuclear Information System (INIS)

    Rivera, T.

    2011-10-01

    The dosimetry by thermoluminescence (Tl) is applied in the entire world for the dosimetry of ionizing radiations specially to personal and medical dosimetry. This dosimetry method has been very interesting for measures in vivo because the Tl dosimeters have the advantage of being very sensitive in a very small volume and they are also equivalent to tissue and they do not need additional accessories (for example, cable, electrometer, etc.) The main characteristics of the diverse Tl materials to be used in the radiation measures and practical applications are: the Tl curve, the share homogeneity, the signal stability after the irradiation, precision and exactitude, the response in function with the dose and the energy influence. In this work a brief summary of the advances of the radiations dosimetry is presented by means of the thermally stimulated luminescence and its application to the dosimetry in radiotherapy. (Author)

  20. MO-B-BRB-04: 3D Dosimetry in End-To-End Dosimetry QA

    Energy Technology Data Exchange (ETDEWEB)

    Ibbott, G. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by the development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an

  1. Analysis of the power system from an electron beam accelerator and the correlation with the theoretical dosimetry for radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir Luiz; Somessari, Elizabeth S. Ribeiro; Silveira, Carlos Gaia da; Calvo, Wilson Aparecido Parejo, E-mail: somessar@ipen.br, E-mail: esomessa@ipen.br, E-mail: cgsilvei@ipen.br, E-mail: wapcalvo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radiation Technology Center at IPEN/CNEN-SP to simulate the energy efficiency of this industrial accelerator. Finally, it is also targeted to compare theoretical dosimetry using parameters of energy and beam current with data from the accelerator power system. This knowledge and technology will be very useful and essential for the control system upgrade of EBA, mainly Dynamitron DC1500/25/04, in view that radiation processing technology for industrial and environmental applications has been developed and used worldwide. (author)

  2. Analysis of the power system from an electron beam accelerator and the correlation with the theoretical dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Somessari, Samir Luiz; Somessari, Elizabeth S. Ribeiro; Silveira, Carlos Gaia da; Calvo, Wilson Aparecido Parejo

    2013-01-01

    Radiation Technology Center at IPEN/CNEN-SP to simulate the energy efficiency of this industrial accelerator. Finally, it is also targeted to compare theoretical dosimetry using parameters of energy and beam current with data from the accelerator power system. This knowledge and technology will be very useful and essential for the control system upgrade of EBA, mainly Dynamitron DC1500/25/04, in view that radiation processing technology for industrial and environmental applications has been developed and used worldwide. (author)

  3. Radiation dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.; Tagesson, M.; Ljungberg, M.; Strand, S.E.; Thomas, S.R.

    1999-01-01

    Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. A knowledge of the radiation dose received by different organs in the body is essential to an evaluation of the risks and benefits of any procedure. In this paper, current methods for internal dosimetry are reviewed, as they are applied in nuclear medicine. Particularly, the Medical Internal Radiation Dose (MIRD) system for dosimetry is explained, and many of its published resources discussed. Available models representing individuals of different age and gender, including those representing the pregnant woman are described; current trends in establishing models for individual patients are also evaluated. The proper design of kinetic studies for establishing radiation doses for radiopharmaceuticals is discussed. An overview of how to use information obtained in a dosimetry study, including that of the effective dose equivalent (ICRP 30) and effective dose (ICRP 60), is given. Current trends and issues in internal dosimetry, including the calculation of patient-specific doses and in the use of small scale and microdosimetry techniques, are also reviewed

  4. Clinical validation of an in-house EPID dosimetry system for IMRT QA at the Prince of Wales Hospital

    Science.gov (United States)

    Tyler, M.; Vial, P.; Metcalfe, P.; Downes, S.

    2013-06-01

    In this study a simple method using standard flood-field corrected Electronic Portal Imaging Device (EPID) images for routine Intensity Modulated Radiation Therapy (IMRT) Quality Assurance (QA) was investigated. The EPID QA system was designed and tested on a Siemens Oncor Impression linear accelerator with an OptiVue 1000ST EPID panel (Siemens Medical Solutions USA, Inc, USA) and an Elekta Axesse linear accelerator with an iViewGT EPID (Elekta AB, Sweden) for 6 and 10 MV IMRT fields with Step-and-Shoot and dynamic-MLC delivery. Two different planning systems were used for patient IMRT field generation for comparison with the measured EPID fluences. All measured IMRT plans had >95% agreement to the planning fluences (using 3 cGy / 3 mm Gamma Criteria) and were comparable to the pass-rates calculated using a 2-D diode array dosimeter.

  5. Clinical validation of an in-house EPID dosimetry system for IMRT QA at the Prince of Wales Hospital

    International Nuclear Information System (INIS)

    Tyler, M; Downes, S; Vial, P; Metcalfe, P

    2013-01-01

    In this study a simple method using standard flood-field corrected Electronic Portal Imaging Device (EPID) images for routine Intensity Modulated Radiation Therapy (IMRT) Quality Assurance (QA) was investigated. The EPID QA system was designed and tested on a Siemens Oncor Impression linear accelerator with an OptiVue 1000ST EPID panel (Siemens Medical Solutions USA, Inc, USA) and an Elekta Axesse linear accelerator with an iViewGT EPID (Elekta AB, Sweden) for 6 and 10 MV IMRT fields with Step-and-Shoot and dynamic-MLC delivery. Two different planning systems were used for patient IMRT field generation for comparison with the measured EPID fluences. All measured IMRT plans had >95% agreement to the planning fluences (using 3 cGy / 3 mm Gamma Criteria) and were comparable to the pass-rates calculated using a 2-D diode array dosimeter.

  6. Thin film tritium dosimetry

    Science.gov (United States)

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  7. Design of a system for neutrons dosimetry; Diseno de un sistema para dosimetria de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Ceron, P.; Rivera, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Paredes G, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Azorin, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Sanchez, A. [IPN, Escuela Superior de Fisica y Matematicas, Av. Instituto Politecnico Nacional s/n, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Vega C, H. R., E-mail: victceronr@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    At the present time diverse systems of detection of neutrons exist, as proportional counters based on BF{sub 3}, He{sub 3} and spectrometers of Bonner spheres. However, the cost and the complexity of the implementation of these systems put them far from the reach for dosimetric purposes. For these reasons a system of neutrons detection composed by a medium paraffin moderator that forms a 4π (spheres) arrangement and of several couples of thermoluminescent dosimeters TLD 600/TLD 700. The response of the system presents a minor repeatability to 5% in several assays when being irradiated with a {sup 239}PuBe source and a deviation of 13.8% in the Tl readings of four different spheres. The calibration factor of the system with regard to the neutrons source which was of 56.2 p Sv/nc also was calculated. These detectors will be used as passive monitors of photoneutrons in a radiotherapy room with lineal accelerator of high energy. (Author)

  8. Recent advances in Optical Computed Tomography (OCT) imaging system for three dimensional (3D) radiotherapy dosimetry

    Science.gov (United States)

    Rahman, Ahmad Taufek Abdul; Farah Rosli, Nurul; Zain, Shafirah Mohd; Zin, Hafiz M.

    2018-01-01

    Radiotherapy delivery techniques for cancer treatment are becoming more complex and highly focused, to enable accurate radiation dose delivery to the cancerous tissue and minimum dose to the healthy tissue adjacent to tumour. Instrument to verify the complex dose delivery in radiotherapy such as optical computed tomography (OCT) measures the dose from a three-dimensional (3D) radiochromic dosimeter to ensure the accuracy of the radiotherapy beam delivery to the patient. OCT measures the optical density in radiochromic material that changes predictably upon exposure to radiotherapy beams. OCT systems have been developed using a photodiode and charged coupled device (CCD) as the detector. The existing OCT imaging systems have limitation in terms of the accuracy and the speed of the measurement. Advances in on-pixel intelligence CMOS image sensor (CIS) will be exploited in this work to replace current detector in OCT imaging systems. CIS is capable of on-pixel signal processing at a very fast imaging speed (over several hundred images per second) that will allow improvement in the 3D measurement of the optical density. The paper will review 3D radiochromic dosimeters and OCT systems developed and discuss how CMOS based OCT imaging will provide accurate and fast optical density measurements in 3D. The paper will also discuss the configuration of the CMOS based OCT developed in this work and how it may improve the existing OCT system.

  9. Development of DL-alanine systems for gamma radiation and electron dosimetry

    International Nuclear Information System (INIS)

    Costa, Zelia Maria da

    1994-01-01

    Two different dosimetric systems using DL-Alanine samples were employed to determine the absorbed dose from 60 Co gamma-rays source and electrons emitted from an accelerator. The first dosimetric system is based on the relationship between free radicals produced and the absorbed dose using the electron spin resonance (ESR) technique. Details on the sample preparation, the spectrometer parameter setting, the analysis of the ESR signal to dose, the influence of dose rate and the radiation type dependence are described. The second dosimetric system is based on the determination by absorbance spectrophotometry of the complex produced, which are formed when the irradiated alanine is dissolved in a solution containing ferrous ammonium sulphate xylenol in 0,05 N H 2 SO 4 . Different concentrations for each reagents has been analyzed in the preparation of this solution as well as the influence caused by radiation type and dose rate in the absorbance. (author)

  10. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Musilek, L.; Seda, J.; Trousil, J.

    1992-01-01

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  11. Development and current state of dosimetry in Cuba

    International Nuclear Information System (INIS)

    Prieto Miranda, E.F.; Cuesta Fuente, G.; Chavez Ardanza, A.

    1999-01-01

    In Cuba, the application of the radiation technologies has been growing in the last years, and at present there are several dosimetry systems with different ranges of absorbed dose. Diverse researches were carried out on high dose dosimetry with the following dosimetry systems: Fricke, ceric-cerous sulfate, ethanol-chlorobenzene, cupric sulfate and Perspex (Red 4034 AE and Clear HX). In this paper the development achieved during the last 15 years in the high dose dosimetry for radiation processing in Cuba is presented, as well as, the current state of different dosimetry systems employed for standardization and for process control. The paper also reports the results of dosimetry intercomparison studies that were performed with the Ezeiza Atomic Center of Argentine and the International Dose Assurance Service (IDAS) of IAEA. (author)

  12. BeOSL system for personal dosimetry : dosimetric characteristics and practical application; Sistema BeOSL para dosimetria personal : caracteristicas dosimetricas y la aplicacion practica

    Energy Technology Data Exchange (ETDEWEB)

    Mende, E. [Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Working Group Engineering, D-85764 Neuherberg (Germany)

    2015-10-15

    Full text: BeOSL system of Dosimetric s is very easy to use, assimilate and maintain. Our dosimeter defines a milestone in the supervision of personal equivalent dose of Hp (10) and Hp (0.07) it covers the range of total energy of 16 KeV to 10 MeV. For this energy range is exceptional in its energy dependence for official personal dosimetry. The BeOSL system consists of two modules, one of them is the BeOSL reader that measures the radiation exposure using the latest technology, optically stimulated luminescence (OSL). The reading is extremely fast; it does not require consumables such as nitrogen or other. The detector material is beryllium oxide (Be O); this is an OSL material tissue equivalent and therefore is ideal for personal dosimetry. The BeOSL technology allows multiple readings of the dosimeter (re-read) to verify the dose or archive the dosimeter. One of the biggest advantages of BeOSL system is its modular concept allows the system to run as a manual solution or as a complete automated robotic system, which can be filled with up to 5,000 dosimeters as bulk cargo. (Author)

  13. Study on dosimetry systems for a few tens MeV/u ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Takuji; Sunaga, Hiromi; Takizawa, Haruki; Tachibana, Hiroyuki [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A combined measurement system consisting of a total calorimeter, a Faraday cup and thin film dosimeters have been developed and tested using a simultaneous irradiation apparatus to measure absorbed dose for a few tens MeV/u ion beams of the TIARA AVF cyclotron. (author)

  14. Answer to request on the ININ internal dosimetry; Respuesta a encuesta sobre dosimetria interna del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro L, M.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1999-05-15

    In this report it is presented the reply to CNSNS asking for information about the methodology for the evaluation of the occupational dose due to internal contamination. The characteristics of the installation, type and dimensions of the shield room, construction materials, type of detecting, calibration geometries, type of used phantom, intervals of energy of the calibration, type of routine measurements, detection limit for Cs-137 and Co-60, code to carry out the analysis of the spectra, evaluation of the measurement data, whole body system type armchair with anthropomorphic phantom, whole body system of vertical scanning, distribution and location diagram of the internal dosimetry laboratory there are among the treated aspects. (Author.

  15. Patients' experiences with routine outcome monitoring and clinical feedback systems: A systematic review and synthesis of qualitative empirical literature.

    Science.gov (United States)

    Solstad, Stig Magne; Castonguay, Louis Georges; Moltu, Christian

    2017-05-19

    Routine outcome monitoring (ROM) and clinical feedback (CF) systems have become important tools for psychological therapies, but there are challenges for their successful implementation. To overcome these challenges, a greater understanding is needed about how patients experience the use of ROM/CF. We conducted a systematic literature search of qualitative studies on patient experiences with the use of ROM/CF in mental health services. The findings from 16 studies were synthesized, resulting in four meta-themes: (1) Suspicion towards service providers, (2) Flexibility and support to capture complexity, (3) Empowering patients, and (4) Developing collaborative practice. We discuss the implications of these meta-themes for further development and implementation of ROM/CF into clinical practice, acknowledging the limitations of our review and suggesting avenues for further research. Clinical or methodological significance of this article: This article provides useful and actionable knowledge about the patient perspective on ROM/CF, an important discussion on the current state of research in this area, and useful and concrete suggestions for further avenues of research.

  16. Completeness and reliability of mortality data in Viet Nam: Implications for the national routine health management information system.

    Science.gov (United States)

    Hong, Tran Thi; Phuong Hoa, Nguyen; Walker, Sue M; Hill, Peter S; Rao, Chalapati

    2018-01-01

    Mortality statistics form a crucial component of national Health Management Information Systems (HMIS). However, there are limitations in the availability and quality of mortality data at national level in Viet Nam. This study assessed the completeness of recorded deaths and the reliability of recorded causes of death (COD) in the A6 death registers in the national routine HMIS in Viet Nam. 1477 identified deaths in 2014 were reviewed in two provinces. A capture-recapture method was applied to assess the completeness of the A6 death registers. 1365 household verbal autopsy (VA) interviews were successfully conducted, and these were reviewed by physicians who assigned multiple and underlying cause of death (UCOD). These UCODs from VA were then compared with the CODs recorded in the A6 death registers, using kappa scores to assess the reliability of the A6 death register diagnoses. The overall completeness of the A6 death registers in the two provinces was 89.3% (95%CI: 87.8-90.8). No COD recorded in the A6 death registers demonstrated good reliability. There is very low reliability in recording of cardiovascular deaths (kappa for stroke = 0.47 and kappa for ischaemic heart diseases = 0.42) and diabetes (kappa = 0.33). The reporting of deaths due to road traffic accidents, HIV and some cancers are at a moderate level of reliability with kappa scores ranging between 0.57-0.69 (pViet Nam.

  17. The Hanford Emergency Dosimetry System; Le Systeme de Dosimetrie pour les Cas d'Urgence a Hanford; 0421 0418 0421 0422 0414 ; El Sistema Dosimetrico de Hanford para Casos de Urgencia

    Energy Technology Data Exchange (ETDEWEB)

    Larson, H. V.; Keene, A. R. [Radiation Protection Operation, Hanford Laboratories, General Electric Company, Hanford Atomic Products Operation, Richland, WA (United States)

    1965-06-15

    The Hanford project is a major atomic industrial complex, including nuclear reactors, fuel fabrication plants, chemical separation facilities and research laboratories. In addition to a surveillance and control programme for personnel radiation exposures, an emergency dosimetry system has been developed to provide rapid assessment of high dose rates, identification and control of employees, staff notifications and formation of staff emergency control centres, assessment of external exposure doses, evaluation of body burdens of radioactive materials, detection and control of radioactive environmental contamination and rapid exposure estimates for guidance of rescue and medical personnel. Primary reliance is placed upon the Hanford Film Badge Dosimeter, worn by all persons within controlled areas. The badge provides positive identification of the wearer and the film can be evaluated within 90 min. Separately, yet simultaneously, the remaining components of the badge can be processed for determinations of the neutron spectrum and dose in five energy groups, as well as provide an early estimate of the single collision neutron dose from a few to several thousand rads. Gamma-ray detection ranges from 20 mr to 1500 r from the film components to 10 to 10 000 r from tantalum shielded fluorods. The emergency system includes programmes that ensure employee understanding, monitor training and management co-operation for fast identification, control and segregation of affected employees. Monitoring personnel, using portable instrumentation, obtain on-site in vivo measurements of Na{sup 24} or measurements of activated indium foil in the film-badge dosimeter for preliminary dose estimates. The staff notification and operation of emergency control centres provide technical guidance and mobile supportive equipment including a mobile whole-body counter. Back-up laboratory facilities give supportive dosimetry through the analysis of blood for Na{sup 24} activation, P{sup 32} hair

  18. Current personnel dosimetry practices at DOE facilities

    International Nuclear Information System (INIS)

    Fix, J.J.

    1981-05-01

    Only three parameters were included in the personnel occupational exposure records by all facilities. These are employee name, social security number, and whole body dose. Approximate percentages of some other parameters included in the record systems are sex (50%), birthdate (90%), occupation (26%), previous employer radiation exposure (74%), etc. Statistical analysis of the data for such parameters as sex versus dose distribution, age versus dose distribution, cumulative lifetime dose, etc. was apparently seldom done. Less than 50% of the facilities reported having formal documentation for either the dosimeter, records system, or reader. Slightly greater than 50% of facilities reported having routine procedures in place. These are considered maximum percentages because some respondents considered computer codes as formal documentation. The repository receives data from DOE facilities regarding the (a) distribution of annual whole body doses, (b) significant internal depositions, and (c) individual doses upon termination. It is expected that numerous differences exist in the dose data submitted by the different facilities. Areas of significant differences would likely include the determination of non-measurable doses, the methods used to determine previous employer radiation dose, the methods of determining cumulative radiation dose, and assessment of internal doses. Undoubtedly, the accuracy of the different dosimetry systems, especially at low doses, is very important to the credibility of data summaries (e.g., man-rem) provided by the repository

  19. Building a graphite calorimetry system for the dosimetry of therapeutic x-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Jung; Kim, Byoung Chul; Kim, Joong Hyun; Chung, Jae Pil; Kim, Hyun Moon; Yi, Chul Young [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2017-06-15

    A graphite calorimetry system was built and tested under irradiation. The noise level of the temperature measurement system was approximately 0.08 mK (peak to peak). The temperature of the core part rose by approximately 8.6 mK at 800 MU (monitor unit) for 6-MV X-ray beams, and it increased as X-ray energy increased. The temperature rise showed less spread when it was normalized to the accumulated charge, as measured by an external monitoring chamber. The radiation energy absorbed by the core part was determined to have values of 0.798 J/μC, 0.389 J/μC, and 0.352 J/μC at 6 MV, 10 MV, and 18 MV, respectively. These values were so consistent among repeated runs that their coefficient of variance was less than 0.15%.

  20. DOSEXPRT: A bioassay dosimetry code for Martin Marietta Energy Systems, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.C.; Eckerman, K.F.

    1992-04-01

    The bioassay code DOSEXPRT was developed for Martin Marietta Energy Systems, Inc., to provide compliance with Department of Energy (DOE) Order 5480, Chapter 11. DOSEXPRT computes the intake of a radionuclide in any year (considering both acute and chronic intakes) from in vivo measurements of the retained activity and/or measurements of the activity in excreta. The committed effective and organ doses for the intake are computed as well as the effective and organ doses expected to be received in each calendar year out to 50 years beyond the year of intake. The bioassay records used as input for DOSEXPRT are extracted from the Martin Marietta Energy Systems Occupational Health Information System (OHIS). DOSEXPRT implements a set of algorithms with parameters governing the translocation, retention, and excretion of the nuclide contained in data files specific to the nuclide. These files also contain dose-per-unit-intake coefficients used to compute the committed dose equivalent for the intakes in the year. Annual organ and effective doses are computed using additional dose-rate files that contain data on the dose rate at various times following a unit intake. If measurements are presented for more than one assay for a given nuclide, DOSEXPRT estimates the intake by applying weights assigned in the nuclide file for each assay. DOSEXPRT is accessed off the OHIS MENU No. 4 and designed to be run as a batch processor, but can also be run interactively for testing purposes.

  1. DOSEXPRT: A bioassay dosimetry code for Martin Marietta Energy Systems, Inc

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.C.; Eckerman, K.F.

    1992-04-01

    The bioassay code DOSEXPRT was developed for Martin Marietta Energy Systems, Inc., to provide compliance with Department of Energy (DOE) Order 5480, Chapter 11. DOSEXPRT computes the intake of a radionuclide in any year (considering both acute and chronic intakes) from in vivo measurements of the retained activity and/or measurements of the activity in excreta. The committed effective and organ doses for the intake are computed as well as the effective and organ doses expected to be received in each calendar year out to 50 years beyond the year of intake. The bioassay records used as input for DOSEXPRT are extracted from the Martin Marietta Energy Systems Occupational Health Information System (OHIS). DOSEXPRT implements a set of algorithms with parameters governing the translocation, retention, and excretion of the nuclide contained in data files specific to the nuclide. These files also contain dose-per-unit-intake coefficients used to compute the committed dose equivalent for the intakes in the year. Annual organ and effective doses are computed using additional dose-rate files that contain data on the dose rate at various times following a unit intake. If measurements are presented for more than one assay for a given nuclide, DOSEXPRT estimates the intake by applying weights assigned in the nuclide file for each assay. DOSEXPRT is accessed off the OHIS MENU No. 4 and designed to be run as a batch processor, but can also be run interactively for testing purposes.

  2. Design, development and commercialization of ISOCAD (Integrated System of Computer Aided Dosimetry) for gamma irradiators

    International Nuclear Information System (INIS)

    Shrivastava, Amit; Srivastava, Navneet; Kohli, A.K.; Mishra, Vinay Kumar; Singh, Ramnik; Sinha, A.K.

    2014-01-01

    ISOMED facility is the indomitable architect of radiation sterilization era in the country providing the contract radiation processing services for the terminal sterilization of the healthcare products from the healthcare sector. ISOMED has acquired the international standards viz.ISO 9001, ISO 22000, ISO 13485, ISO 11137, OHSAS 18001, ISO 14001 that supplemented by European Union - GMP certification from MHRA - UK. One of the core focuses of these standards is the control of measuring and monitoring instruments with impeccable traceability features with respect to the quality critical processing data. The gamma radiation sterilisation process involves delivery of minimum 25 kGy of radiation dose to the healthcare products which is measured by internationally acclaimed Cerric Cerric Potentiometric Dose Measurement Systems (CCPDMs). As the current variant of this system had extensive involvement of manual interventions, a novel, bar code based computerized application package called ISOCAD, incorporating portable risk free snapping tool for the dosimeter ampules has been synergistically developed by BRIT/BARC for the Cerric Cerrous Potentiometric Dose Measurement System for Gamma Irradiators. ISOCAD has been successfully operating in ISOMED and the techno commercial viability has been convincingly demonstrated to the operators of the gamma irradiators from the country as well as abroad. ISOCAD is now available as one of the commercial product packages from BRIT. (author)

  3. Development and initial characterization of a nuclear magnetic resonance dosimetry system

    International Nuclear Information System (INIS)

    Thomasson, D.M.

    1990-01-01

    A novel high dose radiation dosimeter was developed employing NMR spectroscopic quantitation of the radiolytic products of methanol. Chemical shifts of product resonances relative to the solvent allow quantification using NMR techniques. Due to expected dynamic range limitations of NMR instrumentation, deuterated methanol is used with a presaturation suppression sequence to reduce the solvent proton signals. Methanol's 13 C-coupled proton resonances is used as an internal reference to normalize product signals otherwise subject to spectrometer variability. Data on reproducibility, dose response, and temporal stability were acquired. System reproducibility for a sample at 1 kGy is ∼10%. The dose response is linear in the range between 200 Gy and 50 kGy. No significant signal degradation was observed during a six month period. Advantages of this type dosimeter system include ease of use, large dynamic range, and temporal stability. An additional characteristic of a methanol based system is the LET dependent response in the chemical yields of formaldehyde and ethylene glycol. 70 refs., 15 figs., 9 tabs

  4. The personal dosimetry in Mexico

    International Nuclear Information System (INIS)

    Salazar, M.A.

    2006-01-01

    The Personal Dosimetry in Mexico, has an approximately 30 year-old history; and it had been and it is at the moment, one of the more important resources with which the personnel that works with ionizing radiation sources counts for its protection. The Personal Dosimetry begins with the film dosimetry, technique that even continues being used at the present time by some users, and the main reason of its use is for economic reasons. At the moment this technique, it has been surpassed, by the Thermoluminescent dosimetry, which has taken a lot of peak, mainly by the technological development with which it is counted at the present time; what has given as a result that this technique becomes tip technology; that supported in the characteristic of the used materials, as the handling and processing of the information associated with the new PC, digitizer cards, software etc, what has allowed increases it potential. In this work the current necessities of the market are presented as well as an analysis of the future real necessities in Mexico, at national level, the companies that provide this service and that they spread to satisfy this necessity of the market, including the different used technologies are also mentioned. The application ranges, at the same time, of the advantages and disadvantages of the different systems of Personal Dosimetry in the market. The companies that at the moment provide the service of Personal Dosimetry, its use materials and equipment in indistinct form, for the monitoring of gamma radiation, beta particles, different qualities of x-ray radiation, and sometimes neutrons. The monitoring of the exposed personnel at the diverse sources of ionizing radiation mentioned is carried out in many occasions without having with the materials (detectors), neither the appropriate infrastructure and therefore without the quality control that guarantees a correct evaluation of the dose equivalent, as a result of the exposure to the ionizing radiations; it

  5. Commissioning dosimetry at SINAGAMA irradiation facility

    International Nuclear Information System (INIS)

    Noriah Mod Ali; Hasan Sham; Taiman Kadni

    2000-01-01

    Dose mapping is one of the important factors in the commissioning of the irradiation plant. Comparison of the dose distribution obtained through the dose mapping exercise carried out since 1991 for Sinagama plant are described in this paper. It is aimed to confirmed the need for a thorough dose-mapping before the plant can be proceed with routine irradiation. The dose measurement was performed using a routine ceric-cerous dosimeter, supplied by the High Dose Dosimetry Laboratory, SSDL. The quality assurance of these service was maintain and verify through regular participation in dose intercomparison organised by the IAEA

  6. Dosimetry optimization at COGEMA-La Hague

    International Nuclear Information System (INIS)

    Kalimbadjian, J.

    2000-01-01

    At the present time, the la Hague site strives to apply international recommendations together with national regulations concerning radiation protection, and especially the respect of limitation and optimization principles. The application of these principles is based on the implementation of a passive dosimetry and an active dosimetry. The monthly passive dosimetry is monitored by means of a photographic dosimetry film, completed with lithium fluorine thermoluminescent film badges. This personal dosimetry common to X, β, γ and neutron radiations is carried out in close relationship between the Radiation Protection Department, the Occupational Medical Department and the staff running the Plant. The application or ALARA's principle as well as that of radiation protection optimization implies to implement a complementary active dosimetry enabling to gain in real time, the personal dosimetry of each intervening person, either they be COGEMA's workers or external companies'. This active dosimetry provides with following information: This preventive dosimetry is based on the knowledge of doses integration in real time and is fitted with alarm thresholds according to the total amount of doses and dose rates. Thresholds on the dose rate are also set relatively to the radiological environment. This knowledge of doses and dose rates allows a stricter management of the works, while analyzing them according to the nature of the work, to the location and to the skills of the intervening people. This dosimetry allows to analyze and optimize doses integration according to the works nature for the whole intervening staff. The la Hague Site has developed an active personal dosimetry system, common to every intervening person, COGEMA or external companies. The DOSICARD was thus elaborated, shaped as an electronic dosimeter fitted with an alarm and a smart card. The access to controlled areas is conditioned to information given by the DOSICARD concerning medical aptitudes and

  7. Photoirradiation system with depth optical dosimetry control in initial oxygen saturation measurement

    International Nuclear Information System (INIS)

    Quintanar, L.; Stolik, S.; Rosa, J. de la; Moreno, E.

    2012-01-01

    Photodynamic Therapy is a technique in which a photosensitizing substance is applied that is activated by light and it generates reactive oxygen species which cause selective cell destruction. The efficiency of the therapy is affected by the parameters dose. In this work it is shown a photo-irradiation system for superficial Photodynamic Therapy, using as a light source a light emitting diode with an automatic control of optical power based on a model of the distribution of light in depth that was tested in tissue phantoms. It also has a reflective pulse oximeter for the measurement of the initial oxygen saturation. (Author)

  8. Radon exposure system for mammalian cells in culture: Design, operation, and dosimetry

    International Nuclear Information System (INIS)

    Seed, T.M.; Kretz, N.D.; Schlenker, R.A.

    1991-01-01

    A novel system for Rn gas exposure of mammalian cells in culture has been designed, constructed, and used to directly assess both the magnitude and the nature of chronic, low-dose Rn/Rn daughter toxicity of exposed vital lung cells isolated from normal pulmonary tissue, propagated and exposed in vitro. Direct correlations between atmospheric Rn concentrations, alpha-particle fluences, and macro- and microdoses of absorbed radiation doses by lung cells provide for a heretofore unavailable assessment of critical doses to vital cells

  9. EURADOS intercomparisons in external radiation dosimetry: similarities and differences among exercises for whole-body photon, whole-body neutron, extremity, eye-lens and passive area dosemeters

    International Nuclear Information System (INIS)

    Romero, Ana M.; Grimbergen, Tom; McWhan, Andrew; Stadtmann, Hannes; Fantuzzi, Elena; Clairand, Isabelle; Neumaier, Stefan; Dombrowski, Harald; Figel, Markus

    2016-01-01

    The European Radiation Dosimetry Group (EURADOS) has been organising dosimetry intercomparisons for many years in response to an identified requirement from individual monitoring services (IMS) for independent performance tests for dosimetry systems. The participation in intercomparisons gives IMS the opportunity to show compliance with their own quality management system, compare results with other participants and develop plans for improving their dosimetry systems. In response to growing demand, EURADOS has increased the number of intercomparisons for external radiation dosimetry. Most of these fit into the programme of self-financing intercomparisons for dosemeters routinely used by IMS. This programme is being coordinated by EURADOS working group 2 (WG2). Up to now, this programme has included four intercomparisons for whole-body dosemeters in photon fields, one for extremity dosemeters in photon and beta fields, and one for whole-body dosemeters in neutron fields. Other EURADOS working groups have organised additional intercomparisons including events in 2014 for eye-lens dosemeters and passive area dosemeters for environmental monitoring. In this paper, the organisation and achievements of these intercomparisons are compared in detail focusing on the similarities and differences in their execution. (authors)

  10. Building a Graphite Calorimetry System for the Dosimetry of Therapeutic X-ray Beams

    Directory of Open Access Journals (Sweden)

    In Jung Kim

    2017-06-01

    Full Text Available A graphite calorimetry system was built and tested under irradiation. The noise level of the temperature measurement system was approximately 0.08 mK (peak to peak. The temperature of the core part rose by approximately 8.6 mK at 800 MU (monitor unit for 6-MV X-ray beams, and it increased as X-ray energy increased. The temperature rise showed less spread when it was normalized to the accumulated charge, as measured by an external monitoring chamber. The radiation energy absorbed by the core part was determined to have values of 0.798 J/μC, 0.389 J/μC, and 0.352 J/μC at 6 MV, 10 MV, and 18 MV, respectively. These values were so consistent among repeated runs that their coefficient of variance was less than 0.15%.

  11. Direct tumor in vivo dosimetry in highly-conformal radiotherapy: A feasibility study of implantable MOSFETs for hypofractionated extracranial treatments using the Cyberknife system

    International Nuclear Information System (INIS)

    Scalchi, Paolo; Righetto, Roberto; Cavedon, Carlo; Francescon, Paolo; Colombo, Federico

    2010-01-01

    Purpose: In highly-conformal radiotherapy, due to the complexity of both beam configurations and dose distributions, traditional in vivo dosimetry is unpractical or even impossible. The ideal dosimeter would be implanted inside the planning treatment volume so that it can directly measure the total delivered dose during each fraction with no additional uncertainty due to calculation models. The aim of this work is to verify if implantable metal oxide semiconductors field effect transistors (MOSFETs) can achieve a sufficient degree of dosimetric accuracy when used inside extracranial targets undergoing radiotherapy treatments using the Cyberknife system. Methods: Based on the preliminary findings of this study, new prototypes for high dose fractionations were developed to reduce the time dependence for long treatment delivery times. These dosimeters were recently cleared and are marketed as DVS-HFT. Multiple measurements were performed using both Virtual Water and water phantoms to characterize implantable MOSFETs under the Cyberknife beams, and included the reference-dosimetry consistency, the dependence of the response on the collimator size, on the daily delivered dose, and the time irradiation modality. Finally a Cyberknife prostate treatment simulation using a body phantom was conducted, and both MOSFET and ionization readings were compared to Monte Carlo calculations. The feasibility analysis was conducted based on the ratios of the absorbed dose divided by the dose reading, named as ''further calibration factor'' (FCF). Results: The average FCFs resulted to be 0.98 for the collimator dependence test, and about 1.00 for the reference-dosimetry test, the dose-dependence test, and the time-dependence test. The average FCF of the prostate treatment simulation test was 0.99. Conclusions: The obtained results are well within DVS specifications, that is, the factory calibration is still valid for such kind of treatments using the Cyberknife system, with no need of

  12. Evaluation of immunohematologic routine methods using the new erythrocyte-magnetized technology on the QWALYS 2 system.

    Science.gov (United States)

    Schoenfeld, Helge; Bulling, Katia; von Heymann, Christian; Neuner, Bruno; Kalus, Ulrich; Kiesewetter, Holger; Pruss, Axel

    2009-07-01

    QWALYS 2 is a fully automated system for ABO/D grouping, Rh phenotyping, K typing, and antibody screening (ABS). Its new erythrocyte-magnetized technology (EMT) is based on the use of magnetic nanoparticles and avoids centrifugation and washing steps. Overall 499 blood samples were tested with our routine blood bank methods for ABO/D grouping, 313 samples for Rh phenotyping and K typing (microtiter plates; Olympus PK 7200), and 478 samples for ABS (gel centrifugation technique, DiaMed). All samples were tested in parallel with the EMT. In 496 of 499 samples (99.4%), a complete concordance between the observed (QWALYS 2) and the expected results for ABO/D grouping was found. One sample with a weak A in an AB blood group and 2 samples with a weak D were not detected by the QWALYS system. Rh phenotyping and K tests revealed a 100% concordance. In the two ABS techniques, 427 samples were negative in both and 15 samples showed the same antibody specificity in both. Three immunoglobulin M antibodies were as expected negative in EMT and positive by DiaMed. In 32 cases (6.7%), false-positive reactions were observed by EMT due to 22 unspecific reactions (4.6%) and 10 lipemic or fibrinic plasmas (2.1%). One autoantibody was found by EMT only. The EMT is reliably suited to ABO/D grouping, Rh phenotyping, and K testing and is suitable to detect immunoglobulin G red blood cell alloantibodies as well. The rate of false-positive reactions in ABS due to lipemic and fibrinic samples needs to be reduced.

  13. Assessment of effectiveness of geologic isolation systems. CIRMIS data system. Volume 4. Driller's logs, stratigraphic cross section and utility routines

    International Nuclear Information System (INIS)

    Friedrichs, D.R.

    1980-01-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for use by the hydrologic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System is a storage and retrieval system for model input and output data, including graphical interpretation and display. This is the fourth of four volumes of the description of the CIRMIS Data System

  14. Application of the TWODANT code system to pressure vessel dosimetry calculations

    International Nuclear Information System (INIS)

    Parsons, D.K.; Alcouffe, R.E.; Marr, D.R.; Urban, W.T.

    1993-01-01

    The TWODANT code system has recently been enhanced to include TWODANT/GQ and THREEDANT. TWODANT/GQ solves the two-dimensional form of the discrete ordinates approximation to the transport equation on a generalized quadrilateral mesh. This geometric capability is very general and allows nearly exact representations of X-Y or R-Z geometries. THREEDANT solves the three-dimensional form of the discrete ordinates equations. In addition to the conventional coarse-mesh material zone input, THREEDANT can also be linked to a three-dimensional nested-region mesh generation code called FRAC-IN-THE-BOX. THREEDANT can thus model a much wider variety of geometric shapes than any other discrete ordinates code. These enhanced geometric modeling capabilities are applied here to the analysis of the VENUS PWR Mock-Up Facility

  15. An IAEA Survey of Dosimetry Audit Networks for Radiotherapy

    International Nuclear Information System (INIS)

    Grochowska, Paulina; Izewska, Joanna

    2013-01-01

    A Survey: In 2010, the IAEA undertook a task to investigate and review the coverage and operations of national and international dosimetry audit programmes for radiotherapy. The aim was to organize the global database describing the activities of dosimetry audit networks in radiotherapy. A dosimetry audit questionnaire has been designed at an IAEA consultants' meeting held in 2010 for organizations conducting various levels of dosimetry audits for radiotherapy. Using this questionnaire, a survey was conducted for the first time in 2010 and repeated in 2011. Request for information on different aspects of the dosimetry audit was included, such as the audit framework and resources, its coverage and scope, the dosimetry system used and the modes of audit operation, i.e. remotely and through on-site visits. The IAEA questionnaire was sent to over 80 organizations, members of the IAEA/WHO Network of Secondary Standards Dosimetry Laboratories (SSDLs) and other organizations known for having operated dosimetry audits for radiotherapy in their countries or internationally. Survey results and discussion: In response to the IAEA survey, 53 organizations in 45 countries confirmed that they operate dosimetry audit services for radiotherapy. Mostly, audits are conducted nationally, however there are five organizations offering audits abroad, with two of them operating in various parts of the world and three of them at the regional level, auditing radiotherapy centres in neighbouring countries. The distribution of dosimetry audit services in the world is given. (author)

  16. Dosimetry of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez C, G; Restrepo, J; Aguirre, C A [Hospital Universitario del Valle, Cali (Colombia)

    1996-08-01

    The systemic therapy of breast cancer has also changed profoundly during the last 60 years, and in this time the integration of treatment modalities involve a major area of investigation. The dosimetry of breast cancer presents different complications which can range from the Physician`s handling of the neoplasia up to the simple aspects of physical simulation, contour design, radiation fields, irregular surfaces and computer programs containing mathematical equations which differ little or largely with the reality of the radiation distribution into the volume to be irradiated. We have studied the problem using two types of measurements to determine how the radiation distribution is in irregular surfaces, and designing an easier skill to be used with each patient, in order to optimize the treatment with respect to the simulation and verification process. (author). 7 refs.

  17. Online patient dosimetry and an image quality audit system in digital radiology; Auditoria en tiempo real de dosis a los pacientes y claidad de imagen en radiologia digital

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J. M.; Vano, E.; Ten, J. I.; Prieto, C.; Martinez, D.

    2006-07-01

    The present work describes an online patient dosimetry and an image quality audit system in digital radiology. the system allows auditing of different parameters depending on contents of DICOM (Digital Imaging and Communication in Medicine) header. For the patient dosimetry audit, current mean values of entrance surface dose (ESD) were compared with local and national reference values (RVs) for the specific examination type evaluated. Mean values exceeding the RV trigger an alarm signal and then an evaluation of the technical parameters, operational practice and image quality starts, using data available in the DICOM header to derive any abnormal settings or performance to obtain the image. the X-ray tube output for different kVp values is measured periodically, allowing for the automatic calculation of the ESD. The system also allows for image quality audit linking it with the dose imparted and other technical parameters if the alarm condition if produced. Results and advantages derived from this online quality control are discussed. (Author) 5 refs.

  18. Standard Practice for Dosimetry of Proton Beams for use in Radiation Effects Testing of Electronics

    International Nuclear Information System (INIS)

    McMahan, Margaret A.; Blackmore, Ewart; Cascio, Ethan W.; Castaneda, Carlos; von Przewoski, Barbara; Eisen, Harvey

    2008-01-01

    Representatives of facilities that routinely deliver protons for radiation effect testing are collaborating to establish a set of standard best practices for proton dosimetry. These best practices will be submitted to the ASTM International for adoption

  19. Standard Practice for Dosimetry of Proton Beams for use in Radiation Effects Testing of Electronics

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, Margaret A.; Blackmore, Ewart; Cascio, Ethan W.; Castaneda, Carlos; von Przewoski, Barbara; Eisen, Harvey

    2008-07-25

    Representatives of facilities that routinely deliver protons for radiation effect testing are collaborating to establish a set of standard best practices for proton dosimetry. These best practices will be submitted to the ASTM International for adoption.

  20. Biodistribution and human dosimetry estimation of fluoro-L-DOPA as PET imaging agent of dopaminergic nerve transmitter systems

    International Nuclear Information System (INIS)

    Tang Ganghua; Wang Mingfang; Luo Lei; Gan Manquan; Tang Xiaolan; Zhang Lan; Wang Yongxian

    2002-01-01

    Objective: To investigate the biodistribution and human dosimetry estimation of 6-[ 18 F] Fluoro-L-DOPA (FDOPA). Methods: Biodistribution of FDOPA in normal rats and brain of hemi-Parkinsonism rats were determined. Human dosimetry estimation was performed by MIRD method based on the rats biodistribution data. Results: Biodistributions in normal rats showed high uptake in kidney, blood, striatum and hippocampi, fast clearance of radioactivity from kidney and blood, longer retain time in striatum and hippocampi, and higher striatum to cerebellum and striatum to cortex ratio. FDOPA uptake, striatum to cerebellum and striatum to cortex ratio in the lesioned side of hemi-Parkinsonism rats (P 2 to 2.3 x 10 -2 mGy/MBq and the effective dose in humans was estimated to be 2.05 x 10 -2 mSv/MBq after injection of FDOPA based on rats biodistribution data, which were consistent with those reported by literature on the whole. Conclusion: Human radiation dosimetry of FDOPA and other PET tracers can be estimated based on animals biodistribution data. The synthetic FDOPA is safe and efficient and can be used in animals, human and PD patients PET studies

  1. A new label dosimetry system based on pentacosa-diynoic acid monomer for low dose applications

    International Nuclear Information System (INIS)

    Abdel-Fattah, A.A.; Abdel-Rehim, F.; Soliman, Y.S.

    2012-01-01

    The dosimetric characteristics of γ-radiation sensitive labels based on polyvinyl butyral (PVB) and a conjugated diacetylene monomer, 10,12-pentacosa-diynoic acid (PCDA) have been investigated using reflectance colorimeter. Two types of labels (colourless and yellow) based on PCDA monomer were prepared using an Automatic Film Applicator System. Upon γ-ray exposure, the colourless label turns progressively blue, while the yellow colour label turns to green then to dark blue. The colour intensity of the labels is proportional to the radiation absorbed dose. The useful dose range was 15 Gy-2 kGy depending on PCDA monomer concentration. The expanded uncertainty of dose measurement of the colourless label was 6.06 (2σ). - Highlights: → Using 10,12-pentacosa-diynoic acid (PCDA) in preparation of label dosimeter. → PCDA polymerises upon γ-rays exposure producing a blue coloured polymer. → Useful dose range is 15 Gy to 2 kGy depending on concentration of PCDA. → Overall uncertainty of label dosimeter was 6.06 at 2σ.

  2. A new label dosimetry system based on pentacosa-diynoic acid monomer for low dose applications

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Fattah, A.A.; Abdel-Rehim, F. [National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. Box 8029, Nasr City, Cairo (Egypt); Soliman, Y.S., E-mail: yasser_shabaan@hotmail.com [National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. Box 8029, Nasr City, Cairo (Egypt)

    2012-01-15

    The dosimetric characteristics of {gamma}-radiation sensitive labels based on polyvinyl butyral (PVB) and a conjugated diacetylene monomer, 10,12-pentacosa-diynoic acid (PCDA) have been investigated using reflectance colorimeter. Two types of labels (colourless and yellow) based on PCDA monomer were prepared using an Automatic Film Applicator System. Upon {gamma}-ray exposure, the colourless label turns progressively blue, while the yellow colour label turns to green then to dark blue. The colour intensity of the labels is proportional to the radiation absorbed dose. The useful dose range was 15 Gy-2 kGy depending on PCDA monomer concentration. The expanded uncertainty of dose measurement of the colourless label was 6.06 (2{sigma}). - Highlights: > Using 10,12-pentacosa-diynoic acid (PCDA) in preparation of label dosimeter. > PCDA polymerises upon {gamma}-rays exposure producing a blue coloured polymer. > Useful dose range is 15 Gy to 2 kGy depending on concentration of PCDA. > Overall uncertainty of label dosimeter was 6.06 at 2{sigma}.

  3. Theoretical thermal dosimetry produced by an annular phased array system in CT-based patient models

    International Nuclear Information System (INIS)

    Paulsen, K.D.; Strohbehn, J.W.; Lynch, D.R.

    1984-01-01

    Theoretical calculations for the specific absorption rate (SAR) and the resulting temperature distributions produced by an annular phased array (APA) type system are made. The finite element numerical method is used in the formulation of both the electromagnetic (EM) and the thermal boundary value problems. A number of detailed patient models based on CT-scan data from the pelvic, visceral, and thoracic regions are generated to stimulate a variety of tumor locations and surrounding normal tissues. The SAR values from the EM solution are input into the bioheat transfer equation, and steady-rate temperature distributions are calculated for a wide variety of blood flow rates. Based on theoretical modeling, the APA shows no preferential heating of superficial over deep-seated tumors. However, in most cases satisfactory thermal profiles (therapeutic volume near 60%) are obtained in all three regions of the human trunk only for tumors with little or no blood flow. Unsatisfactory temperature patterns (therapeutic volume <50%) are found for tumors with moderate to high perfusion rates. These theoretical calculations should aid the clinician in the evaluation of the effectiveness of APA type devices in heating tumors located in the trunk region

  4. Chromosome painting in biological dosimetry: Semi-automatic system to score stable chromosome aberrations

    International Nuclear Information System (INIS)

    Garcia-Sagredo, J.M.; Vallcorba, I.; Sanchez-Hombre, M.C.; Ferro, M.T.; San Roman Cos-Gayon, C.; Santos, A.; Malpica, N.; Ortiz, C.

    1997-01-01

    From the beginning of the description of the procedure of chromosome painting by fluorescence in situ hybridization (FISH), it was thought its possible application to score induced chromosomal aberrations in radiation exposition. With chromosome painting it is possible to detect changes between chromosomes that has been validated in radiation exposition. Translocation scoring by FISH, contrarily to the unstable dicentrics, mainly detect stable chromosome aberrations that do not disappear, it allows the capability of quantify delayed acute expositions or chronic cumulative expositions. The large number of cells that have to be analyzed for high accuracy, specially when dealing with low radiation doses, makes it almost imperative to use an automatic analysis system. After validate translocation scoring by FISH in our, we have evaluated the ability and sensitivity to detect chromosomal aberrations by chromosome using different paint probes used, showing that any combination of paint probes can be used to score induced chromosomal aberrations. Our group has developed a FISH analysis that is currently being adapted for translocation scoring analysis. It includes systematic error correction and internal control probes. The performance tests carried out show that 9,000 cells can be analyzed in 10 hr. using a Sparc 4/370. Although with a faster computer, a higher throughput is expected, for large population screening or very low radiation doses, this performance still has to be improved. (author)

  5. Development of dose calibrators Tandem systems and establishment of beta dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    Cecatti, Sonia Garcia Pereira

    2004-01-01

    A quality control program at Nuclear Medicine Services includes the checking of all equipment used for diagnostics and treatment, and the individual monitoring of the workers occupationally exposed to ionizing radiations. In this work the main quality control tests were performed with three dose calibrators using standard radiation sources of 57 Co, 133 Ba, 137 Cs and 60 Co. Tandem systems of dose calibrators were established and characterized using four cylindrical absorbers of different materials for an additional quality control test in Nuclear Medicine. The main utility of this new test is the possibility of impurity detection in radiopharmaceuticals, when the ratio of the measurements with different absorbers is different from that obtained at the laboratory in ideal conditions. The dosimetric characteristics of three types of CaS0 4 :Dy + Teflon pellets were studied for an appropriate choice of the material to be used for individual monitoring of workers. The thermoluminescent detectors were irradiated using beta sources of 90 Sr+ 90 Y, 204 TI, 147 Pm, 153 Sm and 32 P. A wrist badge for beta individual monitoring was developed for workers that handle beta radiopharmaceuticals in Nuclear Medicine Services. (author)

  6. Perspex in the verification routines for accelerator beam

    International Nuclear Information System (INIS)

    Paredes G, L.; Genis S, R.

    1998-01-01

    It is analyzed the use of a perspex solid phantom, adequately referred to a water phantom, as an auxiliary alternative for the daily stability verification routines or constance of radiation beam, as an option in the case of radiotherapy installations with high charge of accelerator working and with basic dosimetry equipment. (Author)

  7. Nuclear accident dosimetry

    International Nuclear Information System (INIS)

    1982-01-01

    The film presents statistical data on criticality accidents. It outlines past IAEA activities on criticality accident dosimetry and the technical documents that resulted from this work. The film furthermore illustrates an international comparison study on nuclear accident dosimetry conducted at the Atomic Energy Research Establishment, Harwell, United Kingdom

  8. Personal dosimetry in Kazakhstan

    International Nuclear Information System (INIS)

    Khvoshnyanskaya, I.R.; Vdovichenko, V.G.; Lozbin, A.Yu.

    2003-01-01

    KATEP-AE Radiation Laboratory is the first organization in Kazakhstan officially licensed by the Kazakhstan Atomic Energy Committee to provide individual dosimetry services. The Laboratory was established according to the international standards. Nowadays it is the largest company providing personal dosimetry services in the Republic of Kazakhstan. (author)

  9. Nuclear accident dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-12-31

    The film presents statistical data on criticality accidents. It outlines past IAEA activities on criticality accident dosimetry and the technical documents that resulted from this work. The film furthermore illustrates an international comparison study on nuclear accident dosimetry conducted at the Atomic Energy Research Establishment, Harwell, United Kingdom

  10. Refinement of MLC modeling improves commercial QA dosimetry system for SRS and SBRT patient-specific QA.

    Science.gov (United States)

    Hillman, Yair; Kim, Josh; Chetty, Indrin; Wen, Ning

    2018-04-01

    Mobius 3D (M3D) provides a volumetric dose verification of the treatment planning system's calculated dose using an independent beam model and a collapsed cone convolution superposition algorithm. However, there is a lack of investigation into M3D's accuracy and effectiveness for stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT) quality assurance (QA). Here, we collaborated with the vendor to develop a revised M3D beam model for SRS/SBRT cases treated with a 6X flattening filter-free (FFF) beam and high-definition multiple leaf collimator (HDMLC) on an Edge linear accelerator. Eighty SRS/SBRT cases, planned with AAA dose algorithm and validated with Gafchromic film, were compared to M3D dose calculations using 3D gamma analysis with 2%/2 mm gamma criteria and a 10% threshold. A revised beam model was developed by refining the HD-MLC model in M3D to improve small field dose calculation accuracy and beam profile agreement. All cases were reanalyzed using the revised beam model. The impact of heterogeneity corrections for lung cases was investigated by applying lung density overrides to five cases. For the standard and revised beam models, respectively, the mean gamma passing rates were 94.6% [standard deviation (SD): 6.1%] and 98.0% [SD: 1.7%] (for the overall patient), 88.2% [SD: 17.3%] and 93.8% [SD: 6.8%] (for the brain PTV), 71.4% [SD: 18.4%] and 81.5% [SD: 14.3%] (for the lung PTV), 83.3% [SD: 16.7%] and 67.9% [SD: 23.0%] (for the spine PTV), and 78.6% [SD: 14.0%] and 86.8% [SD: 12.5%] (for the PTV of all other sites). The lung PTV mean gamma passing rates improved from 74.1% [SD: 7.5%] to 89.3% [SD: 7.2%] with the lung density overridden. The revised beam model achieved an output factor within 3% of plastic scintillator measurements for 2 × 2 cm 2 MLC field size, but larger discrepancies are still seen for smaller field sizes which necessitate further improvement of the beam model. Special attention needs to be paid to small field

  11. Database system for management of health physics and industrial hygiene records

    International Nuclear Information System (INIS)

    Murdoch, B. T.; Blomquist, J. A.; Cooke, R. H.; Davis, J. T.; Davis, T. M.; Dolecek, E. H.; Halka-Peel, L.; Johnson, D.; Keto, D. N.; Reyes, L. R.; Schlenker, R. A.; Woodring; J. L.

    1999-01-01

    This paper provides an overview of the Worker Protection System (WPS), a client/server, Windows-based database management system for essential radiological protection and industrial hygiene. Seven operational modules handle records for external dosimetry, bioassay/internal dosimetry, sealed sources, routine radiological surveys, lasers, workplace exposure, and respirators. WPS utilizes the latest hardware and software technologies to provide ready electronic access to a consolidated source of worker protection

  12. How conservative is routine personal dosimetry monitoring in diagnostic radiology?

    International Nuclear Information System (INIS)

    Boetticher, H. von; Lachmund, J.; Hoffmann, W.

    2007-01-01

    Purpose: Dose values obtained by official personal radiation exposure monitoring are often considered equivalent to the effective dose of a person. This paper provides estimates of the extent of deviation between the two dose concepts under various conditions. Materials and Methods: Doses for patients and personnel were measured using thermoluminescence dosimeters for five different geometries at three work settings in a radiology department. Patients and personnel were simulated with anthropomorphic phantoms. Different types of protective clothing as well as permanent protection shields were considered in the calculations. Results: Dose values obtained by official personal dose monitoring are conservative only for specific radiation protection situations. With state-of-the-art personal protective equipment (wrap-around style lead apron with thyroid shield), the ratio between effective dose and personal dose varies between 0.6 and 1.25. Without thyroid protection the official personal dose systematically underestimates the effective dose: for protective clothing with 0.5 mm lead equivalent without thyroid shielding, the effective dose exceeds the personal dose by factors between 1.7 and 3.1. If protective clothing with lead equivalent 0.35 mm is used, this factor varies between 1.1 and 1.82. (orig.)

  13. 100 years of solid state dosimetry and radiation protection dosimetry

    International Nuclear Information System (INIS)

    Bartlett, David T.

    2008-01-01

    The use of solid state detectors in radiation dosimetry has passed its 100th anniversary. The major applications of these detectors in radiation dosimetry have been in personal dosimetry, retrospective dosimetry, dating, medical dosimetry, the characterization of radiation fields, and also in microdosimetry and radiobiology research. In this introductory paper for the 15th International Conference, I shall speak of the history of solid state dosimetry and of the radiation measurement quantities that developed at the same time, mention some landmark developments in detectors and applications, speak a bit more about dosimetry and measurement quantities, and briefly look at the past and future

  14. An assessment of a 3D EPID-based dosimetry system using conventional two- and three-dimensional detectors for VMAT.

    Science.gov (United States)

    Stevens, S; Dvorak, P; Spevacek, V; Pilarova, K; Bray-Parry, M; Gesner, J; Richmond, A

    2018-01-01

    To provide a 3D dosimetric evaluation of a commercial portal dosimetry system using 2D/3D detectors under ideal conditions using VMAT. A 2D ion chamber array, radiochromic film and gel dosimeter were utilised to provide a dosimetric evaluation of transit phantom and pre-treatment 'fluence' EPID back-projected dose distributions for a standard VMAT plan. In-house 2D and 3D gamma methods compared pass statistics relative to each dosimeter and TPS dose distributions. Fluence mode and transit EPID dose distributions back-projected onto phantom geometry produced 2D gamma pass rates in excess of 97% relative to other tested detectors and exported TPS dose planes when a 3%, 3 mm global gamma criterion was applied. Use of a gel dosimeter within a glass vial allowed comparison of measured 3D dose distributions versus EPID 3D dose and TPS calculated distributions. 3D gamma comparisons between modalities at 3%, 3 mm gave pass rates in excess of 92%. Use of fluence mode was indicative of transit results under ideal conditions with slightly reduced dose definition. 3D EPID back projected dose distributions were validated against detectors in both 2D and 3D. Cross validation of transit dose delivered to a patient is limited due to reasons of practicality and the tests presented are recommended as a guideline for 3D EPID dosimetry commissioning; allowing direct comparison between detector, TPS, fluence and transit modes. The results indicate achievable gamma scores for a complex VMAT plan in a homogenous phantom geometry and contributes to growing experience of 3D EPID dosimetry. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Some aspects on neutron dosimetry

    International Nuclear Information System (INIS)

    Henaish, B.A.; Youssef, S.K.

    1988-01-01

    The American National Council on Radiation Protection and measurements (1) has recently issued a statement regarding dose limitation system for neutrons. The changes proposed in that statement presented substantial problems regarding the personnel exposure to neutrons and had pointed out the need to reassess an adequate current neutron dosimetry practice. Generally, the same types of dosimeters i.e. Nuclear Track (NTA films) and TLD-Albedo, have been used at major nuclear facilities over the past 15 years. here recently, other dosimetry methods such as track etch with polycarbonates such as CR-39 have been developed. However these should be recognized as local systems aiming to the development of better and more applicable dosimeters. 4 tab

  16. The impact of pneumatic tube system on routine laboratory parameters: a systematic review and meta-analysis.

    Science.gov (United States)

    Kapoula, Georgia V; Kontou, Panagiota I; Bagos, Pantelis G

    2017-10-26

    Pneumatic tube system (PTS) is a widely used method of transporting blood samples in hospitals. The aim of this study was to evaluate the effects of the PTS transport in certain routine laboratory parameters as it has been implicated with hemolysis. A systematic review and a meta-analysis were conducted. PubMed and Scopus databases were searched (up until November 2016) to identify prospective studies evaluating the impact of PTS transport in hematological, biochemical and coagulation measurements. The random-effects model was used in the meta-analysis utilizing the mean difference (MD). Heterogeneity was quantitatively assessed using the Cohran's Q and the I2 index. Subgroup analysis, meta-regression analysis, sensitivity analysis, cumulative meta-analysis and assessment of publication bias were performed for all outcomes. From a total of 282 studies identified by the searching procedure, 24 were finally included in the meta-analysis. The meta-analysis yielded statistically significant results for potassium (K) [MD=0.04 mmol/L; 95% confidence interval (CI)=0.015-0.065; p=0.002], lactate dehydrogenase (LDH) (MD=10.343 U/L; 95% CI=6.132-14.554; panalysis and random-effects meta-regression analysis according to the speed and distance of the samples traveled via the PTS revealed that there is relation between the rate and the distance of PTS with the measurements of K, LDH, white blood cells and red blood cells. This meta-analysis suggests that PTS may be associated with alterations in K, LDH and AST measurements. Although these findings may not have any significant clinical effect on laboratory results, it is wise that each hospital validates their PTS.

  17. Management system of personnel dosimetry based on ISO 9001:2008 for medical diagnostic; Sistema de gerenciamento da dosimetria pessoal baseado na ISO 9001:2008 para radiodiagnostico medico

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Carlos E.B.; Gerber Junior, Walmoli; Jahn, Tiago R.; Hahn, Tiago T.; Fontana, Thiago S.; Bolzan, Vagner, E-mail: brasilrad@brasilrad.com.br [Brasilrad Consultoria em Radioprotecao, Florianopolis, SC (Brazil)

    2013-07-01

    MDose is a computer management system of personal dosimetry in diagnostic radiology services physician based on ISO 9001:9008 management system. According to Brazilian law all service radiology should implement a control of personal dosimetry in addition to radiation doses greater than 1.5 mSv/year service should do research of high dose, which is to identify the causes the resulting dose increase professional. This work is based on the use of the PDCA cycle in a JAVA software developed as a management method in the analysis of high doses in order to promote systematic and continuous improvement within the organization of radiological protection of workers.

  18. ORCODE.77: a computer routine to control a nuclear physics experiment by a PDP-15 + CAMAC system, written in assembler language and including many new routines of general interest

    International Nuclear Information System (INIS)

    Dickens, J.K.; McConnell, J.W.

    1977-01-01

    ORCODE.77 is a versatile data-handling computer routine written in MACRO (assembler) language for a PDP-15 computer with EAE (extended arithmetic capability) connected to a CAMAC interface. The Interrupt feature of the computer is utilized. Although the code is oriented for a specific experimental problem, there are many routines of general interest, including a CAMAC Scaler handler, an executive routine to interpret and act upon three-character teletype commands, concise routines to type out double-precision integers (both octal and decimal) and floating-point numbers and to read in integers and floating-point numbers, a routine to convert to and from PDP-15 FORTRAN-IV floating-point format, a routine to handle clock interrupts, and our own DECTAPE handling routine. Routines having specific applications which are applicable to other very similar applications include a display routine using CAMAC instructions, control of external mechanical equipment using CAMAC instructions, storage of data from an Analog-to-digital Converter, analysis of stored data into time-dependent pulse-height spectra, and a routine to read the contents of a Nuclear Data 5050 Analyzer and to prepare DECTAPE output of these data for subsequent analysis by a code written in PDP-15-compiled FORTRAN-IV

  19. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    International Nuclear Information System (INIS)

    Rathbone, Bruce A.

    2006-01-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL's Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL's Electronic Records & Information Capture Architecture (ERICA) database

  20. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.